WO2017054628A1 - 多孔核壳结构负极材料及其制备方法和电池 - Google Patents

多孔核壳结构负极材料及其制备方法和电池 Download PDF

Info

Publication number
WO2017054628A1
WO2017054628A1 PCT/CN2016/098421 CN2016098421W WO2017054628A1 WO 2017054628 A1 WO2017054628 A1 WO 2017054628A1 CN 2016098421 W CN2016098421 W CN 2016098421W WO 2017054628 A1 WO2017054628 A1 WO 2017054628A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
cobalt
tin
negative electrode
present disclosure
Prior art date
Application number
PCT/CN2016/098421
Other languages
English (en)
French (fr)
Inventor
张开
刘会权
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP16850252.4A priority Critical patent/EP3316356B1/en
Publication of WO2017054628A1 publication Critical patent/WO2017054628A1/zh
Priority to US15/874,276 priority patent/US10770728B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a porous core-shell structure anode material, a method of preparing the same, and a battery.
  • the prepared mesoporous carbon-coated tin anode material has a small porosity and a small pore size, and does not well alleviate the anode material.
  • the problem of volume expansion during charging and discharging makes it difficult to obtain good electrical cycling performance of the obtained battery, and the mesoporous structure carbon-coated tin anode material has many side reactions, and the first charging and discharging efficiency is low.
  • An object of the present disclosure is to provide a negative electrode material having a porous core-shell structure, a method for preparing the same, and a battery, thereby being capable of better preventing volume expansion of the negative electrode material during charge and discharge to obtain better electrical cycle performance.
  • an embodiment of the first aspect of the present disclosure provides a negative electrode material having a porous core-shell structure, including a core layer formed of at least one carbonaceous material selected from the group consisting of graphite, hard carbon, and soft carbon, and coated thereon A carbon shell layer on the core layer, wherein the carbon shell layer contains amorphous carbon, a cobalt element, and a tin element, and has a porous structure having a porosity of 10% or more.
  • Embodiments of the second aspect of the present disclosure also provide a method of preparing a negative electrode material having a porous core-shell structure, comprising:
  • the second solid phase is subjected to a pyrolysis treatment under an inert atmosphere.
  • Embodiments of the third aspect of the present disclosure also provide a negative electrode material having a porous core-shell structure produced by the above method.
  • An embodiment of the fourth aspect of the present disclosure also provides a battery whose negative electrode is formed of a negative electrode material containing the above negative electrode material having a porous core-shell structure.
  • An advantageous effect of the technical solution according to the present disclosure is that a negative electrode material having a porous core-shell structure can prevent volume expansion during charge and discharge, whereby a negative electrode formed by using a negative electrode material having a porous core-shell structure of the embodiment of the present disclosure, The resulting battery can be made to have better cycle performance.
  • Example 1 is a scanning electron micrograph of field emission of the negative electrode material obtained in Example 1.
  • FIG. 2 is a partially enlarged view showing a field emission scanning electron micrograph of the negative electrode material obtained in Example 1.
  • An embodiment of the first aspect of the present disclosure provides a negative electrode material having a porous core-shell structure, comprising a core layer formed of at least one carbonaceous material selected from the group consisting of graphite, hard carbon, and soft carbon, and coated on the core layer
  • the carbon shell layer wherein the carbon shell layer contains amorphous carbon, a cobalt element, and a tin element, and has a porous structure having a porosity of 10% or more.
  • the anode material includes a core layer and a carbon shell layer, wherein the core layer is formed of at least one carbonaceous material selected from the group consisting of graphite, hard carbon, and soft carbon (eg, graphite), and The carbon shell layer is formed of amorphous carbon.
  • amorphous carbon is typically obtained by carbonization of some carbon source materials (described in detail below).
  • the carbon shell layer has a porous structure, and a sufficient space can be reserved for volume expansion and contraction of the anode material in the process of deintercalating lithium, so as to better avoid the SEI film caused by the volume change of the anode material during charge and discharge (The solid electrolyte interface film is continuously broken and formed, thereby improving the cycle performance of the battery.
  • the carbon shell layer is a porous structure having a porosity of 10% or more, for example, a porosity of 10 to 30%.
  • the porosity refers to the percentage of the pore volume in which the pores are located to the total volume of the carbon shell.
  • the porous structure may have a pore size of 50 to 150 nm.
  • the anode material according to an embodiment of the present disclosure can provide a carbon shell layer having a higher porosity and a larger pore diameter, which can better match the charge and discharge performance of the graphite of the core layer, so that the anode material has a higher specific capacity (volume ratio) Capacity and mass ratio are both Rise).
  • a cobalt element and a tin element are also dispersed in the carbon shell layer, which is understood to be an active metal component of the anode material, which can increase the theoretical specific capacity of the battery, and the cobalt element
  • the presence can be a good relief of volume expansion.
  • the carbon shell layer of the present disclosure is a porous structure
  • the thus prepared battery not only has a higher capacity, but also has a better effect of alleviating the volume expansion of the battery negative electrode, and the prepared battery has better cycle performance.
  • the weight ratio of the cobalt element, the tin element, and the carbon element in the carbon shell layer is 1:2-4:4-8.
  • the cobalt element and the tin element are present in the carbon shell layer in the form of a tin-cobalt alloy, wherein the tin-cobalt alloy is a particle having a particle size of 30-70 nm.
  • the tin-cobalt alloy is at least one of CoSn, CoSn 2 , and Co 3 Sn 2 .
  • the present disclosure does not exclude the case where the cobalt element and the tin element are respectively present in the form of cobalt oxide and tin oxide.
  • the cobalt oxide may have a particle diameter of 20-50 nm (for example, nano-cobalt oxide particles of 20-40 nm), the tin oxide may be nano-tin oxide particles having a particle diameter of 30-80 nm (for example, 30-60 nm).
  • the carbon shell layer has a porous structure in a reconstituted manner, that is, decomposed into calcium oxide and carbon dioxide based on a pore structure formed by decomposition carbonization of a carbon source material forming a carbon shell layer.
  • the carbon dioxide escapes to form more and larger pores, especially larger pores formed after the calcium oxide obtained by decomposing calcium carbonate and/or calcium oxalate is washed out, thereby forming a porous structure in the carbon shell layer.
  • the present disclosure does not exclude the case where the carbon shell layer also retains a portion of the calcium element, including in the form of at least one of calcium carbonate, calcium oxalate, and calcium oxide.
  • the carbon The shell layer also contains 0.01% by weight or less of calcium (based on the total weight of the carbon shell layer).
  • the carbon shell layer may further contain other auxiliary agents, for example, one or more of carbon nanotubes, acetylene black, graphene, etc., which can enhance shell stability and electrical conductivity.
  • auxiliary agents for example, one or more of carbon nanotubes, acetylene black, graphene, etc., which can enhance shell stability and electrical conductivity.
  • the total amount of the adjuvant is less than 30% by weight based on the total weight of the carbon shell.
  • the carbon shell layer and the core layer have a carbon element weight ratio of 1-2:10, thereby obtaining a negative electrode material having better cycle performance.
  • the core layer is graphite having a particle diameter of 8 to 18 ⁇ m (for example, spherical graphite having a particle diameter of 8 to 18 ⁇ m as a core layer).
  • the carbon shell layer in a case where the weight ratio of the carbon elements of the carbon shell layer and the core layer is satisfied, may have a thickness of 0.2 to 2 ⁇ m, thereby making the obtained anode material have a particle diameter.
  • the distribution D50 is 8-20 ⁇ m.
  • the anode material having a porous core-shell structure has better electrical properties, specifically,
  • the weight ratio lithium insertion capacity at 25 ° C is 420-440 mAh / g
  • the weight ratio delithiation capacity is 365-380 mAh / g.
  • the retention of weight specific capacity can reach more than 79% (for example, above 84%), where the retention ratio refers to the weight ratio capacity after 50 cycles and the first measured weight ratio capacity. percentage.
  • Embodiments of the second aspect of the present disclosure provide a method of preparing a negative electrode material having a porous core-shell structure, comprising:
  • the second solid phase is subjected to a pyrolysis treatment under an inert atmosphere.
  • the calcium carbonate and/or calcium oxalate is dispersed in a solution containing a cobalt compound and a tin compound with at least one carbonaceous material selected from the group consisting of graphite, hard carbon, and soft carbon to prepare a dispersion.
  • a precipitant is used to cause the cobalt element and the tin element to adhere to the carbonaceous material in a precipitate formed, so that the surface of the carbonaceous material is adhered with a precipitate of cobalt and tin, and calcium carbonate and/or calcium oxalate. That is the first solid phase obtained.
  • the size of the calcium carbonate and/or calcium oxalate and carbonaceous material may vary over a wide range, wherein the size of the calcium carbonate and/or calcium oxalate is largely determined The pore size of the carbon shell layer of the obtained anode material. The size of the carbonaceous material largely determines the size of the resulting negative electrode material.
  • the calcium carbonate is nano-sized calcium carbonate particles having a particle size of 40-80 nm.
  • the calcium oxalate is nanoscale calcium oxalate particles having a particle size of 40-80 nm.
  • the carbonaceous material is graphite, such as spherical graphite particles having a particle size of 8-18 ⁇ m.
  • the cobalt compound may be one or more of cobalt dichloride, cobalt nitrate, cobalt sulfate, cobalt acetate, and cobalt oxalate
  • the tin compound may be stannous sulfate, One or more of stannous chloride, stannous chloride, and tin C1-C4 alkyl sulfonate (eg, tin methanesulfonate, tin ethyl sulfonate, etc.).
  • the cobalt compound and the tin compound are used in an amount such that the weight ratio of the cobalt element, the tin element, and the carbon element in the carbon shell layer of the obtained negative electrode material is 1:2-4:4-8.
  • the cobalt compound is used in an amount of from 1 to 10 parts by weight (for example, from 3 to 6 parts by weight) based on the tin element, relative to 100 parts by weight of the carbonaceous material.
  • the tin compound is used in an amount of 8 to 30 parts by weight (for example, 12 to 18 parts by weight), and the carbon source material is used in an amount of 10 to 40 parts by weight (for example, 15 to 30 parts by weight).
  • the concentration of the cobalt compound may be from 1 to 20% by weight (eg, from 1.5 to 3 weights) in a solution containing a cobalt compound and a tin compound.
  • the amount of the tin compound may be from 3 to 36% by weight (for example, from 4 to 6% by weight).
  • calcium carbonate and/or in the presence of a dispersant The calcium oxalate and the carbonaceous material are dispersed in a solution containing a cobalt compound and a tin compound, wherein the dispersant may be one of polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, polyacrylamide, and carboxymethyl cellulose. kind or more.
  • the dispersant is used in an amount of 10 to 20 parts by weight relative to 100 parts by weight of the carbonaceous material.
  • the dispersion may be prepared, for example, by dispersing calcium carbonate and/or calcium oxalate and a carbonaceous material in a solution containing a cobalt compound and a tin compound by stirring or ball milling.
  • calcium carbonate and/or calcium oxalate are used in a ball milling manner at a rotational speed of 50-200 rpm (eg, 50-100 rpm) and a time of 1-5 h (eg, 1-2 h).
  • the carbonaceous material is dispersed in a solution containing a cobalt compound and a tin compound to prepare the dispersion.
  • ball milling is performed using zirconium balls of 10 mm or more, thereby enabling the carbonaceous material to maintain its size.
  • the precipitating agent is one or more of ammonium hydrogencarbonate, ammonia water, urea, sodium hydrogencarbonate, and potassium hydrogencarbonate, thereby enabling a cobalt compound and a cobalt compound to provide a cobalt element and
  • the tin element is attached to the surface of the carbonaceous material in the form of a precipitate.
  • the solution is added to the dispersion in the form of a solution of a precipitating agent, for example, 15-35 g/L of an aqueous solution of ammonium hydrogencarbonate, 8-16 g/L of aqueous ammonia, and 20-30 g/L may be employed.
  • aqueous urea solution for example, 15-35 g/L of an aqueous solution of ammonium hydrogencarbonate, 8-16 g/L of aqueous ammonia, and 20-30 g/L may be employed.
  • One or more of the aqueous urea solution may be employed.
  • the dispersion is precipitated at a temperature of 60-80 ° C and a time of 0.5-3 h. .
  • a solution of a precipitant is added to the dispersion by dropwise addition.
  • the time of precipitation can be understood to include the time required for the dropwise addition, or the time of precipitation is the time of dropping.
  • the cobalt element and the tin element attached to the surface of the carbonaceous material are basically precipitates of cobalt element (for example, one or more of cobalt carbonate, basic cobalt carbonate, and cobalt hydroxide) and tin element produced by the addition of the precipitant.
  • cobalt element for example, one or more of cobalt carbonate, basic cobalt carbonate, and cobalt hydroxide
  • tin element produced by the addition of the precipitant.
  • a form of a precipitate of for example, one or more of tin carbonate, basic tin carbonate, and tin hydroxide
  • the cobalt element and the tin element may also have the form of the above cobalt compound and tin compound.
  • the first solid phase can be obtained after solid-liquid separation, in order to better disperse the first solid phase in the solution of the carbon source material, the solid-liquid separation
  • the solid phase is pretreated by drying (for example, drying at 30-60 ° C for 5-10 h) to obtain a first solid phase.
  • a carbonaceous material further loaded with a carbon source material can be obtained, so that in the pyrolysis treatment, the carbon source material can be decomposed to produce a carbon element to form a carbon shell layer outside the carbonaceous material as a core layer.
  • the carbon source material is one or more of petroleum pitch, coal pitch, sucrose, glucose, starch, phenolic resin, and epoxy resin.
  • the carbon source material and the carbonaceous material are used in an amount such that the weight ratio of the carbon shell of the carbon shell layer to the core layer is 1-2:10. When such a weight ratio is satisfied, the amount of the carbon source material is as described above.
  • a solution form of the carbon source material is employed.
  • the solvent of the solution of the carbon source material is one or more of naphthalene, acetone, carbon tetrachloride, ethanol, and water.
  • the carbon source material may be included in the solution of the carbon source material in an amount of 3 to 20% by weight.
  • dispersing the first solid phase in a solution of a carbon source material further comprises entering an auxiliary during dispersion to enable the resulting negative electrode material to have better properties.
  • the auxiliary agent is one or more of carbon nanotubes, acetylene black, and graphene.
  • the amount of the auxiliary agent is such that the total content of the auxiliary agent in the carbon shell layer of the obtained negative electrode catalyst material is 30% by weight or less (based on the total weight of the carbon shell layer) . Under the condition that such a condition is satisfied, for example, the auxiliary agent is used in an amount of 3 parts by weight or less based on 100 parts by weight of the carbonaceous material.
  • the first solid phase is dispersed in a solution of the carbon source material at a temperature of 80-100 ° C and a time of 0.4-1 h. This dispersion can be carried out under stirring.
  • the solvent is removed by heating to 210-230 ° C, holding for 1-3 h, and then raising the temperature to 250-280 ° C for 1-3 h.
  • a carbon shell having a core layer and a carbon source material is obtained, and the carbon shell layer is contained A cobalt element, a tin element, and calcium carbonate and/or calcium oxalate and at least one carbonaceous material selected from the group consisting of graphite, hard carbon, and soft carbon.
  • the purpose of the pyrolysis treatment is to decompose the carbon source material into amorphous carbon and to decompose calcium carbonate and/or calcium oxalate into calcium oxide and carbon dioxide.
  • the process of decomposing the carbon source material into amorphous carbon can obtain the carbon shell layer of the anode material; the coprecipitate of the cobalt element and the tin element can be substantially reduced by carbon to obtain a tin-cobalt alloy; calcium carbonate and/or calcium oxalate.
  • a certain through hole can be formed when the carbon dioxide obtained by the decomposition is discharged.
  • the pyrolysis treatment comprises a temperature of 850-1050 ° C and a time of 2-6 h.
  • the pyrolysis treatment comprises first raising the temperature to 300-500 ° C at a rate of 2-5 ° C / min, and after 2-4 h of incubation, and then increasing the temperature at 5-10 ° C / min. To 950-1050 ° C, keep warm for 3-6h.
  • the inert atmosphere may be one or more of nitrogen, argon, helium, and the like.
  • the non-active gas is introduced for 2-5 hours before the pyrolysis treatment, so that the oxygen content can be less than 50 ppm.
  • the non-active gas is continuously introduced at a gas velocity of 0.2-0.5 m 3 /h.
  • the method further includes a step of washing the solid phase after the pyrolysis treatment.
  • calcium oxide obtained by decomposing calcium carbonate and/or calcium oxalate, for example, by washing may be washed out, so that the sites of the original calcium carbonate and/or calcium oxalate form pore voids, thereby causing carbon shells.
  • the layer has a more suitable porous structure.
  • the cleaning is mainly performed by removing calcium oxide obtained by decomposing calcium carbonate and/or calcium oxalate in the above negative electrode material.
  • the obtained solid phase after pyrolysis treatment is used. Delivered to water (for example, using deionized water; wherein the amount of water is such that the solid-liquid ratio (mass ratio) is 1:5-10 (solid-liquid ratio per wash)), stirring and washing for 1-3 h, solid-liquid
  • the obtained solid phase is separated and washed 2-3 times, and then the solid phase obtained is dried to obtain a negative electrode material having a porous core-shell structure required for the present disclosure.
  • the negative electrode material of the present disclosure should include a negative electrode material in which calcium carbonate and/or calcium oxalate are completely decomposed, calcium oxide is completely removed, and a part of calcium carbonate and /
  • the anode material of the present disclosure is a cathode material in which calcium carbonate and/or calcium oxalate are completely decomposed and calcium oxide is completely removed.
  • Embodiments of the third aspect of the present disclosure also provide a negative electrode material having a porous core-shell structure prepared by the above method.
  • porous core-shell structure anode material is as described above and will not be described herein.
  • An embodiment of the fourth aspect of the present disclosure also provides a battery having a negative electrode comprising the negative electrode material having a porous core-shell structure as described above.
  • the preparation method of the negative electrode may include, for example, mixing the porous core-shell structure anode material proposed by the present disclosure, the anode bonding and the anode solvent, coating and/or filling on the anode current collector, and forming a cathode material on the surface of the anode current collector.
  • the negative electrode can be obtained by layering, drying, calendering or not rolling.
  • the porous core-shell structure negative electrode material provided by the present disclosure is contained in an amount of 80 to 100% by weight.
  • the negative electrode binder may be selected from the group consisting of carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), At least one of various modified or non-modified binders such as styrene-butadiene rubber (SBR) and polyolefin-based emulsion. Generally, it is 100 parts by weight depending on the type of negative electrode binder used.
  • CMC carboxymethyl cellulose
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVA polyvinyl alcohol
  • SBR styrene-butadiene rubber
  • SBR styrene-butadiene rubber
  • the anode material provided by the present disclosure is used as a reference, and the anode binder may be used in an amount of 0.01 to 10 parts by weight, for example, 0.02 to 8 parts by weight; the anode material layer further contains, for example, an anode conductive agent,
  • the negative electrode conductive agent is at least one selected from the group consisting of carbon black, nickel powder, and copper powder to increase the conductivity of the negative electrode.
  • the positive electrode conductive agent in the positive electrode material may be, for example, selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, carbon nanotube, nickel carbonyl powder, copper powder, iron powder, and zinc powder. And at least one positive electrode conductive agent in the aluminum powder.
  • the positive electrode conductive agent of the positive electrode may be included in an amount of 0.5 to 15 parts by weight, for example, 1 to 10 parts by weight based on 100 parts by weight of the positive electrode active material.
  • the positive electrode binder in the cathode material may be, for example, selected from the group consisting of polyvinylidene fluoride, polytetrafluoroethylene, (fluorine) polyacrylate, (fluorine) polyurethane, At least one positive electrode binder of fluorine-containing epoxy resin, styrene-butadiene rubber, polymethylcellulose, polymethylcellulose sodium, hydroxypropylmethylcellulose, polypropylene alcohol, and styrene-butadiene rubber (SBR).
  • the content of the binder in the positive electrode material may be 0.01 to 10 parts by weight, for example, 0.02 to 7 parts by weight, based on 100 parts by weight of the positive electrode active material, depending on the kind of the binder to be used.
  • the positive electrode solvent used in the preparation of the positive electrode may be, for example, selected from the group consisting of N-methylpyrrolidone, dimethylformamide, diethylformamide, dimethyl sulfoxide, tetrahydrofuran, and water. At least one solvent in the alcohol solvent.
  • the type of the current collector in the positive electrode and the negative electrode may be selected, for example, from any one of an aluminum foil, a copper foil, and a punched steel strip.
  • the separator is disposed between the positive electrode and the negative electrode and has electrical insulating properties and liquid retaining properties.
  • the separator may be various separators selected from lithium ion batteries, such as polyolefin microporous membranes, polyethylene felts, glass fiber mats or ultrafine glass fiber paper.
  • the nonaqueous electrolyte is a mixed solution of an electrolyte lithium salt and a nonaqueous solvent.
  • the electrolyte lithium salt may be at least one selected from the group consisting of lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium halide, lithium chloroaluminate, and lithium fluorocarbon sulfonate.
  • the nonaqueous solvent may be a mixed solution of a chain acid ester and a cyclic acid ester, wherein the chain acid ester may be selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the cyclic acid ester may be selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), ⁇ -butyrolactone ( ⁇ -BL), sultone and other fluorine-containing, sulfur-containing or unsaturated bond-containing cyclic organic esters At least one of the classes.
  • the non-aqueous electrolyte is injected at a concentration of from 1.5 to 5.5 g/hr and a concentration of from 0.1 to 2.0 mol/liter.
  • the expansion of the negative electrode material can be better prevented, so that the obtained battery has better cycle performance.
  • the weight ratio of cobalt element, tin element and carbon element is measured by ICP/AAS, TG-DSC.
  • the porosity of the carbon shell is measured by BET and mercury intrusion.
  • the pore size of the carbon shell is measured by BET, SEM.
  • the thickness of the carbon shell was measured by TG-DSC, TEM.
  • This embodiment is for explaining a negative electrode material having a porous core-shell structure of the present disclosure and a method of producing the same.
  • the solid powder C1 was washed three times with deionized water (the solid-liquid ratio was 1:5 each time), filtered, and dried to obtain a porous core-shell structured negative electrode material CA1.
  • Field emission scanning of the porous core-shell anode material CA1 The electron micrograph is shown in Fig. 1 and Fig. 2, wherein the negative electrode material has a particle diameter D50 of 12.4 ⁇ m, a porosity of 15%, a pore diameter of 100 nm, a carbon shell layer thickness of 1 ⁇ m, and a carbon shell layer and a core layer of carbon.
  • the weight ratio of the element is 1:10, and the weight ratio of the cobalt element, the tin element and the carbon element in the carbon shell layer is 1:4:4, the particle size of the cobalt oxide is 30 nm, and the particle size of the tin oxide is 50 nm.
  • the tin-cobalt alloy has a particle diameter of 60 nm.
  • This embodiment is for explaining a negative electrode material having a porous core-shell structure of the present disclosure and a method of producing the same.
  • the amount of calcium carbonate in the step (1) is 0.5 g;
  • step (2) the high temperature coal pitch is replaced by 15 g of glucose, and the naphthalene is replaced by 200 mL of deionized water, and 0.3 g of carbon nanotubes (purchased from the LB200 brand of Tianna Material Technology Co., Ltd.) is added;
  • the temperature is raised to 750 ° C at a rate of 10 ° C / min,
  • the negative electrode material has a particle diameter D1 of 11.8 ⁇ m, a porosity of 8%, a pore diameter of 80 nm, a carbon shell layer thickness of 1.2 ⁇ m, and a carbon shell weight ratio of the carbon shell layer and the core layer of 1:10, and a carbon shell.
  • the weight ratio of the cobalt element, the tin element and the carbon element was 1:4:4, the particle size of the cobalt oxide was 30 nm, the particle size of the tin oxide was 40 nm, and the particle size of the tin-cobalt alloy was 50 nm.
  • This embodiment is for explaining a negative electrode material having a porous core-shell structure of the present disclosure and a method of producing the same.
  • the amount of calcium carbonate in step (1) is 2g;
  • step (2) high-temperature coal tar pitch is replaced with 8 g of phenolic resin (purchased from Shenzhen Puli Chemical Co., Ltd. RS-619 brand), and naphthalene is replaced with 300 mL of anhydrous ethanol, and 1.5 g of acetylene black is added. (purchased from V7 brand of China National Rubber Corporation Carbon Black Industrial Research and Design Institute);
  • the temperature is raised to 900 ° C at a rate of 10 ° C / min,
  • the anode material has a particle diameter of D1 of 12.1 ⁇ m, a porosity of 28%, a pore diameter of 120 nm, a thickness of the carbon shell layer of 1.3 ⁇ m, and a carbon shell weight ratio of the carbon shell layer and the core layer of 1:10, and a carbon shell.
  • the weight ratio of the cobalt element, the tin element and the carbon element was 1:4:4, the particle size of the cobalt oxide was 30 nm, the particle size of the tin oxide was 40 nm, and the particle size of the tin-cobalt alloy was 50 nm.
  • This embodiment is for explaining a negative electrode material having a porous core-shell structure of the present disclosure and a method of producing the same.
  • the embodiment adopts the temperature rising directly at a rate of 10 ° C / min.
  • 1050 ° C, 4 h of high temperature decomposition
  • the negative electrode material has a particle diameter of D1.9 of 11.9 ⁇ m, a porosity of 12%, a pore diameter of 150 nm, a carbon shell layer thickness of 1.5 ⁇ m, and a carbon shell weight ratio of the carbon shell layer and the core layer of 1:10, and a carbon shell.
  • the weight ratio of the cobalt element, the tin element and the carbon element was 1:4:4
  • the particle size of the cobalt oxide was 50 nm
  • the particle size of the tin oxide was 80 nm
  • the particle size of the tin-cobalt alloy was 70 nm.
  • the anode material has a particle diameter of 12.1 ⁇ m, a porosity of 0.5%, a pore diameter of 5 nm, a carbon shell layer thickness of 0.8 ⁇ m, and a carbon shell weight ratio of the carbon shell layer and the core layer of 1:10 in the carbon shell layer.
  • the weight ratio of the cobalt element, the tin element and the carbon element is 1:2:4, the particle size of the cobalt oxide is 30 nm, the particle size of the tin oxide is 40 nm, and the particle size of the tin-cobalt alloy is 50 nm.
  • the lithium insertion capacity and the delithiation capacity of each of the above batteries were measured by a button battery charging and discharging method, and the lithium insertion capacity and the delithiation capacity after 50 cycles were measured.
  • the mass specific capacity includes the mass ratio lithium insertion capacity and the mass ratio delithiation capacity, and the calculation method of the lithium removal capacity and the mass ratio delithiation capacity is calculated according to the lithium insertion capacity and the delithiation capacity, and the measured deintercalation is performed.
  • Efficiency refers to charge and discharge efficiency, which is the percentage of lithium removal capacity and lithium insertion capacity.
  • the capacity retention ratio is the percentage of the de-lithium mass ratio capacity and the first de-lithium mass ratio capacity after 50 cycles.
  • the battery S1-S4 made of the porous core-shell structure anode material provided by the present disclosure has a minimum specific capacity of 301.21 mAh/g after 50 cycles of cycling, and the minimum delithibilization capacity is 295.19 mAh after 50 cycles. /g, both are much larger than the 248.92 mAh/g and 246.43 mAh/g in DS1, and the capacity retention rate is up to 88.7% after 50 cycles. It can be seen that the porous core-shell structure anode material provided by the present disclosure is prepared. The battery has good cycle performance.

Abstract

本公开涉及具有多孔核壳结构的负极材料,包括选自石墨、硬碳和软碳中的至少一种碳质材料形成的核层和包覆在所述核层上的碳壳层。所述碳壳层含有无定形碳、钴元素和锡元素,且具有孔隙率为10%以上的多孔结构。本公开还涉及制备上述具有多孔核壳结构的负极材料的方法,以及负极含有上述具有多孔核壳结构的负极材料的电池。

Description

多孔核壳结构负极材料及其制备方法和电池
相关申请的交叉引用
本申请主张在2015年9月30日在中国提交的中国专利申请号No.201510641136.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及多孔核壳结构负极材料及其制备方法和电池。
背景技术
在制备介孔碳球与锡钴的复合体的相关技术中,所述制备出的介孔结构碳包覆的锡负极材料孔隙率较少,孔较小,并不能很好的缓解负极材料在充放电过程中的体积膨胀问题,从而导致所得电池难以获得较好的电循环性能,而且介孔结构碳包覆的锡负极材料的副反应较多,首次充放电效率较低。
发明内容
本公开的目的在于提供具有多孔核壳结构的负极材料及其制备方法和电池,从而能够较好地阻止负极材料在充放电过程中的体积膨胀以获得较好的电循环性能。
为此,本公开第一方面的实施方式提供了具有多孔核壳结构的负极材料,包括选自石墨、硬碳和软碳中的至少一种碳质材料形成的核层和包覆在所述核层上的碳壳层,其中所述碳壳层含有无定形碳、钴元素和锡元素,且具有孔隙率为10%以上的多孔结构。
本公开第二方面的实施方式还提供了制备具有多孔核壳结构的负极材料的方法,包括:
将碳酸钙和/或草酸钙与选自石墨、硬碳和软碳中的至少一种碳质材料分散于含有钴化合物和锡化合物的溶液中以制得分散液,并向所述分散液中引入沉淀剂进行沉淀,固液分离后得到第一固相;
将所述第一固相分散于含碳源材料的溶液中,除去溶剂后得到第二固相;
在惰性气氛下,将所述第二固相进行高温分解处理。
本公开第三方面的实施方式还提供了由上述方法制得的具有多孔核壳结构的负极材料。
本公开第四方面的实施方式还提供了了一种电池,其负极由含有上述具有多孔核壳结构的负极材料的负极材料形成。
根据本公开的技术方案的有益效果为:具有多孔核壳结构的负极材料能够阻止充放电过程中的体积膨胀,由此通过采用本公开实施方案的具有多孔核壳结构的负极材料形成的负极,可以使得所得的电池具有较好的循环性能。
本公开的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是实施例1所得的负极材料的场发射扫描电镜图。
图2是实施例1所得的负极材料的场发射扫描电镜图的局部放大图。
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开第一方面的实施方式提供了具有多孔核壳结构的负极材料,包括选自石墨、硬碳和软碳中的至少一种碳质材料形成的核层和包覆在所述核层上的碳壳层,其中所述碳壳层含有无定形碳、钴元素和锡元素,且具有孔隙率为10%以上的多孔结构。
在本公开的一些实施方式中,所述负极材料包括核层和碳壳层,其中核层由选自石墨、硬碳和软碳中的至少一种碳质材料形成(例如为石墨),而碳壳层由无定形碳形成。这样的无定形碳通常为一些碳源材料(详细描述见下文)经高温碳化而得的。所述碳壳层具有多孔结构,可以预留足够的空间供负极材料在脱嵌锂过程中的体积膨胀和收缩,以更好地避免充放电过程中因负极材料的体积变化造成的SEI膜(固体电解质界面膜)不断破裂和生成,从而提高电池的循环性能。在本公开的一些实施方式中,所述碳壳层为孔隙率为10%以上的多孔结构,例如孔隙率为10-30%。所述孔隙率是指孔所在的孔隙体积占碳壳层总体积的百分比。
在本公开的一些实施方式中,所述多孔结构的孔径可以为50-150nm。根据本公开实施方式的负极材料能够提供具有更高孔隙率和更大孔径的碳壳层,可以更好地配合核层的石墨的充放电性能,使得负极材料具有更高的比容量(体积比容量和质量比容量均有提 升)。
在本公开的一些实施方式中,碳壳层中还分散有钴元素和锡元素,所述锡元素可以理解为所述负极材料的活性金属组分,能够提高电池的理论比容量,而钴元素的存在能够很好的缓解体积膨胀。在本公开的碳壳层是多孔结构的情况下,这样制备得到的电池不仅具有较高的容量,且缓解电池负极体积膨胀的效果更为优良,制备得到的电池循环性能更好。在本公开的具体实施方式中,所述碳壳层中钴元素、锡元素和碳元素的重量比为1:2-4:4-8。
在本公开的一些实施方式中,所述钴元素和锡元素以锡钴合金的形式存在于所述碳壳层中,其中所述锡钴合金为粒径为30-70nm的颗粒。在本公开的一些具体实施方式中,所述锡钴合金为CoSn、CoSn2、Co3Sn2中的至少一种。但是本公开并不排除还包括钴元素和锡元素分别以氧化钴和氧化锡的形式存在的情况下,在本公开的另一些实施方式中,所述氧化钴可以为粒径为20-50nm(例如为20-40nm)的纳米氧化钴颗粒,所述氧化锡可以为粒径为30-80nm(例如为30-60nm)的纳米氧化锡颗粒。
在本公开的一些实施方式中,以再造孔的方式使所述碳壳层具有多孔结构,即在形成碳壳层的碳源材料的分解碳化形成的孔结构基础上,分解成氧化钙和二氧化碳,二氧化碳逸出形成较多、较大的孔洞,特别是在将碳酸钙和/或草酸钙分解得到的氧化钙洗出后形成的更大的通孔,从而于碳壳层中形成多孔结构。但是本公开并不排除所述碳壳层还保留有部分钙元素(包括以碳酸钙、草酸钙和氧化钙中的至少一种形式)的情况,在本公开的一些实施方式中,所述碳壳层还含有0.01重量%以下的钙元素(以碳壳层的总重量为基准)。
在本公开的一些实施方式中,所述碳壳层还可以含有其它的助剂,例如含有能够增强壳层稳定性和导电性的碳纳米管、乙炔黑、石墨烯等中的一种或多种。在本公开的一些实施方式中,所述助剂的总含量在30重量%以下(以碳壳层的总重量为基准)。
在本公开的一些实施方式中,所述碳壳层和核层的碳元素的重量比为1-2:10,从而获得具有更好的循环性能的负极材料。
在本公开的一些实施方式中,所述核层为粒径为8-18μm的石墨(例如为粒径为8-18μm的球形石墨作为核层)。在本公开的一些实施方式中,在满足上述碳壳层和核层的碳元素的重量比的情况下,所述碳壳层的厚度可以为0.2-2μm,从而使所得的负极材料的粒径分布D50为8-20μm。
根据本公开实施方式的具有多孔核壳结构的负极材料具有较好的电学性能,具体地, 通过扣式电池测试方法,在25℃下的重量比嵌锂容量为420-440mAh/g,重量比脱锂容量为365-380mAh/g。经过50次循环后,重量比容量的保持率可达到79%以上(例如在84%以上),这里的保持率指的是经过50次循环后的重量比容量与首次测得的重量比容量的百分比。
本公开第二方面的实施方式提供了制备具有多孔核壳结构的负极材料的方法,包括:
将碳酸钙和/或草酸钙与选自石墨、硬碳和软碳中的至少一种碳质材料分散于含有钴化合物和锡化合物的溶液中以制得分散液,并向所述分散液中引入沉淀剂进行沉淀,固液分离后得到第一固相;
将所述第一固相分散于含碳源材料的溶液中,除去溶剂后得到第二固相;
在惰性气氛下,将所述第二固相进行高温分解处理。
在本公开的一些实施方式中,将碳酸钙和/或草酸钙与选自石墨、硬碳和软碳中的至少一种碳质材料分散于含有钴化合物和锡化合物的溶液中制得分散液,再采用沉淀剂使得钴元素和锡元素能够以生成的沉淀的方式附着到碳质材料上,从而使得碳质材料的表面附着有钴元素和锡元素的沉淀物以及碳酸钙和/或草酸钙,即为得到的第一固相。
在本公开的一些实施方式中,所述碳酸钙和/或草酸钙与碳质材料的尺寸可以在较宽的范围内变动,其中所述碳酸钙和/或草酸钙的尺寸很大程度上决定了所得的负极材料的碳壳层的孔径大小。而碳质材料的大小很大程度上决定了所得的负极材料的大小。在本公开的一些实施方式中,所述碳酸钙为粒径为40-80nm的纳米级碳酸钙颗粒。在本公开的一些实施方式中,所述草酸钙为粒径为40-80nm的纳米级草酸钙颗粒。在本公开的一些实施方式中,所述碳质材料为石墨,例如为粒径为8-18μm的球形石墨颗粒。
在本公开的一些实施方式中,所述钴化合物可以为二氯化钴、硝酸钴、硫酸钴、乙酸钴和草酸钴中的一种或多种,而所述锡化合物可以为硫酸亚锡、氯化亚锡、氯化亚锡和C1-C4烷基磺酸锡(例如甲基磺酸锡、乙基磺酸锡等)中的一种或多种。
在本公开的一些实施方式中,所述钴化合物和锡化合物的用量使得所得负极材料的碳壳层中钴元素、锡元素和碳元素的重量比为1:2-4:4-8。在本公开的一些实施方式中,相对于100重量份的碳质材料,以钴元素计的所述钴化合物的用量为1-10重量份(例如为3-6重量份),以锡元素计的锡化合物的用量为8-30重量份(例如为12-18重量份),碳源材料的用量为10-40重量份(例如为15-30重量份)。在本公开的一些实施方式中,在含有钴化合物和锡化合物的溶液中,所述钴化合物的浓度可以为1-20重量%(例如为1.5-3重 量%),而所述锡化合物的浓度可以为3-36重量%(例如为4-6重量%)。
为了使得碳酸钙和/或草酸钙与碳质材料能够更好地分散于含有钴化合物和锡化合物的溶液中,在本公开的一些实施方式中,在分散剂的存在下将碳酸钙和/或草酸钙与碳质材料分散于含有钴化合物和锡化合物的溶液中,其中所述分散剂可以为聚乙烯吡咯烷酮、聚乙烯醇、聚乙二醇、聚丙烯酰胺和羧甲基纤维素中的一种或多种。在本公开的一些实施方式中,相对于100重量份的碳质材料,所述分散剂的用量为10-20重量份。
在本公开的一些实施方式中,例如可以采用搅拌或球磨的方式使碳酸钙和/或草酸钙与碳质材料分散于含有钴化合物和锡化合物的溶液中以制得所述分散液。在本公开的一个具体实施方式中,在50-200rpm(例如50-100rpm)的转速和1-5h(例如1-2h)的时间条件下采用个球磨的方式使碳酸钙和/或草酸钙与碳质材料分散于含有钴化合物和锡化合物的溶液中以制得所述分散液。在本公开的一些实施方式中,采用10mm以上的锆球进行球磨,从而能够使得碳质材料能够保持其尺寸。
在本公开的一些实施方式中,所述沉淀剂为碳酸氢铵、氨水、尿素、碳酸氢钠和碳酸氢钾中的一种或多种,从而能够使得钴化合物和锡化合物提供的钴元素和锡元素以沉淀物的形式附着到碳质材料的表面。在本公开的一些实施方式中,以沉淀剂的溶液的形式加入到分散液中,例如可以采用15-35g/L的碳酸氢铵水溶液、8-16g/L的氨水、20-30g/L的尿素水溶液中的一种或多种。
为了尽可能充分地利用钴化合物和锡化合物提供的钴元素和锡元素,在本公开的一些实施方式中,在60-80℃的温度和0.5-3h的时间条件下对所述分散液进行沉淀。在本公开的一些具体实施方式中,采用滴加的方式将沉淀剂的溶液加入到所述分散液中。当采用滴加的方式时,沉淀的时间可以理解为包括了滴加耗时,或者沉淀的时间即为滴加耗时。尽管碳质材料表面附着的钴元素和锡元素基本是因沉淀剂加入后产生的钴元素的沉淀物(例如碳酸钴、碱式碳酸钴和氢氧化钴中的一种或多种)和锡元素(例如碳酸锡、碱式碳酸锡和氢氧化锡中的一种或多种)的沉淀物的形式,但是本公开并未限定于此,本领域技术人员应该理解的是,石墨颗粒表面附着的钴元素和锡元素也可以具有上述钴化合物和锡化合物的形式。
在本公开的一些实施方式中,经过固液分离后即可获得第一固相,为了能够更好地将所述第一固相分散于含碳源材料的溶液中,将固液分离后的固相预先经过干燥(例如在30-60℃下干燥5-10h)处理后,得到第一固相。
在本公开的一些实施方式中,通过将所述第一固相分散于含碳源材料的溶液中,除 去溶剂后可以获得进一步负载有碳源材料的碳质材料,从而在高温分解处理中,该碳源材料可以分解产生碳单质,以在作为核层的碳质材料外部形成碳壳层。在本公开的一些实施方式中,所述碳源材料为石油沥青、煤沥青、蔗糖、葡萄糖、淀粉、酚醛树脂和环氧树脂中的一种或多种。在本公开的一些实施方式中,所述碳源材料和所述碳质材料的用量使得所述碳壳层和核层的碳元素的重量比为1-2:10。在满足这样的重量比下,所述碳源材料的用量如上文所描述的。
为了能够更好地使得第一固相与所述碳源材料进行分散,在本公开的一些实施方式中,所采用的是碳源材料的溶液形式。在本公开的一些实施方式中,所述含碳源材料的溶液的溶剂为萘、丙酮、四氯化碳、乙醇和水中的一种或多种。在本公开的一些实施方式中,所述含碳源材料的溶液中,所述含碳源材料的含量可以为3-20重量%。
在本公开的一些实施方式中,将所述第一固相分散于含碳源材料的溶液中还包括在分散过程中进入助剂,以使得所得负极材料能够具有更好的性能。在本公开的一些实施方式中,所述助剂为碳纳米管、乙炔黑和石墨烯中的一种或多种。在本公开的一些实施方式中,例如所述助剂的用量使得所得负极催化剂材料的碳壳层中,所述助剂的总含量在30重量%以下(以碳壳层的总重量为基准)。在满足这样的条件下,例如相对于100重量份的碳质材料,所述助剂的用量为3重量份以下。
在本公开的一些实施方式中,在80-100℃的温度和0.4-1h的时间条件下将所述第一固相分散于所述含碳源材料的溶液中。该分散可以在搅拌条件下进行。
在本公开的一些实施方式中,除去溶剂的方式包括:升温至210-230℃,保温1-3h,而后在升温至250-280℃,保温1-3h。
在本公开的一些实施方式中,在将所述第一固相分散于含碳源材料的溶液中后获得了具有核层以及由碳源材料形成的碳壳层,且该碳壳层中含有钴元素、锡元素以及碳酸钙和/或草酸钙与选自石墨、硬碳和软碳中的至少一种碳质材料。而高温分解处理的目的则是将碳源材料分解为无定形碳,以及将碳酸钙和/或草酸钙与分解为氧化钙和二氧化碳。其中,碳源材料分解为无定形碳的过程可以得到负极材料的碳壳层;钴元素和锡元素的共沉淀物可以基本被碳所还原,得到锡钴合金;碳酸钙和/或草酸钙的分解得到的二氧化碳排出时可以形成一定的通孔。在本公开的一些实施方式中,所述高温分解处理包括:温度为850-1050℃,时间为2-6h。在本公开的另一些实施方式中,所述高温分解处理包括先以2-5℃/min的速度升温至300-500℃,保温2-4h后,再以5-10℃/min的速度升温至950-1050℃,保温3-6h。
在本公开的一些实施方式中,惰性气氛可以为氮气、氩气、氦气等中的一种或多种。为了能够较好地保持惰性气氛,使得高温分解处理更为高效,在本公开的具体实施方式中,在高温分解处理前,先通入非活泼性气体2-5h,使得氧气含量能够在50ppm以下,并在高温分解处理的过程中,以0.2-0.5m3/h的气速继续通入非活泼性气体。
在本公开的一些实施方式中,为了能够性能更为优良的具有多孔结构的负极材料,该方法还包括将高温分解处理后的固相进行清洗的步骤)。在本公开的一些实施方式中,例如通过清洗将碳酸钙和/或草酸钙分解得到的氧化钙可以洗出,从而使得原本碳酸钙和/或草酸钙的位点形成孔洞空隙,从而使得碳壳层具有更为合适的多孔结构。
如上文所描述的,清洗主要是将上述负极材料中的碳酸钙和/或草酸钙分解而得的氧化钙清洗除去,在本公开的一些实施方式中,将所得的高温分解处理后的固相送入至水(例如采用去离子水;其中,水的用量使得固液比(质量比)为1:5-10(每次洗涤的固液比))中进行搅拌清洗1-3h,固液分离所得固相再重复清洗2-3次,而后所得固相进行干燥,即可获得本公开所需的具有多孔核壳结构的负极材料。应该理解的是,尽管清洗的目的是为了将氧化钙清洗除去,但是本公开的负极材料应该包括了碳酸钙和/或草酸钙完全分解、氧化钙全部除去的负极材料,以及有部分碳酸钙和/或草酸钙未分解、部分氧化钙残留的负极材料,例如在碳壳层中因碳酸钙和/或草酸钙和氧化钙残留而导致其钙元素的含量可以在0.01重量%以下。在本公开的一个实施方式中,本公开的负极材料为碳酸钙和/或草酸钙完全分解且氧化钙全部除去的负极材料。
本公开第三方面的实施方式还提供了上述方法制得的具有多孔核壳结构的负极材料。
对多孔核壳结构负极材料的描述如上文所描述的,在此不再赘述。
本公开第四方面的实施方式还提供了一种电池,其负极含有上文描述的具有多孔核壳结构的负极材料。
所述负极的制备方法例如可以包括将本公开提出的多孔核壳结构负极材料、负极粘结与负极溶剂混合,涂覆和/或填充在负极集电体上,在负极集流体表面形成负极材料层,干燥,压延或不压延,即可得到所述负极。在本公开的一些实施方式中,所述电池的负极材料层中,本公开提供的多孔核壳结构负极材料的含量为80-100重量%。在本公开的一些实施方式中,所述负极粘接剂可以选自羧甲基纤维素(CMC)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇(PVA)、丁苯橡胶(SBR)和聚烯烃类乳液等各种改性或非改性粘接剂中的至少一种。一般来说,根据所用负极粘接剂种类的不同,以100重量份 的所述本公开提供的负极材料为基准,所述负极粘接剂的用量可以为0.01-10重量份,例如为0.02-8重量份;所述负极材料层例如还含有负极导电剂,所述负极导电剂选自碳黑、镍粉和铜粉中的至少一种,以增加负极导电性。
在本公开的一些实施方式中,所述正极活性物质可以为例如LiCoO2、LiVPO4、LiCoAlO2、LiMnCoO2、LiCoxNiyMnzO2(x+y+z=1)、LiMn2O4、LiNiO2和LiFexM1-xPO4(M为Co、Ni、Mn,0.8≤x≤1)中的至少一种正极活性物质。
在本公开的一些实施方式中,所述正极材料中的正极导电剂以为例如可以为选自碳黑、石墨、乙炔黑、碳纤维、碳纳米管、羰基镍粉、铜粉、铁粉、锌粉和铝粉中的至少一种正极导电剂。在本公开的一些实施方式中,以100重量份正极活性物质为基准,正极的正极导电剂的含量可以为0.5-15重量份,例如为1-10重量份。
在本公开的一些实施方式中,所述正极材料中的正极粘合剂例如可以为选自聚偏二氟乙烯、聚四氟乙烯、(含氟)聚丙烯酸酯、(含氟)聚氨酯、(含氟)环氧树脂、丁苯橡胶、聚甲基纤维素、聚甲基纤维素钠、羟丙基甲基纤维素、聚丙烯醇和丁苯橡胶(SBR)的至少一种正极粘结剂。一般来说,根据所用粘合剂种类的不同,以100重量份正极活性物质为基准,所述正极材料中的粘合剂的含量可以为0.01-10重量份,例如为0.02-7重量份
在本公开的一些实施方式中,制备正极时所使用的正极溶剂例如可以为选自N-甲基吡咯烷酮、二甲基甲酰胺、二乙基甲酰胺、二甲基亚砜、四氢呋喃以及水和醇系溶剂中的至少一种溶剂。
在本公开的一些实施方式中,所述正极以及负极中的集流体的种类例如可以选自铝箔、铜箔、冲孔钢带中的任意一种。
在本公开的一些实施方式中,所述隔膜设置于正极和负极之间,具有电绝缘性能和液体保持性能。所述隔膜可以为选自锂离子电池中所用的各种隔膜,如聚烯烃微多孔膜、聚乙烯毡、玻璃纤维毡或超细玻璃纤维纸。
在本公开的一些实施方式中,所述非水电解液为电解质锂盐和非水溶剂的混合溶液。电解质锂盐可以为选自六氟磷酸锂(LiPF6)、高氯酸锂、四氟硼酸锂、六氟砷酸锂、卤化锂、氯铝酸锂及氟烃基磺酸锂中的至少一种。非水溶剂可以选用链状酸酯和环状酸酯混合溶液,其中链状酸酯可以为选自碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸甲丙酯(MPC)、碳酸二丙酯(DPC)以及其它含氟、含硫或含不饱和键的链状有机酯类中的至少一种,环状酸酯可以为选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、γ-丁内酯(γ-BL)、磺内酯以及其它含氟、含硫或含不饱 和键的环状有机酯类中的至少一种。在本公开的一些实施方式中,非水电解液的注入量为1.5-5.5克/安时,浓度为0.1-2.0摩/升。
由于上述电池采用了本公开提供的具有多孔核壳结构的负极材料,能够较好地阻止负极材料的膨胀,从而使得所得的电池具有较好的循环性能。
以下将通过实施例对本公开进行详细描述。
碳壳层中,钴元素、锡元素和碳元素的重量比是通过ICP/AAS、TG-DSC测量的。
碳壳层的孔隙率是通过BET、压汞法测量的。
碳壳层的孔径是通过BET、SEM测量的。
碳壳层的厚度是通过TG-DSC、TEM测量的。
实施例1
本实施例用于说明本公开的具有多孔核壳结构的负极材料及其制备方法。
(1)将5g聚乙烯吡咯烷酮(购自国药集团化学试剂有限公司K-30牌号)加入到氯化钴和硫酸亚锡的水溶液中(300g,其中,氯化钴的含量为1.8重量%,硫酸亚锡的含量为4.8重量%),搅拌溶剂后,加入1g的纳米碳酸钙颗粒(粒径为50nm,购自深圳普利化工材料有限公司,以下同)和50g的球形石墨颗粒(粒径为11μm,购自青岛泰和隆新能源材料有限公司NG_21牌号),并将混合物放入到球墨罐(采用直径为10mm的锆球)中以50rpm的转速球磨1h,得到分散液;采用计量泵将500mL的碳酸氢铵的水溶液(碳酸氢铵的含量为16.1g)滴加入保持80℃的上述分散液中,滴加时间为3h,抽滤、干燥,得到固体粉末A1;
(2)将60g的萘加入到包覆罐中并升温至90℃溶解后加入8g的高温煤沥青(购自上海顶央耐火材料有限公司),制得高温煤沥青的萘溶液,之后加入上述固体粉末A1,并继续在90℃下搅拌25min;随后升温至210℃,保温2h,然后再升温至280℃,保温1h,冷却至室温(约25℃),得到固体粉末B1;
(3)将上述固体粉末B1加入气氛炉中,并以6m3/h的气速通入氮气2h以将氧气排空至含量在50ppm以下,随后在保持氮气的气速为0.3m3/h下,以5℃/min的升温速率升温到300℃,保温2h,再以10℃/min的速率升温到1050℃,保温4h,之后自然冷却到室温(约25℃),得到固体粉末C1;
(4)将上述固体粉末C1采用去离子水进行清洗3次(每次的固液比为1:5),过滤、干燥,得到多孔核壳结构负极材料CA1。该多孔核壳结构负极材料CA1的场发射扫描 电镜图如图1和图2所示,其中,该负极材料的粒径D50为12.4μm,孔隙率为15%,孔径为100nm,碳壳层的厚度为1μm,碳壳层和核层的碳元素的重量比为1:10,碳壳层中,钴元素、锡元素和碳元素的重量比为1:4:4,具有的氧化钴的粒径为30nm,氧化锡的粒径为50nm,锡钴合金的粒径为60nm。
实施例2
本实施例用于说明本公开的具有多孔核壳结构的负极材料及其制备方法。
根据实施例1所述的方法,不同的是:
步骤(1)中碳酸钙的用量为0.5g;
步骤(2)中将高温煤沥青用15g的葡萄糖替代,且将萘用200mL的去离子水替代,且添加有0.3g的碳纳米管(购自天奈材料科技有限公司LB200牌号);
步骤(3)中第二升温阶段以10℃/min的速率升温到750℃即可,
从而得到多孔核壳结构负极材料CA2。该负极材料的粒径为D50为11.8μm,孔隙率为8%,孔径为80nm,碳壳层的厚度为1.2μm,碳壳层和核层的碳元素的重量比为1:10,碳壳层中,钴元素、锡元素和碳元素的重量比为1:4:4,具有的氧化钴的粒径为30nm,氧化锡的粒径为40nm,锡钴合金的粒径为50nm。
实施例3
本实施例用于说明本公开的具有多孔核壳结构的负极材料及其制备方法。
根据实施例1所述的方法,不同的是:
步骤(1)中碳酸钙的用量为2g;
步骤(2)中将高温煤沥青用8g的酚醛树脂(购自深圳市普利化工有限公司RS-619牌号)替代,且将萘用300mL的无水乙醇替代,且添加有1.5g的乙炔黑(购自中橡集团炭黑工业研究设计院公司V7牌号);
步骤(3)中第二升温阶段以10℃/min的速率升温到900℃即可,
从而得到多孔核壳结构负极材料CA3。该负极材料的粒径为D50为12.1μm,孔隙率为28%,孔径为120nm,碳壳层的厚度为1.3μm,碳壳层和核层的碳元素的重量比为1:10,碳壳层中,钴元素、锡元素和碳元素的重量比为1:4:4,具有的氧化钴的粒径为30nm,氧化锡的粒径为40nm,锡钴合金的粒径为50nm。
实施例4
本实施例用于说明本公开的具有多孔核壳结构的负极材料及其制备方法。
根据实施例1所述的方法,不同的是,步骤(3)中在保持氮气下的升温方式不同(即高温分解条件不同),即该实施例采用的是直接以10℃/min的速率升温到1050℃,保温4h的高温分解方式,
从而得到多孔核壳结构负极材料CA4。该负极材料的粒径为D50为11.9μm,孔隙率为12%,孔径为150nm,碳壳层的厚度为1.5μm,碳壳层和核层的碳元素的重量比为1:10,碳壳层中,钴元素、锡元素和碳元素的重量比为1:4:4,具有的氧化钴的粒径为50nm,氧化锡的粒径为80nm,锡钴合金的粒径为70nm。
对比例1
根据实施例1所述的方法,不同的是,不加入碳酸钙,将高温煤沥青用20g可溶性淀粉替代,从而得到负极材料CB1。该负极材料的粒径为12.1μm,孔隙率为0.5%,孔径为5nm,碳壳层的厚度为0.8μm,碳壳层和核层的碳元素的重量比为1:10,碳壳层中,钴元素、锡元素和碳元素的重量比为1:2:4,具有的氧化钴的粒径为30nm,氧化锡的粒径为40nm,锡钴合金的粒径为50nm。
测试例1
将以上实施例1-4以及对比例1中的各负极材料按以下方法制备成扣式电池:按质量比分别将实施例和对比例负极活性材料:乙炔黑:CMC:SBR=100:2:1.5:2.5的比例混合均匀后压片,120℃真空干燥24h得到测试极片;以金属锂片为对电极,celgard2400聚丙烯多孔膜为隔膜,1mol/L LiPF6的碳酸乙烯酯(EC)和二甲基碳酸酯(DMC)(重量比为=1:1)的混合溶液为电解液在充满氩气的手套箱中装配,从而制备得到电池S1-S4以及DS1。
测试方法:
通过采用扣式电池充放电方法测量上述各个电池的嵌锂容量、脱锂容量,以及循环50次后的嵌锂容量、脱锂容量。
其中,质量比容量包括质量比嵌锂容量、质量比脱锂容量,该质量比嵌锂容量、质量比脱锂容量的计算方法是根据嵌锂容量、脱锂容量计算而得,采用实测脱嵌锂容量与极片实际附着的活性物质含量的比值。
其结果见表1所示:
表1
Figure PCTCN2016098421-appb-000001
注:效率是指充放电效率,是脱锂容量与嵌锂容量的百分比。容量保持率是指循环50次后脱锂质量比容量与首次脱锂质量比容量的百分比。
由表1可知,使用本公开提供的多孔核壳结构负极材料制成的电池S1-S4循环50次后嵌锂比容量最低为301.21mAh/g,循环50次后脱锂比容量最低为295.19mAh/g,均远远大于DS1中的248.92mAh/g和246.43mAh/g,循环50次后容量保持率最高可达88.7%,由此看出,由本公开提供的多孔核壳结构负极材料制备得到的电池,具有良好的循环性能。
以上详细描述了本公开的可选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (28)

  1. 一种具有多孔核壳结构的负极材料,该负极材料具有选自石墨、硬碳和软碳中的至少一种碳质材料形成的核层和包覆在所述核层上的碳壳层,其中所述碳壳层含有无定形碳、钴元素和锡元素,且具有孔隙率为10%以上的多孔结构。
  2. 根据权利要求1所述的负极材料,其中所述碳壳层具有孔隙率为10-30%的多孔结构的。
  3. 根据权利要求1或2所述的负极材料,其中所述多孔结构的孔径为50-150nm。
  4. 根据权利要求1至3任一项所述的负极材料,其中所述碳壳层和所述核层的碳元素的重量比为1-2:10。
  5. 根据权利要求1至4任一项所述的负极材料,其中所述碳壳层中钴元素、锡元素和碳元素的重量比为1:2-4:4-8。
  6. 根据权利要求1至5中任一项所述的负极材料,其中所述核层包括粒径为8-18μm的石墨。
  7. 根据权利要求1至6中任一项所述的负极材料,其中所述钴元素和锡元素以锡钴合金的形式存在于所述碳壳层中,其中所述锡钴合金为粒径为30-70nm的颗粒。
  8. 根据权利要求1至7中任一项所述的负极材料,其中所述碳壳层还含有0.01重量%以下的钙元素。
  9. 根据权利要求1至8中任一项所述的负极材料,其中所述碳壳层还含有碳纳米管、乙炔黑和石墨烯中的一种或多种。
  10. 一种制备具有多孔核壳结构的负极材料的方法,包括:
    将碳酸钙和/或草酸钙与选自石墨、硬碳和软碳中的至少一种碳质材料分散于含有钴化合物和锡化合物的溶液中以制得分散液,并向所述分散液引入沉淀剂以进行沉淀,固液分离后得到第一固相;
    将所述第一固相分散于含碳源材料的溶液中,除去溶剂后得到第二固相;
    在惰性气氛下,将所述第二固相进行高温分解处理。
  11. 根据权利要求10所述的方法,其中所述高温分解处理使得所述碳源材料分解为碳单质,从而在作为所述核层的碳质材料外部形成所述碳壳层,其中所述碳源材料和所述碳质材料的用量使得所述碳壳层和核层的碳元素的重量比为1-2:10。
  12. 根据权利要求10或11所述的方法,其中所述碳源材料为石油沥青、煤沥青、蔗 糖、葡萄糖、淀粉、酚醛树脂和环氧树脂中的一种或多种。
  13. 根据权利要求10至12中任一项所述的方法,其中所述钴化合物和所述锡化合物的用量使得所述碳壳层中钴元素、锡元素和碳元素的重量比为1:2-4:4-8。
  14. 根据权利要求10至13中任一项所述的方法,其中所述钴化合物为二氯化钴、硝酸钴、硫酸钴、乙酸钴和草酸钴中的一种或多种。
  15. 根据权利要求10至14中任一项所述的方法,其中所述锡化合物为硫酸亚锡、氯化亚锡、氯化亚锡和C1-C4烷基磺酸锡中的一种或多种。
  16. 根据权利要求10至15中任一项所述的方法,其中在分散剂的存在下将碳酸钙和/或草酸钙与所述碳质材料分散于所述含有钴化合物和锡化合物的溶液中,其中所述分散剂为聚乙烯吡咯烷酮、聚乙烯醇、聚乙二醇、聚丙烯酰胺和羧甲基纤维素中的一种或多种。
  17. 根据权利要求10至16中任一项所述的方法,其中所述沉淀剂为碳酸氢铵、氨水、尿素、碳酸氢钠和碳酸氢钾中的一种或多种。
  18. 根据权利要求10至17中任一项所述的方法,其中所述碳酸钙为粒径为40-80nm碳酸钙颗粒。
  19. 根据权利要求10至18中任一项所述的方法,其中所述草酸钙为粒径为40-80nm草酸钙颗粒。
  20. 根据权利要求10至19中任一项所述的方法,其中所述石墨颗粒的粒径为8-18μm的球形石墨颗粒。
  21. 根据权利要求10至20中任一项所述的方法,其中在50-200rpm的转速和1-5h时间的条件下采用球磨的方式使将碳酸钙和/或草酸钙与所述碳质材料分散于所述含有钴化合物和锡化合物的溶液中。
  22. 根据权利要求10至21中任一项所述的方法,其中在60-80℃的温度和0.5-3h的时间条件下对所述分散液进行沉淀。
  23. 根据权利要求10至22中任一项所述的方法,其中在80-100℃的温度和0.5-1h时间条件下将所述第一固相分散于含碳源材料的溶液中。
  24. 根据权利要求10至23中任一项所述的方法,其中所述高温分解处理包括先以2-5℃/min的速度升温至300-500℃,保温2-4h后,再以5-10℃/min的速度升温至950-1050℃,保温3-6h。
  25. 根据权利要求10至24中任一项所述的方法,其中将所述第一固相分散于含碳源 材料的溶液中还包括在分散过程中引入助剂,所述助剂为碳纳米管、乙炔黑和石墨烯中的一种或多种。
  26. 根据权利要求10至25中任一项所述的方法,还包括将所述高温分解处理后的固相进行清洗的步骤。
  27. 由权利要求10至26中任一项所述的方法制得的具有多孔核壳结构的负极材料。
  28. 一种电池,其负极含有权利要求1至9和权利要求27中任一项所述的具有多孔核壳结构的负极材料。
PCT/CN2016/098421 2015-09-30 2016-09-08 多孔核壳结构负极材料及其制备方法和电池 WO2017054628A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16850252.4A EP3316356B1 (en) 2015-09-30 2016-09-08 Anode material having a porous core-shell structure and preparation method thereof, and battery
US15/874,276 US10770728B2 (en) 2015-09-30 2018-01-18 Anode material having porous core-shell structure and method of preparing the same and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510641136.5A CN106558685B (zh) 2015-09-30 2015-09-30 多孔核壳结构负极材料及其制备方法和电池
CN201510641136.5 2015-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/874,276 Continuation US10770728B2 (en) 2015-09-30 2018-01-18 Anode material having porous core-shell structure and method of preparing the same and battery

Publications (1)

Publication Number Publication Date
WO2017054628A1 true WO2017054628A1 (zh) 2017-04-06

Family

ID=58417924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098421 WO2017054628A1 (zh) 2015-09-30 2016-09-08 多孔核壳结构负极材料及其制备方法和电池

Country Status (4)

Country Link
US (1) US10770728B2 (zh)
EP (1) EP3316356B1 (zh)
CN (1) CN106558685B (zh)
WO (1) WO2017054628A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449447A (zh) * 2018-10-17 2019-03-08 宁德时代新能源科技股份有限公司 二次电池
US20190081325A1 (en) * 2017-09-14 2019-03-14 Toyota Jidosha Kabushiki Kaisha Graphite material for negative electrode of lithium ion secondary cell and method for producing the same
EP3547419A1 (en) * 2018-03-26 2019-10-02 Toyota Jidosha Kabushiki Kaisha Positive electrode material and secondary battery using same
CN114142011A (zh) * 2021-11-29 2022-03-04 蜂巢能源科技有限公司 一种硬碳复合材料及其制备方法和应用
CN114447305A (zh) * 2022-01-29 2022-05-06 辽宁中宏能源新材料股份有限公司 一种多元碳基快充负极复合材料及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546365B (zh) * 2016-06-27 2022-04-29 松下知识产权经营株式会社 非水电解质二次电池用负极材料及其制造方法
CN109935791B (zh) * 2017-12-15 2020-07-28 北京大学 碳球包裹的硒化钴纳米复合材料及其制备方法和应用
CN112531160A (zh) * 2019-09-19 2021-03-19 贝特瑞新材料集团股份有限公司 一种无定形炭负极材料及其制备方法和用途
WO2021154026A1 (ko) * 2020-01-29 2021-08-05 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
CN113451575B (zh) * 2020-03-24 2022-09-09 比亚迪股份有限公司 锂离子电池负极材料及其制备方法、负极和锂离子电池
CN111477852B (zh) * 2020-04-15 2022-04-12 溧阳天目先导电池材料科技有限公司 具有网道结构的复合负极材料及其制备方法和应用
GB202007627D0 (en) * 2020-05-21 2020-07-08 Faradion Ltd Carbon anode materials
CN113839104B (zh) * 2020-06-24 2023-12-12 比亚迪股份有限公司 一种锂电池负极及锂电池
CN112713271B (zh) * 2020-12-29 2022-07-05 上海杉杉科技有限公司 改性石墨材料及其制备方法、锂离子电池、应用
CN113506866B (zh) * 2021-06-28 2023-11-14 山东玉皇新能源科技有限公司 一种碳包覆的Fe2O3/硬碳复合材料及其制备方法
CN113506865B (zh) * 2021-06-28 2024-03-22 山东玉皇新能源科技有限公司 一种电池负极材料及其制备方法
CN113735095A (zh) * 2021-08-06 2021-12-03 深圳市德方纳米科技股份有限公司 一种多孔硬碳材料及其制备方法和应用
CN114335475B (zh) * 2021-12-31 2024-01-16 珠海冠宇电池股份有限公司 一种金属氟化物/多孔碳复合正极材料及包括其的正极片和电池
CN114420939B (zh) * 2022-03-31 2022-06-21 河北坤天新能源股份有限公司 一种高倍率球状硬碳复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082262A (zh) * 2010-12-31 2011-06-01 上海交通大学 纳米碳包覆的锂电池负极材料的制备方法
CN103112846A (zh) * 2013-02-06 2013-05-22 华中科技大学 一种石墨烯-碳纳米管-纳米二氧化锡三维复合材料的制备方法及其产品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315232B1 (ko) * 1999-02-24 2001-11-26 김순택 리튬 이차 전지용 음극 활물질 및 그 제조 방법
JP4701579B2 (ja) * 2002-01-23 2011-06-15 日本電気株式会社 二次電池用負極
US8503162B2 (en) * 2008-01-17 2013-08-06 Fraser W. SEYMOUR Electrode, related material, process for production, and use thereof
KR101093705B1 (ko) * 2009-04-29 2011-12-19 삼성에스디아이 주식회사 리튬 이차 전지
JP5515476B2 (ja) * 2009-07-16 2014-06-11 ソニー株式会社 二次電池、負極、正極および電解質
CN102694152B (zh) * 2011-03-25 2015-08-26 比亚迪股份有限公司 一种负极活性材料及其制备方法和一种锂离子电池
CN103855368B (zh) * 2012-11-29 2016-03-30 华为技术有限公司 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN103193263B (zh) * 2013-03-27 2014-07-09 东北师范大学 SnO2C空心纳米球的制备方法及其在锂离子电池中的应用
CN103367721B (zh) * 2013-07-11 2016-07-06 丁黄香 一种钴锡碳复合负极材料的制备方法
CN105449182B (zh) * 2014-09-30 2018-03-27 比亚迪股份有限公司 锂离子电池负极活性材料及制备方法、锂离子电池负极材料、锂离子电池负极和锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082262A (zh) * 2010-12-31 2011-06-01 上海交通大学 纳米碳包覆的锂电池负极材料的制备方法
CN103112846A (zh) * 2013-02-06 2013-05-22 华中科技大学 一种石墨烯-碳纳米管-纳米二氧化锡三维复合材料的制备方法及其产品

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081325A1 (en) * 2017-09-14 2019-03-14 Toyota Jidosha Kabushiki Kaisha Graphite material for negative electrode of lithium ion secondary cell and method for producing the same
US10950860B2 (en) * 2017-09-14 2021-03-16 Toyota Jidosha Kabushiki Kaisha Graphite material for negative electrode of lithium ion secondary cell and method for producing the same
EP3547419A1 (en) * 2018-03-26 2019-10-02 Toyota Jidosha Kabushiki Kaisha Positive electrode material and secondary battery using same
CN109449447A (zh) * 2018-10-17 2019-03-08 宁德时代新能源科技股份有限公司 二次电池
CN114142011A (zh) * 2021-11-29 2022-03-04 蜂巢能源科技有限公司 一种硬碳复合材料及其制备方法和应用
CN114142011B (zh) * 2021-11-29 2023-06-16 蜂巢能源科技有限公司 一种硬碳复合材料及其制备方法和应用
CN114447305A (zh) * 2022-01-29 2022-05-06 辽宁中宏能源新材料股份有限公司 一种多元碳基快充负极复合材料及其制备方法
CN114447305B (zh) * 2022-01-29 2023-08-08 辽宁中宏能源新材料股份有限公司 一种多元碳基快充负极复合材料及其制备方法

Also Published As

Publication number Publication date
US10770728B2 (en) 2020-09-08
EP3316356A1 (en) 2018-05-02
EP3316356B1 (en) 2019-09-04
CN106558685A (zh) 2017-04-05
US20180145327A1 (en) 2018-05-24
CN106558685B (zh) 2019-11-22
EP3316356A4 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2017054628A1 (zh) 多孔核壳结构负极材料及其制备方法和电池
KR101494715B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
JP6628305B2 (ja) リチウム二次電池用負極活物質、およびこれを含むリチウム二次電池
US20090191458A1 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
WO2022016951A1 (zh) 硅基负极材料、负极和锂离子电池及其制备方法
CN107293701A (zh) 一种锂离子电池负极活性材料及其制备方法、负极和包含该负极的锂离子电池
TW201330350A (zh) 鋰蓄電池
JPWO2017217408A1 (ja) リチウムイオン二次電池
JP5986836B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
CN110635116B (zh) 锂离子电池负极材料及其制备方法、负极和锂离子电池
CN105449182A (zh) 锂离子电池负极活性材料及制备方法、锂离子电池负极材料、锂离子电池负极和锂离子电池
CN111725515A (zh) 稳定锂粉及其制备方法和应用
KR101530963B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 리튬 이차 전지
WO2022205658A1 (zh) 负极材料及包含其的电化学装置和电子设备
CN112786849A (zh) 负极活性物质和包括其的可再充电锂电池
JP6384596B2 (ja) リチウムイオン電池用アノード材料
CN115312731A (zh) 石墨基负极活性材料及其制备方法和应用,及二次电池
JP2012089464A (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2016127501A1 (zh) 硫酸钡复合隔膜及其制备方法,以及锂离子电池
JP2011165389A (ja) リチウムイオン二次電池用電極の製造方法、リチウムイオン二次電池用電極、及び、前記電極を用いたリチウムイオン二次電池
US20220336794A1 (en) Negative electrode material for a lithium ion battery
JP6627708B2 (ja) リチウムイオン二次電池、及び、リチウムイオン二次電池の製造方法
CN106558684B (zh) 一种复合型负极材料及其制备方法和电池
US20120121976A1 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
CN104377350B (zh) 电极复合材料及其制备方法、以及具有该电极复合材料的正极和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016850252

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE