WO2017054427A1 - 连续变厚度带材的热镀锌层厚度控制系统及方法 - Google Patents

连续变厚度带材的热镀锌层厚度控制系统及方法 Download PDF

Info

Publication number
WO2017054427A1
WO2017054427A1 PCT/CN2016/077617 CN2016077617W WO2017054427A1 WO 2017054427 A1 WO2017054427 A1 WO 2017054427A1 CN 2016077617 W CN2016077617 W CN 2016077617W WO 2017054427 A1 WO2017054427 A1 WO 2017054427A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
strip
hot
air knife
control system
Prior art date
Application number
PCT/CN2016/077617
Other languages
English (en)
French (fr)
Inventor
熊斐
李山青
姜正连
徐江华
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to ES16850054T priority Critical patent/ES2877718T3/es
Priority to JP2018516679A priority patent/JP6778258B2/ja
Priority to KR1020187011789A priority patent/KR102099910B1/ko
Priority to US15/763,275 priority patent/US10415131B2/en
Priority to EP16850054.4A priority patent/EP3358036B1/en
Publication of WO2017054427A1 publication Critical patent/WO2017054427A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/51Computer-controlled implementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium

Definitions

  • the present invention relates to a cold rolling system and method, and more particularly to a hot dip galvanized layer thickness control system and method for a continuously variable thickness strip.
  • the corrosion resistance of the sheet is required. Therefore, some thickened sheets must be supplied in the form of galvanizing.
  • Zinc plating has two methods of heat and plating. Hot-dip galvanizing has advantages over electro-galvanizing in terms of cost and environmental impact.
  • the production process is: hot-dip galvanizing or hot-dip aluminizing of the hot-rolled strip, followed by continuous variable thickness rolling, and then cutting the sheet required by the user from the steel coil as required Cut it down.
  • the method is as follows: after the unequal thickness rolling, the strip is electroplated, and then alloyed, and then submitted to the user for forming treatment.
  • the method proposed in the patent US Pat. No. 8,522,586 B2 is to carry out hot-plating or electroplating of hot-rolled or cold-rolled incoming materials, followed by unequal-thick rolling and subsequent processing.
  • the patent CN102712961 adopts hot rolling of the unequal thickness rolling, followed by recrystallization annealing, and then electroplating and alloying.
  • the object of the present invention is to provide a hot-dip galvanized layer thickness control system and method for continuously variable thickness strip.
  • the present invention adopts the following technical solutions:
  • a hot-dip galvanizing layer thickness control system for continuously variable thickness strips comprising a strip thickness gauge, a length measuring roller, a hot-dip galvanizing device, an air knife, a cold zinc layer measuring instrument, and a control system.
  • a strip thickness gauge and a length measuring roller are arranged in the forward direction of the strip steel in front of the inlet of the hot-dip galvanizing device, and an air knife and a cold zinc layer measuring instrument are sequentially disposed after the outlet of the hot-dip galvanizing device.
  • the strip thickness gauge detects the thickness signal of the strip
  • the length measuring roller detects the length signal of the strip
  • the cold zinc layer gauge detects the thickness of the strip of the strip
  • the strip thickness gauge, the length measuring roll and the cold zinc The layer meter sends the measurement data to the control system separately.
  • the control system estimates the strip thickness at the air knife based on the length signal and the thickness signal, and adjusts the pressure of the air knife, and further adjusts the air knife pressure according to the thickness of the zinc layer.
  • the hot-dip galvanizing device comprises a furnace nose, a zinc pot, a sinking roll, and a stabilizing roll.
  • the zinc pot is the main body of the hot-dip galvanizing device
  • the furnace nose is the inlet of the zinc pot
  • the sinking roller is disposed inside the zinc pot
  • the stabilizing roller is disposed at the outlet of the zinc pot.
  • the air knife has a pitch of 9-15 mm and is positioned 300-600 mm higher than the hot-dip galvanizing device.
  • control system compares the thickness of the zinc layer with the set value and performs a calculation to further adjust the air knife pressure.
  • the annealing furnace is placed in the forward direction of the strip, before the strip thickness gauge and the length measuring roll.
  • the present invention also adopts the following technical solutions:
  • a method for controlling the thickness of a hot-dip galvanized layer of a continuously variable thickness strip comprising the steps of: setting a contour size of a thickened rolling target strip; and setting an air knife corresponding to two equal-thick sections according to the set contour size Pressure; measure the length and thickness of the strip before hot-dip galvanizing; adjust the air knife pressure according to the length and thickness of the strip before hot-dip galvanizing; measure the strip thickness and the thickness of the zinc layer after hot-dip galvanizing; The strip thickness and the thickness of the zinc layer are calculated corresponding to the thickness deviation values of the two equal thickness segments; the air knife pressure adjustment amount corresponding to the two equal thickness segments is calculated according to the thickness deviation value; and the air knife pressure is adjusted.
  • the hot-dip galvanizing layer thickness control system and method for the continuous variable thickness strip of the present invention can make the thickness of the continuous thickness of the coiled material uniform, and the process is simple.
  • Figure 1 is a schematic view of thickening and rolling
  • Figure 2 is a schematic view of the outline of the inlet strip of the hot-dip galvanizing unit
  • FIG. 3 is a schematic structural view of a thickness control system for a hot-dip galvanized layer of a continuously variable thickness strip according to the present invention
  • FIG. 4 is a flow chart of a method for controlling thickness of a hot-dip galvanized layer of a continuous variable thickness strip according to the present invention
  • Figure 5 is a schematic view of unequal thickness samples.
  • Figure 2 shows the set continuous thickness outlet profile, which is also an indication of the thickness profile of the inlet strip of the hot dip galvanizing unit.
  • the thickness of the zinc layer There are many factors affecting the thickness of the zinc layer, such as strip thickness, width, plate shape, surface roughness, strip temperature, zinc bath temperature and composition.
  • strip thickness For continuous variable thickness strip 1, the thickness of the raw material inevitably changes periodically, while the temperature of the strip, the temperature of the zinc bath and the composition of the material are basically unchanged, so only the adjustment of the air knife 5 can control the thickness of the zinc layer. Therefore, the essence of the invention is to control the thickness of the zinc layer by adjusting the parameters of the air knife.
  • the main air knife parameters of the present invention are air knife pressure, air knife 5 nozzle and strip 1 surface distance, strip 1 running speed, air knife 5 distance zinc pot 2 liquid level height, nozzle gap, blowing angle Wait.
  • the lip gap in the air knife parameter is fixed when the air knife 5 is installed, and can be regarded as a constant, so that the main influence factors of the thickness of the zinc layer are only the knife pressure, the blowing angle, the cutting distance, the knife height and the strip speed.
  • Variables, in which the strip speed, air knife pressure, air knife spacing and other variables have the most significant effect on the thickness of the zinc layer.
  • the present invention first discloses a hot-dip galvanized layer thickness control system 10 for continuously variable thickness strips, the main structure of which includes a strip thickness gauge 8, a length measuring roller 11, a hot-dip galvanizing device, and an air knife. 5.
  • the zinc pot 2 is the main body of the hot-dip galvanizing apparatus
  • the furnace nose 9 is the inlet of the zinc pot 2
  • the sinking roll 3 is provided inside the zinc pot 2
  • the stabilizing roll 4 is provided in the exit of the zinc pot 2.
  • the annealing furnace 6 is disposed in the advancing direction of the strip, before the strip thickness gauge 8 and the length measuring roller 11.
  • the running speed of the strip 1 is determined by the process before and after the production line, and the speed is used as the disturbance amount in the zinc layer thickness control, and is not used as the adjustment amount.
  • the tool distance is generally controlled between 9-15mm, and is not dynamically adjusted.
  • the value of the tool height usually depends on the strip 1
  • the running speed is generally higher than the zinc pot 2300-600mm.
  • the angle of the nozzle is adjusted offline. Therefore, the control of the thickness of the zinc layer is actually achieved by adjusting the air knife pressure.
  • a strip thickness gauge 8 and a length measuring roller 11 are disposed in front of the inlet of the hot-dip galvanizing apparatus along the advancing direction of the strip, and the air knife 5 and the cold zinc layer are sequentially disposed after the outlet of the hot-dip galvanizing apparatus.
  • Instrument 7. The strip thickness gauge 8 detects the thickness signal of the strip 1, the length measuring roller 11 detects the length signal of the strip 1, the cold zinc layer measuring instrument 7 detects the thickness of the zinc layer of the strip 1, and the strip thickness gauge 8
  • the length measuring roller 11 and the cold zinc layer measuring instrument 7 respectively transmit measurement data to the control system 10.
  • the control system 10 first pre-sets the pressure of the air knife 5 for the strips 1 of different thickness according to the required thickness of the zinc layer, that is, first estimates the strip thickness at the air knife 5 according to the length signal and the thickness signal, and the air knife 5 Perform pressure adjustment. Specifically, after the strip 1 passes through the annealing furnace 6, it is sequentially passed through the strip thickness gauge 8 and the length measuring roller 11, and the measured thickness and length information is sent to the control system 10, and the control system 10 combines the thickness and length information. The thickness profile information of the strip 1 is obtained. At the same time, the control system 10 will track the strip 1 and calculate the thickness corresponding to the strip 1 at the air knife 5, and adjust it according to the preset pressure.
  • the cold zinc layer measuring instrument 7 measures the thickness of the zinc layer of the strip and feeds it into the control system 10, and the control system 10 calculates the difference between the thickness of the galvanized layer of the strip 1 and the set thickness of the pre-set zinc layer.
  • the deviation combined with the thickness information of the strip 1 at the measurement position obtained by the tracking calculation, further adjusts the preset air knife pressure.
  • the present invention also discloses a method for controlling the thickness of a hot-dip galvanized layer of a continuous variable thickness strip, comprising the following steps:
  • S6 Calculate the thickness deviation value corresponding to two equal thickness segments according to the strip thickness and the zinc layer thickness after hot-dip galvanizing.
  • a thickened plate sample comprises two equal-thickness segments h1 and h2.
  • a sample length and thickness value is set, and then rolling is performed periodically, so that galvanizing is performed.
  • the strip thickness at the inlet of the unit changes periodically.
  • S2 Set the air knife pressure corresponding to two equal thickness segments according to the set contour size meter.
  • the strip size is first input into the control system 10, and the control system 10 calculates the air knife pressures p1, p2 corresponding to the two equal thickness segments according to the speed at which the strip runs and the thickness of the strip.
  • the present invention includes a tracking module with input signals provided by length measuring rolls 11 and functions implemented in control system 10.
  • the control system 10 adjusts the air knife pressure according to the air knife pressure preset value before the start of the galvanizing, and outputs the set value to the actuator.
  • S3 Measure the length and thickness of the strip before hot dip galvanizing. At the time of galvanizing, the thickness gauge 8 and the length measuring roller 11 feed the position and thickness of the measuring strip 1 into the control system 10.
  • S4 Adjust the air knife pressure according to the length and thickness of the strip before hot-dip galvanizing. Control system 10 combines them. The distance between the length measuring roller 11 and the air knife 5 is constant, so the tracking function of the control system 10 can calculate the thickness of the strip at the air knife 5 according to the running speed of the strip and adjust the air knife pressure.
  • a cold zinc layer gauge 7 is arranged, the coating thickness of the strip 1 will be measured and the measured value will be sent to the control system 10.
  • the tracking function of the control system will calculate the thickness of the strip located in the cold zinc layer gauge 7.
  • S6 Calculate the thickness deviation value corresponding to two equal thickness segments according to the strip thickness and the zinc layer thickness after hot-dip galvanizing.
  • the control system combines the strip thickness value of the cold zinc layer measuring instrument 7 with the coating thickness value to obtain the plating thickness deviation values ⁇ ch1 and ⁇ ch2 corresponding to the two equal thickness sections.
  • control system will calculate the air knife pressure adjustment amounts ⁇ p1, ⁇ p2 corresponding to the two equal thickness segments. This is actually a feedback control process.
  • control system 10 will output the air knife pressure value p1 + ⁇ p1 or p2 + ⁇ p2 to the actuator according to the thickness of the strip at the air knife 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Coating With Molten Metal (AREA)

Abstract

一种连续变厚度带材的热镀锌层厚度控制系统及方法。系统包括带钢测厚仪(8)、测长辊(11)、热镀锌装置、气刀(5)、冷态锌层测量仪(7)、控制系统(10)。沿带钢(1)前进方向、位于热镀锌装置的入口前设置带钢测厚仪(8)和测长辊(11),热镀锌装置的出口之后依次设置气刀(5)和冷态锌层测量仪(7)。带钢测厚仪(8)检测带钢(1)的厚度信号,测长辊(11)检测带钢(1)的长度信号,冷态锌层测量仪(7)检测带钢(1)的锌层厚度,并且带钢测厚仪(8)、测长辊(11)和冷态锌层测量仪(7)分别将测量数据发送至控制系统(10)。控制系统(10)根据长度信号和厚度信号预估气刀(5)处的带钢厚度,并对气刀(5)进行压力调整,并根据锌层厚度对气刀压力进行进一步调整。

Description

连续变厚度带材的热镀锌层厚度控制系统及方法 技术领域
本发明涉及冷轧系统及方法,更具体地说,涉及一种连续变厚度带材的热镀锌层厚度控制系统及方法。
背景技术
为了实现汽车轻量化的目标,目前汽车行业正在推广使用一种通过轧制得到的厚度连续变化的带材——变厚板,如图1所示,其可以通过单张或是成卷的方式来轧制这种变厚板,工业上一般采用效率较高的成卷轧制方式进行生产。
有些使用场合下对板材的抗腐蚀性能有要求,因此,有些变厚板必须以镀锌的形式供给。镀锌有热度与电镀两种方式,热镀锌在成本和对环境的影响上较电镀锌有优势。
现有的生产方法有以下几种:
专利CN101796210.B中,采用的生产工艺是:对热轧带钢先进行热镀锌或者热镀铝,再进行连续变厚度轧制,之后,按要求将用户所需的板材从钢卷中剪切下来。
专利CN103806029.A中,采用的方法是:在不等厚轧制之后,将带材进行电镀,此后再进行合金化处理,之后提交用户进行成形处理。
专利US8522586B2提出的方法是,对热轧或者冷轧来料进行热镀或者电镀,之后再进行不等厚轧制以及后续的工艺处理。
专利CN102712961则采用将热轧来料进行不等厚轧制,之后进行再结晶退火,再进行电镀、合金化处理。
发明内容
针对现有技术中存在的变厚板钢材镀锌工艺复杂的问题,本发明的目的是提供一种连续变厚度带材的热镀锌层厚度控制系统及方法。
为实现上述目的,本发明采用如下技术方案:
一种连续变厚度带材的热镀锌层厚度控制系统,包括带钢测厚仪、测长辊、热镀锌装置、气刀、冷态锌层测量仪、控制系统。沿带钢前进方向、位于热镀锌装置的入口前设置带钢测厚仪和测长辊,热镀锌装置的出口之后依次设置气刀和冷态锌层测量仪。带钢测厚仪检测带钢的厚度信号,测长辊检测带钢的长度信号,冷态锌层测量仪检测带钢的锌层厚度,并且带钢测厚仪、测长辊和冷态锌层测量仪分别将测量数据发送至控制系统。控制系统根据长度信号和厚度信号预估气刀处的带钢厚度,并对气刀进行压力调整,并根据锌层厚度对气刀压力进行进一步调整。
根据本发明的一实施例,热镀锌装置包括炉鼻子、锌锅、沉没辊、稳定辊。锌锅为热镀锌装置的主体,炉鼻子为锌锅的入口,沉没辊设置于锌锅内部,稳定辊设置于锌锅的出口处。
根据本发明的一实施例,气刀的间距为9-15mm,其位置高于热镀锌装置300-600mm。
根据本发明的一实施例,控制系统将锌层厚度与设定值比较并进行计算,从而对气刀压力进行进一步调整。
根据本发明的一实施例,沿带钢前进方向、位于带钢测厚仪和测长辊之前设置退火炉。
为实现上述目的,本发明还采用如下技术方案:
一种连续变厚度带材的热镀锌层厚度控制方法,包括以下步骤:设定变厚轧制目标带钢的轮廓尺寸;根据设定的轮廓尺寸设定对应两个等厚段的气刀压力;测量热镀锌之前带钢的长度和厚度;根据热镀锌之前带钢的长度和厚度调整气刀压力;测量热镀锌之后的带钢厚度和锌层厚度;根据热镀锌之后的带钢厚度和锌层厚度计算对应两个等厚段的厚度偏差值;根据厚度偏差值计算对应两个等厚段的气刀压力调整量;调整气刀压力。
在上述技术方案中,本发明的连续变厚度带材的热镀锌层厚度控制系统及方法可以使成卷的连续变厚度来料锌层厚度均匀,并且工艺简单。
附图说明
图1为变厚轧制示意图;
图2为热镀锌机组入口带钢轮廓示意图;
图3为本发明连续变厚度带材的热镀锌层厚度控制系统的结构示意图;
图4为本发明连续变厚度带材的热镀锌层厚度控制方法的流程图;
图5为不等厚样件示意图。
具体实施方式
下面结合附图和实施例进一步说明本发明的技术方案。
如图2所示是设定的连续变厚度出口轮廓,这也是热镀锌机组入口带钢厚度轮廓的示意。
锌层厚度影响因素众多,例如带钢厚度、宽度、板形、表面粗糙度、带钢温度、锌液温度及成分等。对于连续变厚度带钢1,原料厚度不可避免地呈周期变化趋势,而带钢温度、锌液温度及成分属工艺条件,基本不会变化,所以只有气刀5调节可以对锌层厚度进行控制,故本发明的实质就是通过调节气刀参数进行锌层厚度控制。
进一步地,本发明主要的气刀参数有气刀压力、气刀5喷嘴与带钢1表面距离、带钢1的运行速度、气刀5距锌锅2液面高度、喷嘴间隙、喷吹角度等。气刀参数中的刀唇间隙在气刀5安装时已固定,可以看成是常数,这样锌层厚度主要影响因素只剩刀压、喷吹角度、刀距、刀高和带钢速度五个变量,其中带钢速度、气刀压力、气刀间距等变量对锌层厚度影响最为显著。
因此,参照图3,本发明首先公开一种连续变厚度带材的热镀锌层厚度控制系统10,其主要结构包括带钢测厚仪8、测长辊11、热镀锌装置、气刀5、冷态锌层测量仪7、控制系统10、退火炉6等,其中热镀锌装置又进一步包括了炉鼻子9、锌锅2、沉没辊3、稳定辊4。下面来进一步详细说明上述各个结构的作用及其连接关系。
如图3所示,锌锅2为热镀锌装置的主体,炉鼻子9为锌锅2的入口,沉没辊3设置于锌锅2内部,稳定辊4设置于锌锅2的出口处。沿带钢前进方向、位于带钢测厚仪8和测长辊11之前设置退火炉6。带钢1运行速度由生产线前后工序所决定,速度在锌层厚度控制中作为扰动量,不作为调节量。生产过程中一般把刀距控制在9-15mm之间,不动态调整,刀高的取值通常取决于带钢1 运行速度,一般高于锌锅2300-600mm。喷嘴的角度是离线调整的。故,对于锌层厚度的控制实际是通过调节气刀压力实现的。
继续参照图3,沿带钢前进方向、位于热镀锌装置的入口前设置带钢测厚仪8和测长辊11,热镀锌装置的出口之后依次设置气刀5和冷态锌层测量仪7。带钢测厚仪8检测带钢1的厚度信号,测长辊11检测带钢1的长度信号,冷态锌层测量仪7检测带钢1的锌层厚度,并且带钢测厚仪8、测长辊11和冷态锌层测量仪7分别将测量数据发送至控制系统10。
控制系统10首先按照要求的锌层厚度,对不同厚度的带钢1预设定气刀5的压力,即首先根据长度信号和厚度信号预估气刀5处的带钢厚度,并对气刀5进行压力调整。具体来说,带钢1经过退火炉6之后,依次通过带钢测厚仪8、测长辊11,测得的厚度与长度信息将送至控制系统10,控制系统10将厚度与长度信息组合起来,得到带钢1的厚度轮廓信息。同时,控制系统10将对带钢1进行跟踪,计算到气刀5处带钢1对应的厚度,并按预设定压力进行调节。
同时,冷态锌层测量仪7测量带材的锌层厚度,送入控制系统10,控制系统10计算测量带钢1涂镀锌层的厚度与预设定锌层厚度设定值之间的偏差,结合跟踪计算得到的测量位置处带钢1的厚度信息,对预设定的气刀压力进行进一步调整。
此外,参照图4,本发明还公开一种连续变厚度带材的热镀锌层厚度控制方法,包括以下步骤:
S1:设定变厚轧制目标带钢的轮廓尺寸。
S2:根据设定的轮廓尺寸计算对应两个等厚段的气刀压力。
S3:测量热镀锌之前带钢的长度和厚度。
S4:根据热镀锌之前带钢的长度和厚度调整气刀压力。
S5:测量热镀锌之后的带钢厚度和锌层厚度。
S6:根据热镀锌之后的带钢厚度和锌层厚度计算对应两个等厚段的厚度偏差值。
S7:根据厚度偏差值计算对应两个等厚段的气刀压力调整量。
S8:进一步调整气刀压力。
下面通过一个实施例来进一步说明上述方法。
如图5所示,一个变厚板样件包含两个等厚段h1、h2,在轧制的时候,是设定一个样件长度与厚度值,再周期地进行轧制,因此,镀锌机组入口的带钢厚度呈现周期性变化。
S1:设定变厚轧制目标带钢的轮廓尺寸,每个样件设定变厚轧制目标轮廓设定为:
厚度:h1=2.0mm,h2=1.0mm
长度:Len1=250mm,T1=100mm,Len2=500mm,T2=100mm,Len3=250mm
要求的锌层厚度:ch=80g/m2
S2:根据设定的轮廓尺寸计设定对应两个等厚段的气刀压力。在热镀锌开始之前,先将带钢尺寸输入控制系统10,控制系统10将根据带钢运行的速度、带钢的厚度计算对应两个等厚段的气刀压力p1、p2。
与常规热镀锌机组不同,本发明包含一个跟踪模块,输入信号由测长辊11提供,功能在控制系统10中实现。控制系统10将根据镀锌开始前的气刀压力预设定值调节气刀压力,并将设定值输出至执行机构。
S3:测量热镀锌之前带钢的长度和厚度。在镀锌的时候,测厚仪8与测长辊11将测量带钢1的位置与厚度,送入控制系统10中。
S4:根据热镀锌之前带钢的长度和厚度调整气刀压力。控制系统10将其组合起来。测长辊11至气刀5的距离是恒定的,因此控制系统10的跟踪功能可以根据带钢运行速度计算出气刀5处带钢的厚度,并调整气刀压力。
S5:测量热镀锌之后的带钢厚度和锌层厚度。
在气刀之后,布置有冷态锌层测量仪7,将测量带钢1的镀层厚度并将测量值发送给控制系统10。控制系统的跟踪功能将计算出位于冷态锌层测量仪7的带钢的厚度。
S6:根据热镀锌之后的带钢厚度和锌层厚度计算对应两个等厚段的厚度偏差值。
控制系统将冷态锌层测量仪7处带钢厚度值与镀层厚度值组合起来,可以获得对应对应两个等厚段的镀层厚度偏差值Δch1、Δch2。
S7:根据厚度偏差值计算对应两个等厚段的气刀压力调整量。
根据这两个偏差值,控制系统将计算出对应两个等厚段的气刀压力调整量Δp1、Δp2。这实际是一个反馈控制过程。
S8:进一步调整气刀压力。
接下来,控制系统10将根据气刀5处带钢的厚度,给执行机构输出气刀压力值p1+Δp1或者p2+Δp2。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (6)

  1. 一种连续变厚度带材的热镀锌层厚度控制系统,其特征在于,包括:
    带钢测厚仪、测长辊、热镀锌装置、气刀、冷态锌层测量仪、控制系统;
    沿带钢前进方向、位于热镀锌装置的入口前设置所述带钢测厚仪和测长辊,热镀锌装置的出口之后依次设置所述气刀和冷态锌层测量仪;
    所述带钢测厚仪检测带钢的厚度信号,所述测长辊检测带钢的长度信号,所述冷态锌层测量仪检测带钢的锌层厚度,并且带钢测厚仪、测长辊和冷态锌层测量仪分别将测量数据发送至所述控制系统;
    所述控制系统根据所述长度信号和厚度信号预估气刀处的带钢厚度,并对气刀进行压力调整,并根据所述锌层厚度对气刀压力进行进一步调整。
  2. 如权利要求1所述的连续变厚度带材的热镀锌层厚度控制系统,其特征在于,所述热镀锌装置包括炉鼻子、锌锅、沉没辊、稳定辊;
    所述锌锅为热镀锌装置的主体,所述炉鼻子为所述锌锅的入口,所述沉没辊设置于锌锅内部,所述稳定辊设置于锌锅的出口处。
  3. 如权利要求1所述的连续变厚度带材的热镀锌层厚度控制系统,其特征在于,所述气刀的间距为9ˉ15mm,其位置高于热镀锌装置300ˉ600mm。
  4. 如权利要求1所述的连续变厚度带材的热镀锌层厚度控制系统,其特征在于,所述控制系统将锌层厚度与设定值比较并进行计算,从而对气刀压力进行进一步调整。
  5. 如权利要求1所述的连续变厚度带材的热镀锌层厚度控制系统,其特征在于,沿带钢前进方向、位于带钢测厚仪和测长辊之前设置退火炉。
  6. 一种连续变厚度带材的热镀锌层厚度控制方法,其特征在于,包括以下步骤:
    设定变厚轧制目标带钢的轮廓尺寸;
    根据设定的轮廓尺寸设定对应两个等厚段的气刀压力;
    测量热镀锌之前带钢的长度和厚度;
    根据热镀锌之前带钢的长度和厚度调整气刀压力;
    测量热镀锌之后的带钢厚度和锌层厚度;
    根据热镀锌之后的带钢厚度和锌层厚度计算对应两个等厚段的厚度偏差值;
    根据厚度偏差值计算对应两个等厚段的气刀压力调整量;
    调整气刀压力。
PCT/CN2016/077617 2015-09-30 2016-03-29 连续变厚度带材的热镀锌层厚度控制系统及方法 WO2017054427A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES16850054T ES2877718T3 (es) 2015-09-30 2016-03-29 Sistema y método de control de grosor de capa galvanizada por inmersión en caliente para material de banda de grosor variable continuo
JP2018516679A JP6778258B2 (ja) 2015-09-30 2016-03-29 厚さが連続的に変化するストリップ材料のための溶融亜鉛めっき層厚さ制御システムおよび方法
KR1020187011789A KR102099910B1 (ko) 2015-09-30 2016-03-29 연속적인 두께-가변형 스트립 물질을 위한 용융 아연도금 층 두께 조절 시스템 및 방법
US15/763,275 US10415131B2 (en) 2015-09-30 2016-03-29 Hot-dip galvanized layer thickness control system and method for continuous thickness-varying strip material
EP16850054.4A EP3358036B1 (en) 2015-09-30 2016-03-29 Hot-dip galvanized layer thickness control system and method for continuous thickness-varying strip material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510641092.6 2015-09-30
CN201510641092.6A CN106555144B (zh) 2015-09-30 2015-09-30 连续变厚度带材的热镀锌层厚度控制系统及方法

Publications (1)

Publication Number Publication Date
WO2017054427A1 true WO2017054427A1 (zh) 2017-04-06

Family

ID=58417860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077617 WO2017054427A1 (zh) 2015-09-30 2016-03-29 连续变厚度带材的热镀锌层厚度控制系统及方法

Country Status (7)

Country Link
US (1) US10415131B2 (zh)
EP (1) EP3358036B1 (zh)
JP (1) JP6778258B2 (zh)
KR (1) KR102099910B1 (zh)
CN (1) CN106555144B (zh)
ES (1) ES2877718T3 (zh)
WO (1) WO2017054427A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518112A (zh) * 2018-12-21 2019-03-26 首钢京唐钢铁联合有限责任公司 一种连续热镀锌生产线张力辊组的控制方法
CN113667918A (zh) * 2021-07-27 2021-11-19 首钢京唐钢铁联合有限责任公司 热镀锌带钢镀层厚度切换的控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676996B (zh) * 2018-04-24 2019-08-13 邯郸钢铁集团有限责任公司 一种更换连续退火炉炉鼻子时的带钢处理方法
PL3566788T3 (pl) * 2018-05-08 2021-08-16 Muhr Und Bender Kg Instalacja i sposób wyodrębniania elastycznie walcowanego materiału taśmowego
JP7145754B2 (ja) * 2018-12-28 2022-10-03 株式会社日立製作所 めっき付着量制御装置および制御方法
CN111719131A (zh) * 2019-03-22 2020-09-29 宝山钢铁股份有限公司 一种带镀层变厚度钢板的生产工艺
CN112058580A (zh) * 2019-06-11 2020-12-11 河北金力新能源科技股份有限公司 耐磨损免擦网纹辊结构及具有该结构的涂布机
CN110629149B (zh) * 2019-10-21 2021-09-28 中冶南方工程技术有限公司 一种热镀锌机组锌层厚度控制装置
CN111595225A (zh) * 2020-05-29 2020-08-28 张家港扬子江冷轧板有限公司 一种快速测量气刀刀唇的塞尺工具
CN111992792B (zh) * 2020-08-25 2022-11-15 上海宝钢新材料技术有限公司 一种变厚板纵切刀片间隙及重合量的控制方法
CN112853249A (zh) * 2021-01-06 2021-05-28 方义毫 一种钢带镀锌层厚度控制装置
CN113755774A (zh) * 2021-08-26 2021-12-07 河钢股份有限公司 一种超厚锌层无锌花镀锌板的生产方法
CN114015948A (zh) * 2021-11-04 2022-02-08 上海宝钢新材料技术有限公司 一种电镀锌变厚板汽车前纵梁及其制备方法
CN114774825A (zh) * 2022-03-10 2022-07-22 冠县仁泽复合材料有限公司 一种锌层厚度自动控制装置
CN114934249A (zh) * 2022-06-15 2022-08-23 武汉钢铁有限公司 控制热镀锌带钢c翘缺陷的方法、装置及电子设备
CN115094364A (zh) * 2022-06-20 2022-09-23 首钢京唐钢铁联合有限责任公司 一种镀锌产线带钢锌层厚度的控制方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610763A (zh) * 2001-08-24 2005-04-27 Posco公司 在连续镀锌处理中控制钢带上的镀层重量的装置
JP2011183438A (ja) * 2010-03-10 2011-09-22 Jfe Steel Corp 金属帯の制振及び位置矯正装置、および該装置を用いた溶融めっき金属帯製造方法
JP2011184791A (ja) * 2010-03-11 2011-09-22 Nippon Steel Engineering Co Ltd 溶融金属めっき鋼板の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227326B2 (ja) * 1994-12-28 2001-11-12 新日本製鐵株式会社 合金化溶融亜鉛めっき鋼帯の合金化制御方法
DE102004023886B4 (de) * 2004-05-12 2007-04-12 Muhr Und Bender Kg Verfahren und Vorrichtung zur Veredelung von flexibel gewalztem Bandmaterial
JP4062284B2 (ja) * 2004-06-04 2008-03-19 Jfeスチール株式会社 溶融めっき付着量制御方法およびガスワイピングノズル
JP4347867B2 (ja) * 2006-07-27 2009-10-21 株式会社日立製作所 めっき付着量制御システムおよびめっき付着量制御方法
KR100815814B1 (ko) * 2006-12-22 2008-03-20 주식회사 포스코 연속도금공정에서의 도금 부착량 제어 방법 및 장치
EP2025771A1 (en) * 2007-08-15 2009-02-18 Corus Staal BV Method for producing a coated steel strip for producing taylored blanks suitable for thermomechanical shaping, strip thus produced, and use of such a coated strip
JP2009275243A (ja) * 2008-05-13 2009-11-26 Mitsubishi-Hitachi Metals Machinery Inc 溶融金属めっき鋼板のめっき付着量計測方法及びめっき付着量計測装置
CN104846306B (zh) * 2015-05-07 2017-07-14 浙江中控研究院有限公司 一种镀锌厚度控制系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610763A (zh) * 2001-08-24 2005-04-27 Posco公司 在连续镀锌处理中控制钢带上的镀层重量的装置
JP2011183438A (ja) * 2010-03-10 2011-09-22 Jfe Steel Corp 金属帯の制振及び位置矯正装置、および該装置を用いた溶融めっき金属帯製造方法
JP2011184791A (ja) * 2010-03-11 2011-09-22 Nippon Steel Engineering Co Ltd 溶融金属めっき鋼板の製造装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518112A (zh) * 2018-12-21 2019-03-26 首钢京唐钢铁联合有限责任公司 一种连续热镀锌生产线张力辊组的控制方法
CN109518112B (zh) * 2018-12-21 2021-01-26 首钢京唐钢铁联合有限责任公司 一种连续热镀锌生产线张力辊组的控制方法
CN113667918A (zh) * 2021-07-27 2021-11-19 首钢京唐钢铁联合有限责任公司 热镀锌带钢镀层厚度切换的控制方法
CN113667918B (zh) * 2021-07-27 2023-08-15 首钢京唐钢铁联合有限责任公司 热镀锌带钢镀层厚度切换的控制方法

Also Published As

Publication number Publication date
EP3358036B1 (en) 2021-04-21
CN106555144B (zh) 2018-08-31
JP2018529845A (ja) 2018-10-11
US20180282850A1 (en) 2018-10-04
ES2877718T3 (es) 2021-11-17
JP6778258B2 (ja) 2020-10-28
EP3358036A1 (en) 2018-08-08
US10415131B2 (en) 2019-09-17
CN106555144A (zh) 2017-04-05
KR20180061275A (ko) 2018-06-07
KR102099910B1 (ko) 2020-04-13
EP3358036A4 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2017054427A1 (zh) 连续变厚度带材的热镀锌层厚度控制系统及方法
CN106623421A (zh) 一种变厚度型材的连续生产方法及连续生产线
CN106984651B (zh) 一种提高轧件厚度控制精度的在线控制系统
CN106868440B (zh) 一种带钢连续热镀锌镀层厚度预测及其调节方法
CN103949481B (zh) 兼顾热轧带钢轧制稳定性和质量的平坦度分段控制方法
KR101109464B1 (ko) 금속 스트립의 평면성 및/또는 거칠기를 제어하기 위한 방법 및 그 윤활제 도포 장치
CN109280871B (zh) 一种控制镀锌板锌花尺寸的方法
CN108405625A (zh) 一种实现esp精轧机组在线换辊的顺流换辊方法
CN104801550B (zh) 一种热连轧机精轧抛钢速度的控制方法
CN107442575A (zh) 一种带钢湿平整表面粗糙度的预测方法
CN108546897B (zh) 一种冷轧热镀锌钢板横向镀层均匀性控制方法
CN109593951B (zh) 基于炉温的热镀产品脱锌缺陷动态控制方法
JPH08260122A (ja) 溶融めっき鋼板のめっき付着量制御方法
KR20020050858A (ko) 에어나이프의 노즐 갭 조절장치 및 그 방법
CN110809633A (zh) 热浸涂装置和热浸涂方法
CN109226279B (zh) 一种五机架冷连轧高强钢板带的四分之一浪板形控制方法
JPH06322504A (ja) 溶融めっき鋼板の付着量制御装置
JP2002275613A (ja) めっき付着量制御方法及び制御システム
CN109047335A (zh) 钢管尺寸外径控制方法
CN110000225A (zh) 边部加热器的功率控制方法
JPH05171396A (ja) 合金化溶融亜鉛めっき鋼板の製造方法
CN110814049B (zh) 一种带钢厚度的控制方法及装置
KR20100076839A (ko) 용융도금공정에서의 폭방향 도금량 제어 장치 및 방법
JPH02170924A (ja) 連続焼鈍材の製造方法
CN114818253A (zh) 一种适应快节奏轧制的卷取温度模型自学习方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763275

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018516679

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011789

Country of ref document: KR

Kind code of ref document: A