WO2017043753A1 - 전주용 철근 파단 검출장치 - Google Patents

전주용 철근 파단 검출장치 Download PDF

Info

Publication number
WO2017043753A1
WO2017043753A1 PCT/KR2016/007693 KR2016007693W WO2017043753A1 WO 2017043753 A1 WO2017043753 A1 WO 2017043753A1 KR 2016007693 W KR2016007693 W KR 2016007693W WO 2017043753 A1 WO2017043753 A1 WO 2017043753A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
pole
detection
reinforcing
unit
Prior art date
Application number
PCT/KR2016/007693
Other languages
English (en)
French (fr)
Inventor
박동수
정원섭
오기대
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to JP2018533593A priority Critical patent/JP6678243B2/ja
Publication of WO2017043753A1 publication Critical patent/WO2017043753A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Definitions

  • the present invention relates to a pole reinforcement detection device for poles, and more particularly to a pole reinforcement detection device for detecting reinforcing rods in a structure in which reinforcement is embedded in a concrete pole.
  • the supports used in distribution lines are mostly concrete poles, which are prestressed (P.S) concrete structure.
  • P.S concrete poles cause the concrete to collapse due to the failure of the reinforcing bars inside the poles for a long time.
  • P.S concrete structure is designed to support the bending moment with the tensile force of the rebar, so when the reinforcing steel inside the pole breaks and loses the tensile force, the concrete pole will collapse.
  • the prior patent has a problem that it is difficult to diagnose the reinforcement fracture in the remote site because it is possible to diagnose the reinforcement fracture only in the vicinity of the break by a method of diagnosing the reinforcement fracture site in the concrete pole using a sensor that is one of the smartphone functions.
  • the prior patent has to arrange the sensor along the circumference of the pole in order to inspect the plurality of reinforcing bars in order, as well as to examine the reinforcement state while moving up and down to inspect the reinforcement in the longitudinal direction
  • workability is greatly reduced as time increases.
  • an object of the present invention is a pole in which a plurality of reinforcing bars can be detected simultaneously by detecting magnetic fields generated from a plurality of reinforcing bars in close contact with the outer surface of the pole in a structure in which steel bars are embedded in concrete poles and the like. It is to provide a rebar break detection device for.
  • the present invention is in close contact with the circumferential outer surface of the pole to detect a magnetic field generated from the reinforcement at a position corresponding to the plurality of reinforcement embedded in the pole
  • a detection unit for receiving and storing magnetic field data about the reinforcing bar detected by the detection unit
  • a fracture state detecting unit for detecting a fracture state of the reinforcing bar based on the amount of change in the magnetic field of the magnetic field data stored in the data logger unit. It includes.
  • the detection unit includes a gripping portion providing a gripping area to a worker, a detection body rotatably coupled to one side of the gripping portion and formed to be curved so that one side is in close contact with the circumferential outer surface of the pole, and the detection body It includes a plurality of magnetic field detection unit installed at regular intervals along the longitudinal direction of the.
  • the detection body is formed to be curved by coupling a plurality of rotation blocks to be rotated to each other via a fixing member.
  • the fixing member is configured in a bolt nut manner to fix the coupled state of the adjacent rotating block and the rotating block.
  • the magnetic field detector is installed in the rotation block.
  • the detection unit is a gripping portion for providing a gripping area to the operator, a slide fixed to one side extending from the gripping portion and the other side is curved to extend in a direction away from the gripping portion, one side extending from the gripping portion It is rotatably coupled to the other side is connected to the rod via the elastic means, the detection body is one side is in close contact with the circumferential outer surface in the circumferential direction by the elastic deformation, every predetermined interval along the longitudinal direction of the detection body It includes a plurality of magnetic field detection unit is installed.
  • the detection body includes a plurality of chain blocks rotatably coupled to each other via a rotating member and an elastic band connected through the chain blocks.
  • the magnetic field detector is installed in the chain block.
  • the present invention detects a magnetic field generated from reinforcing bars at positions corresponding to a plurality of reinforcing bars buried in close contact with the outer surface of the pole. Therefore, since a plurality of rebar fracture states can be detected simultaneously, workability can be greatly improved.
  • the detection body is formed by combining a plurality of rotation blocks and fixed to the outer peripheral surface of the pole by fixing the angle of each rotation block. Therefore, there is an effect that it is possible to easily perform the operation of detecting the reinforcing bar fracture state for a variety of diameter pole without replacing the detection unit.
  • the present invention is formed by combining the plurality of chain blocks and the detection body is in close contact with the outer peripheral surface of the pole by the elastic deformation by using the elastic means and the elastic band. Therefore, as the diameter gradually increases toward the lower portion of the upper portion, there is an effect that the operation of detecting the fracture state of the rebar for the poles having different outer diameters of the upper portion and the lower portion can be easily performed.
  • 1A and 1B show examples of reinforcing bars for the upper and lower portions of the ground surface of concrete poles.
  • FIG. 2 and 3 is a view showing a reinforcing rod breaking detection device for poles according to an embodiment of the present invention.
  • Figure 4 is a view showing a method of detecting the reinforcing bar by close contact along the circumferential outer surface of the pole of an embodiment of the present invention.
  • Figure 5 is a graph showing the magnetic field data for a plurality of reinforcing bar detecting the magnetic field using the pole reinforcing bar detecting device for the present invention.
  • Figure 6 is a view showing a reinforcing rod breaking detection device for poles according to another embodiment of the present invention.
  • FIG. 7 is a view showing a method of detecting the fracture of the reinforcing bar in close contact with the circumferential outer surface of the pole of another embodiment of the present invention.
  • the pole reinforcing bar detecting apparatus for electric pole includes a detecting unit 10, a data logger unit 20, and a breaking state detecting unit 30.
  • the detection unit 10 is generated from the reinforcing bar 3 at a position corresponding to the plurality of reinforcing bars 3 embedded in the electric pole 1 by being closely adhered along the circumferential outer surface of the electric pole 1. Detects a magnetic field.
  • a plurality of reinforcing bars (3) are embedded in a circular shape at regular intervals.
  • the length of the reinforcing bar 3 embedded in the pole 1 is approximately 2.5 m (16 m pole) from the ground surface to the bottom.
  • the plurality of rebars are based on the magnetic field variation.
  • the principle can be detected that the reinforcing bar 3 is in a broken state at a portion where the magnetic field change amount is sharp in the longitudinal direction of the reinforcing bar 3.
  • the principle is that when the magnetic field data of the plurality of reinforcing bars (3) in the circumferential direction at a predetermined height above the ground surface of the pole 1 is detected, it can be displayed as a graph to compare the magnetic field strength to diagnose the reinforcing bars in the broken state.
  • the unbreakable reinforcing bar shows almost the same magnetic field strength, but in the case of the reinforcing bar of any one part, the magnetic field strength is different from the unbreakable bar.
  • the detection unit 10 includes a gripping portion 11, a detection body 13, and a magnetic field detector 19.
  • the holding part 11 is a part for providing a holding area to the worker so that the operator can move the detection body 13 in the vertical direction of the electric pole 1.
  • the gripping portion 11 may be formed in a bar shape having a predetermined length so that an operator can easily hold it.
  • the detection body 13 is rotatably coupled to one side of the gripping portion 11.
  • the detection body 13 provides an installation area of the magnetic field detector 19 and is in close contact with the outer surface of the pole 1 so that the magnetic field detector 19 can detect the magnetic field of the reinforcing bar 3 embedded in the pole 1.
  • the detection body 13 may be formed to be curved in a shape corresponding to the circumferential outer surface of the electric pole (1). As the detection body 13 is formed to be curved, one side may be in close contact with the circumferential outer surface of the electric pole 1.
  • the detection body 13 may be formed to be bent by coupling the plurality of rotation blocks 15 to each other via the fixing member 17 to be rotatable.
  • the fixing member 17 connects the rotation blocks 15 to form the detection body 13 and simultaneously fixes the angles of the interconnecting rotation blocks 15 so that the magnetic field detector 19 to be described later is embedded in the electric pole 1. It is to be placed in a position corresponding to the rebar (3).
  • both ends of each of the rotation blocks 15 are provided with passage holes 16 to which the fixing member 17 is coupled, and the fixing member 17 is a general bolt 17a nut 17b type. It may be configured as.
  • the fixing member 17 may be coupled to the passing holes 16 of the rotation block 15a and the rotation block 15b adjacent to each other to fix the coupling state of the rotation block 15a and the rotation block 15b.
  • the magnetic field detector 19 may be provided in plural numbers installed at regular intervals along the longitudinal direction of the detection body 13.
  • the magnetic field detection unit 19 is installed on each side of the plurality of rotation blocks 15, the magnetic field generated from the reinforcing bar 3 in a state in which the plurality of rotation blocks 15 are in close contact with the outer surface of the pole 1 Detect.
  • the magnetic field detector 19 may be embedded in one side of each of the rotation blocks 15. In this embodiment, the magnetic field detector 19 is embedded in the center of each rotation block 15.
  • the magnetic field detector 19 may be a magnetic sensor for measuring a magnetic field which is a current generated in the reinforcing bar 3 by electromagnetic induction.
  • the detection body 13 may be formed so as to surround the outer surface of the electric pole 1 in the circumferential direction by combining a plurality of rotation blocks 15. However, it is preferable that the detection main body 13 is formed to have a length of approximately 1/2 of the circumference of the entire circumference in consideration of noise generated between neighboring magnetic field detection units 19 when detecting the magnetic field.
  • the data logger unit 20 receives and stores magnetic field data on the rebar 3 detected by the detection unit 10.
  • the data logger unit 20 is electrically connected to the detection unit 10, and substantially receives and stores magnetic field data on the reinforcing bar 3 detected by the magnetic field detection unit 19 of the detection unit 10.
  • the breaking state detector 30 detects the breaking state of the rebar based on the amount of change in the magnetic field of the magnetic field data stored in the data logger unit 20. Specifically, the breaking state detector 30 may be electrically connected to the data logger unit 20 to receive the magnetic field data stored in the data logger unit 20, and the amount of change in the magnetic field of the magnetic field data stored in the data logger unit 20. The fracture state of the rebar is detected based on the
  • a method of detecting the fracture of the reinforcing bar by closely contacting the detection body along the circumferential outer surface of the pole is described.
  • one of the rotation blocks 15 rotatably coupled to the holding portions 11 of the plurality of rotation blocks 15 in a state in which the worker grips the holding portions 11.
  • the side surface is supported on the outer surface of the pole 1.
  • the remaining plurality of rotating blocks 15 are rotated in close contact with the outer surface of the pole 1 so that one side of the plurality of rotating blocks 15 is in close contact with the outer surface of the pole 1.
  • the fixing member 17 which connects the respective rotation blocks 15, that is, the bolts and nuts are tightened to fix the rotation blocks 15.
  • the state in which the detection main body 13 composed of the plurality of rotation blocks 15 is in close contact with the outer surface of the electric pole 1 can be maintained, and the magnetic field detection unit 19 installed in each rotation block 15 is The magnetic field of the reinforcing bar 3 at the position corresponding to can be detected.
  • the plurality of rotation blocks 15 are upwardly moved together so that the magnetic field detection unit 19 detects the magnetic field of the reinforcing bar 3 in the longitudinal direction.
  • the plurality of rotation blocks 15 connected to the gripping portion 11 move upwardly in contact with the outer surface of the pole 1, so that they are generated from each of the reinforcing bars 3.
  • the magnetic field can be detected along the longitudinal direction of the reinforcing bar 3.
  • the magnetic field data for the rebar 3 detected by the magnetic field detection unit 19 is stored in the data logger unit 20.
  • the breaking state detection unit 30 detects the change in the magnetic field for each rebar (3) based on the magnetic field data stored in the data logger unit 20 and detects the breaking state of the rebar in accordance with the amount of change in the magnetic field.
  • the reinforcing bar is in a broken state at a portion where the magnetic field change amount is sharp.
  • the reinforcing bars in the fractured state may not be moved without holding the holding part 11 upward. I can diagnose it.
  • the present invention is a plurality of reinforcing bar by detecting the magnetic field generated from the reinforcing bar 3 at the position corresponding to the plurality of reinforcing bar 3 is in close contact with the outer body of the pole 1
  • the breaking state can be detected at the same time.
  • the detection main body 13 fixes the angles of the rotation blocks 15 to be in close contact with the outer circumferential surface of the pole 1, it is also possible to easily perform the rebar breaking state detection operation for the pole 1 having various diameters.
  • FIG. 5 shows magnetic field data for a plurality of rebars that have detected a magnetic field using an embodiment of the present invention.
  • the portion of the magnetic field change is suddenly confirmed, and the rebar is detected in the fractured state at the portion of the magnetic field change.
  • the detection unit 40 includes a grip portion 41, a slide 43, a detection body 47, and a magnetic field detector 55.
  • the holding part 41 is a part which provides a holding area for a worker so that an operator can move the slide 43 and the detection body 47 to the up-down direction of the electric pole 1.
  • the gripping portion may be formed in a bar shape having a predetermined length so that an operator can easily grip the gripping portion.
  • the gripping portion 41 may be made of a plastic material or the like to facilitate the gripping by the operator.
  • the slide 43 is for supporting the detection body 47.
  • the slide 43 is formed to provide a space that can be elastically deformed when the detection body 47 is in close contact with the outer surface of the electric pole (1).
  • the slide 43 is fixed to one side extending from the grip portion 41 and the other side is formed to be curved in a direction away from the grip portion 41.
  • the slide 43 may be fixed using a bolt or the like on one side extending from the grip portion (41).
  • the fixing hole 43a is formed at the other side of the slide 43.
  • the connection hole 46 for fixing the other side of the detection body 47 may be hooked and fixed to the fixing hole 43a.
  • the slide 43 may be formed of a metal material to secure rigidity.
  • the detecting body 47 provides an installation area of the magnetic field detector 55 and is in close contact with the outer surface of the pole 1 so that the magnetic field detector 55 can detect the magnetic field of the reinforcing bar 3 embedded in the pole 1. To help.
  • the detecting body 47 is rotatably coupled to one side of which the one side extends from the holding portion 41 and the other side of the detecting body 47 is connected to the slide 43 via the elastic means 45.
  • one side of the detection body 47 is in close contact with the outer circumference in the circumferential direction by elastic deformation.
  • the elastic means 45 may be a spring coupled to the other side of the detection body 47.
  • One side of the spring is coupled to the other side of the detection body 47 and the other side is fixed to the connecting portion 46.
  • the connecting portion 46 is fixed to the fixing hole 43a of the slide 43 in a string shape, thereby fixing the other side of the detection body 47 to the slide 43 and the detection body 47 elastically deformed in the sliding direction.
  • the detection body 47 includes a plurality of chain blocks 49 and elastic bands 53.
  • the detection body 47 connects the chain blocks 49 to form the detection body 47 and at the same time the angle of the interconnected chain blocks 49 is adjusted by elastic deformation so that the magnetic field detection unit 55 to be described later is applied to the electric pole. It is to be arranged in a position corresponding to the embedded reinforcing bar (3).
  • the chain block 49 may be connected to each other in a manner that the front end of the chain block 49 is inserted into the rear end pivot 51 of the opposite chain block 49 and fixed.
  • the front end of the chain block 49 may be disposed to overlap the rear end of the opposite chain block 49, and then may be connected to each other by fixing the overlapped portion with the pivot 51.
  • the rotating unit 51 may connect the chain block 49 and the chain block 49 adjacent to each other to fix the coupled state of the chain block 49 and the chain block 49.
  • the elastic band 53 is connected to pass through between the chain blocks (49).
  • the elastic band 53 provides an elastic force in a direction in which the detection body 47 is in close contact with the circumferential outer surface of the electric pole 1.
  • the elastic band 53 may be installed to pass between the chain blocks 49 and then fixed to the elastic band 53 by using an adhesive or the like at the end thereof.
  • each chain block 49 When the detection body 47 is in close contact with the outer surface of the pole, the angle of each chain block 49 is adjusted while being pushed in the direction of the slide 43 by the elastic means 45 to correspond to the outer surface of the pole 1.
  • the elastic band 53 installed to pass between the chain blocks 49 pushes each of the chain blocks 49 in the circumferential direction so that the detection main body 47 can be in close contact with the outer surface of the pole.
  • the elastic means for elastically deforming the detection body in the sliding direction and the elastic band for pushing the detection body in the circumferential direction interact with each other to bring the detection body into close contact with the outer surface of the pole.
  • the detection main body 47 is hardly in close contact with the outer surface of the electric pole 1 according to the outer diameter of the electric pole, and the lifting portion between the electric pole 1 and the detection main body 47 is May occur.
  • the magnetic field detector 55 may be provided in plural numbers installed at regular intervals along the longitudinal direction of the detection body 47.
  • the magnetic field detection unit 55 is installed on each side of the plurality of chain blocks 49, the magnetic field generated from the reinforcing bar 3 in a state in which the plurality of chain blocks 49 are in close contact with the outer surface of the electric pole (1) Detect.
  • the magnetic field detector 55 may be embedded in one side of each chain block 49. In this embodiment, the magnetic field detection unit 55 is embedded in the center of each chain block 49.
  • the magnetic field detector 55 may be a magnetic sensor for measuring a magnetic field which is a current generated in the reinforcing bar 3 by electromagnetic induction.
  • the receiving unit 57 is further provided on one side extending from the holding unit 41.
  • the receiver 57 receives the magnetic field signal detected by the magnetic field detector 55 and transmits the signal to the data logger unit 20.
  • the receiver 57 has a box shape and may be provided with various devices for receiving a magnetic field signal therein.
  • a method of detecting the fracture of the reinforcing bar by closely contacting the detection body along the circumferential outer surface of the pole is described.
  • the detection body is in close contact with the outer surface of the pole in the state in which the worker grips the gripping portion 41.
  • each chain block 49 When the detection body 47 is in close contact with the outer surface of the pole 1, the detection body 47 is pushed in the direction of the slide 43 by the elastic means 45, the angle of each chain block 49 is adjusted to the pole ( Corresponds to the outer surface of 1). In this process, the elastic band 53 installed to pass between the chain blocks 49 pushes each of the chain blocks 49 in the circumferential direction so that the detection body 47 is in close contact with the outer surface of the circumference 1.
  • the magnetic field detector 55 installed in each chain block 49 may detect the magnetic field of the reinforcing bar 3 at a position corresponding thereto.
  • the plurality of chain blocks 49 move upward together with the slide 43 so that the magnetic field detector 55 detects the magnetic field of the reinforcing bar 3 in the longitudinal direction. Can be.
  • the elastic band 53 pushes each of the chain blocks 49 in the circumferential direction even when the diameter of the pole 1 is changed in the process of moving the grip portion 41 upward, so that the detection body 47 is circumferential.
  • the state in close contact with the outer surface may be maintained. Thereby, the magnetic field generated from each rebar 3 can be detected along the longitudinal direction of the rebar 3.
  • the magnetic field data for the rebar 3 detected by the magnetic field detector 55 is transferred to the receiver 57 and then stored in the data logger unit 20.
  • the breaking state detector 30 may detect a change in magnetic field for each rebar 3 based on the magnetic field data stored in the data logger unit 20, and detect a breaking state of the reinforcing bars according to the amount of change in the magnetic field.
  • another embodiment is easy to use because it does not have to perform the operation of adjusting the angle of the detection body to correspond to the outer diameter of the pole.
  • the detection body 47 moves upward in contact with the outer surface of the pole 1 in the pole 1 having a different diameter between the top and the bottom, the detection body 47 is placed on the outer surface of the pole 1.
  • the magnetic field can be easily detected because the state of close contact can be maintained at all times.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

본 발명은 전주용 철근 파단 검출장치에 관한 것으로, 전주의 원주방향 외면을 따라 밀착되어 상기 전주(1) 내에 매설된 복수 개의 철근(3)과 대응되는 위치에서 상기 철근(3)으로부터 발생되는 자기장을 검출하는 검출유닛(10)과, 상기 검출유닛(10)이 검출한 철근(3)에 대한 자기장 데이터를 인가받아 저장하는 데이터 로거유닛(20)과, 상기 데이터 로거유닛(20)에 저장된 자기장 데이터의 자기장 변화량에 근거하여 상기 철근(3)의 파단상태를 검출하는 파단상태 검출부(30)를 포함한다. 본 발명은 복수 개의 철근 파단상태 검출작업을 동시에 수행할 수 있고 직경이 다른 다양한 전주에 대한 철근 파단상태 검출작업도 용이하게 실시할 수 있는 이점이 있다.

Description

전주용 철근 파단 검출장치
본 발명은 전주용 철근 파단 검출장치에 관한 것으로, 더욱 상세하게는 콘크리트 전주 등 내부에 철근이 매설된 구조물에서 철근 파단을 검출할 수 있는 전주용 철근 파단 검출장치에 관한 것이다.
일반적으로 배전선로에 이용되는 지지물은 대부분이 콘크리트 전주로서 프리스트레스트(P.S) 콘크리트 구조로 된다. P.S 콘크리트 전주는 오랜 사용시 전주 내부의 철근이 파단되는 원인에 의해 콘크리트가 도괴되는 사고가 발생한다.
P.S 콘크리트 구조는 휨모멘트를 철근의 인장력으로 지지하도록 설계되므로 전주 내부의 철근이 파단되어 인장력을 잃게 되면 콘크리트 전주가 도괴되는 사고가 발생하게 된다.
최근 콘크리트 전주를 교체하기 위해 작업자가 전주에 연결된 케이블을 절단하자 힘의 균형이 깨지면서 전주가 갑자기 도괴되어 안전사고가 발생된 사례가 있다.
P,S 콘크리트 전주를 사용하는 우리나라의 경우 전주에 변압기, 개폐기 등 다양한 장치가 설치되어 있으므로 콘크리트 내부 철근이 파단되는 것에 의해 사고 발생 위험이 매우 높다. 따라서 콘크리트 내부 철근이 파단되는 것을 진단하여 도괴사고가 발생하기 전 전주를 교체 또는 보강하는 것이 필요하다.
이와 관련된 선행특허로 KR 10-2014-0042240(2014.04.07 공개)가 있다.
그러나, 선행특허는 스마트폰 기능의 하나인 센서를 이용하여 콘크리트 전주 내 철근 파단 부위를 진단하는 방법으로 파단부 가까이에서만 철근 파단을 진단할 수 있어 원격지에서는 철근 파단을 진단하기 어려운 문제점이 있다.
즉, 도 1a에 도시된 바와 같이, 콘크리트 전주(1)의 지표면(2) 상부에서 철근 파단(P)이 발생하면 콘크리트 전주(1)에 센서를 접촉하여 철근 파단 여부의 검출이 가능하나, 도 1b에 도시된 바와 같이, 콘크리트 전주(1)의 지표면(2) 하부에서 철근 파단(P)이 발생하면 센서의 접촉이 불가능하여 철근 파단의 검출이 불가능하다.
또한, 선행특허는 복수 개의 철근을 검사하기 위해 전주의 외표면에 원주를 따라 센서를 순차적으로 배치해야 할 뿐 아니라 철근을 길이방향으로 검사하기 위해 상하방향으로 이동하면서 철근 파단상태를 검사해야 하므로 작업시간이 증대되면서 작업성이 크게 낮아지는 문제점이 있다.
따라서, 본 발명의 목적은 콘크리트 전주 등 내부에 철근이 매설된 구조물에서, 전주의 외면을 따라 밀착 접촉되어 복수 개의 철근으로부터 발생하는 자기장을 검출함으로써 복수 개의 철근 파단 상태를 동시에 검출할 수 있도록 한 전주용 철근 파단 검출장치를 제공하는 것이다.
본 발명의 또 다른 목적은 직경이 다양한 전주에 대한 철근 파단 상태 검출 작업도 검출유닛의 교체없이 용이하게 실시할 수 있도록 한 전주용 철근 파단 검출장치를 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 전주의 원주방향 외면을 따라 밀착되어 상기 전주 내에 매설된 복수 개의 철근과 대응되는 위치에서 상기 철근으로부터 발생되는 자기장을 검출하는 검출유닛과, 상기 검출유닛이 검출한 철근에 대한 자기장 데이터를 인가받아 저장하는 데이터 로거유닛과, 상기 데이터 로거유닛에 저장된 자기장 데이터의 자기장 변화량에 근거하여 상기 철근의 파단상태를 검출하는 파단상태 검출부를 포함한다.
상기 검출유닛은 작업자에게 파지 영역을 제공하는 파지부와, 상기 파지부의 일측에 회동 가능하게 결합되고 만곡지게 형성되어 일측면이 상기 전주의 원주방향 외면을 따라 밀착되는 검출본체와, 상기 검출본체의 길이방향을 따라 일정 간격마다 설치되는 복수 개의 자기장 검출부를 포함한다.
상기 검출본체는 복수 개의 회동블럭을 고정부재를 매개로 상호 회동 가능하게 결합하여 만곡지게 형성한다.
상기 고정부재는 볼트 너트 방식으로 구성되어, 이웃하는 회동블럭과 회동블럭의 결합상태를 고정한다.
상기 자기장 검출부는 상기 회동블럭에 설치된다.
상기 검출유닛은 작업자에게 파지 영역을 제공하는 파지부와, 상기 파지부에서 연장된 일측에 고정되고 타측은 상기 파지부와 멀어지는 방향으로 만곡지게 연장되는 활대와, 일측이 상기 파지부에서 연장된 일측에 회동 가능하게 결합되고 타측은 상기 활대에 탄성수단을 매개로 연결되며, 일측면이 상기 전주에 원주방향 외면에 탄성변형에 의해 밀착되는 검출본체와, 상기 검출본체의 길이방향을 따라 일정 간격마다 설치되는 복수 개의 자기장 검출부를 포함한다.
상기 검출본체는 회동부재를 매개로 상호 회동가능하게 결합되는 복수 개의 체인블럭과 상기 체인블럭 사이를 통과하여 연결되는 탄성밴드를 포함한다.
상기 자기장 검출부는 상기 체인블럭에 설치된다.
본 발명은 전주의 외면을 따라 밀착 접촉되어 전주 내에 매설된 복수 개의 철근과 대응되는 위치에서 철근으로부터 발생하는 자기장을 검출한다. 따라서, 복수 개의 철근 파단 상태를 동시에 검출할 수 있으므로 작업성을 크게 향상시킬 수 있는 효과가 있다.
또한, 본 발명은 검출본체가 복수 개의 회동블럭들을 결합하여 형성되고 각 회동블럭들의 각도를 고정하여 전주의 외주면에 밀착된다. 따라서 검출유닛 교체없이 직경이 다양한 전주에 대한 철근 파단 상태 검출 작업을 용이하게 실시할 수 있는 효과가 있다.
또한, 본 발명은 검출본체가 복수 개의 체인블럭들을 결합하여 형성되고 탄성수단 및 탄성밴드를 이용하여 탄성변형에 의해 전주의 외주면에 밀착된다. 따라서 상부에 하부로 갈수록 직경이 점차적으로 커져 상부와 하부의 외경이 다른 전주에 대한 철근 파단 상태 검출 작업도 용이하게 실시할 수 있는 효과가 있다.
도 1a 및 도 1b는 콘크리트 전주의 지표면 상부 및 하부 부분에 대한 철근 파단 예를 보인 도면.
도 2 및 도 3은 본 발명의 일 실시예에 의한 전주용 철근 파단 검출장치를 보인 도면.
도 4는 본 발명의 일 실시예를 전주의 원주방향 외면을 따라 밀착시켜 철근 파단을 검출하는 방법을 보인 도면.
도 5는 본 발명에 따른 전주용 철근 파단 검출장치를 사용하여 자기장을 검출한 복수 개의 철근에 대한 자기장 데이터를 나타낸 그래프.
도 6은 본 발명의 다른 실시예에 의한 전주용 철근 파단 검출장치를 보인 도면.
도 7은 본 발명의 다른 실시예를 전주의 원주방향 외면에 밀착시켜 철근 파단을 검출하는 방법을 보인 도면.
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
[일 실시예]
본 발명의 일 실시예에 의한 전주용 철근 파단 검출장치는, 도 2 및 도 3에 도시된 바와 같이, 검출유닛(10), 데이터 로거유닛(20), 파단상태 검출부(30)를 포함한다.
도 4에 도시된 바와 같이, 검출유닛(10)은 전주(1)의 원주방향 외면을 따라 밀착되어 전주(1) 내에 매설된 복수 개의 철근(3)과 대응되는 위치에서 철근(3)으로부터 발생되는 자기장을 검출한다.
전주(1) 내부에는 복수 개의 철근(3)이 원형형태로 일정한 간격을 유지하며 매설된다. 전주(1)의 내부에 매설된 철근(3)의 길이는 지표면에서 바닥까지 대략 2.5m(16m 전주의 경우)가 된다.
상기와 같은 경우, 전주(1)의 원주방향 외면을 따라 밀착되어 상하 방향으로 이동하면서 전주(1) 내에 매설된 복수 개의 철근(3)에 대한 자기장을 검출하면, 자기장 변화량에 근거하여 복수 개의 철근(3) 파단상태 검출 작업을 동시에 수행할 수 있다.
그 원리는 철근(3)의 길이방향으로 자기장 변화량이 급격한 부분에서 철근(3)이 파단상태인 것으로 검출할 수 있다.
또한, 전주(1)의 일정 높이에서 원주방향 외면을 따라 밀착되어 전주(1) 내에 매설된 복수 개의 철근(3)에 대한 자기장을 검출하면, 상대적인 자기장 세기에 근거하여 지표면 하부 철근(3) 파단인 경우에도 검출할 수 있다.
그 원리는 전주(1)의 지표면 상부 일정 높이에서 원주방향으로 복수 개의 철근(3)에 대한 자기장 데이터를 검출하면, 이를 그래프로 나타내고 자기장 세기를 비교하여 파단상태의 철근을 진단할 수 있다.
지표면 하부 철근 파단인 경우에도 파단된 철근은 파단되지 않은 철근과 자기장 세기에 차이가 발생하므로 검출할 수 있다.
원주방향별 철근(3)의 자기장의 세기를 비교하면 파단되지 않은 철근은 거의 동일한 자기장 세기를 나타내나 어느 한 부분이 파단된 철근의 경우 자기장 세기가 파단되지 않은 철근과 차이가 발생한다.
검출유닛(10)은 파지부(11), 검출본체(13), 자기장 검출부(19)를 포함한다.
파지부(11)는 작업자가 검출본체(13)를 전주(1)의 상하방향으로 이동시킬 수 있도록 작업자에게 파지 영역을 제공하는 부분이다. 파지부(11)는 작업자가 파지하기 용이하도록 소정 길이를 갖는 바 형상으로 형성될 수 있다.
검출본체(13)는 파지부(11)의 일측에 회동 가능하게 결합된다. 검출본체(13)는 자기장 검출부(19)의 설치영역을 제공함과 동시에 전주(1)의 외면에 밀착되어 자기장 검출부(19)가 전주(1) 내부에 매설된 철근(3)의 자기장을 검출할 수 있도록 한다.
검출본체(13)는 전주(1)의 원주방향 외면과 대응되는 형상으로 만곡지게 형성될 수 있다. 검출본체(13)는 만곡지게 형성됨에 따라 일측면이 전주(1)의 원주방향 외면을 따라 밀착될 수 있다.
검출본체(13)는 복수 개의 회동블럭(15)을 고정부재(17)를 매개로 상호 회동 가능하게 결합하여 만곡지게 형성할 수 있다.
고정부재(17)는 회동블럭(15)들을 연결하여 검출본체(13)를 형성함과 동시에 상호 연결된 회동블럭(15)들의 각도를 고정하여 후술할 자기장 검출부(19)가 전주(1)에 매설된 철근(3)과 대응되는 위치에 배치되도록 한다.
도 3에 도시된 바와 같이, 각 회동블럭(15)의 양단에는 고정부재(17)가 결합되는 통과공(16)이 형성되고, 고정부재(17)는 일반적인 볼트(17a) 너트(17b) 방식으로 구성될 수 있다.
고정부재(17)는 서로 이웃하는 회동블럭(15a)과 회동블럭(15b)의 통과공(16)에 결합되어 회동블럭(15a)과 회동블럭(15b)의 결합상태를 고정할 수 있다.
자기장 검출부(19)는 검출본체(13)의 길이방향을 따라 일정 간격마다 설치되는 복수 개로 이루어질 수 있다.
구체적으로, 자기장 검출부(19)는 복수 개의 회동블럭(15) 일측에 각각 설치되고, 복수 개의 회동블럭(15)이 전주(1)의 외면에 밀착된 상태에서 철근(3)으로부터 발생되는 자기장을 검출한다. 자기장 검출부(19)는 각 회동블럭(15)의 일측에 매립 설치될 수 있다. 본 실시예에서 자기장 검출부(19)는 각 회동블럭(15)의 중앙에 매립 설치된다.
자기장 검출부(19)는 전자기 유도현상에 의하여 철근(3)에서 발생하는 전류인 자기장을 측정하는 자기센서일 수 있다.
상술한 바와 같이, 검출본체(13)는 회동블럭(15)을 복수 개 결합하여 전주(1)의 외면을 원주방향으로 감싸도록 형성할 수 있다. 그러나 검출본체(13)는 자기장 검출시 이웃하는 자기장 검출부(19) 간에 발생되는 노이즈를 고려하여 대략 전주 원주크기의 1/2 정도 길이로 형성함이 바람직하다.
데이터 로거유닛(20)은 검출유닛(10)이 검출한 철근(3)에 대한 자기장 데이터를 인가받아 저장한다. 데이터 로거유닛(20)은 검출유닛(10)과 전기적으로 연결되며, 실질적으로 검출유닛(10)의 자기장 검출부(19)가 검출한 철근(3)에 대한 자기장 데이터를 인가받아 저장한다.
파단상태 검출부(30)는 데이터 로거유닛(20)에 저장된 자기장 데이터의 자기장 변화량에 근거하여 철근의 파단상태를 검출한다. 구체적으로, 파단상태 검출부(30)는 데이터 로거유닛(20)과 전기적으로 연결되어 데이터 로거유닛(20)에 저장된 자기장 데이터를 전송받을 수 있으며, 데이터 로거유닛(20)에 저장된 자기장 데이터의 자기장 변화량에 근거하여 철근의 파단상태를 검출한다.
이하에서는 본 발명의 작용에 대해 설명한다.
검출본체를 전주의 원주방향 외면을 따라 밀착시켜 철근 파단을 검출하는 방법을 설명하기로 한다.
이를 위해 우선, 도 4에 도시된 바와 같이, 작업자가 파지부(11)를 파지한 상태에서 복수 개의 회동블럭(15) 중 파지부(11)에 회동가능하게 결합된 회동블럭(15)의 일측면을 전주(1)의 외면에 지지한다.
다음으로, 나머지 복수 개의 회동블럭(15)을 전주(1)의 외면과 밀착되는 방향으로 회전하여 복수 개의 회동블럭(15)의 일측면이 전주(1)의 외면에 밀착되도록 한다.
다음으로, 각 회동블럭(15)들을 연결하고 있는 고정부재(17), 즉 볼트와 너트를 조여 회동블럭(15)들이 회동한 상태를 고정한다.
그에 따라, 복수 개의 회동블럭(15)들로 이루어진 검출본체(13)가 전주(1)의 외면에 밀착된 상태가 유지될 수 있고, 각 회동블럭(15)에 설치된 자기장 검출부(19)는 그와 대응되는 위치에 있는 철근(3)의 자기장을 검출할 수 있다.
이후, 파지부(11)를 상방으로 이동함에 따라 복수 개의 회동블럭(15)이 상방으로 동반이동되어 자기장 검출부(19)가 철근(3)의 자기장을 길이방향으로 검출한다.
즉, 파지부(11)가 상방으로 이동하면 파지부(11)에 연결된 복수 개의 회동블럭(15)이 전주(1)의 외면과 접촉된 상태로 상방으로 이동하게 되므로 각 철근(3)으로부터 발생되는 자기장을 철근(3)의 길이방향을 따라 검출할 수 있다.
자기장 검출부(19)가 검출한 철근(3)에 대한 자기장 데이터는 데이터 로거유닛(20)에 저장된다.
그리고, 파단상태 검출부(30)는 데이터 로거유닛(20)에 저장된 자기장 데이터에 근거하여 각 철근(3)에 대한 자기장 변화를 검출하고 자기장 변화량에 따라 철근의 파단상태를 검출한다.
예를 들어, 복수 개의 철근 중 어느 하나의 철근에 대한 길이방향의 자기장 데이터를 나타내었을 때, 자기장 변화량이 급격한 부분에서 철근이 파단상태인 것으로 검출할 수 있다.
또한, 전주의 지표면 상부 일정 높이에서 원주방향으로 검출한 복수 개의 철근에 대한 자기장 데이터를 비교하였을 때, 자기장 세기에 차이가 있는 경우 파지부(11)를 상방으로 잡고 이동하지 않아도 파단상태의 철근을 진단할 수는 있다.
상술한 바와 같이, 본 발명은 검출본체(13)가 전주(1)의 외면을 따라 밀착 접촉되어 복수 개의 철근(3)과 대응되는 위치에서 철근(3)으로부터 발생하는 자기장을 검출함으로써 복수 개의 철근 파단 상태를 동시에 검출할 수 있다.
또한, 검출본체(13)는 회동블럭(15)들의 각도를 고정하여 전주(1)의 외주면에 밀착되므로 직경이 다양한 전주(1)에 대한 철근 파단 상태 검출 작업도 용이하게 실시할 수 있다.
한편, 도 5에는 본 발명의 일 실시예를 사용하여 자기장을 검출한 복수 개의 철근에 대한 자기장 데이터가 도시되어 있다. 이를 보면, 자기장 변화량이 급격한 부분이 확인되는데, 자기장 변화량이 급격한 부분에서 철근이 파단상태인 것으로 검출한다.
[다른 실시예]
다른 실시예는 일 실시예와 비교하여 검출유닛의 구성에 차이가 있으므로, 검출유닛에 구성에 대해서만 상세하게 설명하기로 한다.
도 6에 도시된 바와 같이, 검출유닛(40)은 파지부(41), 활대(43), 검출본체(47), 자기장 검출부(55)를 포함한다.
파지부(41)는 작업자가 활대(43) 및 검출본체(47)를 전주(1)의 상하방향으로 이동시킬 수 있도록 작업자에게 파지 영역을 제공하는 부분이다.
파지부는 작업자가 파지하기 용이하도록 소정 길이를 갖는 바 형상으로 형성될 수 있다. 또한, 파지부(41)는 플라스틱 재질 등으로 구성하여 작업자가 파지하기 용이하도록 할 수 있다.
활대(43)는 검출본체(47)를 지지하기 위한 것이다. 활대(43)는 검출본체(47)가 전주(1)의 외면에 밀착될 때 탄성변형될 수 있는 공간을 제공하도록 형성된다. 활대(43)는 파지부(41)에서 연장되는 일측에 고정되고 타측은 파지부(41)와 멀어지는 방향으로 만곡지게 연장 형성된다.
활대(43)의 일측은 파지부(41)에서 연장되는 일측에 볼트 등을 이용하여 고정될 수 있다. 활대(43)의 타측에는 고정공(43a)이 형성된다. 고정공(43a)에는 검출본체(47)의 타측을 고정하기 위한 연결부(46)가 걸어져 고정될 수 있다. 활대(43)는 강성 확보를 위해 금속 재질로 형성될 수 있다.
검출본체(47)는 자기장 검출부(55)의 설치영역을 제공함과 동시에 전주(1)의 외면에 밀착되어 자기장 검출부(55)가 전주(1) 내부에 매설된 철근(3)의 자기장을 검출할 수 있도록 한다.
검출본체(47)는 일측이 파지부(41)에서 연장되는 일측에 회동 가능하게 결합되고 타측이 활대(43)에 탄성수단(45)을 매개로 연결된다. 또한, 검출본체(47)는 일측면이 전주에 원주방향 외면에 탄성변형에 의해 밀착된다.
탄성수단(45)은 검출본체(47)의 타측에 결합되는 스프링일 수 있다. 스프링은 일측이 검출본체(47)의 타측에 결합되고 타측이 연결부(46)에 고정된다. 연결부(46)는 끈 형상으로 활대(43)의 고정공(43a)에 걸어 고정됨으로써, 검출본체(47)의 타측을 활대(43)에 고정하고 검출본체(47)가 활대 방향으로 탄성변형될 수 있도록 한다.
검출본체(47)는 복수 개의 체인블럭(49)과 탄성밴드(53)를 포함한다.
검출본체(47)는 체인블럭(49)들을 연결하여 검출본체(47)를 형성함과 동시에 상호 연결된 체인블럭(49)들의 각도가 탄성변형에 의해 조절되어 후술할 자기장 검출부(55)가 전주에 매설된 철근(3)과 대응되는 위치에 배치되도록 한다.
체인블럭(49)은 대략 'H'자 형상으로 선단이 상대편 체인블럭(49)의 후단 회동부(51)에 끼여져 고정되는 방식으로 상호 연결될 수 있다. 또는, 체인블럭(49) 선단을 상대편 체인블럭(49)의 후단과 겹쳐지게 배치한 후 겹쳐진 부분을 회동부(51)로 고정하는 방식으로 상호 연결될 수도 있다.
회동부(51)는 서로 이웃하는 체인블럭(49)과 체인블럭(49)을 연결하여 체인블럭(49)과 체인블럭(49)의 결합상태를 고정할 수 있다.
탄성밴드(53)는 체인블럭(49)들 사이를 교차 통과하여 연결된다. 탄성밴드(53)는 검출본체(47)가 전주(1)의 원주방향 외면에 밀착되는 방향으로 탄성력을 제공한다. 탄성밴드(53)는 체인블럭(49)들 사이를 통과하도록 설치한 후, 말단을 접착제 등을 이용하여 탄성밴드(53)와 고정할 수 있다.
검출본체(47)는 전주의 외면에 밀착시키면 탄성수단(45)에 의해 활대(43) 방향으로 밀리면서 각 체인블럭(49)들의 각도가 조정되어 전주(1)의 외면과 대응된다. 이 과정에서 체인블럭(49)들 사이를 통과하도록 설치된 탄성밴드(53)가 각 체인블럭(49)들을 원주방향으로 밀어주게 되어 검출본체(47)가 전주의 외면에 밀착될 수 있다.
즉, 검출본체를 활대 방향으로 탄성변형시키는 탄성수단과 검출본체를 전주 방향으로 밀어주는 탄성밴드가 상호 작용하여 검출본체를 전주의 외면에 밀착시키게 되는 것이다.
만약, 탄성밴드는 설치하지 않고 탄성부재만 설치하면, 전주의 외경에 따라 검출본체(47)가 전주(1)의 외면에 밀착되기 어렵고 전주(1)와 검출본체(47) 사이의 들뜨는 부분이 발생할 수 있다.
자기장 검출부(55)는 검출본체(47)의 길이방향을 따라 일정 간격마다 설치되는 복수 개로 이루어질 수 있다.
구체적으로, 자기장 검출부(55)는 복수 개의 체인블럭(49) 일측에 각각 설치되고, 복수 개의 체인블럭(49)이 전주(1)의 외면에 밀착된 상태에서 철근(3)으로부터 발생되는 자기장을 검출한다. 자기장 검출부(55)는 각 체인블럭(49)의 일측에 매립 설치될 수 있다. 본 실시예에서 자기장 검출부(55)는 각 체인블럭(49)의 중앙에 매립 설치된다.
자기장 검출부(55)는 전자기 유도현상에 의하여 철근(3)에서 발생하는 전류인 자기장을 측정하는 자기센서일 수 있다.
파지부(41)에서 연장된 일측에 수신부(57)가 더 구비된다. 수신부(57)는 자기장 검출부(55)가 검출한 자기장 신호를 전달받아 데이터 로거유닛(20)에 전달한다. 수신부(57)는 박스 형상으로 내부에는 자기장 신호 수신을 위한 다양한 장치가 구비될 수 있다.
이하 다른 실시예의 작용을 설명한다.
검출본체를 전주의 원주방향 외면을 따라 밀착시켜 철근 파단을 검출하는 방법을 설명하기로 한다.
이를 위해 우선, 도 7에 도시된 바와 같이, 작업자가 파지부(41)를 파지한 상태에서 검출본체를 전주의 외면에 밀착시킨다.
검출본체(47)를 전주(1)의 외면에 밀착시키면, 검출본체(47)는 탄성수단(45)에 의해 활대(43) 방향으로 밀리면서 각 체인블럭(49)들의 각도가 조정되어 전주(1)의 외면과 대응된다. 이 과정에서 체인블럭(49)들 사이를 통과하도록 설치된 탄성밴드(53)가 각 체인블럭(49)들을 전주방향으로 밀어주게 되어 검출본체(47)가 전주(1)의 외면에 밀착된 상태가 유지될 수 있고, 각 체인블럭(49)에 설치된 자기장 검출부(55)는 그와 대응되는 위치에 있는 철근(3)의 자기장을 검출할 수 있다.
이후, 파지부(41)를 상방으로 이동함에 따라 복수 개의 체인블럭(49)이 활대(43)와 함께 상방으로 동반이동되어 자기장 검출부(55)가 철근(3)의 자기장을 길이방향으로 검출할 수 있다.
파지부(41)를 상방으로 이동하는 과정에서 전주(1)의 직경이 달라지는 경우에도 탄성밴드(53)가 각 체인블럭(49)들을 전주방향으로 밀어주게 되어, 검출본체(47)가 전주의 외면에 밀착된 상태가 유지될 수 있다. 그에 따라 각 철근(3)으로부터 발생되는 자기장을 철근(3)의 길이방향을 따라 검출할 수 있다.
자기장 검출부(55)가 검출한 철근(3)에 대한 자기장 데이터는 수신부(57)로 전달된 후 데이터 로거유닛(20)에 저장된다.
그리고, 파단상태 검출부(30)는 데이터 로거유닛(20)에 저장된 자기장 데이터에 근거하여 각 철근(3)에 대한 자기장 변화를 검출하고 자기장 변화량에 따라 철근의 파단상태를 검출할 수 있다.
상술한 바와 같이, 다른 실시예는 전주의 외경에 대응되게 검출본체의 각도를 조정하는 작업을 수행하지 않아도 되므로 사용이 간편하다.
또한, 상부와 하부의 직경이 다른 전주(1)에서 검출본체(47)를 전주(1)의 외면에 접촉된 상태로 상방으로 이동하는 경우에도 검출본체(47)가 전주(1)의 외면에 밀착된 상태를 항상 유지할 수 있어 자기장 검출이 용이하다.
본 발명의 권리범위는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 기술분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.

Claims (8)

  1. 전주의 원주방향 외면을 따라 밀착되어 상기 전주 내에 매설된 복수 개의 철근과 대응되는 위치에서 상기 철근으로부터 발생되는 자기장을 검출하는 검출유닛;
    상기 검출유닛이 검출한 철근에 대한 자기장 데이터를 인가받아 저장하는 데이터 로거유닛; 및
    상기 데이터 로거유닛에 저장된 자기장 데이터의 자기장 변화량에 근거하여 상기 철근의 파단상태를 검출하는 파단상태 검출부를 포함하는 것을 특징으로 하는 전주용 철근 파단 검출장치.
  2. 청구항 1에 있어서,
    상기 검출유닛은
    작업자에게 파지 영역을 제공하는 파지부와,
    상기 파지부의 일측에 회동 가능하게 결합되고 만곡지게 형성되어 일측면이 상기 전주의 원주방향 외면을 따라 밀착되는 검출본체와,
    상기 검출본체의 길이방향을 따라 일정 간격마다 설치되는 복수 개의 자기장 검출부를 포함하는 것을 특징으로 하는 전주용 철근 파단 검출장치.
  3. 청구항 2에 있어서,
    상기 검출본체는
    복수 개의 회동블럭을 고정부재를 매개로 상호 회동 가능하게 결합하여 만곡지게 형성하는 것을 특징으로 하는 전주용 철근 파단 검출장치.
  4. 청구항 2에 있어서,
    상기 고정부재는 볼트 너트 방식으로 구성되어, 이웃하는 회동블럭과 회동블럭의 결합상태를 고정하는 것을 특징으로 하는 전주용 철근 파단 검출장치.
  5. 청구항 3에 있어서,
    상기 자기장 검출부는 상기 회동블럭에 설치되는 것을 특징으로 하는 전주용 철근 파단 검출장치.
  6. 청구항 1에 있어서,
    상기 검출유닛은
    작업자에게 파지 영역을 제공하는 파지부와,
    상기 파지부에서 연장된 일측에 고정되고 타측은 상기 파지부와 멀어지는 방향으로 만곡지게 연장되는 활대와,
    일측이 상기 파지부에서 연장된 일측에 회동 가능하게 결합되고 타측은 상기 활대에 탄성수단을 매개로 연결되며, 일측면이 상기 전주에 원주방향 외면에 탄성변형에 의해 밀착되는 검출본체와,
    상기 검출본체의 길이방향을 따라 일정 간격마다 설치되는 복수 개의 자기장 검출부를 포함하는 것을 특징으로 하는 전주용 철근 파단 검출장치.
  7. 청구항 6에 있어서,
    상기 검출본체는
    회동부재를 매개로 상호 회동가능하게 결합되는 복수 개의 체인블럭과
    상기 체인블럭 사이를 통과하여 연결되는 탄성밴드를 포함하는 것을 특징으로 하는 전주용 철근 파단 검출장치.
  8. 청구항 7에 있어서,
    상기 자기장 검출부는 상기 체인블럭에 설치되는 것을 특징으로 하는 전주용 철근 파단 검출장치.
PCT/KR2016/007693 2015-09-11 2016-07-14 전주용 철근 파단 검출장치 WO2017043753A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018533593A JP6678243B2 (ja) 2015-09-11 2016-07-14 電柱用鉄筋破断検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0129300 2015-09-11
KR1020150129300A KR101692640B1 (ko) 2015-09-11 2015-09-11 전주용 철근 파단 검출장치

Publications (1)

Publication Number Publication Date
WO2017043753A1 true WO2017043753A1 (ko) 2017-03-16

Family

ID=57831934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007693 WO2017043753A1 (ko) 2015-09-11 2016-07-14 전주용 철근 파단 검출장치

Country Status (3)

Country Link
JP (1) JP6678243B2 (ko)
KR (1) KR101692640B1 (ko)
WO (1) WO2017043753A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102300063B1 (ko) * 2019-08-09 2021-09-09 한국전력공사 전주용 강선 파단 진단 장치 및 이를 사용하는 진단 방법
KR102339941B1 (ko) * 2021-04-12 2021-12-16 (주)스마트 제어계측 전주의 철근파단 진단을 위한 비파괴 검사 장비 및 그 장비를 이용한 진단 방법
CN113146666B (zh) * 2021-04-23 2022-04-15 汇大建设工程(上海)有限公司 一种自动码放自保温砌块机械手
KR102639931B1 (ko) * 2022-07-15 2024-02-23 주식회사 파워플러스이앤씨 전주 철근의 파단 검출장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448191B2 (ja) * 1997-08-29 2003-09-16 日本電信電話株式会社 鉄筋破断検出器及び鉄筋破断検出方法
JP2004251644A (ja) * 2003-02-18 2004-09-09 Yazaki Corp 鉄筋コンクリート柱の鉄筋破断検出方法
JP2010048723A (ja) * 2008-08-22 2010-03-04 Kobe Steel Ltd 鉄筋腐食検査方法,鉄筋腐食検査装置
JP3163378U (ja) * 2010-07-30 2010-10-14 北海道電力株式会社 鉄筋破断検査装置
KR20140042240A (ko) * 2012-09-28 2014-04-07 조명기 영구 자석과 지자기 센서가 내장된 휴대용 전화기를 이용한 콘크리트 전주의 철근 단락 검사 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543528A (en) * 1982-09-30 1985-09-24 Republic Steel Corporation Flexible probe assembly for use in nondestructive testing of a convex workpiece surface
JP2803251B2 (ja) * 1989-11-21 1998-09-24 日本電気株式会社 マーカ方式
JP3163378B2 (ja) 1997-12-10 2001-05-08 東京農工大学長 抗真菌剤及び抗細菌剤
JP4323437B2 (ja) * 2005-01-12 2009-09-02 株式会社日立製作所 渦電流探傷プローブ及び渦電流探傷装置
JP4295774B2 (ja) * 2006-07-20 2009-07-15 株式会社日立ビルシステム ワイヤーロープの探傷装置
JP4315464B1 (ja) * 2008-10-28 2009-08-19 ジオ・サーチ株式会社 鉄筋コンクリート体の健全性の非破壊評価方法、及びその装置
KR101094667B1 (ko) * 2009-09-04 2011-12-20 조선대학교산학협력단 자기센서 어레이를 이용한 중공축 내벽의 결함 탐상 장치
JP5269939B2 (ja) * 2011-04-19 2013-08-21 日本電信電話株式会社 加振位置採寸治具
JP6024589B2 (ja) * 2013-05-13 2016-11-16 Jfeスチール株式会社 内部欠陥測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448191B2 (ja) * 1997-08-29 2003-09-16 日本電信電話株式会社 鉄筋破断検出器及び鉄筋破断検出方法
JP2004251644A (ja) * 2003-02-18 2004-09-09 Yazaki Corp 鉄筋コンクリート柱の鉄筋破断検出方法
JP2010048723A (ja) * 2008-08-22 2010-03-04 Kobe Steel Ltd 鉄筋腐食検査方法,鉄筋腐食検査装置
JP3163378U (ja) * 2010-07-30 2010-10-14 北海道電力株式会社 鉄筋破断検査装置
KR20140042240A (ko) * 2012-09-28 2014-04-07 조명기 영구 자석과 지자기 센서가 내장된 휴대용 전화기를 이용한 콘크리트 전주의 철근 단락 검사 방법

Also Published As

Publication number Publication date
JP2018528443A (ja) 2018-09-27
JP6678243B2 (ja) 2020-04-08
KR101692640B1 (ko) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2017043753A1 (ko) 전주용 철근 파단 검출장치
WO2017043752A1 (ko) 전주용 철근 파단 검출장치
KR102062819B1 (ko) 단지 내 통신 케이블 고장 진단 시스템
WO2016043406A1 (ko) 마이크로파일을 이용한 송전철탑 기초체
WO2018097357A1 (ko) 무정전 배전공사에 이용하는 이동식 가완목 장치 및 공법
WO2014069971A1 (ko) 강선사용 프리텐션 조적벽체 보강장치 및 이를 이용한 조적벽체 보강방법
WO2017171394A1 (ko) 로프타입 펜스의 장력조절장치
WO2021132844A2 (ko) 광섬유격자센서를 이용한 비탈면 변위 측정장치
WO2015142043A1 (ko) 장력검출식 보안시스템
WO2015012429A1 (ko) 케이블 이탈방지 유닛이 설치된 자립형 케이블 트레이 시설
KR102218391B1 (ko) 전선체결 일체형 라인포스트 애자 장치
WO2018088792A2 (ko) 배전선 처리용 절연 랙크
KR20010084955A (ko) 전주내 전선이선기구 및 이를 이용한 무정전 배전공법
KR20130077167A (ko) 광섬유 격자센서를 이용한 조가선 감시 및 관리시스템
CN112018531B (zh) 连接适配器
CN108512175A (zh) 同杆双回路导线支撑架
KR20030060615A (ko) 전주내 전선이선기구를 이용한 무정전 배전공법
CN104218493B (zh) ±800kV特高压直流线路带电更换耐张硬管母跳线绝缘子工艺
CN208505511U (zh) 一种输配电线紧线仪
CN207337601U (zh) 火灾探测器敷设装置
GB9805019D0 (en) Method of and apparatus for detecting cable oversheath faults and installations in which they are used
WO2019112258A1 (ko) 케이블의 열화상태 진단장치 및 진단방법
KR20040003931A (ko) 단로기가 내장된 옥외용 케이블접속함 및 이를 이용한전력케이블의 고장 검출방법
CN209902123U (zh) 光缆折弯器和光缆障碍判断装置
JP4520836B2 (ja) 侵入検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844573

Country of ref document: EP

Kind code of ref document: A1