WO2017045904A1 - Verfahren zur bekämpfung von resistenten insekten unter verwendung eines cyclodextrin-komplexes - Google Patents

Verfahren zur bekämpfung von resistenten insekten unter verwendung eines cyclodextrin-komplexes Download PDF

Info

Publication number
WO2017045904A1
WO2017045904A1 PCT/EP2016/070332 EP2016070332W WO2017045904A1 WO 2017045904 A1 WO2017045904 A1 WO 2017045904A1 EP 2016070332 W EP2016070332 W EP 2016070332W WO 2017045904 A1 WO2017045904 A1 WO 2017045904A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
complex
hydroxypropyl
cypermethrin
cyhalothrin
Prior art date
Application number
PCT/EP2016/070332
Other languages
English (en)
French (fr)
Inventor
Ingo Jeschke
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Publication of WO2017045904A1 publication Critical patent/WO2017045904A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds

Definitions

  • the invention relates to a method for controlling resistant insects with cyclodextrin inclusion compounds of insecticides.
  • Pests resistance to pesticides is an increasing problem. Resistance to insecticides has become the first time in the year
  • One method is the simultaneous administration of insecticides with synergists.
  • insecticides such as pyrethoids, neonicotinoids,
  • Carbamates or organophosphates can be significantly increased by the application together with synergists such as piperonyl butoxide (PBO), S, S, S-tributyl phosphoro-trithioate (DEF) or N-Octylbicyclohepten dicarboximide (MGK-264).
  • PBO piperonyl butoxide
  • DEF S-tributyl phosphoro-trithioate
  • MGK-264 N-Octylbicyclohepten dicarboximide
  • Cyclodextrins are cyclic oligosaccharides containing six (oc), seven (ß) or eight ( ⁇ -), over - (1, 4) bonds linked together D ⁇ glucopyranose units. Due to their ring-shaped molecular structure with a hydrophobic cavity, cyclodextrins can form reversible complexes with hydrophobic guest molecules. Due to the hydrophilic surface of the cyclodextrins, the water solubility of hydrophobic substances can be greatly improved with their help. At the same time, the volatility of volatile substances can be significantly reduced by complex formation with cyclodextrins, achieve a delayed release, and improve the stability of labile substances.
  • resistant insects can be well controlled by a combination of insecticides and PBO in the form of cyclodextrin complexes (Piccolo Oreste, 2004, EP 1 715 739 Bl and Piccolo Oreste, 2005, EP 1 876 890 Bl).
  • the object of the invention was to provide a further method for controlling resistant insects.
  • a method in which resistant insects are treated with a cyclodextrin complex characterized in that the cyclodextrin complex is a complex of an active substance with insecticidal properties and a cyclodextrin derivative selected from the group hydroxypropyl ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin and methyl- ⁇ -cyclodextrin.
  • the cyclodextrin derivative is hydroxypropyl- ⁇ -cyclodextrin or methyl- ⁇ -cyclodextrin.
  • the method according to the invention enables the targeted control of resistant pests by the use of complexes of certain cyclodextrin derivatives which, due to their chemical nature, have a preferential penetration into the cell membrane of insects.
  • the active substance having insecticidal properties is preferably selected from the group of pyrethoids, neonicotinoids, benzoylureas, chlorinated channel activators, diacylhydrazines, spinosynes, pyridine derivatives, ryanodine receptor modulators, thioureas, oxadiazines, triazines, tetronic acid derivatives, phenylpyrenes. razole, hydrazine carboxylic acid esters, organosulfites, thiazolidines, pyridazinones, pyrazoles, chitin inhibitors and mixtures thereof.
  • Insecticide may belong to one of the following substance classes:
  • Pyrethroids such as allethrin, bioallethrin, tetramethrin, prallethrin, cypermethrin (a-cypermethrin, ⁇ -cypermethrin, ⁇ -cypermethrin), esbiothrin, permethrin, fenpro- pathrine, transfluthrin, bifenthrin, resmethrin, bioresmethrin, fenvalerate, fluvalinate, acrinathrin, esfenvalerate, imiprothrin, phenothrin, ⁇ -cyfluthrin, deltameth in, ⁇ -cyhalothrin, ⁇ -cyhalothrin, etofenprox and silafluofen, the following representatives being preferred: ⁇ -Cyhalothrin, deltamethrin, cypermethrin ( ⁇ -cy
  • Neonicotinoids such as thiamethoxam, imidacloprid, clothianidin, acetamiprid, thiacloprid and nitenpyram, with the following representatives being preferred: imidacloprid, clothianidin and thiacloprid. Of these, further preferred are: imidacloprid and thiacloprid.
  • Benzoylureas lufenuron, teflubenzuron, novaluron,
  • Diflubenzuron, triflumuron, flufenoxuron with the following representatives being preferred: lufenuron, teflubenzuron, novaluron, diflubenzuron. Of these are even more preferred: Lufenuron and Diflubenzuron.
  • Chlorine channel activators such as abamectin and
  • diacylhydrazines such as methoxyfenozide and tebufenozide, spinosyns such as spinosad and spinetoram, pyridine derivatives such as pyriproxyfen, ryanodine receptor modulators such as chlorantranilinolur, thioureas such as diafenthiuron, oxadiazines such as indoxocarb, triazines such as cyromazine, tetronic acid derivatives such as spirodicofen and Spiromesifen, phenylpyrazoles such as fipronil, hydrazine carboxylic acid esters such as bifenazate, organosulfites such as propargite, thiazolidines such as hexythiazox, pyridazinones such as pyridazene, pyrazoles such as fenpyroximate and chitin
  • the ratio of the insecticide to the cyclodextrin derivative is preferably in the range between 0.1% and 40% (weight /
  • the preparation of the insecticidal composition is carried out in a conventional manner by complexing an insecticide with said cyclodextrin derivatives.
  • the complexation can be carried out by all methods known in the art, preferably it is carried out by the co-precipitation process, the melting-in process or the paste process.
  • the insecticide is dissolved in a suitable solvent and added in the desired ratio to an aqueous solution of the cyclodextrin derivative heated to 20 to 70.degree. C., preferably to 50.degree.
  • the solution is stirred for a period of 16 hours and then the solvent is removed.
  • the residue is dried at 40.degree.
  • the solvent is preferably acetone, methanol or ethanol.
  • the cyclodextrin derivative is initially charged in water and heated to 20 to 70 ° C, preferably 50 ° C.
  • the insecticide is added in portions and stirred for 16 hours at said temperature. Uncomplexed insecticide is filtered off and the complex is isolated by lyophilization.
  • the cyclodextrin derivative is blended together with the insecticide in the desired ratio and water is added in a proportion of 30% by weight of the two components.
  • the resulting paste is held for a period of eight hours at 70 ° C in a closed glass vessel and mixed hourly by means of a spatula. After the eight hours, the paste is dried and ground for further use.
  • the following examples serve to further illustrate the invention.
  • Example 2 Preparation of the Cyclodextrin Complex of Lambda Cyhalothrin with the Methylated Beta-Cyclodextrin (M- ⁇ -CD) After Melting In process - ⁇ -CD (20 g) is dissolved in 180 ml of water and heated to 50 ° C. ⁇ -Cyhalothrin (7.75 g) is added portionwise to the cyclodextrin solution. The solution is stirred for 16 hours at 50 ° C and then filtered off the uncomplexed ⁇ -Cyhalothrin. The remaining solution is freeze-dried. The residue is analyzed analytically. There are obtained 19.6 g of cyclodextrin complex having a guest content of 1.5% ⁇ -cyhalothrin. A DSC (Differential Scanning Calorimetry) investigation has revealed that the guest is not fully complexed.
  • DSC Different Scanning Calorimetry
  • Example 3 Preparation of the cyclodextrin complex of lambda cyhalothrin with the methylated beta-cyclodextrin (M- ⁇ -CD) according to the paste method
  • M-ß-CD (10 g) is stirred together with ⁇ -cyhalothrin (3.49 g) and 4 ml of water at 70 ° C over a period of eight hours regularly in a screw-capped glass with a spatula.
  • the paste is then dried and analyzed analytically. There are obtained 13.5 g of cyclodextrin complex having a guest content of 24.8% ⁇ -cyhalothrin.
  • a DSC Different Scanning Calorimetry
  • Example 4 Preparation of the cyclodextrin complex of Lawbda. Cyhalothrin with the hydroxypropylated beta-cyclodextrin (HP- ⁇ -CD) according to the co-precipitation method HP - / - CD (20 g) is dissolved in 40 ml of acetone and heated to 50 ° C. ⁇ -Cyhalothrin (6.22 g) is dissolved in 5 ml of acetone and added dropwise to the cyclodextrin solution. The solution is stirred for 16 hours at 50 ° C, whereby the complex precipitates. The suspension is filtered and the residue is dried for 16 hours at 40 ° C. and analyzed analytically. There are obtained 18.1 g of cyclodextrin complex having a guest content of 3.1% ⁇ -cyhalothrin. A DSC (Differential Scanning Calorimetry) investigation revealed that the guest is fully complexed.
  • HP - ⁇ -CD hydroxypropy
  • Example 5 Preparation of the cyclodextrin complex of Lawbda Cyhalothrin with beta-cyclodextrin ( ⁇ -CD) according to the co-precipitation method ⁇ -CD (8 g) is dissolved in 400 ml of water and heated to 50 ° C. ⁇ -Cyhalothrin (2.29 g) is dissolved in 5 ml of acetone and added dropwise to the cyclodextrin solution. The solution is stirred for 16 hours at 50 ° C and then filtered off the precipitated product. The filtrate is dried for 16 hours at 40 ° C and analyzed analytically. There are 7.28 g of cyclo- dextrin complex having a guest content of 2.5% ⁇ -cyhalothrin. A DSC (Differential Scanning Calorimetry) investigation revealed that the guest is fully complexed.
  • ⁇ -CD beta-cyclodextrin
  • Wheat aphids against pyrethroids and DDT is 100%.
  • the cyclodextrin complexes of .lambda.-cyhalothrin with beta-cyclodextrin and with the methylated beta-cyclodextrin and with the hydroxypropylated beta-cyclodextrin were applied to the front and back of leaf sections using a Potter Tower and dried.
  • an application rate was used, which corresponds to the application of 7.5 g ⁇ -Cyhalothrin per hectare and thus could be downscaled on the leaf surface accordingly.
  • the leaf sections were each populated with ten resistant wheat aphids and the mortality assessed at 5 hours, 24 and 48 hours (h). Table 1 shows the observed mortality.
  • Example 7 Mortality studies with resistant rapeseed beetles
  • the rape beetle showed a kdr-resistance to pyrethroids.
  • the cyclodextrin complexes of .beta.-cyhalothrin with beta-cyclodextrin and with the methylated beta-cyclodextrin and with the hydroxypropylated beta-cyclodextrin were tested by means of the glass test.
  • an application rate was used, which corresponds to the application of 7.5 g ⁇ -Cyhalothrin per hectare and thus could be downscaled on the glass surface accordingly.
  • Ten resistant rape beetles were placed in each vial and mortality was assessed at 5 hours, 24 and 48 hours (h). Table 2 shows the observed mortality.

Abstract

Verfahren zur Bekämpfung von resistenten Insekten, bei dem resistente Insekten mit einem Cyclodextrin Komplex behandelt werden, dadurch gekennzeichnet, dass es sich bei dem Cyclodextrin Komplex um einen Komplex aus einem Wirkstoff mit Insektiziden Eigenschaften und ein Cyclodextrin Derivat ausgewählt aus der Gruppe Hydroxypropyl-α-Cyclodextrin, Hydroxypropyl-ß-Cyclodextrin, Hydroxypropyl-γ-Cyclodextrin und Methyl-ß-Cyclodextrin handelt.

Description

VERFAHREN ZUR BEKÄMPFUNG VON RESISTENTEN INSEKTEN UNTER
VERWENDUNG EINES CYCLODEXTRIN-KOMPLEXES
Die Erfindung betrifft ein Verfahren zur Bekämpfung von resistenten Insekten mit Cyclodextrin Einschlussverbindungen von In- sektiziden.
Resistenzen von Schädlingen gegenüber Pflanzenschutzmitteln, sowohl im landwirtschaftlichen, als auch im Veterinär- und Haushaltsbereich, stellen ein zunehmendes Problem dar. Resis- tenzen gegenüber Insektiziden wurden zum ersten Mal im Jahre
1914 beobachtet. Im Jahre 2007 zeigten bereits 553 Insektenspezies Resistenzen gegenüber Pestiziden. Die Intensität, Häufigkeit und zeitliche Verabreichung von Pestiziden zur Kontrolle von nicht resistenten, anfälligen Insekten kann bei einer un- vollständigen Vernichtung der Schädlinge zur Ausbildung von resistenten Linien führen. Während anfällige Insektenpopulationen relativ leicht von Pflanzenschutzmitteln erfasst werden, können sich resistente Populationen ungehemmt weiter vermehren. Hohe Resistenzen können schließlich zum Totalausfall beim Anbau von Feldfrüchten führen. Daher ist die Suche nach Methoden zur
Überwindung von Resistenzen und der Vernichtung von resistenten Schädlingen sehr groß.
Eine Methode dazu ist die gleichzeitige Verabreichung von In- sektiziden mit Synergisten. Die Wirksamkeit bestimmter Insektizide wie beispielsweise der Pyrethoide, Neonicotinoide ,
Carbamate oder auch Organophosphate lässt sich durch die Applikation zusammen mit Synergisten, wie beispielsweise Piperonyl Butoxid (PBO) , S, S, S-Tributyl Phosphoro-Trithioat (DEF) oder N- Octylbicyclohepten dicarboximid (MGK-264) beträchtlich steigern. Das Wirkprinzip besteht in einer Inhibierung der Enzyme, mit dessen Hilfe Schädlinge die verabreichten Insektizide meta- bolisieren, um sie dadurch unschädlich zu machen. Bei nicht resistenten, anfälligen Insekten befindet sich die Konzentration dieser Enzyme in einem normalen Bereich, wohingegen die Kon- zentration dieser Enzyme in resistenten Insekten sehr stark erhöht ist. Je nach ausgebildeter Resistenz können konventionelle Pestizide eine sehr geringe, bzw. keinerlei Wirkung mehr aufweisen .
Cyclodextrine sind cyclische Oligosaccharide, die sechs (oc-), sieben (ß-) oder acht (γ-), über - (1 , 4 ) -Bindungen miteinander verbundene D~Glucopyranoseeinheiten enthalten. Aufgrund ihrer ringförmigen Molekülstruktur mit einem hydrophoben Hohlraum können Cyclodextrine reversible Komplexe mit hydrophoben Gast- molekülen bilden. Aufgrund der hydrophilen Oberfläche der Cyclodextrine lässt sich mit ihrer Hilfe die Wasserlöslichkeit von hydrophoben Substanzen stark verbessern. Gleichzeitig lässt sich die Flüchtigkeit von volatilen Substanzen durch Komplex- bildung mit Cyclodextrinen deutlich verringern, eine verzögerte Freisetzung erzielen, sowie Stabilitäten von labilen Substanzen verbessern .
Die Verwendung von Cyclodextrin-Komplexen für landwirtschaftli - che Anwendungen ist bereits lange bekannt (siehe dazu J.
Szejtli, Starch 37 (1985) Nr. 11, p. 382 - 386) . Durch Komple- xierung von Insektiziden mit Cyclodextrin kann ein Schutz der Wirkstoffe durch vorzeitigen Abbau, sowie eine Verbesserung der Wirksamkeit erzielt werden (Akira Mifune, 1974, US 3,846,551). In einem weiteren Patent wird die Anwendung von Cyclodextrin- Komplexen ausgewählter Pyrethroide zur Verwendung als Holz¬ schutzmittel dargestellt (Imsgard Finn, 1999, DE 199 47 182) . Auch werden Cyclodextrin-Komplexe aller gängigen Insektizide zur Verminderung der Toxizität sowohl gegenüber der ausbringen- den Person, als auch der Nicht-Schadinsekten beschrieben (A- lonso Maria Luz, 2013, WO 2013 102691 AI) . Schließlich wird erklärt, dass sich resistente Insekten durch eine Kombination von Insektiziden und PBO in Form von Cyclodextrin-Komplexen gut bekämpfen lassen (Piccolo Oreste, 2004, EP 1 715 739 Bl und Pic- colo Oreste, 2005, EP 1 876 890 Bl) . Aufgabe der Erfindung war es, ein weiteres Verfahren zur Bekämpfung von resistenten Insekten zur Verfügung zu stellen.
Diese Aufgabe wird gelöst durch ein Verfahren, bei dem resis- tente Insekten mit einem Cyclodextrin Komplex behandelt werden, dadurch gekennzeichnet, dass es sich bei dem Cyclodextrin Komplex um einen Komplex aus einem Wirkstoff mit Insektiziden Eigenschaften und einem Cyclodextrin Derivat ausgewählt aus der Gruppe Hydroxypropyl-α-Cyclodextrin, Hydroxypropyl-ß- Cyclodextrin, Hydroxypropyl -γ-Cyclodextrin und Methyl-ß- Cyclodextrin handelt.
Bevorzugt handelt es sich bei dem Cyclodextrin Derivat um Hydroxypropyl -ß-Cyclodextrin oder Methyl-ß-Cyclodextrin.
Das erfindungsgemäße Verfahren ermöglicht die gezielte Bekämpfung von resistenten Schädlingen durch den Einsatz von Komplexen bestimmter Cyclodextrin-Derivate , die aufgrund ihrer chemischen Beschaffenheit eine bevorzugte Penetration in die Zell- membran von Insekten aufweisen.
Der Wirkstoff mit Insektiziden Eigenschaften ist vorzugsweise ausgewählt aus der Gruppe der Pyrethoide, Neonicotinoide , Ben- zoylharnstoffe , Chlorkanal-Aktivatoren, Diacylhydrazine , Spino- syne, Pyridinderivate , Ryanodin-Rezeptor-Modulatoren, Thioharn- stoffe, Oxadiazine, Triazine, Tetronsäurederivate, Phenylpy- razole, Hydrazincarbonsäureester, Organosulfite , Thiazolidine , Pyridazinone , Pyrazole, Chitininhibitoren und deren Gemische. Der Wirkstoff mit Insektiziden Eigenschaften im Folgenden auch
Insektizid genannt, kann einer der folgenden Stoffklassen angehören:
Pyrethroide wie beispielsweise Allethrin, Bioallethrin, Tetra- methrin, Prallethrin, Cypermethrin (a-Cypermethrin, ß- Cypermethrin, ζ-Cypermethrin) , Esbiothrin, Permethrin, Fenpro- pathrin, Transfluthrin, Bifenthrin, Resmethrin, Bioresmethrin, Fenvalerat, Fluvalinat, Acrinathrin, Esfenvalerat , Imiprothrin, Phenothrin, ß-Cyfluthrin, Deltameth in, λ-Cyhalothrin, γ- Cyhalothrin, Etofenprox und Silafluofen, wobei folgende Vertre- ter bevorzugt werden: λ-Cyhalothrin, Deltamethrin, Cypermethrin (a-Cypermethrin, ß-Cypermethrin, ζ-Cypermethrin) , Bifenthrin und Permethrin.
Neonicotinoide wie beispielsweise Thiamethoxam, Imidacloprid, Clothianidin, Acetamiprid, Thiacloprid und Nitenpyram, wobei folgende Vertreter bevorzugt sind: Imidacloprid, Clothianidin und Thiacloprid. Daraus sind nochmals bevorzugt: Imidacloprid und Thiacloprid.
Benzoylharnstoffe : Lufenuron, Teflubenzuron, Novaluron,
Diflubenzuron, Triflumuron, Flufenoxuron, wobei folgende Ver- treter bevorzugt sind: Lufenuron, Teflubenzuron, Novaluron, Diflubenzuron . Daraus sind nochmals bevorzugt: Lufenuron und Diflubenzuron .
Chlorkanal-Aktivatoren wie beispielsweise Abamectin und
Lepimectin, Diacylhydrazine wie Methoxyfenozid und Tebufenozid, Spinosyne wie Spinosad und Spinetoram, Pyridinderivate wie Py- riproxyfen, Ryanodin-Rezeptor-Modulatoren wie Chlorantranilin- prol, Thioharnstoffe wie Diafenthiuron, Oxadiazine wie Indoxo- carb, Triazine wie Cyromazin, Tetronsäurederivate wie Spirodic- lofen und Spiromesifen, Phenylpyrazole wie Fipronil, Hydrazin- carbonsäureester wie Bifenazat, Organosulfite wie Propargit, Thiazolidine wie Hexythiazox, Pyridazinone wie Pyridazen, Py- razole wie Fenpyroximat und Chitininhibitoren wie Buprofezin.
Das Verhältnis des Insektizids zu dem Cyclodextrin Derivat liegt vorzugsweise im Bereich zwischen 0,1% und 40% (Gewicht /
Gewicht) , besonders bevorzugt im Bereich zwischen 1% und 30% (Gewicht / Gewicht) . Die Herstellung der Insektiziden Zusammensetzung erfolgt in an sich bekannter Weise durch eine Komplexierung eines Insektizids mit den genannten Cyclodextrin Derivaten. Die Komplexierung kann durch alle im Stand der Technik bekannten Methoden erfolgen, vorzugsweise erfolgt sie durch das Co- Precipitation Verfahren, den Melting-In Prozess oder das Pasten Verfahren . Beim Co-Precipitation Verfahren wird das Insektizid in einem geeigneten Lösemittel gelöst und in dem gewünschten Verhältnis zu einer auf 20 bis 70°C, vorzugsweise auf 50°C erwärmten wäss- rigen Lösung des Cyclodextrin Derivats zugegeben. Die Lösung wird über einen Zeitraum von 16 Stunden gerührt und anschlie- ßend das Lösemittel entfernt. Der Rückstand wird bei 40°C getrocknet. Bei dem Lösemittel handelt es sich vorzugsweise um Aceton, Methanol oder Ethanol.
Beim Melting-In Prozess wird das Cyclodextrin Derivat in Wasser vorgelegt und auf 20 bis 70°C, vorzugsweise 50°C erwärmt. Das Insektizid wird portionsweise zugegeben und 16 Stunden bei der genannten Temperatur gerührt. Nicht komplexiertes Insektizid wird abfiltriert und der Komplex durch Gefriertrocknung isoliert .
Beim Pastenverfahren werden das Cyclodextrin Derivat zusammen mit dem Insektizid in dem gewünschten Verhältnis vermengt und Wasser in einem Anteil von 30 Gewichtsprozent der beiden Komponenten zugegeben. Die dabei entstandene Paste wird über einen Zeitraum von acht Stunden bei 70°C in einem geschlossenen Glas- gefäß gehalten und stündlich mittels eines Spatels durchmischt. Nach Ablauf der acht Stunden wird die Paste getrocknet und für die weitere Anwendung vermählen. Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung .
Beispiel 1 Herstellung des Cyclodextrinkomplexes von Lambda Cyhalothrln, mit dem methylierten beta- Cyclodextrin (M-ß-CD) nach dem Co-Precipitation Verfahren
M-ß-CD (20 g) wird in 40 ml Aceton gelöst und auf 50°C erwärmt. λ-Cyhalothrin (6,79 g) wird in 5 ml Aceton gelöst und zu der Cyclodextrinlösung zugetropft. Die Lösung wird 16 Stunden bei 50°C gerührt und anschließend das Lösemittel abgezogen. Der Rückstand wird 16 Stunden lang bei 40°C getrocknet und analytisch untersucht. Es werden 23,4 g Cyclodextrin Komplex gewonnen, der einen Gastgehalt von 23,2% λ-Cyhalothrin aufweist. Ei- ne DSC-Untersuchung (Differential Scanning Calorimetry) hat ergeben, dass der Gast vollständig komplexiert vorliegt.
Beispiel 2 Herstellung des Cyclodextrinkomplexes von Lambda Cyhalothrln mit dem methylierten beta- Cyclodextrin (M-ß-CD) nach dem Melting In Verfahren -ß-CD (20 g) wird in 180 ml Wasser gelöst und auf 50°C erwärmt. λ-Cyhalothrin (7,75 g) wird portionsweise zu der Cyclodextrinlösung zugegeben. Die Lösung wird 16 Stunden bei 50°C gerührt und anschließend das nicht komplexierte λ-Cyhalothrin abfiltriert. Die verbleibende Lösung wird gefriergetrocknet. Der Rückstand wird analytisch untersucht. Es werden 19,6 g Cyclodextrin Komplex gewonnen, der einen Gastgehalt von 1,5% λ- Cyhalothrin aufweist. Eine DSC-Untersuchung (Differential Scan- ning Calorimetry) hat ergeben, dass der Gast nicht vollständig komplexiert vorliegt.
Beispiel 3 Herstellung des Cyclodextrinko plexes von Lambda Cyhalothrln mit dem methylierten beta- Cyclodextrin (M-ß-CD) nach dem Pasten Verfahren M-ß-CD (10 g) wird zusammen mit λ-Cyhalothrin (3,49 g) und 4 ml Wasser bei 70°C über einen Zeitraum von acht Stunden regelmäßig in einem Schraubdeckelglas mit einem Spatel gerührt. Anschlie- ßend wird die Paste getrocknet und analytisch untersucht. Es werden 13,5 g Cyclodextrin Komplex gewonnen, der einen Gastgehalt von 24,8% λ-Cyhalothrin aufweist. Eine DSC-Untersuchung (Differential Scanning Calorimetry) hat ergeben, dass der Gast nicht vollständig komplexiert vorliegt.
Beispiel 4 Herstellung des Cyclodextrinkowplexes von Lawbda. Cyhalothrin mit dem hydroxypropyHerten beta-Cyclodextrin (HP- ß-CD) nach dem Co-Precipitation Verfahren HP-/?-CD (20 g) wird in 40 ml Aceton gelöst und auf 50°C erwärmt. λ-Cyhalothrin (6,22 g) wird in 5 ml Aceton gelöst und zu der Cyclodextrinlösung zugetropft. Die Lösung wird 16 Stunden bei 50°C gerührt, wobei der Komplex ausfällt. Die Suspension wird filtriert und der Rückstand 16 Stunden lang bei 40 °C ge- trocknet und analytisch untersucht. Es werden 18,1 g Cyclodextrin Komplex gewonnen, der einen Gastgehalt von 3,1% λ- Cyhalothrin aufweist. Eine DSC-Untersuchung (Differential Scanning Calorimetry) hat ergeben, dass der Gast vollständig komplexiert vorliegt.
Beispiel 5 Herstellung des Cyclodextrinkowplexes von Lawbda Cyhalothrin mit beta-Cyclodextrin (ß-CD) nach dem Co- Precipitation Verfahren ß-CD (8 g) wird in 400 ml Wasser gelöst und auf 50°C erwärmt. λ-Cyhalothrin (2,29 g) wird in 5 ml Aceton gelöst und zu der Cyclodextrinlösung zugetropft. Die Lösung wird 16 Stunden bei 50 °C gerührt und anschließend das als Niederschlag angefallene Produkt abfiltriert. Das Filtrat wird 16 Stunden lang bei 40°C getrocknet und analytisch untersucht. Es werden 7,28 g Cyclo- dextrin Komplex gewonnen, der einen Gastgehalt von 2,5% λ- Cyhalothrin aufweist. Eine DSC-Untersuchung (Differential Scan- ning Calorimetry) hat ergeben, dass der Gast vollständig kom- plexiert vorliegt.
Beispiel 6 Mortalitätsuntersuchung mit resistenten Weizenblattläusen (Sitabion avenae)
Es wurde eine Mortalitätsstudie mit resistenten Weizenblattläu- sen (Sitabion avenae) durchgeführt . Die kdr-Resistenz dieser
Weizenblattläuse gegenüber Pyrethroiden und DDT liegt bei 100%. Es wurden die Cyclodextrinkomplexe von λ-Cyhalothrin mit beta- Cyclodextrin und mit dem methyliertem beta-Cyclodextrin, sowie mit dem hydroxypropyliertem beta-Cyclodextrin mit Hilfe eines Potter Towers auf Vorder- und Rückseite von Blattabschnitten aufgetragen und getrocknet. Dabei wurde eine Aufwandmenge verwendet, die der Applikation von 7,5 g λ-Cyhalothrin pro Hektar entspricht und somit auf die Blattoberfläche entsprechend heruntergerechnet werden konnte. Die Blattabschnitte wurden mit jeweils zehn resistenten Weizenblattläusen besetzt und die Mortalität nach 5 Stunden, 24 und 48 Stunden (h) beurteilt. Tab. 1 zeigt die beobachtete Mortalität.
Tab.1
Figure imgf000009_0001
Es zeigten sich keine Unterschiede in der Wirksamkeit in Bezug auf die zur Herstellung der jeweiligen Komplexe verwendeten Verfahren . Beispiel 7 Mortalitätsuntersuchungen mit resistenten Rapsglanzkäfern
Es wurde eine Mortalitätsstudie mit resistenten Rapsglanzkäfern (Meligethes aeneus) durchgeführt. Die Rapsglanzkäfer zeigten eine kdr-Resistenz gegenüber Pyrethroide. Es wurden die Cyclo- dextrinkomplexe von λ-Cyhalothrin mit beta-Cyclodextrin und mit dem methyliertem beta-Cyclodextrin, sowie mit dem hydroxypropy- liertem beta-Cyclodextrin mit Hilfe des Gläschentests geprüft. Dabei wurde eine Aufwandmenge verwendet, die der Applikation von 7,5 g λ-Cyhalothrin pro Hektar entspricht und somit auf die Gläschenoberfläche entsprechend heruntergerechnet werden konnte. Es wurden jeweils 10 resistente Rapsglanzkäfer in jedes Gläschen gegeben und die Mortalität nach 5 Stunden, 24 und 48 Stunden (h) beurteilt. Tab. 2 zeigt die beobachtete Mortalität.
Tab.2
Figure imgf000010_0001
Es zeigten sich keine Unterschiede in der Wirksamkeit in Bezug auf die zur Herstellung der jeweiligen Komplexe verwendeten Verfahren .

Claims

Patentansprüche
1. Verfahren zur Bekämpfung von resistenten Insekten, bei dem resistente Insekten mit einem Cyclodextrin Komplex behan- delt werden, dadurch gekennzeichnet, dass es sich bei dem
Cyclodextrin Komplex um einen Komplex aus einem Wirkstoff mit insektiziden Eigenschaften und ein Cyclodextrin Derivat ausgewählt aus der Gruppe Hydroxypropyl-a- Cyclodextrin, Hydroxypropyl-ß-Cyclodextrin, Hydroxypropyl - γ-Cyclodextrin und Methyl-ß-Cyclodextrin handelt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem Cylodextrin Derivat um Hydroxypropyl-ß- Cyclodextrin oder Methyl-ß-Cyclodextrin handelt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis des Insektizids zu dem Cyclodextrin Derivat zwischen 0,1% und 40% (Gewicht/Gewicht) liegt.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Wirkstoff mit Insektiziden Eigenschaften ausgewählt ist aus der Gruppe der Pyrethoide, Neonicotinoide , Benzoylharnstoffe , Chlorkanal-Aktivatoren, Diacylhydrazi- ne, Spinosyne, Pyridinderivate , Ryanodin-Rezeptor- Modulatoren, Thioharnstoffe , Oxadiazine, Triazine, Tetron- säurederivate , Phenylpyrazole, Hydrazincarbonsäureester, Organosulfite , Thiazolidine , Pyridazinone , Pyrazole, Chitininhibitoren und deren Gemische.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Wirkstoff mit insektiziden Eigenschaften ausgewählt ist aus der Gruppe λ-Cyhalothrin, Deltamethrin, a- Cypermethrin, ß-Cypermethrin, ζ-Cypermethrin, Bifenthrin und Permethrin, Imidacloprid, Clothianidin, Thiacloprid, Lufenuron, Teflubenzuron, Novaluron, Diflubenzuron,
Abamectin, Lepimectin, Methoxyfenozid, Tebufenozid, Spi- nosad, Spinetoram, Pyriproxyfen, Chlorantranilinprol , Dia- fenthiuron, Indoxocarb, Cyromazin, Spirodiclofen, Spirome- sifen, Fipronil, Bifenazat, Propargit, Hexythiazox, Py- ridazen, Fenpyroximat und Buprofezin.
PCT/EP2016/070332 2015-09-16 2016-08-29 Verfahren zur bekämpfung von resistenten insekten unter verwendung eines cyclodextrin-komplexes WO2017045904A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015217762.9 2015-09-16
DE102015217762.9A DE102015217762A1 (de) 2015-09-16 2015-09-16 Verfahren zur Bekämpfung von resistenten Insekten

Publications (1)

Publication Number Publication Date
WO2017045904A1 true WO2017045904A1 (de) 2017-03-23

Family

ID=56889051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/070332 WO2017045904A1 (de) 2015-09-16 2016-08-29 Verfahren zur bekämpfung von resistenten insekten unter verwendung eines cyclodextrin-komplexes

Country Status (2)

Country Link
DE (1) DE102015217762A1 (de)
WO (1) WO2017045904A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CR20210258A (es) * 2018-10-24 2021-06-21 Adama Makhteshim Ltd Uso de ciclodextrinas como sistema de suministro de productos agroquímicos

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621287A1 (de) * 1993-04-23 1994-10-26 Roche Diagnostics GmbH Cyclodextrin-Biocid-Komplex
WO2001058261A2 (en) * 2000-02-11 2001-08-16 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Insecticide-impregnated fabric and method of production
EP1715739B1 (de) * 2003-10-27 2009-07-01 ENDURA S.p.A. Formulierung einer synergistischen insektiziden zusammensetzung als cyclodextrin-komplex
EP1876890B1 (de) * 2005-04-22 2012-08-08 ENDURA S.p.A. Biologisch wirksame fromulierung auf basis cyclodextrin supramolekularer komplexe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017529B2 (de) 1972-11-20 1975-06-21
DE19947182A1 (de) 1999-09-30 2001-05-03 Wacker Chemie Gmbh Holzschutzmittel, Verfahren zu ihrer Herstellung und ihre Verwendung
ES2417380B1 (es) 2012-01-05 2014-06-03 Universidad Del Pais Vasco - Euskal Herriko Unibertsitatea Nuevos complejos de inclusión de pesticidas, composiciones que los contienen y su empleo como pesticidas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621287A1 (de) * 1993-04-23 1994-10-26 Roche Diagnostics GmbH Cyclodextrin-Biocid-Komplex
WO2001058261A2 (en) * 2000-02-11 2001-08-16 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Insecticide-impregnated fabric and method of production
EP1715739B1 (de) * 2003-10-27 2009-07-01 ENDURA S.p.A. Formulierung einer synergistischen insektiziden zusammensetzung als cyclodextrin-komplex
EP1876890B1 (de) * 2005-04-22 2012-08-08 ENDURA S.p.A. Biologisch wirksame fromulierung auf basis cyclodextrin supramolekularer komplexe

Also Published As

Publication number Publication date
DE102015217762A1 (de) 2017-03-16

Similar Documents

Publication Publication Date Title
DE2357826C3 (de) Stabilisiertes Insektizides und acarizides Mittel auf Pyrethroid-Basis Teijin Ltd.; Dai Nihon Jochugiku Co, Ltd.; Osaka (Japan)
EP3217791B1 (de) Partikel zur freisetzung von wirkstoffen
EP2258179B1 (de) Verwendung von Alkylcarbonsäureamiden als Penetrationsförderer
DE69231320T3 (de) Neues Verfahren und Zusammensetzung zur Unkrautbekämpfung
WO2018050211A1 (de) Cyclodextrin enthaltende formulierung zur kontrolle und abwehr von insekten mit verbesserter wirksamkeit
CN102326578B (zh) 一种杀虫组合物及其制剂
DE102012108621B4 (de) Locksysteme für Schädlinge und deren Verwendung
JP5022034B2 (ja) シクロデキストリン複合体としての相乗的な殺虫組成物の製剤
DE3032616A1 (de) Verfahren zur herstellung stabiler suspensionen oder pulver von stabilen mikrokapseln mit einer variablen porositaet und die so erhaltenen produkten.
DE3339840A1 (de) Piperonylbutoxyd-cyclodextrin-einschlusskomplexe und verfahren zu ihrer herstellung
DE69813234T2 (de) Verfahren zum stimulieren der natürlichen abwehrfunktion bei pflanzen
DE102015016114A1 (de) Flüssigkernkapseln zur Bekämpfung von Schädlingen
DE2425713C3 (de) Insektizides Mittel auf Basis von Benzylphenolderivaten
WO2006015697A1 (de) Methode zur verbesserung der pflanzenverträglichkeit gegenüber glyphosate
WO2017045904A1 (de) Verfahren zur bekämpfung von resistenten insekten unter verwendung eines cyclodextrin-komplexes
MXPA02009832A (es) Composiciones que contienen extractos de semillas de neem y sacaridos.
DE2422316A1 (de) Insecticide und acaricide zusammensetzung, verfahren zu deren herstellung und deren verwendung
DE69627682T2 (de) Insektizidhilfsmittel
WO2022105987A1 (de) Cyclodextrin enthaltende formulierungen zur verbesserung der wirksamkeit von fettsäuren als nicht-selektive herbizide
WO2022156882A1 (de) Cyclodextrin und fettsäuren enthaltende formulierungen zur kontrolle und abwehr von insekten mit verbesserter wirksamkeit
DE2529088B2 (de) Geformte Gebilde aus Tabak und Verfahren zu ihrer Herstellung
DE19622513A1 (de) Insektizid auf biologischer Basis
EP2117318A2 (de) Penetrationsförderer für insektizide
DE1929137A1 (de) Rodenticidpraeparate
DE19522334A1 (de) Ein Rehmannia Glutinosa Extrakt und eine Schutzmittelzusammensetzung mit einer Schutzwirkung gegenüber einem Herbizid-Paraquat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16762991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16762991

Country of ref document: EP

Kind code of ref document: A1