WO2017047227A1 - 複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層 - Google Patents

複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層 Download PDF

Info

Publication number
WO2017047227A1
WO2017047227A1 PCT/JP2016/071387 JP2016071387W WO2017047227A1 WO 2017047227 A1 WO2017047227 A1 WO 2017047227A1 JP 2016071387 W JP2016071387 W JP 2016071387W WO 2017047227 A1 WO2017047227 A1 WO 2017047227A1
Authority
WO
WIPO (PCT)
Prior art keywords
aliphatic polycarbonate
layer
composite member
ultraviolet light
metal
Prior art date
Application number
PCT/JP2016/071387
Other languages
English (en)
French (fr)
Inventor
井上 聡
下田 達也
深田 和宏
聖司 西岡
鈴木 正博
Original Assignee
国立大学法人北陸先端科学技術大学院大学
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北陸先端科学技術大学院大学, 住友精化株式会社 filed Critical 国立大学法人北陸先端科学技術大学院大学
Priority to KR1020187008078A priority Critical patent/KR20180054633A/ko
Priority to CN201680051797.5A priority patent/CN107949903B/zh
Priority to US15/759,053 priority patent/US10634996B2/en
Priority to EP16846100.2A priority patent/EP3352202A4/en
Priority to JP2017539741A priority patent/JP6709793B2/ja
Publication of WO2017047227A1 publication Critical patent/WO2017047227A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/2018Masking pattern obtained by selective application of an ink or a toner, e.g. ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1258Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by using a substrate provided with a shape pattern, e.g. grooves, banks, resist pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/068Polycarbonate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0108Male die used for patterning, punching or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1173Differences in wettability, e.g. hydrophilic or hydrophobic areas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a composite member, a method for producing the composite member, and an aliphatic polycarbonate-containing layer.
  • Patent Document 1 A method for forming a conductive wiring and a conductive wiring that have been disclosed are disclosed (Patent Document 1).
  • DTA differential thermal analysis
  • JP 2011-042758 A Japanese Patent No. 5749411
  • the metal ink in order to form the wiring using the metal ink, high affinity between the metal ink itself and the base layer or the base material, in other words, high wettability is required. Therefore, to achieve both the liquid repellency of the film for forming the pattern for the wiring with respect to the metal ink and the wettability described above, and also the compatibility of these long times, the metal ink was used. It can be one of the important element technologies for highly reliable wiring formation.
  • the present invention can contribute to simplification of fine wiring formation and / or realization of high quality, and in particular, simplification of fine wiring formation using metal ink and / or realization of high quality.
  • a composite member a method for manufacturing the composite member, and an aliphatic polycarbonate-containing layer that can greatly contribute.
  • the inventors of the present application have intensively studied and analyzed. Repeated. As a result, by irradiating at least the surface of the base material on which the metal layer is formed with ultraviolet light, the characteristics of the base material (for example, the wettability of the metal ink) are improved, while the pattern of the metal layer is changed. It has been found that irradiation of ultraviolet light on a conventional sacrificial layer provided for forming rather weakens its liquid repellency.
  • the inventors of the present application conducted extensive research to find a material in which the liquid repellency of the sacrificial layer is not deteriorated or lowered by irradiation with ultraviolet light.
  • the liquid repellency of the sacrificial layer is hardly deteriorated by irradiation with ultraviolet light for a certain period of time, and after forming a pattern with metal ink on the substrate, the metal ink becomes a metal layer.
  • the inventors of the present invention have found a special material that can be decomposed or removed with high accuracy by a very simple method of heating, in other words, substantially without leaving a residue. Then, when paying attention to the special material, it has been found that the above-described material or knowledge can be effectively applied to a metal layer formed by means different from the metal ink.
  • the inventors of the present application can form the pattern by using a so-called nano-imprint method (also referred to as “embossing method”, hereinafter the same). I confirmed that there was. Therefore, it has also been found that it is possible to process from the formation of the pattern to the formation of the metal layer without using a so-called vacuum process, which is a process under vacuum or reduced pressure conditions.
  • the present invention was created based on the above viewpoints and numerous analyses.
  • the “process from the liquid to the gel state” is a typical example, and the solvent is removed to some extent by heat treatment (typically 80% or more in terms of the mass ratio to the entire solvent, but this numerical value). It refers to a situation where the aliphatic polycarbonate is not substantially decomposed or removed.
  • One composite member of the present invention has a structure in which at least the surfaces of a plurality of island-shaped aliphatic polycarbonate-containing layers disposed on a substrate are exposed to ultraviolet light having a wavelength of 180 nm or more and 370 nm or less for 15 minutes.
  • the contact angle between pure water and the surface thereof is 50 ° or more, and at least a part of the region sandwiched between each of the above-described aliphatic polycarbonate-containing layers is provided with the metal ink on the above-described substrate.
  • the aliphatic polycarbonate-containing layer can maintain high water repellency. This makes it possible to place the metal ink at a desired position with high accuracy in the region sandwiched between the island-shaped aliphatic polycarbonate-containing layers, and thus leads to an improvement in pattern accuracy of the subsequent metal layer.
  • the aliphatic polycarbonate-containing material can be obtained by performing a heat treatment for converting the metal ink disposed in the region sandwiched between the aforementioned aliphatic polycarbonate-containing layers into a metal layer.
  • the aliphatic polycarbonate With the disappearance of the solvent component of the layer, the aliphatic polycarbonate will be decomposed or removed.
  • the aliphatic polycarbonate can be decomposed or removed by a very simple method without substantially leaving any residue. Therefore, it can greatly contribute to the simplification of fine wiring formation using metal ink and / or the realization of high quality.
  • At least the surfaces of the plurality of island-shaped aliphatic polycarbonate-containing layers disposed on the substrate are exposed to ultraviolet light having a wavelength of 180 nm or more and 370 nm or less for 15 minutes.
  • the contact angle between the pure water and the surface is 50 ° or more, and at least part of the region sandwiched between each of the above-mentioned aliphatic polycarbonate-containing layers, A starting material layer is provided.
  • the aliphatic polycarbonate-containing layer can maintain high water repellency. This enables the starting material layer of the metal plating layer to be placed at a desired position with high accuracy in the region sandwiched between each island-shaped aliphatic polycarbonate-containing layer. This leads to an improvement in layer pattern accuracy.
  • the aliphatic polycarbonate when the heat treatment is performed, the aliphatic polycarbonate is decomposed or removed together with the disappearance of the solvent component of the aliphatic polycarbonate-containing layer. As a result, the aliphatic polycarbonate can be decomposed or removed by a very simple method without substantially leaving a residue. Therefore, it can greatly contribute to the simplification of fine wiring formation using the starting material layer of the metal plating layer and / or the realization of high quality.
  • One aliphatic polycarbonate-containing layer of the present invention is a plurality of island-shaped aliphatic polycarbonate-containing layers, and at least the surface of the aliphatic polycarbonate-containing layer is exposed to ultraviolet light having a wavelength of 180 nm to 370 nm. When exposed for 15 minutes, the contact angle between pure water and the aforementioned surface is 50 ° or more.
  • the aliphatic polycarbonate-containing layer can maintain high water repellency.
  • the metal ink in the case where the metal ink is disposed in a region sandwiched between each island-shaped aliphatic polycarbonate-containing layer, the metal ink can be disposed at a desired position with high accuracy. This leads to improved pattern accuracy of the metal layer.
  • the aliphatic polycarbonate-containing layer for example, when the heat treatment for changing the metal ink disposed in the region sandwiched between the aforementioned aliphatic polycarbonate-containing layers into the metal layer is performed, the aliphatic polycarbonate With the disappearance of the solvent component of the containing layer, the aliphatic polycarbonate is decomposed or removed.
  • the aliphatic polycarbonate when the metal ink on the substrate is heated to become a metal layer, the aliphatic polycarbonate can be decomposed or removed by a very simple method without substantially leaving any residue. This can greatly contribute to the simplification of fine wiring formation using metal ink and / or the realization of high quality.
  • the placement of metal ink on the substrate is merely an example.
  • the method for producing one composite member of the present invention 180 nm or more and 370 nm with respect to at least the surface of the plurality of island-shaped aliphatic polycarbonate-containing layers arranged on the substrate and at least the surface of the substrate. Irradiating ultraviolet light including the following wavelengths, after the ultraviolet light irradiation step and the ultraviolet light irradiation step, on at least a part of the substrate sandwiched between each of the aforementioned aliphatic polycarbonate-containing layers, Placing a metal ink.
  • the aliphatic polycarbonate-containing layer maintains high water repellency. It is possible to manufacture a composite member capable of This is because the metal ink can be placed at a desired position with high accuracy in the region sandwiched between the island-shaped aliphatic polycarbonate-containing layers in the placement step of placing the metal ink. This leads to an improvement in layer pattern accuracy.
  • the aliphatic polycarbonate is decomposed or removed.
  • the aliphatic polycarbonate can be decomposed or removed by a very simple method without substantially leaving any residue. Therefore, it can greatly contribute to the simplification of fine wiring formation using metal ink and / or the realization of high quality.
  • another composite member production method of the present invention is 180 nm or more with respect to at least the surface of the plurality of island-shaped aliphatic polycarbonate-containing layers disposed on the substrate and at least the surface of the substrate. Irradiating ultraviolet light including a wavelength of 370 nm or less, after the ultraviolet light irradiation step, and after the ultraviolet light irradiation step, at least a part of the region sandwiched between the respective aliphatic polycarbonate-containing layers And a disposing step of disposing a starting material layer of the metal plating layer.
  • the aliphatic polycarbonate-containing layer maintains high water repellency. It is possible to manufacture a composite member capable of This makes it possible to place the metal ink at a desired position with high accuracy in a region sandwiched between each island-shaped aliphatic polycarbonate-containing layer, so that the pattern accuracy of the starting material layer of the subsequent metal plating layer Leads to improvement.
  • the aliphatic polycarbonate when the heating step is performed thereafter, the aliphatic polycarbonate is decomposed or removed together with the disappearance of the solvent component of the aliphatic polycarbonate-containing layer. .
  • the aliphatic polycarbonate can be decomposed or removed by a very simple method without substantially leaving a residue. Therefore, it can greatly contribute to the simplification of fine wiring formation using the starting material layer of the metal plating layer and / or the realization of high quality.
  • another composite member production method of the present invention is 180 nm or more with respect to at least the surface of the plurality of island-shaped aliphatic polycarbonate-containing layers disposed on the substrate and at least the surface of the substrate.
  • An arrangement step of arranging the metal ink, and after the arrangement step, the aliphatic polycarbonate-containing layer and the metal ink are at or above the temperature at which the aliphatic polycarbonate-containing layer is decomposed or removed, and the metal And a heating step of heating the ink to a temperature equal to or higher than a temperature at which the metal layer is formed.
  • the aliphatic polycarbonate-containing layer maintains high water repellency. It is possible to manufacture a composite member capable of This is because the metal ink can be placed at a desired position with high accuracy in the region sandwiched between the island-shaped aliphatic polycarbonate-containing layers in the placement step of placing the metal ink. This leads to an improvement in layer pattern accuracy.
  • the heating step for converting the metal ink disposed in the region sandwiched between the above-described aliphatic polycarbonate-containing layers into the metal layer is performed.
  • the aliphatic polycarbonate With the disappearance of the solvent component of the aliphatic polycarbonate-containing layer, the aliphatic polycarbonate is decomposed or removed. As a result, when the metal ink is heated to form a metal layer on the substrate, the aliphatic polycarbonate can be decomposed or removed without leaving a residue by a very simple method of heating. . Therefore, it can greatly contribute to the simplification of fine wiring formation using metal ink and / or the realization of high quality.
  • one advantage of adopting an aliphatic polycarbonate pattern is that it is much more versatile than forming a conductive layer (eg, a metal layer) using a known resist layer pattern. It is. This is because if a known resist layer pattern is used instead of forming the aliphatic polycarbonate-containing layer pattern, problems may occur in the following cases.
  • the surface of the resist layer is particularly altered during the process of manufacturing various devices (for example, semiconductor devices) having fine wiring.
  • various devices for example, semiconductor devices
  • a plasma (O 2 plasma, Ar plasma, etc.) treatment and / or a removal process using a so-called resist stripping solution is required.
  • the material having a low resistance to the stripping solution or the plasma for example, an organic semiconductor material
  • the material having a low resistance is adversely affected. It will be.
  • the aliphatic polycarbonate-containing layer can be decomposed very simply and with high accuracy only by relatively low-temperature heat treatment without using the above-mentioned plasma or stripping solution. Or it can be removed. Therefore, it is worthy of special mention that forming the pattern of the aliphatic polycarbonate-containing layer provides a highly versatile technique that does not alter the material of each layer provided on the substrate.
  • the “composite member” in the present application is not only a member provided with a base material, an aliphatic polycarbonate-containing layer disposed on the base material, and a metal ink, but also on the base material and the base material. It is a concept including a member including an aliphatic polycarbonate-containing layer and a starting material layer of a metal plating layer, and a member including a base material and a metal layer starting from a metal ink disposed on the base material.
  • the “layer” in the present application is a concept including not only a layer but also a film.
  • the “film” in the present application is a concept including not only a film but also a layer.
  • the “base material” in the present application is not limited to the base of the plate-like body, but includes other forms (for example, a curved surface) or a base material.
  • “application” refers to a layer formed on a substrate by a low energy manufacturing process, typically a printing method, a spin coating method, a bar coating method, or a slit coating method.
  • the “metal ink” in the present application is not limited to a mode in which it is liquid at room temperature (typically 0 ° C. to 40 ° C.), and other modes, for example, a metal ink in a liquid state is preliminarily used.
  • An aspect after firing (that is, a state in which the viscosity is not completely solidified but the viscosity is considerably increased), or an aspect after solidification after heating (or after firing) described later (that is, metal) Layered state).
  • the aliphatic polycarbonate-containing layer that maintains high water repellency even when exposed to ultraviolet light, the pattern accuracy of the subsequent metal layer is improved. Further, according to this composite member, the aliphatic polycarbonate is decomposed or removed together with the disappearance of the solvent component of the aliphatic polycarbonate-containing layer by performing the heat treatment for changing the metal ink into the metal layer. As a result, it is possible to contribute to simplification and / or quality improvement of fine wiring formation using metal ink.
  • the aliphatic polycarbonate by performing the heat treatment, the aliphatic polycarbonate is decomposed or removed together with the disappearance of the solvent component of the aliphatic polycarbonate-containing layer.
  • the aliphatic polycarbonate can be decomposed or removed by a very simple method without substantially leaving a residue. Therefore, it can greatly contribute to the simplification of fine wiring formation using the starting material layer of the metal plating layer and / or the realization of high quality.
  • the aliphatic polycarbonate-containing layer of the present invention even when the aliphatic polycarbonate-containing layer is exposed to the above-described ultraviolet light, the aliphatic polycarbonate-containing layer can maintain high water repellency. . Further, according to the aliphatic polycarbonate-containing layer, for example, when the heat treatment for changing the metal ink disposed in the region sandwiched between the aliphatic polycarbonate-containing layers into the metal layer is performed, the aliphatic polycarbonate-containing layer Can be decomposed or removed substantially without leaving a residue.
  • a composite member of the present invention since it has an aliphatic polycarbonate-containing layer that maintains high water repellency even when exposed to ultraviolet light, it is sandwiched between each island-shaped aliphatic polycarbonate-containing layer.
  • the metal ink can be placed at a desired position with high accuracy in the region. As a result, the pattern accuracy of the subsequent metal layer is improved.
  • the aliphatic polycarbonate when the heating step is performed thereafter, the aliphatic polycarbonate is decomposed or removed together with the disappearance of the solvent component of the aliphatic polycarbonate-containing layer. It will be.
  • the aliphatic polycarbonate can be decomposed or removed by a very simple method without substantially leaving a residue. Therefore, it can greatly contribute to the simplification of fine wiring formation using the starting material layer of the metal plating layer and / or the realization of high quality.
  • each of the island-shaped aliphatic polycarbonate-containing layers has an aliphatic polycarbonate-containing layer that maintains high water repellency even when exposed to ultraviolet light.
  • Metal ink can be placed at a desired position with high accuracy in the sandwiched area. As a result, the pattern accuracy of the subsequent metal layer is improved.
  • the aliphatic polycarbonate is decomposed or removed together with the disappearance of the solvent component of the aliphatic polycarbonate-containing layer by performing a heat treatment for converting the metal ink into a metal layer. Will be. As a result, it is possible to contribute to simplification and / or quality improvement of fine wiring formation using metal ink.
  • aliphatic polycarbonate precursor (About aliphatic polycarbonate precursor and aliphatic polycarbonate-containing layer)
  • a certain solvent typically, an organic solvent
  • the solvent is removed to such an extent that it can be used for nano-imprinting or various printing methods (for example, screen printing) (typically, The “gel state”) layer is the “aliphatic polycarbonate-containing layer” of the present embodiment.
  • the aliphatic polycarbonate precursor of the present embodiment mainly includes an aliphatic polycarbonate, but may include a compound, a composition, or a material other than the aliphatic polycarbonate.
  • the lower limit of the content of the aliphatic polycarbonate in the aliphatic polycarbonate precursor is not particularly limited, but typically, the mass ratio of the aliphatic polycarbonate to the total amount of solute is 80% or more.
  • the upper limit value of the aliphatic polycarbonate content in the aliphatic polycarbonate precursor is not particularly limited, but typically, the mass ratio of the aliphatic polycarbonate to the total amount of solute is 100% or less.
  • a plurality of island-shaped aliphatic polycarbonate-containing layers (typically, patterns of the aliphatic polycarbonate-containing layer) formed by a nano-imprint method or a screen printing method are used.
  • the metal ink is disposed in a region sandwiched between the aliphatic polycarbonate-containing layers, the aliphatic polycarbonate-containing layer becomes an object to be decomposed or removed mainly by a heating process.
  • a typical example of the plurality of island-shaped aliphatic polycarbonate-containing layers is a fat in which a pattern represented by lines and spaces or dots that can be employed in the nano-imprint field or the semiconductor field is formed. Although it is a group polycarbonate content layer, the shape of the pattern of this embodiment is not limited to them.
  • an aliphatic polycarbonate-containing layer having various known pattern shapes such as a curved waveguide, a hole, and a pillar is also included in the “plurality of island-shaped aliphatic polycarbonate-containing layers” of the present embodiment. May be included.
  • the aliphatic polycarbonate-containing layer of the present embodiment it can be said that the fact that the material called the aliphatic polycarbonate-containing layer is utilized for arranging the metal ink itself is extremely useful and notable effects. As described above, by heating to a temperature above which the aliphatic polycarbonate-containing layer is decomposed or removed, the metal ink is changed to a metal layer, and the aliphatic polycarbonate-containing layer is decomposed or removed very easily. This can greatly contribute to the reduction of the manufacturing process of various devices represented by semiconductor elements and electronic devices.
  • the aliphatic polycarbonate precursor contains the aliphatic polycarbonate precursor. It is preferably free of other compounds, compositions, or materials that are decomposed or removed by a temperature higher than the temperature at which the polycarbonate precursor (or aliphatic polycarbonate-containing layer) is decomposed or removed.
  • an endothermic decomposition type aliphatic polycarbonate having a good thermal decomposition property is used.
  • DTA differential thermal measurement method
  • the organic solvent that can be employed in the “aliphatic polycarbonate precursor” that is a solution containing the aliphatic polycarbonate is not particularly limited as long as the organic solvent can dissolve the aliphatic polycarbonate.
  • the organic solvent include diethylene glycol monoethyl ether acetate (Diethylene-Glycol-Monoethyl Ether Acetate (hereinafter also referred to as “DEGMEA”)), ⁇ -terpineol, ⁇ -terpineol, N-methyl-2-pyrrolidone, 2- Nitropropane, isopropyl alcohol, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, toluene, cyclohexane, methyl ethyl ketone, dimethyl carbonate, diethyl carbonate, propylene carbonate, and the like.
  • DEGMEA diethylene glycol monoethyl ether acetate
  • ⁇ -terpineol
  • diethylene glycol monoethyl ether acetate, ⁇ -terpineol, N-methyl-2-pyrrolidone, 2-nitropropane and propylene carbonate are preferred from the viewpoint of a moderately high boiling point and low evaporation at room temperature. Used.
  • a plurality of island-shaped aliphatic polycarbonate-containing layers (typically, patterns of the aliphatic polycarbonate-containing layers) formed by a nano-imprint method or a screen printing method are used.
  • the metal ink is disposed in the region sandwiched between the island-shaped aliphatic polycarbonate-containing layers, the aliphatic polycarbonate-containing layer is finally subjected to decomposition or removal as an unnecessary object. . Therefore, it is preferable to employ a mixed solvent of DEGMEA and 2-nitropropane from the viewpoint that it is sufficient to maintain the pattern for a relatively short time from the formation of the pattern until it is decomposed or removed.
  • a dispersant, a plasticizer, and the like can be further added to the aliphatic polycarbonate precursor, which is a solution containing the aliphatic polycarbonate, if desired.
  • dispersant examples include as follows: Polyhydric alcohol esters such as glycerin and sorbitan; Polyether polyols such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol and polypropylene glycol; amines such as polyethyleneimine; (Meth) acrylic resins such as polyacrylic acid and polymethacrylic acid; Examples thereof include a copolymer of isobutylene or styrene and maleic anhydride, and an amine salt thereof.
  • Polyhydric alcohol esters such as glycerin and sorbitan
  • Polyether polyols such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol and polypropylene glycol
  • amines such as polyethyleneimine
  • (Meth) acrylic resins such as polyacrylic acid and polymethacrylic acid
  • examples thereof include a copolymer of isobutylene or
  • plasticizer examples include polyether polyol, phthalate ester and the like.
  • the method for forming the aliphatic polycarbonate-containing layer of the present embodiment is not particularly limited. Formation of the layer by a low energy manufacturing process is a preferred embodiment. More specifically, the aliphatic polycarbonate-containing layer is preferably formed on the substrate by a screen printing method or a nano-imprint method which is a particularly simple method.
  • FIG. 1 is a graph showing an example of TG-DTA characteristics of a solution containing polypropylene carbonate as a solute, which is a typical example of an aliphatic polycarbonate (that is, the aliphatic polycarbonate precursor of this embodiment).
  • This graph shows the results under normal pressure.
  • the solid line in a figure is a thermogravimetric (TG) measurement result
  • the dotted line in a figure is a differential heat (DTA) measurement result.
  • TG thermogravimetric
  • DTA differential heat
  • thermogravimetry shown in FIG. 1, from about 140 ° C. to about 190 ° C., a significant decrease in weight due to the decomposition or disappearance of a part of polypropylene carbonate itself is observed with the disappearance of the solvent of the aliphatic polycarbonate precursor. It was. In addition, it is thought that polypropylene carbonate has changed into carbon dioxide and water by this decomposition. From the results shown in FIG. 1, it was confirmed that the aliphatic polycarbonate was decomposed and removed by 90 wt% or more at around 190 ° C.
  • the aliphatic polycarbonate is decomposed by 95 wt% or more near 250 ° C., and almost all (99 wt% or more) the aliphatic polycarbonate is decomposed near 260 ° C. Therefore, by employing an aliphatic polycarbonate precursor that is substantially or substantially eliminated or removed by performing a heat treatment at 250 ° C. or higher (more preferably 260 ° C. or higher), the aliphatic polycarbonate precursor and the precursor are used.
  • the aliphatic polycarbonate-containing layer formed from the body layer serves as a sacrificial layer for the formation of the metal layer of this embodiment, in other words, it is decomposed or removed without substantially leaving its own residue. Will be.
  • the composite member of this embodiment is used. It is worthy of note that it can serve as a sacrificial layer for the formation of the metal layer that it comprises, in other words it can be decomposed or removed without substantially leaving its own residue.
  • polypropylene carbonate is used as an example of the aliphatic polycarbonate, but the type of the aliphatic polycarbonate used in the present embodiment is not particularly limited.
  • an aliphatic polycarbonate obtained by polymerization reaction of epoxide and carbon dioxide is also a preferable aspect that can be employed in this embodiment.
  • an endothermic polycarbonate having a desired molecular weight can be obtained by improving the endothermic degradability by controlling the structure of the aliphatic polycarbonate. The effect is played.
  • aliphatic polycarbonates are at least selected from the group consisting of polyethylene carbonate, polypropylene carbonate, and polybutylene carbonate.
  • One type is preferable.
  • the aliphatic polycarbonate is composed of polypropylene carbonate and polybutylene carbonate. It is preferably at least one selected from the group consisting of
  • the above epoxide is not particularly limited as long as it is an epoxide that undergoes a polymerization reaction with carbon dioxide to become an aliphatic polycarbonate having a structure containing an aliphatic in the main chain.
  • ethylene oxide and propylene oxide are preferably used from the viewpoint of high polymerization reactivity with carbon dioxide.
  • each above-mentioned epoxide may be used individually, respectively, and can also be used in combination of 2 or more type.
  • the mass average molecular weight of the above-mentioned aliphatic polycarbonate is preferably 5000 to 1000000, more preferably 10,000 to 600000.
  • the material may not be suitable as a material used in, for example, the nano-imprint method or the screen printing method due to, for example, the influence of a decrease in viscosity.
  • the weight average molecular weight of the aliphatic polycarbonate exceeds 1,000,000, the solubility of the aliphatic polycarbonate in an organic solvent is lowered, so that in this case as well, the material may not be suitable as a material used in the nano-imprint method or the screen printing method.
  • the numerical value of the above-mentioned mass average molecular weight can be calculated by the following method.
  • a chloroform solution having the above-mentioned aliphatic polycarbonate concentration of 0.5% by mass is prepared and measured using high performance liquid chromatography. After the measurement, the molecular weight is calculated by comparing with polystyrene having a known mass average molecular weight measured under the same conditions.
  • the measurement conditions are as follows. Model: HLC-8020 (manufactured by Tosoh Corporation) Column: GPC column (trade name of Tosoh Corporation: TSK GEL Multipore HXL-M) Column temperature: 40 ° C Eluent: Chloroform Flow rate: 1 mL / min
  • a method for producing the above-mentioned aliphatic polycarbonate a method in which the above-described epoxide and carbon dioxide are subjected to a polymerization reaction in the presence of a metal catalyst can be employed.
  • the example of manufacture of an aliphatic polycarbonate is as follows.
  • the inside of a 1 L autoclave system equipped with a stirrer, a gas introduction tube, and a thermometer was previously substituted with a nitrogen atmosphere, and then a reaction solution containing an organozinc catalyst, hexane, and propylene oxide were charged.
  • carbon dioxide was added while stirring to replace the inside of the reaction system with a carbon dioxide atmosphere, and carbon dioxide was charged until the inside of the reaction system became about 1.5 MPa.
  • the autoclave was heated to 60 ° C., and a polymerization reaction was carried out for several hours while supplying carbon dioxide consumed by the reaction.
  • the autoclave was cooled, depressurized and filtered. Then, polypropylene carbonate was obtained by drying under reduced pressure.
  • metal catalyst examples include an aluminum catalyst or a zinc catalyst.
  • a zinc catalyst is preferably used because it has high polymerization activity in the polymerization reaction of epoxide and carbon dioxide.
  • an organic zinc catalyst is particularly preferably used.
  • organozinc catalysts such as zinc acetate, diethyl zinc, dibutyl zinc; or With organic zinc catalysts obtained by reacting compounds such as primary amines, divalent phenols, divalent aromatic carboxylic acids, aromatic hydroxy acids, aliphatic dicarboxylic acids, and aliphatic monocarboxylic acids with zinc compounds is there.
  • organic zinc catalysts since it has higher polymerization activity, it is preferable to employ an organic zinc catalyst obtained by reacting a zinc compound, an aliphatic dicarboxylic acid, and an aliphatic monocarboxylic acid. It is an aspect.
  • the production example of the organozinc catalyst is as follows. First, zinc oxide, glutaric acid, acetic acid, and toluene were charged into a four-necked flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser. Next, after replacing the inside of the reaction system with a nitrogen atmosphere, the temperature of the flask was raised to 55 ° C., and the mixture was stirred at the same temperature for 4 hours to carry out the reaction treatment of each of the aforementioned materials. Thereafter, the temperature was raised to 110 ° C., and the mixture was further stirred for 4 hours at the same temperature for azeotropic dehydration to remove only moisture.
  • reaction liquid containing an organozinc catalyst was obtained by cooling the flask to room temperature.
  • IR was measured about the organozinc catalyst obtained by fractionating and filtering this reaction liquid (The product name: AVATAR360 by the Thermo Nicolet Japan Co., Ltd.). As a result, no peak based on the carboxylic acid group was observed.
  • the amount of the metal catalyst used for the polymerization reaction is preferably 0.001 to 20 parts by mass, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the epoxide. .
  • the usage-amount of a metal catalyst is less than 0.001 mass part, there exists a possibility that a polymerization reaction may become difficult to advance.
  • the usage-amount of a metal catalyst exceeds 20 mass parts, there exists a possibility that there may be no effect corresponding to a usage-amount and it may become economical.
  • the reaction solvent used as needed in the above polymerization reaction is not particularly limited.
  • Various organic solvents can be applied as the reaction solvent.
  • this organic solvent are: Aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane and cyclohexane; Aromatic hydrocarbon solvents such as benzene, toluene, xylene; Chloromethane, methylene dichloride, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, ethyl chloride, trichloroethane, 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2 -Halogenated hydrocarbon solvents such as methylpropane, chlorobenzene, bromobenzene; And carbonate solvents such as dimethyl carbonate, diethyl carbonate,
  • the amount of the reaction solvent used is preferably 500 parts by mass or more and 10000 parts by mass or less with respect to 100 parts by mass of the epoxide from the viewpoint of smoothing the reaction.
  • the method of reacting epoxide and carbon dioxide in the presence of a metal catalyst is not particularly limited.
  • a method may be employed in which the above epoxide, metal catalyst, and reaction solvent as required are charged into an autoclave and mixed, and then carbon dioxide is injected to react.
  • the operating pressure of carbon dioxide used in the above polymerization reaction is not particularly limited.
  • the pressure is preferably 0.1 MPa to 20 MPa, more preferably 0.1 MPa to 10 MPa, and further preferably 0.1 MPa to 5 MPa.
  • the use pressure of carbon dioxide exceeds 20 MPa, there is a possibility that the effect corresponding to the use pressure may not be obtained and it may not be economical.
  • the polymerization reaction temperature in the above polymerization reaction is not particularly limited. Typically, the temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C. When the polymerization reaction temperature is less than 30 ° C., the polymerization reaction may take a long time. On the other hand, when the polymerization reaction temperature exceeds 100 ° C., side reactions occur and the yield may decrease. Although the polymerization reaction time varies depending on the polymerization reaction temperature, it cannot be generally stated, but it is typically preferably 2 to 40 hours.
  • an aliphatic polycarbonate can be obtained by filtering off by filtration or the like, washing with a solvent if necessary, and drying.
  • FIG. 2 is a side view showing the overall configuration of the composite member 100 in the present embodiment.
  • the composite member 100 includes the aliphatic polycarbonate-containing layer 24 irradiated with ultraviolet light and the metal ink 72 on the base material 10. More specifically, the composite member 100 includes a plurality of island-shaped aliphatic polycarbonate-containing layers 24, 24, 24 arranged on the base material 10.
  • the metal ink 72 on the substrate 10 is provided in at least a part of the region sandwiched between the two.
  • the space indicated by “V” indicates that no metal ink is disposed. Needless to say, disposing metal ink in the space indicated by “V” is another aspect that can be adopted.
  • the material of the base material 10 of the present embodiment is not particularly limited, typically, various glass materials, silicon, other known insulating materials (including resin materials) or semiconductor materials can be the base material 10.
  • the composite member 200 is a member that includes a base material 10 and a metal layer 72 that uses a metal ink disposed on the base material 10 as a starting material. The composite member 200 will be described later.
  • the base material 10 of this embodiment can contain what the pattern of the conductor layer, the semiconductor layer, or the insulator layer was previously formed on the base material 10.
  • FIG. Accordingly, one variation of this embodiment is that the plurality of island-shaped aliphatic polycarbonate-containing layers 24, 24, 24 of this embodiment are formed on the conductor layer, the semiconductor layer, or the insulator layer. It is the formed composite member.
  • polypropylene carbonate which is an example of the aliphatic polycarbonate-containing layer 22
  • the thickness of the aliphatic polycarbonate content layer 22 is not specifically limited, The typical thickness is 300 to 1000 nm.
  • pre-baking step the step of removing the solvent component contained in the aliphatic polycarbonate-containing layer 22 by heating the aliphatic polycarbonate-containing layer 22 to such an extent that a stamped structure can be formed by the nano-imprint method (pre-baking) Step or drying step, hereinafter collectively referred to as “pre-baking step”).
  • pre-baking step a heat treatment at 100 ° C. to 150 ° C. was performed as the preliminary firing step.
  • the mold M ⁇ b> 1 is pressed against the aliphatic polycarbonate-containing layer 22 by applying a pressure of 0.1 MPa or more and 20 MPa or less to thereby press the structure of the aliphatic polycarbonate-containing layer 22.
  • An embossing process for forming is performed.
  • the thickness of the region 22a pressed by the convex portion of the die M1 becomes thinner than the other regions.
  • the plurality of island-shaped aliphatic polycarbonate-containing layers 22 are embossed in a state of being heated at 100 ° C. or higher and 300 ° C. or lower.
  • the aliphatic polycarbonate-containing layer 22 can remain without being completely decomposed.
  • the substrate 10 is heated by a known heater, for example, similarly to the technical idea disclosed in International Publication No. WO2013 / 069686, and the mold M1 itself is also heated by a known heater. Heating.
  • Each temperature of the base material 10 and the mold M1 during the embossing process is adjusted as appropriate, but a typical heating temperature of the base material 10 is 50 ° C. to 300 ° C.
  • the heating temperature of the mold M1 is 100 ° C. to 220 ° C.
  • the reason why the pressure is within the range of “0.1 MPa to 20 MPa” is as follows. First, if the pressure is less than 0.1 MPa, the pressure may be too low to emboss the aliphatic polycarbonate-containing layer 22. When polypropylene carbonate is used as the aliphatic polycarbonate, since the polypropylene carbonate is a relatively soft material, the embossing can be performed even at about 0.1 MPa. On the other hand, if the pressure is 20 MPa, the aliphatic polycarbonate-containing layer 22 can be sufficiently embossed, and it is not necessary to apply a pressure higher than this. From the viewpoint described above, in the embossing step in the present embodiment, it is more preferable to perform embossing with a pressure in the range of 0.5 MPa to 10 MPa.
  • an etching process is performed in which the entire surface of the aliphatic polycarbonate-containing layer 22 having a stamped structure formed by the nano-imprint method is etched by being exposed to plasma generated in an atmospheric pressure atmosphere.
  • specific gases introduced into the processing chamber to form the plasma of the present embodiment are oxygen, argon, and helium.
  • the applied high frequency power is about 500W.
  • an atmospheric pressure plasma apparatus manufactured by Yamato Scientific Co., Ltd. (model, YAP510S) was used. As a result, as shown in FIG. 6, a plurality of island-shaped aliphatic polycarbonate-containing layers 22, 22, and 22 are formed.
  • a plurality of island-shaped aliphatic polycarbonate-containing layers 22, 22, 22 are formed by additionally using an etching process using oxygen plasma under reduced pressure in addition to plasma generated in an atmospheric pressure atmosphere. You can also. However, instead of using a process that requires a relatively long time and / or expensive equipment, such as a vacuum (decompression) process that has been used in the past, adopting a process that achieves low environmental impact and low energy consumption. It is very advantageous from the viewpoint of shortening the manufacturing time and the manufacturing cost.
  • FIG. 19 shows a plurality of island-like aliphatic polycarbonate-containing layers (circles and solid lines in the figure) formed only by plasma generated in the atmospheric pressure atmosphere of this embodiment, and oxygen plasma under reduced pressure. It is a graph which shows the change of the water repellency with respect to the exposure time to the ultraviolet light of the several island-shaped aliphatic polycarbonate containing layer (square mark and broken line in a figure) as a comparative example formed by these.
  • the vertical axis is standardized for easy understanding. Therefore, the formation of the plurality of island-shaped aliphatic polycarbonate-containing layers 22, 22, 22 only by the plasma generated in the atmospheric pressure atmosphere increases the high contact angle of the aliphatic polycarbonate-containing layers 22, 22, 22. It proved to be very effective to maintain.
  • the shortest distance between the respective aliphatic polycarbonate-containing layers 22, 22, 22 in the plurality of island-shaped aliphatic polycarbonate-containing layers 22, 22, 22 (in other words, each aliphatic polycarbonate-containing layer)
  • the shortest interval between 22, 22, and 22 can be 500 nm or more and 20 ⁇ m or less when at least a pattern forming method typified by an imprint method is used.
  • the above-mentioned numerical range that can be said to be a very fine processing of 500 nm at the shortest is realized as the interval between the finest aliphatic polycarbonate-containing layers 22, 22, 22. The knowledge that it can do.
  • a plurality of island-shaped aliphatic polycarbonate-containing layers 22 are formed by performing a process of etching the entire surface of the aliphatic polycarbonate-containing layer 22 having a stamped structure using plasma under atmospheric pressure. , 22 and 22 are formed.
  • the method for forming the plurality of island-shaped aliphatic polycarbonate-containing layers 22, 22, 22 is not limited to the method described above. For example, when the screen printing method is used, when the aliphatic polycarbonate-containing layer 22 is applied on the substrate 10, a plurality of island-shaped aliphatic polycarbonate-containing layers 22, 22, and 22 can already be formed.
  • a plurality of island-shaped aliphatic polycarbonate-containing layers are formed using a known ultraviolet light irradiation device 80 (manufactured by Multiply, model, MHU-110WB). 22, 22, 22, and the surface 10 a of the substrate 10 on which the aliphatic polycarbonate-containing layer 22 is not disposed are subjected to an ultraviolet light irradiation step of irradiating ultraviolet light including a wavelength of 180 nm or more and 370 nm or less. .
  • an ultraviolet light irradiation apparatus for irradiating ultraviolet light having a wavelength of 180 nm or more and 370 nm or less is a commercially available ultraviolet light lamp having a main wavelength of 365 nm (manufactured by AS ONE Co., Ltd., model, SLW- 8).
  • the surface 10a of the substrate 10 can be highly hydrophilic, so that when the metal ink is placed thereafter, the high affinity between the metal ink and the substrate 10, in other words, If so, high wettability (hereinafter collectively referred to as “high wettability”) can be realized.
  • the base material 10 of the present embodiment may include a substrate in which a pattern of a conductor layer, a semiconductor layer, or an insulator layer is formed on the base material 10 in advance.
  • the base material is a silicon substrate and another layer (for example, a silicon oxide layer) is interposed between the surface of the base material and the aliphatic polycarbonate-containing layer 22, the metal ink and It is necessary to achieve high wettability with the surface of the “other layer”.
  • the ultraviolet light irradiation step in that case, the surface of the “other layer” is directly irradiated with the above-described ultraviolet light. Accordingly, the base material 10 in that case is obtained by capturing the silicon substrate as a base material and “another layer” provided on the surface of the silicon substrate as an integrated object.
  • the aliphatic polycarbonate-containing layer 24 irradiated with ultraviolet light in the ultraviolet light irradiation process is required to maintain high water repellency with respect to the metal ink when the metal ink is subsequently placed.
  • the metal ink is different from the desired position (for example, the region indicated by the surface 10a in FIG. 7) (for example, This is because it spreads to the upper surface of the aliphatic polycarbonate-containing layer 24 irradiated with ultraviolet light.
  • the desired position for example, the region indicated by the surface 10a in FIG. 7
  • FIG. 11 shows the exposure time to ultraviolet light of an aliphatic polycarbonate-containing layer for an aliphatic polycarbonate (typically, polypropylene carbonate (PPC)) in this embodiment and a known silicone resin layer as a comparative example. It is a graph which shows the change of water repellency. The water repellency of this graph is based on the contact angle of pure water on the surface of each layer after forming a layer of each material to be measured.
  • Table 1 shows an aliphatic polycarbonate-containing layer for aliphatic polycarbonates in the present embodiment (as representative examples, polyethylene carbonate (PEC), polypropylene carbonate (PPC), and polybutylene carbonate (PBC)), and comparative examples.
  • PEC polyethylene carbonate
  • PPC polypropylene carbonate
  • PBC polybutylene carbonate
  • the contact angles shown in FIG. 11 and Table 1 were measured by a method based on the ( ⁇ / 2) method.
  • the solid line (diamond) in FIG. 11 shows the result of the layer of the aliphatic polycarbonate in this embodiment when pre-baked at 150 ° C.
  • the alternate long and short dash line (circle) in FIG. 11 is a result when the silicon resin as a comparative example is heated at 150 ° C.
  • the broken line (square) in FIG. 11 indicates the silicon resin as a comparative example. It is a result when heating at 450 degreeC.
  • the contact angle of pure water with respect to polypropylene carbonate shows a slight decrease at the beginning of exposure to ultraviolet light, but after that (after about 3 minutes), the contact angle is almost stably 60 ° ( 60 deg.) Or more (more specifically, 65 ° or more or more than 65 °) was maintained.
  • the two results of the comparative examples show that, regardless of the difference in heating temperature, even though their contact angle before exposure to ultraviolet light is higher than the contact angle of polypropylene carbonate, it is almost due to exposure to ultraviolet light. It was confirmed that the contact angle of pure water to the silicon resin continued to decrease linearly. Moreover, as shown in FIG.
  • the contact angle of pure water with polypropylene carbonate and the contact angle of the two comparative examples was noticeable. Therefore, even when at least the surface of the aliphatic polycarbonate-containing layer 22 is exposed to ultraviolet light including a wavelength of 180 nm or more and 370 nm for 5 minutes, the contact angle between pure water and the surface is 60 ° or more (further, Is not less than 65 ° or more than 65 °).
  • various aliphatic polycarbonates have a contact angle of at least 50 ° or more (more narrowly, as shown in Table 1, more than 50 °) when the exposure time to ultraviolet light is 15 minutes. It can be seen that even when the exposure time is 18 minutes, the contact angle is maintained at least 55 ° or more (in a narrower sense, more than 55 ° as shown in Table 1).
  • PPC polypropylene carbonate
  • PBC polybutylene carbonate
  • the result of the silicon resin of the comparative example is 5 minutes when the contact angle before ultraviolet light irradiation (that is, at 0 minute) is set as a reference (100%). Later, it was confirmed that it was attenuated to about 45 to about 62%, and after 10 minutes, it was attenuated to about 8 to about 11%.
  • Retention rate of 85% or more (more narrowly, more than 85% as shown in Table 1), and retention of about 83% or more (more narrowly, more than 83%) even after 10 minutes It was found to have a rate.
  • a very high retention of about 80% or more (more narrowly, over 80% as shown in Table 1) even after 15 or 18 minutes. It was found to have a rate.
  • the aliphatic polycarbonate-containing layer of the present embodiment when the contact angle before ultraviolet light irradiation (that is, at 0 minute) is used as a reference (100%), at least 5 minutes after ultraviolet light irradiation, After 10 minutes, 15 minutes, or 18 minutes, it was confirmed that a contact angle of at least 70% or more (typically over 70%, more positively 80% or more) can be maintained. It was. Therefore, it was confirmed that the aliphatic polycarbonate-containing layer of this embodiment is excellent also from the viewpoint of contact angle retention rate or contact angle retention performance.
  • FIG. 12 is a photograph taken with an optical microscope showing an example of the water-repellent performance of the aliphatic polycarbonate-containing layer shown in FIG. 11 and Table 1 exposed to ultraviolet light in this embodiment.
  • the irradiation time of the ultraviolet light in FIG. 12 was 6 minutes.
  • the aliphatic polycarbonate-containing layer clearly repels the water droplets as shown by the region marked with X in FIG. I was observed.
  • FIG. 12 shows the results of polypropylene carbonate, which is a representative example of aliphatic polycarbonate, but similar results can be obtained even with aliphatic polycarbonates other than polypropylene carbonate.
  • aliphatic polycarbonate-containing layers 24, 24, 24 irradiated with ultraviolet light are formed, as shown in FIG.
  • an arrangement step of arranging the metal ink 72 on the substrate 10 using a known metal ink coating device (for example, a coating device using an inkjet method) 90 is performed.
  • the metal ink 72 of this embodiment can employ
  • silver nanoparticle ink manufactured by DIC Corporation, model number JAGLT-01
  • the metal ink 72 is arranged only in a part of the region sandwiched between the aliphatic polycarbonate-containing layers 24, 24, 24, but in all the regions.
  • the arrangement of the metal ink 72 is another aspect that can be adopted.
  • the composite member 100 shown in FIG. 9 is manufactured through the arrangement process of the metal ink 72 described above. As will be described later, the metal ink 72 can serve as an intermediate material for metal wiring.
  • the aliphatic polycarbonate-containing layers 24, 24, 24 and the metal ink 72 are further heated at a temperature equal to or higher than the temperature at which the aliphatic polycarbonate-containing layers 24, 24, 24 are decomposed or removed.
  • the composite member 200 in which the metal layer 74 is disposed on the base material 10 can be manufactured.
  • the aliphatic polycarbonate-containing layers 24, 24, and 24 as the sacrificial layer have high accuracy, in other words, are substantially decomposed or removed.
  • the composite member 200 is a highly reliable or highly stable composite member.
  • the metal ink 72 plays a role as an intermediate material for metal wiring
  • the metal layer 74 formed by the heat treatment of the metal ink 72 becomes metal wiring.
  • the metal layer 74 formed using the metal ink 72 as a starting material can also play a role (for example, an electrode) other than the role as a wiring.
  • the heating process of this embodiment will be described more specifically.
  • the aliphatic polycarbonate-containing layers 24, 24, 24 and the metal ink 72 disposed on the substrate 10 are subjected to a heat treatment at about 150 ° C. for about 30 minutes using a known heater. gave.
  • the composite member 200 including the metal layer 74 having a fine width can be manufactured.
  • the known heater of this embodiment is a hot plate (model, TH-900) manufactured by AS ONE Corporation, but the heating means is not limited to such a heater.
  • another known heater such as a hot plate is another aspect that can be employed.
  • the metal ink 72 is used as a starting material for forming the metal layer 74.
  • a known electroless plating is used instead of the arrangement of the metal ink 72.
  • a step of forming a starting material layer for use in the method, that is, a starting material layer of a metal plating layer can also be employed.
  • FIG. 16 is a side view showing the overall configuration of the composite member 400 of this modification.
  • the composite member 400 has a starting material layer 73 of a metal plating layer on the base material 10 in at least a part of a region sandwiched between each of the plurality of island-shaped aliphatic polycarbonate-containing layers arranged on the base material 10. It has.
  • the composite member 400 is subjected to an arrangement process different from the arrangement process of the first embodiment after each process before the ultraviolet light irradiation process of the first embodiment is performed.
  • aliphatic polycarbonate-containing layers 24, 24, 24 irradiated with ultraviolet light, on the substrate 10.
  • An arrangement step of arranging the starting material layer of the metal plating layer in at least a part of the region sandwiched between the aliphatic polycarbonate-containing layers 24, 24, 24 is performed.
  • the composite member 400 including the aliphatic polycarbonate-containing layers 24, 24, 24 and the starting material layer of the metal plating layer can be manufactured.
  • an example of the starting material in the starting material layer 73 of the metal plating layer of this embodiment is a well-known metal catalyst nanoparticle.
  • the aliphatic polycarbonate-containing layers 24, 24, 24 and the metal plating layer starting material layer 73 are heated to a temperature equal to or higher than the temperature at which the aliphatic polycarbonate-containing layers 24, 24, 24 are decomposed or removed (for example, 180 ° C. As described above, a heating step of heating to 250 ° C. or higher, more preferably 260 ° C. or higher is performed. As a result, as shown in FIG. 17, the composite member 500 in which the starting material layer 73 of the metal plating layer is disposed on the base material 10 can be manufactured.
  • the aliphatic polycarbonate-containing layers 24, 24, 24 as the sacrificial layer are highly accurate, in other words, decomposed or removed without substantially leaving any residue.
  • a metal layer forming step for forming a metal layer (for example, a copper (Cu) layer) 75 is performed by a known electroless plating method, thereby producing a composite member 600 as shown in FIG. be able to.
  • the metal layers 74 and 75 are made of metal wiring or conductive material. Utilizing it as a body layer is a preferred embodiment.
  • FIG. 13 is a plan view of a part of the composite member 200 constituting the composite member 300A as one embodiment that can be adopted.
  • FIG. 14 is a partial side view (a) and a partial plan view (b) of a composite member 300A as one embodiment that can be employed.
  • the composite member 200 provided with the mesh-like wiring only in the horizontal direction of the paper surface shown in the conductor layer 74b using the layer 74 or the metal layer 75 is prepared.
  • a metal layer forming process is performed in which the two composite members 200 are overlapped via the dielectric layer 50 using the two composite members 200 as electrodes.
  • a composite member 300 ⁇ / b> A having a structure in which two composite members 200 are superposed via the dielectric layer 50 can be manufactured.
  • a honeycomb structure may be employed instead of the mesh shape described above.
  • the width of the representative conductor layers 74a and 74b is about 500 nm to about 20 ⁇ m.
  • the widths of these wirings are determined by the area (gap) of each of the plurality of island-like aliphatic polycarbonate-containing layers sandwiched between the aliphatic polycarbonate-containing layers by at least the nano-imprinting method of the first embodiment. This is a width that can be realized as an interval. Therefore, according to this embodiment, in place of a process requiring a relatively long time and / or expensive equipment such as a vacuum process or a process using a photolithography method which has been conventionally employed, low energy and low energy are required.
  • the composite member 300 ⁇ / b> A can be manufactured by the process for realizing the conversion.
  • ⁇ Other embodiment 2> As an example of the composite member, a capacitive touch panel as shown in FIGS. 14 and 15 is shown, but the touch panel detection method is not limited to the capacitive touch system. For example, utilizing the metal layer 74 of the first embodiment as a conductor layer of a resistive film type touch panel is another preferable aspect that can be employed.
  • FIG. 15 is a plan view of a part of a composite member 300B as one embodiment that can be adopted.
  • a composite member 300B shown in FIG. 15 includes a composite member 200 provided with wiring only in the vertical direction of the paper surface shown in the conductor layer 74c using the metal layer 74 or the metal layer 75, and a conductor using the metal layer 74 or the metal layer 75. Only the horizontal direction of the paper surface shown in the layer 74d has a structure in which the composite member 200 provided with wiring is overlapped at a certain known distance. Since FIG. 15 is a plan view, it is not directly shown that the two composite members 200 overlap each other by using, for example, a known spacer. Can understand.
  • the wiring width of the representative conductor layers 74c and 74d is about 500 nm to about 20 ⁇ m.
  • the widths of these wirings are determined by the area (gap) of each of the plurality of island-like aliphatic polycarbonate-containing layers sandwiched between the aliphatic polycarbonate-containing layers by at least the nano-imprinting method of the first embodiment. This is a width that can be realized as an interval. Therefore, according to this embodiment, in place of a process requiring a relatively long time and / or expensive equipment such as a vacuum process or a process using a photolithography method which has been conventionally employed, low energy and low energy are required.
  • the composite member 300 ⁇ / b> B can be manufactured by a process for realizing the conversion.
  • the composite member 100 and the composite member 200 of the first embodiment can be applied to devices other than the touch panel (for example, an organic EL device, a flexible printed wiring board, or a flexible piezoelectric sensor sheet).
  • devices other than the touch panel for example, an organic EL device, a flexible printed wiring board, or a flexible piezoelectric sensor sheet.
  • a plurality of composite members 200 and 200 as shown in FIGS. 13 to 15 are superposed to form a lattice-like conductor layer 74a and 74b in plan view. , 74c, 74d, the wiring formation step is provided, and when manufacturing various devices typified by a touch panel, it is possible to realize a reduction in environmental burden and a reduction in manufacturing cost.
  • the aliphatic polycarbonate is decomposed only by heat treatment, but in the present embodiment, the aliphatic polycarbonate can be substantially decomposed or removed by another means.
  • the aliphatic polycarbonate can be substantially decomposed or removed by another means.
  • heat treatment is performed using a known ultraviolet light irradiation apparatus (manufactured by Samco, model, UV-300H-E) while irradiating ultraviolet light having a wavelength of 180 nm to 370 nm.
  • the decomposition or removal of the group polycarbonate will be promoted more.
  • it to generate ozone (O 3) in the atmosphere of the processing, or the introduction of ozone (O 3) is in the actively treated atmosphere is acceptable.
  • the aliphatic polycarbonate is substantially It has been confirmed by our study and analysis that it can be lost or partially lost. Therefore, in this embodiment, the temperature of the heat treatment required for forming the metal layer from the metal ink is equal to or lower than the temperature at which the aliphatic polycarbonate can substantially or substantially disappear. In this case, the composite member 200 can be formed only by heating to a temperature at which the aliphatic polycarbonate can be substantially or almost disappeared.
  • the inventors have confirmed that in another modification of the first embodiment, there is another means for decomposing the aliphatic polycarbonate without heat treatment.
  • the aliphatic polycarbonate can be decomposed by exposing the aliphatic polycarbonate-containing layer to a plasma generated in an atmospheric pressure atmosphere without heat treatment.
  • heat treatment is not performed during exposure to plasma generated in an atmospheric pressure atmosphere. Therefore, heat treatment required for forming a metal layer from metal ink is performed separately from the plasma treatment.
  • the composite member 200 can be formed simply by heating to a temperature.
  • the present invention relates to a field of electronic devices including portable terminals including various semiconductor elements, information appliances, sensors, other known electrical appliances, MEMS (Micro Electro Mechanical Systems) or NEMS (Nano Electro Mechanical Systems), medical equipment, and the like. Can be widely applied to etc.
  • portable terminals including various semiconductor elements, information appliances, sensors, other known electrical appliances, MEMS (Micro Electro Mechanical Systems) or NEMS (Nano Electro Mechanical Systems), medical equipment, and the like. Can be widely applied to etc.
  • Base material 10a Surface of base material 22 Aliphatic polycarbonate containing layer 22a Area pressed by convex part of type M1 24 Aliphatic polycarbonate containing layer irradiated with ultraviolet light 72 Metal ink 73 Starting material layer 74 of metal plating layer, 75 Metal layer 74a, 74b, 74c, 74d Conductor layer 80 Ultraviolet light irradiation device 90 Coating device 100, 200, 300A, 300B, 400, 500, 600 Composite member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Materials For Photolithography (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】微細な配線形成の簡便化及び/又は高品質化を実現する複合部材を提供する。 【解決手段】本発明の1つの複合部材100は、基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面が、180nm以上370nm以下の波長を含む紫外光に15分間曝露されたときに、純水とその表面との接触角度が50°以上であり、各々の該前駆体層に挟まれた領域の少なくとも一部に、前述の基材上の金属インクを備える。

Description

複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層
 本発明は、複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層に関する。
 各種の微細化された電子デバイスのための配線の形成方法として、長年に亘り、真空プロセスの1つであるスパッタリング法のような比較的長時間、及び/又は高価な設備を要するプロセスが採用されてきた。一方、導電性の配線を形成するための他の方法として、いわゆる金属インクを用いたインクジェット印刷法が存在する。近年の先行技術文献においては、インクジェット印刷法によって低温(例えば、160℃)であって、かつ短時間で、比抵抗の小さい導電性配線を形成することができるインクジェットプリンタ用インク並びに該インクを用いた導電性配線の形成方法及び導電性配線が開示されている(特許文献1)。
 また、低温条件下における該配線の形成技術に着目すると、フレキシブルな樹脂基板上に電子デバイスを形成しようという試みも行われている。一方、各種の微細化された電子デバイスのための配線の形成という観点とは無関係ではあるが、本願発明者らは、酸化されたときに酸化物半導体となる金属の化合物を脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に分散させた酸化物半導体の前駆体を、基板上又はその上方に層状に形成する前駆体層の形成工程と、前記前駆体層を、前記バインダーを90wt%以上分解させる第1温度によって加熱した後、前記第1温度よりも高く、かつ前記金属と酸素とが結合する温度であって、前記前駆体の示差熱分析法(DTA)における発熱ピーク値である第2温度以上の温度によって前記前駆体層を焼成する焼成工程と、を含む、酸化物半導体層の製造方法を開示する(特許文献2)。
特開2011-042758号公報 特許第5749411号公報
 しかしながら、その配線のパターンを形成するためには、通常、フォトリソグラフィー法に代表される、高コストであって高度に複雑化した工程ないし設備環境を用いる必要がある。さらに、そのパターンを形成した後に、その配線以外の不要な膜(該パターン形成のためだけの膜等)の除去のために別途の工程を要するため、余分なコストが掛かるとともに、電子デバイスに代表される各種の最終製品歩留まりの低下にもつながる。
 なお、従来から採用されている、上述の真空プロセスやフォトリソグラフィー法を用いたプロセスといった比較的長時間、及び/又は高価な設備を要するプロセスを採用することは、原材料や製造エネルギーの使用効率の低下ないし悪化につながる。従って、そのようなプロセスを採用することは、工業性ないし量産性の観点から好ましくない。
 また、金属インクを出発材として形成される金属配線のパターンを確度高く形成するためには、そのパターンを形成するための膜に十分な、該金属インクに対するいわば撥液性が要求される。しかし、該配線を形成するまでに要求される幾つかの工程を経ることができるだけの十分に長い時間、その撥液性を維持することは非常に困難である。
 また、一方で、金属インクを用いて配線を形成するためには、金属インク自身と下地層又は母材との高い親和性、換言すれば高い濡れ性が要求される。そのため、該配線のためのパターンを形成するための膜の該金属インクに対する撥液性と、前述の濡れ性との両立、しかもそれらの長い時間の両立を実現することは、金属インクを用いた信頼性の高い配線形成のための重要な要素技術の一つとなり得る。
 本発明は、微細な配線形成の簡便化、及び/又は高品質化の実現に貢献し得るとともに、特に、金属インクを用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る、複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層を提供する。
 本願発明者らは、いわゆる金属インクを用いたインクジェット印刷法を用いた金属層のパターンを形成するために、従来の方法よりも簡便で、かつ信頼性の高い方法を見出すべく、鋭意検討と分析を重ねた。その結果、その金属層が形成される基材の少なくとも表面に対して紫外光を照射することにより、その基材の特性(例えば、金属インクの濡れ性)が向上する一方、金属層のパターンを形成するために設けられる従来の犠牲層への紫外光の照射は、むしろその撥液性を弱めることになることが分かった。
 そのため、本願発明者らは、犠牲層の撥液性が紫外光の照射によって劣化又は低下しない材料を見出すべく、鋭意研究を重ねた。その結果、紫外光の照射によっても犠牲層としての撥液性の劣化が一定時間ほとんど見られず、かつ、基材上に金属インクによるパターンを形成した後、その金属インクを金属層になるように加熱するときに、加熱という極めて簡便な方法によってその犠牲層を確度高く、換言すれば、実質的に残渣を残すことなく分解又は除去し得る特殊な材料を本願発明者らは見出した。そして、その特殊な材料に着目すれば、金属インクとは異なる手段によって形成される金属層についても上述の材料又は知見が有効に適用し得ることを見出した。
 また、さらに検討と分析を重ねた結果、本願発明者らは、該パターンを、いわゆるナノ・インプリント法(「型押し加工法」ともいう。以下、同じ)を用いて形成することが可能であることを確認した。従って、該パターンの形成から金属層の形成までを、一貫して、真空ないし減圧条件下のプロセスである、いわゆる真空プロセスを用いることなく処理することが可能となることも併せて見出した。本発明は、上述の各視点と数多くの分析に基づいて創出された。
 なお、本願においては、「液体からゲル状態に至る過程」は、代表的な例で言えば、熱処理によって溶媒をある程度(代表的には、溶媒全体に対する質量比において80%以上であるがこの数値に限定されない。)除去するが、脂肪族ポリカーボネートが実質的に分解又は除去されていない状況をいう。
 本発明の1つの複合部材は、基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面が、180nm以上370nm以下の波長を含む紫外光に15分間曝露されたときに、純水とその表面との接触角度が50°以上であり、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部に、前述の基材上の金属インクを備える。
 この複合部材によれば、脂肪族ポリカーボネート含有層が上述の紫外光に曝露されたとしても、該脂肪族ポリカーボネート含有層は高い撥水性を維持することができる。これは、各々の島状の脂肪族ポリカーボネート含有層に挟まれた領域に金属インクを確度高く所望の位置に配置することを可能にするため、その後の金属層のパターン精度の向上につながる。加えて、この複合部材によれば、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域に配置された該金属インクを金属層に変えるための加熱処理を施すことにより、該脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、該脂肪族ポリカーボネートが分解又は除去されることになる。その結果、基材上にその金属インクを金属層になるように加熱するときに、極めて簡便な方法によってその脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。従って、金属インクを用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る。
 また、本発明のもう1つの複合部材は、基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面が、180nm以上370nm以下の波長を含む紫外光に15分間曝露されたときに、純水と前記表面との接触角度が50°以上であり、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部に、前述の基材上の金属めっき層の出発材層を備える。
 この複合部材によれば、脂肪族ポリカーボネート含有層が上述の紫外光に曝露されたとしても、該脂肪族ポリカーボネート含有層は高い撥水性を維持することができる。これは、各々の島状の脂肪族ポリカーボネート含有層に挟まれた領域に金属めっき層の出発材層を確度高く所望の位置に配置することを可能にするため、その後の金属めっき層の出発材層のパターン精度の向上につながる。加えて、この複合部材によれば、加熱処理を施すことにより、該脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、該脂肪族ポリカーボネートが分解又は除去されることになる。その結果、極めて簡便な方法によってその脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。従って、金属めっき層の出発材層を用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る。
 また、本発明の1つの脂肪族ポリカーボネート含有層は、複数の島状の脂肪族ポリカーボネート含有層であって、その脂肪族ポリカーボネート含有層の少なくとも表面が、180nm以上370nm以下の波長を含む紫外光に15分間曝露されたときに、純水と前述の表面との接触角度が50°以上である。
 この脂肪族ポリカーボネート含有層によれば、該脂肪族ポリカーボネート含有層が上述の紫外光に曝露されたとしても、該脂肪族ポリカーボネート含有層は高い撥水性を維持することができる。その結果、例えば、各々の島状の脂肪族ポリカーボネート含有層に挟まれた領域に金属インクを配置する場合において、その金属インクを確度高く所望の位置に配置することを可能にするため、その後の金属層のパターン精度の向上につながる。また、この脂肪族ポリカーボネート含有層によれば、例えば、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域に配置された金属インクを金属層に変えるための加熱処理を施す場合、脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、脂肪族ポリカーボネートが分解又は除去されることになる。その結果、基材上の該金属インクを金属層になるように加熱するときに、極めて簡便な方法によって該脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。これは、金属インクを用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る。なお、基材上に金属インクを配置することは一例にすぎない。
 また、本発明の1つの複合部材の製造方法は、基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面、及びその基材の少なくとも表面に対して、180nm以上370nm以下の波長を含む紫外光を照射する、紫外光照射工程と、その紫外光照射工程の後、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部のその基材上に、金属インクを配置する配置工程と、を含む。
 この複合部材の製造方法によれば、脂肪族ポリカーボネート含有層に対して上述の紫外光を照射する紫外光照射工程が行われたとしても、該脂肪族ポリカーボネート含有層は高い撥水性を維持することが可能な複合部材を製造することができる。これは、金属インクを配置する配置工程において、各々の島状の脂肪族ポリカーボネート含有層に挟まれた領域に該金属インクを確度高く所望の位置に配置することを可能にするため、その後の金属層のパターン精度の向上につながる。加えて、この複合部材の製造方法によれば、その後、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域に配置された該金属インクを金属層に変えるための加熱工程が行われる場合は、該脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、該脂肪族ポリカーボネートが分解又は除去されることになる。その結果、基材上にその金属インクを金属層になるように加熱するときに、極めて簡便な方法によってその脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。従って、金属インクを用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る。
 また、本発明のもう1つの複合部材の製造方法は、基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面、及びその基材の少なくとも表面に対して、180nm以上370nm以下の波長を含む紫外光を照射する、紫外光照射工程と、その紫外光照射工程の後、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部の前述の基材上に、金属めっき層の出発材層を配置する配置工程と、を含む。
 この複合部材の製造方法によれば、脂肪族ポリカーボネート含有層に対して上述の紫外光を照射する紫外光照射工程が行われたとしても、該脂肪族ポリカーボネート含有層は高い撥水性を維持することが可能な複合部材を製造することができる。これは、各々の島状の脂肪族ポリカーボネート含有層に挟まれた領域に該金属インクを確度高く所望の位置に配置することを可能にするため、その後の金属めっき層の出発材層のパターン精度の向上につながる。加えて、この複合部材の製造方法によれば、その後、加熱工程が行われた場合は、該脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、該脂肪族ポリカーボネートが分解又は除去されることになる。その結果、極めて簡便な方法によってその脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。従って、金属めっき層の出発材層を用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る。
 また、本発明のもう1つの複合部材の製造方法は、基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面、及びその基材の少なくとも表面に対して、180nm以上370nm以下の波長を含む紫外光を照射する、紫外光照射工程と、その紫外光照射工程の後、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部のその基材上に、金属インクを配置する配置工程と、その配置工程の後、前述の脂肪族ポリカーボネート含有層及び前述の金属インクを、その脂肪族ポリカーボネート含有層が分解又は除去される温度以上であり、かつその金属インクから金属層が形成される温度以上に加熱する、加熱工程と、を含む。
 この複合部材の製造方法によれば、脂肪族ポリカーボネート含有層に対して上述の紫外光を照射する紫外光照射工程が行われたとしても、該脂肪族ポリカーボネート含有層は高い撥水性を維持することが可能な複合部材を製造することができる。これは、金属インクを配置する配置工程において、各々の島状の脂肪族ポリカーボネート含有層に挟まれた領域に該金属インクを確度高く所望の位置に配置することを可能にするため、その後の金属層のパターン精度の向上につながる。加えて、この複合部材の製造方法によれば、各々の前述の脂肪族ポリカーボネート含有層に挟まれた領域に配置された該金属インクを金属層に変えるための加熱工程が行われることにより、該脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、該脂肪族ポリカーボネートが分解又は除去されることになる。その結果、基材上にその金属インクを金属層になるように加熱するときに、加熱という極めて簡便な方法によってその脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。従って、金属インクを用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る。
 ところで、一部については既に述べたように、上述の各発明が適用可能な技術分野は広範に及ぶため、その用途は制限されない。例えば、脂肪族ポリカーボネートのパターンを採用することの1つの利点は、公知のレジスト層のパターンを用いて導電体層(例えば、金属層)を形成するよりも、格段に高い汎用性が得られることである。というのも、脂肪族ポリカーボネート含有層のパターンを形成する代わりに、公知のレジスト層のパターンを用いた場合には、次のような場合に支障が生じ得るためである。
 具体的には、通常、公知のレジスト層のパターンが採用されると、微細な配線を備える各種装置(例えば、半導体装置)が製造される過程を経る中で、該レジスト層の特に表面が変質(例えば、紫外光による変質)することがある。その場合、プラズマ(Oプラズマ,Arプラズマなど)処理及び/又はいわゆるレジスト剥離液による除去工程が必要となる。しかし、該剥離液又は該プラズマへの耐性の低い材料(例えば、有機半導体材料)が、そのレジスト層と同じ基材上に配置されている場合、上述の耐性の低い材料に対して悪影響を及ぼすことになる。従って、脂肪族ポリカーボネート含有層のパターンが採用されていれば、前述のプラズマ又は剥離液を用いることなく、比較的低温の加熱処理のみによって極めて簡便に、かつ確度高く該脂肪族ポリカーボネート含有層を分解又は除去し得ることになる。よって、脂肪族ポリカーボネート含有層のパターンを形成することにより、基材上に設けられた各層の材質を変質させない、汎用性の非常に高い技術が提供されることになる点は、特筆に値する。
 また、本出願における「複合部材」とは、基材、該基材上に配置された脂肪族ポリカーボネート含有層、及び金属インクを備える部材のみならず、基材、該基材上に配置された脂肪族ポリカーボネート含有層、及び金属めっき層の出発材層を備える部材、及び基材と該基材上に配置された金属インクを出発材とする金属層とを備える部材をも含む概念である。また、本願における「層」は、層のみならず膜をも含む概念である。逆に、本願における「膜」は、膜のみならず層をも含む概念である。
 加えて、本出願における「基材」とは、板状体の基礎に限らず、その他の形態(例えば、曲面状)の基礎ないし母材を含む。加えて、本願の後述する各実施形態においては、「塗布」とは、低エネルギー製造プロセス、代表的には印刷法、スピンコート法、バーコート法、又はスリットコート法によってある基材上に層を形成することをいう。また、本出願における「金属インク」には、常温(代表的には、0℃~40℃)において液体である態様に限定されず、その他の態様、例えば、その液体の状態の金属インクを予備焼成した後(又は乾燥させた後)の態様(つまり、完全には固化されていないが粘性が相当高まった状態)、あるいは、後述する加熱後(又は焼成後)の固化した態様(つまり、金属層となっている状態)が含まれる。
 本発明の1つの複合部材によれば、紫外光に曝露されても高い撥水性を維持する脂肪族ポリカーボネート含有層を有するため、その後の金属層のパターン精度の向上につながる。また、この複合部材によれば、金属インクを金属層に変えるための加熱処理を施すことにより、脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、脂肪族ポリカーボネートが分解又は除去されることになる。その結果、金属インクを用いた微細な配線形成の簡便化及び/又は高品質化に貢献し得る。
 また、本発明のもう1つの複合部材によれば、加熱処理を施すことにより、脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、該脂肪族ポリカーボネートが分解又は除去されることになる。その結果、極めて簡便な方法によってその脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。従って、金属めっき層の出発材層を用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る。
 また、本発明の1つの脂肪族ポリカーボネート含有層によれば、該脂肪族ポリカーボネート含有層が上述の紫外光に曝露されたとしても、該脂肪族ポリカーボネート含有層は高い撥水性を維持することができる。また、この脂肪族ポリカーボネート含有層によれば、例えば、各々の該脂肪族ポリカーボネート含有層に挟まれた領域に配置された金属インクを金属層に変えるための加熱処理を施す場合、該脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。
 また、本発明の1つの複合部材の製造方法によれば、紫外光に曝露されても高い撥水性を維持する脂肪族ポリカーボネート含有層を有するため、各々の島状の脂肪族ポリカーボネート含有層に挟まれた領域に金属インクを確度高く所望の位置に配置することができる。その結果、その後の金属層のパターン精度の向上につながる。
 また、本発明のもう1つの複合部材の製造方法によれば、その後、加熱工程が行われた場合は、脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、該脂肪族ポリカーボネートが分解又は除去されることになる。その結果、極めて簡便な方法によってその脂肪族ポリカーボネートを、実質的に残渣を残すことなく分解又は除去することができる。従って、金属めっき層の出発材層を用いた微細な配線形成の簡便化、及び/又は高品質化の実現に大きく貢献し得る。
 また、本発明のもう1つの複合部材の製造方法によれば、紫外光に曝露されても高い撥水性を維持する脂肪族ポリカーボネート含有層を有するため、各々の島状の脂肪族ポリカーボネート含有層に挟まれた領域に金属インクを確度高く所望の位置に配置することができる。その結果、その後の金属層のパターン精度の向上につながる。また、この複合部材の製造方法によれば、該金属インクを金属層に変えるための加熱処理を施すことにより、該脂肪族ポリカーボネート含有層の溶媒成分の消失とともに、該脂肪族ポリカーボネートが分解又は除去されることになる。その結果、金属インクを用いた微細な配線形成の簡便化及び/又は高品質化に貢献し得る。
本発明の第1の実施形態の脂肪族ポリカーボネート前駆体のTG-DTA特性の一例を示すグラフである。 本発明の第1の実施形態における複合部材の全体構成を示す側面図である。 本発明の第1の実施形態における複合部材の製造方法の一過程を示す断面模式図である。 本発明の第1の実施形態における複合部材の製造方法の一過程を示す断面模式図である。 本発明の第1の実施形態における複合部材の製造方法の一過程を示す断面模式図である。 本発明の第1の実施形態における複合部材の製造方法の一過程を示す断面模式図である。 本発明の第1の実施形態における複合部材の製造方法の一過程を示す断面模式図である。 本発明の第1の実施形態における複合部材の製造方法の一過程を示す断面模式図である。 本発明の第1の実施形態における複合部材の製造方法の一過程を示す断面模式図である。 本発明の第1の実施形態における複合部材の製造方法の一過程を示す断面模式図である。 本発明の第1の実施形態における、脂肪族ポリカーボネート含有層及び比較例の層の、紫外光への曝露時間に対する撥水性の変化を示すグラフである。 本発明の第1の実施形態における、紫外光に曝露された図11及び表1に示す脂肪族ポリカーボネート含有層の撥水性能の一例を示す、光学顕微鏡による写真である。 本発明の他の実施形態における複合部材の一部の平面図である。 本発明の他の実施形態における複合部材の一部の側面図(a)及び一部の平面図(b)である。 本発明の他の実施形態における複合部材の一部の平面図である。 本発明の他の実施形態における複合部材の全体構成を示す側面図である。 本発明の他の実施形態における複合部材の全体構成を示す側面図である。 本発明の他の実施形態における複合部材の全体構成を示す側面図である。 本発明の第1の実施形態における脂肪族ポリカーボネート含有層及び比較例としての脂肪族ポリカーボネート含有層の、紫外光への曝露時間に対する撥水性の変化を示すグラフである。
 本発明の実施形態である複合部材、脂肪族ポリカーボネート含有層、及び該複合部材の製造方法を、添付する図面に基づいて詳細に述べる。なお、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、各実施形態の要素は必ずしも互いの縮尺を保って記載されるものではない。さらに、各図面を見やすくするために、一部の符号が省略され得る。
<第1の実施形態>
1.複合部材及び該複合部材の製造方法
 本実施形態の複合部材は、基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層(不可避不純物を含み得る。以下、同じ)を備える。最初に、該脂肪族ポリカーボネート含有層について説明する。
(脂肪族ポリカーボネート前駆体及び脂肪族ポリカーボネート含有層について)
 脂肪族ポリカーボネートをある溶媒(代表的には、有機溶媒)中に溶解させた状態が、「脂肪族ポリカーボネート前駆体」を構成する。また、その脂肪族ポリカーボネート前駆体を加熱することによって、ナノ・インプリント法又は各種の印刷法(例えば、スクリーン印刷法)に用いることができる程度に溶媒が除去された状態(代表的には、「ゲル状態」)の層は、本実施形態の「脂肪族ポリカーボネート含有層」である。
 本実施形態の脂肪族ポリカーボネート前駆体は、主として脂肪族ポリカーボネートを含むが、脂肪族ポリカーボネート以外の化合物、組成物、又は材料を含み得る。なお、該脂肪族ポリカーボネート前駆体中の脂肪族ポリカーボネート含有量の下限値は特に限定されないが、代表的には、該脂肪族ポリカーボネートの、溶質の総量に対する質量比が80%以上である。また、該脂肪族ポリカーボネート前駆体中の脂肪族ポリカーボネート含有量の上限値は特に限定されないが、代表的には、該脂肪族ポリカーボネートの、溶質の総量に対する質量比が100%以下である。なお、例えばナノ・インプリント法又はスクリーン印刷法によって形成された複数の島状の該脂肪族ポリカーボネート含有層(代表的には、該脂肪族ポリカーボネート含有層のパターン)を利用して、各々の島状の該脂肪族ポリカーボネート含有層に挟まれた領域に金属インクを配置した後は、該脂肪族ポリカーボネート含有層は、主として加熱工程によって分解又は除去される対象となる。
 なお、複数の島状の該脂肪族ポリカーボネート含有層の代表的な例は、ナノ・インプリント分野、あるいは半導体分野において採用され得るライン・アンド・スペース又はドットに代表されるパターンが形成された脂肪族ポリカーボネート含有層であるが、本実施形態のパターンの形状は、それらに限定されない。例えば、曲導波路、ホール(hole)、及びピラー(pillar)などの各種の公知のパターン形状を有する脂肪族ポリカーボネート含有層も、本実施形態の「複数の島状の脂肪族ポリカーボネート含有層」に含まれ得る。
 また、本実施形態の脂肪族ポリカーボネート含有層については、脂肪族ポリカーボネート含有層という材料が、金属インクを配置するために活用されること自身が、極めて有用、かつ特筆すべき効果といえる。上述のとおり、脂肪族ポリカーボネート含有層が分解又は除去される温度以上に加熱することにより、該金属インクを金属層に変えるとともに、非常に容易に該脂肪族ポリカーボネート含有層の分解又は除去を行うことが可能となることは、半導体素子及び電子デバイスに代表される各種デバイスの製造工程の削減に大きく貢献し得る。また、脂肪族ポリカーボネート含有層が分解又は除去される温度以上に加熱することにより、確度高く該脂肪族ポリカーボネート含有層の分割又は除去を行うためには、脂肪族ポリカーボネート前駆体中に、該脂肪族ポリカーボネート前駆体(又は脂肪族ポリカーボネート含有層)が分解又は除去される温度よりも高い温度によって分解又は除去される他の化合物、組成物、又は材料が含有されていないことが好ましい。
(脂肪族ポリカーボネート及び脂肪族ポリカーボネート含有層の具体例)
 本実施形態においては、熱分解性の良い吸熱分解型の脂肪族ポリカーボネートが用いられる。なお、脂肪族ポリカーボネートの熱分解反応が吸熱反応であることは、示差熱測定法(DTA)によって確認することができる。このような脂肪族ポリカーボネートは、酸素含有量が高く、比較的低温で低分子化合物に分解することが可能であるため、金属酸化物中の炭素不純物に代表される不純物の残存量を低減させることに積極的に寄与する。
 また、本実施形態において、脂肪族ポリカーボネートを含む溶液である「脂肪族ポリカーボネート前駆体」に採用され得る有機溶媒は、脂肪族ポリカーボネートを溶解可能な有機溶媒であれば特に限定されない。有機溶媒の具体例は、ジエチレングリコールモノエチルエーテルアセテート(Diethylene-Glycol-Monoethyl Ether Acetate(以下、「DEGMEA」ともいう。))、α-ターピネオール、β-ターピネオール、N-メチル-2-ピロリドン、2-ニトロプロパン、イソプロピルアルコール、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、トルエン、シクロヘキサン、メチルエチルケトン、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどである。これらの有機溶媒の中でも、沸点が適度に高く、室温での蒸発が少ない観点から、ジエチレングリコールモノエチルエーテルアセテート、α-ターピネオール、N-メチル-2-ピロリドン、2-ニトロプロパン及びプロピレンカーボネートが好適に用いられる。
 また、本実施形態においては、ナノ・インプリント法又はスクリーン印刷法によって形成された複数の島状の該脂肪族ポリカーボネート含有層(代表的には、該脂肪族ポリカーボネート含有層のパターン)を用いることによって、各々の島状の該脂肪族ポリカーボネート含有層に挟まれた領域に金属インクを配置した後は、該脂肪族ポリカーボネート含有層は、最終的には不要物として分解又は除去される対象となる。従って、該パターンが形成されてから分解又は除去されるまでの比較的短い時間だけ、そのパターンを維持すれば足りるという観点から、DEGMEAと2-ニトロプロパンとの混合溶媒を採用することが好ましい。
 また、脂肪族ポリカーボネートを含む溶液である脂肪族ポリカーボネート前駆体には、所望により分散剤、可塑剤等をさらに添加することができる。
 上述の分散剤の具体例は、
 グリセリン、ソルビタン等の多価アルコールエステル;
 ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール;ポリエチレンイミン等のアミン;
 ポリアクリル酸、ポリメタクリル酸等の(メタ)アクリル樹脂;
 イソブチレンまたはスチレンと無水マレイン酸との共重合体、及びそのアミン塩など
である。
 上述の可塑剤の具体例は、ポリエーテルポリオール、フタル酸エステルなどである。
 また、本実施形態の脂肪族ポリカーボネート含有層を形成する方法は、特に限定されない。低エネルギー製造プロセスによる層の形成は、好適な一態様である。より具体的には、特に簡便な方法であるスクリーン印刷法、あるいはナノ・インプリント法により、基材上に脂肪族ポリカーボネート含有層を形成することが好ましい。
<TG-DTA(熱重量測定及び示差熱)特性>
 ここで、比較的低温で低分子化合物に分解することが可能となる脂肪族ポリカーボネートについて、本発明者らは、より具体的にその分解及び消失の過程を調査した。
 図1は、脂肪族ポリカーボネートの代表例であるポリプロピレンカーボネートを溶質とする溶液(すなわち、本実施形態の脂肪族ポリカーボネート前駆体)のTG-DTA特性の一例を示すグラフである。なお、このグラフは、常圧下における結果が示されている。また、図1に示すように、図中の実線は、熱重量(TG)測定結果であり、図中の点線は示差熱(DTA)測定結果である。
 図1に示す熱重量測定の結果から、140℃付近から190℃付近にかけて、脂肪族ポリカーボネート前駆体の溶媒の消失とともに、ポリプロピレンカーボネート自身の一部の分解ないし消失による重量の顕著な減少が見られた。なお、この分解により、ポリプロピレンカーボネートは、二酸化炭素と水に変化していると考えられる。また、図1に示す結果から、190℃付近において、該脂肪族ポリカーボネートが90wt%以上分解され、除去されていることが確認された。さらに詳しく見ると、250℃付近において、該脂肪族ポリカーボネートが95wt%以上分解され、260℃付近において、該脂肪族ポリカーボネートがほぼ全て(99wt%以上)分解されていることが分かる。従って、250℃以上(より好ましくは260℃以上)の加熱処理を行うことによって、実質的に又はほぼ消失又は除去される脂肪族ポリカーボネート前駆体を採用することにより、脂肪族ポリカーボネート前駆体及び該前駆体層から形成される脂肪族ポリカーボネート含有層は、本実施形態の金属層の形成のための犠牲層としての役割を果たす、換言すれば、実質的に自身の残渣を残すことなく分解又は除去されることになる。
 なお、上述の結果は、比較的短時間の加熱処理による該脂肪族ポリカーボネートの分解についての結果であるが、より長時間加熱処理する場合は、より低温(例えば、180℃)であっても十分に該脂肪族ポリカーボネートが分解することが確認されている。換言すれば、加熱による該脂肪族ポリカーボネートの分解又は除去される温度の下限値が、代表的には180℃であるといえる。但し、この下限値の温度は、該脂肪族ポリカーボネートの中の1つ又は数個の結合だけが切れる温度という意味ではなく、該脂肪族ポリカーボネートの分解によって該脂肪族ポリカーボネートが実質的に又はほぼ分解によって質量の減少が確認される温度である。従って、180℃以上で加熱したときに、実質的に又はほぼ分解又は除去される脂肪族ポリカーボネート含有層を採用することにより、本実施形態の複合部材が備える金属層の形成のための犠牲層としての役割を果たす、換言すれば、実質的に自身の残渣を残すことなく分解又は除去されることが可能となる。
 上述のとおり、脂肪族ポリカーボネート含有層を分解又は除去させる温度(代表的には180℃以上、好ましくは250℃以上、更に好ましくは260℃以上)で加熱処理を行えば、本実施形態の複合部材が備える金属層の形成のための犠牲層としての役割を果たす、換言すれば、実質的に自身の残渣を残すことなく分解又は除去されることが可能となる点は、特筆に値する。
(脂肪族ポリカーボネートの詳細について)
 なお、本実施形態においては、脂肪族ポリカーボネートの例として、ポリプロピレンカーボネートが採用されているが、本実施形態で用いられる脂肪族ポリカーボネートの種類は特に限定されない。例えば、エポキシドと二酸化炭素とを重合反応させた脂肪族ポリカーボネートも、本実施形態において採用し得る好適な一態様である。このようなエポキシドと二酸化炭素とを重合反応させた脂肪族ポリカーボネートを用いることにより、脂肪族ポリカーボネートの構造を制御することで吸熱分解性を向上させられる、所望の分子量を有する脂肪族ポリカーボネートが得られるという効果が奏される。とりわけ、脂肪族ポリカーボネートの中でも酸素含有量が高く、比較的低温で低分子化合物に分解する観点から言えば、脂肪族ポリカーボネートは、ポリエチレンカーボネート、ポリプロピレンカーボネート、及びポリブチレンカーボネートからなる群より選ばれる少なくとも1種であることが好ましい。さらに、後述するように、紫外光の照射による、犠牲層としての脂肪族ポリカーボネート層の撥液性の劣化をより確度高く抑制する観点から言えば、脂肪族ポリカーボネートは、ポリプロピレンカーボネート、及びポリブチレンカーボネートからなる群より選ばれる少なくとも1種であることが好ましい。
 また、上述のエポキシドは、二酸化炭素と重合反応して主鎖に脂肪族を含む構造を有する脂肪族ポリカーボネートとなるエポキシドであれば特に限定されない。例えば、エチレンオキシド、プロピレンオキシド、1-ブテンオキシド、2-ブテンオキシド、イソブチレンオキシド、1-ペンテンオキシド、2-ペンテンオキシド、1-ヘキセンオキシド、1-オクテンオキシド、1-デセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキセンオキシド、3-フェニルプロピレンオキシド、3,3,3-トリフルオロプロピレンオキシド、3-ナフチルプロピレンオキシド、3-フェノキシプロピレンオキシド、3-ナフトキシプロピレンオキシド、ブタジエンモノオキシド、3-ビニルオキシプロピレンオキシド、及び3-トリメチルシリルオキシプロピレンオキシド等のエポキシドは、本実施形態において採用し得る一例である。これらのエポキシドの中でも、二酸化炭素との高い重合反応性を有する観点から、エチレンオキシド、及びプロピレンオキシドが好適に用いられる。なお、上述の各エポキシドは、それぞれ単独で使用されてもよいし、2種以上を組み合わせて用いられることもできる。
 上述の脂肪族ポリカーボネートの質量平均分子量は、好ましくは5000~1000000であり、より好ましくは10000~600000である。脂肪族ポリカーボネートの質量平均分子量が5000未満の場合、例えば、粘度の低下による影響等により、例えば、ナノ・インプリント法又はスクリーン印刷法に用いる材料として適さなくなるおそれがある。また、脂肪族ポリカーボネートの質量平均分子量が1000000を超える場合、脂肪族ポリカーボネートの有機溶媒への溶解性が低下するために、この場合もナノ・インプリント法又はスクリーン印刷法に用いる材料として適さなくなるおそれがある。なお、前述の質量平均分子量の数値は、次の方法によって算出することができる。
 具体的には、上述の脂肪族ポリカーボネート濃度が0.5質量%のクロロホルム溶液を調製し、高速液体クロマトグラフィーを用いて測定する。測定後、同一条件で測定した質量平均分子量が既知のポリスチレンと比較することにより、分子量を算出する。また、測定条件は、以下の通りである。
  機種:HLC-8020(東ソー株式会社製)
  カラム:GPCカラム(東ソー株式会社の商品名:TSK GEL Multipore HXL-M)
  カラム温度:40℃
  溶出液:クロロホルム
  流速:1mL/分
 また、上述の脂肪族ポリカーボネートの製造方法の一例として、上述のエポキシドと二酸化炭素とを金属触媒の存在下で重合反応させる方法等が採用され得る。
 ここで、脂肪族ポリカーボネートの製造例は、次のとおりである。
 攪拌機、ガス導入管、温度計を備えた1L容のオートクレーブの系内をあらかじめ窒素雰囲気に置換した後、有機亜鉛触媒を含む反応液、ヘキサン、及びプロピレンオキシドを仕込んだ。次に、攪拌しながら二酸化炭素を加えることによって反応系内を二酸化炭素雰囲気に置換し、反応系内が約1.5MPaとなるまで二酸化炭素を充填した。その後、そのオートクレーブを60℃に昇温し、反応により消費される二酸化炭素を補給しながら数時間重合反応を行った。反応終了後、オートクレーブを冷却して脱圧し、ろ過した。その後、減圧乾燥することによりポリプロピレンカーボネートを得た。
 また、上述の金属触媒の具体例は、アルミニウム触媒、又は亜鉛触媒である。これらの中でも、エポキシドと二酸化炭素との重合反応において高い重合活性を有することから、亜鉛触媒が好ましく用いられる。また、亜鉛触媒の中でも有機亜鉛触媒が特に好ましく用いられる。
 また、上述の有機亜鉛触媒の具体例は、
 酢酸亜鉛、ジエチル亜鉛、ジブチル亜鉛等の有機亜鉛触媒;あるいは、
 一級アミン、2価のフェノール、2価の芳香族カルボン酸、芳香族ヒドロキシ酸、脂肪族ジカルボン酸、脂肪族モノカルボン酸等の化合物と亜鉛化合物とを反応させることにより得られる有機亜鉛触媒など
である。
 これらの有機亜鉛触媒の中でも、より高い重合活性を有することから、亜鉛化合物と、脂肪族ジカルボン酸と、脂肪族モノカルボン酸とを反応させて得られる有機亜鉛触媒を採用することは好適な一態様である。
 ここで、有機亜鉛触媒の製造例は、次のとおりである。
 まず、攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた四つ口フラスコに、酸化亜鉛、グルタル酸、酢酸、及びトルエンを仕込んだ。次に、反応系内を窒素雰囲気に置換した後、そのフラスコを55℃まで昇温し、同温度で4時間攪拌することにより、前述の各材料の反応処理を行った。その後、110℃まで昇温し、さらに同温度で4時間攪拌して共沸脱水させ、水分のみを除去した。その後、そのフラスコを室温まで冷却することにより、有機亜鉛触媒を含む反応液を得た。なお、この反応液の一部を分取し、ろ過して得た有機亜鉛触媒について、IRを測定(サーモニコレージャパン株式会社製、商品名:AVATAR360)した。その結果、カルボン酸基に基づくピークは認められなかった。
 また、重合反応に用いられる上述の金属触媒の使用量は、エポキシド100質量部に対して、0.001~20質量部であることが好ましく、0.01~10質量部であることがより好ましい。金属触媒の使用量が0.001質量部未満の場合、重合反応が進行しにくくなるおそれがある。また、金属触媒の使用量が20質量部を超える場合、使用量に見合う効果がなく経済的でなくなるおそれがある。
 上述の重合反応において必要に応じて用いられる反応溶媒は、特に限定されるものではない。この反応溶媒は、種々の有機溶媒が適用し得る。この有機溶媒の具体例は、
 ペンタン、ヘキサン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;
 クロロメタン、メチレンジクロリド、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、エチルクロリド、トリクロロエタン、1-クロロプロパン、2-クロロプロパン、1-クロロブタン、2-クロロブタン、1-クロロ-2-メチルプロパン、クロルベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等のカーボネート系溶媒など
である。
 また、上述の反応溶媒の使用量は、反応を円滑にさせる観点から、エポキシド100質量部に対して、500質量部以上10000質量部以下であることが好ましい。
 また、上述の重合反応において、エポキシドと二酸化炭素とを金属触媒の存在下で反応させる方法としては、特に限定されるものではない。例えば、オートクレーブに、上述のエポキシド、金属触媒、及び必要により反応溶媒を仕込み、混合した後、二酸化炭素を圧入して、反応させる方法が採用され得る。
 加えて、上述の重合反応において用いられる二酸化炭素の使用圧力は、特に限定されない。代表的には、0.1MPa~20MPaであることが好ましく、0.1MPa~10MPaであることがより好ましく、0.1MPa~5MPaであることがさらに好ましい。二酸化炭素の使用圧力が20MPaを超える場合、使用圧力に見合う効果がなく経済的でなくなるおそれがある。
 さらに、上述の重合反応における重合反応温度は、特に限定されない。代表的には、30~100℃であることが好ましく、40~80℃であることがより好ましい。重合反応温度が30℃未満の場合、重合反応に長時間を要するおそれがある。また、重合反応温度が100℃を超える場合、副反応が起こり、収率が低下するおそれがある。重合反応時間は、重合反応温度により異なるために一概には言えないが、代表的には、2時間~40時間であることが好ましい。
 重合反応終了後は、ろ過等によりろ別し、必要により溶媒等で洗浄後、乾燥させることにより、脂肪族ポリカーボネートを得ることができる。
(複合部材について)
 本実施形態においては、基材上の全体に、上述の脂肪族ポリカーボネート含有層を形成した後、ナノ・インプリント法による型押し構造が形成される。その後、大気圧下において行うプラズマ処理を行うことにより、複数の島状の該脂肪族ポリカーボネート含有層が形成される。さらにその後、各々の島状の該脂肪族ポリカーボネート含有層に挟まれた領域に、金属インクが配置されることにより、複合部材が製造される。なお、該脂肪族ポリカーボネート含有層は、該金属インクを出発材とする金属層が形成される過程において、主として加熱工程によって分解又は除去される。以下に、添付の図面に基づいて詳しく説明する。
(複合部材の全体構成)
 図2は本実施形態における複合部材100の全体構成を示す側面図である。図2に示すように、複合部材100は、基材10上に、紫外光を照射された脂肪族ポリカーボネート含有層24と金属インク72とを備える。より具体的には、複合部材100は、基材10上に配置された、複数の島状の該脂肪族ポリカーボネート含有層24,24,24の、各々の脂肪族ポリカーボネート含有層24,24,24の間に挟まれた領域の少なくとも一部に、基材10上の金属インク72を備えている。図2においては、「V」が示す空間は、金属インクが配置されていないことを示している。言うまでも無く、この「V」が示す空間に金属インクを配置することも採用し得る他の一態様である。なお、本実施形態の基材10の材質は特に限定されないが、代表的には、各種のガラス材、シリコン、その他の公知の絶縁材料(樹脂材料を含む)又は半導体材料が基材10となり得る。また、複合部材200は、基材10と基材10上に配置された金属インクを出発材とする金属層72とを備える部材である。複合部材200については後述する。なお、本実施形態の基材10は、基材10上に、予め、導電体層、半導体層、又は絶縁体層のパターンが形成されているものを含み得る。従って、本実施形態の1つの変形例は、その導電体層上、半導体層上、又は絶縁体層上に、本実施形態の複数の島状の該脂肪族ポリカーボネート含有層24,24,24が形成された複合部材である。
(複合部材の製造方法)
 次に、複合部材100及び複合部材200の製造方法を、図3乃至図10に示しつつ説明する。
 本実施形態においては、図3に示すように、基材10であるガラス又はポリイミド上に、脂肪族ポリカーボネート含有層22の一例であるポリプロピレンカーボネートを公知のスピンコート法又はバーコート法を用いて形成する。なお、脂肪族ポリカーボネート含有層22の厚みは特に限定されないが、その代表的な厚みは、300nm以上1000nm以下である。
 次に、その後のナノ・インプリント法による型押し構造を形成できる程度まで脂肪族ポリカーボネート含有層22を加熱することにより、脂肪族ポリカーボネート含有層22中に含まれる溶媒成分を除去する工程(予備焼成工程又は乾燥工程、以下、総称して「予備焼成工程」という)が行われる。本実施形態においては、予備焼成工程として、100℃~150℃の加熱処理が行われた。
 続いて、図4に示すように、脂肪族ポリカーボネート含有層22に対して、型M1を、0.1MPa以上20MPa以下の圧力を加えて押圧することにより、脂肪族ポリカーボネート含有層22の型押し構造を形成する型押し工程が行われる。型押し加工が施されることにより、図5に示すように、型M1の凸部によって押圧された領域22aの厚みがその他の領域に比べて薄くなる。
 本実施形態のナノ・インプリント法においては、複数の島状の脂肪族ポリカーボネート含有層22が、100℃以上300℃以下で加熱された状態で型押し加工が施される。なお、型押し加工を施している間、換言すれば、加圧状況下においては、脂肪族ポリカーボネート含有層22は完全に分解されずに残留し得る。また、型押し加工を施している間、例えば、国際公開公報WO2013/069686号において開示される技術思想と同様に、基材10を公知のヒーターによって加熱するとともに、型M1自身も公知のヒーターによって加熱している。型押し加工を施している間の基材10及び型M1の各温度は適宜調整されるが、代表的な基材10の加熱温度は50℃~300℃であり、また、その間の代表的な型M1の加熱温度は100℃~220℃である。
 ここで、上記の圧力を「0.1MPa以上20MPa以下」の範囲内としたのは、以下の理由による。まず、その圧力が0.1MPa未満の場合には、圧力が低すぎて脂肪族ポリカーボネート含有層22を型押しすることができなくなる場合があるからである。なお、脂肪族ポリカーボネートとしてポリプロピレンカーボネートを採用する場合は、ポリプロピレンカーボネートが比較的柔らかい材料であることから、0.1MPa程度であっても、型押し加工が可能となる。他方、その圧力が20MPaもあれば、十分に脂肪族ポリカーボネート含有層22を型押しすることができるため、これ以上の圧力を印加する必要がないからである。前述の観点から言えば、本実施形態における型押し工程においては、0.5MPa以上10MPa以下の範囲内にある圧力で型押し加工を施すことが、より好ましい。
 その後、ナノ・インプリント法によって形成された型押し構造を有する脂肪族ポリカーボネート含有層22の全面を、大気圧雰囲気において発生させたプラズマに曝露することによってエッチングするエッチング処理が施される。なお、本実施形態のプラズマを形成するために処理室内へ導入された具体的なガスは、酸素、アルゴン、及びヘリウムである。また、印加した高周波電力は約500Wである。本実施形態においては、ヤマト科学株式会社製(型式,YAP510S)の大気圧プラズマ装置が用いられた。その結果、図6に示すように、複数の島状の、脂肪族ポリカーボネート含有層22,22,22が形成される。
 なお、大気圧雰囲気において発生させたプラズマに加えて、補助的に減圧下における酸素プラズマによるエッチング処理を併用することによって、複数の島状の脂肪族ポリカーボネート含有層22,22,22を形成することもできる。但し、従来採用されてきた真空(減圧)プロセスのような、比較的長時間及び/又は高価な設備を要するプロセスに代わって、環境負荷の小さい、低エネルギー化を実現するプロセスを採用することは、製造時間の短縮、及び製造コストの低減の観点から非常に有利である。
 さらに、大変興味深いことに、大気圧雰囲気において発生させたプラズマのみによって、複数の島状の脂肪族ポリカーボネート含有層22,22,22を形成した場合には、ある有利な特徴が確認された。具体的には、後述する図11に示す測定方法と同様の方法による純水の接触角が、紫外光への曝露によっても、少なくとも一定時間は殆ど変化せず、接触角が大きい状態に維持され得ることが明らかとなった。一方、減圧下における酸素プラズマによって複数の島状の脂肪族ポリカーボネート含有層22,22,22を形成した場合は、紫外光への曝露時間が長くなるほどその接触角が顕著に低下した。
 参考までに、図19は、本実施形態の大気圧雰囲気において発生させたプラズマのみによって形成した複数の島状の脂肪族ポリカーボネート含有層(図中の丸印及び実線)と、減圧下における酸素プラズマによって形成した、比較例としての複数の島状の脂肪族ポリカーボネート含有層(図中の四角印及び破線)の、紫外光への曝露時間に対する撥水性の変化を示すグラフである。但し、縦軸は分かりやすくするために規格化されている。従って、大気圧雰囲気において発生させたプラズマのみによって、複数の島状の脂肪族ポリカーボネート含有層22,22,22を形成することは、該脂肪族ポリカーボネート含有層22,22,22の高い接触角を維持するために非常に有効であることが明らかとなった。
 ここで、複数の島状の、脂肪族ポリカーボネート含有層22,22,22における、各々の脂肪族ポリカーボネート含有層22,22,22の間の最短距離(換言すれば、各々の脂肪族ポリカーボネート含有層22,22,22の最も短い間隔)は、少なくともインプリント法に代表されるパターン形成方法を用いたときは、500nm以上20μm以下を実現し得る。本発明者らの研究と分析によれば、最も微細な各々の脂肪族ポリカーボネート含有層22,22,22の間隔として、最短で500nmという非常に微細な加工といえる前述の数値範囲を実現することができるという知見を得ている。
 なお、本実施形態においては、大気圧下のプラズマを用いて、型押し構造を有する脂肪族ポリカーボネート含有層22の全面をエッチングする処理を施すことにより、複数の島状の脂肪族ポリカーボネート含有層22,22,22が形成されている。しかしながら、複数の島状の脂肪族ポリカーボネート含有層22,22,22の形成方法は、前述の方法に限定されない。例えば、スクリーン印刷法を用いれば、基材10上に脂肪族ポリカーボネート含有層22を塗布したときに、既に、複数の島状の脂肪族ポリカーボネート含有層22,22,22を形成することができる。
 次に、本実施形態においては、図7に示すように、公知の紫外光照射装置80(マルチプライ株式会社製、型式,MHU-110WB)を用いて、複数の島状の脂肪族ポリカーボネート含有層22,22,22、及び脂肪族ポリカーボネート含有層22が配置されていない基材10の表面10aのいずれにも対して、波長180nm以上370nm以下を含む紫外光を照射する紫外光照射工程が行われる。なお、本実施形態における、波長180nm以上370nm以下を含む紫外光を照射する紫外光照射装置の他の例は、市販の365nmを主波長とする紫外光ランプ(アズワン株式会社製、型式,SLW-8)である。
 その結果、紫外光への曝露により、それまでの本実施形態の各工程を経ることによる表面10aの有機物等の汚染物質又は経時的な外気への曝露によって付着した有機物等の汚染物質などを、分解及び/又は除去することができる。その結果、基材10の表面10aは、親水性を確度高く得ることが可能となるため、その後の金属インクの配置が行われる際に、該金属インクと基材10との高い親和性、換言すれば高い濡れ性(以下、総称して、「高い濡れ性」という)を実現することができる。
 なお、上述においても述べたように、本実施形態の基材10は、基材10上に、予め、導電体層、半導体層、又は絶縁体層のパターンが形成されているものを含み得る。ここで、例えば、母材がシリコン基板であって、母材の表面と脂肪族ポリカーボネート含有層22との間に別の層(例えば、酸化シリコン層)が介在している場合は、金属インクとその「別の層」の表面との高い濡れ性を実現する必要が生じる。その場合の紫外光照射工程においては、直接的には、その「別の層」の表面に対して上述の紫外光が照射される。従って、その場合の基材10は、母材であるシリコン基板と該シリコン基板の表面上に設けられた「別の層」とを一体物として捉えたものである。
 一方、紫外光照射工程によって紫外光が照射された脂肪族ポリカーボネート含有層24は、その後の金属インクの配置が行われる際に、該金属インクに対する高い撥水性を維持することが要求される。これは、もし脂肪族ポリカーボネート含有層24が、該金属インクと高い濡れ性を得てしまうと、金属インクが所望の位置(例えば、図7の表面10aで示される領域)とは異なる領域(例えば、紫外光が照射された脂肪族ポリカーボネート含有層24の上面の領域)にまで濡れ広がってしまうためである。その結果、金属インクを出発材として形成される金属層の寸法制御が悪化するという問題が生じることになる。
 しかしながら、本実施形態においては、複数の島状の脂肪族ポリカーボネート含有層24,24,24が形成されているため、例えば、数分~20分程度の間(代表的には、5分間、15分間、又は18分間)の該紫外光の曝露によっても、高い撥水性を維持することが、本発明者らの研究と分析によって明らかになった。
 図11は、本実施形態における脂肪族ポリカーボネート(代表例として、ポリプロピレンカーボネート(PPC))についての脂肪族ポリカーボネート含有層、及び比較例としての公知のシリコン樹脂の層の、紫外光への曝露時間に対する撥水性の変化を示すグラフである。このグラフの撥水性は、測定対象となる各材料の層を形成した上で、その層の表面における純水の接触角を指標としている。また、表1は、本実施形態における脂肪族ポリカーボネート(代表例として、ポリエチレンカーボネート(PEC)、ポリプロピレンカーボネート(PPC)、及びポリブチレンカーボネート(PBC))についての脂肪族ポリカーボネート含有層、及び比較例としての該シリコン樹脂の層、ポリイミドの層、及びポリエチレンテレフタレート(PET)の層の、紫外光への曝露時間に対する撥水性及び紫外光照射前(つまり、0分時点)の接触角を基準(100%)とした場合の接触角の保持率の変化を示している。
 なお、図11及び表1に示す接触角は、(θ/2)法に準拠した方法によって測定された。また、図11中の実線(菱形)が、150℃で予備焼成したときの本実施形態における脂肪族ポリカーボネートの層の結果を示す。加えて、図11中の一点鎖線(丸)は、比較例である該シリコン樹脂を150℃で加熱したときの結果であり、図11中の破線(正方形)は、比較例である該シリコン樹脂を450℃で加熱したときの結果である。また、表1の数値のうち、カッコ外の数値は接触角(deg.)を示し、カッコ内の数値は上述の保持率(%)を示す。また、その保持率として、複数回の実験において得られた結果のうち代表的な値が示されている。
Figure JPOXMLDOC01-appb-T000001
 図11に示すように、ポリプロピレンカーボネートに対する純水の接触角は、紫外光への曝露当初は、若干の低下が見られるが、その後(約3分後以降)は、ほぼ安定して60°(60deg.)以上(より具体的には、65°以上又は65°超)を維持することが明らかとなった。一方、比較例の2つの結果は、加熱温度の違いによらず、紫外光への曝露前のそれらの接触角がポリプロピレンカーボネートの接触角よりも高いにも関わらず、紫外光への曝露によってほぼ直線的に該シリコン樹脂に対する純水の接触角が低下し続けることが確認された。また、図11に示すように、紫外光の照射時間、換言すれば紫外光への曝露時間が5分以上になれば、ポリプロピレンカーボネートに対する純水の接触角と2つの比較例の接触角との差が顕著に現れた。従って、180nm以上370nmの波長を含む紫外光に、脂肪族ポリカーボネート含有層22の少なくとも表面が、5分間曝露されたときであっても、純水とその表面との接触角度が60°以上(さらには、65°以上又は65°超)であることは、特筆に値する。
 また、表1に示すように、各種の脂肪族ポリカーボネートは、紫外光への曝露時間が15分のときに接触角は少なくとも50°以上(より狭義には、表1に示すように50°超)を維持しており、該曝露時間が18分であっても、接触角は少なくとも55°以上(より狭義には、表1に示すように55°超)を維持していることが分かる。特に、ポリプロピレンカーボネート(PPC)、及びポリブチレンカーボネート(PBC)が採用された場合は、該曝露時間が5分~18分のいずれの場合であっても、少なくとも60°以上(より狭義には、表1に示すように60°超)の接触角を保持していることが確認された。なお、ポリエチレンカーボネート(PEC)の接触角について、5分間曝露されたときの値よりも15分間又は18分間曝露されたときの値の方が、接触角が大きいという興味深い結果が得られた。この原因は、現時点では明らかではないが、該紫外光による曝露処理(その処理の雰囲気中にオゾン(O)が存在する場合を含む)により、水酸基(OH基)がポリエチレンカーボネート(PEC)の表面に結合するよりも速く、該ポリエチレンカーボネート(PEC)がエッチングされていることによって、いわば新たなポリエチレンカーボネート(PEC)の表面が現れるためと考えられる。
 また、図11及び表1を別の観点から捉えると、比較例のシリコン樹脂の結果は、紫外光照射前(つまり、0分時点)の接触角を基準(100%)とした場合、5分後には約45~約62%にまで減衰し、10分後以降になると約8~約11%まで減衰していることが確認された。加えて、比較例の他の2種類(ポリイミドの層、及びポリエチレンテレフタレートの層)の材料の結果から、紫外光照射前(つまり、0分時点)の接触角を基準(100%)とした場合、5分後には約27~約50%にまで減衰し、15分後には、約29~約36%にまで減衰していることが分かった。
 一方、上述の保持率について分析すると、本実施形態の脂肪族ポリカーボネート含有層の場合、紫外光照射前(つまり、0分時点)の接触角を基準(100%)とした場合、5分後であっても約70%以上(より狭義には、表1に示すように70%超)の保持率を有していることが分かった。加えて、特に、ポリプロピレンカーボネート又はポリブチレンカーボネートが採用された場合は、紫外光照射前(つまり、0分時点)の接触角を基準(100%)とした場合、5分後であっても約85%以上(より狭義には、表1に示すように85%超)の保持率を有し、10分後であっても、約83%以上(より狭義には、83%超)の保持率を有していることが分かった。さらに、特に、ポリプロピレンカーボネート又はポリブチレンカーボネートについては、15分後又は18分後であっても、約80%以上(より狭義には、表1に示すように80%超)という非常に高い保持率を有していることが分かった。
 従って、本実施形態の脂肪族ポリカーボネート含有層を採用すれば、紫外光照射前(つまり、0分時点)の接触角を基準(100%)とした場合、少なくとも、紫外光照射から5分後、10分後、15分後、又は18分後において、少なくとも70%以上(代表的には70%超であり、より積極的に言えば80%以上)の接触角を維持し得ることが確認された。従って、接触角の保持率又は接触角の保持性能の観点からも、本実施形態の脂肪族ポリカーボネート含有層が優れていることが確認された。
 また、図12は、本実施形態における、紫外光に曝露された図11及び表1に示す脂肪族ポリカーボネート含有層の撥水性能の一例を示す、光学顕微鏡による写真である。なお、図12における紫外光の照射時間は、6分であった。紫外光が照射された脂肪族ポリカーボネート含有層上に20μL(マイクロリットル)の水滴を落とした結果、図12のX印の領域で示すように、その水滴を脂肪族ポリカーボネート含有層が明らかに弾いている様子が観察された。なお、図12は、脂肪族ポリカーボネートの代表例であるポリプロピレンカーボネートの結果を示したが、ポリプロピレンカーボネート以外の脂肪族ポリカーボネートであっても、同様の結果が得られる。
 本実施形態においては、複数の島状の(代表的にはパターンが形成された)、紫外光が照射された脂肪族ポリカーボネート含有層24,24,24が形成された後、図8に示すように、公知の金属インクの塗布装置(例えば、インクジェット法による塗布装置)90を用いて基材10上に金属インク72を配置する配置工程が行われる。なお、本実施形態の金属インク72は、公知の金属触媒ナノ粒子を採用することができる。例えば、銀ナノ粒子インク(DIC株式会社製,型番JAGLT―01)が挙げられるが、その他の公知の金属インクを採用することもできる。また、本実施形態においては、各々の該脂肪族ポリカーボネート含有層24,24,24に挟まれた領域内のうち、一部にのみ金属インク72が配置されているが、全ての該領域内に金属インク72が配置されることも採用し得る他の一態様である。
 上述の金属インク72の配置工程を経ることにより、図9に示す複合部材100が製造される。この金属インク72は、後述するように、金属配線用中間材としての役割を担うことができる。
 本実施形態においては、さらに、上述の配置工程の後、脂肪族ポリカーボネート含有層24,24,24及び金属インク72を、脂肪族ポリカーボネート含有層24,24,24が分解又は除去される温度以上であり、かつ金属インク72から金属層74が形成される温度以上に加熱する、加熱工程が行われる。その結果、図10に示すように、基材10上に金属層74が配置された複合部材200を製造することができる。ここで、この加熱工程によって、犠牲層としての脂肪族ポリカーボネート含有層24,24,24は、確度高く、換言すれば、実質的に分解又は除去されることになる。その結果、実質的に残渣が残らない状態の基材10上に配置された金属層72を備えるため、複合部材200は信頼性ないし安定性の高い複合部材となる。
 なお、金属インク72が、金属配線用中間材としての役割を担う場合は、金属インク72の加熱処理によって形成される金属層74は、金属配線となる。但し、金属インク72を出発材として形成される金属層74は、配線としての役割以外の役割(例えば、電極など)を果たすこともできる。
 本実施形態の加熱工程についてより具体的に説明する。本実施形態では、基材10上に配置されている脂肪族ポリカーボネート含有層24,24,24及び金属インク72に対して、公知のヒーターを用いて、約150℃で約30分間の加熱処理を施した。その結果、微細な幅を有する金属層74を備えた複合部材200を製造することができる。なお、本実施形態の公知のヒーターは、アズワン株式会社製のホットプレート(型式,TH-900)であるが、加熱手段はそのようなヒーターに限定されない。例えば、その他の公知のホットプレート等のヒーターは、採用し得る他の一態様である。
<第1の実施形態の変形例>
 ところで、本実施形態においては金属層74を形成するために出発材として金属インク72を用いたが、第1の実施形態の変形例として、金属インク72の配置の代わりに、公知の無電解めっき法に用いるための出発材層、すなわち金属めっき層の出発材層を形成する工程を採用することもできる。
 例えば、図16は、この変形例の複合部材400の全体構成を示す側面図である。複合部材400は、基材10上に配置された、複数の島状の脂肪族ポリカーボネート含有層の各々に挟まれた領域の少なくとも一部に、基材10上の金属めっき層の出発材層73を備えている。なお、複合部材400は、第1の実施形態の紫外光照射工程以前の各工程が施された後、第1の実施形態の配置工程とは異なる配置工程が採用される。
 具体的には、複数の島状の(代表的にはパターンが形成された)、紫外光が照射された脂肪族ポリカーボネート含有層24,24,24が形成された後、基材10上の、各々の脂肪族ポリカーボネート含有層24,24,24に挟まれた領域の少なくとも一部に、金属めっき層の出発材層を配置する配置工程が行われる。その結果、脂肪族ポリカーボネート含有層24,24,24及び金属めっき層の出発材層を備えた複合部材400を製造することができる。なお、本実施形態の金属めっき層の出発材層73における出発材の一例は、公知の金属触媒ナノ粒子である。
 その配置工程の後、脂肪族ポリカーボネート含有層24,24,24及び金属めっき層の出発材層73を、脂肪族ポリカーボネート含有層24,24,24が分解又は除去される温度以上(例えば、180℃以上、好ましくは250℃以上、更に好ましくは260℃以上)に加熱する、加熱工程が行われる。その結果、図17に示すように、基材10上に金属めっき層の出発材層73が配置された複合部材500を製造することができる。なお、この加熱工程によって、犠牲層としての脂肪族ポリカーボネート含有層24,24,24は、確度高く、換言すれば、実質的に残渣を残すことなく分解又は除去されることになる。
 さらに、その後、公知の無電解めっき法によって金属層(例えば、銅(Cu)層)75を形成する金属層の形成工程が行われることにより、図18に示すように、複合部材600を製造することができる。
<その他の実施形態1>
 また、第1の実施形態、又は第1の実施形態の変形例において示された基材10上に金属層74,75が配置された複合部材200において、金属層74,75を金属配線又は導電体層として活用することは、好適な一態様である。
 例えば、図13は、採用し得る1つの実施形態としての複合部材300Aを構成する複合部材200の一部の平面図である。また、図14は、採用し得る1つの実施形態としての複合部材300Aの一部の側面図(a)及び一部の平面図(b)である。
 図13(a)に示す、金属層74又は金属層75を用いた導電体層74aに示す紙面縦方向のみのメッシュ状の配線を備えた複合部材200と、図13(b)に示す、金属層74又は金属層75を用いた導電体層74bに示す紙面横方向のみのメッシュ状の配線を備えた複合部材200とが準備される。その後、図14(a)及び(b)に示すように、それら2つの複合部材200を電極として、誘電体層50を介して2つの複合部材200を重ね合わせる、金属層形成工程が行われる。その結果、誘電体層50を介して2つの複合部材200を重ね合わせた構造を備える複合部材300Aを製造することができる。なお、前述のメッシュ状の代わりにハニカム構造が採用されても良い。
 また、代表的な導電体層74a,74bの幅は、約500nm~約20μmである。これらの配線の幅は、第1の実施形態の少なくともナノ・インプリント法によって、複数の島状の脂肪族ポリカーボネート含有層の、各々の該脂肪族ポリカーボネート含有層に挟まれた領域(隙間)の間隔として実現し得る幅である。そのため、この実施形態によれば、従来採用されてきた真空プロセス又はフォトリソグラフィー法を用いたプロセスといった比較的長時間、及び/又は高価な設備を要するプロセスに代わって、環境負荷の小さい、低エネルギー化を実現するプロセスによって、複合部材300Aを製造することができることになる。
 上述の非常に細い配線の幅を採用することは、たとえその配線自身に透明性が無くても、通常は人間の目には認識されない程度の細さを実現することになる。その結果、例えば複合部材300Aをいわゆる静電容量方式のタッチパネルとして利用した場合に、そのタッチパネルの導電体層として活用することが可能となる。
<その他の実施形態2>
 なお、複合部材の一例として、図14及び図15に示すような静電容量方式のタッチパネルを示しているが、タッチパネルの検出方式は静電容量方式に限定されない。例えば、抵抗膜方式のタッチパネルの導電体層として、第1の実施形態の金属層74を活用することは、採用し得る好適な他の一態様である。
 例えば、図15は、採用し得る1つの実施形態としての複合部材300Bの一部の平面図である。図15に示す複合部材300Bは、金属層74又は金属層75を用いた導電体層74cに示す紙面縦方向のみ配線を備えた複合部材200と、金属層74又は金属層75を用いた導電体層74dに示す紙面横方向のみを配線を備えた複合部材200とをある公知の距離を離して重ね合わせた構造を備える。なお、図15は平面視であるため、2つの複合部材200が、例えば公知のスペーサーを用いて、該距離を離して重なっていることは直接的には示されていないが当業者であれば理解し得る。
 また、代表的な導電体層74c,74dの配線の幅は、約500nm~約20μmである。これらの配線の幅は、第1の実施形態の少なくともナノ・インプリント法によって、複数の島状の脂肪族ポリカーボネート含有層の、各々の該脂肪族ポリカーボネート含有層に挟まれた領域(隙間)の間隔として実現し得る幅である。そのため、この実施形態によれば、従来採用されてきた真空プロセス又はフォトリソグラフィー法を用いたプロセスといった比較的長時間、及び/又は高価な設備を要するプロセスに代わって、環境負荷の小さい、低エネルギー化を実現するプロセスによって、複合部材300Bを製造することができることになる。
 上述の非常に細い配線の幅を採用することは、たとえその配線自身に透明性が無くても、通常は人間の目には認識されない程度の細さを実現することになる。その結果、例えば複合部材300Bをいわゆる抵抗膜方式のタッチパネルとして利用した場合に、そのタッチパネルの導電体層として活用することが可能となる。
 なお、第1の実施形態の複合部材100及び複合部材200は、タッチパネル以外のデバイス(例えば、有機ELデバイス、フレキシブルプリント配線版、又はフレキシブル圧電センサーシート)への適用も可能である。
 従って、第1の実施形態の各工程を経た上で、図13乃至図15に示すような、複数の複合部材200,200を重ね合わせることにより、平面視において格子状の導電体層74a,74b,74c,74dとなるように形成する、配線形成工程を設けることは、タッチパネルに代表される各種のデバイスの製造に際して、環境負荷の低減、及び製造コストの低減を実現し得る。
<その他の実施形態3>
 ところで、第1の実施形態においては、加熱処理のみによって該脂肪族ポリカーボネートを分解させているが、本実施形態においては、別の手段によって該脂肪族ポリカーボネートを実質的に分解又は除去することができることが確認されている。例えば、公知の紫外光照射装置(サムコ株式会社製、型式,UV-300H-E)を用いて、180nm以上370nm以下の波長を含む紫外光を照射しながら加熱処理を施した場合は、該脂肪族ポリカーボネートの分解又は除去がより促進されることになる。なお、該紫外光による処理の際に、その処理の雰囲気中にオゾン(O)が生成すること、あるいは、積極的に処理雰囲気中にオゾン(O)を導入することは許容される。
 その結果、第1の実施形態の加熱温度よりも低温(例えば、120℃以上180℃未満、代表的には、120℃以上140℃以下)の加熱処理を施すことによって、該脂肪族ポリカーボネートが実質的に又はほぼ消失し得ることが、本発明者らの研究及び分析によって確認された。従って、本実施形態においては、金属インクから金属層を形成するために要する加熱処理の温度が、上述の該脂肪族ポリカーボネートが実質的に又はほぼ消失し得る温度と同等の又はより低い温度である場合は、該脂肪族ポリカーボネートが実質的に又はほぼ消失し得る温度にまで加熱するだけで、複合部材200を形成することができる。
<その他の実施形態4>
 加えて、第1の実施形態のもう1つの変形例においては、加熱処理を伴わずに該脂肪族ポリカーボネートを分解させる他の手段があることを本発明者らは確認した。例えば、脂肪族ポリカーボネート含有層を、加熱処理を伴わずに、大気圧雰囲気において発生させたプラズマに曝露することによって該脂肪族ポリカーボネートを分解させることができる。この変形例においては、大気圧雰囲気において発生させたプラズマに曝露している間、加熱処理が行われないため、該プラズマ処理とは別に、金属インクから金属層を形成するために要する加熱処理の温度にまで加熱するだけで、複合部材200を形成することができる。
 以上述べたとおり、上述の各実施形態の開示は、それらの実施形態の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、各実施形態の他の組み合わせを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
 本発明は、各種の半導体素子を含む携帯端末、情報家電、センサー、その他の公知の電化製品、MEMS(Micro Electro Mechanical Systems)又はNEMS(Nano Electro Mechanical Systems)、及び医療機器等を含む電子デバイス分野等に広く適用され得る。
 10    基材
 10a   基材の表面
 22    脂肪族ポリカーボネート含有層
 22a   型M1の凸部によって押圧された領域
 24    紫外光を照射された脂肪族ポリカーボネート含有層
 72    金属インク
 73    金属めっき層の出発材層
 74,75 金属層
 74a,74b,74c,74d  導電体層
 80    紫外光照射装置
 90    塗布装置
 100,200,300A,300B,400,500,600  複合部材

Claims (17)

  1.  基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面が、180nm以上370nm以下の波長を含む紫外光に15分間曝露されたときに、純水と前記表面との接触角度が50°以上であり、
     各々の前記脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部に、前記基材上の金属インクを備える、
     複合部材。
  2.  基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面が、180nm以上370nm以下の波長を含む紫外光に15分間曝露されたときに、純水と前記表面との接触角度が50°以上であり、
     各々の前記脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部に、前記基材上の金属めっき層の出発材層を備える、
     複合部材。
  3.  前記表面が、前記紫外光に5分間曝露されたときに、純水と前記表面との接触角度が60°以上である、
     請求項1又は請求項2に記載の複合部材。
  4.  180nm以上370nm以下の波長を含む紫外光を照射しながら、120℃以上180℃未満で加熱したときに、前記脂肪族ポリカーボネート含有層が実質的に分解又は除去される、
     請求項1又は請求項2に記載の複合部材。
  5.  180℃以上で加熱したときに、前記脂肪族ポリカーボネート含有層が実質的に分解又は除去される、
     請求項1又は請求項2に記載の複合部材。
  6.  各々の前記脂肪族ポリカーボネート含有層の間の最短距離が、500nm以上20μm以下である、
     請求項1又は請求項2に記載の複合部材。
  7.  前記金属インクが、金属配線用中間材である、
     請求項1に記載の複合部材。
  8.  複数の島状の脂肪族ポリカーボネート含有層であって、前記脂肪族ポリカーボネート含有層の少なくとも表面が、180nm以上370nm以下の波長を含む紫外光に15分間曝露されたときに、純水と前記表面との接触角度が50°以上である、
     脂肪族ポリカーボネート含有層。
  9.  前記表面が、前記紫外光に5分間曝露されたときに、純水と前記表面との接触角度が60°以上である、
     請求項8に記載の脂肪族ポリカーボネート含有層。
  10.  基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面、及び前記基材の少なくとも表面に対して、180nm以上370nm以下の波長を含む紫外光を照射する、紫外光照射工程と、
     前記紫外光照射工程の後、各々の前記脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部の前記基材上に、金属インクを配置する配置工程と、を含む、
     複合部材の製造方法。
  11.  基材上に配置された、複数の島状の脂肪族ポリカーボネート含有層の少なくとも表面、及び前記基材の少なくとも表面に対して、180nm以上370nm以下の波長を含む紫外光を照射する、紫外光照射工程と、
     前記紫外光照射工程の後、各々の前記脂肪族ポリカーボネート含有層に挟まれた領域の少なくとも一部の前記基材上に、金属めっき層の出発材層を配置する配置工程と、を含む、
     複合部材の製造方法。
  12.  前記配置工程の後、前記脂肪族ポリカーボネート含有層及び前記金属インクを、前記脂肪族ポリカーボネート含有層が分解又は除去される温度以上であり、かつ前記金属インクから金属層が形成される温度以上に加熱する、加熱工程と、を含む、
     請求項10に記載の複合部材の製造方法。
  13.  前記配置工程の後、前記脂肪族ポリカーボネート含有層及び前記出発材層を、前記脂肪族ポリカーボネート含有層が分解又は除去される温度以上に加熱する加熱工程と、を含む、
     請求項11に記載の複合部材の製造方法。
  14.  前記加熱工程において、180nm以上370nm以下の波長を含む紫外光を照射しながら、前記脂肪族ポリカーボネート含有層が分解又は除去される温度以上に加熱する、
     請求項12又は請求項13に記載の複合部材の製造方法。
  15.  複数の島状の前記脂肪族ポリカーボネート含有層が、150℃以上300℃以下で加熱された状態で型押し加工を施した後、前記型押し加工が施された前記脂肪族ポリカーボネート含有層の全面をプラズマに曝露することによって形成される、
     請求項10乃至請求項14のいずれか1項に記載の複合部材の製造方法。
  16.  0.1MPa以上20MPa以下の範囲内の圧力で前記型押し加工を施す、
     請求項15に記載の複合部材の製造方法。
  17.  前記複合部材の製造方法によって製造された複数の複合部材を重ね合わせることにより、平面視においてメッシュ状又は格子状の導電体層となるように形成する、金属層形成工程をさらに含む、
     請求項10乃至請求項16のいずれか1項に記載の複合部材の製造方法。
PCT/JP2016/071387 2015-09-18 2016-07-21 複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層 WO2017047227A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187008078A KR20180054633A (ko) 2015-09-18 2016-07-21 복합 부재 및 복합 부재의 제조 방법 및 지방족 폴리카보네이트 함유층
CN201680051797.5A CN107949903B (zh) 2015-09-18 2016-07-21 复合部件及复合部件的制造方法及含有脂肪族聚碳酸酯的层
US15/759,053 US10634996B2 (en) 2015-09-18 2016-07-21 Composite member and method of manufacturing the same, and aliphatic polycarbonate-containing layer
EP16846100.2A EP3352202A4 (en) 2015-09-18 2016-07-21 COMPOSITE ELEMENT, METHOD FOR MANUFACTURING COMPOSITE ELEMENT, AND LAYER CONTAINING ALIPHATIC POLYCARBONATE
JP2017539741A JP6709793B2 (ja) 2015-09-18 2016-07-21 複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015185569 2015-09-18
JP2015-185569 2015-09-18
JP2015221926 2015-11-12
JP2015-221926 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017047227A1 true WO2017047227A1 (ja) 2017-03-23

Family

ID=58288719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071387 WO2017047227A1 (ja) 2015-09-18 2016-07-21 複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層

Country Status (7)

Country Link
US (1) US10634996B2 (ja)
EP (1) EP3352202A4 (ja)
JP (1) JP6709793B2 (ja)
KR (1) KR20180054633A (ja)
CN (1) CN107949903B (ja)
TW (1) TWI690998B (ja)
WO (1) WO2017047227A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094099A (ko) 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 폴리프로필렌 카보네이트 함유층 및 그 제조방법, 및 폴리프로필렌 카보네이트 함유층을 구비하는 기재
KR20190094101A (ko) 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 지방족 폴리카보네이트 함유 용액 및 그 제조방법, 및 지방족 폴리카보네이트 함유층 및 그 제조방법
KR20190094100A (ko) 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 폴리프로필렌 카보네이트 함유 용액 및 폴리프로필렌 카보네이트 함유층
KR20190111742A (ko) 2018-03-22 2019-10-02 스미토모 세이카 가부시키가이샤 폴리프로필렌카보네이트 함유 용액 및 폴리프로필렌카보네이트 함유층, 및 복합부재의 제조방법
KR20190111743A (ko) 2018-03-22 2019-10-02 스미토모 세이카 가부시키가이샤 복합부재 및 그 제조방법
JP2021174923A (ja) * 2020-04-28 2021-11-01 株式会社村田製作所 積層型セラミック電子部品の製造方法および消失性インク

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170141668A (ko) * 2015-04-16 2017-12-26 고쿠리츠다이가쿠호진 호쿠리쿠 센단 가가쿠 기쥬츠 다이가쿠인 다이가쿠 에칭 마스크, 에칭 마스크 전구체 및 산화물층의 제조 방법 및 박막 트랜지스터의 제조 방법
WO2017047227A1 (ja) * 2015-09-18 2017-03-23 国立大学法人北陸先端科学技術大学院大学 複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層
TWI650689B (zh) * 2017-11-10 2019-02-11 恆顥科技股份有限公司 觸控面板及其製作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048163A (ja) * 2007-07-25 2009-03-05 Osaka Prefecture Univ 感光性樹脂組成物、それを使用したスクリーン印刷用版及びスクリーン印刷用版の製造方法
JP2010106286A (ja) * 2002-11-01 2010-05-13 Georgia Tech Research Corp 犠牲組成物、その使用方法、及びその分解方法
US20130020643A1 (en) * 2010-03-30 2013-01-24 Richard David Price Transistor and its Method of Manufacture
WO2013047360A1 (ja) * 2011-09-28 2013-04-04 凸版印刷株式会社 電子ペーパーおよびその製造方法
JP2014209516A (ja) * 2013-04-16 2014-11-06 大日本印刷株式会社 機能性素子の製造方法および機能性素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9119247D0 (en) 1991-09-09 1991-10-23 Cookson Group Plc Novel polymers and their use in binder systems
JP2004351272A (ja) * 2003-05-27 2004-12-16 Seiko Epson Corp 薄膜パターンの形成方法及びデバイスの製造方法、電気光学装置及び電子機器
US20070231542A1 (en) * 2006-04-03 2007-10-04 General Electric Company Articles having low wettability and high light transmission
JPWO2008018599A1 (ja) * 2006-08-11 2010-01-07 旭硝子株式会社 重合性含フッ素化合物、親水性領域と撥水性領域を有する処理基材
DE102009007544B3 (de) * 2009-02-04 2010-08-12 Okt Germany Gmbh Verfahren zur Herstellung von Dekorpapier sowie Dekorpapier
JP5487193B2 (ja) 2011-12-26 2014-05-07 株式会社日立製作所 複合部材
CN108878267A (zh) 2013-08-09 2018-11-23 国立大学法人北陆先端科学技术大学院大学 氧化物半导体层及其制造方法、以及氧化物半导体的前驱体、半导体元件及电子装置
CN105874575B (zh) 2013-12-16 2019-04-16 国立大学法人北陆先端科学技术大学院大学 半导体器件及其制造方法以及脂肪族聚碳酸酯
WO2017047227A1 (ja) * 2015-09-18 2017-03-23 国立大学法人北陸先端科学技術大学院大学 複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106286A (ja) * 2002-11-01 2010-05-13 Georgia Tech Research Corp 犠牲組成物、その使用方法、及びその分解方法
JP2009048163A (ja) * 2007-07-25 2009-03-05 Osaka Prefecture Univ 感光性樹脂組成物、それを使用したスクリーン印刷用版及びスクリーン印刷用版の製造方法
US20130020643A1 (en) * 2010-03-30 2013-01-24 Richard David Price Transistor and its Method of Manufacture
WO2013047360A1 (ja) * 2011-09-28 2013-04-04 凸版印刷株式会社 電子ペーパーおよびその製造方法
JP2014209516A (ja) * 2013-04-16 2014-11-06 大日本印刷株式会社 機能性素子の製造方法および機能性素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352202A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094099A (ko) 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 폴리프로필렌 카보네이트 함유층 및 그 제조방법, 및 폴리프로필렌 카보네이트 함유층을 구비하는 기재
KR20190094101A (ko) 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 지방족 폴리카보네이트 함유 용액 및 그 제조방법, 및 지방족 폴리카보네이트 함유층 및 그 제조방법
KR20190094100A (ko) 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 폴리프로필렌 카보네이트 함유 용액 및 폴리프로필렌 카보네이트 함유층
KR20190111742A (ko) 2018-03-22 2019-10-02 스미토모 세이카 가부시키가이샤 폴리프로필렌카보네이트 함유 용액 및 폴리프로필렌카보네이트 함유층, 및 복합부재의 제조방법
KR20190111743A (ko) 2018-03-22 2019-10-02 스미토모 세이카 가부시키가이샤 복합부재 및 그 제조방법
JP2021174923A (ja) * 2020-04-28 2021-11-01 株式会社村田製作所 積層型セラミック電子部品の製造方法および消失性インク
JP7264104B2 (ja) 2020-04-28 2023-04-25 株式会社村田製作所 積層型セラミック電子部品の製造方法および消失性インク

Also Published As

Publication number Publication date
KR20180054633A (ko) 2018-05-24
TW201727747A (zh) 2017-08-01
TWI690998B (zh) 2020-04-11
CN107949903A (zh) 2018-04-20
JP6709793B2 (ja) 2020-06-17
EP3352202A1 (en) 2018-07-25
US10634996B2 (en) 2020-04-28
JPWO2017047227A1 (ja) 2018-08-30
CN107949903B (zh) 2022-10-14
EP3352202A4 (en) 2019-01-09
US20190041744A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2017047227A1 (ja) 複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層
KR20160041947A (ko) 산화물 반도체층 및 그 제조방법, 그리고 산화물 반도체의 전구체, 산화물 반도체층, 반도체 소자, 및 전자 디바이스
US10340388B2 (en) Intermediate semiconductor device having an aliphatic polycarbonate layer
JP6744395B2 (ja) 積層体、エッチングマスク、積層体の製造方法、及びエッチングマスクの製造方法、並びに薄膜トランジスタの製造方法
US20200027743A1 (en) Method of producing etching mask, etching mask precursor, and oxide layer, and method of manufacturing thin film transistor
JP6337363B1 (ja) 複合部材及びその製造方法
KR102460301B1 (ko) 산화물의 전구체, 산화물층, 반도체 소자, 및 전자 디바이스, 그리고 산화물층의 제조방법 및 반도체 소자의 제조방법
KR20190094099A (ko) 폴리프로필렌 카보네이트 함유층 및 그 제조방법, 및 폴리프로필렌 카보네이트 함유층을 구비하는 기재
TWI770352B (zh) 含有聚丙烯碳酸酯(Polypropylene Carbonate)之溶液及含有聚丙烯碳酸酯之層
JP2015093339A (ja) 微細構造物及びその製造方法並びに脂肪族ポリカーボネート
TWI791753B (zh) 含有脂肪族聚碳酸酯之溶液及其製造方法、以及含有脂肪族聚碳酸酯之層及其製造方法
TWI784128B (zh) 複合構件及其製造方法
KR20190111742A (ko) 폴리프로필렌카보네이트 함유 용액 및 폴리프로필렌카보네이트 함유층, 및 복합부재의 제조방법
JP2020076043A (ja) 脂肪族ポリカーボネート含有溶液及びその製造方法、並びに脂肪族ポリカーボネート含有層及びその製造方法
JP2020076042A (ja) ポリプロピレンカーボネート含有溶液及びポリプロピレンカーボネート含有層

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187008078

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016846100

Country of ref document: EP