WO2017045219A1 - 蓝相液晶显示面板 - Google Patents

蓝相液晶显示面板 Download PDF

Info

Publication number
WO2017045219A1
WO2017045219A1 PCT/CN2015/090328 CN2015090328W WO2017045219A1 WO 2017045219 A1 WO2017045219 A1 WO 2017045219A1 CN 2015090328 W CN2015090328 W CN 2015090328W WO 2017045219 A1 WO2017045219 A1 WO 2017045219A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
viewing angle
liquid crystal
phase liquid
display panel
Prior art date
Application number
PCT/CN2015/090328
Other languages
English (en)
French (fr)
Inventor
唐岳军
Original Assignee
深圳市华星光电技术有限公司
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司, 武汉华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/785,863 priority Critical patent/US9897831B2/en
Publication of WO2017045219A1 publication Critical patent/WO2017045219A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present application relates to the field of display technology, and in particular to a blue phase liquid crystal display panel.
  • liquid crystal display panels have been widely used in various electronic devices such as mobile phones, palmtop computers, notebook computers and the like. Since the user has different requirements for the display in different occasions, for example, sometimes the user wants to share the display content with others, that is, the liquid crystal display panel is required to have a wide viewing angle, and sometimes the user wants to protect personal privacy without wishing others to see it.
  • the content is displayed, that is, the liquid crystal display panel is required to have a narrow viewing angle. In view of this, a liquid crystal display panel is required to realize a function of wide viewing angle and narrow viewing angle conversion.
  • the current liquid crystal display panel In order to realize the conversion between the wide viewing angle and the narrow viewing angle, the current liquid crystal display panel often adopts a dual backlight system, that is, the liquid crystal display panel has two kinds of backlight devices, one of which is used for a wide viewing angle and the other is used for a narrow viewing angle.
  • the above method increases the thickness of the liquid crystal display panel, which is disadvantageous for the slimness of the display panel.
  • the present application provides a blue phase liquid crystal display panel capable of converting between a wide viewing angle and a narrow viewing angle, and reducing the thickness of the blue phase liquid crystal display panel.
  • a first aspect of the present application provides a blue phase liquid crystal display panel, comprising: a plurality of pixel units, each of the pixel units including a display area and a viewing angle control area; the viewing angle control area includes a plurality of spaced apart first electrodes Pairing, each of the first electrode pairs includes a first pixel electrode and a first common electrode, all of the first pixel electrodes of the plurality of pixel units are connected, and all first common electrodes of the plurality of pixel units Connected; the display area includes a plurality of spaced second electrode pairs, each of the second electrode pairs being a pair of second pixel electrodes or a pair of second common electrodes, and two adjacent second electrodes The electrodes of the pair are different; wherein, in the wide viewing angle mode, the first electrode pair of the viewing angle control region does not generate an electric field; in the narrow viewing angle mode, the first pixel of each first electrode pair of the viewing angle control region A vertical electric field is generated between the electrode and the first common electrode; the display region generates a horizontal electric
  • first electrode pair is disposed on the first substrate, and two of the first electrode pairs are oppositely disposed on the first substrate in a vertical direction and insulated from each other;
  • An insulating layer is disposed between the two electrodes of the first electrode pair and between the two electrodes of the second electrode pair.
  • one of the electrodes of the first electrode pair is disposed on the first substrate, and the other electrode is disposed on the second substrate.
  • all of the first common electrodes of the view control area of the plurality of pixel units are connected to all of the second common electrodes of the display area; when the blue phase liquid crystal display panel realizes a wide viewing angle mode And a voltage difference between a voltage input by the driving circuit of the blue phase liquid crystal display panel to the first pixel electrode and a common voltage input to the first common electrode does not exceed a first voltage threshold, so that the viewing angle control An electric field is not formed between the first pixel electrode and the first common electrode of the region; when the blue phase liquid crystal display panel realizes a narrow viewing angle mode, the driving circuit of the blue phase liquid crystal display panel is toward the first a voltage difference between a voltage input by the pixel electrode and a common voltage input to the first common electrode is greater than a second voltage threshold, such that a vertical electric field is formed between the first pixel electrode and the first common electrode; The first voltage threshold is not greater than the second voltage threshold.
  • the driving circuit controls, by the switching element, all of the first pixel electrodes not to obtain the input voltage, or the driving circuit controls, by the switching element, an input voltage obtained by all of the first pixel electrodes and an input obtained by the first common electrode
  • the voltage difference between the voltages does not exceed the first voltage threshold such that no electric field is formed between the first pixel electrode and the first common electrode of the viewing angle control region; when the blue phase liquid crystal display panel realizes a narrow viewing angle mode
  • the driving circuit controls, by the switching element, a voltage difference between an input voltage obtained by all the first pixel electrodes and an input voltage obtained by the first common electrode to be greater than a second voltage threshold, such that the viewing angle control region Forming a vertical electric field between the first pixel electrode and the first common electrode; wherein the first voltage threshold Is greater than the
  • a second aspect of the present application provides a blue phase liquid crystal display panel, comprising: a plurality of pixel units, each of the pixel units including a display area and a viewing angle control area; the viewing angle control area includes a plurality of spaced apart first electrodes Each of the first electrode pairs includes a first pixel electrode and a first common electrode, and each of the first pixel electrodes of the plurality of pixel units respectively passes through a switching element and the blue phase liquid crystal display panel a driving circuit is connected, and a control end of the switching element is connected to a scan line corresponding to a pixel unit where the first pixel electrode connected to the switching element is located; the display area includes a plurality of spaced second electrode pairs, each of which is The second electrode pair is a pair of second pixel electrodes or a pair of second common electrodes, and the electrodes of the adjacent two second electrode pairs are different; wherein, in the wide viewing angle mode, the first of the viewing angle control regions The electrode pair does not generate an electric field; in the narrow viewing angle mode,
  • first electrode pair is disposed on the first substrate, and two of the first electrode pairs are oppositely disposed on the first substrate in a vertical direction and insulated from each other;
  • An insulating layer is disposed between the two electrodes of the first electrode pair and between the two electrodes of the second electrode pair.
  • one of the electrodes of the first electrode pair is disposed on the first substrate, and the other electrode is disposed on the second substrate.
  • a third aspect of the present application provides a blue phase liquid crystal display panel including a plurality of pixel units, each of the pixel units including a display area and a viewing angle control area, the viewing angle control area including a plurality of spaced first electrode pairs, each The first electrode pair includes a first pixel electrode and a first common electrode; wherein, in the wide viewing angle mode, the first electrode pair of the viewing angle control region does not generate an electric field; in the narrow viewing angle mode, each of the viewing angle control regions A vertical electric field is generated between the first pixel electrode and the first common electrode of the first electrode pair; the display region generates a horizontal electric field in both the wide viewing angle mode and the narrow viewing angle mode.
  • the display area includes a plurality of spaced second electrode pairs, each second electrode pair being a pair of second pixel electrodes or a pair of second common electrodes, and electrodes of two adjacent second electrode pairs different.
  • first electrode pair is disposed on the first substrate, and two of the first electrode pairs are disposed opposite to each other on the first substrate in a vertical direction and insulated from each other.
  • an insulating layer is disposed between the two electrodes of the first electrode pair and between the two electrodes of the second electrode pair.
  • one of the electrodes of the first electrode pair is disposed on the first substrate, and the other electrode is disposed on the second substrate.
  • all of the first common electrodes of the view control area of the plurality of pixel units are connected to all of the second common electrodes of the display area; when the blue phase liquid crystal display panel realizes a wide viewing angle mode And a voltage difference between a voltage input by the driving circuit of the blue phase liquid crystal display panel to the first pixel electrode and a common voltage input to the first common electrode does not exceed a first voltage threshold, so that the viewing angle control An electric field is not formed between the first pixel electrode and the first common electrode of the region; when the blue phase liquid crystal display panel realizes a narrow viewing angle mode, the driving circuit of the blue phase liquid crystal display panel is toward the first a voltage difference between a voltage input by the pixel electrode and a common voltage input to the first common electrode is greater than a second voltage threshold, such that a vertical electric field is formed between the first pixel electrode and the first common electrode; The first voltage threshold is not greater than the second voltage threshold.
  • the driving circuit controls, by the switching element, all of the first pixel electrodes not to obtain the input voltage, or the driving circuit controls, by the switching element, an input voltage obtained by all of the first pixel electrodes and an input obtained by the first common electrode
  • the voltage difference between the voltages does not exceed the first voltage threshold such that no electric field is formed between the first pixel electrode and the first common electrode of the viewing angle control region; when the blue phase liquid crystal display panel realizes a narrow viewing angle mode
  • the driving circuit controls, by the switching element, a voltage difference between an input voltage obtained by all the first pixel electrodes and an input voltage obtained by the first common electrode to be greater than a second voltage threshold, such that the viewing angle control region Forming a vertical electric field between the first pixel electrode and the first common electrode; wherein the first voltage threshold Is greater than the
  • Each of the first pixel electrodes of the plurality of pixel units is respectively connected to a driving circuit of the blue phase liquid crystal display panel through a switching element, wherein a control end of the switching element is connected to the switching element a scan line corresponding to the pixel unit where the first pixel electrode is located; when the blue phase liquid crystal display panel realizes a wide viewing angle mode, the switching element receives the scan voltage input by the scan line to make the first connection
  • the pixel electrode obtains a first input voltage, and a voltage difference between the first input voltage and an input voltage obtained by the first common electrode does not exceed a first voltage threshold, such that the first pixel electrode of the viewing angle control region No electric field is formed between the first common electrodes;
  • the switching element receives a scan voltage input by the scan line to obtain the connected first pixel electrode a second input voltage, a voltage difference between the first input voltage and an input voltage obtained by the first common electrode is greater than a second voltage threshold, such that A vertical electric field is
  • each pixel unit of the blue phase liquid crystal display panel is divided into a display area and a viewing angle control area, and the viewing angle control area includes a plurality of first electrode pairs, each of the first electrode pairs includes a pair of first pixel electrodes and a first A common electrode.
  • the first electrode pair of the viewing angle control region When a wide viewing angle is required, the first electrode pair of the viewing angle control region does not generate an electric field, so it does not transmit light, and the display region generates a horizontal electric field, forming a horizontal electric field wide viewing angle display of the display region; when a narrow viewing angle is required, the display region remains The horizontal electric field is displayed, but the first electrode pair of the viewing angle control region generates a vertical electric field, so that the blue phase liquid crystal forms a sufficient optical anisotropy in the vertical direction, so that when viewing the display panel at a large viewing angle, lateral leakage occurs in the viewing angle control region. , thereby achieving a narrow viewing angle display.
  • the blue phase liquid crystal display panel controls the conversion between the wide viewing angle and the narrow viewing angle by setting the viewing angle control region, without adding a backlight system, and without increasing the thickness of the blue phase liquid crystal display panel, which is advantageous for realizing the slimness of the display panel.
  • FIG. 1 is a schematic structural view of a blue phase liquid crystal display panel of the present application in a wide viewing angle mode
  • FIG. 2 is a schematic structural view of a blue phase liquid crystal display panel of the present application in a narrow viewing angle mode
  • FIG. 3 is a schematic structural view of another embodiment of a blue phase liquid crystal display panel of the present application.
  • FIG. 4 is a schematic structural view of still another embodiment of a blue phase liquid crystal display panel of the present application.
  • FIG. 5 is a schematic structural view of still another embodiment of the blue phase liquid crystal display panel of the present application.
  • FIG. 1 is a schematic structural view of a blue phase liquid crystal display panel according to an embodiment of the present invention in a wide viewing angle mode
  • FIG. 2 is a schematic view of the blue phase liquid crystal display panel of the present application in a narrow viewing angle mode.
  • the blue phase liquid crystal display panel 100 includes a plurality of pixel units 110, each of the pixel units 110 includes a display area 111 and a viewing angle control area 112, and the viewing angle control area 112 includes a plurality of spaced first electrode pairs, each of which The first electrode pair includes a first pixel electrode 1121 and a first common electrode 1122. Since the first pixel electrode 1121 and the first common electrode 1122 are different electrodes, when a different voltage is applied to the first pixel electrode 1121 and the first common electrode 1122, respectively, each pair of first electrode pairs generates a vertical electric field.
  • the blue phase liquid crystal display panel 100 can realize two modes of wide viewing angle and narrow viewing angle.
  • the display region 111 in the wide viewing angle mode, the display region 111 generates a horizontal electric field, and the blue phase liquid crystal 140 in the display region 111 is subjected to a horizontal electric field, and the first electrode pair 1121, 1122 of the viewing angle control region 112 does not generate an electric field, that is,
  • the blue phase liquid crystal 140 of the viewing angle control region 112 is optically isotropic without being affected by an electric field, so that it is opaque, and is called a dark state, so that a horizontal electric field is realized in the display region 111 (English: In-Plane-Switching, referred to as : IPS) Wide viewing angle display.
  • the display region 111 in the narrow viewing angle mode, the display region 111 also generates a horizontal electric field, and the blue phase liquid crystal 140 in the display region 111 is subjected to a horizontal electric field, and the first of each of the first electrode pairs of the viewing angle control region 112 A vertical electric field is generated between the one pixel electrode 1121 and the first common electrode 1122, and the blue phase liquid crystal 140 in the viewing angle control region 112 is subjected to a vertical electric field to form optical anisotropy, and the blue phase liquid crystal based on the viewing angle control region 112
  • the 140 forms a sufficient optical anisotropy in the vertical direction, so that when viewing the blue phase liquid crystal display panel at a large viewing angle, the viewing angle control region 112 exhibits lateral light leakage, thereby achieving a narrow viewing angle display.
  • the blue phase liquid crystal display panel further includes a first substrate 120, a second substrate 130, and a blue phase liquid crystal 140 sandwiched between the first substrate 120 and the second substrate 130, the first substrate 120 and the second substrate
  • the plurality of the pixel regions 110 are formed on the first substrate
  • the first pixel electrode 1121 and the first common electrode 1122 are both disposed opposite to each other on the first substrate 120 in the vertical direction, and are insulated from each other.
  • an insulating layer 1123 is disposed between each pair of the first pixel electrode 1121 and the first common electrode 1122 to achieve insulation from each other.
  • the first electrode pair is not necessarily disposed on the first substrate.
  • the first pixel electrode 1121 of the first electrode pair may be disposed on the first substrate.
  • the first common electrode 1122 is disposed on the second substrate.
  • other arrangements may be employed to achieve that the first electrode pair forms a vertical electric field at the time of applying the voltage. It can be understood that the positions of the first pixel electrode and the first common electrode can be reversed according to practical applications.
  • the first pixel electrode 1121 of the viewing angle control region 112 is disposed on the same substrate, the first common electrode 1122 is disposed on the other substrate, or the first pixel electrode 1121 is disposed on the same layer of the substrate.
  • a common electrode 1122 is disposed on another layer of the substrate.
  • the display area 111 of the present embodiment may include a plurality of spaced second electrode pairs, each of the second electrode pairs being a pair of second pixel electrodes 1111 or one For the second common electrode 1112, and the electrodes between the adjacent two second electrode pairs are different, that is, the second electrode pair adjacent to each pair of the second pixel electrodes 1111 is the second common electrode 1112, so that when the second When a different voltage is applied to the pixel electrode 1111 and the second common electrode 1112, a horizontal electric field is formed between the adjacent second pixel electrode 1111 and the second common electrode 1112.
  • the second electrode pairs are both disposed on the first substrate 120, and two of the second electrode pairs (the second pixel electrode 1111 and the second common electrode 1112) are vertical Set in the opposite direction in the straight direction and insulated from each other.
  • each of the second electrode pairs (the second pixel electrode 1111 and the second common electrode 1112) is provided with an insulating layer 1113 between the oppositely disposed electrodes in the vertical direction to realize Insulate each other.
  • the display area 111 and the viewing angle control area 112 in each of the pixel units 110 are arranged up and down.
  • the first substrate further includes a plurality of data lines 170 and a plurality of scan lines 180.
  • Each of the scan lines 180 controls the second pixel electrode 1111 in the display region 111 through a switching element 190 such as a TFT (for convenience of explanation, FIG. 4 exemplarily shows the second pixel electrode 1111 in the display region 111, but should not be considered
  • the second common electrode 1112 is not connected to the data line 170 in the display area 111.
  • the scan line 180 inputs the scan signal
  • all the switching elements connected to the scan line 180 control the second pixel electrode 1111 connected thereto to obtain corresponding
  • the gray scale voltage input by the data line 170 realizes the corresponding gray scale display of the display area 111.
  • the display area and the viewing angle control area in each pixel unit are left and right, which are not limited herein.
  • FIG. 5 is a schematic structural diagram of still another embodiment of the blue phase liquid crystal display panel of the present application. It can be understood that, in order to clearly show the connection relationship between the electrodes of the blue phase liquid crystal display panel, FIG. 5 exemplarily shows a structural diagram of two pixel units of the blue phase liquid crystal display panel.
  • the pixel unit 410 includes a display area 411 and a viewing angle control area 412
  • the viewing angle control area 412 includes a plurality of first electrode pairs, each of the first electrode pairs including oppositely disposed in the vertical direction and insulated from each other a first common electrode 4122 and a first pixel electrode 4121
  • the display region 411 includes a plurality of second electrode pairs, each second electrode pair being a pair of second pixel electrodes disposed opposite to each other in the vertical direction and insulated from each other 4111 or a pair of second common electrodes 4112 disposed opposite to each other in the vertical direction and insulated from each other, and electrodes of the adjacent two second electrode pairs are different.
  • the first pixel electrodes 4121 of all the pixel units 410 on the blue phase liquid crystal display panel are connected, and the first common electrodes 4122 of all the pixel units 410 are connected.
  • the driving circuit of the blue phase liquid crystal display panel inputs the first voltage to all the first pixel electrodes 4121 in the viewing angle control region 412, and inputs the lower voltage to all the first common electrodes 4122.
  • a second voltage of a voltage causes a first voltage difference between the first pixel electrode 4121 of each pixel unit and the corresponding first common electrode 4122, thereby forming a vertical electric field in the viewing angle control region 412.
  • the first common electrode 4122 of the viewing angle control region 412 of all the pixel units 410 may be connected to the second common electrode 4112 of the display region 411 of all the pixel units.
  • its driving circuit inputs a common voltage to all of the first common electrode 4122 and the second common electrode 4112, and passes through the corresponding data line to the second of the display area 411 of the scanned pixel unit 410.
  • the pixel electrode 4111 inputs a driving voltage such that a voltage difference corresponding to the gray scale is formed between the second pixel electrode 4111 and the second common electrode 4112, and the second pixel electrode 4111 and the second common electrode 4112 in the display region 411 are horizontally disposed opposite each other.
  • a horizontal electric field is formed; when the blue phase liquid crystal display panel realizes the wide viewing angle mode, the voltage difference between the voltage input by the driving circuit to the first pixel electrode 4121 and the common voltage does not exceed the first voltage threshold, so that the viewing angle control region An electric field is not formed between the first pixel electrode 4121 and the first common electrode 4122 of the 412; when the blue phase liquid crystal display panel realizes the narrow viewing angle mode, the voltage input between the driving circuit and the first pixel electrode 4121 and the common voltage The voltage difference is greater than the second voltage threshold such that the first pixel electrode 4121 of the viewing angle control region 412 and the first public power Forming a vertical electric field between 4122.
  • the first pixel electrode 4121 of all the pixel units 410 is connected and can be connected to a driving circuit of the blue phase liquid crystal display panel through a switching element (not shown in FIG. 5) such as a TFT, and all the first pixels are controlled by the driving circuit. Whether the electrode 4121 obtains an input voltage.
  • the driving circuit controls all of the first pixel electrodes 4121 to obtain the input voltage through the switching element, or the driving circuit controls the input obtained by all the first pixel electrodes 4121 through the switching element.
  • the voltage difference between the voltage and the input voltage obtained by the first common electrode does not exceed the first voltage threshold, such that no electric field is formed between the first pixel electrode 4121 of the viewing angle control region 412 and the first common electrode 4122; when the blue phase liquid crystal display panel
  • the driving circuit controls all of the first pixel electrodes 4121 through the switching element to obtain an input voltage whose voltage difference between the input voltages obtained by the common voltage is greater than the second voltage threshold, so that the first viewing angle control region 412 A vertical electric field is formed between the pixel electrode 4121 and the first common electrode 4122.
  • the first pixel electrodes of all the pixel units are not connected, and are respectively connected to the driving circuit of the blue phase liquid crystal display panel through a switching element such as a TFT, and are respectively controlled by the driving circuit.
  • a switching element such as a TFT
  • Each of the first pixel electrodes controls whether an input voltage is obtained.
  • the control end of the switching element can be connected to a scan line corresponding to the pixel unit where the first pixel electrode connected to the switching element is located, and when the scan line inputs a scan voltage to drive the corresponding display area to realize a horizontal electric field display, the switch element Receiving the scan voltage to control the first pixel electrode of the viewing angle control region to obtain the first input voltage or the second input voltage.
  • the first pixel electrode obtains the first input voltage, and the first input voltage is The voltage difference between the input voltages obtained by the first common electrode does not exceed the first voltage threshold, so that no electric field is formed between the first pixel electrode and the first common electrode of the viewing angle control region; when the narrow viewing angle mode is to be realized, the first The pixel electrode obtains a second input voltage, and a voltage difference between the second input voltage and an input voltage obtained by the first common electrode is greater than a second voltage threshold, such that a vertical relationship is formed between the first pixel electrode of the viewing angle control region and the first common electrode Straight electric field.
  • the first voltage threshold and the second voltage threshold may be any value, and the first voltage threshold is not greater than the second voltage threshold, for example, the first voltage threshold and the second voltage threshold are both 0V, or the first voltage threshold is 0-2V, the second voltage threshold is 5-20V.
  • the first and second voltage thresholds are not limited to the ranges described in the above examples, and the first voltage threshold may be any voltage value such that the blue phase liquid crystal of the viewing angle control region does not form sufficient optical anisotropy, and the second voltage threshold may be In order to cause the blue phase liquid crystal of the viewing angle control region to form a sufficient vertical value of optical anisotropy for any voltage value.
  • the first and second pixel electrodes and the first and second common electrodes may be comb-shaped, and the second pixel electrode pair and the second common electrode pair are electrodes of two comb structures through insulation stacking. Formed, and the comb teeth of the second pixel electrode pair are spaced apart from the comb teeth of the second common electrode pair.
  • the first electrode pair is a comb-shaped first pixel electrode and a comb-shaped first common electrode is formed by insulating lamination.
  • each pixel unit of the blue phase liquid crystal display panel is divided into a display area and a viewing angle control area, and the viewing angle control area includes a plurality of first electrode pairs, each of the first electrode pairs includes a pair of first pixel electrodes and a first A common electrode.
  • the first electrode pair of the viewing angle control region When a wide viewing angle is required, the first electrode pair of the viewing angle control region does not generate an electric field, that is, opaque, and the display region generates a horizontal electric field, forming a horizontal electric field wide viewing angle display of the display region; when a narrow viewing angle is required, the display region remains The horizontal electric field is displayed, but the first electrode pair of the viewing angle control region generates a vertical electric field, so that the blue phase liquid crystal forms a sufficient optical anisotropy in the vertical direction, so that when viewing the display panel at a large viewing angle, lateral leakage occurs in the viewing angle control region. , thereby achieving a narrow viewing angle display.
  • the blue phase liquid crystal display panel controls the conversion between the wide viewing angle and the narrow viewing angle by providing the viewing angle control region, without adding a backlight system, without increasing the thickness of the blue phase liquid crystal display panel, and facilitating the thinning of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种蓝相液晶显示面板(100),该蓝相液晶显示面板(100)包括多个像素单元(110),每个像素单元(110)包括显示区域(111)和视角控制区域(112),视角控制区域(112)包括多个间隔设置的第一电极对,每个第一电极对包括第一像素电极(1121)和第一公共电极(1122);其中,在宽视角模式下,视角控制区域(112)的第一电极对不产生电场;在窄视角模式下,视角控制区域(112)的每个第一电极对中的第一像素电极(1121)和第一公共电极(1122)之间均产生竖直电场;显示区域(111)在宽视角模式和窄视角模式下产生水平电场。通过该方式,能够实现宽视角和窄视角间的转换,且可降低蓝相液晶显示面板的厚度。

Description

蓝相液晶显示面板
【技术领域】
本申请涉及显示技术领域,特别是涉及蓝相液晶显示面板。
【背景技术】
目前,液晶显示面板已广泛应用在各种的电子设备如手机、掌上电脑、笔记本电脑等中。由于在不同场合下,用户对显示会具有不同的要求,例如,有时用户希望可与他人分享显示内容,即要求液晶显示面板采用宽视角,有时候用户希望能保护个人隐私而不希望他人看到显示内容,即要求液晶显示面板采用窄视角。鉴于此,液晶显示面板被要求能实现宽视角和窄视角转换的功能。
为实现宽视角和窄视角间的转换,目前的液晶显示面板常采用双背光系统,即液晶显示面板具有两种背光装置,其中一种为宽视角使用,另一种为窄视角使用。然而,上述方式会增加液晶显示面板的厚度,不利于显示面板的轻薄化。
【发明内容】
本申请提供一种蓝相液晶显示面板,能够实现宽视角和窄视角间的转换,且可降低蓝相液晶显示面板的厚度。
本申请第一方面提供一种蓝相液晶显示面板,其中,包括多个像素单元,每个所述像素单元包括显示区域和视角控制区域;所述视角控制区域包括多个间隔设置的第一电极对,每个所述第一电极对包括第一像素电极和第一公共电极,所述多个像素单元的所有所述第一像素电极相连接,所述多个像素单元的所有第一公共电极相连接;所述显示区域包括多个间隔设置的第二电极对,每个所述第二电极对为一对第二像素电极或者一对第二公共电极,且相邻的两个第二电极对的电极不同;其中,在宽视角模式下,所述视角控制区域的第一电极对不产生电场;在窄视角模式下,所述视角控制区域的每个第一电极对中的第一像素电极和第一公共电极之间均产生竖直电场;所述显示区域在宽视角模式和窄视角模式下均产生水平电场。
其中,包括第一基板、第二基板及夹置在第一基板、第二基板之间的蓝相液晶,所述第一基板、第二基板相对设置,所述第二电极对设置在所述第一基板上,且所述第二电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘。
其中,所述第一电极对设置在所述第一基板上,且所述第一电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘;所述第一电极对中的两个电极间、所述第二电极对中的两个电极间均设置有绝缘层。
其中,所述第一电极对的其中一个电极设置在第一基板,另一个电极设置在第二基板上。
其中,所述多个像素单元的所述视角控制区域的所有所述第一公共电极与所述显示区域的所有所述第二公共电极相连接;当所述蓝相液晶显示面板实现宽视角模式时,所述蓝相液晶显示面板的驱动电路向所述第一像素电极输入的电压与向所述第一公共电极输入的公共电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;当所述蓝相液晶显示面板实现窄视角模式时,所述蓝相液晶显示面板的驱动电路向所述第一像素电极输入的电压与向所述第一公共电极输入的公共电压间的电压差大于第二电压阈值,使得所述第一像素电极与所述第一公共电极之间形成竖直电场;其中,所述第一电压阈值不大于所述第二电压阈值。
其中,所述多个像素单元的所有所述第一像素电极通过一开关元件与所述蓝相液晶显示面板的驱动电路连接;当所述蓝相液晶显示面板实现宽视角模式时,所述驱动电路通过所述开关元件控制所有所述第一像素电极不获得该输入电压,或所述驱动电路通过所述开关元件控制所有所述第一像素电极获得的输入电压与第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;当所述蓝相液晶显示面板实现窄视角模式时,所述驱动电路通过所述开关元件控制所有所述第一像素电极获得的输入电压与所述第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间形成竖直电场;其中,所述第一电压阈值不大于所述第二电压阈值。
本申请第二方面提供一种蓝相液晶显示面板,其中,包括多个像素单元,每个所述像素单元包括显示区域和视角控制区域;所述视角控制区域包括多个间隔设置的第一电极对,每个所述第一电极对包括第一像素电极和第一公共电极,所述多个像素单元的每个所述第一像素电极分别通过一开关元件与所述蓝相液晶显示面板的驱动电路连接,所述开关元件的控制端与所述开关元件连接的第一像素电极所在的像素单元对应的扫描线连接;所述显示区域包括多个间隔设置的第二电极对,每个所述第二电极对为一对第二像素电极或者一对第二公共电极,且相邻的两个第二电极对的电极不同;其中,在宽视角模式下,所述视角控制区域的第一电极对不产生电场;在窄视角模式下,所述视角控制区域的每个第一电极对中的第一像素电极和第一公共电极之间均产生竖直电场;所述显示区域在宽视角模式和窄视角模式下均产生水平电场;其中,当所述蓝相液晶显示面板实现宽视角模式时,所述开关元件接收所述扫描线输入的扫描电压而使连接的所述第一像素电极获得第一输入电压,所述第一输入电压与所述第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;当所述蓝相液晶显示面板实现窄视角模式时,所述开关元件接收所述扫描线输入的扫描电压而使连接的所述第一像素电极获得第二输入电压,所述第一输入电压与所述第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间形成竖直电场;其中,所述第一电压阈值不大于所述第二电压阈值。
其中,包括第一基板、第二基板及夹置在第一基板、第二基板之间的蓝相液晶,所述第一基板、第二基板相对设置,所述第二电极对设置在所述第一基板上,且所述第二电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘。
其中,所述第一电极对设置在所述第一基板上,且所述第一电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘;所述第一电极对中的两个电极间、所述第二电极对中的两个电极间均设置有绝缘层。
其中,所述第一电极对的其中一个电极设置在第一基板,另一个电极设置在第二基板上。
本申请第三方面提供一种蓝相液晶显示面板,包括多个像素单元,每个像素单元包括显示区域和视角控制区域,所述视角控制区域包括多个间隔设置的第一电极对,每个第一电极对包括第一像素电极和第一公共电极;其中,在宽视角模式下,所述视角控制区域的第一电极对不产生电场;在窄视角模式下,所述视角控制区域的每个第一电极对中的第一像素电极和第一公共电极之间均产生竖直电场;所述显示区域在宽视角模式和窄视角模式下均产生水平电场。
其中,所述显示区域包括多个间隔设置的第二电极对,每个第二电极对为一对第二像素电极或者一对第二公共电极,且相邻的两个第二电极对的电极不同。
其中,包括第一基板、第二基板及夹置在第一基板、第二基板之间的蓝相液晶,所述第一基板、第二基板相对设置,所述第二电极对设置在所述第一基板上,且所述第二电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘。
其中,所述第一电极对设置在所述第一基板上,且所述第一电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘。
其中,所述第一电极对中的两个电极间、第二电极对中的两个电极间均设置有绝缘层。
其中,所述第一电极对的其中一个电极设置在第一基板,另一个电极设置在第二基板上。
其中,所述多个像素单元的所有第一像素电极相连接,所述多个像素单元的所有第一公共电极相连接。
其中,所述多个像素单元的所述视角控制区域的所有所述第一公共电极与所述显示区域的所有所述第二公共电极相连接;当所述蓝相液晶显示面板实现宽视角模式时,所述蓝相液晶显示面板的驱动电路向所述第一像素电极输入的电压与向所述第一公共电极输入的公共电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;当所述蓝相液晶显示面板实现窄视角模式时,所述蓝相液晶显示面板的驱动电路向所述第一像素电极输入的电压与向所述第一公共电极输入的公共电压间的电压差大于第二电压阈值,使得所述第一像素电极与所述第一公共电极之间形成竖直电场;其中,所述第一电压阈值不大于所述第二电压阈值。
其中,所述多个像素单元的所有所述第一像素电极通过一开关元件与所述蓝相液晶显示面板的驱动电路连接;当所述蓝相液晶显示面板实现宽视角模式时,所述驱动电路通过所述开关元件控制所有所述第一像素电极不获得该输入电压,或所述驱动电路通过所述开关元件控制所有所述第一像素电极获得的输入电压与第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;当所述蓝相液晶显示面板实现窄视角模式时,所述驱动电路通过所述开关元件控制所有所述第一像素电极获得的输入电压与所述第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间形成竖直电场;其中,所述第一电压阈值不大于所述第二电压阈值。
其中,所述多个像素单元的每个所述第一像素电极分别通过一开关元件与所述蓝相液晶显示面板的驱动电路连接,其中,所述开关元件的控制端与所述开关元件连接的第一像素电极所在的像素单元对应的扫描线连接;当所述蓝相液晶显示面板实现宽视角模式时,所述开关元件接收所述扫描线输入的扫描电压而使连接的所述第一像素电极获得第一输入电压,所述第一输入电压与所述第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;当所述蓝相液晶显示面板实现窄视角模式时,所述开关元件接收所述扫描线输入的扫描电压而使连接的所述第一像素电极获得第二输入电压,所述第一输入电压与所述第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间形成竖直电场;其中,所述第一电压阈值不大于所述第二电压阈值。
上述方案中,蓝相液晶显示面板的每个像素单元分为显示区域和视角控制区域,且视角控制区域包括多个第一电极对,每个第一电极对包括一对第一像素电极和第一公共电极。在要求宽视角时,视角控制区域的第一电极对不产生电场,故不透光,而显示区域产生水平电场,形成了显示区域的水平电场宽视角显示;在要求窄视角时,显示区域依然水平电场显示,但视角控制区域的第一电极对产生竖直电场,使得蓝相液晶形成足够的竖直方向的光学各向异性,故处于大视角观看显示面板时,视角控制区域出现侧向漏光,进而实现窄视角显示。而且,蓝相液晶显示面板通过设置视角控制区域控制宽视角和窄视角间的转换,无需增加背光系统,无需增加蓝相液晶显示面板的厚度,有利于实现显示面板的轻薄化。
【附图说明】
图1是本申请蓝相液晶显示面板一实施方式中在宽视角模式下的结构示意图;
图2是本申请蓝相液晶显示面板一实施方式中在窄视角模式下的结构示意图;
图3是本申请蓝相液晶显示面板另一实施方式的结构示意图;
图4是本申请蓝相液晶显示面板再一实施方式的结构示意图;
图5是本申请蓝相液晶显示面板又再一实施方式的结构示意图。
【具体实施方式】
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施方式中也可以实现本申请。在其它情况中,省略对众所周知的装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
请参阅图1-2,图1是本申请蓝相液晶显示面板一实施方式中在宽视角模式下的结构示意图,图2是本申请蓝相液晶显示面板一实施方式中在窄视角模式下的结构示意图。本实施方式中,蓝相液晶显示面板100包括多个像素单元110,每个像素单元110包括显示区域111和视角控制区域112,视角控制区域112包括多个间隔设置的第一电极对,每个第一电极对包括第一像素电极1121和第一公共电极1122。由于第一像素电极1121和第一公共电极1122为不同的电极,故在第一像素电极1121和第一公共电极1122分别施加不同电压时,每对第一电极对均产生竖直电场。
本实施方式中,蓝相液晶显示面板100可实现宽视角和窄视角两种模式。
如图1所示,在宽视角模式下,显示区域111产生水平电场,显示区域111中的蓝相液晶140受到水平电场作用,视角控制区域112的第一电极对1121、1122不产生电场,即视角控制区域112的蓝相液晶140未受电场作用而处于光学各向同性,故不透光,称之为暗态,故在显示区域111中实现水平电场(英文:In-Plane-Switching,简称:IPS)宽视角显示。
如图2所示,在窄视角模式下,显示区域111同样产生水平电场,显示区域111中的蓝相液晶140受到水平电场作用,所述视角控制区域112的每个第一电极对中的第一像素电极1121和第一公共电极1122之间则均产生竖直电场,视角控制区域112中的蓝相液晶140受竖直电场作用而形成光学各向异性,基于视角控制区域112的蓝相液晶140形成了足够的竖直方向的光学各向异性,故处于大视角观看蓝相液晶显示面板时,视角控制区域112出现侧向漏光,进而实现窄视角显示。
具体地,该蓝相液晶显示面板还包括第一基板120、第二基板130及夹置在第一基板120、第二基板130之间的蓝相液晶140,所述第一基板120、第二基板130相对设置,形成多个上述像素区域110,每个视角控制区域112的第一电极对1121、1122均设置在所述第一基板120上,且第一电极对中的两个电极,即第一像素电极1121和第一公共电极1122均在第一基板120上沿竖直方向对向设置,且彼此绝缘。例如,每对第一像素电极1121和第一公共电极1122之间设置有绝缘层1123,以实现彼此绝缘。
当然,在其他实施方式中,第一电极对未必都设置在第一基板上,如图3所示的另一实施方式,还可以第一电极对中的第一像素电极1121设置在第一基板,第一公共电极1122设置在第二基板上。另外,还可采用其他设置方式以实现第一电极对在施加电压时刻形成竖直电场即可。可以理解的是,第一像素电极和第一公共电极的位置可根据实际应用而进行对调。但无论何种实施方式,视角控制区112的第一像素电极1121均设置于同一基板、第一公共电极1122均设置于另一基板,或者第一像素电极1121均设置于基板的同一层、第一公共电极1122均设置于该基板的另一层。
可选地,为实现显示区域111的水平电场显示,本实施方式的该显示区域111可包括多个间隔设置的第二电极对,每个第二电极对为一对第二像素电极1111或者一对第二公共电极1112,且相邻的两个第二电极对间的电极不同,即与每对第二像素电极1111相邻的第二电极对均是第二公共电极1112,使得当第二像素电极1111和第二公共电极1112施加不同电压时,相邻的第二像素电极1111和第二公共电极1112之间形成水平电场。
本实施方式中,所述第二电极对均设置在所述第一基板120上,且每一第二电极对(第二像素电极1111和第二公共电极1112)中的两个电极均在竖直方向上对向设置,且彼此绝缘。在本实施例中,每一第二电极对(第二像素电极1111和第二公共电极1112)中的两个在竖直方向上对向设置的电极之间均设置有绝缘层1113,以实现彼此绝缘。
在再一实施方式中,如图4所示,每个像素单元110中的显示区域111和视角控制区域112为上下设置。具体的,第一基板还包括多条数据线170及多条扫描线180。每条扫描线180通过一开关元件190如TFT控制显示区域111中的第二像素电极1111(为便于说明,图4仅示范性示出显示区域111中的第二像素电极1111,但不应认为显示区域111中无设置第二公共电极1112)与一数据线170的连接,当该扫描线180输入扫描信号时,该扫描线180相连的所有开关元件控制其连接的第二像素电极1111获得相应数据线170输入的灰阶电压,实现显示区域111的相应灰阶显示。当然,在其他实施例中,每个像素单元中的显示区域和视角控制区域为左右设置,在此不作限定。
请参阅图5,图5是本申请蓝相液晶显示面板又再一实施方式的结构示意图。可以理解的是,为能够清楚示出蓝相液晶显示面板的电极间的连接关系,图5仅示范性示出蓝相液晶显示面板的两个像素单元的结构示意图。
基于上述实施方式,像素单元410包括显示区域411和视角控制区域412,该视角控制区域412包括多个第一电极对,每一第一电极对都包括在竖直方向上对向设置且彼此绝缘的第一公共电极4122和第一像素电极4121;该显示区域411包括多个第二电极对,每一第二电极对为一对在竖直方向上对向设置且彼此绝缘的第二像素电极4111或一对在竖直方向上对向设置且彼此绝缘的第二公共电极4112,且相邻的两个第二电极对的电极不同。
在本实施例中,该蓝相液晶显示面板上的所有像素单元410的第一像素电极4121相连接,所有像素单元410的第一公共电极4122相连接。当该蓝相液晶显示面板实现窄视角模式时,蓝相液晶显示面板的驱动电路向视角控制区域412内的所有第一像素电极4121输入第一电压,向所有第一公共电极4122输入低于第一电压的第二电压,使得每个像素单元的第一像素电极4121与对应的第一公共电极4122形成电压差,进而在视角控制区域412内形成竖直电场。
进一步地,所有像素单元410的视角控制区域412的第一公共电极4122可与所有像素单元的显示区域411的第二公共电极4112相连接。当蓝相液晶显示面板实现显示时,其驱动电路向所有第一公共电极4122和第二公共电极4112输入一公共电压,并通过对应数据线向扫描到的像素单元410的显示区域411的第二像素电极4111输入一驱动电压,使得第二像素电极4111与第二公共电极4112之间形成对应灰阶的电压差,由于显示区域411内的第二像素电极4111与第二公共电极4112水平相对设置,因而形成水平电场;当蓝相液晶显示面板具体实现宽视角模式时,其驱动电路向第一像素电极4121输入的电压与该公共电压间的电压差不超过第一电压阈值,使得视角控制区域412的第一像素电极4121与第一公共电极4122之间不形成电场;当蓝相液晶显示面板具体实现窄视角模式时,其驱动电路向第一像素电极4121输入的电压与该公共电压间的电压差大于第二电压阈值,使得视角控制区域412的第一像素电极4121与第一公共电极4122之间形成竖直电场。
更进一步地,所有像素单元410的第一像素电极4121相连接并可通过一开关元件(图5未示)如TFT与蓝相液晶显示面板的驱动电路连接,由该驱动电路控制所有第一像素电极4121是否获得输入电压。当蓝相液晶显示面板实现宽视角模式时,其驱动电路通过该开关元件控制所有第一像素电极4121不获得该输入电压,或者其驱动电路通过该开关元件控制所有第一像素电极4121获得的输入电压与第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得视角控制区域412的第一像素电极4121与第一公共电极4122之间不形成电场;当蓝相液晶显示面板实现窄视角模式时,其驱动电路通过该开关元件控制所有第一像素电极4121获得与该公共电压获得的输入电压间的电压差大于第二电压阈值的输入电压,使得视角控制区域412的第一像素电极4121与第一公共电极4122之间形成竖直电场。
在又另一实施方式中,所有的像素单元的第一像素电极可均不相连接,并分别通过一开关元件如TFT与所述蓝相液晶显示面板的驱动电路连接,由该驱动电路分别控制每个第一像素电极控制是否获得输入电压。具体,该开关元件的控制端可与该开关元件连接的第一像素电极所在的像素单元对应的扫描线连接,当该扫描线输入扫描电压以驱动对应显示区域实现横电场显示时,该开关元件接收该扫描电压而控制视角控制区域的第一像素电极获得第一输入电压或第二输入电压,当要实现宽视角模式时,则第一像素电极获得第一输入电压,该第一输入电压与第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得视角控制区域的第一像素电极与第一公共电极之间不形成电场;当要实现窄视角模式时,则第一像素电极获得第二输入电压,该第二输入电压与第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得视角控制区域的第一像素电极与第一公共电极之间形成竖直电场。
其中,上述的第一电压阈值、第二电压阈值可以为任意数值,且第一电压阈值不大于第二电压阈值,例如第一电压阈值和第二电压阈值均为0V,或者第一电压阈值为0-2V、第二电压阈值为5-20V。当然,第一、第二电压阈值不限为上述举例所述范围,第一电压阈值可以为使得视角控制区的蓝相液晶不形成足够的光学异向性的任意电压值,第二电压阈值可为使得视角控制区的蓝相液晶形成足够的竖直方向的光学各向异性目的任意电压值。
上述实施例中,该第一、第二像素电极和第一、第二公共电极可以为梳状,第二像素电极对、第二公共电极对均为两个梳状结构的电极通过绝缘层叠置形成,且第二像素电极对的梳齿与第二公共电极对的梳齿间隔设置。第一电极对为一梳状的第一像素电极和一梳状的第一公共电极通过绝缘层叠置形成。
上述方案中,蓝相液晶显示面板的每个像素单元分为显示区域和视角控制区域,且视角控制区域包括多个第一电极对,每个第一电极对包括一对第一像素电极和第一公共电极。在要求宽视角时,视角控制区域的第一电极对不产生电场,即不透光,而显示区域产生水平电场,形成了显示区域的水平电场宽视角显示;在要求窄视角时,显示区域依然水平电场显示,但视角控制区域的第一电极对产生竖直电场,使得蓝相液晶形成足够的竖直方向的光学各向异性,故处于大视角观看显示面板时,视角控制区域出现侧向漏光,进而实现窄视角显示。而且,蓝相液晶显示面板通过设置视角控制区域控制宽视角和窄视角间的转换,无需增加背光系统,无需增加蓝相液晶显示面板的厚度,且有利于显示面板的轻薄化。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种蓝相液晶显示面板,其中,包括多个像素单元,每个所述像素单元包括显示区域和视角控制区域;
    所述视角控制区域包括多个间隔设置的第一电极对,每个所述第一电极对包括第一像素电极和第一公共电极,所述多个像素单元的所有所述第一像素电极相连接,所述多个像素单元的所有第一公共电极相连接;
    所述显示区域包括多个间隔设置的第二电极对,每个所述第二电极对为一对第二像素电极或者一对第二公共电极,且相邻的两个第二电极对的电极不同;其中,
    在宽视角模式下,所述视角控制区域的第一电极对不产生电场;在窄视角模式下,所述视角控制区域的每个第一电极对中的第一像素电极和第一公共电极之间均产生竖直电场;所述显示区域在宽视角模式和窄视角模式下均产生水平电场。
  2. 根据权利要求1所述的蓝相液晶显示面板,其中,包括第一基板、第二基板及夹置在第一基板、第二基板之间的蓝相液晶,所述第一基板、第二基板相对设置,所述第二电极对设置在所述第一基板上,且所述第二电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘。
  3. 根据权利要求2所述的蓝相液晶显示面板,其中,所述第一电极对设置在所述第一基板上,且所述第一电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘;所述第一电极对中的两个电极间、所述第二电极对中的两个电极间均设置有绝缘层。
  4. 根据权利要求2所述的蓝相液晶显示面板,其中,所述第一电极对的其中一个电极设置在第一基板,另一个电极设置在第二基板上。
  5. 根据权利要求1所述的蓝相液晶显示面板,其中,所述多个像素单元的所述视角控制区域的所有所述第一公共电极与所述显示区域的所有所述第二公共电极相连接;
    当所述蓝相液晶显示面板实现宽视角模式时,所述蓝相液晶显示面板的驱动电路向所述第一像素电极输入的电压与向所述第一公共电极输入的公共电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;
    当所述蓝相液晶显示面板实现窄视角模式时,所述蓝相液晶显示面板的驱动电路向所述第一像素电极输入的电压与向所述第一公共电极输入的公共电压间的电压差大于第二电压阈值,使得所述第一像素电极与所述第一公共电极之间形成竖直电场;
    其中,所述第一电压阈值不大于所述第二电压阈值。
  6. 根据权利要求1所述的蓝相液晶显示面板,其中,所述多个像素单元的所有所述第一像素电极通过一开关元件与所述蓝相液晶显示面板的驱动电路连接;
    当所述蓝相液晶显示面板实现宽视角模式时,所述驱动电路通过所述开关元件控制所有所述第一像素电极不获得该输入电压,或所述驱动电路通过所述开关元件控制所有所述第一像素电极获得的输入电压与第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;
    当所述蓝相液晶显示面板实现窄视角模式时,所述驱动电路通过所述开关元件控制所有所述第一像素电极获得的输入电压与所述第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间形成竖直电场;
    其中,所述第一电压阈值不大于所述第二电压阈值。
  7. 一种蓝相液晶显示面板,其中,包括多个像素单元,每个所述像素单元包括显示区域和视角控制区域;
    所述视角控制区域包括多个间隔设置的第一电极对,每个所述第一电极对包括第一像素电极和第一公共电极,所述多个像素单元的每个所述第一像素电极分别通过一开关元件与所述蓝相液晶显示面板的驱动电路连接,所述开关元件的控制端与所述开关元件连接的第一像素电极所在的像素单元对应的扫描线连接;
    所述显示区域包括多个间隔设置的第二电极对,每个所述第二电极对为一对第二像素电极或者一对第二公共电极,且相邻的两个第二电极对的电极不同;其中,
    在宽视角模式下,所述视角控制区域的第一电极对不产生电场;在窄视角模式下,所述视角控制区域的每个第一电极对中的第一像素电极和第一公共电极之间均产生竖直电场;所述显示区域在宽视角模式和窄视角模式下均产生水平电场;其中,
    当所述蓝相液晶显示面板实现宽视角模式时,所述开关元件接收所述扫描线输入的扫描电压而使连接的所述第一像素电极获得第一输入电压,所述第一输入电压与所述第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;
    当所述蓝相液晶显示面板实现窄视角模式时,所述开关元件接收所述扫描线输入的扫描电压而使连接的所述第一像素电极获得第二输入电压,所述第一输入电压与所述第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间形成竖直电场;
    其中,所述第一电压阈值不大于所述第二电压阈值。
  8. 根据权利要求7所述的蓝相液晶显示面板,其中,包括第一基板、第二基板及夹置在第一基板、第二基板之间的蓝相液晶,所述第一基板、第二基板相对设置,所述第二电极对设置在所述第一基板上,且所述第二电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘。
  9. 根据权利要求8所述的蓝相液晶显示面板,其中,所述第一电极对设置在所述第一基板上,且所述第一电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘;所述第一电极对中的两个电极间、所述第二电极对中的两个电极间均设置有绝缘层。
  10. 根据权利要求8所述的蓝相液晶显示面板,其中,所述第一电极对的其中一个电极设置在第一基板,另一个电极设置在第二基板上。
  11. 一种蓝相液晶显示面板,其中,包括多个像素单元,每个所述像素单元包括显示区域和视角控制区域,所述视角控制区域包括多个间隔设置的第一电极对,每个所述第一电极对包括第一像素电极和第一公共电极;其中,
    在宽视角模式下,所述视角控制区域的第一电极对不产生电场;在窄视角模式下,所述视角控制区域的每个第一电极对中的第一像素电极和第一公共电极之间均产生竖直电场;所述显示区域在宽视角模式和窄视角模式下均产生水平电场。
  12. 根据权利要求11所述的蓝相液晶显示面板,其中,所述显示区域包括多个间隔设置的第二电极对,每个所述第二电极对为一对第二像素电极或者一对第二公共电极,且相邻的两个第二电极对的电极不同。
  13. 根据权利要求12所述的蓝相液晶显示面板,其中,包括第一基板、第二基板及夹置在第一基板、第二基板之间的蓝相液晶,所述第一基板、第二基板相对设置,所述第二电极对设置在所述第一基板上,且所述第二电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘。
  14. 根据权利要求13所述的蓝相液晶显示面板,其中,所述第一电极对设置在所述第一基板上,且所述第一电极对中的两个电极均在所述第一基板上沿竖直方向对向设置且彼此绝缘。
  15. 根据权利要求14所述的蓝相液晶显示面板,其中,所述第一电极对中的两个电极间、所述第二电极对中的两个电极间均设置有绝缘层。
  16. 根据权利要求13所述的蓝相液晶显示面板,其中,所述第一电极对的其中一个电极设置在第一基板,另一个电极设置在第二基板上。
  17. 根据权利要求11所述的蓝相液晶显示面板,其中,所述多个像素单元的所有所述第一像素电极相连接,所述多个像素单元的所有第一公共电极相连接。
  18. 根据权利要求17所述的蓝相液晶显示面板,其中,所述多个像素单元的所述视角控制区域的所有所述第一公共电极与所述显示区域的所有所述第二公共电极相连接;
    当所述蓝相液晶显示面板实现宽视角模式时,所述蓝相液晶显示面板的驱动电路向所述第一像素电极输入的电压与向所述第一公共电极输入的公共电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;
    当所述蓝相液晶显示面板实现窄视角模式时,所述蓝相液晶显示面板的驱动电路向所述第一像素电极输入的电压与向所述第一公共电极输入的公共电压间的电压差大于第二电压阈值,使得所述第一像素电极与所述第一公共电极之间形成竖直电场;
    其中,所述第一电压阈值不大于所述第二电压阈值。
  19. 根据权利要求17所述的蓝相液晶显示面板,其中,所述多个像素单元的所有所述第一像素电极通过一开关元件与所述蓝相液晶显示面板的驱动电路连接;
    当所述蓝相液晶显示面板实现宽视角模式时,所述驱动电路通过所述开关元件控制所有所述第一像素电极不获得该输入电压,或所述驱动电路通过所述开关元件控制所有所述第一像素电极获得的输入电压与第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;
    当所述蓝相液晶显示面板实现窄视角模式时,所述驱动电路通过所述开关元件控制所有所述第一像素电极获得的输入电压与所述第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间形成竖直电场;
    其中,所述第一电压阈值不大于所述第二电压阈值。
  20. 根据权利要求11所述的蓝相液晶显示面板,其中,所述多个像素单元的每个所述第一像素电极分别通过一开关元件与所述蓝相液晶显示面板的驱动电路连接,其中,所述开关元件的控制端与所述开关元件连接的第一像素电极所在的像素单元对应的扫描线连接;
    当所述蓝相液晶显示面板实现宽视角模式时,所述开关元件接收所述扫描线输入的扫描电压而使连接的所述第一像素电极获得第一输入电压,所述第一输入电压与所述第一公共电极获得的输入电压间的电压差不超过第一电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间不形成电场;
    当所述蓝相液晶显示面板实现窄视角模式时,所述开关元件接收所述扫描线输入的扫描电压而使连接的所述第一像素电极获得第二输入电压,所述第一输入电压与所述第一公共电极获得的输入电压间的电压差大于第二电压阈值,使得所述视角控制区域的所述第一像素电极与所述第一公共电极之间形成竖直电场;
    其中,所述第一电压阈值不大于所述第二电压阈值。
PCT/CN2015/090328 2015-09-15 2015-09-23 蓝相液晶显示面板 WO2017045219A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/785,863 US9897831B2 (en) 2015-09-15 2015-09-23 Blue phase liquid crystal panels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510587564.4 2015-09-15
CN201510587564.4A CN105093766B (zh) 2015-09-15 2015-09-15 一种蓝相液晶显示面板

Publications (1)

Publication Number Publication Date
WO2017045219A1 true WO2017045219A1 (zh) 2017-03-23

Family

ID=54574528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090328 WO2017045219A1 (zh) 2015-09-15 2015-09-23 蓝相液晶显示面板

Country Status (3)

Country Link
US (1) US9897831B2 (zh)
CN (1) CN105093766B (zh)
WO (1) WO2017045219A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182636B (zh) * 2015-10-20 2017-12-15 深圳市华星光电技术有限公司 蓝相液晶显示器、蓝相液晶显示模组及其制作方法
CN107230459A (zh) * 2017-08-01 2017-10-03 深圳市华星光电技术有限公司 水平电场驱动的液晶显示面板及液晶显示装置
US20200184738A1 (en) * 2018-12-05 2020-06-11 Beeline Technologies Incorporated Rideshare Safety System
CN115248511B (zh) * 2021-04-28 2024-04-12 瀚宇彩晶股份有限公司 显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818076A (en) * 1982-12-02 1989-04-04 Merck Patent Gesellschaft Mit Beschrankter Haftung Color-selective circular polarizer and its use
CN101290443A (zh) * 2007-04-18 2008-10-22 乐金显示有限公司 液晶显示装置及其驱动方法
CN102253541A (zh) * 2011-06-29 2011-11-23 四川大学 一种视角可控的蓝相液晶显示器
CN103472637A (zh) * 2013-09-30 2013-12-25 河北工业大学 一种视角连续可控的蓝相液晶显示器
CN103792742A (zh) * 2014-01-23 2014-05-14 京东方科技集团股份有限公司 液晶显示器件

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027941B2 (ja) * 2004-01-16 2007-12-26 シャープ株式会社 表示素子および表示装置
JP4639968B2 (ja) * 2005-05-31 2011-02-23 カシオ計算機株式会社 液晶表示装置
KR101244547B1 (ko) * 2005-09-16 2013-03-18 엘지디스플레이 주식회사 횡전계방식 액정표시장치, 그 제조 방법 및 액정패널의구동방법
KR20070070721A (ko) * 2005-12-29 2007-07-04 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 구동방법
US8698988B2 (en) * 2007-01-09 2014-04-15 Japan Display West Inc. Liquid crystal device having viewing angle control pixels
KR101304411B1 (ko) * 2007-05-03 2013-09-05 삼성디스플레이 주식회사 표시 장치
KR101320072B1 (ko) * 2009-09-02 2013-10-18 엘지디스플레이 주식회사 액정표시장치와 이의 제조방법
KR101104472B1 (ko) * 2010-02-03 2012-01-13 전북대학교산학협력단 저전력 광등방성 액정표시소자
CN102062978A (zh) * 2010-11-10 2011-05-18 友达光电股份有限公司 液晶显示面板
TWI443431B (zh) * 2011-06-24 2014-07-01 Au Optronics Corp 液晶顯示面板
US8848150B2 (en) * 2011-09-23 2014-09-30 Japan Display West Inc. Liquid crystal display and electronic device
CN102707528B (zh) * 2012-06-15 2016-06-08 京东方科技集团股份有限公司 阵列基板及其制作方法、液晶显示面板及其工作方法
CN102789104B (zh) * 2012-08-30 2014-10-15 南京中电熊猫液晶显示科技有限公司 一种横向电场电极及其制造方法
TWI504981B (zh) * 2013-02-22 2015-10-21 Innolux Corp 液晶顯示面板
JP2014206597A (ja) * 2013-04-11 2014-10-30 株式会社ジャパンディスプレイ 表示装置
CN104460138B (zh) * 2014-12-31 2017-10-24 深圳市华星光电技术有限公司 一种可切换视角的液晶显示面板及其驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818076A (en) * 1982-12-02 1989-04-04 Merck Patent Gesellschaft Mit Beschrankter Haftung Color-selective circular polarizer and its use
CN101290443A (zh) * 2007-04-18 2008-10-22 乐金显示有限公司 液晶显示装置及其驱动方法
CN102253541A (zh) * 2011-06-29 2011-11-23 四川大学 一种视角可控的蓝相液晶显示器
CN103472637A (zh) * 2013-09-30 2013-12-25 河北工业大学 一种视角连续可控的蓝相液晶显示器
CN103792742A (zh) * 2014-01-23 2014-05-14 京东方科技集团股份有限公司 液晶显示器件

Also Published As

Publication number Publication date
CN105093766A (zh) 2015-11-25
US20170153469A1 (en) 2017-06-01
US9897831B2 (en) 2018-02-20
CN105093766B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN112068361B (zh) 显示装置
US11187928B2 (en) Method for driving liquid crystal display device capable of switching between wide viewing angle and narrow viewing angle
WO2014059690A1 (zh) 一种阵列基板及液晶显示装置
JP3231638B2 (ja) 液晶表示装置及びその駆動方法
WO2017045219A1 (zh) 蓝相液晶显示面板
WO2019144583A1 (zh) 一种阵列基板、显示面板及电子设备
WO2017092082A1 (zh) 阵列基板以及液晶显示装置
WO2016112563A1 (zh) 阵列基板及液晶显示器
WO2017197693A1 (zh) 3t像素结构及液晶显示装置
WO2017015993A1 (zh) 液晶显示器及其液晶面板
WO2016206136A1 (zh) 一种tft基板及显示装置
WO2017088264A1 (zh) 具有低切换频率的数据线驱动极性的阵列基板
WO2017206264A1 (zh) 一种tft基板以及液晶显示面板
WO2017101161A1 (zh) 基于hsd结构的显示面板和显示装置
WO2017079992A1 (zh) 改善大视角色偏的液晶显示器
WO2014063375A1 (zh) 薄膜晶体管及主动矩阵式平面显示装置
CN107966835A (zh) 阵列基板和液晶显示装置及驱动方法
WO2018040468A1 (zh) 显示器及其显示面板
WO2015000188A1 (zh) 显示面板及其驱动方法、显示装置
WO2019104839A1 (zh) 像素驱动架构、显示面板及显示装置
WO2019033473A1 (zh) Oled触控显示面板及oled触控显示器
WO2018209766A1 (zh) 一种触控显示面板
CN110196506B (zh) 一种阵列基板、显示面板及显示装置
JPS6397919A (ja) 液晶パネル
WO2017092079A1 (zh) 液晶显示装置及其液晶显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14785863

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903908

Country of ref document: EP

Kind code of ref document: A1