US3351501A - Process for producing magnetic sheets with cube-on-face grain texture - Google Patents

Process for producing magnetic sheets with cube-on-face grain texture Download PDF

Info

Publication number
US3351501A
US3351501A US372693A US37269364A US3351501A US 3351501 A US3351501 A US 3351501A US 372693 A US372693 A US 372693A US 37269364 A US37269364 A US 37269364A US 3351501 A US3351501 A US 3351501A
Authority
US
United States
Prior art keywords
sulfur
alloy
texture
gamma
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US372693A
Inventor
Robert G Aspden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US372693A priority Critical patent/US3351501A/en
Priority to DE1965W0039135 priority patent/DE1483514A1/en
Priority to GB21000/65A priority patent/GB1080578A/en
Priority to FR19433A priority patent/FR1443470A/en
Priority to BE664974A priority patent/BE664974A/xx
Priority to SE7415/65A priority patent/SE318900B/xx
Priority to US681016A priority patent/US3573112A/en
Application granted granted Critical
Publication of US3351501A publication Critical patent/US3351501A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels

Definitions

  • ABSTRACT 0F Til-IE DISCLOSURE A process, applicable to iron or iron-base alloys having a composition in which a gamma phase or face centered cubic lattice structure predominates at elevated temperature, for obtaining a 100) [It/cl] texture in an alloy sheet, which comprises, heating the alloy sheet to convert the alloy to the gamma phase and then cooling the sheet to convert the alloy to the alpha phase.
  • This invention relates to magnetic sheet material having an (001) texture and novel processes applicable to iron and ferrous base alloys for developing such texture.
  • gamma to alpha phase transforma tion is meant that the alloy when heated to some elevated temperature, 910 C. for iron alone, but depending on the composition for alloys, the crystal structure of the alloy will transform to the gamma phase or face centered cubic lattice, and upon cooling below this temperature the alloy crystal structure will revert to an alpha or body centered cubic lattice structure.
  • Many ferrous alloys have no gamma to alpha phase transformation, for example silicon iron alloys having over 2% silicon and carbon below 0.01%.
  • the present invention is based on the discovery that members, such as sheets, either hot or cold rolled, of iron or a ferrous base alloy having a gamma to alpha phase transformation can be subjected to a relatively simple annealing process passing from the gamma to alpha region to produce a random cube-on-face or (100) [hkl] grain texture, by suitable control of the composition as to provide a critical dissolved sulfur content therein during the gamma to alpha phase transformation during the anneal.
  • the process is not only relatively simple, but is quite economical.
  • the resulting product is commercially highly desirable.
  • Another object of the invention is to provide a relatively simple process whereby sheets of iron and ferrous base alloys having a gamma to alpha transformation can be given a (100') [hkl] texture by cooling from the gamma to alpha region providing that the dissolved sulfur in the alloy is within a critical range during such phase transformaiton anneal.
  • a further object of the invention is to provide a process for producing magnetic sheets of iron and ferrous base alloys having a gamma to alpha phase transformation, such sheets having extremely large (100) [hkl] grains.
  • a still further object of the invention is to provide a process for producing magnetic sheets of iron and a ferrous base alloy having gamma to alpha phase transform-ation with a cube texture which comprises initially preparing sheets having a random cube-on-face texture and thereafter cold rolling and annealing to produce a high percentage of (100) [001] grains.
  • Another object of the invention is to provide magnetic sheets of iron and ferrous base alloys having a gamma to alpha phase transformation, the sheets having a random (100) [hkl] grain texture.
  • strip or sheet or punchings or laminations of iron and ferrous base alloys having a gamma to alpha phase transformation generally in a thickness from less than 1 to mils is heated to above the allotropic transformation temperature to develop the gamma phase therein.
  • the metal should have dissolved sulfur in the critical amount of from 0.00003% to 0.0005% at the surface.
  • the gamma phase metal is then cooled through the transformation a temperature, or transformation temperature range, to cause a phase change to the alpha phase.
  • a high volume of the metal is of cube-nface or (001) [hkl] texture.
  • edges are randomly oriented from the [100] to [110] directions. Consequently, improved magnetic properties are available in the resulting members. They are suitable for use in rotating electrical equipment.
  • the sheet or strip can be further cold rolled and annealed whereupon it produces cube texture or (100) [001] grains.
  • compositions with which the present invention is concerned are binary and multi-element alloys of iron that have a gamma phase at elevated temperature and contain, as alloying constituents, one or more of the following: up to 2.0% of aluminum, up to 12% of chromium, up to 10% of germanium, up to of manganese, up to 5% of molybdenum, up to of nickel, up to 2% of silicon, up to 1% titanium, up to 1% of tantalum, up to 1% of vanadium, up to 6% of tungsten, up to to 50% of cobalt and up to 1% of zirconium.
  • carbon When carbon is present, its content generally is in the range of 0.001 to 0.08%.
  • the preferred limits for the foregoing alloying elements are: 0.001 to 0.8% of aluminum, up to 2% of chromium, up to 0.5 of germanium, up to 1% of manganese, up to 2% of molybdenum, up to 1% of nickel, up to 2% of silicon, up to 0.5% of titanium up to 0.5% of tantalum, up to 0.5% of vanadium, up to 0.5% of tungsten, to 45% of cobalt and 0.1 to 0.5% of zirconium.
  • the invention can also be practiced with unalloyed iron.
  • ferrous alloy When two or more alloying elements are present in the ferrous alloy, their total amount preferably does not exceed about 50%.
  • ferrous alloy with over 2% silicon may be employed by incorporating substantial amounts of carbon, molybdenum, nickel, or cobalt which extend -the gamma loop.
  • Ternary, quaternary and higher alloys may be employed in practicing the invention.
  • Illustrative examples are: (1) 1.0% silicon, 0.5% molybdenum, .01% carbon, balance iron; (2) 0.6% silicon, 0.3 manganese, 0.01% carbon, balance iron; (3) 1% chromium, 1% cobalt, 0.2% manganese, balance iron; (4) 0.5% silicon, 0.5% chromium, 0.5% nickel, 0.1% manganese, balance iron and (5) 0.8% silicon, 0.01% carbon, 0.5% molybdenum, 0.5% nickel, 0.2% chromium, balance iron.
  • Incidental impurities such as oxygen, nitrogen and traces of various elements may be present.
  • the alloy may be extremely pure or clean, or it may be a regular commercial product, and either will be suitable for the practice of the invention.
  • Oxygen has been found not to be critical in practicing the invention and relaively large amounts can be present without adverse effects.
  • the sulfur content and its precise form and distribution is critically important. Sulfur present as inclusions of relatively stable sulfides, such as manganese sulfide, plays no significant part in effecting the desired results of the invention. Sulfur dissolved in the ferrous phase so that it is present in critical proportions at the surface of the sheet is the indispensable constituent. At the time that the gamma to alpha transformation takes place the dissolved sulfur adjacent or at the surface must be within the range of 0.00003% to 0.0005 by weight. The sulfur content of the sheets should be so analyzed as to exclude sulfur as a relatively stable sulfide.
  • a sheet may include a relatively high percentage, say 0.02% of sulfur, which however is nearly all in the form of manganese sulfide, and it will transform to cube-on-face during the gamma to alpha annealing because the dissolved sulfur at the surface is in the critical range.
  • the furnace atmosphere may be treated to introduce a small amount of hydrogen sulfide, for example 0.001% by volume of the hydrogen sulfide. This not only prevents evaporation of the dissolved sulfur from the metal but may even introduce enough into the metal to bring it into the desired range if the sulfur content is low.
  • carbon is not a 'desirable constituent of magnetic sheets, and every effort is made to reduce the carbon content to less than 0.01%, preferably below 0.005% in the final sheet.
  • a decarburization anneal, using wet hydrogen, for example 50 F. dew point, at 800 C. to 900 C. for A1 to 2 hours will reduce the carbon content to a low level. This treatment may precede or follow the gamma to alpha phase transformation of the inven tion.
  • Iron and its alloys for use in the present invention generally are in sheet or strip form of about 0.001 to 0.150 inch in thickness, though it has been found that the process is essentially insensitive to the thickness of the material being processed.
  • sheet or strip material is produced by forging or hot rolling a slab directly to the desired thickness or to an intermediate thickness on the order of about 0.1 to 0.5 inch. The intermediate thickness is then reduced by cold rolling to the final thickness in one or more stages. Each stage comprises a cold rolling anneal, and pickling if necessary.
  • the strip or sheet can be decarburized by annealing in the decarburizing atmosphere, for example wet hydrogen, that is, hydrogen s aturated with water vapor at about 20 to 50 C. When cold rolling is practiced, reduction at each stage on the order of 40 to generally are taken.
  • a critical step of the present invention involves annealing the material at a temperature, for a period ranging from about 10 minutes, though it may be 30 hours or more, such temperature being in the gamma region for the material being treated. Generally, for purposes of insuring this, annealing is conducted at about 10 to 300 C. above the temperature at which the transition starts but clearly in the gamma region in all events.
  • the material is cooled, preferably, though not necessarily slowly cooled, through the allotropic transformation temperature, suitably to about 10 to C. below it.
  • Slow cooling at a rate below about C. per hour and suitably in the range of about 4 to 12 C. per hour results in very large grain growth of the (100) [hkl] grains.
  • the treated material can be cooled as desired to room temperature and used. Also cooling the sheets rapidly to a temperature of about 10 to 200 C. below the temperature at which the transformation occurs and holding the sheets at this temperature for about 2 to 50 hours tends to convert the grain structure from one containing a substructure to one free from substructure, through selective growth of the (100) grains to a very large size and thereby further improve the magnetic properties.
  • the material containing the (100) [hkl] texture can be further cold rolled, i.e. at about a 60 to 80% reduction, and again be given a heat treatment to produce oriented material having a cube or'(100) [001] texture.
  • the development of the (100) [hkl] texture of the present invention is critically influenced by employing a selective driving force for (100) grain growth during the allotropic transformation.
  • the driving force is provided by the presence of the critical amounts of sulfur during the gamma to alpha transformation.
  • the sulfur can be present as an alloying constituent in the metal being treated or it can be supplied in part or entirely by an addition of a sulfur material to the atmosphere in which the process is carried out.
  • Sulfur has also been supplied by treating material, that may be present during the annealing, wit-h H 8, for example an A1 sheet separator material which evolves the sulfur by appropriate vapor pressure development.
  • Sufiicient sulfur is present for driving purposes when the alloy contains dissolved sulfur to an extent of 0.00003 to 0.0005% of the alloy or the atmosphere is provided with a sulfur-containing compound, preferably hydrogen sulfide, in an amount to provide a partial pressure of sulfur which would produce or maintain an equilibrium condition at least at the surface of the sheet in this range.
  • a sulfur-containing compound preferably hydrogen sulfide
  • the metal In annealing the metal sheets, strip or punchings or the like in stack or coiled form, the metal must contain dissolved sulfur in essentially the critical proportions of 0.00003% to 0.0005% at the time of the phase transformation. A slight excess of dissolved sulfur may be present in the metal since a small portion of the sulfur is evolved during the anneal, so that the dissolved sulfur content at the sheet surface will be in the proper range at the time the metal is in the gamma to alpha transformation temperature range whereby cube grain growth takes place.
  • an atmosphere containing hydrogen sulfide in amounts from 2 to 30 parts per million by volume may be flowed past the laminations in order to maintain or increase the dissolved sulfur in the ferrous metal into the critical range of from 0.00003% to 0.0005%.
  • additions of up to 0.5% by weight of elements which have a high aifinity for sulfur may be made.
  • Such additions to the alloys of this invention which have bulk sulfur concentrations above the critical range will aid in obtaining the cube grain texture by reducing the amount of sulfur in solution by reason of the formation of very stable sulfides.
  • Such elements, in addition to manganese, are barium, calcium, cerium, strontium and the rare earth elements such as lanthanum which forms stable sulfides.
  • the transformation can be carried out in a neutral or nonoxidizing atmosphere or in a reducing atmosphere that tends to produce a bright surface on the metal being treated at the time of transformation.
  • the transformation can be carried out in a vacuum of at least as low as 10* mm. of Hg or in a reducing gas such as dry hydrogen, or in argon, helium, nitrogen or mixtures of gases, as for example, nitrogen and hydrogen.
  • a reducing gas such as dry hydrogen, or in argon, helium, nitrogen or mixtures of gases, as for example, nitrogen and hydrogen.
  • the atmosphere can contain water vapor as would for example, be present in wet hydrogen (20 to 50 C. dew point) for pure iron for example and this in some cases tends to benefit the surface energy relationship that functions as a driving force.
  • wet hydrogen (20 to 50 C. dew point
  • pure iron for example and this in some cases tends to benefit the surface energy relationship that functions as a driving force.
  • the atmosphere should be relatively dry, for instance of a dew point
  • the metal treated whether in strip, sheet, or other form such as Epstein strips or stator punchings or the like, has a (100) [hkl] texture ranging from about 50 to 98% of its crystal volume or surface area. This proportion is based on counting grains whose cube faces are parallel within 12 to the surface of the sheet. Usually 40 to 50% of the grains have faces within 2 of the surface, and another to within 2 to 6. The magnetic properties are outstanding.
  • the (100) [hkl] texture produced in accordance with this invention be present to an extent of about 70% and preferably 80% and higher of the surface of the sheets.
  • the allotropic transformation temperature for example at 800 C. to 900 C. there is obtained cube texture material, that is (100) [001] orientation.
  • this latter orientation is meant to indicate that at least 80% of the surface area is occupied by (100) grains at least 75% of which have their [001] directions aligned within 15 of the rolling direction.
  • the anneal below the allotropic transformation temperature secures secondary recrystallization of the (100) grains which grow to an average diameter which is many times the sheet thickness averaging well above 10 times the said thickness. This last anneal extends for about 10 to 100 hours or more and is carried out in the same conditions of atmosphere, and therefore driving force, as that indicated hereinbefore with respect to producing (100) [hkl] texture.
  • Material for the following examples generally was prepared by melting, usually in a vacuum furnace, the appropriate charge contained in a magnesia crucible and then pouring the melt into a stainless steel mold. Purified iron, where its use is indicated, was obtained for this purpose by annealing electrolytic iron one hour at 760 C. in wet hydrogen followed by one hour at 1200 C. in dry hydrogen. Further, the annealing referred to in the examples was, unless otherwise stated, stack annealing using alumina as a separator and a hydrogen atmosphere of a dew point of less than C.
  • the sulfur content values given are the total sulfur in the ferrous metal prior to annealing. A substantial or even a major proportion of the sulfur is bound as stable sulfides and plays little part in the cube grain growth process. Also some of the sulfur may be removed during annealing if the atmosphere is below the equilibrium sulfur content whereby a sulfur gradient exists between the center of each sheet and its surface. In each example where or more of cube grain growth occurred, the dissolved sulfur at the surface was in the range of 0.00003% to 0.0005%.
  • Example I A sheet of 12 mil thick commercial iron was used having the following composition by weight: 0.003% aluminum present as A1 0 0.002% N, 0.39% Mn, 0.017% Cu, 0.11% P, 0.030% C, 0.022% S and the remainder iron.
  • the sample was annealed in dry hydrogen -35 C. dew point for one hour at about 1210 C. (about 300 C. above the gamma to alpha transition temperature) and then slowly cooled, about 110 C. per hour, to a temperature of about 860 C., which is about 50 C. below the alpha to gamma transition temperature, and then cooled to room temperature.
  • Example 11 An iron base alloy containing about 1.11% of silicon was prepared by vacuum melting purified electrolytic iron and commercial grade silicon. This alloy was melted in a magnesia crucible and poured into a stainless steel mold. The analysis, by weight, was 0.0013% of oxygen, 0.0009% of nitrogen, 0.0015% of carbon, 0.0013% of sulfur, 1.11% of silicon and the remainder iron.
  • the alloy was hot rolled to sheet at a temperature in the range of 800 to 1050 C. to a thickness of 0.100 inch, pickled in a 25% sulfuric acid solution, and then cold rolled to a sheet thickness of 0.018 inch.
  • Epstein strips (1 7 x 12") were sheared from the sheet and annealed in a stack with dry alumina as a separator. All annealing as hereinafter indicated was done in an Inconel tube in an atmosphere of dry hydrogen (50 C. dew point).
  • Example 111 A series of tests were made on iron-oxygen alloy sheets containing 0.0010 to 0.0023% sulfur and in which the oxygen was varied from 0.0010 to 0.0335 specimens of each composition was annealed at 1050 C. for 12 to 16 hours and then cooled at 4 to 10 C. per hour to the alpha region, and other specimens were annealed for the same period but at the higher temperature of 1200 C. and then cooled at 4 to 10 C. per hour to the alpha region. It was found that changes of the oxygen concentration did not appreciably influence the amount of (001) [hkl] resulting. However, the annealing temperature did influence the results, with the lower (1050 C.) temperature being the better, resulting in a smaller grain size and a larger amount of (100) [hkl] texture which varied from 51 to 80% of the surface.
  • Example IV A similar series of tests were made on iron-manganesesulfur alloys containing about 0.093% of manganese in all instances, with the sulfur ranging from 0.0015 to 0.022%.
  • the best results were achieved in the heat treating schedule that included the anneal at 1050 C., with the amount of (100) [hkl] texture ranging from 83.3 to 90.2% of the surface area. It was also discovered that the presence of manganese, along with the necessary dissolved sulfur had a beneficial influence on (100) grain growth.
  • Example V An alloy slab containing, by weight, 27% of cobalt, 0.01% manganese, about 0.02% sulfur and the remainder essentially iron was hot rolled at 1000 C. to a band 100 mils thick. The hot rolled band was pickled to remove scale, and it was then cold rolled to 14 mil strip. That strip was placed in a furnace at 800 C. and heated Within the furnace to 1150 C. After 16 hours the strip was furnace cooled (below 12 C. per hour) to 800 C. It is to be noted that the alpha to gamma transformation temperature for this composition is approximately 950 C.
  • Example VI Strip of a thickness of 18 mils of cold rolled iron-molybdenum having an analysis, by weight, of 0.0112% of oxygen, 0.0027% of carbon, about 0.0005 of sulfur, 0.99% of molybdenum and the remainder iron was annealed in the gamma range and then slowly cooled through the transition in the same manner and under the conditions set forth in Example III above.
  • the treatment including the anneal at 1050 C. was superior, and indeed resulted in one of the highest value of (100) [hkl] texture achieved in any of these tests, 93.5%.
  • Example VII Single strips of the iron-molybdenum alloy analysis set forth in Example VI were inserted into a tube furnace at 1140 C. and positioned with one end of each strip in the hot zone and the other in the cold zone. The strips were held in this position for about 1 or 2 hours and then pulled at different rates into a cooling chamber. A portion of each strip that was at a temperature in the gamma temperature region was found to have developed (100) [hkl] texture in inverse proportion to the rate of withdrawal, and therefore the rate of cooling through the transition temperature.
  • alloy strip as described was annealed at 1000 to 1300 C., slowly cooled through the transition temperature and then further annealed below the transition temperature, i.e. at 800 C., for about 5 to 120 hours in the sulfur-containing, nonoxidizing atmosphere suitable to the growth of (100) grains. This latter procedure tends to remove substructure thereby contributing to improved magnetic qualities.
  • material having a 100) [hkl] texture can be further treated, inaccordance with my discoveries, to develop (100) [001] orientation.
  • the following is an example thereof which also demonstrates the desirability of the requirement of starting with at least 80% (100) [hkl] texture for this particular discovery.
  • These alloys were prepared 10 by vacuum induction melting, and sheet was obtained therefrom by hot rolling at 1050 C., pickling, and then cold rolling to 0.012 inch for alloy A and cold rolling to 0.018 inch for alloy B.
  • Alloy A was annealed in the gamma phase by heating at 1050 C. for 8 hours followed by cooling at 8 C. per hour through the allotropic transformation temperature to 880 C.
  • Alloy B was annealed in the gamma phase by heating at 1050 C. for 12 hours followed by cooling through the allotropic transformation temperature at 4 C. per hour to 880 C.
  • the anneals for both alloys were conducted in dry hydrogen (below C. dew point) containing traces of sulfur.
  • a study of the grains in the resulting product showed that those in alloy A contained 51 to 71.6% of (100) grains within 12 of the rolling plane while alloy B contained 89.7 to 93.9% of its (100) grains within 12 of the rolling plane.
  • the annealing indicated in the foregoing examples was conducted in dry hydrogen (50 C. dew point). In other tests, the procedure was changed to substitute +20 C. dew point hydrogen. For those alloys that were insensitive to water vapor, e.g. iron-molybdenum and the like, the desired (100) [hkl] texture was still achieved. However, for alloys that thereby developed a heavy oxide surface film, e.g. iron-silicon alloys, a low value of the desired texture resulted thereby indicating the need to anneal at conditions that result in a bright surface during the phase change.
  • alloys having an oriented texture from ferrous-base alloys having a gamma to alpha phase transformation
  • such alloys containing, by weight, at least one element selected from the group consisting of up to 2% of aluminum, up to 12% of chromium, up to 10% of germanium, up to 5% of manganese, up to 5% of molybdenum, up to of nickel, up to 2% of silicon, up to 1% of titanium, up to 1% of tantalum, up to 1% of vanadium, up to 6% of tungsten, up to 50% of cobalt, up to 1% of zirconium and from 0.001 to 0.08% of carbon, the total amount of such elements not exceeding 50%, by weight, of the alloy when more than one of said elements is present, the steps comprising heating a sheet of such alloy to a temperature sufficient to convert the alloy to the gamma phase, then cooling the alloy to the alpha phase, the alloy having from 0.00003 to 0.0005%, by weight, of dissolved sulfur
  • a method of producing ferrous-base alloy sheets having an oriented texture comprising rolling a ferrousbase alloy body containing as alloying constituents at least one member selected from the group consisting of up to 2% aluminum, up to 2% chromium, up to 10% germanium, up to 5% of manganese, up to 5% of molybdenum, up to 10% of nickel, up to 2% of silicon, up to 1% of titanium, up to 1% of tantalum, up to 1% of vanadium, up to 6% of tungsten, up to 20 to of cobalt, up to 1% 0f zirconium, up to 0.08% of carbon, to a thickness of from less than 1 to 150 mils, heating the resulting sheet to a temperature within the range of about 900 to 1300 C.
  • the alloy sheet at which the alloy is in the gamma phase, then cooling the heated sheet at a rate below about 175 C. per hour through its allotropic transformation temperature to a temperature at which the alloy is in the alpha phase, the alloy sheet having therein from 0.00003 to 0.0005%, by weight, of dissolved sulfur at the surface during the transformation to the alpha phase, cold reducing the sheet about to then heating the cold reduced sheet at a temperature just below the allotropic transformation temperature for a period to produce a major proportion of grains having a [001] orientation, said process being carried out in an atmosphere which is nonoxidizing to the surface of the alloy being treated.
  • a method of producing alloy sheets having an oriented texture from ferrous-base alloys having a gamma to alpha phase transformation such alloys containing, by weight, at least one element selected from the group consisting of up to 2% of aluminum, up to 12% of chromium, up to 10% of germanium, up to 5% of manganese, up to 5% of molybdenum, up to 10% of nickel, up to 2% of silicon, up to 1% of titanium, up to 1% of tantalum, up to 1% of vanadium, up to 6% of tungsten, up to from 20 to 50% of cobalt, up to 1% of zirconium and from 0.001 to 0.08% of carbon, the total amount of such elements not exceeding 50%, by weight, of the alloy when more than one of said elements is present, the method comprising heating a sheet of such alloy to a temperature sufficient to convert the alloy to the gamma phase, then cooling the alloy to the alpha phase, the alloy having from 0.00003 to 0.0005 by weight, of
  • a method of making sheets of iron-cobalt alloy having a (100) [hkl] texture comprising heating a sheet of such alloy to a temperature to convert the 13 metal to the gamma phase, then cooling the alloy sheet to the alpha phase, the alloy sheet having from 0.00003 to 0.0005%, by weight, of dissolved sulfur at the surface thereof during the phase transformation.
  • the steps comprising heating a single strip of iron or ferrous-base alloy having a gamma to alpha phase transformation to a temperature in the gamma region, cooling the strip to the alpha region, the heating and cooling steps being carried out in a nonoxidizing atmosphere comprising from 2 to 30 parts per million of hydrogen sulfide, conducive to the development of grains having the (100) [hkl] orientation whereby the surface of the strip has from 0.00003% to 0.0005% of sulfur during the phase transformation so that cube grains nucleate on the surface and grow therefrom.
  • a method of making sheets of oriented iron, the iron having only small amounts of additives and impurities therein comprising heating a sheet of said iron to a temperature above 910 C. to convert the iron sheet to the gamma phase, then cooling the iron sheet to the alpha phase, the iron sheet having from 0.00003% to 0.0005 by Weight, of dissolved sulfur at the surface thereof during the phase transformation whereby grains occupying at least 80% of the surface of the iron sheet are oriented to a (100) [hkl] texture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

3,351,501 Patented Nov. 7, 1967 3,351,501 PROCESF FGR PRQDUCENG MAGNETIC SHEETS WETH CUBE-ON-FACE GRAHN TEXTURE Robert G. Aspden, Penn Township, Pittsburgh, Pa, assignor t Westinghouse Electric Corporation, East Pittsburgh, Pm, a corporation of Pennsylvania No Drawing. Fiied June 4, 1964, Ser. No. 372,693 19 Claims. Jl. 148-112) ABSTRACT 0F Til-IE DISCLOSURE A process, applicable to iron or iron-base alloys having a composition in which a gamma phase or face centered cubic lattice structure predominates at elevated temperature, for obtaining a 100) [It/cl] texture in an alloy sheet, which comprises, heating the alloy sheet to convert the alloy to the gamma phase and then cooling the sheet to convert the alloy to the alpha phase.
This invention relates to magnetic sheet material having an (001) texture and novel processes applicable to iron and ferrous base alloys for developing such texture.
It has long been desirable to provide magnetic sheets of ferrous base alloys in which the crystal lattices of the grains have a (100) orientation. In recent years a process has been developed for producing sheets of silicon iron having a (100) [001] texture by a series of cold rolling steps and a critical anneal producing secondary recrystallized grains which have the cube texture, Such process is disclosed in U.S. Patent 2,992,952. This process is limited to certain alloy compositions and calls for specifiic cold rolling procedures as well as requiring a critical secondary recrystallization anneal where oxygen and oxides are critically restricted to extremely low values.
For rotating electrical machines such as motors and generators, circular or sector laminations of magnetic sheets having the (100) [001] grain texture may not be as desirable as sheets with a cube-on-face grain texture with the edges randomly oriented, namely the (100) [hkl] orientation. The processes of the prior art do not provide sheets having such random cube-onface grain texture except by extremely expensive and involved processes.
Practically all processes for producing magnetic sheets having some oriented grain texture cannot be successfully applied to ferrous alloys having a gamma to alpha phase transformation. By gamma to alpha phase transforma tion is meant that the alloy when heated to some elevated temperature, 910 C. for iron alone, but depending on the composition for alloys, the crystal structure of the alloy will transform to the gamma phase or face centered cubic lattice, and upon cooling below this temperature the alloy crystal structure will revert to an alpha or body centered cubic lattice structure. Many ferrous alloys have no gamma to alpha phase transformation, for example silicon iron alloys having over 2% silicon and carbon below 0.01%. When sheets of an alloy having gamma to alpha phase transformation are annealed according to prior art practices in the gamma region and then cooled into the alpha region, the resulting grain texture is completely random.
As a consequence all processes in the art directed to obtaining a preferred orientation have been applied to treatment of ferrous alloys having no gamma to alpha phase transformation when heated to elevated temperatures above 900 C. as is required for stationary annealing or heat treatment thereof. For instance, prior art processes for producing grain, oriented magnetic sheets have been restricted to iron-silicon alloys having at least 2% silicon. Again, the process of producing double oriented or cube texture sheets from ingots in which columnar grain growth is relied upon to secure grain texture, can be applied only to ferrous alloy melts not having a gamma to alpha phase transformation since the occurrence of the gamma to alpha transformation 1 causes a randomly oriented columnar structure and as a result no cube texture sheets can be produced by known processes.
When an elevated annealing temperature is applied in an atmosphere taught in the art to sheets of a ferrous alloy which have a gamma to alpha transformation, the sheets develop a completely random grain texture, as is taught in U.S. Patent 3,130,091 entitled Non-Oriented Silicon-Iron Sheet Stock and Process of Making It. At most, if an alloy having a gamma to alpha phase transformation is processed by any prior art process in order to secure or develop a preferred orientation, it can only be annealed at temperatures below the gamma region, otherwise any cube texture in the grains is lost on reaching the gamma region and cooling back to the alpha region.
The present invention is based on the discovery that members, such as sheets, either hot or cold rolled, of iron or a ferrous base alloy having a gamma to alpha phase transformation can be subjected to a relatively simple annealing process passing from the gamma to alpha region to produce a random cube-on-face or (100) [hkl] grain texture, by suitable control of the composition as to provide a critical dissolved sulfur content therein during the gamma to alpha phase transformation during the anneal. The process is not only relatively simple, but is quite economical. The resulting product is commercially highly desirable.
It is an object of the invention to provide an easily practiced process whereby iron and ferrous base alloys having a gamma to alpha phase transformation can be converted into bodies or sheets having a cube-on-face grain texture.
Another object of the invention is to provide a relatively simple process whereby sheets of iron and ferrous base alloys having a gamma to alpha transformation can be given a (100') [hkl] texture by cooling from the gamma to alpha region providing that the dissolved sulfur in the alloy is within a critical range during such phase transformaiton anneal.
A further object of the invention is to provide a process for producing magnetic sheets of iron and ferrous base alloys having a gamma to alpha phase transformation, such sheets having extremely large (100) [hkl] grains.
A still further object of the invention is to provide a process for producing magnetic sheets of iron and a ferrous base alloy having gamma to alpha phase transform-ation with a cube texture which comprises initially preparing sheets having a random cube-on-face texture and thereafter cold rolling and annealing to produce a high percentage of (100) [001] grains.
Another object of the invention is to provide magnetic sheets of iron and ferrous base alloys having a gamma to alpha phase transformation, the sheets having a random (100) [hkl] grain texture.
Other objects will be apparent from the following detailed discussion and description.
These and other objects are attained in accordance with the present invention in which strip or sheet or punchings or laminations of iron and ferrous base alloys having a gamma to alpha phase transformation generally in a thickness from less than 1 to mils is heated to above the allotropic transformation temperature to develop the gamma phase therein. At this point the metal should have dissolved sulfur in the critical amount of from 0.00003% to 0.0005% at the surface. The gamma phase metal is then cooled through the transformation a temperature, or transformation temperature range, to cause a phase change to the alpha phase. By so treating the particular compositions, a high volume of the metal is of cube-nface or (001) [hkl] texture. The edges are randomly oriented from the [100] to [110] directions. Consequently, improved magnetic properties are available in the resulting members. They are suitable for use in rotating electrical equipment. The sheet or strip can be further cold rolled and annealed whereupon it produces cube texture or (100) [001] grains.
The compositions with which the present invention is concerned are binary and multi-element alloys of iron that have a gamma phase at elevated temperature and contain, as alloying constituents, one or more of the following: up to 2.0% of aluminum, up to 12% of chromium, up to 10% of germanium, up to of manganese, up to 5% of molybdenum, up to of nickel, up to 2% of silicon, up to 1% titanium, up to 1% of tantalum, up to 1% of vanadium, up to 6% of tungsten, up to to 50% of cobalt and up to 1% of zirconium. When carbon is present, its content generally is in the range of 0.001 to 0.08%. The preferred limits for the foregoing alloying elements are: 0.001 to 0.8% of aluminum, up to 2% of chromium, up to 0.5 of germanium, up to 1% of manganese, up to 2% of molybdenum, up to 1% of nickel, up to 2% of silicon, up to 0.5% of titanium up to 0.5% of tantalum, up to 0.5% of vanadium, up to 0.5% of tungsten, to 45% of cobalt and 0.1 to 0.5% of zirconium. In addition to such alloys, the invention can also be practiced with unalloyed iron.
When two or more alloying elements are present in the ferrous alloy, their total amount preferably does not exceed about 50%. Thus, ferrous alloy with over 2% silicon may be employed by incorporating substantial amounts of carbon, molybdenum, nickel, or cobalt which extend -the gamma loop. Ternary, quaternary and higher alloys may be employed in practicing the invention. Illustrative examples are: (1) 1.0% silicon, 0.5% molybdenum, .01% carbon, balance iron; (2) 0.6% silicon, 0.3 manganese, 0.01% carbon, balance iron; (3) 1% chromium, 1% cobalt, 0.2% manganese, balance iron; (4) 0.5% silicon, 0.5% chromium, 0.5% nickel, 0.1% manganese, balance iron and (5) 0.8% silicon, 0.01% carbon, 0.5% molybdenum, 0.5% nickel, 0.2% chromium, balance iron. Incidental impurities such as oxygen, nitrogen and traces of various elements may be present. The alloy may be extremely pure or clean, or it may be a regular commercial product, and either will be suitable for the practice of the invention.
Oxygen has been found not to be critical in practicing the invention and relaively large amounts can be present without adverse effects.
The sulfur content and its precise form and distribution is critically important. Sulfur present as inclusions of relatively stable sulfides, such as manganese sulfide, plays no significant part in effecting the desired results of the invention. Sulfur dissolved in the ferrous phase so that it is present in critical proportions at the surface of the sheet is the indispensable constituent. At the time that the gamma to alpha transformation takes place the dissolved sulfur adjacent or at the surface must be within the range of 0.00003% to 0.0005 by weight. The sulfur content of the sheets should be so analyzed as to exclude sulfur as a relatively stable sulfide. A sheet may include a relatively high percentage, say 0.02% of sulfur, which however is nearly all in the form of manganese sulfide, and it will transform to cube-on-face during the gamma to alpha annealing because the dissolved sulfur at the surface is in the critical range.
In order to assure that there is adequate sulfur in the alloy during the gamma to alpha transformation step, particularly if the sheet is low in dissolved sulfur, the furnace atmosphere may be treated to introduce a small amount of hydrogen sulfide, for example 0.001% by volume of the hydrogen sulfide. This not only prevents evaporation of the dissolved sulfur from the metal but may even introduce enough into the metal to bring it into the desired range if the sulfur content is low.
In general, carbon is not a 'desirable constituent of magnetic sheets, and every effort is made to reduce the carbon content to less than 0.01%, preferably below 0.005% in the final sheet. A decarburization anneal, using wet hydrogen, for example 50 F. dew point, at 800 C. to 900 C. for A1 to 2 hours will reduce the carbon content to a low level. This treatment may precede or follow the gamma to alpha phase transformation of the inven tion.
Iron and its alloys for use in the present invention generally are in sheet or strip form of about 0.001 to 0.150 inch in thickness, though it has been found that the process is essentially insensitive to the thickness of the material being processed. Generally, sheet or strip material is produced by forging or hot rolling a slab directly to the desired thickness or to an intermediate thickness on the order of about 0.1 to 0.5 inch. The intermediate thickness is then reduced by cold rolling to the final thickness in one or more stages. Each stage comprises a cold rolling anneal, and pickling if necessary. At any convenient stage during the processing, the strip or sheet can be decarburized by annealing in the decarburizing atmosphere, for example wet hydrogen, that is, hydrogen s aturated with water vapor at about 20 to 50 C. When cold rolling is practiced, reduction at each stage on the order of 40 to generally are taken.
It is of the essence of the present invention to cause a transition of iron or ferrous base alloy from the gamma phase at an elevated temperature of about 900 C. (depending on composition) to the alpha phase at a lower temperature. As will be apparent to one skilled in the art,
- this allotropic transformation occurs at temperatures dependent on the specific composition being processed. For example, for ordinary iron-silicon alloys with a silicon content ranging up to about 2%, it is generally in the range of about 900 to 1000 C. In any event, a critical step of the present invention involves annealing the material at a temperature, for a period ranging from about 10 minutes, though it may be 30 hours or more, such temperature being in the gamma region for the material being treated. Generally, for purposes of insuring this, annealing is conducted at about 10 to 300 C. above the temperature at which the transition starts but clearly in the gamma region in all events. Thereafter the material is cooled, preferably, though not necessarily slowly cooled, through the allotropic transformation temperature, suitably to about 10 to C. below it. Slow cooling at a rate below about C. per hour and suitably in the range of about 4 to 12 C. per hour results in very large grain growth of the (100) [hkl] grains. Thereafter the treated material can be cooled as desired to room temperature and used. Also cooling the sheets rapidly to a temperature of about 10 to 200 C. below the temperature at which the transformation occurs and holding the sheets at this temperature for about 2 to 50 hours tends to convert the grain structure from one containing a substructure to one free from substructure, through selective growth of the (100) grains to a very large size and thereby further improve the magnetic properties.
Moreover, a further feature is that the material containing the (100) [hkl] texture can be further cold rolled, i.e. at about a 60 to 80% reduction, and again be given a heat treatment to produce oriented material having a cube or'(100) [001] texture.
As previously mentioned, the development of the (100) [hkl] texture of the present invention is critically influenced by employing a selective driving force for (100) grain growth during the allotropic transformation. In this invention the driving force is provided by the presence of the critical amounts of sulfur during the gamma to alpha transformation. The sulfur can be present as an alloying constituent in the metal being treated or it can be supplied in part or entirely by an addition of a sulfur material to the atmosphere in which the process is carried out. Sulfur has also been supplied by treating material, that may be present during the annealing, wit-h H 8, for example an A1 sheet separator material which evolves the sulfur by appropriate vapor pressure development. Sufiicient sulfur is present for driving purposes when the alloy contains dissolved sulfur to an extent of 0.00003 to 0.0005% of the alloy or the atmosphere is provided with a sulfur-containing compound, preferably hydrogen sulfide, in an amount to provide a partial pressure of sulfur which would produce or maintain an equilibrium condition at least at the surface of the sheet in this range.
In annealing the metal sheets, strip or punchings or the like in stack or coiled form, the metal must contain dissolved sulfur in essentially the critical proportions of 0.00003% to 0.0005% at the time of the phase transformation. A slight excess of dissolved sulfur may be present in the metal since a small portion of the sulfur is evolved during the anneal, so that the dissolved sulfur content at the sheet surface will be in the proper range at the time the metal is in the gamma to alpha transformation temperature range whereby cube grain growth takes place. Reference should be had to copending application S.N. 154,803, filed November 24, 1961, and particularly the drawings which show the loss of sulfur from stacks and single strips at elevated temperatures. If the sulfur content is at or slightly below the lower limit an atmosphere containing hydrogen sulfide in amounts from 2 to 30 parts per million by volume, may be flowed past the laminations in order to maintain or increase the dissolved sulfur in the ferrous metal into the critical range of from 0.00003% to 0.0005%.
When annealing a single sheet or a strip of the ferrous metal, the rate of evolution of sulfur from the surface of the metal is relatively high if the atmosphere contains no sulfur-bearing gas. Consequently, when annealing in such a relatively sulfur free atmosphere, a strip having a dissolved sulfur content above the critical range would be employed. Upon reaching the annealing temperature sulfur is removed from the surface to such an extent that after a period of time the dissolved sulfur in the surface areas of the strip is in the critical range so that cube grains will nucleate at the surface and grow inwardly during the gamma to alpha transformation. Such cube grains will extend into the interior of the strip which may still contain sulfur at a higher level, namely, above the upper critical limit, than at the surface. A strip anneal may be carried out at a rate such that the strip is at temperatures in the gamma region for abou 5 to minutes. Longer times may be employed but will be generally uneconomical.
Inversely. I have taken strips of pure iron which had a low dissolved sulfur content such that after annealing in pure hydrogen (-50" C. dew point) for 64 hours at 1200 C., the total sulfur was about 0.00001%. Upon cooling the strip to below 900 C., some to of the area comprised cube grains. However, upon adding small amounts of hydrogen sulfide to the hydrogen gas, the percentage of cube grain growth increased with the amount of hydrogen sulfide, reaching a peak of about 77% at 7 parts of hydrogen sulfide per million of hydrogen. This corresponds to a sulfur content at the surface of the sheet of 0.000l%. The optimum range of hydrogen sulfide to hydrogen is from 2 to 20 parts per million. In these examples at the center of the strip the sulfur was below the lower limit of the critical range. When the hydrogen sulfide content reached or more parts per million, cube grain growth drops to 20 to 30% of the sheet area, since the surface contained sulfur above the upper limit of the critical range.
These tests confirm the critical nature of the dissolved sulfur content at the surface of the ferrous sheets. A dynamic equilibrium of sulfur content occurs between the atmosphere, the surface of the sheet and the center of the sheet. The process therefore should be so practiced that the sulfur content at the surfaces of the sheets is in the desired range during the gamma to alpha transformation.
For stack or coil annealing of ferrous base alloys which it is anticipated will have large excesses of sulfur which would be difficult to reduce to the critical sulfur content, additions of up to 0.5% by weight of elements which have a high aifinity for sulfur may be made. Such additions to the alloys of this invention which have bulk sulfur concentrations above the critical range will aid in obtaining the cube grain texture by reducing the amount of sulfur in solution by reason of the formation of very stable sulfides. Such elements, in addition to manganese, are barium, calcium, cerium, strontium and the rare earth elements such as lanthanum which forms stable sulfides.
In determining the critical range of dissolved sulfur for practicing the invention satisfactorily, various procedures and tests were employed. The limits for dissolved sulfur in the ferrous alloys was determined by the following technique. Sheets of pure iron or pure iron-silicon alloys, for instance, were equilibrated at 1200 C. for 16 hours in atmospheres containing predetermined proportions of hydrogen sulfide-ranging from zero to 200 parts per million of hydrogen sulfide. Under these conditions the surface of the sheets had a sulfur content essentially identical with the bulk sulfur content. Bulk sulfur analyses were made employing the extremely sensitive test using methylene blue as set forth in detail in application SN. 154,803. No appreciable amounts of manganese or other stable sulfides were present in these test sheets.
While analytical procedures may be resorted to to determine the amount of dissolved sulfur in the ferrous sheet, the following practical test will enable one to determine rapidly and easily whether or not the ferrous metal contains dissolved sulfur in the critical range. At least three samples are cut off the ferrous metal strip being tested and they are heated to 1000 C. for 5 minutes in the following respective atmospheres: (a) dry hydrogen of a --50 C. dew point, (b) dry hydrogen with 5 parts per million of H 8, and (0) dry hydrogen with 30 parts per million of H 5. Upon furnace cooling to room temperature, the proportion of cube grains is determined for each sample. If the dissolved sulfur in the sample is at the lower limit of the critical range, the cube grain growth will be low in atmosphere (a), and high in atmosphere (b) and highest in atmosphere (c). If the dissolved sulfur is in the middle of the critical range, for instance halfway between 0.00003% and 0.0005%, then cube grain growth in atmospheres (a) and (b) will be high while it will be moderate in atmosphere (c). For a sample having close to 0.0005%' dis solved sulfur, the grain growth will be highest in atmospheres (a) and (b) and low in atmosphere (0). Refinements of these tests may be made, employing for instance five samples and five different hydrogen sulfide atmospheres.
Subject to this limitation regarding the necessity for critical proportions of sulfur in the surface of the sheet, the transformation can be carried out in a neutral or nonoxidizing atmosphere or in a reducing atmosphere that tends to produce a bright surface on the metal being treated at the time of transformation. Thus, the transformation can be carried out in a vacuum of at least as low as 10* mm. of Hg or in a reducing gas such as dry hydrogen, or in argon, helium, nitrogen or mixtures of gases, as for example, nitrogen and hydrogen. Where the material being treated does not develop objectionable amounts of surface oxides in the presence of water vapor, the atmosphere can contain water vapor as would for example, be present in wet hydrogen (20 to 50 C. dew point) for pure iron for example and this in some cases tends to benefit the surface energy relationship that functions as a driving force. For siliconiron alloys the atmosphere should be relatively dry, for instance of a dew point of 35 C. or lower.
Upon conclusion of this process the metal treated, whether in strip, sheet, or other form such as Epstein strips or stator punchings or the like, has a (100) [hkl] texture ranging from about 50 to 98% of its crystal volume or surface area. This proportion is based on counting grains whose cube faces are parallel within 12 to the surface of the sheet. Usually 40 to 50% of the grains have faces within 2 of the surface, and another to within 2 to 6. The magnetic properties are outstanding.
For commercial use it is desirable that the (100) [hkl] texture produced in accordance with this invention be present to an extent of about 70% and preferably 80% and higher of the surface of the sheets. For those members in which such a texture is produced in at least 80% of the surface, there can be applied an additional improvement based upon a discovery that I have made. It has been discovered that in such a cube-on-face sheet, upon applying a cold reduction of about 60 to 80% followed by an anneal of the material just below, i.e. 10 to 100 C., the allotropic transformation temperature, for example at 800 C. to 900 C. there is obtained cube texture material, that is (100) [001] orientation. By this latter orientation is meant to indicate that at least 80% of the surface area is occupied by (100) grains at least 75% of which have their [001] directions aligned within 15 of the rolling direction. The anneal below the allotropic transformation temperature secures secondary recrystallization of the (100) grains which grow to an average diameter which is many times the sheet thickness averaging well above 10 times the said thickness. This last anneal extends for about 10 to 100 hours or more and is carried out in the same conditions of atmosphere, and therefore driving force, as that indicated hereinbefore with respect to producing (100) [hkl] texture.
The invention will be described further in conjunction with the following specific examples in which the details are given by way of illustration and not by way of limitation.
Material for the following examples generally was prepared by melting, usually in a vacuum furnace, the appropriate charge contained in a magnesia crucible and then pouring the melt into a stainless steel mold. Purified iron, where its use is indicated, was obtained for this purpose by annealing electrolytic iron one hour at 760 C. in wet hydrogen followed by one hour at 1200 C. in dry hydrogen. Further, the annealing referred to in the examples was, unless otherwise stated, stack annealing using alumina as a separator and a hydrogen atmosphere of a dew point of less than C.
In the following specific examples, the sulfur content values given are the total sulfur in the ferrous metal prior to annealing. A substantial or even a major proportion of the sulfur is bound as stable sulfides and plays little part in the cube grain growth process. Also some of the sulfur may be removed during annealing if the atmosphere is below the equilibrium sulfur content whereby a sulfur gradient exists between the center of each sheet and its surface. In each example where or more of cube grain growth occurred, the dissolved sulfur at the surface was in the range of 0.00003% to 0.0005%.
Example I A sheet of 12 mil thick commercial iron was used having the following composition by weight: 0.003% aluminum present as A1 0 0.002% N, 0.39% Mn, 0.017% Cu, 0.11% P, 0.030% C, 0.022% S and the remainder iron. The sample was annealed in dry hydrogen -35 C. dew point for one hour at about 1210 C. (about 300 C. above the gamma to alpha transition temperature) and then slowly cooled, about 110 C. per hour, to a temperature of about 860 C., which is about 50 C. below the alpha to gamma transition temperature, and then cooled to room temperature. A study was performed on the resulting sheet in which etch pits were developed by etching with a solution containing 1 part HNO and 99 parts of ethyl alcohol. Domain patterns were superimposed on the resulting surface. The surface area of the specimen was found to have 54% (100) planes which were within 14 of the surface of the sheet. There was a random distribution of directions of the [001] zones in the initial rolling direction.
The evidence indicated that the dissolved sulfur was at a critical limit of the necessary sulfur range during the anneal whereby only 54% of the area comprised grains having the (100) texture. In other experiments on similar alloys, close control of the sulfur yielded material having over of the area thereof composed of the texture.
Example 11 An iron base alloy containing about 1.11% of silicon was prepared by vacuum melting purified electrolytic iron and commercial grade silicon. This alloy was melted in a magnesia crucible and poured into a stainless steel mold. The analysis, by weight, was 0.0013% of oxygen, 0.0009% of nitrogen, 0.0015% of carbon, 0.0013% of sulfur, 1.11% of silicon and the remainder iron.
The alloy was hot rolled to sheet at a temperature in the range of 800 to 1050 C. to a thickness of 0.100 inch, pickled in a 25% sulfuric acid solution, and then cold rolled to a sheet thickness of 0.018 inch. Epstein strips (1 7 x 12") were sheared from the sheet and annealed in a stack with dry alumina as a separator. All annealing as hereinafter indicated was done in an Inconel tube in an atmosphere of dry hydrogen (50 C. dew point).
Stacks of the Epstein strips were annealed by heating for 4 hours at 1150 C., and then cooling at 20 C. per hour through the transformation range to 880 C. Specimens were tested for magnetic properties and found to be markedly superior to commercially available material of the same general analysis but which was not treated as just described. The 60 cycle A.C. losses at 15 kilogauss was 1.55 watts/1b., whereas commercial silicon 1.1% silicon steel had losses of 3.2 watts and higher. In the strips of this example the amount of surface area occupied by (100) grains within 12 of the rolling plane, as determined by a modified intercept method, was 88%.
Example 111 A series of tests were made on iron-oxygen alloy sheets containing 0.0010 to 0.0023% sulfur and in which the oxygen was varied from 0.0010 to 0.0335 specimens of each composition was annealed at 1050 C. for 12 to 16 hours and then cooled at 4 to 10 C. per hour to the alpha region, and other specimens were annealed for the same period but at the higher temperature of 1200 C. and then cooled at 4 to 10 C. per hour to the alpha region. It was found that changes of the oxygen concentration did not appreciably influence the amount of (001) [hkl] resulting. However, the annealing temperature did influence the results, with the lower (1050 C.) temperature being the better, resulting in a smaller grain size and a larger amount of (100) [hkl] texture which varied from 51 to 80% of the surface.
Example IV A similar series of tests were made on iron-manganesesulfur alloys containing about 0.093% of manganese in all instances, with the sulfur ranging from 0.0015 to 0.022%. Here again the best results were achieved in the heat treating schedule that included the anneal at 1050 C., with the amount of (100) [hkl] texture ranging from 83.3 to 90.2% of the surface area. It was also discovered that the presence of manganese, along with the necessary dissolved sulfur had a beneficial influence on (100) grain growth.
Example V An alloy slab containing, by weight, 27% of cobalt, 0.01% manganese, about 0.02% sulfur and the remainder essentially iron was hot rolled at 1000 C. to a band 100 mils thick. The hot rolled band was pickled to remove scale, and it was then cold rolled to 14 mil strip. That strip was placed in a furnace at 800 C. and heated Within the furnace to 1150 C. After 16 hours the strip was furnace cooled (below 12 C. per hour) to 800 C. It is to be noted that the alpha to gamma transformation temperature for this composition is approximately 950 C.
Using an etch pit method in which etch pits are developed by etching in a solution containing 241 grams of ferric ammonium sulfate, 40cc. of sulfuric acid and 1000 cc. of water, it was determined that 70% of the surface area of the sheet had undergone transformation to the (100) [hkl] texture.
Example VI Strip of a thickness of 18 mils of cold rolled iron-molybdenum having an analysis, by weight, of 0.0112% of oxygen, 0.0027% of carbon, about 0.0005 of sulfur, 0.99% of molybdenum and the remainder iron was annealed in the gamma range and then slowly cooled through the transition in the same manner and under the conditions set forth in Example III above. The treatment including the anneal at 1050 C. was superior, and indeed resulted in one of the highest value of (100) [hkl] texture achieved in any of these tests, 93.5%.
In the examples given so far the critical processing step of slowly cooling through the transition temperature range was by stationary furnace cooling. Of course other procedures may be used to accomplish that step as, for example, that given in the next example.
Example VII Single strips of the iron-molybdenum alloy analysis set forth in Example VI were inserted into a tube furnace at 1140 C. and positioned with one end of each strip in the hot zone and the other in the cold zone. The strips were held in this position for about 1 or 2 hours and then pulled at different rates into a cooling chamber. A portion of each strip that was at a temperature in the gamma temperature region was found to have developed (100) [hkl] texture in inverse proportion to the rate of withdrawal, and therefore the rate of cooling through the transition temperature.
Many other tests of the invention have been made using iron base alloys containing, for example, about 1% Mn or 0.25% of aluminum with equally satisfactory results. In other tests, alloy strip as described was annealed at 1000 to 1300 C., slowly cooled through the transition temperature and then further annealed below the transition temperature, i.e. at 800 C., for about 5 to 120 hours in the sulfur-containing, nonoxidizing atmosphere suitable to the growth of (100) grains. This latter procedure tends to remove substructure thereby contributing to improved magnetic qualities.
As disclosed above, material having a 100) [hkl] texture can be further treated, inaccordance with my discoveries, to develop (100) [001] orientation. The following is an example thereof which also demonstrates the desirability of the requirement of starting with at least 80% (100) [hkl] texture for this particular discovery.
Example VIII nitrogen, 0.0076% of oxygen and the remainder iron and is hereinafter called alloy A. These alloys were prepared 10 by vacuum induction melting, and sheet was obtained therefrom by hot rolling at 1050 C., pickling, and then cold rolling to 0.012 inch for alloy A and cold rolling to 0.018 inch for alloy B.
Alloy A was annealed in the gamma phase by heating at 1050 C. for 8 hours followed by cooling at 8 C. per hour through the allotropic transformation temperature to 880 C. Alloy B was annealed in the gamma phase by heating at 1050 C. for 12 hours followed by cooling through the allotropic transformation temperature at 4 C. per hour to 880 C. The anneals for both alloys were conducted in dry hydrogen (below C. dew point) containing traces of sulfur. A study of the grains in the resulting product showed that those in alloy A contained 51 to 71.6% of (100) grains within 12 of the rolling plane while alloy B contained 89.7 to 93.9% of its (100) grains within 12 of the rolling plane. Samples of the specimens of each alloy were then cold reduced followed by annealing for 60 hours at 880 C. in an atmosphere of the dry hydrogen indicated above. During this anneal grains grew to a diameter many times the sheet thickness by secondary recrystallization. The percentage of surface area occupied by (100) grains in alloy A was 80.1% while the percentage for alloy B was 85.62%. The specific grains were then studied and it was found that alloy A had 40.7% of its (100) grains with its [001] directions within 15 of the rolling direction while 77.5% of the grains in alloy B were found to have the [001] directions within 15 of the rolling direction. The foregoing example thereby demonstrates the uniquely simple way of producing (100) [001] texture and further demonstrates the criticality of the quantity of (100) [lzkl] texture that must be present before the final cold reduction and annealing below the allotropic transformation temperature that develops the (100) [001] orientation.
In further tests of the type described in Example VIII, it has been determined that where the (100) [ltkl] orientation is to be developed, it is possible to cool at higher rates from the gamma phase to the alpha phase and the slow cooling limitation associated in the other examples with development of a substantial percentage of (100) [hkl] texture need not be followed. In still further tests of the embodiments of the invention in which the 100) [lzkl] texture or 100) [001] orientation are developed, it has been found that magnetic annealing, that is cooling the strip or other shape while it is subject to a magnetic field in a field of at least 10 oersteds, brings about further improvement in the quality of domain orientation obtained. Where such magnetic annealing is practiced, it can be used while cooling to a temperature as low as about 300 C.
Unless otherwise noted or apparent, the annealing indicated in the foregoing examples was conducted in dry hydrogen (50 C. dew point). In other tests, the procedure was changed to substitute +20 C. dew point hydrogen. For those alloys that were insensitive to water vapor, e.g. iron-molybdenum and the like, the desired (100) [hkl] texture was still achieved. However, for alloys that thereby developed a heavy oxide surface film, e.g. iron-silicon alloys, a low value of the desired texture resulted thereby indicating the need to anneal at conditions that result in a bright surface during the phase change.
Numerous samples of strip, sheet, Epstein punchings and the like prepared in accordance with the invention as described have been tested for their desired characteristics. As expected, materially lower A.C. losses, compared to analogous commercially available material, were found in all instances. Percentages and parts given herein are by weight unless otherwise indicated or apparent.
From the foregoing discussion and description, it is evident that the present invention constitutes a unique and highly effective process for preparing iron and iron base alloys with a preferred surface texture and therefore im- 1 1 proved magnetic properties. While the invention has been described in specific detail, it should be appreciated that changes, substitutions and the like can be made without departing from its scope. For example, although A1 was used as a separator during annealing in the examples given, other non-reactive oxides can be employed such as magnesium oxide or zirconium oxide. Further, it is anticipated that the reducing atmosphere requirements, where used, can be provided by partial or complete combustion of carbonaceous gases such as methane or the like Which have been rendered non-oxidizing. Other changes will occur to those skilled in the art.
I claim as my invention:
1. In the method of producing (100) [hkl] texture in metals comprising iron and ferrous-base alloys having a gamma to alpha phase transformation the steps comprising heating a body of such metal to a temperature to convert the metal to the gamma phase, then cooling the metal to the .alpha phase, the metal having from about 0.00003 to 0.0005 by weight, of dissolved sulfur at least at the surface thereof during the phase transformation, whereby a high proportion of the grains of the metal are oriented to a (100) [lzkl] texture,
2. The method of claim 1 in which the metal is a ferrous base alloy having readily oxidizable constituents and the heating and cooling steps are carried out in an atmosphere conducive to the development of grains having the (100) [hkl] orientation, said atmosphere comprising essentially dry hydrogen having a dew point at least as low as 35 C.
3. The method of claim 1 in which the heating and cooling steps are carried out in vacuum to promote the development of grains having a (100) [hkl] orientation.
4. In the method of producing alloy sheets having an oriented texture from ferrous-base alloys having a gamma to alpha phase transformation, such alloys containing, by weight, at least one element selected from the group consisting of up to 2% of aluminum, up to 12% of chromium, up to 10% of germanium, up to 5% of manganese, up to 5% of molybdenum, up to of nickel, up to 2% of silicon, up to 1% of titanium, up to 1% of tantalum, up to 1% of vanadium, up to 6% of tungsten, up to 50% of cobalt, up to 1% of zirconium and from 0.001 to 0.08% of carbon, the total amount of such elements not exceeding 50%, by weight, of the alloy when more than one of said elements is present, the steps comprising heating a sheet of such alloy to a temperature sufficient to convert the alloy to the gamma phase, then cooling the alloy to the alpha phase, the alloy having from 0.00003 to 0.0005%, by weight, of dissolved sulfur present at the surface during the gamma-to-alpha phase transformation, whereby a major proportion of the grains of the alloy are oriented to a (100) [ll/cl] texture.
5. The method of claim 4 in which the process is applied to an alloy containing up to 2% silicon and the heating and cooling steps are carried out in an atmosphere conducive to the development of grains having the (100) [hkl] orientation, said atmosphere comprising essentially dry hydrogen having a dew point at least as low as 35 C.
6. The method of claim 4 in which the heating and cooling steps are carried out in an atmosphere comprising from 2 to parts per million by volume of hydrogen sulfide to promote the development of grains having a (100) [hkl] orientation.
7. In the method of producing alloy sheets having a large grained (100) [hkl] texture from metals comprising iron and ferrous-base alloys having a gamma to alpha phase transformation the steps comprising heating a body of such metal to a temperature from about 900 C. to 1300 C. to convert the metal to the gamma phase, then slowly cooling the metal at a rate below about 175 C. per hour to and below its allotropic transformation temperature thereby converting the metal to the alpha phase, the metal having from 0.00003 to 00005%, by weight, of dissolved sulfur at least at the surface during the transformation from gamma to alpha phase whereby a major proportion of the grains of said metal are oriented to a (100) [ll/ 1] texture.
8. The method of claim 7 in which the ferrous-base alloy comprises readily oxidizable constituents and the heating and cooling steps are carried out in an atmosphere conducive to the development of grains having the (100) [hkl] orientation, said atmosphere comprising essentially dry hydrogen having a dew point at least as low as C.
0. The method of claim 7 in which the heating and cooling steps are carried out in vacuum of at least as low as 10 mm. of Hg to promote the development of grains having a (100) [hkl] orientation.
10. The method of claim 7 in which the growth of large grains is promoted by a cooling rate of from 4 to 12 C. per hour through the allotropic transformation temperature range.
11. A method of producing ferrous-base alloy sheets having an oriented texture comprising rolling a ferrousbase alloy body containing as alloying constituents at least one member selected from the group consisting of up to 2% aluminum, up to 2% chromium, up to 10% germanium, up to 5% of manganese, up to 5% of molybdenum, up to 10% of nickel, up to 2% of silicon, up to 1% of titanium, up to 1% of tantalum, up to 1% of vanadium, up to 6% of tungsten, up to 20 to of cobalt, up to 1% 0f zirconium, up to 0.08% of carbon, to a thickness of from less than 1 to 150 mils, heating the resulting sheet to a temperature within the range of about 900 to 1300 C. at which the alloy is in the gamma phase, then cooling the heated sheet at a rate below about 175 C. per hour through its allotropic transformation temperature to a temperature at which the alloy is in the alpha phase, the alloy sheet having therein from 0.00003 to 0.0005%, by weight, of dissolved sulfur at the surface during the transformation to the alpha phase, cold reducing the sheet about to then heating the cold reduced sheet at a temperature just below the allotropic transformation temperature for a period to produce a major proportion of grains having a [001] orientation, said process being carried out in an atmosphere which is nonoxidizing to the surface of the alloy being treated.
12. A method of producing alloy sheets having an oriented texture from ferrous-base alloys having a gamma to alpha phase transformation, such alloys containing, by weight, at least one element selected from the group consisting of up to 2% of aluminum, up to 12% of chromium, up to 10% of germanium, up to 5% of manganese, up to 5% of molybdenum, up to 10% of nickel, up to 2% of silicon, up to 1% of titanium, up to 1% of tantalum, up to 1% of vanadium, up to 6% of tungsten, up to from 20 to 50% of cobalt, up to 1% of zirconium and from 0.001 to 0.08% of carbon, the total amount of such elements not exceeding 50%, by weight, of the alloy when more than one of said elements is present, the method comprising heating a sheet of such alloy to a temperature sufficient to convert the alloy to the gamma phase, then cooling the alloy to the alpha phase, the alloy having from 0.00003 to 0.0005 by weight, of dissolved sulfur present therein during the gamma-to-alpha phase transformation, whereby a major proportion of the grains of the alloy are oriented to a (100) [hkl] texture, cold working the said body of metal to sheet form with a reduction in area of from about 60 to 80%, heat treating the sheet in the alpha phase at a temperature just below the allotropic transformation temperature for a period to cause grain growth and to develop a high proportion of grains having the (100) [001] orientation.
13. A method of making sheets of iron-cobalt alloy having a (100) [hkl] texture, the alloy comprising from about 20% up to 50%, by weight, of cobalt, small amounts of manganese and impurities, comprising heating a sheet of such alloy to a temperature to convert the 13 metal to the gamma phase, then cooling the alloy sheet to the alpha phase, the alloy sheet having from 0.00003 to 0.0005%, by weight, of dissolved sulfur at the surface thereof during the phase transformation.
14. In the method of producing strips having a high proportion of 100) [hkl] grains, the steps comprising heating a single strip of iron or ferrous-base alloy having a gamma to alpha phase transformation to a temperature in the gamma region, cooling the strip to the alpha region, the heating and cooling steps being carried out in a nonoxidizing atmosphere comprising from 2 to 30 parts per million of hydrogen sulfide, conducive to the development of grains having the (100) [hkl] orientation whereby the surface of the strip has from 0.00003% to 0.0005% of sulfur during the phase transformation so that cube grains nucleate on the surface and grow therefrom.
15. The method of claim 14 in which the heating and cooling steps are carried out in an atmosphere of wet hydrogen in order to decarburize the strip as well as promoting development of grains having a (100) [hkl] orientation.
16. A method of making sheets of oriented iron, the iron having only small amounts of additives and impurities therein, the method comprising heating a sheet of said iron to a temperature above 910 C. to convert the iron sheet to the gamma phase, then cooling the iron sheet to the alpha phase, the iron sheet having from 0.00003% to 0.0005 by Weight, of dissolved sulfur at the surface thereof during the phase transformation whereby grains occupying at least 80% of the surface of the iron sheet are oriented to a (100) [hkl] texture.
17. The method of claim 16 in which the heating and cooling steps are carried out in an atmosphere conducive to the development of grains having the (100) [It/cl] orientation, said atmosphere consisting essentially of hydrogen having a dew point of up to C.
18. The method of claim 16 in which the heating and cooling steps are carried out in an atmosphere having sulfur in an amount equivalent to 2 to 30 parts per million of hydrogen sulfide to promote the development of grains having a (100) [hkl] orientation.
19. The method of claim 16 in which the iron sheet having the (100) [hkl] texture is cold worked to a reduction of about to heat treating the cold Worked iron strip in the alpha phase at a temperature just below 910 C. for a period of from 10 to hours to cause grain growth and to develop the (100) [001] texture.
References Cited UNITED STATES PATENTS 3,218,202 11/1965 Ganz 148111 3,240,638 3/1966 Wiener et al 148-111 3,287,184 11/1966 Koh 148-113 DAVID L. RECK, Primary Examiner, HYLAND BIZOT, Examiner. N. F. MARKVA, Assistant Examiner.

Claims (1)

1. IN THE METHOD OF PRODUCING (100) (HKL) TEXTURE IN METALS COMPRISING IRON AND FERROUS-BASE ALLOYS HAVING A GAMMA TO ALPHA PHASE TRANSFORMATION THE STEPS COMPRISING HEATING A BODY OF SUCH METAL TO A TEMPERATURE TO CONVERT THE METAL TO THE GAMMA PHASE, THEN COOLING THE METAL TO THE ALPHA PHASE, THE METAL HAVING FROM ABOUT 0.00003 TO 0.0005%, BY WEIGHT, OF DISSOLVED SULFUR AT LEAST AT THE SURFACE THEREOF DURING THE PHASE TRANSFORMATION, WHEREBY A HIGH PROPORTION OF THE GRAINS OF THE METAL ARE ORIENTED TO A (100) (HKL) TEXTURE.
US372693A 1964-06-04 1964-06-04 Process for producing magnetic sheets with cube-on-face grain texture Expired - Lifetime US3351501A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US372693A US3351501A (en) 1964-06-04 1964-06-04 Process for producing magnetic sheets with cube-on-face grain texture
DE1965W0039135 DE1483514A1 (en) 1964-06-04 1965-05-12 Magnetic sheets with cube texture and process for their production
GB21000/65A GB1080578A (en) 1964-06-04 1965-05-18 Magnetic sheets with cube-on-face grain texture and processes for producing the same
FR19433A FR1443470A (en) 1964-06-04 1965-06-03 Magnetic sheets with cubic texture on face and manufacturing processes
BE664974A BE664974A (en) 1964-06-04 1965-06-04
SE7415/65A SE318900B (en) 1964-06-04 1965-06-04
US681016A US3573112A (en) 1964-06-04 1967-11-06 Magnetic sheets with (100)(hkl) texture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US372693A US3351501A (en) 1964-06-04 1964-06-04 Process for producing magnetic sheets with cube-on-face grain texture

Publications (1)

Publication Number Publication Date
US3351501A true US3351501A (en) 1967-11-07

Family

ID=23469239

Family Applications (1)

Application Number Title Priority Date Filing Date
US372693A Expired - Lifetime US3351501A (en) 1964-06-04 1964-06-04 Process for producing magnetic sheets with cube-on-face grain texture

Country Status (6)

Country Link
US (1) US3351501A (en)
BE (1) BE664974A (en)
DE (1) DE1483514A1 (en)
FR (1) FR1443470A (en)
GB (1) GB1080578A (en)
SE (1) SE318900B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2510039A1 (en) * 1974-03-08 1975-09-11 British Steel Corp METHOD FOR PRODUCING STEEL FOR MAGNETIC PURPOSES
US3947296A (en) * 1972-12-19 1976-03-30 Nippon Steel Corporation Process for producing steel sheet of cube-on-face texture having improved magnetic characteristics
US4265683A (en) * 1979-02-07 1981-05-05 Westinghouse Electric Corp. Development of grain-oriented iron sheet for electrical apparatus
US4306922A (en) * 1979-09-07 1981-12-22 British Steel Corporation Electro magnetic steels
DE4302813A1 (en) * 1993-02-02 1994-08-04 Dresden Ev Inst Festkoerper Process for the production of electrical sheet
US10697040B2 (en) * 2015-09-28 2020-06-30 Baoshan Iron & Steel Co., Ltd. Continuous annealing method for low coercive force cold-rolled electromagnetic pure iron plate and strip
WO2021159150A1 (en) * 2020-02-07 2021-08-12 Temper Ip, Llc Method for densification of powdered material using thermal cycling and magnetic cycling
CN113897559A (en) * 2021-10-08 2022-01-07 北京北冶功能材料有限公司 High-saturation-magnetic-induction low-loss soft magnetic alloy and production method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118884B1 (en) * 1970-12-29 1976-06-14
BE795761A (en) * 1972-02-22 1973-08-22 Westinghouse Electric Corp DOUBLE ORIENTATION COBALT AND IRON ALLOYS
JPS5120445B1 (en) * 1975-03-17 1976-06-25
JPS5120446B1 (en) * 1975-03-17 1976-06-25

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218202A (en) * 1959-12-24 1965-11-16 Vacuumschmelze Ag Method of using a critical cold rolling stage to produce silicon-iron sheets
US3240638A (en) * 1964-10-21 1966-03-15 Westinghouse Electric Corp Use of silicon steel alloy having a critical sulfur range to insure cube-onface orientation
US3287184A (en) * 1963-10-22 1966-11-22 Bethlehem Steel Corp Method of producing low carbon electrical sheet steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218202A (en) * 1959-12-24 1965-11-16 Vacuumschmelze Ag Method of using a critical cold rolling stage to produce silicon-iron sheets
US3287184A (en) * 1963-10-22 1966-11-22 Bethlehem Steel Corp Method of producing low carbon electrical sheet steel
US3240638A (en) * 1964-10-21 1966-03-15 Westinghouse Electric Corp Use of silicon steel alloy having a critical sulfur range to insure cube-onface orientation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947296A (en) * 1972-12-19 1976-03-30 Nippon Steel Corporation Process for producing steel sheet of cube-on-face texture having improved magnetic characteristics
DE2510039A1 (en) * 1974-03-08 1975-09-11 British Steel Corp METHOD FOR PRODUCING STEEL FOR MAGNETIC PURPOSES
US4265683A (en) * 1979-02-07 1981-05-05 Westinghouse Electric Corp. Development of grain-oriented iron sheet for electrical apparatus
US4306922A (en) * 1979-09-07 1981-12-22 British Steel Corporation Electro magnetic steels
DE4302813A1 (en) * 1993-02-02 1994-08-04 Dresden Ev Inst Festkoerper Process for the production of electrical sheet
US10697040B2 (en) * 2015-09-28 2020-06-30 Baoshan Iron & Steel Co., Ltd. Continuous annealing method for low coercive force cold-rolled electromagnetic pure iron plate and strip
WO2021159150A1 (en) * 2020-02-07 2021-08-12 Temper Ip, Llc Method for densification of powdered material using thermal cycling and magnetic cycling
CN113897559A (en) * 2021-10-08 2022-01-07 北京北冶功能材料有限公司 High-saturation-magnetic-induction low-loss soft magnetic alloy and production method thereof
CN113897559B (en) * 2021-10-08 2022-09-20 北京北冶功能材料有限公司 High-saturation-magnetic-induction low-loss soft magnetic alloy and production method thereof

Also Published As

Publication number Publication date
DE1483514A1 (en) 1969-02-20
GB1080578A (en) 1967-08-23
BE664974A (en) 1965-10-01
SE318900B (en) 1969-12-22
FR1443470A (en) 1966-06-24

Similar Documents

Publication Publication Date Title
US3905843A (en) Method of producing silicon-iron sheet material with boron addition and product
EP2940170B1 (en) Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
US3351501A (en) Process for producing magnetic sheets with cube-on-face grain texture
US3977919A (en) Method of producing doubly oriented cobalt iron alloys
US3466201A (en) Silicon-iron magnetic sheets having cube-on-face grains
US3957546A (en) Method of producing oriented silicon-iron sheet material with boron and nitrogen additions
US4306922A (en) Electro magnetic steels
Wiener Metallurgy of oriented silicon steels
US3337373A (en) Doubly oriented cube-on-face magnetic sheet containing chromium
US3575739A (en) Secondary recrystallization of silicon iron with nitrogen
US3855021A (en) Processing for high permeability silicon steel comprising copper
US3573112A (en) Magnetic sheets with (100)(hkl) texture
US3881967A (en) High saturation cobalt-iron magnetic alloys and method of preparing same
US3868278A (en) Doubly oriented cobalt iron alloys
US3345219A (en) Method for producing magnetic sheets of silicon-iron alloys
US4338144A (en) Method of producing silicon-iron sheet material with annealing atmospheres of nitrogen and hydrogen
US3096222A (en) Grain oriented sheet metal
US3144363A (en) Process for producing oriented silicon steel and the product thereof
US4054470A (en) Boron and copper bearing silicon steel and processing therefore
US3147157A (en) Fabrication of magnetic material
US3240638A (en) Use of silicon steel alloy having a critical sulfur range to insure cube-onface orientation
US4251295A (en) Method of preparing an oriented low alloy iron from an ingot alloy having a high initial sulfur content
US4177091A (en) Method of producing silicon-iron sheet material, and product
JP2576621B2 (en) Silicon steel sheet with excellent magnetic properties
JPH055126A (en) Production of nonoriented silicon steel sheet