WO2017052184A1 - 1,4-사이클로헥산디메탄올의 제조 방법 - Google Patents

1,4-사이클로헥산디메탄올의 제조 방법 Download PDF

Info

Publication number
WO2017052184A1
WO2017052184A1 PCT/KR2016/010523 KR2016010523W WO2017052184A1 WO 2017052184 A1 WO2017052184 A1 WO 2017052184A1 KR 2016010523 W KR2016010523 W KR 2016010523W WO 2017052184 A1 WO2017052184 A1 WO 2017052184A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
terephthalic acid
metal catalyst
compound
cyclonucleic
Prior art date
Application number
PCT/KR2016/010523
Other languages
English (en)
French (fr)
Inventor
김성민
차미선
최성환
박성준
최영헌
서영종
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2017052184A1 publication Critical patent/WO2017052184A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/27Polyhydroxylic alcohols containing saturated rings

Definitions

  • the present invention relates to a process for preparing 1,4-cyclonucleic acid dimethanol. More specifically, the present invention relates to a manufacturing method that can simplify the reaction process to increase the efficiency and economics of the reaction, and to provide high purity 1,4-cyclonucleodimethane while minimizing the by-products in a shorter time. will be.
  • 1,4-cyclonucleic acid dimethanol Conventionally known methods for producing 1,4-cyclonucleic acid dimethanol can be summarized in two ways.
  • One method is to synthesize 1,4-cyclonucleic acid dimethane through 1,4-dimethylcyclonucleic acid dicarboxylate under high temperature and high pressure conditions using dimethyl terephthalate, and the other method is to use terephthalic acid.
  • 1, a method for synthesizing a 4-cycle acid dicarboxylic acid manufactures therefrom the 1, 4 _ cycloalkyl nucleic acid di-methane.
  • Japanese Laid-Open Patent Publication No. 2002-145824 discloses terephthalic acid in the presence of a solvent and a palladium catalyst to hydrogen reaction to obtain intermediate 1,4-cyclonucleic acid dimethane.
  • a method for preparing nucleic acid dimethanol is disclosed.
  • this preparation method lowers the selectivity of 1,4-cyclonucleodimethanol, from which by-products are produced and finally produced, and thus using aliphatic higher alcohols such as 2-ethylnusanol as an extractant or produced banungmulung And a process for separating and recovering alcohol.
  • EP 0934920 discloses a process for preparing a Raney catalyst to reduce terephthalic acid.
  • the production process uses a catalyst that is not easy to use on a large scale and additionally requires separation and recovery plant processes for each using dioxane with water as reaction solvent.
  • US Patent No. 6294703 discloses a method for synthesizing 1,4-cyclonucleic acid dimethanol with a complex catalyst carrying ruthenium and tin. According to the above synthesis method, it is not sufficient to secure the selectivity of the final prepared 1,4-cyclonucleic acid, or to use a hydrogenated semi-ungheung base to generate additional processes or costs and environmental problems There is a problem that can be.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2 002-145824
  • Patent Document 2 European Patent No. 0934920
  • Patent Document 3 US Patent No. 6294703
  • the present invention relates to a manufacturing method that can simplify the reaction process to increase the efficiency and economic efficiency of the reaction, and to provide high purity 1,4-cyclonucleic acid dimethanol while minimizing by-products in a shorter time.
  • the step of reducing the terephthalic acid in the presence of a first metal catalyst comprising a palladium (Pd) compound fixed to the dealuminated zeolite carrier; And a ruthenium (Ru) compound, a tin (Sn) compound, and a platinum (Pt) compound, fixed on a dealuminated zeolite carrier, in a weight ratio of 1: 0.8 to 1.2: 0.2 to 0.6 based on the weight of the metal.
  • a second metal catalyst there is provided a method for producing 1,4-cyclonucleic acid dimethanol, comprising the step of reducing the result of the reduction of terephthalic acid.
  • a method for preparing 1,4-cyclonucleic acid dimethanol in the presence of a first metal catalyst comprising a palladium (Pd) compound immobilized on a dealuminated zeolite carrier; And a ruthenium (Ru) compound, a tin (Sn) compound, and a platinum (Pt) compound fixed to a dealuminated zeolite carrier in a weight ratio of 1: 0.8 to 1.2: 0.2 to 0.6 based on the weight of the metal.
  • a method for preparing 1,4-cyclonucleic acid dimethanol may be provided comprising reducing the result of reduction of terephthalic acid.
  • the present inventors have conducted a study on a method for synthesizing cycloalkane dihydride by direct hydrogenation of aromatic dicarboxylic acid, and the first metal catalyst _ and the second metal catalyst fixed on the dealuminated zeolite carrier When used, it was confirmed through experiments that the aromatic dicarboxylic acid can be reduced with high efficiency without a decrease in reaction activity caused by long time use, and completed the invention.
  • a second metal catalyst containing ruthenium (Ru) compound, tin (Sn) compound, and platinum (Pt) compound in a specific weight ratio is used for the terephthalic acid.
  • Ru ruthenium
  • Sn tin
  • Pt platinum
  • the active component of each of the first metal catalyst and the second metal catalyst is used as a state fixed to the dealuminated zeolite carrier, and the active ingredient is dealuminated zeolite As it is immobilized on the carrier, it is possible to achieve a result of securing a high reaction conversion rate of 99% or more while securing a selectivity of 1,4-cyclonucleodimethanol in a final product of 90% or more.
  • This effect seems to be due to the dealuminated zeolite carrier, the ratio and acidity of the alumina and silica of the zeolite carrier, and the smooth reaction effect depending on the appropriate pore size.
  • each of the first catalyst and the second metal catalyst Zeolite carriers included include about 200 to about 900 niVg, or about 300 to about
  • It may have a specific surface area of 800 m7g. If the specific surface area of the zeolite carrier is too small, the reaction site between the reaction product and the catalyst is reduced so that the reaction does not work smoothly, or the metal, which plays an important role of the catalyst, is not properly supported on the carrier, causing the pores to be blocked or broken. Loss may occur. In addition, if the specific surface area of the zeolite carrier is too large, the dispersion of the catalyst metal may be excessively high, so that reaction may not proceed smoothly.
  • the total pore volume of the zeolite carrier included in each of the first metal catalyst and the second metal catalyst may be about 1.2 cinVg or less. If the total pore volume of the zeolite carrier included in each of the first metal catalyst and the second metal catalyst is too large, the reaction rate between the reaction product and the catalyst is too active to generate an excess amount of the auxiliary reaction product or to disperse the metal as the active component. In this case, the contact efficiency of the reaction product and the catalyst may be greatly reduced, and thus the reaction may not proceed smoothly.
  • the volume of pores having a radius of 10 A or less in the zeolite carrier included in each of the first metal catalyst and the second metal catalyst may be about 0.1 to about 0.8 cinVg, or about 0.2 to about 0.7 cuiVg.
  • the pores having a radius of 10 A or less in the zeolite carrier included in each of the first metal catalyst and the second metal catalyst may serve to increase reaction activity and increase enantioselectivity. . If the volume of the pores having a radius of 10 A or less in the zeolite carrier is too small, since the large organic molecules cannot be adsorbed to the micropores, the pore structure will be destroyed only by the pressure during the catalyst molding or the high heat treatment during the firing. However, its internal surface area is drastically reduced, resulting in the loss of material 'adsorption properties, in addition to the escape of the metal catalyst component.
  • the volume of the pores having a radius of 10 A or less in the zeolite carrier is too large, the dispersity of the metal catalyst is widened, and the acceleration of the reaction reaction produces an excessive amount of the sub-acupuncture or the selectivity of the enantiomer of the product. Can be.
  • the carrier is a dealuminated zeolite, which may be carried out by acid treatment.
  • Acids that can be used for the dealumination include, for example, sulfuric acid (H 2 S0 4 ), nitric acid (HN0 3 ), hydrofluoric acid (HF), hydrochloric acid (HC1), bromic acid (HBr), or iodic acid (HI Inorganic acids such as; Or oxalic acid, formic acid, terephthalic acid, isophthalic acid,
  • 1,4-cyclohexanedicarboxylic acid 1,3-cyclohexanedicarboxylic acid, benzoic acid, adipic acid ), Organic acids such as glutaric acid, succinic acid, malonic acid, maleic acid, and the like.
  • oxalic acid can be used.
  • the concentration of the solution used for the acid treatment may be about 0.1 to about 5M, more preferably about 0.5 to about 3M. Also used for the acid treatment The volume of acid may be about 10 mL to about 30 mL per lg zeolite, but is not limited to the above range and may be used in excess.
  • the temperature ranges from room temperature to the reflux temperature of the solution, and the time requires 1 hour or more.
  • the zeolite carrier included in each of the first metal catalyst and the second metal catalyst may be Y-type zeolite.
  • the active component of each of the first metal catalyst and the second metal catalyst is fixed to the zeolite carrier, which is higher than the case of using a carrier of another kind, for example, an activated carbon carrier.
  • the selectivity of 1,4-cyclohexane dimethane can be secured, and the reaction efficiency can be improved or thermal, mechanical, and reaction effects can be realized during catalyst formation.
  • the production of by-products in the process of synthesizing 1,4-cyclonucleic acid dimethanol from terephthalic acid is an additional process or step of separating and recovering the by-products It can be omitted, and the purification process to increase the purity can be minimized.
  • the method for preparing 1,4-cyclonucleic acid dimethane of one embodiment enables relatively simplified reaction process design and can provide high purity 1,4-cyclonucleic acid dimethanol with high yield in a shorter time. Therefore, the efficiency and economics of the entire manufacturing process can be improved.
  • the method may include reducing terephthalic acid in the presence of a first metal catalyst including a palladium (Pd) compound.
  • the palladium (Pd) compound means palladium metal itself, an organic salt of palladium or an inorganic salt of palladium.
  • the benzene ring of terephthalic acid may be reduced through the first metal catalyst including the palladium (Pd) compound, thus 1,4-cyclonucleic acid Dicarboxylic acids may be formed.
  • the first metal catalyst is palladium (Pd) compound of palladium (Pd) on a weight to come based on the metal and from about 0.05 to about 10 parts by weight 0/0, preferably about 0.1 to about 5 wt% Can be.
  • reducing the terephthalic acid may include contacting the terephthalic acid and hydrogen gas.
  • the step of reducing the terephthalic acid methods, reaction conditions and devices known to be used for reducing reaction of aromatic carboxylic acids may be used without great limitation.
  • the step of reducing the terephthalic acid may be about 50 to about 350 ° C. Or, at a temperature of about 100 to about 300 ° C. and a pressure of about 30 to about 150 bar or about 40 to about 100 bar.
  • the step of reducing the terephthalic acid is introduced into the atmosphere of the inert gas, such as nitrogen, after the interior of the semi-unggi period in which the first metal catalyst and terephthalic acid containing the palladium (Pd) compound is present into the atmosphere and the inside Subliming the temperature may be performed.
  • the inert gas such as nitrogen
  • terephthalic acid In the step of reducing the terephthalic acid, about 10 to about 300 parts by weight, preferably about 50 to about 300 parts by weight, more preferably about 50 to about 200 parts by weight of the first metal catalyst, relative to 100 parts by weight of terephthalic acid Can be used.
  • the efficiency of the reduction reaction may decrease or the selectivity of 1,4-cyclonucleic acid dimethanol in the species produced may be lowered. If this is insufficient, the production efficiency of the reaction device may be lowered and the efficiency of the apparatus may be reduced or the energy consumption may be excessive when the final product is obtained and separated / recovered.
  • the content or the amount of the first metal catalyst is too high compared to the terephthalic acid, by-products are generated in the reaction process, so that the removal of these by-products is uneconomical. Purity may be lowered.
  • Ruthenium contained in the second metal catalyst appears to play a role in converting dicarboxylic acid into a primary alcohol, and tin serves to increase the selectivity of alcohol as a result of synthesis. Platinum appears to play a role in suppressing side reactions by increasing the activity of the catalyst.
  • a reaction product including 1,4-cyclonucleic acid dimethanol can be formed.
  • the second metal catalyst is a ruthenium (Ru) compound, a tin (Sn) compound, and a platinum (Pt) compound in a weight ratio of 1: 0.8 to 1.2: 0.2 to 0.6, or in a weight ratio of 1: 0.9 to 1.1: 0.3 to 0.55. It may include.
  • the weight ratio means a weight ratio of only metals (ruthenium, tin, platinum) included in each of ruthenium (Ru) compound, tin (Sn) compound, and platinum (Pt) compound.
  • the terephthalic acid used as a semi-aquatic product is substantially reduced by using a second metal catalyst containing a ruthenium (Ru) compound, a tin (Sn) compound and a platinum (Pt) compound in the above specified weight ratio.
  • a second metal catalyst containing a ruthenium (Ru) compound, a tin (Sn) compound and a platinum (Pt) compound in the above specified weight ratio.
  • Ru ruthenium
  • Sn tin
  • Pt platinum
  • the ruthenium (Ru) compound means ruthenium metal itself, an organic salt of ruthenium or an inorganic salt of ruthenium. The same is true for the tin (Sn) compound and the platinum (Pt) compound.
  • the ruthenium (Ru) compound may be included such that, based on the total weight of the second metal catalyst, a ruthenium (Ru) metal is from about 0.5 to about 20 parts by weight 0/0, preferably about 5 to about 12% by weight.
  • the content of tin (Sn) compound and platinum (Pt) compound in the second metal catalyst may be determined as the content of the ruthenium compound (or metal) and the weight ratio between the compounds (or metals).
  • the acid generated can lower the reaction yield and can result in lower efficiency or excessive energy consumption when separating or recovering the final reaction product.
  • reducing the reduction product of terephthalic acid various reduction methods may be used. For example, reducing the reduction product of terephthalic acid may include contacting the reduction product of terephthalic acid with hydrogen gas.
  • reducing the reduction product of terephthalic acid may be about. It may be carried out at a temperature of 50 to about 35 GTC, or about 100 to about 300 ° C and pressure conditions of about 30 to about 150 bar, or about 40 to about 100 bar.
  • the step of reducing the reduction product of the terephthalic acid is introduced into the atmosphere of the inert gas such as nitrogen after the inside of the half-unggi where the second metal catalyst and the reduction product of the terephthalic acid is introduced into the atmosphere and the internal temperature It may be performed including the step of raising the temperature.
  • the inert gas such as nitrogen after the inside of the half-unggi where the second metal catalyst and the reduction product of the terephthalic acid is introduced into the atmosphere and the internal temperature It may be performed including the step of raising the temperature.
  • the second metal catalyst is about 10 to about 300 parts by weight, preferably about 50 to about 300 parts by weight, and more preferably about 100 parts by weight of the reduction product of terephthalic acid. 50 to about 200 parts by weight can be used.
  • the amount or amount of the second metal catalyst compared to the reduction product of terephthalic acid If it is too low, the selectivity of 1,4-cyclonucleodimethane may be lowered in the reaction product produced or the reaction efficiency of the reduction reaction is lowered, and if the catalyst content is insufficient, the production efficiency of the reaction device is lowered and the final Separation / recovery after the product has been obtained can lead to lower efficiency of the device or excessive energy consumption.
  • the by-products are generated in the reaction process, so it is uneconomical to remove them because several steps must be additionally performed. The purity of the resulting product may be lowered.
  • the step of reducing the terephthalic acid and the reducing result of the terephthalic acid may be performed continuously.
  • the continuous operation means that 1,4-cyclonucleic acid dimethanol can be formed from terephthalic acid through one process or reaction process.
  • the step of reducing the terephthalic acid and reducing the reduction product of the terephthalic acid may be carried out in one reaction period. Meaning that the reaction is carried out in one of the semi-unggi means that the reduction of the terephthalic acid and the secondary reduction of the reduction product of the terephthalic acid is carried out in the same reaction stage without separation or transfer of the reaction product.
  • the reaction product may directly reduce the reaction and the reduction reaction may occur in the state where the reaction product is present in the solvent.
  • Examples of the solvent that can be used are not particularly limited, and water or an organic solvent can be used, for example.
  • the organic solvent include aliphatic alcohols such as methanol, ethanol, propanol, cyclohexanol, aliphatic alcohols such as nucleic acid, cyclohexane, and the like. Hydrocarbons, ethers, such as ether (diethyl ether), tetrahydrofliran, or a mixture of 2 or more thereof can be used.
  • the amount of the organic solvent used is not particularly limited, and for example, the organic solvent may be used in an amount of about 10% to 1,000% by weight of the reactant terephthalic acid and / or the reduced product of the terephthalic acid.
  • the method may further include separating the catalyst used at the time point of each reduction reaction step and then purifying the reaction product.
  • the method that can be used for the purification is not particularly limited, but may be separated and purified by distillation, extraction and chromatography methods.
  • the reactants can almost participate in the reaction to achieve a high conversion rate, while minimizing the by-products in a shorter time, high purity 1,4-cyclonucleic acid Dimethanol may be provided. remind
  • the process for preparing 4-cyclonucleodimethanol allows for relatively simplified reaction process design and can provide high purity 1 4-cyclonucleodimethanol with high yields in a shorter time, thereby improving the efficiency and economics of the entire manufacturing process. Can be improved. ⁇
  • an additional process or step of separating and recovering the by-products may be omitted by minimizing the by-products generated in the process of preparing 1,4-cyclonucleic acid dimethanol. And, the purification process to increase the purity can be omitted.
  • Terephthalic acid as a starting material in a reaction
  • Y- zeolite [specific surface area: about 600 niVg, the total pore volume of 1.0 ciuVg, 10 is about 0.5 cuiVg A volume of pores having a radius of less] put 100g of IN aqueous solution of oxalic acid in 2L second purpura unggi internal temperature 90 ° C It was stirred while heating to reflux for 6 hours. The excess acid was then filtered off under reduced pressure filtration and washed / filtered with hot water at 70 ° C. or higher. The filtered dealumination zeolite was dried at 120 ° C. for 12 hours and then calcined at 500 ° C. for 4 hours in a calciner.
  • the catalyst was prepared using a general incipient wetness method.
  • the first metal catalyst in order to prepare the first metal catalyst, palladium chloride was dissolved in ion-exchanged water, and then the solution was dropped dropwise onto the evaporation plate containing the zeolite of Preparation Example 1-1. When the solution was filled in the zeolite pores, water was evaporated off to obtain a residue. The residue obtained was dried under reduced pressure, and then calcined at atmospheric conditions and at a temperature of 550 ° C. for 3 hours to obtain a first metal catalyst containing dealuminated Y-zeolite supported on palladium.
  • the solution is dropped dropwise onto the evaporation plate containing the zeolite of Preparation Example 1-1.
  • water was evaporated off to obtain a residue.
  • the method performed using the ruthenium chloride trihydrate was also repeated with tin chloride dihydrate and chloroplatinic acid, respectively.
  • the first and second metal catalysts were prepared in the same manner as in Preparation Example 2, except that the weight ratios of ruthenium (Ru), tin (Sn), and platinum (Pt) were changed.
  • the weight ratio of ruthenium (Ru), tin (Sn) and platinum (Pt) is as described in Table 1 below.
  • the first and second metal catalysts were prepared in the same manner as in Preparation Example 2, except that the weight ratios of ruthenium (Ru), tin (Sn), and platinum (Pt) were changed.
  • the weight ratio of ruthenium (Ru), tin (Sn) and platinum (Pt) is as described in Table 1 below.
  • the first and second metal catalysts were prepared in the same manner as in Preparation Example 1, except that ZSM-5 zeolite was used as a carrier instead of the dealuminated Y-zeolite of Preparation Example 1-1.
  • Preparation Example 6 Preparation of Metal Catalyst
  • Fumed Silica [specific surface area 475m 2 / g, average particle size 4.5] was used as a carrier instead of the dealuminated Y-zeolite of Preparation Example 1-1. Except that the first and second metals were prepared in the same manner as in Preparation Example 1.
  • the composition of the catalyst prepared in Preparation Examples 1 to 6 was summarized below.
  • a 300 mL high pressure reaction vessel equipped with a stirrer was charged with a first metal catalyst lO.Og obtained in Preparation Example 1, lO.Og terephthalic acid and 100 g of ion-exchanged water.
  • hydrogenation reaction was performed by raising the internal temperature of the high pressure reactor to 230 ° C. while introducing hydrogen gas into the high pressure reactor at a rate of 28 kg / cirf.
  • the stirring speed in the high pressure reaction vessel was fixed at 450 rpm and the reaction was performed until there was no internal pressure change.
  • 1,4-cyclonucleic acid dimethanol was prepared in the same manner as in Example 1 except that the first and second metal catalysts obtained in Preparation Example 2 were used. Comparative Example 2
  • 1,4-cyclonucleic acid dimethane was prepared in the same manner as in Example 1 except that the first and second metal catalysts obtained in Preparation Example 3 were used. Comparative Example 3
  • 1,4-cyclonucleic acid dimethanol was prepared in the same manner as in Example 1 except that the first and second metal catalysts obtained in Preparation Example 4 were used. Comparative Example 4
  • 1,4-cyclonucleic acid dimethanol was prepared in the same manner as in Comparative Example 2, and the same method was repeated by evaporating to dry the used first and second metal catalysts to prepare 1,4-cyclonucleic acid dimethane. Comparative Example 5
  • 1,4-cyclonucleic acid dimethanol was prepared in the same manner as in Example 1 except for using the first and second metal catalysts obtained in Preparation Example 5. Comparative Example 6
  • 1,4-cyclonucleic acid dimethanol was prepared in the same manner as in Example 1 except that the first and second metal catalysts obtained in Preparation Example 6 were used.
  • Example 2 As shown in Table 2, in Example 1, terphthalic acid, which is a semi-aungmul, was converted to 100%, and the resulting product was
  • the aluminum content in the first and second metal catalysts before the reaction was 0.34 wt%
  • the aluminum content in the first and second metal catalysts after the reaction was 0.28 wt%
  • the aluminum content in the final product after the reaction was 9.5 ppm.
  • the residual aluminum content in the product was less than lOppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 탈알루미늄화된 제올라이트 담체에 고정된 팔라듐(Pd) 화합물을 포함하는 제 1 금속 촉매의 존재 하에, 테레프탈산을 환원시키는 단계; 및 탈알루미늄화된 제올라이트 담체에 고정된 루테늄(Ru) 화합물, 주석(Sn) 화합물 및 백금(Pt) 화합물을 금속의 중량을 기준으로 1:0.8 내지 1.2: 0.2 내지 0.6의 중량비로 포함하는 제 2 금속 촉매의 존재 하에, 상기 테레프탈산의 환원 결과물을 환원시키는 단계;를 포함하는, 1,4-사이클로헥산디메탄올의 제조 방법에 관한 것이다.

Description

【명세서】
【발명의 명칭】
1,4-사이클로핵산디메탄올의 제조 방법
【기술분야】
관련 출원 (들ᅵ과의 상호 인용
본 출원은 2015년 9월 23일자 한국 특허 출원 제 10-2015-0134728호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 1,4-사이클로핵산디메탄올의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 반웅 공정을 보다 단순화하여 반웅의 효율 및 경제성을 높이고, 보다 짧은 시간 안에 부산물을 최소화하면서도 고순도의 1 ,4-사이클로핵산디메탄을을 제공할 수 있는 제조 방법에 관한 것이다.
【발명의 배경이 되는 기술】
종래에 알려져 있던 1,4-사이클로핵산디메탄올의 제조 방법은 두 가지로 요약할 수 있다. 하나의 방법은 디메틸테레프탈레이트를 이용하여 고온 및 고압 조건하에서 1,4-디메틸사이클로핵산 디카르복실레이트를 거쳐 1,4-사이클로핵산디메탄을을 합성하는 방법이고, 다른 하나의 방법은 테레프탈산을 이용하여 1 ,4-사이클로핵산 디카르복실산을 합성하고 이로부터 1,4_사이클로핵산디메탄을을 제조하는 방법이다.
그러나, 이전에 알려진 1,4-사이클로핵산디메탄을의 제조 방법은 공정 상용화시 발생되는 부반웅물이나 각 단계별로 사용되는 촉매들을 제거하거나 회수하기 위한 추가적인 공정이 필요하며, 최종 얻어지는 1,4-사이클로핵산디메탄올의 순도나 반응 효율이 그리 높지 않았다.
일본공개공보 제 2002-145824호는 테레프탈산을 용매 및 팔라듐 촉매 존재하 수소반웅을 시켜서 중간체인 1,4-사이클로핵산디메탄을을 얻은 후, 여기에 수소화 반응을 추가로 이행하여 1,4-사이클로핵산디메탄올을 제조하는 방법이 개시되어 있다. 그리나, 이러한 제조 방법은 부산물이 생성되어 최종 제조되는 1,4-사이클로핵산디메탄올의 선택도가 저하되고, 이에 따라 2-에틸핵사놀과 같은 지방족 고급 알코올을 추출제로 사용하거나 생성된 부반웅물 및 알코을을 분리 및 회수하는 공정이 필요하였다. 유럽등록특허 계 0934920호는 Raney 촉매를 제조하여 테레프탈산을 환원시키는 제조 방법이 개시되어 있다. 그러나, 상기 제조 방법은 큰 규모로 사용화하기에 용이하지 않은 촉매를 사용하며, 반웅 용매로서 물과 함께 다이옥산을 사용하여 각각에 대한 분리 및 회수 설비 공정이 추가로 필요하다.
미국등록특허 제 6294703호는 1,4-시클로핵산디카르복실산을 루테늄 및 주석을 담지한 복합 촉매로 1,4-시클로핵산디메탄올을 합성하는 방법에 관해서 개시하고 있다. 상기 합성 방법에 따르면, 최종 제조되는 1,4-사이클로핵산디메탄을의 선택도를 충분히 확보하지 못하거나, 또는 수소화 반웅시 염기를 사용하여야 하여 추가적인 공정이나 비용이 발생하고 환경적인 문제도 발생시킬 수 있는 문제점이 있다.
【선행기술문헌】
【특허문헌】
(특허문헌 1) 일본공개공보 제 2002-145824호
(특허문헌 2) 유럽등록특허 제 0934920호
(특허문헌 3) 미국등록특허 제 6294703호
【해결하고자 하는 과제】
본 발명은 반웅 공정을 보다 단순화하여 반응의 효율 및 경제성을 높이고, 보다 짧은 시간 안에 부산물을 최소화하면서도 고순도의 1,4-사이클로핵산디메탄올을 제공할 수 있는 제조 방법에 관한 것이다.
【과제의 해결 수단】
본 명세서에서는, 탈알루미늄화된 제을라이트 담체에 고정된 팔라듐 (Pd) 화합물을 포함하는 제 1 금속 촉매의 존재 하에, 테레프탈산을 환원시키는 단계; 및 탈알루미늄화된 제을라이트 담체에 고정되고, 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물을 금속의 중량을 기준으로 1 :0.8 내지 1.2: 0.2 내지 0.6의 중량비로 포함하는 제 2 금속 촉매의 존재 하에, 상기 테레프탈산의 환원 결과물을 환원시키는 단계;를 포함하는, 1,4-사이클로핵산디메탄올의 제조 방법이 제공된다.
이하 발명의 구체적인 구현예에 따른 1,4-사이클로핵산디메탄올의 제조 방법에 관하여 보다 상세하게 설명하기로 한다. 발명의 일 구현예에 따르면, 탈알루미늄화된 제올라이트 담체에 고정된 팔라듐 (Pd) 화합물을 포함하는 제 1 금속 촉매의 존재 하에, 테레프탈산을 환원시키는 단계; 및 탈알루미늄화된 제올라이트 담체에 고정되고, 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물을 금속의 중량을 기준으로 1 :0.8 내지 1.2: 0.2 내지 0.6의 중량비로 포함하는 제 2 금속 촉매의 존재 하에, 상기 테레프탈산의 환원 결과물을 환원시키는 단계를 포함하는, 1,4-사이클로핵산디메탄올의 제조 방법이 제공될 수 있다.
본 발명자들은, 방향족 디카르복실산을 직접적인 수소화 반응을 시켜 시클로알칸 디을을 합성하는 방법에 관한 연구를 진행하여, 탈알루미늄화된 제올라이트 담체에 고정된 제 1 금속 촉매 _ 및 상기 제 2 금속 촉매를 사용하면 장시간 사용에 따른 반웅 활성의 저하가 없이 방향족 디카르복실산을 높은 효율로 환원시킬 수 있다라는 점을 실험을 통하여 확인하고 발명을 완성하였다.
구체적으로, 상기 제 1 금속 촉매를 사용하여 테레프탈산을 환원시킨 이후, 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물을 특정의 중량비로 포함한 제 2 금속 촉매를 사용하여 상기 테레프탈산의 환원 결과물을 재차 환원시키면, 반웅물인 테레프탈산이 거의 대부분 반웅에 참여하여 높은 전환율을 구현할 수 있고, 보다 짧은 시간 안에 부산물을 최소화하면서도 고순도의 1,4-사이클로핵산디메탄올을 제공할 수 있다.
또한, 상기 일 구현예의 제조 방법에서는 상기 제 1 금속 촉매 및 제 2 금속 촉매 각각의 활성 성분이 탈알루미늄화된 제을라이트 담체에 고정되어 있는 상태로서 사용되는데, 상기 활성 성분이 탈알루미늄화된 제을라이트 담체에 고정됨에 따라 99% 이상의 높은 반응 전환율을 확보하면서도 최종 제조된 결과물에서 1,4-사이클로핵산디메탄올의 선택도가 90% 이상을 확보되는 결과를 구현할 수 있다. 이러한 효과는 탈알루미늄화된 제올라이트 담체, 제올라이트 담체의 알루미나와 실리카의 비율 및 산성도, 적당한 기공크기에 따른 원활한 반웅 영향 등의 원인에 의한 것으로 보인다.
구체적으로, 상기 제 1 속 촉매 및 제 2 금속 촉매 각각에 포함되는 제올라이트 담체는 약 200 내지 약 900 niVg, 또는 약 300 내지 약
800 m7g의 비표면적을 가질 수 있다. 상기 제을라이트 담체의 비표면적이 너무 작으면, 반웅물과 촉매와의 활성사이트가 줄어들어서 반웅이 원활하게 작용하지 않거나 촉매의 중요한 역할을 하는 금속이 담체에 제대로 담지가 되지 못해 기공이 막히거나 부서지는 등의 현상이 발생할 수 있다. 또한, 상기 제올라이트 담체의 비표면적이 너무 크면, 촉매 금속의 분산도가 과다하게 높아져서 반웅이 오히려 원활하게 진행되지 못할 수 있다.
상기 제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제을라이트 담체의 전체 세공 용적이 약 1.2 cinVg 이하일 수 있다. 상기 제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제올라이트 담체의 전체 세공 용적이 너무 크면, 반웅물과 촉매와의 작용속도가 너무 활발한 나머지 부반웅물이 과량으로 생성되거나 활성 성분인 금속의 분산이 충분히 이루어지지 않아서 반웅물과 촉매의 접촉 효율이 크게 저하되어 반웅이 오히려 원할하게 진행되지 못할 수 있다.
또한, 상기 제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제올라이트 담체에서 10 A 이하의 반경을 갖는 세공의 용적이 약 0.1 내지 약 0.8 cinVg, 또는 약 0.2 내지 약 0.7 cuiVg 일 수 있다.
상기 제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제을라이트 담체에서 10 A 이하의 반경을 갖는 세공은 반웅 활성도 (activity)를 높이는 역할과 동시에 거울상 선택도 (enantioselectivity)를 높이는 작용을 할 수 있다. 상기 제을라이트 담체에서 10 A 이하의 반경을 갖는 세공의 용적이 너무 작으면, 거대 유기분자가 미세기공에 흡착될 수 없기 때문에 추후 촉매 성형시 압력이나 소성시 고열 처리에 의해 기공 구조가 파괴될 뿐만 아니라 그 내부 표면적이 급격히 감소하여 물질' 흡착 특성을 상실하게 되고, 이외에도 금속 촉매 성분이 빠져나올 수 있다.
또한, 상기 제올라이트 담체에서 10 A 이하의 반경을 갖는 세공의 용적이 너무 크면, 금속 촉매의 분산도가 넓어지면서 반웅 속도의 가속화로 인해 부반웅물이 과량 생성되거나 생성물의 거울상 이성질체의 선택도가 저하될 수 있다.
상기 제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제을라이트 담체는 탈알루미늄화된 (dealuminated) 제을라이트이며, 상기 탈알루미늄화는 산처리에 의해 수행될 수 있다.
테레프탈산의 반응 조건 상에서 반응물 또는 중간체꾀 산도에 의한 제올라이트 자체의 탈알루미늄화가 진행되어 반웅 생성물 용액에 알루미늄 함량이 증가하게 되는데, 이렇게 증가된 알루미늄이 생성물인 1,4-사이클로핵산디메탄을에 포함될 경우 여러가지 문제점을 야기할 수 있다. 예를 들어, 생성물인 1,4-사이클로핵산디메탄올은 폴리에틸렌테레프탈레이트 (PET)와 같은 수지의 물성을 향상시키기 위한 첨가제로써 주로 사용되는데, 알루미늄 성분이 층분히 제거되지 않고 1,4-사이클로핵산디메탄을과 함께 제품에 유입될 경우, 투명성, 내투습성 등과 같은 수지의 물성 저하를 야기할 수 있다. 또한 1,4-사이클로핵산디메탄을의 제조공정에 있어서, 고비점 /고분자량 성분의 분리 등의 후처리 과정에서 산화알루미늄이 많이 생성되며, 이러한 산화알루미늄이 이동관 또는 여과 장치쎄 축적되어 공정상의 문제를 일으키는 원인이 될 수 있다. 이는 특히 촉매의 알루미늄 함량이 가장 높은 반응 초기에 많이 발생하며, 장기 운전을 위한 초기 반웅 설정에 영향을 주게 된다. 한편, 본원 발명에 따르면, 제올라이트에 대해 탈알루미늄 전처리를 수행함으로써, 반웅 생성물에 알루미늄이 유입되는 것을 방지할 수 있다.
상기 탈알루미늄화에 사용될 수 있는 산으로는 예를 들어, 황산 (H2S04), 질산 (HN03), 불산 (HF), 염산 (HC1), 브롬산 (HBr), 또는 요오드산 (HI)과 같은 무기산; 또는 옥살산 (Oxalic acid), 포름산 (Formic acid), 테레프탈산 (Terephthalic acid), 이소프탈산 (Isophthalic acid),
1,4-사이클로핵산디카르복실산 (1,4-cyclohexanedicarboxylic acid), 1,3-사이클로핵산디카르복실산 (1,3-cyclohexanedicarboxylic acid), 벤조산 (Benzoic acid), 아디프산 (Adipic acid), 글루타르산 (Glutaric acid), 숙식산 (Succinic acid), 말론산 (Malonic acid), 말레산 (Maleic acid) 등과 같은 유기산을 들 수 있다. 바람직하게는 옥살산을 사용할 수 있다.
상기 산처리에 사용되는 용액의 농도는 약 0.1 내지 약 5Μ, 보다 바람직하게는 약 0.5 내지 약 3Μ일 수 있다. 또한, 상기 산처리에 사용되는 산의 부피는 제올라이트 lg 당 약 10 내지 약 30mL일 수 있으나, 상기 범위에 제한되지 않고 과량으로 사용할 수 있다.
상기 산처리시 온도는 상온 내지 용액의 환류 온도 범위이며, 시간은 1시간 이상을 필요로 한다.
상기와 같은 조건에 의한 산처리시, 제올라이트의 결정성에 분석 가능한 범위의 손상은 없으며, 약 50% 이상 내지 약 90% 미만의 탈알루미늄화에 도달할 수 있다.
상기 제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제올라이트 담체는 Y형 제을라이트일 수 있다. 상기 일 구현예의 제조 방법에서는 상기 제 1 금속 촉매 및 제 2 금속 촉매 각각의 활성 성분이 제올라이트 담체에 고정되는 경우가 다른 종류의 담체, 예를 들어 활성탄 둥의 담체 등을 사용하는 경우에 비하여 보다 높은 1,4-사이클로핵산디메탄을의 선택도를 확보할 수 있으며, 반웅 활성도가 높아지거나 촉매성형시 열적, 기계, 반웅 안정성 효과를 구현할 수 있다.
한편, 상기 일 구현예의 1,4-사이클로핵산디메탄올의 제조 방법에 따르면, 테레프탈산으로부터 1,4-사이클로핵산디메탄올을 합성하는 과정에서 부산물 생성이 미미하여 부산물을 분리 및 회수하는 추가적인 공정이나 단계를 생략할 수 있으며, 순도를 높이기 위한 정제 과정을 최소화할 수 있다.
또한, 상기 일 구현예의 1,4-사이클로핵산디메탄을의 제조 방법은 상대적으로 단순화된 반웅 공정 설계가 가능하고 보다 짧은 시간 내에 높은 수율로서 고순도의 1,4-사이클로핵산디메탄올을 제공할 수 있어서 전체 제조 공정의 효율 및 경제성을 향상시킬 수 있다.
상술한 바와 같이, 상기 일 구현예의 1,4-사이클로핵산디메탄올의 제조 방법에서는, 팔라듐 (Pd) 화합물을 포함하는 제 1 금속 촉매의 존재 하에 테레프탈산을 환원시키는 단계를 포함할 수 있다. 상기 팔라듐 (Pd) 화합물은 팔라듐 금속 자체, 팔라듐의 유기염 또는 팔라듐의 무기염을 의미한다.
상기 팔라듐 (Pd) 화합물을 포함하는 제 1 금속 촉매를 통하여 테레프탈산의 벤젠 고리가 환원될 수 있고, 이에 따라 1,4-사이클로핵산 디카르복실산이 형성될 수 있다.
상기 제 1 금속 촉매는 상기 팔라듐 (Pd) 화합물을 팔라듐 (Pd) 금속의 중량올 기준으로 약 0.05 내지 약 10 중량0 /0, 또는 약 0.1 내지 약 5 중량 %와: 잔량의 제올라이트 담체를 포함할 수 있다.
상기 테레프탈산을 환원시키는 단계에서는 다양한 환원 방법이 사용될 수 있으며, 예를 들어 상기 테레프탈산을 환원시키는 단계는 상기 테레프탈산 및 수소 기체를 접촉시키는 단계를 포함할 수 있다.
상기 테레프탈산을 환원시키는 단계에서는 방향족 카르복실산의 환원 반웅에 사용되는 것으로 알려진 방법, 반웅 조건 및 장치를 큰 제한 없이 사용할 수 있으며, 예를 들어 상기 테레프탈산을 환원시키는 단계는 약 50 내지 약 350°C , 또는 약 100 내지 약 300 °C의 온도 및 약 30 내지 약 150 bar 또는 약 40 내지 약 100 bar의 압력 조건에서 수행될 수 있다.
구체적으로, 상기 테레프탈산을 환원시키는 단계는 상기 팔라듐 (Pd) 화합물을 포함하는 제 1 금속 촉매 및 테레프탈산이 존재하는 반웅기 내부를 질소 등의 불활성 기체의 대기로 전환한 이후에 수소 기체를 도입하고 내부 온도를 승은하는 단계를 포함하여 수행될 수 있다.
상기 테레프탈산을 환원시키는 단계에서는, 상기 테레프탈산 100 중량부 대비 상기 제 1 금속 촉매를 약 10 내지 약 300 중량부, 바람직하게는 약 50 내지 약 300 중량부로, 보다 바람직하게는 약 50 내지 약 200 중량부로 사용할 수 있다.
상기 테레프탈산 대비 상기 제 1 금속 촉매의 함량 또는 사용량이 너무 낮으면, 상기 환원 반응의 효율이 떨어지거나 종 제조되는 반응 결과물 중 1,4-사이클로핵산디메탄올의 선택도가 저하될 수 있고, 촉매 함량이 미달되면 반웅장치의 생산효율이 저하되고 최종산물을 얻은 후 분리 /회수할 때 장치의 효율저하나 에너지 소비가 과다해질 수 있다. 또한, 상기 테레프탈산 대비 상기 제 1 금속 촉매의 함량 또는 사용량이 너무 높으면, 반웅 진행 과정에서 부산물이 과량 발생되기 때문에 이를 제거하려면 여러 단계의 공정이 추가적으로 진행되어야 하기 때문에 비경제적이며, 최종 제조되는 결과물의 순도가 저하될 수 있다.
한편, 상기 일 구현예의 1,4-사이클로핵산디메탄올의 제조 방법에서는 상기 테레프탈산을 환원시키는 단계를 통하여 얻어진 상기 테레프탈산의 환원 결과물을, 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물을 금속의 중량을 기준으로 1 :0.8 내지 1.2: 0.2 내지 0.6의 중량비로 포함하는 제 2 금속 촉매의 존재 하에 환원시키는 단계를 포함할 수 있다.
상기 제 2 금속 촉매에 포함되는 루테늄은 디카르복실산을 1차 알코올로 전환시키는 역할을 하는 것으로 보이며, 주석은 합성 결과물인 알코올의 선택도를 높이는 역할을 하는. 것으로 보이며, 백금은 촉매의 활성도를 높여서 부반웅을 억제하는 역할을 하는 것으로 보인다.
상기 제 2 금속 촉매의 존재 하에 1,4-사이클로핵산 디카르복실산을 포함하는 테레프탈산의 환원 결과물을 환원시키면,
1,4-사이클로핵산디메탄올을 포함한 반웅 결과물을 형성할 수 있다.
상기 제 2 금속 촉매는 루테늄 (Ru) 화합물, 주석 (Sn) 화합물, 및 백금 (Pt) 화합물을 1 :0.8 내지 1.2: 0.2 내지 0.6의 중량비, 또는 1 :0.9 내지 1.1 : 0.3 내지 0.55의 중량비로 포함할 수 있다. 이때, 상기 중량비는 루테늄 (Ru) 화합물, 주석 (Sn) 화합물, 및 백금 (Pt) 화합물 각각에 포함된 금속 (루테늄, 주석, 백금)만의 중량비를 의미한다.
후술하는 실시예 등에서 확인되는 바와 같이, 상기 특정된 중량비로 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물을 포함한 제 2 금속 촉매를 사용함에 따라서, 반웅물로 사용된 테레프탈산 거의 대부분을 반웅에 참여시켜 높은 전환율을 구현할 수 있으며, 최종 제조되는 반웅 결과물 중 1 4-사이클로핵산디메탄을의 선택도를 높게 유지할 수 있다.
상기 루테늄 (Ru) 화합물은 루테늄 금속 자체, 루테늄의 유기염 또는 루테늄의 무기염을 의미한다. 이러한 내용은 주석 (Sn) 화합물 및 백금 (Pt) 화합물에 대해서도 동일하다.
상기 루테늄 (Ru) 화합물은 상기 제 2 금속 촉매 전체 중량에 대하여, 루테늄 (Ru) 금속이 약 0.5 내지 약 20 중량0 /0, 또는 약 5 내지 약 12 중량 %가 되도록 포함될 수 있다. 상기 제 2 금속 촉매 내에서 주석 (Sn) 화합물 및 백금 (Pt) 화합물의함량은 상기 루테늄 화합물 (또는 금속)의 함량 및 상기 화합물 (또는 금속)들간의 중량비로서 결정될 수 있다.
상기 제 2 금속 촉매 중 상기 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물의 함량이 너무 낮으면, 상기 환원 반웅의 효율이 떨어지거나 제조되는 반웅 결과물 중 1,4-사이클로핵산디메탄올의 선택도가 저하될 수 있고, 미반응 카르복실산 또는 무수 카르복실산이 생성됨으로써 반웅 수율이 저하될 수 있고, 최종 반웅 결과물을 분리 또는 회수할 때 효율이 저하되거나 에너지 소비가 과다해질 수 있다.
또한, 상기 제 2 금속 촉매 중 상기 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물의 함량이 너무 높으면, 부가적인 반웅이 과량으로 발생하여 1차 알콜 형태, 이들의 가수분해 또는 이에 상옹하는 알칸이 형성되어, 반웅 수율이 저하되거나 최종 반응 결과물이 순도가 낮아질 수 있으며, 상기 생성된 부산물을 제거하기 위해서는 여러 단계의 공정이 추가적으로 진행되어야 하기 때문에 공정의 경제성 또한 저하될 수 있다. 상기 테레프탈산의 환원 결과물을 환원시키는 단계에서는 다양한 환원 방법이 사용될 수 있으며, 예를 들어 상기 테레프탈산의 환원 결과물을 환원시키는 단계는 상기 테레프탈산의 환원 결과물 및 수소 기체를 접촉시키는 단계를 포함할 수 있다.
상기 테레프탈산의 환원 결과물을 환원시키는 단계에서는 방향족 카르복실산의 환원 반웅에 사용되는 것으로 알려진 방법, 반웅 조건 및 장치를 큰 제한 없이 사용할 수 있으며, 예를 들어 상기 테레프탈산의 환원 결과물을 환원시키는 단계는 약 50 내지 약 35GTC , 또는 약 100 내지 약 300 °C의 온도 및 약 30 내지 약 150 bar, 또는 약 40 내지 약 100 bar의 압력 조건에서 수행될 수 있다.
구체적으로, 상기 테레프탈산의 환원 결과물을 환원시키는 단계는 상기 제 2 금속 촉매 및 상기 테레프탈산의 환원 결과물이 존재하는 반웅기 내부를 질소 등의 불활성 기체의 대기로 전환한 이후에 수소 기체를 도입하고 내부 온도를 승온하는 단계를 포함하여 수행될 수 있다.
상기 테레프탈산의 환원 결과물을 환원시키는 단계에서는, 상기 테레프탈산의 환원 결과물 100 중량부 대비 상기 제 2 금속 촉매를 약 10 내지 약 300 중량부, 바람직하게는 약 50 내지 약 300 중량부로, 보다 바람직하게는 약 50 내지 약 200 중량부로 사용할 수 있다. 상기 테레프탈산의 환원 결과물 대비 상기 제 2 금속 촉매의 함량 또는 사용량이 너무 낮으면, 상기 환원 반응의 효율이 떨어지거나 종 제조되는 반웅 결과물 중 1,4-사이클로핵산디메탄을의 선택도가 저하될 수 있고, 촉매함량이 미달되면 반웅장치의 생산효율이 저하되고 최종산물을 얻은 후 분리 /회수할 때 장치의 효율저하나 에너지 소비가 과다해질 수 있다.
또한, 상기 테레프탈산의 환원 결과물 대비 상기 제 2 금속 촉매의 함량 또는 사용량이 너무 높으면, 반웅 진행 과정에서 부산물이 과량 발생되기 때문에 이를 제거하려면 여러 단계의 공정이 추가적으로 진행되어야 하기 때문에 비경제적이며, 최종 제조되는 결과물의 순도가 저하될 수 있다.
한편, 상기 1,4-사이클로핵산디메탄올의 제조 방법에서는, 상기 테레프탈산을 환원시키는 단계 및 상기 테레프탈산의 환원 결과물을 환원시키는 단계는 연속적으로 수행될 수 있다. 상기 연속적으로 수행된다는 의미는 하나의 공정이나 반웅 과정을 통하여 테레프탈산으로부터 1,4-사이클로핵산디메탄올이 형성될 수 있다는 점을 의미한다.
또한, 상기 테레프탈산을 환원시키는 단계 및 상기 테레프탈산의 환원 결과물을 환원시키는 단계는 하나의 반웅기에서 수행될 수 있다. 상기 하나의 반웅기에서 수행된다는 의미는 상기 테레프탈산의 환원 및 상기 테레프탈산의 환원 결과물의 2차 환원이 별도의 공정으로 분리되거나 반응 결과물의 이송 없이 동일한 반웅기에서 수행된다는 의미이다.
상기 테레프탈산을 환원시키는 단계 및 상기 테레프탈산의 환원 결과물을 환원시키는 단계 각각에서는 반웅물 자체가 직접 환원 반웅을 할 수도 있으며 반웅물이 용매 상에 존재하는 상태에서 환원 반응이 일어날 수 있다.
상기 사용 가능한 용매의 예가 크게 한정되는 것은 아니며, 예를 들어 물이나 유기 용매를 사용할 수 있다. 상기 유기 용매의 예로는 메탄올 (methanol), 에탄올 (ethanol), 프로파놀 (propanol), 사이클로핵사놀 (cyclohexanol) 등의 지방족 알코올 (alcohol)류, 핵산 (hexane), 사이클로핵산 (cyclohexane) 등의 지방족 탄화수소류, 에테르 (diethyl ether), 테트라하이드로퓨란 (tetrahydrofliran) 등의 에테르 (ether), 또는 이들의 2종 이상의 흔합물을 사용할 수 있다. 상기 유기 용매의 사용량은 크게 한정되는 것은 아니며, 예를 들어 반응물인 테레프탈산 및 /또는 상기 테레프탈산의 환원 결과물의 중량 대비 약 10% 내지 액 1,000%로 사용될 수 있다.
상기 일 구현예의 1,4-사이클로핵산디메탄올의 제조 방법에서는 상기 각각의환원 반웅 단계가 완료되는 시점에서 사용한 촉매를 분리한 후 반응 결과물을 정제하는 단계를 더 포함할 수 있다. 상기 정제에 사용될 수 있는 방법이 크게 한정되는 것은 아니나, 증류법, 추출법 및 크로마토그래피법 등에 따라 분리 및 정제를 할 수 있다.
【발명의 효과】
본 명세서에서 제공되는 1,4-사이클로핵산디메탄올의 제조 방법에 따르면, 반응물이 거의 대부분 반웅에 참여하여 높은 전환율을 구현할 수 있고, 보다 짧은 시간 안에 부산물을 최소화하면서도 고순도의 1,4-사이클로핵산디메탄올을 제공할 수 있다. 상기
1 4-사이클로핵산디메탄올의 제조 방법은 상대적으로 단순화된 반웅 공정 설계가 가능하고 보다 짧은 시간 내에 높은 수율로서 고순도의 1 4-사이클로핵산디메탄올을 제공할 수 있어서 전체 제조 공정의 효율 및 경제성을 향상시킬 수 있다. ·
또한, 상기 1,4-사이클로핵산디메탄올의 제조 방법에 따르면, 1,4-사이클로핵산디메탄올을 제조하는 과정에서 생성되는 부산물을 최소화하여 부산물을 분리 및 회수하는 추가적인 공정이나 단계를 생략할 수 있으며, 순도를 높이기 위한 정제 과정을 생략할 수 있다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예: 테레프탈산의 1,4-사이클로디카복실메탄을로 직접 전환 반웅 >
하나의 반웅기 내에서 테레프탈산을 출발물질로 하여 Pd 촉매와 Ru-Sn-Pt 촉매의 흔합 촉매를 사용하여 사이클로핵산디메탄올로 직접 전환하는 방법이다.
[제조예]
제조예 1
1-1. 제을라이트의 탈알루미늄화
Y-제올라이트 [비표면적: 약 600 niVg, 전체 세공 용적이 1.0 ciuVg, 10 A이하의 반경을 갖는 세공의 용적이 약 0.5 cuiVg] 100g을 IN 옥살산 수용액 2L를 초자반웅기에 넣고 내부온도 90°C로 가열하면서 교반하여 6시간 동안 환류시켰다. 이후 감압여과 방법으로 과량의 산을 걸러내고, 70 °C 이상의 뜨거운 물로 세척 /여과하였다. 여과된 탈알루미늄 제을라이트를 120°C에서 12시간 건조시킨 후 소성기에서 500 °C 4시간 동안 소성하였다.
1-2. 제 1 금속촉매 및 제 2금속촉매의 제조
촉매는 일반적인 인시피언트 웨트니스 (incipient wetness)법을 이용하여 제조하였다.
제 1 금속 촉매를 제조하기 위해, 구체적으로 이온교환수에 염화팔라듐을 용해시킨 후, 이 용액을 제조예 1-1의 제올라이트가 들어있는 증발접시에 한 방울씩 떨어뜨렸다. 상기 제올라이트 기공 안에 용액이 차게 되면 물을 증발 제거하고 잔유물을 수득하였다. 상기 수득된 잔류물을 감압하여 건조시킨 후, 대기 조건 및 550°C 온도에서 3시간 소성 처리하여, 팔라듐이 담지된 탈알루미늄화된 Y-제을라이트를 함유하는 제 1 금속 촉매를 수득하였다.
제 2 금속 촉매를 제조하기 위해, 구체적으로 이은교환수에 염화루테늄 3수화물을 용해시킨 후, 이 용액을 제조예 1-1의 제올라이트가 들어있는 증발접시에 한방울씩 떨어뜨린다. 기공 안에 용액이 차게 되면 물을 증발 제거하고 잔유물을 수득하였다. 상기 염화루테늄 3수화물을 이용하여 수행한 방법을 염화주석 2수화물 및 염화 백금산으로도 각각 반복하였다.
상기 수득된 잔류물을 감압하여 건조시킨 후, 대기 조건 및 550°C 은도에서 3시간 소성 처리하여, 루테늄 (Ru), 주석 (Sn) 및 백금 (Pt)이 탈알루미늄화된 Y-제올라이트에 담지된 제 2 금속 촉매를 제조하였다. 루테늄 (Ru), 주석 (Sn) 및 백금 (Pt)의 중량비는 하기 표 1에 기재된 바와 같다. 제조예 2: 금속촉매의 제조
상기 제조예 1-1의 탈알루미늄화된 Y-제올라이트 대신에 활성탄을 사용하여 200 °C 온도에서 3시간 소성 처리한 것을 담체로 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 제 1 및 제 2 금속 촉매를 제조하였다. 제조예 3:금속촉매의 제조
루테늄 (Ru), 주석 (Sn) 및 백금 (Pt)의 중량비를 다르게 한 것을 제외하고는 상기 제조예 2와 동일한 방법으로 제 1 및 제 2 금속 촉매를 제조하였다. 루테늄 (Ru), 주석 (Sn) 및 백금 (Pt)의 중량비는 하기 표 1에 기재된 바와 같다. 제조예 4: 금속촉매의 제조
루테늄 (Ru), 주석 (Sn) 및 백금 (Pt)의 중량비를 다르게 한 것을 제외하고는 상기 제조예 2와 동일한 방법으로 제 1 및 제 2 금속 촉매를 제조하였다. 루테늄 (Ru), 주석 (Sn) 및 백금 (Pt)의 중량비는 하기 표 1에 기재된 바와 같다. 제조예 5: 금속촉매의 제조
상기 제조예 1-1의 탈알루미늄화된 Y-제올라이트 대신에 ZSM-5 제올라이트를 담체로 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 제 1 및 제 2 금속 촉매를 제조하였다. 제조예 6: 금속촉매의 제조
상기 제조예 1-1의 탈알루미늄화된 Y-제올라이트 대신에 Fumed Silica [비표면적 475m2/g, 평균입자크기 4.5 ]를 담체로 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 제 1 및 제 2 금속 제조하였다. 상기 제조예 1 내지 6에서 제조한 촉매의 조성을 하기 정리하였다.
【표 1】
Figure imgf000015_0001
[실시예 및 비교예 : 1,4-사이클로핵산디메탄올의 제조 I
실시예 1
교반기를 갖춘 300mL 고압반웅기에 상기 제조예 1에서 얻어진 제 1 금속 촉매 lO.Og, 테레프탈산 lO.Og, 이온교환수 100g을 충전하였다. 상기 고압반웅기 내의 대기를 실온에서 질소로 대체한 후, 수소 기체를 28kg/cirf의 속도로 고압반응기 내로 도입하면서 상기 고압반응기 내부 온도를 230°C로 상승시켜 수소 첨가 반웅을 수행하였다. 이때, 상기 고압 반웅기 내부에서의 교반 속도를 450rpm으로 고정하고 내부 압력 변화가 없을 때까지 반웅을 진행하였다.
상기 고압 반웅기의 내부 압력의 변화가 없어진 상태에서 반응기 내부를 상온으로 넁각한 이후에, 상기 제조예 1에서 얻어진 제 2 금속 촉매 lO.Og을 첨가하고 반응기 내의 대기를 질소로 대체하였다.
그리고, 상기 반웅기 내부로 54 kg/crf의 속도로 수소 기체를 주입하고, 고압반웅기 내부 온도를 230°C로 상승시켜 수소 첨가 반웅을 진행하였다. 상기 고압 반응기 내 교반 속도를 450rpm으로 고정하고 내부 압력 변화가 없을 때까지 반웅올 진행하였다. 상기 고압 반응기 내부 압력의 변화가 없어진 시점에서, 반응기 내부를 70°C로 넁각시키고, 반웅기를 해체하여 반웅 결과물을 채취하였다. 상기 반웅 결과물을 50°C에서 농축 회전증발기를 사용하여 물을 증류 제거시킴으로써 최종 결과물 (1,4-사이클로핵산디메탄올)을 얻었다. 비교예 1
상기 제조예 2에서 얻어진 제 1 및 제 2 금속 촉매를 사용한 점을 제외하고 실시예 1과 동일한 방법으로 1,4-사이클로핵산디메탄올을 제조하였다. 비교예 2
상기 제조예 3에서 얻어진 제 1 및 제 2 금속 촉매를 사용한 점을 제외하고 실시예 1과 동일한 방법으로 1,4-사이클로핵산디메탄을을 제조하였다. 비교예 3
상기 제조예 4에서 얻어진 제 1 및 제 2 금속 촉매를 사용한 점을 제외하고 실시예 1과 동일한 방법으로 1,4-사이클로핵산디메탄올을 제조하였다. 비교예 4
상기 비교예 2와 동일한 방법으로 1,4-사이클로핵산디메탄올을 제조하였으며, 사용한 제 1 및 제 2 금속 촉매를 증발 건조하여 동일한 방법을 반복하여 1,4-사이클로핵산디메탄을을 제조하였다. 비교예 5
상기 제조예 5에서 얻어진 제 1 및 제 2 금속 촉매를 사용한 점을 제외하고 실시예 1과 동일한 방법으로 1,4-사이클로핵산디메탄올을 제조하였다. 비교예 6
상기 제조예 6에서 얻어진 제 1 및 제 2 금속 촉매를 사용한 점을 제외하고 실시예 1과 동일한 방법으로 1,4-사이클로핵산디메탄올을 제조하였다.
[실험예】
1. 테레프탈산의 전환율 및 1,4-사이클로핵산디메탄올의 선택도측정 상기 실시예 1 및 비교예 1 내지 6에서 얻어진 최종 결과물에 대하여 기체크로마토그래피 (GC)를 이용하여 반웅 물질 (테레프탈산)의 전환율 및 1,4-사이클로핵산디메탄을의 선택도를 측정하여 하기 표 2에 기재하였다. 구체적으로, 반웅물질 (테레프탈산)의 환원 반웅 (수소 첨가 반웅)에 의하여 얻어진 반응 결과물 중 사이클로핵산디메탄올의 농도가 약 1 중량 %가 되도록 메탄을로 희석하였다. 상기 희석된 용액의 기체 크로마토그래피 (GC)로 분석하여 사이클로핵산디메탄올의 선택도를 계산하였는데, 각각의 수치를 몰비 (%)로 환산 한 다음 이를 [(사이클로핵산디메탄을 /생성물질) * 100]으로 선택도를 계산하였다.
*121테레프탈산의 경우 물에 대한 용해도가 좋지 않아 반웅 후 남은 테레프탈산과 촉매여과 한 후 남은 여액으로 상기 전환율과 선택도를 산출하였다.
※ 기체 크로마토그래피 (GC) 조건
1) 컬럼: Agilent 19091J-413 (컬럼 길이 : 30m 내부직경 : 0.32mm 필름두께 : 0.25μιη) 2) GC 장치 : 기체 크로마토그래피 모델 Agilent 7890
3) 캐리어 기체: 헬륨
4) 검출기: 화염 아온화 검출기 (FID)
【표 2】
Figure imgf000018_0001
상기 표 2에 나타난 바와 같이, 실시예 1에서는 반웅물인 테르프탈산이 100% 전환되었고, 생성되는 결과물 중
1,4-사이클로핵산디메탄올의 선택도가 90 이상이라는 점이 확인되었다. 이에 반하여, 비교예 1 내지 6에서는 선택도가 크게 저하되었으며, 최종 제조되는 결과물 또한 1,4-사이클로핵산디메탄올이 아닌 다른 부산물이 생성되었다라는 점이 확인되었다. ,
2. 알루미늄 함량분석
실시예 1의 반웅 전후 제 1 및 제 2 금속 촉매에서의 알루미늄 함량과, 반웅 후 최종 생성물에서의 알루미늄 함량을 ICP-MS (유도결합플라즈마 질량분석기)를 사용하여 분석하였다.
그 결과, 반웅 전 제 1 및 제 2 금속 촉매에서의 알루미늄 함량은 0.34wt%, 반웅 후 제 1 및 제 2 금속 촉매에서의 알루미늄 함량은 0.28wt%, 반웅 후 최종 생성물에서의 알루미늄 함량은 9.5ppm으로, 탈알루미늄화 제올라이트를 담체로 하여 제조한 촉매를 사용할 경우, 생성물내 잔류 알루미늄 함량은 lOppm 미만임을 확인하였다.

Claims

【특허청구범위】
【청구항 11
탈알루미늄화된 제올라이트 담체에 고정된 팔라듐 (Pd) 화합물을 포함하는 제 1 금속 촉매의 존재 하에, 테레프탈산을 환원시키는 단계; 및 탈알루미늄화된 제올라이트 담체에 고정되고, 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물을 금속의 중량을 기준으로 1 :0.8 내지 1.2: 0.2 내지 0.6의 중량비로 포함하는 게 2 금속 촉매의 존재 하에, 상기 테레프탈산의 환원 결과물을 환원시키는 단계;
를 포함하는, 1,4-사이클로핵산디메탄을의 제조 방법.
【청구항 2】
제 1 항에 있어서,
상기 제올라이트 담체의 탈알루미늄화 산처리에 의해 수행되는, 1,4-사이클로핵산디메탄올의 제조 방법.
【청구항 3】
제 1 항에 있어서,
상기 테레프탈산을 환원시키는 단계 및 상기 테레프탈산의 환원 결과물을 환원시키는 단계는 연속적으로 수행되는,
1 4-사이클로핵산디메탄을의 제조 방법.
【청구항 4]
제 1 항에 있어서,
상기 테레프탈산을 상기 테레프탈산의 환원 결과물을 환원시키는 반웅기에서 수행되는, 1,4-사이클로핵산디메탄올의
【청구항 5]
제 1 항에 있어서,
상기 제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제올라이트 담체가 200 내지 900 inVg 의 비표면적을 갖는,
1,4-사이클로핵산디메탄올의 제조 방법.
【청구항 6】
제 1 항에 있어서,
상기 제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제을라이트 담체의 전체 세공 용적이 1.2 cinVg 이하이며, '
10 A 이하의 반경을 갖는 세공의 용적이 O.lcinVg 내지 0.8 cuf/g인, 1,4-사이클로헥산디메탄올의 제조 방법.
【청구항 7]
제 1 항에 있어서,
제 1 금속 촉매 및 제 2 금속 촉매 각각에 포함되는 제을라이트 담체는 Y형 제올라이트인 , 1,4-사이클로핵산디메탄올의 제조 방법.
【청구항 8】
거 1 1 항에 있어서,
상기 제 1 금속 촉매는 상기 팔라듐 (Pd) 화합물을, 팔라듐 (Pd) 금속의 중량을 기준으로 0.5 내지 10 중량 %를 포함하는, 1,4-사이클로핵산디메탄올의 제조 방법.
【청구항 9】
제 1 항에 있어서,
상기 제 2 금속 촉매는 상기 루테늄 (Ru) 화합물을, 루테늄 (Ru) 금속의 중량을 기준으로 0.5 내지 20 중량 %를 포함하는, 1,4-사이클로헥산디메탄올의 제조 방법.
【청구항 10]
제 1 항에 있어서,
상기 테레프탈산을 환원시키는 단계는 상기 테레프탈산 및 수소 기체를 접촉시키는 단계를 포함하고,
상기 테레프탈산의 .환원 결과물을 환원시키는 단계는 상기 테레프탈산의 환원 결과물 및 수소 기체를 접촉시키는 단계를 포함하는, 1,4-사이클로핵산디메탄올의 제조 방법.
【청구항 11】
제 1 항에 있어서,
상기 테레프탈산을 환원시키는 및 상기 테레프탈산의 환원 결과물을 환원시키는 단계 각각은 50 350 °C의 온도에서 수행되는, 1,4-사이클로핵산디메탄을의 제조 방법.
【청구항 12]
거 1 1 항에 있어서,
상기 테레프탈산을 환원시키는 단계 및 상기 테레프탈산의 환원 결과물을 환원시키는 단계 각각은 30 내지 150bar의 압력에서 수행되는, i,4ᅳ사이클로핵산디메탄올의 제조 방법.
【청구항 13】
제 1 항에 있어서,
상기 테레프탈산 100 중량부 대비 상기 제 1 금속 촉매 10 내지 300 중량부를 사용하는, 1,4-사이클로핵산디메탄올의 제조 방법.
【청구항 14]
게 1 항에 있어서,
상기 테레프탈산의 환원 결과물 100 중량부 대비 상기 제 2 금속 촉매 10 내지 300 중량부를 사용하는, 1,4-사이클로핵산디메탄올의 제조 방법.
【청구항 15】
제 1 항에 있어서,
상기 제 2 금속 촉매는 루테늄 (Ru) 화합물, 주석 (Sn) 화합물 및 백금 (Pt) 화합물을 금속의 중량을 기준으로 1 :0.9 내지 1.1 중량비로 포함하는, 1,4-사이클로핵산디메탄을의 제조 방법.
PCT/KR2016/010523 2015-09-23 2016-09-21 1,4-사이클로헥산디메탄올의 제조 방법 WO2017052184A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150134728A KR101786910B1 (ko) 2015-09-23 2015-09-23 1,4-사이클로헥산디메탄올의 제조 방법
KR10-2015-0134728 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017052184A1 true WO2017052184A1 (ko) 2017-03-30

Family

ID=58386373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010523 WO2017052184A1 (ko) 2015-09-23 2016-09-21 1,4-사이클로헥산디메탄올의 제조 방법

Country Status (2)

Country Link
KR (1) KR101786910B1 (ko)
WO (1) WO2017052184A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124723A (ja) * 1982-01-18 1983-07-25 Cosmo Co Ltd オレフインの水和によるアルコ−ルの製造方法
JP2000007596A (ja) * 1998-06-22 2000-01-11 Mitsubishi Chemicals Corp 1,4−シクロヘキサンジメタノールの製造方法
JP2002145824A (ja) * 2000-08-30 2002-05-22 Mitsubishi Chemicals Corp テレフタル酸の水素添加方法
KR20150062911A (ko) * 2013-11-29 2015-06-08 롯데케미칼 주식회사 1,4-사이클로헥산디메탄올의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560377B2 (ja) 1995-01-06 2004-09-02 昭和電工株式会社 水素化触媒及びそれを用いた反応

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124723A (ja) * 1982-01-18 1983-07-25 Cosmo Co Ltd オレフインの水和によるアルコ−ルの製造方法
JP2000007596A (ja) * 1998-06-22 2000-01-11 Mitsubishi Chemicals Corp 1,4−シクロヘキサンジメタノールの製造方法
JP2002145824A (ja) * 2000-08-30 2002-05-22 Mitsubishi Chemicals Corp テレフタル酸の水素添加方法
KR20150062911A (ko) * 2013-11-29 2015-06-08 롯데케미칼 주식회사 1,4-사이클로헥산디메탄올의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, J. ET AL.: "The Effect of Metal-acid Balance in Pt-loading Dealuminated Y Zeolite Catalysts on the Hydrogenation of Benzene", APPLIED CATALYSIS A: GENERAL, vol. 184, 1999, pages 181 - 188, XP004271886 *

Also Published As

Publication number Publication date
KR20170035617A (ko) 2017-03-31
KR101786910B1 (ko) 2017-10-17

Similar Documents

Publication Publication Date Title
US9663426B2 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
KR101619399B1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
JP6180473B2 (ja) シクロドデカノンの製造方法
KR102285717B1 (ko) 이산화탄소의 수소화 반응에 의한 포름산 제조 방법 및 제조 장치
WO2010109650A1 (ja) 3-メチル-シクロペンタデセノン類の製造方法、r/s-ムスコンの製造方法および光学活性ムスコンの製造方法
US10597344B2 (en) Method for preparing 1,3-cyclohexanedimethanol
KR101577362B1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
KR101659171B1 (ko) 트랜스-1,4-사이클로헥산디메탄올의 직접 제조방법
KR20190063704A (ko) 1,4-사이클로헥산디메탄올 제조 방법
KR101639487B1 (ko) 공정 단순화를 위한 트랜스-1,4-사이클로헥산디메탄올 제조장치
WO2017052184A1 (ko) 1,4-사이클로헥산디메탄올의 제조 방법
TWI547478B (zh) 乙酸正丙酯之製法和乙酸烯丙酯之製法
CN1490293A (zh) 由环己酮缩合脱氢制备邻苯基苯酚
JP2005002067A (ja) シクロアルキルアルキルエーテルの製造方法
CN107635957A (zh) 用于生产乙醇酸的方法
CN1578759A (zh) 处理含环己酮肟和环己酮的水介质的方法
JP4321838B2 (ja) イソプロピルアルコールの製造方法
JP3581514B2 (ja) アルキルハロゲン化物の製法
US9120734B2 (en) Two-step system and method for the production of methyl isobutyl ketone
JP2005082510A (ja) シクロアルキルアルキルエーテルの製造方法
KR101780405B1 (ko) 1,4-사이클로헥산디카르복실산의 제조 방법
KR100710543B1 (ko) 광학순도가 높은 순수한 (s)-베타-하이드록시-감마-부티로락톤의 연속 제조방법
JPS591246B2 (ja) シクロヘキシルベンゼン類の製造方法
CN115504868A (zh) 苯酚生产愈创木酚的方法和装置
WO2018062854A1 (ko) 1, 3-사이클로헥산디카르복시산의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848910

Country of ref document: EP

Kind code of ref document: A1