WO2017049511A1 - 真空反作用力焊接方法及其装置 - Google Patents

真空反作用力焊接方法及其装置 Download PDF

Info

Publication number
WO2017049511A1
WO2017049511A1 PCT/CN2015/090464 CN2015090464W WO2017049511A1 WO 2017049511 A1 WO2017049511 A1 WO 2017049511A1 CN 2015090464 W CN2015090464 W CN 2015090464W WO 2017049511 A1 WO2017049511 A1 WO 2017049511A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
cavity
eutectic
vacuum eutectic
chamber
Prior art date
Application number
PCT/CN2015/090464
Other languages
English (en)
French (fr)
Inventor
苏佳槟
秦明超
Original Assignee
广州硅能照明有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州硅能照明有限公司 filed Critical 广州硅能照明有限公司
Priority to US15/548,102 priority Critical patent/US10043734B2/en
Priority to PCT/CN2015/090464 priority patent/WO2017049511A1/zh
Publication of WO2017049511A1 publication Critical patent/WO2017049511A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/021Flame-heated soldering irons
    • B23K3/023Flame-heated soldering irons using a liquid fuel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/751Means for controlling the bonding environment, e.g. valves, vacuum pumps
    • H01L2224/75101Chamber
    • H01L2224/75102Vacuum chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/8309Vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83095Temperature settings
    • H01L2224/83096Transient conditions
    • H01L2224/83097Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83095Temperature settings
    • H01L2224/83096Transient conditions
    • H01L2224/83098Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Definitions

  • the invention relates to a vacuum eutectic welding device, in particular to a vacuum reaction force welding method and a device thereof.
  • Eutectic soldering technology is widely used in microelectronics and optoelectronic packaging, such as bonding of chips to substrates, bonding of substrates to packages, and package housings.
  • the solder joint is responsible for the tasks of mechanical, circuit connection and heat exchange.
  • the eutectic soldering technology has the advantages of high thermal conductivity, small resistance and high reliability. It is especially suitable for the interconnection of various high-power or high-frequency chips with substrates, substrates and tubes.
  • eutectic soldering such as IGBT packages, microwave power devices, high-power LED chips, laser diodes, multi-chip components, and aerospace electronics.
  • the main factors affecting the quality of eutectic soldering are temperature rise and fall, eutectic pressure, temperature uniformity, protective atmosphere and solder matching. These factors are not easy to produce, and the intermetallic compound layer (IMC) is too thick and unevenly distributed, and the void rate is high, which causes potential reliability problems.
  • IMC intermetallic compound layer
  • the main eutectic welding equipment processes are: infrared reflow oven, eutectic machine with nozzle and tweezers, vacuum eutectic furnace, etc.
  • the above equipment and process methods have the following deficiencies:
  • the infrared reflow oven has a slow rise and fall temperature, a non-uniform temperature zone, and jitter in the transfer process, which may cause chip shifting;
  • the vacuum eutectic furnace has a high temperature rise and fall rate, but in order to ensure the eutectic quality, the additional jig is often used to apply pressure to the chip, which is suitable for larger chip packages, and is not suitable for small chips and chips with fragile surface.
  • one of the objects of the present invention is to provide a vacuum reaction force welding method, which can apply an acceleration reaction force to the chip under the premise of avoiding chip damage, and can effectively reduce the solder joint void rate.
  • Another object of the present invention is to provide a vacuum reaction force welding device.
  • the vacuum reaction force welding method comprises the following steps:
  • the chip is solid-crystallized on the substrate by solder to form a semi-finished product
  • the semi-finished product is placed in a vacuum eutectic cavity of the vacuum eutectic furnace;
  • the vacuum eutectic cavity is first accelerated by the acceleration mechanism by the driving mechanism, and then decelerated and decreased by the acceleration a2, and then increased by the acceleration a3.
  • the speed rises and finally decelerates with acceleration a4.
  • the vacuum eutectic chamber comprises a metal cavity and a vacuuming device, and the cavity wall of the metal cavity is provided with air holes, and the air holes are connected to the vacuuming device via a vacuum pipe.
  • the cavity of the vacuum eutectic cavity is provided with a card slot for clamping the semi-finished product to be welded, and the vacuum eutectic cavity bottom of the card slot is screwed with a fixing washer for fixing the semi-finished product to be welded.
  • the heating system comprises a heating plate and an infrared heating tube, the heating plate is embedded in the cavity bottom of the vacuum eutectic cavity, and the infrared heating tube is fixed on the cavity top of the vacuum eutectic cavity.
  • the peripheral enclosure of the vacuum eutectic chamber has an openable insulated housing.
  • the cooling system comprises a heat sink, an air cooling device for blowing air into the vacuum eutectic chamber, and an air cooling device for spraying low temperature gas into the vacuum eutectic chamber, the heat sink being connected to the outer bottom of the vacuum eutectic chamber, the wind Both the cold unit and the air cooling unit are mounted in the chassis and outside the vacuum eutectic chamber.
  • the housing is further provided with a support member, a slide rail and a slider, and the variable speed drive mechanism is straight
  • the output end of the linear motor is connected to the support member, and the vacuum eutectic cavity is connected to the slider through the support member, and the slider is slidably matched with the slide rail, and the slide rail is fixed in the chassis.
  • the invention rapidly increases temperature, vacuum and pressure, and since the formation of the intermetallic compound layer is closely related to the solder composition and the temperature rise and fall curve, the eutectic solder can achieve the best welding effect by rapid temperature rise and annealing.
  • the solder joint void is usually formed by an oxide film on the surface of the solder, dust particles, and bubbles which are not discharged during melting.
  • the present invention adopts a vacuum, a pressure on the chip, and the like, especially in the pressurization process, which is an overweight principle, that is, The reaction force generated by the acceleration exerts pressure on the semi-finished product, and there is no damage caused by the external pressure on the chip. While achieving good welding effect, the reliability of the device is improved, and the void ratio of the solder joint can be effectively reduced.
  • the chip, the solder and the substrate must be heated and cooled several times during the soldering process.
  • the process must be repeated until the entire board is soldered, in the process of chip damage and solder generation.
  • the reliability risk of cavity, chip shift, etc., and the invention can realize the simultaneous soldering of dozens of chips in the vacuum eutectic cavity, and the production efficiency can be compared with the conventional pressurization eutectic soldering process.
  • the tens of times increase, and the present invention can effectively solve the above problems.
  • FIG. 1 is a schematic view of a casing of a vacuum reaction force welding device of the present invention
  • FIG. 2 is a front elevational view of the vacuum reaction force welding device of the present invention
  • Figure 3 is a side view of the inside of the chassis of the vacuum reaction force welding device of the present invention.
  • Figure 5 is a schematic view showing the relationship between the working temperature, the degree of vacuum and the time of the vacuum reaction force welding device of the present invention
  • FIG. 6 is a schematic view showing the relationship between the eutectic solder temperature and the interaction force between the chip and the substrate in the vacuum reaction force welding device according to the present invention
  • Figure 7 is a schematic view showing the acceleration change of the vacuum reaction force welding device of the present invention.
  • the vacuum reaction force welding method comprises the following steps:
  • the chip is solid-crystallized on the substrate by solder to form a semi-finished product
  • the semi-finished product is placed in a vacuum eutectic cavity of the vacuum eutectic furnace;
  • An insulating housing may be disposed outside the vacuum eutectic chamber to insulate the vacuum eutectic chamber during heating.
  • a protective atmosphere or a reducing atmosphere may be determined according to actual conditions.
  • step S4 the temperature is uniformly increased by the temperature increase system, and the temperature distribution of the system is uniform.
  • the temperature rise curve is as shown in FIG. 5, and the temperature rises slowly and enters a certain heat preservation stage.
  • step S5 this example is set to enter the rapid heating stage (the eutectic section shown in FIG. 5) when the temperature exceeds 180 ° C, and the temperature in the vacuum eutectic chamber is rapidly increased to above 300 ° C, and the solder melts and enters the run.
  • wet state (definition: the process in which molten solder forms a uniform, smooth, continuous, and firmly adhered alloy on the surface of the metal to be welded, called wetting). To obtain a good solder joint, all the welds must be filled in the liquid solder. Clearance to ensure welding quality.
  • step S6 the operation of accelerating the rise after the vacuum eutectic chamber is lowered is to make the semi-finished product in an overweight state, and at the same time as the semi-finished product is overweight, as shown in FIG. 6, the temperature curve begins to rapidly decrease, and the vacuum eutectic chamber is simultaneously opened. Due to the reaction of the chip on the substrate due to the acceleration and deceleration, the pressure is formed. At the temperature at which the solder solidifies, the chip is pressed against the substrate due to the severe pressure caused by the severe overweight, so that the chip, the solder and the substrate are tightly connected, and at the same time, Reduce the solder joint void rate and optimize the welding effect.
  • step S7 the vacuum eutectic chamber can be forcedly cooled by the cooling system.
  • the vacuum eutectic chamber is first accelerated by the acceleration a1 by the driving mechanism, then decelerated and decreased by the acceleration a2, then accelerated by the acceleration a3, and finally decelerated by the acceleration a4.
  • the driving mechanism of this example drives the vacuum eutectic cavity to generate acceleration, as shown in Fig. 7.
  • the vacuum eutectic cavity is decelerated downwards to the lowest point with an acceleration of about 5g, the chip is in a serious overweight state, and the chip is applied to the solder and the substrate.
  • Chip to solder and substrate pressure is about 6mg
  • the vacuum eutectic cavity accelerates upwards with an acceleration of about 5g, the chip is in a serious overweight state, and the chip presses the solder and the substrate (chip pair)
  • the pressure of the solder and the substrate is about 6 mg
  • the vacuum eutectic cavity is decelerated upward by an acceleration of about 0.9 g until it stops at the original position, and the chip is in a state of slight weight loss (the pressure on the solder and the substrate of the chip) About 0.1 mg).
  • the cooling system is started to rapidly cool the vacuum eutectic chamber.
  • the vacuum reaction force welding device using the vacuum reaction force welding method includes a casing, a vacuum eutectic chamber 6 for placing a semi-finished product to be welded 16, a heating system, a cooling system, and a variable speed drive mechanism.
  • the vacuum eutectic chamber 6 is located in the chassis and slidably cooperates with the chassis in a vertical direction;
  • the variable speed drive mechanism is installed in the chassis, is connected to the vacuum eutectic chamber 6 and is used to drive the vacuum eutectic chamber 6 to shift in the vertical direction;
  • the heating system is disposed in the vacuum eutectic chamber 6, and the cooling system is disposed in the casing and outside the vacuum eutectic chamber 6.
  • the variable speed drive mechanism drives the vacuum eutectic chamber 6 to perform a shifting motion in the chassis, so that the chip on the semi-finished product 16 to be soldered forms a reaction force against the substrate, so that the chip, the solder and the substrate are tightly connected, and at the same time, help to reduce Solder joint void rate.
  • the solder can be optimally soldered by rapid heating and annealing under the action of the heating system and the cooling system. Connect the effect.
  • the chassis of the present example includes a base 1, a box 2, a security door 3, a status indicator 4, and a touch screen 5 base 1 at the bottom of the box 2 for supporting the entire welding device.
  • the box 2 is located above the base 1 for protecting the internal structure of the welding device and isolating internal heat.
  • the safety door 3 is located on the front side of the casing 2, and can be opened and closed by pushing and pulling.
  • the status indicator 4 is located above the box 2 for indicating the operating state of the device.
  • the touch screen 5 is located on the side of the casing 2 for inputting an operation control command.
  • a cooling fan can be added to the back of the cabinet 2 for dissipating heat inside the device.
  • the vacuum eutectic chamber 6 of the present example comprises a metal cavity and a vacuuming device.
  • the cavity wall of the metal cavity is provided with a gas hole 603 which is connected to the vacuuming device via a vacuum pipe.
  • the metal cavity may be formed by a semi-closed cavity combined with a metal sealing cover, and the shape of the metal sealing cover is matched with the shape of the opening of the semi-closed cavity for sealing the vacuum eutectic cavity 6.
  • the vacuuming system specifically includes a vacuum pump, a vacuum pipe, a gas storage tank, and a vacuum valve. The vacuuming system is disposed outside the vacuum eutectic chamber 6, and is connected to the air hole 603 through a vacuum pipe for vacuuming the vacuum eutectic chamber 6.
  • the bottom of the cavity of the vacuum eutectic chamber 6 is provided with a card slot 601 for clamping the semi-finished product 16 to be welded, and the vacuum eutectic cavity 6 outside the card slot 601 is screwed with a bottom for fixing the semi-finished product 16 to be welded.
  • a washer 602 is fixed.
  • the shape of the card slot 601 is matched with the shape of the semi-finished product 16 to be welded for positioning the semi-finished product 16, and the fixing washer 602 can lock and fix the semi-finished product 16 to be welded.
  • the heating system of the present example comprises a heating plate 7 and an infrared heating tube 8.
  • the heating plate 7 is embedded in the cavity bottom of the vacuum eutectic chamber 6, and the infrared heating tube 8 is fixed in the cavity of the vacuum eutectic chamber 6. top.
  • the heating plate 7 is heated by the electric heating method, and the vacuum eutectic chamber 6 is rapidly heated from the bottom to the top; the infrared eutectic chamber 6 is rapidly heated from the bottom to the top by the infrared heating method.
  • the peripheral enclosure of the vacuum eutectic chamber 6 of this example has an openable heat insulating housing 11.
  • the heat insulating casing 11 is opened, and the vacuum eutectic chamber 6 can be removed from the heat insulating casing 11.
  • the heat insulating housing 11 can be formed by abutting two half shells, and is driven to open or close by an external cylinder.
  • the cooling system of this example includes a heat sink 9, an air cooling device for blowing air to the vacuum eutectic chamber 6, and an air cooling device for spraying low temperature gas into the vacuum eutectic chamber 6, and dissipating heat.
  • the device 9 is connected to the outer bottom of the vacuum eutectic chamber 6, and the air cooling device and the air cooling device are installed in the casing and outside the vacuum eutectic chamber 6.
  • the heat sink 9 can directly dissipate heat from the vacuum eutectic chamber 6.
  • the air cooling device can use a fan to accelerate air flow to dissipate heat from the vacuum eutectic chamber 6; the air cooling device can dissipate heat from the vacuum chamber by direct injection of low temperature gas.
  • a support member 15, a slide rail 13, and a slider 1301 are further disposed in the chassis, and the variable speed drive mechanism is a linear motor 12, and the linear motor 12 The output end is connected to the support member 15.
  • the vacuum eutectic chamber 6 is connected to the slider 1301 through the support member 15.
  • the slider 1301 is slidably engaged with the slide rail 13, and the slide rail 13 is fixed in the chassis.
  • the linear motor 12 is placed vertically for generating vertical up and down acceleration.
  • the slide rail 13 and the slider 1301 are disposed on the left and right sides of the linear motor 12 to improve stability.
  • the slide rail 13 can be fixed in the casing through a support frame 14.
  • a PLC control system can be added to control the vacuum pump and the on-off valve of the vacuum system, the temperature rise system, the temperature controller of the cooling system, and the servo drive of the linear motor 12 The logic, motion and process control of the vacuum reaction force welding device are realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

一种真空反作用力焊接方法,包括如下步骤:芯片通过焊料固晶于基板形成半成品(16);半成品置入真空共晶炉的真空共晶腔(6)内;对真空共晶腔进行抽真空;预热真空共晶腔,使温度缓慢上升;迅速加热真空共晶腔,使焊料融化;对真空共晶腔施加作用力,使真空共晶腔下降后加速上升;对真空共晶腔外部进行强制制冷,内部通入保护气体;在焊料固化后解除真空共晶腔的真空状态。本发明还公开了一种采用所述真空反作用力焊接方法的焊接装置。该焊接方法和装置能在避免芯片损伤的前提下,对芯片施加加速度反作用力,能有效降低焊点空洞率。

Description

真空反作用力焊接方法及其装置 技术领域
本发明涉及真空共晶焊接装置,尤其涉及真空反作用力焊接方法及其装置。
背景技术
共晶焊接技术在微电子与光电子封装领域得到广泛应用,如芯片与基板的粘接、基板与管壳的粘接、管壳盖板封装等。焊点作为器件的连接材料,担负着机械、电路连接以及热交换等任务,相比于普通的导电胶粘接方式,共晶焊接技术具有热导率高、电阻小、可靠性强等优势,特别适用于各类大功率或高频芯片与基板、基板与管壳的互联。对芯片较高散热要求或可靠性要求的功率器件均采用共晶焊接,如IGBT封装、微波功率器件、大功率LED芯片、激光二极管、多芯片组件、航空航天电子器件等。影响共晶焊接质量的主要因素有升降温速率,共晶压力,温度均匀性,保护气氛和焊料匹配等。这些因素处理不当极易产生的金属间化合物层(IMC)过厚、分布不均,空洞率偏高,引发可靠性隐患。
目前主要的共晶焊接设备工艺有:红外回流焊炉、带有吸嘴和镊子的共晶机、真空共晶炉等,上述设备及工艺方法均存在以下不足:
(1)红外回流焊炉存在升降温速度慢、温区不均匀、传送过程存在抖动容易导致芯片移位;
(2)采用带有吸嘴和镊子的共晶机存在产量低,易对芯片尤其光电类芯片造成损伤、影响产品光电性能,同时因采用逐个芯片共晶, 如果是多芯片组件易致部分先共晶的芯片长时间芯片重复受热造成芯片材料性能劣化,焊料多次融化影响焊接的寿命和性能;
(3)真空共晶炉具有较高的升降温速率,但为保证共晶质量,常常用额外的治具对芯片施加压力,适合较大芯片封装,不适合小芯片和表面脆弱的芯片。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供真空反作用力焊接方法,能在避免芯片损伤的前提下,对芯片施加加速度反作用力,能有效降低焊点空洞率。
本发明的目的之二在于提供真空反作用力焊接装置。
本发明的目的之一采用以下技术方案实现:
真空反作用力焊接方法,包括如下步骤:
S1.芯片通过焊料固晶于基板形成半成品;
S2.半成品置入真空共晶炉的真空共晶腔内;
S3.对真空共晶腔进行抽真空;
S4.预热真空共晶腔,使温度缓慢上升;
S5.迅速加热真空共晶腔,使焊料融化;
S6.对真空共晶腔施加作用力,使真空共晶腔下降后加速上升;
S7.对真空共晶腔外部进行强制制冷,内部通入保护气体;
S8.在焊料固化后解除真空共晶腔的真空状态。
优选地,在所述步骤S6中,通过驱动机构带动真空共晶腔先以加速度a1加速下降,然后以加速度a2减速下降,再以加速度a3加 速上升,最后以加速度a4减速上升。
优选地,加速度a2>加速度a1,加速度a3>加速度a4。
本发明的目的之二采用以下技术方案实现:
采用所述真空反作用力焊接方法的真空反作用力焊接装置,包括机箱、用于置入待焊接半成品的真空共晶腔、升温系统、冷却系统和变速驱动机构,真空共晶腔位于机箱内且沿竖直方向与机箱滑动配合;变速驱动机构安装于机箱内,与真空共晶腔驱动相连并用于驱动真空共晶腔沿竖直方向变速移动;升温系统设于真空共晶腔内,冷却系统设于机箱内并位于真空共晶腔外。
优选地,真空共晶腔包括金属腔体和抽真空装置,金属腔体的腔壁开有气孔,该气孔经真空管道与抽真空装置相连。
优选地,真空共晶腔的腔底开有用于卡装待焊接半成品的卡槽,卡槽外侧的真空共晶腔腔底螺接有用于固定待焊接半成品的固定垫圈。
优选地,升温系统包括加热板和红外加热管,加热板内嵌于真空共晶腔的腔底,红外加热管固定于真空共晶腔的腔顶。
优选地,真空共晶腔的外围围罩有可开合的保温壳体。
优选地,冷却系统包括散热器、用于向真空共晶腔吹风的风冷装置和用于向真空共晶腔喷射低温气体的气冷装置,散热器连接于真空共晶腔的外底部,风冷装置和气冷装置均安装于机箱内并位于真空共晶腔外。
优选地,机箱内还设有支撑件、滑轨、滑块,变速驱动机构为直 线电机,直线电机的输出端与支撑件相连,真空共晶腔通过支撑件与滑块相连,滑块与滑轨滑动配合,滑轨固定于机箱内。
相比现有技术,本发明的有益效果在于:
本发明通过快速升降温、真空、加压,由于金属间化合物层的形成与焊料组分和升降温曲线密切相关,因此共晶焊料通过快速升温和退火可达到最佳焊接效果。而焊点空洞通常是由焊料表面的氧化膜、粉尘微粒、熔化时未排出的气泡形成,本发明通过真空、对芯片施加压力等措施,尤其在加压过程中采用的是超重原理,即通过加速度产生的反作用力来对半成品施压,不存在外界压力对芯片造成的损伤,在实现良好焊接效果的同时,提高器件的可靠性,可以有效降低焊点空洞率。
另外,传统工艺在焊接过程中必须多次对芯片、焊料和基板进行加热降温,对于最早进行焊接的芯片来说,这个过程必须反复直到整板焊接完成,在此过程中存在芯片损伤、焊料产生空洞、芯片移位等可靠性风险,而本发明可在真空共晶腔内实现一次同时焊接数十个芯片,与传统加压共晶焊接工艺必须一个一个芯片地进行焊接相比,生产效率可提升数十倍,且本发明可有效解决以上问题。
附图说明
图1为本发明真空反作用力焊接装置的机箱示意图;
图2为本发明真空反作用力焊接装置的机箱内的正面示意图;
图3为本发明真空反作用力焊接装置的机箱内的侧面示意图;
图4为本发明真空反作用力焊接装置的真空共晶腔和保温壳体 的配合示意图;
图5为本发明真空反作用力焊接装置的工作温度、真空度与时间关系示意图;
图6为本发明为本发明真空反作用力焊接装置的共晶段焊料温度、芯片与基板相互作用力的关系示意图;
图7为本发明为本发明真空反作用力焊接装置的加速度变化示意图。
图中:1、底座;2、箱体;3、安全门;4、状态指示灯;5、触摸屏;6、真空共晶腔;601、卡槽;602、固定垫圈;603、气孔;7、加热板;8、红外加热管;9、散热器;10、气冷系统;11、保温壳体;12、直线电机;13、滑轨;1301、滑块;14、支撑架;15、支撑件;16、半成品。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述:
真空反作用力焊接方法,包括如下步骤:
S1.芯片通过焊料固晶于基板形成半成品;
S2.半成品置入真空共晶炉的真空共晶腔内;
S3.对真空共晶腔进行抽真空;
S4.预热真空共晶腔,使温度缓慢上升;
S5.迅速加热真空共晶腔,使焊料融化;
S6.对真空共晶腔施加作用力,使真空共晶腔下降后加速上升;
S7.对真空共晶腔外部进行强制制冷,内部通入保护气体;
S8.在焊料固化后解除真空共晶腔的真空状态。
可在真空共晶腔外设置保温壳体,以对加热时的真空共晶腔进行保温。上述步骤S3中,可根据实际情况确定是否加入保护气氛或还原气氛。在步骤S4中,通过升温系统慢速均匀升温,使系统温度分布均匀,升温曲线如图5所示,慢速升温后进入一定保温阶段。在步骤S5中,本例设定当温度超过180℃时,进入快速加热阶段(图5中所示的共晶段),真空共晶腔内温度迅速提升至300℃以上,焊料融化并进入润湿状态(定义:熔融焊料在被焊金属表面形成均匀、平滑、连续并且附着牢固的合金的过程,称为润湿),要得到一个优质的焊点,须在液态焊料充分填满全部焊缝间隙,保证焊接质量。
在步骤S6中,对真空共晶腔下降后加速上升的操作,目的是使半成品处于超重状态,在半成品超重的同时,如图6所示,此时温度曲线开始快速下降,同时真空共晶腔由于加减速运动产生芯片对基板的反作用力,形成压力,在焊料固化的温度点,芯片因严重超重产生较大的压力向基板方向挤压,使芯片、焊料和基板紧密连接,同时有助于降低焊点空洞率,优化焊接效果。步骤S7中,可通过冷却系统对真空共晶腔进行强制制冷。
作为一个优选的实施方式,在所述步骤S6中,通过驱动机构带动真空共晶腔先以加速度a1加速下降,然后以加速度a2减速下降,再以加速度a3加速上升,最后以加速度a4减速上升。其中,加速度a2>加速度a1,加速度a3>加速度a4。
而本例的驱动机构带动真空共晶腔运动产生加速度,如图7所 示。t0-t1时刻,真空共晶腔以约0.9g(g=9.8m/s2)的加速度向下加速运动,芯片处于轻微失重状态,但不影响芯片与基板的结合(芯片对焊料及基板的压力约为0.1mg,m为芯片重量);t1-t2时刻,真空共晶腔以约5g的加速度减速向下运动直至最低点,芯片处于严重超重状态,芯片向焊料和基板施压(芯片对焊料及基板的压力约为6mg);t2-t3时刻,真空共晶腔以约5g的加速度加速向上运动,芯片处于严重超重状态,芯片向焊料和基板施压(芯片对焊料及基板的压力约为6mg);t3-t4时刻,真空共晶腔以约0.9g的加速度向上减速运动直至回到原位停止,芯片处于轻微失重状态(芯片对焊料及基板的压力约为0.1mg)。
在真空共晶腔以5g加速度运动同时,启动冷却系统对真空共晶腔进行快速降温。
如图1~5所示,采用所述真空反作用力焊接方法的真空反作用力焊接装置,包括机箱、用于置入待焊接半成品16的真空共晶腔6、升温系统、冷却系统和变速驱动机构,真空共晶腔6位于机箱内且沿竖直方向与机箱滑动配合;变速驱动机构安装于机箱内,与真空共晶腔6驱动相连并用于驱动真空共晶腔6沿竖直方向变速移动;升温系统设于真空共晶腔6内,冷却系统设于机箱内并位于真空共晶腔6外。
通过变速驱动机构来带动真空共晶腔6在机箱内作变速运动,以使待焊接半成品16上的芯片对基板形成反作用力压力,以使使芯片、焊料和基板紧密连接,同时有助于降低焊点空洞率。在此期间,在升温系统、冷却系统的作用下,焊料通过快速升温和退火可达到最佳焊 接效果。
如图1所示,本例的机箱包括底座1、箱体2、安全门3、状态指示灯4、触摸屏5底座1位于箱体2底部,用于支撑整个焊接装置。所述箱体2位于底座1之上,用于保护焊接装置内部结构,以及隔离内部热量。安全门3位于箱体2正面,可通过推拉方式打开关闭所述箱体2。所述状态指示灯4位于箱体2之上,用于指示装置的工作状态。所述触摸屏5,位于机箱体2侧面,用于输入操作控制指令。箱体2背部可增设散热风扇,用于对装置内部进行散热。
如图4所示,本例的真空共晶腔6,包括金属腔体和抽真空装置,金属腔体的腔壁开有气孔603,该气孔603经真空管道与抽真空装置相连。具体是,金属腔体可采用一个半封闭腔体结合金属密封盖构成,金属密封盖的形状与半封闭腔体开口形状吻合,用于密封真空共晶腔6。抽真空系统具体包括真空泵、真空管道、储气罐、真空阀门,该抽真空系统置于真空共晶腔6外,通过真空管道与气孔603相连,用于对真空共晶腔6进行抽真空。
如图4所示,真空共晶腔6的腔底开有用于卡装待焊接半成品16的卡槽601,卡槽601外侧的真空共晶腔6腔底螺接有用于固定待焊接半成品16的固定垫圈602。卡槽601的形状大小与待焊接半成品16的形状大小吻合,用于对半成品16定位,固定垫圈602可锁紧固定待焊接半成品16。
如图4所示,本例的升温系统包括加热板7和红外加热管8,加热板7内嵌于真空共晶腔6的腔底,红外加热管8固定于真空共晶腔6的腔 顶。通过电热加热方式使加热板7发热,进而从下往上对真空共晶腔6进行快速加热;通过红外加热方式的红外加热管8,从下往上对真空共晶腔6进行快速加热。
如图4所示,为实现加热过程中的保温,本例的真空共晶腔6的外围围罩有可开合的保温壳体11。在真空共晶腔6需要运动时,保温壳体11打开,真空共晶腔6可从保温壳体11中移出。保温壳体11可采用两个半壳对接而成,通过外部的气缸来驱使打开或闭合。
如图2、图4所示,本例的冷却系统包括散热器9、用于向真空共晶腔6吹风的风冷装置和用于向真空共晶腔6喷射低温气体的气冷装置,散热器9连接于真空共晶腔6的外底部,风冷装置和气冷装置均安装于机箱内并位于真空共晶腔6外。散热器9可直接对真空共晶腔6进行散热,风冷装置可采用风扇加速空气流动对真空共晶腔6进行散热;气冷装置可通过低温气体直接喷射对真空腔进行散热。
如图2、图3所示,为实现真空共晶腔6的稳定变速移动,机箱内还设有支撑件15、滑轨13、滑块1301,变速驱动机构为直线电机12,直线电机12的输出端与支撑件15相连,真空共晶腔6通过支撑件15与滑块1301相连,滑块1301与滑轨13滑动配合,滑轨13固定于机箱内。直线电机12竖直放置,用于产生竖直上下的加速度。滑轨13和滑块1301设置于直线电机12左右两侧,以提升稳定性。滑轨13可通过一支撑架14固定于机箱内。
此外,可增设PLC控制系统,通过控制抽真空系统的真空泵和开关阀、升温系统、冷却系统的温控器以及直线电机12的伺服驱动 器实现对真空反作用力焊接装置的逻辑、运动及过程控制。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 真空反作用力焊接方法,其特征在于,包括如下步骤:
    S1.芯片通过焊料固晶于基板形成半成品;
    S2.半成品置入真空共晶炉的真空共晶腔内;
    S3.对真空共晶腔进行抽真空;
    S4.预热真空共晶腔,使温度缓慢上升;
    S5.迅速加热真空共晶腔,使焊料融化;
    S6.对真空共晶腔施加作用力,使真空共晶腔下降后加速上升;
    S7.对真空共晶腔外部进行强制制冷,内部通入保护气体;
    S8.在焊料固化后解除真空共晶腔的真空状态。
  2. 根据权利要求1所述的真空反作用力焊接方法,其特征在于,在所述步骤S6中,通过驱动机构带动真空共晶腔先以加速度a1加速下降,然后以加速度a2减速下降,再以加速度a3加速上升,最后以加速度a4减速上升。
  3. 根据权利要求2所述的真空反作用力焊接方法,其特征在于,加速度a2>加速度a1,加速度a3>加速度a4。
  4. 采用权利要求1~3任一项所述真空反作用力焊接方法的真空反作用力焊接装置,其特征在于,包括机箱、用于置入待焊接半成品的真空共晶腔、升温系统、冷却系统和变速驱动机构,真空共晶腔位于机箱内且沿竖直方向与机箱滑动配合;变速驱动机构安装于机箱内,与真空共晶腔驱动相连并用于驱动真空共晶腔沿竖直方向变速移动;升温系统设于真空共晶腔内,冷却系统设于机箱内并位于真空共晶腔外。
  5. 根据权利要求4所述的真空反作用力焊接装置,其特征在于,真空共晶腔包括金属腔体和抽真空装置,金属腔体的腔壁开有气孔,该气孔经真空管道与抽真空装置相连。
  6. 根据权利要求5所述的真空反作用力焊接装置,其特征在于,真空共晶腔的腔底开有用于卡装待焊接半成品的卡槽,卡槽外侧的真空共晶腔腔底螺接有用于固定待焊接半成品的固定垫圈。
  7. 根据权利要求4所述的真空反作用力焊接装置,其特征在于,升温系统包括加热板和红外加热管,加热板内嵌于真空共晶腔的腔底,红外加热管固定于真空共晶腔的腔顶。
  8. 根据权利要求7所述的真空反作用力焊接装置,其特征在于,真空共晶腔的外围围罩有可开合的保温壳体。
  9. 根据权利要求4所述的真空反作用力焊接装置,其特征在于,冷却系统包括散热器、用于向真空共晶腔吹风的风冷装置和用于向真空共晶腔喷射低温气体的气冷装置,散热器连接于真空共晶腔的外底部,风冷装置和气冷装置均安装于机箱内并位于真空共晶腔外。
  10. 根据权利要求4~9任一项所述的真空反作用力焊接装置,其特征在于,机箱内还设有支撑件、滑轨、滑块,变速驱动机构为直线电机,直线电机的输出端与支撑件相连,真空共晶腔通过支撑件与滑块相连,滑块与滑轨滑动配合,滑轨固定于机箱内。
PCT/CN2015/090464 2015-09-23 2015-09-23 真空反作用力焊接方法及其装置 WO2017049511A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/548,102 US10043734B2 (en) 2015-09-23 2015-09-23 Method and device for vacuum reacting force soldering
PCT/CN2015/090464 WO2017049511A1 (zh) 2015-09-23 2015-09-23 真空反作用力焊接方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090464 WO2017049511A1 (zh) 2015-09-23 2015-09-23 真空反作用力焊接方法及其装置

Publications (1)

Publication Number Publication Date
WO2017049511A1 true WO2017049511A1 (zh) 2017-03-30

Family

ID=58385596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090464 WO2017049511A1 (zh) 2015-09-23 2015-09-23 真空反作用力焊接方法及其装置

Country Status (2)

Country Link
US (1) US10043734B2 (zh)
WO (1) WO2017049511A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316820A (zh) * 2017-06-22 2017-11-03 中科迪高微波系统有限公司 一种微波芯片共晶焊接的工艺方法
US10043734B2 (en) * 2015-09-23 2018-08-07 Guangzhou Ledteen Optoelectronics Co., Ltd Method and device for vacuum reacting force soldering
CN113492245A (zh) * 2021-07-07 2021-10-12 河北博威集成电路有限公司 金锡烧结的氮气保护装置及具有其的恒温型共晶机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110181140B (zh) * 2019-05-31 2024-02-27 广东瑞谷光网通信股份有限公司 一种ld芯片共晶焊接系统
CN112289695B (zh) * 2020-09-22 2023-03-21 中国电子科技集团公司第二十九研究所 一种用于多焊件自动共晶的通用共晶装置及共晶方法
CN114226913B (zh) * 2021-12-30 2023-07-21 镇江逸宝特种空调有限公司 一种特种空调芯体自动化焊接装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046656A (en) * 1988-09-12 1991-09-10 Regents Of The University Of California Vacuum die attach for integrated circuits
US5632434A (en) * 1995-06-29 1997-05-27 Regents Of The University Of California Pressure activated diaphragm bonder
EP0795891A2 (de) * 1996-03-14 1997-09-17 D-Tech GmbH Antriebstechnik und Mikroelektronik Auflöten von Halbleiterchips
CN102528194A (zh) * 2010-12-15 2012-07-04 无锡华测电子系统有限公司 一种真空共晶焊接方法
CN103229604A (zh) * 2010-11-23 2013-07-31 三菱电机株式会社 回流焊装置及回流焊方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2899130B2 (ja) * 1991-05-09 1999-06-02 日立テクノエンジニアリング株式会社 高真空ホットプレス
DE10295081D2 (de) * 2001-11-06 2004-11-11 Ct Therm Elek Sche Anlagen Gmb Verfahren und Anordnung zur Strahlungsheizung für ein Mehrkammer Vakuum-Lötsystem
EP2842682B1 (en) * 2012-04-25 2017-06-28 Origin Electric Company, Limited Soldering apparatus and method for manufacturing soldered product
US10043734B2 (en) * 2015-09-23 2018-08-07 Guangzhou Ledteen Optoelectronics Co., Ltd Method and device for vacuum reacting force soldering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046656A (en) * 1988-09-12 1991-09-10 Regents Of The University Of California Vacuum die attach for integrated circuits
US5632434A (en) * 1995-06-29 1997-05-27 Regents Of The University Of California Pressure activated diaphragm bonder
EP0795891A2 (de) * 1996-03-14 1997-09-17 D-Tech GmbH Antriebstechnik und Mikroelektronik Auflöten von Halbleiterchips
CN103229604A (zh) * 2010-11-23 2013-07-31 三菱电机株式会社 回流焊装置及回流焊方法
CN102528194A (zh) * 2010-12-15 2012-07-04 无锡华测电子系统有限公司 一种真空共晶焊接方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10043734B2 (en) * 2015-09-23 2018-08-07 Guangzhou Ledteen Optoelectronics Co., Ltd Method and device for vacuum reacting force soldering
CN107316820A (zh) * 2017-06-22 2017-11-03 中科迪高微波系统有限公司 一种微波芯片共晶焊接的工艺方法
CN113492245A (zh) * 2021-07-07 2021-10-12 河北博威集成电路有限公司 金锡烧结的氮气保护装置及具有其的恒温型共晶机

Also Published As

Publication number Publication date
US20180033717A1 (en) 2018-02-01
US10043734B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2017049511A1 (zh) 真空反作用力焊接方法及其装置
US8030760B2 (en) Semiconductor apparatus and manufacturing method thereof
CN204954097U (zh) 真空反作用力焊接装置
JP5026492B2 (ja) 加熱されたボンドヘッドを利用した直接ダイボンディング
JP4640170B2 (ja) 半田付け方法及び半導体モジュールの製造方法並びに半田付け装置
US8685833B2 (en) Stress reduction means for warp control of substrates through clamping
US20070170227A1 (en) Soldering method
JP2021508602A (ja) 真空溶接炉及び溶接方法
JP5029139B2 (ja) 車載用半導体装置及び車載用半導体装置の製造方法
CN103008814A (zh) 一种天线子阵的真空钎焊方法
CN101317501A (zh) 锡焊方法与半导体模块的制造方法以及锡焊装置
CN112059352B (zh) 一种用于焊接元件的多模块封装真空炉及其使用方法
EP0203589A2 (en) Method and apparatus for airtightly packaging semiconductor package
KR20110082417A (ko) 반도체 모듈의 리페어 장치
CN110948074A (zh) 一种惰性气体保护环境下的冷却板封闭腔内钎焊设备及工艺
CN101351874A (zh) 焊接方法和半导体模块的制造方法
CN105108258B (zh) 真空反作用力焊接方法及其装置
JP2010245195A (ja) 半導体装置の製造装置及び半導体装置の製造方法
CN113764309A (zh) 一种芯片贴片方法及设备
JP2023518120A (ja) 電子アセンブリを接続するためのシステム
Chen et al. Review of laser sintering of nanosilver pastes for die attachment: Technologies and trends
CN213093179U (zh) 一种半导体封装设备
JP6984194B2 (ja) 加熱冷却装置
JP2011044530A (ja) はんだ接合方法およびはんだ接合装置
JP6428087B2 (ja) 部品実装装置、搭載ステージおよび部品実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15548102

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904398

Country of ref document: EP

Kind code of ref document: A1