WO2017043623A1 - 滴下検出装置 - Google Patents

滴下検出装置 Download PDF

Info

Publication number
WO2017043623A1
WO2017043623A1 PCT/JP2016/076596 JP2016076596W WO2017043623A1 WO 2017043623 A1 WO2017043623 A1 WO 2017043623A1 JP 2016076596 W JP2016076596 W JP 2016076596W WO 2017043623 A1 WO2017043623 A1 WO 2017043623A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
light emitting
receiving element
elements
Prior art date
Application number
PCT/JP2016/076596
Other languages
English (en)
French (fr)
Inventor
平田 篤彦
靖浩 近藤
弘治 宮林
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680051733.5A priority Critical patent/CN108025135B/zh
Priority to JP2017538537A priority patent/JP6315149B2/ja
Publication of WO2017043623A1 publication Critical patent/WO2017043623A1/ja
Priority to US15/913,170 priority patent/US11419982B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16886Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters
    • A61M5/1689Drip counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means

Definitions

  • the present invention relates to a drip detection device.
  • Patent Document 1 discloses a drip monitor device that detects a droplet dropped in a light-transmitting drip tube using a light emitting element and a light receiving element, and calculates the number of drops and a drop interval. Is disclosed.
  • a light emitting element and a light receiving element are arranged side by side on one side of an infusion tube, and light having a directivity angle is output from the light emitting device to form droplets in the infusion tube.
  • the reflected scattered light is detected by the light receiving element to catch the droplet dripping.
  • the detection sensitivity is low because the scattered light is detected by the light receiving element.
  • the present invention has been made in view of the above circumstances, and provides a drip detection device capable of accurate detection even when a drip tube is tilted due to a patient's movement or the like, and light traveling straight from a light emitting element falls off without hitting a droplet. With the goal.
  • a photon having a cylindrical drip tube in which a nozzle is inserted from above and receives a droplet dropped from the lower end of the nozzle, one or more light emitting elements that emit light, and two or more light receiving elements that receive the light An interrupter, wherein the one or more light emitting elements and the two or more light receiving elements are disposed opposite or substantially opposite to each other with the drip tube interposed therebetween, and the one or more light emitting elements and the two or more light emitting elements Two or more optical paths connecting the light receiving elements are a drop detection device located below the lower end of the nozzle.
  • the drip tube is the drip detection device according to [4], which is disposed between the light emitting element and the light receiving element and on a side close to the light receiving element.
  • the element is the drip detection device according to any one of [1] to [7], which is disposed at a position facing or substantially facing across the drip tube.
  • one or more light-emitting elements and two or more light-receiving elements are provided, and droplet dropping is reliably detected by a photo-interrupter disposed at a position facing or substantially facing each other across an infusion tube. can do.
  • FIG. 1A is a schematic plan view schematically showing the schematic configuration of the drip detection apparatus according to the first embodiment with the nozzle removed and the illustration of a liquid reservoir omitted.
  • FIG. 1B is a schematic front view schematically showing a schematic configuration of the drop detection device according to the first embodiment.
  • FIG. 2A is a schematic plan view schematically showing the schematic configuration of the drip detection apparatus according to the second embodiment with the nozzle removed and illustration of the liquid reservoir omitted.
  • FIG. 2B is a schematic front view schematically showing a schematic configuration of the dropping detection apparatus according to the second embodiment.
  • FIG. 3A is a schematic plan view schematically showing the schematic configuration of the drip detection apparatus according to the third embodiment with the nozzle removed and the illustration of the liquid reservoir omitted.
  • FIG. 3B is a schematic front view schematically showing a schematic configuration of the dropping detection apparatus according to the third embodiment.
  • FIG. 4A is a schematic plan view schematically showing the schematic configuration of the drip detection apparatus according to the fourth embodiment with the nozzle removed and the illustration of the liquid reservoir omitted.
  • FIG. 4B is a schematic front view schematically showing a schematic configuration of the dropping detection apparatus according to the fourth embodiment.
  • FIG. 5A is a schematic plan view schematically illustrating the schematic configuration of the drip detection apparatus according to the fifth embodiment with the nozzle removed and the illustration of the liquid reservoir omitted.
  • FIG. 5B is a schematic front view schematically showing a schematic configuration of the dropping detection apparatus according to the fifth embodiment.
  • FIG. 6 is a partial cross-sectional explanatory view for schematically explaining the effect obtained in the dropping detection apparatus according to the sixth embodiment.
  • FIG. 7 is a partial cross-sectional explanatory view for schematically explaining the effect obtained in the dropping detection apparatus according to the seventh embodiment.
  • FIG. 8 is a partial cross-sectional explanatory view for schematically explaining the effect obtained in the dropping detection apparatus according to the eighth embodiment.
  • FIG. 9 is a schematic front view schematically showing a schematic configuration of the dropping detection apparatus according to the ninth embodiment.
  • FIG. 10 is a schematic front view schematically showing a schematic configuration of the dropping detection apparatus according to the tenth embodiment.
  • FIG. 11 is a schematic front view schematically showing a schematic configuration of the dropping detection apparatus according to the eleventh embodiment.
  • FIG. 12 is a schematic plan view schematically showing the schematic configuration of the dropping detection apparatus according to the twelfth embodiment with the nozzle removed and the illustration of the liquid reservoir omitted.
  • FIG. 13 is a partial front cross-sectional view schematically showing a schematic configuration of a dropping detection apparatus according to the twelfth embodiment.
  • FIG. 14 is a partial front sectional view schematically showing a schematic configuration of the dropping detection apparatus according to the thirteenth embodiment.
  • FIG. 15 is a partial cross-sectional view for schematically explaining the effect obtained in the dripping detection apparatus according to the thirteenth embodiment.
  • FIG. 16 is an explanatory diagram for schematically explaining the effect obtained in the dropping detection apparatus according to the thirteenth embodiment in plan view.
  • FIG. 13 is a partial front cross-sectional view schematically showing a schematic configuration of a dropping detection apparatus according to the twelfth embodiment.
  • FIG. 14 is a partial front sectional view schematically showing a schematic configuration of the dropping detection apparatus according to the thirteenth embodiment.
  • FIG. 17A is an explanatory diagram illustrating an example in which a light receiving element and a resistor are connected in series with respect to the circuit configuration of the drop detection device according to the present invention.
  • FIG. 17B is an explanatory diagram illustrating another example in which a light receiving element and a resistor are connected in series with respect to the circuit configuration of the drop detection device according to the present invention.
  • FIG. 17C is an explanatory diagram illustrating an example in which the resistors are further connected in series after all the light receiving elements are connected in series with respect to the circuit configuration of the drop detection device according to the present invention.
  • the drop detection device 1 As shown in FIGS. 1A and 1B, the drop detection device 1 according to the first embodiment has a cylindrical drip tube in which a nozzle 12 is inserted from above and receives a droplet 13 dropped from the lower end of the nozzle 12. 11 and one or more light emitting elements 52 for irradiating light and a photointerrupter 5 having two or more light receiving elements 51 for receiving the light.
  • a tube 15 that discharges the droplet 13 dropped into the drip tube 11 from the drip tube 11 is provided.
  • the drip tube 11 is disposed in the middle of an infusion line extending from an infusion bag suspended on a stand at a position higher than the human body to the human body.
  • the upper end of the nozzle 12 is connected to a tube 16 constituting the infusion line on the infusion bag side.
  • the inside of the nozzle 12 communicates with the inside of the drip tube 11.
  • a liquid reservoir 14 in which an infusion (chemical solution) is accumulated is formed at the lower part of the drip tube 11.
  • the lower end of the drip tube 11 is connected to the tube 15 which comprises the human body side infusion line.
  • the infusion in the infusion bag flows downward in the tube 16 due to gravity and reaches the inside of the nozzle 12. Then, an infusion droplet 13 grows at the lower end of the nozzle 12 and drops into the infusion tube 11 when the droplet 13 reaches a predetermined size. Since the drip tube 11 transmits visible light and infrared light, the growing droplet 13 can be visually confirmed from the outside. Infrared light from the infrared LED is not blocked.
  • the photo interrupter 5 includes one or more light emitting elements 52 that emit light and one or more light receiving elements 51 that receive the light.
  • the one or more light emitting elements 52 and the two or more light receiving elements 51 are arranged at positions facing or substantially facing each other with the drip tube 11 in between. Further, two or more optical paths 53 connecting the one or more light emitting elements 52 and the two or more light receiving elements 51 are located below the lower end of the nozzle 12.
  • the light emitting element 52 is, for example, a light emitting diode and has a light emitting portion, and irradiates light from the light emitting portion toward the droplet 13 (and the light receiving element 51) being dropped.
  • the light receiving element 51 is, for example, a phototransistor and has a light receiving portion. In this light receiving portion, it is detected whether or not the light emitted from the light emitting element 52 is blocked by the droplet 13 being dropped.
  • the light receiving element 51 may have a configuration in which the light receiving unit detects that the light emitted from the light emitting element 52 changes its light amount by transmitting the droplet being dropped.
  • the light source of the light emitting element 52 is not particularly limited, and examples thereof include an infrared LED and a visible light laser. When the infrared LED is used, even when the patient is instilled at night or the like, the light emitting element 52 is not concerned about blinking or lighting.
  • the photo interrupter 5 detects that dripping has occurred (the liquid droplet 13 has moved away from the lower end of the nozzle 12) on the basis of detecting light blockage or light quantity change in the light receiving portion of the light receiving element 51; The number of drops can be counted.
  • the optical path 53 specifically refers to a light path connecting the light emitting portion of the light emitting element 52 and the light receiving portion of the light receiving element 51.
  • the light emitted from the light emitting element 52 spreads as it travels, and only the light connecting the light emitting part of the light emitting element 52 and the light receiving part of the light receiving element 51 is referred to as an optical path 53.
  • the optical path 53 is represented by a one-dot chain line in the drawings attached to the present application.
  • the optical path 53 is represented by a solid line.
  • the drop detection device 1 has two or more light receiving elements 51. Specifically, as shown in FIG. 1A, three light receiving elements 51 are provided. At least one of the optical paths 53 toward the respective light receiving elements 51 is not parallel to the other optical paths 53 in plan view. Further, as shown in FIG. 1B, at least one of the optical paths 53 toward the respective light receiving elements 51 is not parallel to the other optical paths 53 in the front view. In the present embodiment, one light emitting element 52 is provided.
  • one of the three light receiving elements 51 arranged at a position facing or substantially facing the light emitting element 52 and the drip tube 11 is given a depression angle or an elevation angle.
  • a depression is attached among the three light receiving elements 51 arranged in the same direction in a row in the depth direction, the light receiving element 52 and the central light receiving element 51 facing each other with the drip tube 11 interposed therebetween.
  • One light emitting element 52 and the light receiving portions of the light receiving elements 51 at both ends of the three light receiving elements 51 are arranged on the same plane.
  • the optical paths 53 directed to the light receiving elements 51 at both ends extend horizontally in front view.
  • the optical path 53 toward the central light receiving element 51 with a depression angle does not extend horizontally in the front view, and is in a non-parallel relationship with the other two optical paths 53 in the front view.
  • the central light receiving element 51 has a depression angle, the light receiving part does not directly look at the light emitting part of the light emitting element 52.
  • the light-emitting portion of the light-emitting element 52 is “directly looking” means that the angle formed by the optical path 53 and the surface of the light-emitting portion is a right angle, and the light-receiving portion of the light-receiving element 51 is “directly looking” The angle formed by 53 and the surface of the light receiving portion is a right angle.
  • the optical path 53 toward the center light receiving element 51 extends right and left in the plan view.
  • the optical paths 53 directed to the light receiving elements 51 at both ends are inclined to the left and right in plan view, and are in a non-parallel relationship with the optical paths 53 directed to the central light receiving element 51 in plan view.
  • the light receiving elements 51 at both ends are substantially opposed to the light emitting element 52 with the drip tube 11 interposed therebetween, but are not opposed to each other. Therefore, these light receiving parts do not directly look at the light emitting part of the light emitting element 52.
  • none of the light receiving portions of the three light receiving elements 51 directly looks at the light emitting portion of the light emitting element 52.
  • the central light receiving element faces the light emitting element and is directly viewed. It will be.
  • the light receiving element at the center can recognize that the light emitted from the light emitting element is blocked even if the droplet intersects the optical path when the light received by the light receiving unit is excessive and saturated. In some cases, the dripping cannot be detected. Further, if the light quantity of the light emitting element is reduced in consideration of this and the light quantity received by the light receiving parts of the central light receiving element is not saturated, the light quantity received by the light receiving parts of the light receiving elements at both ends becomes too small. At this time, the light receiving elements at both ends recognize that the liquid droplets are always blocking the light emitted from the light emitting elements, and there is a case where the dropping of the liquid droplets cannot be accurately detected.
  • the light emitting element is not arranged on the same plane as the light receiving element as described above, the height of the light emitting element is shifted, and the light quantity received by the central light receiving element is adjusted so as not to saturate the light receiving element. The amount of light received by the element is still too small. For this reason, even in this case, there is a case where the dropping of the droplet cannot be accurately detected.
  • the light receiving element 51 and the light emitting element 52 are not directly viewed based on the above configuration, and the angle of the depression angle attached to the center light receiving element 51 is adjusted, so that the light emitting element 52
  • the three light receiving elements 51 can receive substantially the same amount of light.
  • the central light receiving element 51 can receive light by adjusting the angle of depression to which the light receiving element 51 at both ends receives approximately the same amount of light.
  • all the light receiving elements 51 can receive moderate light quantity. Therefore, the drop of the droplet 13 can be detected by the light receiving element 51 at any position regardless of the center or both ends.
  • the optical path 53 toward the light receiving element 51 passes through different positions in the horizontal direction and the vertical direction inside the drip tube 11 due to the above configuration. Therefore, even when the dropping path of the droplet 13 in the drip tube 11 does not extend from the lower end of the nozzle 12 due to inclination or vibration, the droplet 13 intersects with any one of the optical paths 53, The dripping can be accurately detected. Furthermore, in the present embodiment, since the light emitting element 52 and the light receiving element 51 are arranged at positions facing or substantially facing each other with the drip tube 11 interposed therebetween, it is possible to reliably detect the dropping of the droplet 13.
  • the amount of light that passes through the drip tube 11 from the light emitting element 52 and is received by the light receiving element 51 not only changes due to light shielding and refraction by the falling droplet, but also adheres to the inner wall surface of the drip tube 11. It also changes greatly when the droplet interferes with the optical path 53.
  • the amount of light received by the light receiving element 51 also varies greatly when the amount of sunlight reaching the light receiving element changes due to changes in weather, changes in sunshine over time, room brightness, and the like. Therefore, in the present embodiment, the determination unit that detects a falling droplet (also referred to as “dropping”) determines that the dropping has been detected based on whether or not the output voltage of the light receiving element 51 exceeds a single threshold value. Without any change, it is determined that a drop has been detected when the voltage value instantaneously drops significantly with respect to the average value of the output voltages of the most recent light receiving elements 51.
  • Such a configuration can be realized, for example, by converting the output voltages of two or more light receiving elements into digital data by an AD converter, taking them into a calculation unit, and calculating them.
  • the above configuration can also be realized by an analog circuit.
  • the output voltages of two or more light receiving elements are temporally averaged by a low-pass filter, the difference between the averaged voltage value and the current voltage value is output by a subtraction circuit, the output value and a predetermined threshold value
  • a comparator it can be determined that a drop has been detected (the light shielding state and the light transmitting state are distinguished). For this reason, when the data determined or discriminated is taken into the controller by digital I / O, it is possible to realize an accurate drop detection determination even by an analog circuit.
  • At least one of the two or more optical paths 53 can be used for detecting the liquid level of the liquid reservoir 14 inside the drip tube 11. That is, as will be described in detail in a thirteenth embodiment to be described later, when the light receiving portion of the light receiving element 51 exceeds a predetermined time or detects a light shielding or a change in light quantity through the predetermined time, It is recognized that the liquid level is abnormal. Accordingly, a function as a liquid level sensor for detecting that the liquid level of the liquid reservoir 14 has reached or is at risk of reaching the optical path 53 as well as a function of detecting the dropping of the droplet 13 with respect to the optical path 53. Can be granted.
  • the inner wall surface of the drip tube 11 is applied as a method for avoiding a large change in the amount of light received by the light receiving element 51 due to interference between the liquid droplets adhering to the inner wall surface of the drip tube 11 and the optical path 53. It is exemplified that a hydrophilic treatment is performed. In this case, since the droplets adhering to the inner wall surface spread out with a small contact angle, it does not remain as a droplet on the inner wall surface of the drip tube 11, which is preferable.
  • the drop detection device 1 according to the second embodiment differs from the first embodiment in a front view in which the center light receiving element 51 of the three light receiving elements 51 is arranged as shown in FIGS. 2A and 2B. Is different from the height in front view where the light receiving elements 51 at both ends are arranged. Specifically, the height of the center light receiving element 51 in the front view is higher than the height of the light receiving elements 51 at both ends in the front view. Also, the center light receiving element 51 is different from the first embodiment in that no depression angle or elevation angle is given. Other configurations are the same as those of the first embodiment.
  • the optical paths 53 toward the light receiving elements 51 at both ends of the three light receiving elements 51 extend horizontally in front view.
  • the optical path 53 toward the light receiving element 51 at the center is inclined without extending horizontally in the front view, and has a non-parallel relationship with the optical paths 53 toward the light receiving elements 51 at both ends in the front view.
  • the light receiving part of the central light receiving element 51 is different from the light emitting element 52 in height when viewed from the front, so that the light emitting part of the light emitting element 52 is not directly viewed.
  • the optical path 53 toward the central light receiving element 51 extends right and left in the left and right in a plan view.
  • the optical paths 53 directed to the light receiving elements 51 at both ends are inclined to the left and right in plan view, and are in a non-parallel relationship with the optical paths 53 directed to the central light receiving element 51 in plan view.
  • the light receiving elements 51 at both ends are substantially opposed to the light emitting element 52 with the drip tube 11 interposed therebetween, but are not opposed to each other. Therefore, these light receiving parts do not directly look at the light emitting part of the light emitting element 52.
  • none of the light receiving portions of the three light receiving elements 51 directly looks at the light emitting portion of the light emitting element 52.
  • the light receiving portion of any light receiving element 51 can receive substantially the same amount of light from the light emitting element 52. For this reason, by adjusting the light quantity of the light emitting element 52, all the light receiving elements 51 can receive an appropriate light quantity. Thereby, the drop of the droplet 13 can be detected by the light receiving element 51 at any position regardless of the center or both ends. Furthermore, since the optical paths 53 toward the respective light receiving elements 51 pass through different positions in the horizontal direction and the vertical direction inside the drip tube 11, the liquid droplets 13 always intersect with any one of the optical paths 53, and the dripping is accurately performed. Can be detected. Further, since the light emitting element 52 and the light receiving element 51 are disposed at positions facing or substantially facing each other with the drip tube 11 interposed therebetween, it is possible to reliably detect the dropping of the droplet 13.
  • the difference from the first embodiment is that the light receiving portions of the light receiving elements 51 at both ends of the three light receiving elements 51 are provided with the drip tube 11 as shown in FIG.
  • the light emitting element 52 is substantially inward so as to face in a direction close to the light emitting portion of the light emitting element 52 substantially opposed to the light emitting element 52.
  • the light receiving portions of the light receiving elements 51 at both ends do not directly view the light emitting elements 52.
  • a depression angle or an elevation angle is added to the central light receiving element 51 as in the first embodiment.
  • Other configurations of the third embodiment are the same as those of the first embodiment.
  • the optical paths 53 toward the light receiving elements 51 at both ends of the three light receiving elements 51 extend horizontally in front view.
  • the optical path 53 toward the center light receiving element 51 with a depression angle is not horizontally extended in the front view, and is not parallel to the optical paths 53 toward the light receiving elements 51 at both ends in the front view.
  • the central light receiving element 51 has a depression angle, the light receiving part does not directly look at the light emitting part of the light emitting element 52.
  • the optical path 53 toward the center light receiving element 51 among the three light receiving elements 51 extends right and left in the plan view.
  • the optical paths 53 directed to the light receiving elements 51 at both ends are inclined to the left and right in plan view, and are in a non-parallel relationship with the optical paths 53 directed to the central light receiving element 51 in plan view.
  • the light receiving elements 51 at both ends are substantially opposed to the light emitting element 52 with the drip tube 11 in between, and are directed in a direction closer to the light emitting part of the light emitting element 52, but these light receiving parts emit light as described above.
  • the light emitting part of the element 52 is not directly viewed.
  • none of the light receiving portions of the three light receiving elements 51 directly looks at the light emitting portion of the light emitting element 52.
  • the light receiving portion of the element 51 can receive substantially the same amount of light from the light emitting element 52. For this reason, by adjusting the light quantity of the light emitting element 52, all the light receiving elements 51 can receive an appropriate light quantity. Thereby, the drop of the droplet 13 can be detected by the light receiving element 51 at any position regardless of the center or both ends.
  • the liquid droplets 13 since the optical paths 53 toward the respective light receiving elements 51 pass through different positions in the horizontal direction and the vertical direction inside the drip tube 11, the liquid droplets 13 always intersect with any one of the optical paths 53, and the dripping is accurately performed. Can be detected. Further, since the light emitting element 52 and the light receiving element 51 are disposed at positions facing or substantially facing each other with the drip tube 11 interposed therebetween, it is possible to reliably detect the dropping of the droplet 13.
  • the degree of directing the light receiving elements 51 at both ends in a direction closer to the light emitting portion of the light emitting element 52 is adjusted together with the depression angle or the elevation angle attached to the central light receiving element 51, thereby each light receiving element 51.
  • the amount of light received by can be made very close to the same amount. For this reason, the dropping of the droplet 13 can be detected more accurately.
  • the configuration in which the number of light receiving elements 51 is three has been described as an example.
  • the number of light receiving elements is not limited to three. That is, the number of light receiving elements can be determined as appropriate as long as a relationship is established in which a plurality of light receiving elements can receive substantially the same amount of light from one or more light emitting elements. In addition, it is preferable that the number of light receiving elements is 3 or more in consideration of preventing the drop detection device from becoming large.
  • the drop detection device 1 according to the fourth embodiment is different from the first embodiment in that three light emitting elements 52 are arranged as shown in FIGS. 4A and 4B.
  • the height of the central light emitting element 52 in the front view is different from the height of the light emitting elements 52 at both ends in the front view.
  • the height of the light emitting elements 52 at both ends in the front view is higher than the height of the central light emitting element 52 in the front view.
  • the light receiving elements 51 at both ends of the three light receiving elements 51 are directed in a direction close to the light emitting portion of the light emitting element 52 and are slightly inwardly arranged as in the third embodiment.
  • the central light receiving element 51 is provided with a depression angle or an elevation angle as in the first embodiment.
  • the light receiving portion of the central light receiving element 51 with the depression angle is opposed to the central light emitting element 52 across the drip tube 11.
  • the light receiving portions of the light receiving elements 51 at both ends face the light emitting elements 52 at both ends with the drip tube 11 in between, and directly view the light emitting portions.
  • the three light emitting elements 52 are arranged close to each other, and are in a more dense form than the arrangement of the three light receiving elements 51. Other configurations are the same as those of the first embodiment.
  • the optical paths 53 toward the light receiving elements 51 at both ends of the three light receiving elements 51 extend horizontally in front view.
  • the optical path 53 toward the center light receiving element 51 with a depression angle is not horizontally extended in the front view, and is not parallel to the optical paths 53 toward the light receiving elements 51 at both ends in the front view.
  • the optical path 53 toward the center light receiving element 51 extends sideways in the right and left in a plan view.
  • the optical paths 53 directed to the light receiving elements 51 at both ends are inclined to the left and right in plan view, and are in a non-parallel relationship with the optical paths 53 directed to the central light receiving element 51 in plan view.
  • the light receiving portions of the three light receiving elements 51 are in direct view with the light emitting portions of the three light emitting elements 52, the light receiving portions of any of the light receiving elements 51 can be adjusted by adjusting the amount of light from the light emitting elements 52. It is possible to receive an appropriate amount of light with substantially the same amount of light. Therefore, the drop of the droplet 13 can be detected by the light receiving element 51 at any position regardless of the center or both ends. Furthermore, since the optical paths 53 toward the respective light receiving elements 51 pass through different positions in the horizontal direction and the vertical direction inside the drip tube 11, the liquid droplets 13 always intersect with any one of the optical paths 53, and the dripping is accurately performed. Can be detected. Since the light emitting element 52 and the light receiving element 51 are disposed at positions facing or substantially facing each other with the drip tube 11 in between, the dropping of the droplet 13 can be reliably detected.
  • the light receiving portions of the three light receiving elements 51 are directly viewed with the light emitting portions of the three light emitting elements 52. Therefore, by adjusting the amount of light emitted by each light emitting element 52, the amount of light received by each light receiving element 51 can be made very close to the same amount, and the dropping of the droplet 13 can be detected more accurately. it can. Further, as described above, the three light emitting elements 52 show a mode in which they are close to each other as compared with the arrangement of the three light receiving elements 51. For this reason, the three optical paths 53 connecting the three light emitting elements 52 and the three light receiving elements 51 have a narrow distance between the optical paths 53 in a plan view, so that the liquid droplets 13 pass between the optical paths 53 and 53. It is possible to prevent a case from slipping through.
  • the drop detection device 1 according to the fifth embodiment differs from the first embodiment in that three light emitting elements 52 are arranged as in the fourth embodiment, as shown in FIGS. 5A and 5B. is there. Further, the height of the central light emitting element 52 in the front view is different from the height of the light emitting elements 52 at both ends in the front view. Specifically, the height of the central light emitting element 52 in front view is higher than the height of the light emitting elements 52 at both ends in front view.
  • the three light emitting elements 52 face the same direction.
  • the fifth embodiment is different from the first embodiment in that the height of the center light receiving element 51 in the three light receiving elements 51 in the front view is different from the height in the front view of the light receiving elements 51 at both ends. It is a point. Specifically, the height of the center light receiving element 51 in the front view is higher than the height of the light receiving elements 51 at both ends in the front view.
  • the three light receiving elements 51 face the same direction. Since the three light receiving elements 51 and the three light emitting elements 52 are arranged close to each other like the three light emitting elements 52 in the fourth embodiment, the three optical paths 53 are arranged between the optical paths 53 in a plan view. The distance is narrow. Other configurations are the same as those in the first embodiment.
  • the light emitting part of the central light emitting element 52 faces the central light receiving element 51 with the drip tube 11 interposed therebetween, and the light receiving part is directly viewed.
  • the light emitting portions of the light emitting elements 52 at both ends face the light receiving elements 51 at both ends with the drip tube 11 in between, and the light receiving portions are directly viewed. Since the light receiving portions of the three light receiving elements 51 and the light emitting portions of the three light emitting elements 52 are in direct view, the light receiving portions of any of the light receiving elements 51 are adjusted by adjusting the amount of light from the light emitting elements 52. However, it is possible to receive a moderate amount of light with almost the same amount of light.
  • the light receiving element 51 it is possible to detect the dropping of the droplet 13 by the light receiving element 51 at any position regardless of the center or both ends. Furthermore, the droplet 13 always crosses any one of the optical paths 53, and the dripping can be accurately detected. Further, the three optical paths 53 connecting the three light emitting elements 52 and the three light receiving elements 51 have a narrow distance between the optical paths 53 in a plan view, so that the liquid droplet 13 passes between the optical paths 53 and 53. Cases can be prevented from occurring. In addition, since the light emitting element 52 and the light receiving element 51 are disposed at positions facing or substantially facing each other with the drip tube 11 interposed therebetween, it is possible to reliably detect the dropping of the droplet 13.
  • the mode in which the three light receiving elements 51 and the three light emitting elements 52 are arranged is not limited to the mode illustrated in the fourth embodiment or the fifth embodiment. As long as the light-receiving portions of the three light-receiving elements or the light-emitting portions of the three light-emitting elements can be directly viewed, these arrangements can adopt appropriate modes.
  • the drop detection device includes a cylindrical drip tube in which a nozzle is inserted from above and receives a droplet dropped from the lower end of the nozzle, one or more light emitting elements that emit light, and the light. And a photo interrupter having one or more light receiving elements for receiving light.
  • the drop detection device includes a photo interrupter 5 including three light emitting elements 52 and five light receiving elements 51, and the light emitting elements 52 and the light receiving elements 51 are It is arranged at a position facing or substantially facing across the infusion tube 11.
  • An optical path 53 connecting the light emitting element 52 and the light receiving element 51 is located below the lower end of the nozzle.
  • the five light receiving elements 51 are arranged in the same direction in a line in the vertical direction on the same plane.
  • the three light emitting elements 52 are also arranged in the same direction in a row in the vertical direction on the same plane.
  • the five light receiving elements 51 and the three light emitting elements 52 exist on the same plane in the sixth embodiment.
  • the positional relationship between the light receiving element and the light emitting element may be a relationship that exists in the same plane as long as the light receiving element and the light emitting element are arranged at positions facing each other or substantially facing each other, and the heights are different. It may be an existing relationship.
  • the number of light emitting elements constituting the dropping detection apparatus is one.
  • a plurality of small light receiving elements 51 are preferably arranged close to each other. As a result, the droplet 13 always crosses any one of the optical paths 53 passing through the inside of the drip tube 11, so that the drip of the droplet 13 can be accurately detected even when the drip tube 11 is tilted. .
  • the drop detection device includes a cylindrical drip tube in which a nozzle is inserted from above and receives a droplet dropped from the lower end of the nozzle, one or more light emitting elements that emit light, and the A photo interrupter having one or more light receiving elements for receiving light.
  • the drop detection device includes a photo interrupter 5 including one light emitting element 52 and five light receiving elements 51.
  • the light emitting element 52 and the light receiving element 51 are It is arranged at a position facing or substantially facing across the infusion tube 11.
  • Five light receiving elements 51 and one light emitting element 52 exist on the same plane.
  • the five light receiving elements 51 are arranged in the same direction in a line in the vertical direction on the same plane.
  • the positional relationship between the light-receiving element and the light-emitting element may be a relationship that exists in the same plane as long as the light-receiving element and the light-emitting element are arranged to face each other or substantially face each other with the drip tube interposed therebetween. It may be an existing relationship.
  • the drip tube 11 is disposed between one light emitting element 52 and five light receiving elements 51 and closer to the five light receiving elements 51.
  • an area defined by an optical path 53 connecting one light emitting element 52 and the light receiving elements 51 at both ends of the five light receiving elements 51 and the inner surface of the drip tube 11 is as follows.
  • the area of the region increases as the drip tube 11 is arranged very close to the five light receiving elements 51. That is, when the drip tube 11 is arranged on the side close to the five light receiving elements 51, the range R inside the drip tube 11 that can detect the dropping of the droplet 13 also increases, so that even when the drip tube 11 is tilted, it is accurate. Thus, it is possible to detect the dropping of the droplet 13.
  • the position at which the drip tube 11 is disposed is preferably between the light emitting element 52 and the light receiving element 51 and closer to the light receiving element 51.
  • the drip tube 11 is between one light emitting element 52 and five light receiving elements 51 and closer to one light emitting element 52. It differs from the seventh embodiment in that it is arranged. Further, a light shielding plate B for preventing ambient light from entering the light receiving element 51 is provided, and the drip tube 11, the light emitting element 52, and the light receiving element 51 are surrounded by the light shielding plate B. However, a gap is provided in a part of the light shielding plate B so that a part of the side surface of the drip tube 11 can be seen by a human.
  • the distance from the gap provided in the light shielding plate B to the light receiving element 51 becomes longer as the drip tube 11 is arranged very close to one light emitting element 52, so that disturbance light is received by the light receiving element. It is possible to prevent the light from entering 51. Thereby, since the shadow of the droplet 13 is obtained as a high contrast by the light receiving element 51, the dropping of the droplet 13 can be detected more stably.
  • the five optical paths 53 connecting the five light receiving elements 51 and the one light emitting element 52 have a narrow distance between the optical paths 53 in plan view, so that the droplet 13 is formed between the optical paths 53 and 53. Can be prevented from slipping through. Therefore, the position at which the drip tube 11 is disposed is preferably between the light emitting element 52 and the light receiving element 51 and closer to the light emitting element 52.
  • the difference from the first embodiment is that, as shown in FIG. 9, one light emitting element 52 and three light receiving elements 51 arranged in a line in the depth direction are drip tubes. At least one (three in the ninth embodiment) of the three optical paths 53 that are disposed opposite to or substantially opposite to each other and sandwich the light emitting element 52 and the light receiving element 51 is provided in the nozzle 12. This is a point that intersects the growing droplet 13 at the lower end. Furthermore, the height of the light emitting element 52 in the front view is different from the height of the light receiving element 51 in the front view. Specifically, the height of the light emitting element 52 in the front view is higher than the height of the light receiving element 51 in the front view.
  • the drop detection device 1 according to the ninth embodiment is different from the first embodiment in that it includes an imaging unit and an illumination unit.
  • a camera 21 serving as an imaging unit that captures the growing droplet 13 at the lower end of the nozzle 12 and a camera 21 that is opposed or substantially opposed to each other with the drip tube 11 interposed therebetween.
  • the lighting fixture 22 as an illumination part is provided. Further, the camera 21 and the light receiving element 51 are disposed at positions facing or substantially facing each other with the drip tube 11 interposed therebetween.
  • one light emitting element 52 and three light receiving elements 51 are opposed to each other with the infusion tube 11 interposed therebetween.
  • the camera 21 and the light receiving element 51 are also opposed to each other with the drip tube 11 in between.
  • the camera 21 and the lighting fixture 22 are also facing each other.
  • the position where the light receiving element and the light emitting element are arranged, the position where the imaging unit and the light receiving element are arranged, and the position where the imaging unit and the illumination unit are arranged satisfy a desired function, and Each can be appropriately selected as long as they are arranged at positions facing or substantially facing each other across the drip tube.
  • the camera 21 (for example, a two-dimensional image sensor) is installed close to the side surface of the drip tube 11 so that the angle of view of the camera 21 includes a space near the lower end of the nozzle 12.
  • the camera 21 can capture the growing droplet from the beginning of the growth until it falls at the lower end of the nozzle 12 at a plurality of time points, and obtain it as a plurality of image data (for example, a series of moving images).
  • “Growing” means a state in which a droplet is growing at the lower end of the nozzle, that is, a state in which the droplet is gradually growing in a state of being attached to the lower end of the nozzle.
  • the lighting fixture 22 is provided at a position facing the camera 21 with the drip tube 11 in between.
  • the luminaire 22 can illuminate the growing droplet 13 at least at the lower end of the nozzle 12. Thereby, even when there is disturbance light, the droplet 13 can be reliably imaged by illumination. Even when there is vibration or the like, the shutter speed of one image can be increased by illumination, and an image with less blur can be obtained.
  • the camera 21 has sensitivity to the wavelength irradiated from the lighting fixture 22.
  • the lighting fixture 22 is a surface emitting infrared LED illumination
  • the camera 21 has sensitivity to infrared wavelengths.
  • the luminaire 22 is not dazzling even when the patient is infused at night.
  • the camera 21 may include an optical filter that can cut light having an unnecessary wavelength.
  • the droplet 13 growing at the lower end of the nozzle 12 is necessarily at least one of the three optical paths 53 (three in the ninth embodiment) connecting the light emitting element 52 and the light receiving element 51. Will intersect. For this reason, even when the drip tube 11 is tilted due to a patient's movement or the like, the light receiving element 51 can always detect the liquid droplet 13. Then, by detecting that the liquid droplet 13 has disappeared at the lower end of the nozzle 12, it is possible to detect that dripping has occurred.
  • the height of the light emitting element 52 in the front view is arranged higher than the height in the front view of the light receiving element 51, and the configuration of the photo interrupter 5 in which the optical path 53 connecting the light emitting element 52 and the light receiving element 51 is inclined in the front view. It is.
  • the camera 21 can be easily arranged so that the angle of view includes the space near the lower end of the nozzle 12 without the presence of the photo interrupter 5 becoming an obstacle.
  • the lighting fixture 22 can be easily disposed at a position facing the camera 21.
  • the camera 21 and the light receiving element 51 are arranged at positions facing each other with the infusion tube 11 in between. Thereby, since the lighting fixture 22 and the light receiving element 51 will be arrange
  • the volume of the droplet 13 can be obtained by arranging the camera 21 so that the angle of view includes a space near the lower end of the nozzle 12 and capturing the droplet 13 with a plurality of images or moving images. Furthermore, by specifying the number of drops per unit time by the photo interrupter 5 and multiplying it by the volume of the drop, the drop amount (flow rate) can be obtained. Therefore, according to the present embodiment, the photointerrupter 5 including the light emitting element 52 and the light receiving element 51 arranged as described above allows the droplet 13 to be dropped even when the drip tube 11 is tilted due to the movement of the patient or the like. It can be detected accurately. In addition, the camera 21 and the lighting fixture 22 can be easily added, and the amount of dripping can be accurately measured from the volume of the droplet 13 that can be calculated by this, regardless of the type of the droplet.
  • the photo interrupter 5 includes one light emitting element 52 and three light receiving elements 51.
  • One or more photo-interrupters are arranged as long as they are arranged so as to face or substantially face each other across the drip tube and at least one of the two or more optical paths intersects the growing droplet at the lower end of the nozzle.
  • a light emitting element and two or more light receiving elements can be used.
  • the number of light emitting elements and light receiving elements may be the same or different.
  • the difference from the first embodiment is that, as shown in FIG. 10, one light emitting element 52 and three light receiving elements 51 arranged in a line in the depth direction are drip tubes. At least one of the three optical paths 53 (one in the tenth embodiment) that is arranged at a position facing or substantially facing each other across 11 and connecting the light emitting element 52 and the light receiving element 51 is inside the infusion tube 11. This is for detecting the liquid level of the liquid reservoir 14.
  • the dripping detection device 1 when the liquid level of the liquid reservoir 14 inside the drip tube 11 reaches or is just before reaching the optical path 53.
  • One of the three optical paths 53 connecting 52 and the light receiving element 51 is refracted by the liquid surface of the liquid reservoir 14.
  • the light receiving portion of one light receiving element 51 for detecting the liquid level of the liquid reservoir 14 it is detected that the light from the light emitting element 52 exceeds a predetermined time or does not reach through the predetermined time (that is, It is detected that the amount of light from the light emitting element 52 has changed.
  • a function as a liquid level sensor of the liquid reservoir 14 can be given to the optical path 53.
  • the photo interrupter 5 includes one light emitting element 52 and three light receiving elements 51 .
  • the present invention is not limited to this configuration.
  • the photo interrupter is connected to one or more light-emitting elements and It can be configured with two or more light receiving elements.
  • the number of light emitting elements and light receiving elements may be the same or different.
  • the drop detection device differs from the ninth embodiment in that one or more light emitting elements 52 and two or more light receiving elements 51 (three light receiving elements 51 in FIG. Is arranged in a line in the depth direction) below the lower end of the nozzle 12 and at a position opposed or substantially opposed across the infusion tube 11.
  • a camera 21 that captures the growing droplet 13 at the lower end of the nozzle 12 and a position that faces or substantially faces the camera 21 with the drip tube 11 in between.
  • the lighting fixture 22 arranged in the.
  • the photo interrupter 5 may be in the form of the light emitting element 52 and the light receiving element 51 described in the first to eighth embodiments.
  • the light receiving element 51 can always detect the droplet 13.
  • the lighting fixture 22 and the light receiving element 51 are arrange
  • the camera 21 and the lighting fixture 22 can be easily added regardless of the presence of the photo interrupter 5, and from the volume of the droplet 13 that can be calculated thereby, the droplet is dropped regardless of the type of the droplet. The amount can be measured accurately.
  • the difference from the first embodiment is that a housing for housing a part of the drip tube 11, the light emitting element 52, and the light receiving element 51, as shown in FIGS. 31 is provided. Moreover, it differs from the first embodiment in that five light receiving elements 51 are arranged in a line in the depth direction. Other configurations can be the same as those in the first embodiment.
  • the drop detection device 1 according to the twelfth embodiment is configured such that a light receiving element 51, a light emitting element 52, and a part of the drip tube 11 are housed inside a housing 31. .
  • a pore 32 is formed in the housing 31.
  • the pore 32 is a hole through which an optical path 53 connecting the light emitting element 52 and the light receiving element 51 passes. Therefore, in the drop detection device 1 according to the twelfth embodiment, the light emitting element 52 and the five light receiving elements 51 are arranged such that the optical path 53 connecting them passes through the pore 32. For this reason, the optical path 53 is not blocked by the housing 31.
  • the housing 31 has a function of blocking the influence of disturbance light such as sunlight incident from the outside of the drop detection device 1, similarly to the light shielding plate B in the drop detection device of the eighth embodiment. Thereby, it can contribute to the more exact detection that the droplet by the photo interrupter 5 dripped.
  • the material of the housing 31 is not limited as long as the influence of the disturbance light can be blocked.
  • the housing 31 is preferably provided with a gap in a part so that a part of the side surface of the drip tube 11 can be seen by a human.
  • the difference from the eleventh embodiment is that, as shown in FIG. 14, one light-emitting element 52 and one light-receiving element 51 for detecting the liquid level of the liquid reservoir 14 are used.
  • the six light receiving elements 51 included are configured to be housed in the housing 31 as in the drop detection device 1 according to the twelfth embodiment.
  • the housing 31 also has a pore 32 through which an optical path 53 connecting the light emitting element 52 and the light receiving element 51 passes.
  • the drop detection device 1 according to the thirteenth embodiment has a function of blocking the influence of disturbance light such as sunlight incident from the outside of the drop detection device 1 by providing the housing 31 as in the twelfth embodiment. Can have.
  • the photo interrupter 5 can more accurately detect the dropping of the droplets, and more accurately detect the occurrence of an abnormality in the liquid level of the liquid reservoir 14.
  • FIG. 15 shows an example of the optical path 53 when the liquid level of the liquid reservoir 14 is detected as being high, middle, or low by the photo interrupter 5.
  • the light receiving element 51 that detects the dropping of the droplet and the light receiving element 51 for detecting the liquid level are arranged with a certain distance.
  • the material of the housing 31 is not limited as long as the influence of the disturbance light is incident, and a part of the side surface of the drip tube 11 is visually observed by a human or the like. It is preferable that a gap is provided in part so as to be able to.
  • the dripping detection device 1 shown in FIG. 15 recognizes that the light from the light emitting element 52 is incident on the light receiving element 51 for detecting the liquid level when the liquid level of the liquid reservoir 14 is high.
  • the drop detection device 1 according to the present embodiment has the optical path 53 for the light from the light emitting element 52. 14 refracts light in the plane direction so that it does not enter the light receiving element 51 for detecting the liquid level.
  • the dripping detection device 1 can detect an abnormality in the liquid level even when the liquid level of the liquid reservoir 14 is high as in the middle level.
  • FIG. 16 also shows the dropping detection device 1 when the liquid level of the liquid reservoir 14 is low (shown on the lower side). In this case, the light from the light emitting element 52 is transmitted through the liquid reservoir 14 in the optical path 53. The light enters the light receiving element 51 for detecting the liquid level without being refracted.
  • FIGS. 17A to 17C a preferable circuit configuration when three light receiving elements are arranged in the drop detecting device according to the present invention will be described with reference to FIGS. 17A to 17C.
  • a resistor 6 is connected in series to each light receiving element 51 and a circuit configuration for detecting the potential between the light receiving element 51 and the resistor 6 is adopted.
  • a circuit configuration for detecting the potential between the light receiving element 51 and the resistor 6 is adopted.
  • all three light receiving elements 51 are connected in series and then connected in series with the resistor 6 to have a circuit configuration for detecting a potential change in which the flowing current decreases.
  • the change in potential can be detected if at least the light receiving portion of the light receiving element 51 captures whether or not the light emitted from the light emitting element 52 is blocked by the droplet 13 being dropped. it can. Therefore, even with such a circuit configuration, it is advantageous because the droplet 13 can be detected very accurately.
  • the light emitting elements 52 when a plurality of light emitting elements 52 and light receiving elements 51 are arranged, the light emitting elements 52 emit light in order in a time-sharing manner, and light reception that is opposed or substantially opposed via the drip tube 11 so as to correspond thereto.
  • the element 51 is configured to detect the presence or absence of light shielding by the droplets 13 in order.
  • the three light emitting elements 52 are sequentially arranged at a frequency of several tens of kHz, for example. Irradiation is performed, and the light receiving element 51 facing them captures in order whether or not the irradiated light is blocked by the droplet 13 being dropped. Also in this case, it is possible to detect that the droplet 13 has been dropped very accurately.
  • the light receiving unit of the light receiving element does not drop the droplet even if the light emitted from the light emitting element transmits the droplet being dropped to catch the change in the amount of light. It can be detected accurately.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Anesthesiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Vascular Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

滴下検出装置(1)は、上方よりノズル(12)が挿入され、ノズル(12)の下端から滴下する液滴(13)を内部で受ける筒状の点滴筒(11)と、光を照射する1以上の発光素子(52)、およびこの光を受光する2以上の受光素子(51)を有するフォトインタラプタ(5)とを備え、1以上の発光素子(52)と2以上の受光素子(51)とは、点滴筒(11)を挟んで対向または略対向する位置に配置され、かつ1以上の発光素子(52)と2以上の受光素子(51)とを結ぶ2以上の光路(53)は、ノズル(12)の下端より下側に位置し、それぞれの受光素子(51)へ向かう光路(53)のうち少なくとも1つが、他の光路(53)と平面視および正面視において非平行である。

Description

滴下検出装置
 本発明は、滴下検出装置に関する。
 従来から、点滴筒内のノズルの下端から滴下する液滴の数をカウントし、カウント数に応じて液滴の滴下量を制御する輸液システムが知られている。たとえば、特開2012-125450号公報(特許文献1)には、光透過性の点滴筒内を滴下する液滴を発光素子および受光素子によって検出し、滴下数、滴下間隔を算出する点滴モニタ装置が開示されている。
 特許文献1に開示された点滴モニタ装置では、発光素子と受光素子とを点滴筒の一側面に上下に並べて配置し、発光素子から指向角度を有する光を出力して点滴筒内の液滴に当て、反射した散乱光を受光素子で検出して液滴の滴下を捕える。これにより、患者の動きなどで点滴筒が傾き、発光素子から直進する光が液滴に当たらずに外れる場合にも液滴の滴下を捕えることができ、発光素子と受光素子とを対面配置することで生じる不都合を解消したとされる。
特開2012-125450号公報
 しかしながら、特許文献1に開示された点滴モニタ装置では、散乱光を受光素子で検出するので、検出感度が低い。
 したがって、発光素子と受光素子とを対面配置し、フォトインタラプタの仕組みを採用して滴下検出手段とすることが望まれる。その上で、患者の動きなどで点滴筒が傾き、発光素子から直進する光が液滴に当たらないで外れる場合にも的確に液滴の滴下を捕えることができる滴下検出手段を達成する必要があった。
 本発明は、上記実情に鑑みてなされ、患者の動きなどで点滴筒が傾き、発光素子から直進する光が液滴に当たらないで外れる場合にも的確な検出ができる滴下検出装置を提供することを目的とする。
 上記目的を達成するため、本発明は、以下のとおりの特徴を有する。
 [1]
 上方よりノズルが挿入され、該ノズルの下端から滴下する液滴を内部で受ける筒状の点滴筒と、光を照射する1以上の発光素子および前記光を受光する2以上の受光素子を有するフォトインタラプタと、を備え、前記1以上の発光素子と前記2以上の受光素子とは、前記点滴筒を挟んで対向または略対向する位置に配置され、かつ前記1以上の発光素子と前記2以上の受光素子とを結ぶ2以上の光路は、前記ノズルの下端より下側に位置する、滴下検出装置である。
 [2]
 上記受光素子へ向かう上記2以上の光路のうち少なくとも1つが、他の上記光路と平面視において非平行である、[1]に記載の滴下検出装置である。
 [3]
 上記受光素子へ向かう上記2以上の光路のうち少なくとも1つが、他の上記光路と正面視において非平行である、[1]または[2]に記載の滴下検出装置である。
 [4]
 上記発光素子を1つ有する、[1]~[3]のいずれかに記載の滴下検出装置である。
 [5]
 上記点滴筒は、上記発光素子と上記受光素子との間であって上記受光素子に近い側に配置される、[4]に記載の滴下検出装置である。
 [6]
 上記2以上の光路のうち少なくとも1つが、上記ノズルの下端で成長中の液滴とが交差する、[1]~[5]のいずれかに記載の滴下検出装置である。
 [7]
 上記2以上の光路のうち少なくとも1つが、上記点滴筒内部の液溜めの液位検知用である、[1]~[6]のいずれかに記載の滴下検出装置である。
 [8]
 上記ノズルの下端で成長中の液滴を撮影する撮像部と、上記撮像部と上記点滴筒を挟んで対向または略対向する位置に配置された照明部と、を備え、上記撮像部と上記受光素子とは、上記点滴筒を挟んで対向または略対向する位置に配置される、[1]~[7]のいずれかに記載の滴下検出装置である。
 本発明によれば、1以上の発光素子と2以上の受光素子とを有し、これらが点滴筒を挟んで対向または略対向する位置に配置されたフォトインタラプタにより確実に液滴の滴下を検出することができる。
図1Aは、第1実施形態に係る滴下検出装置の概略構成を、ノズルを外し、液溜めを図示することを省略して模式的に示した概略平面図である。 図1Bは、第1実施形態に係る滴下検出装置の概略構成を模式的に示した概略正面図である。 図2Aは、第2実施形態に係る滴下検出装置の概略構成を、ノズルを外し、液溜めを図示することを省略して模式的に示した概略平面図である。 図2Bは、第2実施形態に係る滴下検出装置の概略構成を模式的に示した概略正面図である。 図3Aは、第3実施形態に係る滴下検出装置の概略構成を、ノズルを外し、液溜めを図示することを省略して模式的に示した概略平面図である。 図3Bは、第3実施形態に係る滴下検出装置の概略構成を模式的に示した概略正面図である。 図4Aは、第4実施形態に係る滴下検出装置の概略構成を、ノズルを外し、液溜めを図示することを省略して模式的に示した概略平面図である。 図4Bは、第4実施形態に係る滴下検出装置の概略構成を模式的に示した概略正面図である。 図5Aは、第5実施形態に係る滴下検出装置の概略構成を、ノズルを外し、液溜めを図示することを省略して模式的に示した概略平面図である。 図5Bは、第5実施形態に係る滴下検出装置の概略構成を模式的に示した概略正面図である。 図6は、第6実施形態に係る滴下検出装置において得られる効果を模式的に説明する一部断面説明図である。 図7は、第7実施形態に係る滴下検出装置において得られる効果を模式的に説明する一部断面説明図である。 図8は、第8実施形態に係る滴下検出装置において得られる効果を模式的に説明する一部断面説明図である。 図9は、第9実施形態に係る滴下検出装置の概略構成を模式的に示す概略正面図である。 図10は、第10実施形態に係る滴下検出装置の概略構成を模式的に示す概略正面図である。 図11は、第11実施形態に係る滴下検出装置の概略構成を模式的に示す概略正面図である。 図12は、第12実施形態に係る滴下検出装置の概略構成を、ノズルを外し、液溜めを図示することを省略して模式的に示した概略平面図である。 図13は、第12実施形態に係る滴下検出装置の概略構成を模式的に示した概略正面の一部断面図である。 図14は、第13実施形態に係る滴下検出装置の概略構成を模式的に示した概略正面の一部断面図である。 図15は、第13実施形態に係る滴下検出装置において得られる効果を模式的に説明する一部断面図である。 図16は、第13実施形態に係る滴下検出装置において得られる効果を平面視において模式的に説明する説明図である。 図17Aは、本発明に係る滴下検出装置の回路構成に関し、受光素子と抵抗を直列に接続した一例を説明する説明図である。 図17Bは、本発明に係る滴下検出装置の回路構成に関し、受光素子と抵抗を直列に接続した他の例を説明する説明図である。 図17Cは、本発明に係る滴下検出装置の回路構成に関し、受光素子をすべて直列で接続した上で、抵抗をさらに直列に接続した例を説明する説明図である。
 以下、本発明に係るいくつかの実施形態について、図面を参照して説明する。なお、図面において、同一の参照符号は、同一部分または相当部分を表す。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。
 各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 [第1実施形態]
 <滴下検出装置>
 第1実施形態に係る滴下検出装置1は、図1A、図1Bに示すように、上方よりノズル12が挿入され、このノズル12の下端から滴下する液滴13を内部で受ける筒状の点滴筒11と、光を照射する1以上の発光素子52およびこの光を受光する2以上の受光素子51を有するフォトインタラプタ5とを備えている。また、点滴筒11の内部に滴下した液滴13を、点滴筒11から排出するチューブ15を備えている。
 <点滴筒>
 点滴筒11は、例えば、人体より高い位置でスタンドに吊るされた輸液バッグから、人体に至る輸液ラインの途中に配置される。ノズル12の上端は、この輸液バッグ側の輸液ラインを構成するチューブ16に接続されている。ノズル12の内部は、点滴筒11の内部へ連通している。点滴筒11の下部には一般に、輸液(薬液)が溜まる液溜め14が形成される。そして、点滴筒11の下端は、人体側の輸液ラインを構成するチューブ15に接続されている。
 輸液バッグ内の輸液は、重力によってチューブ16内を下方に向かって流れ、ノズル12の内部に達する。そして、ノズル12の下端において輸液の液滴13が成長し、この液滴13が所定の大きさに達すると点滴筒11内へ滴下する。点滴筒11は可視光および赤外光を透過するので、成長中の液滴13を外部から目視で確認することが可能である。赤外LEDからの赤外光も遮らない。
 <フォトインタラプタ>
 フォトインタラプタ5は、光を照射する1以上の発光素子52およびこの光を受光する1以上の受光素子51を有する。1以上の発光素子52と2以上の受光素子51とは、点滴筒11を挟んで対向または略対向する位置に配置される。さらに、1以上の発光素子52と2以上の受光素子51とを結ぶ2以上の光路53は、ノズル12の下端より下側に位置する。
 発光素子52は、例えば、発光ダイオードであって発光部を有し、この発光部から滴下中の液滴13(および受光素子51)に向けて光を照射する。受光素子51は、例えば、フォトトランジスタであって受光部を有する。この受光部において、発光素子52から照射された光が滴下中の液滴13によって遮断されたか否かを検出する。また受光素子51は、発光素子52から照射された光が滴下中の液滴を透過することによって、その光量が変化することを受光部が検出する構成であってもよい。
 発光素子52の光源としては、特に限定されないが、例えば、赤外LED、可視光のレーザなどを挙げることができる。赤外LEDを用いる場合、夜間などに患者に点滴を行う場合でも、発光素子52の点滅または点灯が気になるということがない。
 フォトインタラプタ5は、受光素子51の受光部において、光の遮断または光量の変化を検出することに基づき、滴下が起こったこと(液滴13がノズル12の下端から離れたこと)を検知し、滴下数を計数することができる。
 本明細書において光路53とは、具体的には発光素子52の発光部と受光素子51の受光部とを結ぶ光の通り道をいう。ここで、発光素子52から照射された光は、進むにつれて広がっていくが、この光のうち発光素子52の発光部と受光素子51の受光部とを結ぶもののみを光路53というものとする。なお、本願に添付されている図面において一点鎖線で表されるのは、光路53である。ただし、[図8]において光路53は実線で表される。
 また本明細書において、ある1つの発光素子52とある1つの受光素子51とを結ぶ光路53が、点滴筒11の内部を通過する関係にあれば、当該発光素子52と当該受光素子51とは点滴筒11を挟んで「略対向する」位置に配置されているというものとする。なかでも、ある1つの発光素子52とある1つの受光素子51とが、点滴筒11を挟んで相互に正面で向かい合うような位置を占めているとき、当該発光素子52と当該受光素子51とは点滴筒11を挟んで「対向する」位置に配置されているというものとする。
 第1実施形態に係る滴下検出装置1は、受光素子51を2以上有している。具体的には、図1Aに示すように、受光素子51を3つ有している。それぞれの受光素子51へ向かう光路53のうちの少なくとも1つは、他の光路53と平面視において非平行である。また、図1Bに示すように、それぞれの受光素子51へ向かう光路53のうちの少なくとも1つは、他の光路53と正面視においても非平行である。なお本実施形態において発光素子52は、1つである。
 さらに、発光素子52と点滴筒11を挟んで対向または略対向する位置に配置される3つの受光素子51のうちの1つの受光素子51に、俯角または仰角が付されている。具体的には、図1Bに示すように、奥行き方向に一列に同じ向きで並んだ3つの受光素子51のうち、発光素子52と点滴筒11を挟んで対向する中央の受光素子51に対し、俯角が付されている。また、1つの発光素子52と、3つの受光素子51のうちの両端の受光素子51の受光部とは、同一平面上に配置されている。
 これにより、3つの受光素子51のうち、両端の受光素子51へ向かう光路53はそれぞれ、正面視において水平に伸びる。これに対し、俯角が付された中央の受光素子51へ向かう光路53は、正面視において水平に伸びないで傾斜し、他の2つの光路53と正面視において非平行の関係となる。また、中央の受光素子51は俯角が付されているので、その受光部が発光素子52の発光部を直視することがない。なお、発光素子52の発光部が「直視する」とは、光路53と発光部の面とでなす角度が直角となることをいい、受光素子51の受光部が「直視する」とは、光路53と受光部の面とでなす角度が直角となることをいう。
 また、図1Aに示すように、3つの受光素子51のうち、中央の受光素子51へ向かう光路53は平面視において左右に真横に伸びる。これに対し、両端の受光素子51へ向かう光路53はそれぞれ平面視において左右に傾斜して伸び、中央の受光素子51へ向かう光路53と平面視において非平行の関係となる。そして、両端の受光素子51もそれぞれ、発光素子52と点滴筒11を挟んで略対向するものの、対向するものではないため、これらの受光部は発光素子52の発光部を直視することがない。要するに、本実施形態では、3つの受光素子51の受光部のいずれもが、発光素子52の発光部を直視していないこととなる。
 ここで、奥行き方向に一列に同じ向きに並んだ3つの受光素子うち、中央の受光素子が俯角または仰角を付して配置されない場合、中央の受光素子は発光素子と対向し、これを直視することになる。このとき中央の受光素子は、その受光部で受光する光量が過多となって飽和すると、液滴が光路と交差しても発光素子から照射された光が遮断されたことを認識することができなくなり、その滴下を検出できないケースが発生する。さらに、これを考慮して発光素子の光量を減じ、中央の受光素子の受光部で受光する光量が飽和しないようにすると、両端の受光素子の受光部で受光する光量が過少となる。このとき両端の受光素子は、発光素子から照射された光を液滴が常に遮光していると認識し、やはり液滴の滴下を的確に検出できないケースが発生してしまう。
 また発光素子を、上述のように受光素子と同一平面上に配置せず、その高さをずらして配置し、中央の受光素子が受光する光量を飽和しないように調整しても、両端の受光素子において受光する光量はやはり過少となる。このため、この場合でも液滴の滴下を正確に検出できないケースが発生してしまう。
 そこで本実施形態では、上記構成に基づいて受光素子51と発光素子52とが直視する関係とならないようにし、かつ、中央の受光素子51に付す俯角の角度を調整することにより、発光素子52からほぼ同程度の光量を、3つの受光素子51それぞれで受光することができるようにした。すなわち、両端の受光素子51が受光する光量とほぼ同程度の光量を、付する俯角の角度を調整することで、中央の受光素子51で受光できるようにした。そして、発光素子52の光量を調整することにより、すべての受光素子51は適度な光量を受光することができる。したがって、中央あるいは両端にかかわらず、いずれの位置の受光素子51でも液滴13の滴下を検出することができる。
 また本実施形態では上記構成により、受光素子51へ向かう光路53はそれぞれ、点滴筒11内部で水平方向および鉛直方向に異なる位置を通過する。したがって、傾斜または振動のために、点滴筒11内の液滴13の滴下経路がノズル12の下端からその延長線上とならない場合でも、液滴13がいずれかの光路53と交差するようになり、その滴下を的確に検出することができる。さらに、本実施形態では、発光素子52と受光素子51とが点滴筒11を挟んで対向または略対向する位置に配置されているので、確実に液滴13の滴下を検出することができる。
 滴下検出装置1では、発光素子52から点滴筒11を通過し、受光素子51で受光する光量が、落下する液滴による遮光、屈折によって変化するだけでなく、点滴筒11の内壁面に付着した液滴が光路53と干渉することによっても大きく変化する。受光素子51で受光する光量は、天気の変化、時間の経過による日照の変化、部屋の明るさなどにより受光素子に到達する太陽光の光量が変化することによっても大きく変化する。そこで本実施形態では、落下する液滴(「落滴」とも記す)を検知する判定部において、受光素子51の出力電圧が単一の閾値を超えるか否かにより落滴を検出したと判断することなく、直近の受光素子51の出力電圧の平均値に対し、瞬間的に電圧値が大きく低下したときに落滴を検出したと判断するものとする。
 このような構成は、たとえば2以上の受光素子の出力電圧を、ADコンバータでデジタルデータに変化して演算部に取り込み、これを演算することにより実現することができる。また上記構成は、アナログ回路によっても実現することができる。たとえば、2以上の受光素子の出力電圧をローパスフィルタにより時間的に平均化し、その平均化された電圧値と現在の電圧値との差分を減算回路により出力し、その出力値と所定の閾値とをコンパレータを用いて比較することにより、落滴を検出したと判断(遮光状態と透光状態とを判別)することができる。このため、その判断または判別したデータをデジタルI/Oによりコントローラーに取り込むことにより、アナログ回路によっても正確な落滴の検出判断を実現することができる。
 さらに本実施形態は、2以上の光路53のうち少なくとも1つを、点滴筒11内部の液溜め14の液位検知用とすることができる。すなわち、後述する第13実施形態で詳しく説明するように、受光素子51の受光部において、所定の時間を超過し、または所定の時間を通して遮光、または光量の変化を検出したとき、これを液溜め14の液位の異常であると認識するものである。これにより、光路53に対し、液滴13の滴下を検出する機能とともに、光路53に至るまで液溜め14の液位が達した、若しくは達する危険性があることを検知する液位センサとしての機能を付与することができる。
 なお、上述のように受光素子51で受光する光量が点滴筒11の内壁面に付着した液滴と光路53とが干渉することによって大きく変化することを避ける方法として、点滴筒11の内壁面に親水処理を施すことが例示される。この場合、内壁面に付着した液滴は小さい接触角で濡れ拡がるため、点滴筒11の内壁面において滴として残存することがなくなるので好ましい。
 [第2実施形態]
 第2実施形態に係る滴下検出装置1において、第1実施形態と異なるのは、図2A、図2Bに示すように、3つの受光素子51のうちの中央の受光素子51が配置される正面視における高さと、両端の受光素子51が配置される正面視における高さとが相違している点である。具体的には、中央の受光素子51の正面視における高さが、両端の受光素子51の正面視における高さよりも高い。また、中央の受光素子51に、俯角または仰角が付されていない点でも第1実施形態と異なる。その他の構成は、第1実施形態と同様である。
 本実施形態は、図2Bに示すように、3つの受光素子51のうち両端の受光素子51へ向かう光路53がそれぞれ、正面視において水平に伸びる。これに対し、中央の受光素子51へ向かう光路53は、正面視において水平に伸びないで傾斜し、両端の受光素子51へ向かう光路53と正面視において非平行の関係となる。また、中央の受光素子51の受光部は、発光素子52と正面視における高さが異なるので、発光素子52の発光部を直視することがない。
 さらに、図2Aに示すように、3つの受光素子51のうち、中央の受光素子51へ向かう光路53は平面視において左右に真横に伸びている。これに対し、両端の受光素子51へ向かう光路53はそれぞれ平面視において左右に傾斜して伸び、中央の受光素子51へ向かう光路53と平面視において非平行の関係となる。そして、両端の受光素子51もそれぞれ、発光素子52と点滴筒11を挟んで略対向するものの、対向するものではないため、これらの受光部は発光素子52の発光部を直視することがない。要するに、本実施形態においても、3つの受光素子51の受光部はいずれも発光素子52の発光部を直視していないこととなる。
 したがって本実施形態においても、中央の受光素子51の正面視における高さを調整することで、いずれの受光素子51の受光部でも、発光素子52からほぼ同程度の光量を受光することができる。このため、発光素子52の光量を調整することで、すべての受光素子51で適度な光量を受光することができる。これにより、中央あるいは両端にかかわらず、いずれの位置の受光素子51でも液滴13の滴下を検出することができる。さらに、それぞれの受光素子51へ向かう光路53は、点滴筒11内部で水平方向および鉛直方向に異なる位置を通過するため、液滴13がいずれかの光路53と必ず交差し、その滴下を的確に検出することができる。また、発光素子52と受光素子51とが点滴筒11を挟んで対向または略対向する位置に配置されているので、確実に液滴13の滴下を検出することができる。
 [第3実施形態]
 第3実施形態に係る滴下検出装置1において、第1実施形態と異なるのは、図3Aに示すように、3つの受光素子51のうちの両端の受光素子51の受光部が、点滴筒11を挟んで略対向する発光素子52の発光部に近い方向へ向くように少し内向きに配置されている点である。ただし、両端の受光素子51の受光部は、発光素子52を直視していない。なお、第3実施形態では、第1実施形態と同様、中央の受光素子51に俯角または仰角が付されている。その他の第3実施形態の構成は、第1実施形態と同様である。
 本実施形態は、図3Bに示すように、3つの受光素子51のうちの両端の受光素子51へ向かう光路53がそれぞれ、正面視において水平に伸びる。これに対し、俯角が付された中央の受光素子51へ向かう光路53は、正面視において水平に伸びないで傾斜し、両端の受光素子51へ向かう光路53と正面視において非平行の関係となる。また、中央の受光素子51は俯角が付されているので、その受光部が発光素子52の発光部を直視することがない。
 さらに、図3Aに示すように、3つの受光素子51のうち、中央の受光素子51へ向かう光路53は平面視において左右に真横に伸びる。これに対し、両端の受光素子51へ向かう光路53はそれぞれ平面視において左右に傾斜して伸び、中央の受光素子51へ向かう光路53と平面視において非平行の関係となる。そして、両端の受光素子51はそれぞれ、発光素子52と点滴筒11を挟んで略対向し、発光素子52の発光部に近い方向へ向いているものの、これらの受光部は、上述のように発光素子52の発光部を直視していない。要するに、本実施形態においても、3つの受光素子51の受光部はいずれも発光素子52の発光部を直視していないこととなる。
 したがって本実施形態においても、中央の受光素子51に付す俯角の角度を調整すること、および両端の受光素子51を発光素子52の発光部に近い方向へ向ける程度を調整することで、いずれの受光素子51の受光部でも、発光素子52からほぼ同程度の光量を受光することができる。このため、発光素子52の光量を調整することで、すべての受光素子51で適度な光量を受光することができる。これにより、中央あるいは両端にかかわらず、いずれの位置の受光素子51でも液滴13の滴下を検出することができる。さらに、それぞれの受光素子51へ向かう光路53は、点滴筒11内部で水平方向および鉛直方向に異なる位置を通過するため、液滴13がいずれかの光路53と必ず交差し、その滴下を的確に検出することができる。また、発光素子52と受光素子51とが点滴筒11を挟んで対向または略対向する位置に配置されているので、確実に液滴13の滴下を検出することができる。
 特に本実施形態では、中央の受光素子51に付する俯角または仰角の角度とともに、両端の受光素子51を発光素子52の発光部に近い方向へ向ける程度を調整することで、それぞれの受光素子51が受光する光量を極めて同量に近づけることができる。このため液滴13の滴下をより的確に検出することができる。
 第1実施形態~第3実施形態では、受光素子51の数が3つである構成を例示して説明したが、本発明において受光素子の数は3つに限定されない。すなわち、複数の受光素子でそれぞれ、1以上の発光素子からほぼ同程度の光量を受光することが可能な関係を構築できる限り、受光素子の数を適宜決定することができる。なお、受光素子の数は、滴下検出装置が大型化にならないように配慮した上で、3以上であることが好ましい。
 [第4実施形態]
 第4実施形態に係る滴下検出装置1において、第1実施形態と異なるのは、図4A、図4Bに示すように、発光素子52が3つ配置されている点である。この3つの発光素子52において、中央の発光素子52の正面視における高さが、両端の発光素子52の正面視における高さと相違している。具体的には、両端の発光素子52の正面視における高さが、中央の発光素子52の正面視における高さよりも高い。また、3つの受光素子51のうちの両端の受光素子51は、第3実施形態と同様に、発光素子52の発光部に近い方向へ向けられて、少し内向きに配置されている点で第1実施形態と異なる。なお、中央の受光素子51は、第1実施形態と同様に俯角または仰角が付されている。
 そして、上記の3つの発光素子52の配置および3つの受光素子51の配置により、俯角が付された中央の受光素子51の受光部は、点滴筒11を挟んで中央の発光素子52と対向し、その発光部を直視する。両端の受光素子51の受光部はそれぞれ、点滴筒11を挟んで両端の発光素子52と対向し、その発光部を直視する。また、3つの発光素子52は相互に近接して配置され、3つの受光素子51の配置に比べて密集した態様となる。その他の構成は、第1実施形態と同様である。
 本実施形態は、図4Bに示すように、3つの受光素子51のうちの両端の受光素子51へ向かう光路53はそれぞれ、正面視において水平に伸びる。これに対し、俯角が付された中央の受光素子51へ向かう光路53は、正面視において水平に伸びないで傾斜し、両端の受光素子51へ向かう光路53と正面視において非平行の関係となる。また、図4Aに示すように、3つの受光素子51のうち、中央の受光素子51へ向かう光路53は平面視において左右に真横に伸びる。これに対し、両端の受光素子51へ向かう光路53はそれぞれ平面視において左右に傾斜して伸び、中央の受光素子51へ向かう光路53と平面視において非平行の関係となる。
 そして、3つの受光素子51の受光部は3つの発光素子52の発光部とそれぞれ直視する関係にあるので、発光素子52からの光量が調整されることで、いずれの受光素子51の受光部でもほぼ同程度の光量であって、かつ適度な光量を受光することができる。したがって、中央あるいは両端にかかわらず、いずれの位置の受光素子51でも液滴13の滴下を検出することができる。さらに、それぞれの受光素子51へ向かう光路53は、点滴筒11内部で水平方向および鉛直方向に異なる位置を通過するため、液滴13がいずれかの光路53と必ず交差し、その滴下を的確に検出することができる。発光素子52と受光素子51とが点滴筒11を挟んで対向または略対向する位置に配置されているので、確実に液滴13の滴下を検出することができる。
 特に本実施形態では、3つの受光素子51の受光部が3つの発光素子52の発光部と直視する関係にある。このため、それぞれの発光素子52の発光する光量を調整することで、それぞれの受光素子51が受光する光量を極めて同量に近づけることができ、液滴13の滴下をより的確に検出することができる。また、上述のように、3つの発光素子52は3つの受光素子51の配置に比べて相互に近接した態様を示す。このため、3つの発光素子52と3つの受光素子51とを結ぶ3つの光路53は、平面視において各光路53間の距離が狭くなるので、光路53と光路53との間を液滴13がすり抜けるケースが発生することを防ぐことができる。
 [第5実施形態]
 第5実施形態に係る滴下検出装置1において、第1実施形態と異なるのは、図5A、図5Bに示すように、第4実施形態と同様に3つの発光素子52が配置されている点である。また、中央の発光素子52の正面視における高さが、両端の発光素子52の正面視における高さと相違している。具体的には、中央の発光素子52の正面視における高さが、両端の発光素子52の正面視における高さよりも高い。3つの発光素子52は同じ方向を向いている。
 さらに、第5実施形態において第1実施形態と異なるのは、3つの受光素子51のうちの中央の受光素子51の正面視における高さと、両端の受光素子51の正面視における高さとが相違している点である。具体的には、中央の受光素子51の正面視における高さが、両端の受光素子51の正面視における高さよりも高い。3つの受光素子51は同じ方向を向いている。また、3つの受光素子51および3つの発光素子52は、第4実施形態における3つの発光素子52と同様に相互に近接して配置されるので、3つの光路53は平面視において各光路53間の距離が狭い。なお、その他の構成は、第1実施形態と同様である。
 このような3つの発光素子52の配置および3つの受光素子51の配置により、中央の発光素子52の発光部は、点滴筒11を挟んで中央の受光素子51と対向し、その受光部を直視する。両端の発光素子52の発光部はそれぞれ、点滴筒11を挟んで両端の受光素子51と対向し、その受光部を直視する。そして、3つの受光素子51の受光部と3つの発光素子52の発光部とはそれぞれ直視する関係にあるので、発光素子52からの光量が調整されることで、いずれの受光素子51の受光部でもほぼ同程度の光量であって、かつ適度な光量を受光することができる。
 したがって本実施形態においても、中央あるいは両端にかかわらず、いずれの位置の受光素子51でも液滴13の滴下を検出することができる。さらに、液滴13がいずれかの光路53と必ず交差することとなって、その滴下を的確に検出することができる。また、3つの発光素子52と3つの受光素子51とを結ぶ3つの光路53は、平面視において各光路53間の距離が狭くなるので、光路53と光路53との間を液滴13がすり抜けるケースが発生することを防ぐことができる。このほか、発光素子52と受光素子51とが点滴筒11を挟んで対向または略対向する位置に配置されているので、確実に液滴13の滴下を検出することができる。
 なお、本発明において、3つの受光素子51および3つの発光素子52を配置する態様に関し、第4実施形態または第5実施形態に例示した態様に限定されない。3つの受光素子の受光部または3つの発光素子の発光部が直視する関係を構築できる限り、これらの配置は適宜の態様を採用することができる。
 [第6実施形態]
 第6実施形態では、滴下検出装置を構成している発光素子が配置される好ましい個数について説明する。
 第6実施形態に係る滴下検出装置は、上方よりノズルが挿入され、このノズルの下端から滴下する液滴を内部で受ける筒状の点滴筒と、光を照射する1以上の発光素子およびこの光を受光する1以上の受光素子を有するフォトインタラプタとを備える。図6に示すように、第6実施形態に係る滴下検出装置は、3つの発光素子52と5つの受光素子51とからなるフォトインタラプタ5を有し、これらの発光素子52および受光素子51が、点滴筒11を挟んで対向または略対向する位置に配置されている。また、これらの発光素子52および受光素子51を結ぶ光路53は、ノズルの下端より下側に位置している。
 特に、5つの受光素子51は、同一平面上で縦方向に一列に同じ向きで並んでいる。3つの発光素子52も、同一平面上で縦方向に一列に同じ向きで並んでいる。5つの受光素子51と3つの発光素子52とは、第6実施形態において同一平面上に存在している。ただし、本発明において、受光素子と発光素子との位置関係は、点滴筒を挟んで対向または略対向する位置に配置される限り、同一平面で存在する関係でもよいし、高さが相違して存在する関係でもよい。
 このような構成において、3つの発光素子52のうちの中央の発光素子52のみを発光させたとき、その光路53と液滴13とが交差すると、図6における実線で示される影が、5つの受光素子51のうちの中央の受光素子51へ向けて投影される。その影を、中央の受光素子51は、液滴13によって光路53が遮断されたと捕らえて液滴13の滴下を検出する。このとき、両端の発光素子52が発光していないので、その影は、中央の受光素子51において高いコントラストとして得られるようになる。
 その一方で、3つの発光素子52をすべて発光させたときには、図6における実線で示されるような範囲に影が投影されるとともに、両端の発光素子52から図6における破線で示されるような光が、中央の受光素子51へ到達する。要するに、中央の受光素子51が液滴13によって光路53が遮断されたことを捕らえようとしている状態で、両端の発光素子52からの光が入射し、液滴13の影が中央の受光素子51において、高コントラストで得られなくなる。高いコントラストが得られなければ、液滴13が滴下していることを中央の受光素子51で検出できないケースが発生してしまう恐れがある。
 したがって、滴下検出装置を構成する発光素子の個数については、1つであることが好ましい。そして、小型の受光素子51を互いに近接して複数配置することが好ましい。これにより、液滴13は点滴筒11内部を通過するいずれかの光路53と必ず交差することとなるので、点滴筒11が傾いた場合にも液滴13の滴下を的確に検出することができる。
 [第7実施形態]
 第7実施形態では、滴下検出装置を構成する点滴筒が配置される好ましい位置について説明する。
 第7実施形態に係る滴下検出装置は、上方よりノズルが挿入され、このノズルの下端から滴下する液滴を内部で受ける筒状の点滴筒と、光を照射する1以上の発光素子、およびこの光を受光する1以上の受光素子を有するフォトインタラプタとを備える。図7に示すように、第7実施形態に係る滴下検出装置は、1つの発光素子52と5つの受光素子51とからなるフォトインタラプタ5を有し、これらの発光素子52および受光素子51は、点滴筒11を挟んで対向または略対向する位置に配置されている。5つの受光素子51と1つの発光素子52とは、同一平面上に存在している。5つの受光素子51は、同一平面上で縦方向に一列に同じ向きで並んでいる。また、これらの発光素子52および受光素子51を結ぶ光路53は、ノズルの下端より下側に位置する。なお、本発明において、受光素子と発光素子との位置関係は、点滴筒を挟んで対向または略対向する位置に配置される限り、同一平面で存在する関係でもよいし、高さが相違して存在する関係でもよい。
 第7実施形態では特に、点滴筒11が1つの発光素子52と、5つの受光素子51との間であって、5つの受光素子51に近い側に配置されている。
 図7に示すように、本実施形態において、1つの発光素子52と5つの受光素子51のうちの両端の受光素子51とを結ぶ光路53、および点滴筒11の筒内面で区画される領域が、液滴13の滴下を検出できる点滴筒11内部の範囲Rとなる。このため、点滴筒11が5つの受光素子51のごく近くに配置されるほど、当該領域の面積が大きくなることが理解される。すなわち、点滴筒11が5つの受光素子51に近い側に配置されると、液滴13の滴下を検出できる点滴筒11内部の範囲Rも大きくなるので、点滴筒11が傾いた場合にも的確に液滴13の滴下を検出することができるようになる。
 また、点滴筒11が受光素子51に近い側に配置されることにより、より少ない数の受光素子51で、点滴筒11内部のより広い範囲をカバーすることができる。したがって、点滴筒11が配置される位置としては、発光素子52と受光素子51との間であって、受光素子51に近い側であることが好ましい。
 [第8実施形態]
 第8実施形態では、滴下検出装置を構成する点滴筒が配置される他の好ましい位置について説明する。
 第8実施形態に係る滴下検出装置は、図8に示すように、点滴筒11が、1つの発光素子52と5つの受光素子51との間であって、1つの発光素子52に近い側に配置されている点で第7実施形態と異なる。また、外乱光が受光素子51へ入射することを防ぐ遮光板Bが配設され、この遮光板Bによって点滴筒11と発光素子52と受光素子51とが包囲されている構成である。ただし、点滴筒11の側面の一部を人間などが目視できるように、遮光板Bの一部に間隙が設けられている。
 このような構成において、遮光板Bに設けられた間隙から受光素子51までの距離が長くなるほど、この間隙から外乱光が入射しても、その外乱光が受光素子51まで届きにくくなることが理解される。このため本実施形態では、点滴筒11が1つの発光素子52のごく近くに配置されるほど、遮光板Bに設けられた間隙から受光素子51までの距離が長くなるので、外乱光が受光素子51へ入射することを防ぐことが可能になる。これより、受光素子51で液滴13の影が高いコントラストとして得られるので、より安定して液滴13の滴下を検出することができる。
 また上記構成により、5つの受光素子51と1つの発光素子52を結ぶ5つの光路53は、平面視において各光路53間の距離が狭くなるので、光路53と光路53との間を液滴13がすり抜けるケースが発生するのを防ぐことができる。したがって、点滴筒11が配置される位置としては、発光素子52と受光素子51との間であって、発光素子52に近い側であっても好ましい。
 [第9実施形態]
 第9実施形態に係る滴下検出装置1において、第1実施形態と異なるのは、図9に示すように、1つの発光素子52と奥行き方向に一列に並んだ3つの受光素子51とが点滴筒11を挟んで対向または略対向する位置に配置され、かつ、この発光素子52と受光素子51とを結ぶ3つの光路53のうち少なくとも1つ(第9実施形態において3つ)が、ノズル12の下端で成長中の液滴13と交差する点である。さらに、発光素子52の正面視における高さと、受光素子51の正面視における高さとが相違している点である。具体的には、発光素子52の正面視における高さが、受光素子51の正面視における高さよりも高い。
 また、第9実施形態に係る滴下検出装置1は、撮像部および照明部を備える点で第1実施形態と異なる。第9実施形態は、ノズル12の下端で成長中の液滴13を撮影する撮像部としてのカメラ21と、このカメラ21に対して点滴筒11を挟んで対向または略対向する位置に配置された照明部としての照明器具22とを備えている。また、カメラ21と受光素子51とは、点滴筒11を挟んで対向または略対向する位置に配置される。
 本実施形態では特に、1つの発光素子52と3つの受光素子51とが点滴筒11を挟んで対向している。カメラ21と受光素子51も点滴筒11を挟んで対向している。カメラ21と照明器具22も対向している。なお、本発明において、受光素子と発光素子とが配置される位置、撮像部と受光素子とが配置される位置および撮像部と照明部とが配置される位置は、所望の機能を満たし、かつ点滴筒を挟んで対向または略対向する位置に配置される限り、それぞれ適宜選択することができる。
 <カメラおよび照明器具>
 カメラ21(例えば、二次元イメージセンサ)は、ノズル12の下端付近の空間をカメラ21の画角が含むように、点滴筒11の側面に近接して設置される。この状態においてカメラ21は、ノズル12の下端において成長の始まりから落下するまでの成長中の液滴を、複数の時点において撮影し、複数の画像データ(例えば、一連の動画)として取得することができる。なお「成長中」とは、液滴がノズルの下端で成長している途中、すなわち、液滴がノズルの下端に付着した状態で徐々に大きくなっている途中の状態を意味する。
 照明器具22は、点滴筒11を挟んでカメラ21と対向する位置に設けられている。照明器具22は、少なくともノズル12の下端において成長中の液滴13を照らすことができる。これにより外乱光がある場合でも、照明によって液滴13を確実に撮像することができる。また、振動などがある場合でも、照明によって1画像のシャッター速度を早くすることができ、ブレの少ない画像を得ることができる。
 照明器具22として、一定間隔で繰り返し発光するストロボスコープを用いることができる。カメラ21は、照明器具22から照射される波長に対して感度を有している。例えば、照明器具22が面発光赤外LED照明である場合、カメラ21は、赤外の波長に対して感度を有している。赤外LED照明を用いる場合、夜間などに患者に点滴を行う場合でも、照明器具22がまぶしいということがない。また、カメラ21は不要な波長の光をカットすることのできる光学フィルタを備えていてもよい。
 第9実施形態では、ノズル12の下端で成長中の液滴13が、発光素子52と受光素子51とを結ぶ3つの光路53のうち少なくとも1つ(第9実施形態においては3つ)と必ず交差することとなる。このため、患者の動きなどで点滴筒11が傾いた場合であっても、受光素子51で必ず液滴13を検出することができる。そして、ノズル12の下端に液滴13が無くなったことを検出することで、滴下が発生したことを検出することができる。
 さらに、発光素子52の正面視における高さが、受光素子51の正面視における高さよりも高く配置され、発光素子52と受光素子51とを結ぶ光路53が正面視において傾斜するフォトインタラプタ5の構成である。このような構成により、フォトインタラプタ5の存在が障害となることなく、ノズル12の下端付近の空間を画角が含むようにカメラ21を容易に配置することができる。また、このカメラ21と対向する位置に照明器具22を容易に配置することができる。
 さらに、カメラ21と受光素子51とは、点滴筒11を挟んで対向する位置に配置される。これにより、照明器具22と受光素子51とが同じ側に配置されることとなるため、照明器具22からの発光が外乱光となって受光素子51に入射することを防ぐことができる。
 本実施形態では、ノズル12の下端付近の空間を画角が含むようにカメラ21を配置し、液滴13を複数の画像または動画で捕らえることにより、液滴13の体積を求めることができる。さらに、フォトインタラプタ5によって単位時間当たりの滴下数を特定し、液滴の体積と掛け算することで、滴下量(流量)を求めることができる。したがって、本実施形態によれば、上述した配置の発光素子52と受光素子51とからなるフォトインタラプタ5により、患者の動きなどで点滴筒11が傾いた場合であっても液滴13の滴下を的確に検出することができる。その上で、カメラ21および照明器具22を容易に付加することができ、これにより算出できる液滴13の体積から、液滴の種類によらず滴下量を正確に測定することができる。
 なお、上記第9実施形態では、フォトインタラプタ5を1つの発光素子52と3つの受光素子51とで構成した例を説明したが、この構成に限定されない。点滴筒を挟んで対向または略対向する位置であって、かつ2以上の光路のうち少なくとも1つがノズルの下端で成長中の液滴と交差するように配置される限り、フォトインタラプタを1以上の発光素子および2以上の受光素子とで構成することが可能である。また、1以上の発光素子と2以上の受光素子とで構成する限り、発光素子と受光素子との数は同じでもよく、異なっていてもよい。
 [第10実施形態]
 第10実施形態に係る滴下検出装置1において、第1実施形態と異なるのは、図10に示すように、1つの発光素子52と奥行き方向に一列に並んだ3つの受光素子51とが点滴筒11を挟んで対向または略対向する位置に配置され、かつ発光素子52と受光素子51とを結ぶ3つの光路53のうち少なくとも1つ(第10実施形態において1つ)が、点滴筒11内部の液溜め14の液位検知用である点である。
 すなわち図10に示すように、第10実施形態に係る滴下検出装置1では、点滴筒11内部の液溜め14の液位が、光路53に達した、若しくは達する直前の状態であるとき、発光素子52と受光素子51とを結ぶ3つの光路53のうち1つが、液溜め14の液面によって屈折する。これにより、液溜め14の液位検知用とした1つの受光素子51の受光部において、発光素子52からの光が所定の時間を超過し、または所定の時間を通して届かないことが検出され(すなわち遮光され)、または発光素子52からの光の光量が変化したことが検出される。これを受光素子51の受光部が液溜め14の液位の異常であると認識することにより、光路53に液溜め14の液位センサとしての機能を付与することができる。
 なお、第10実施形態においても、フォトインタラプタ5を1つの発光素子52と3つの受光素子51とで構成した例を説明したが、この構成に限定されない。点滴筒を挟んで対向または略対向する位置であって、かつ2以上の光路のうち少なくとも1つが、点滴筒内部の液溜めの液位検知用である限り、フォトインタラプタを1以上の発光素子および2以上の受光素子とで構成することが可能である。また、1以上の発光素子と2以上の受光素子とで構成する限り、発光素子と受光素子との数は同じでもよく、異なっていてもよい。
 [第11実施形態]
 第11実施形態に係る滴下検出装置において、第9実施形態と異なるのは、図11に示すように、1以上の発光素子52と2以上の受光素子51(図11において3つの受光素子51が奥行き方向に一列に並んでいる)とを、ノズル12の下端よりも下側で、点滴筒11を挟んで対向または略対向する位置に配置した点である。その上で、第11実施形態は、第9実施形態と同様にノズル12の下端で成長中の液滴13を撮影するカメラ21と、点滴筒11を挟んでカメラ21と対向または略対向する位置に配置された照明器具22とを備えている。
 本実施形態において、フォトインタラプタ5は、第1実施形態から第8実施形態で説明した発光素子52および受光素子51の形態のものを用いることができる。これにより、患者の動きなどで点滴筒11が傾いた場合であっても、受光素子51で必ず液滴13を検出することができる。そして、図11に示すように、カメラ21と受光素子51とを、点滴筒11を挟んで対向または略対向する位置に配置することが好ましい。これにより、照明器具22と受光素子51とが同じ側に配置されることになるので、照明器具22からの発光が外乱光となって受光素子51に入射することを防ぐことができる。
 さらに、本実施形態では、フォトインタラプタ5の存在に関わらず、カメラ21および照明器具22を容易に付加することができ、これにより算出できる液滴13の体積から、液滴の種類によらず滴下量を正確に測定することができる。
 [第12実施形態]
 第12実施形態に係る滴下検出装置1において、第1実施形態と異なるのは、図12および図13に示すように、点滴筒11の一部と発光素子52と受光素子51とを収容するハウジング31を備えている点である。また、奥行き方向に一列に受光素子51が5つ並んでいる点でも第1実施形態と異なる。その他の構成は、第1実施形態と同様とすることができる。
 すなわち第12実施形態に係る滴下検出装置1は、図12および図13に示すように、ハウジング31の内部に受光素子51、発光素子52および点滴筒11の一部が収容されて構成されている。ハウジング31には、細孔32が形成されている。この細孔32は発光素子52と受光素子51とを結ぶ光路53が通る孔である。したがって第12実施形態に係る滴下検出装置1において、発光素子52と5つの受光素子51とは、これらを結ぶ光路53が細孔32を通るように配置される。このため光路53は、ハウジング31によって遮断されるようなことがない。
 ハウジング31は、上記第8実施形態の滴下検出装置における遮光板Bと同様に、滴下検出装置1の外部から入射する太陽光などの外乱光の影響を遮断する機能を有する。これによりフォトインタラプタ5による液滴が滴下したことのより正確な検知に寄与することができる。ハウジング31は、上記外乱光が入射する影響を遮断することができる限り、その材質が限定されることがない。さらにハウジング31は、遮光板Bと同様に、点滴筒11の側面の一部を人間などが目視できるように、一部に間隙が設けられていることが好ましい。
 [第13実施形態]
 第13実施形態に係る滴下検出装置1において、第11実施形態と異なるのは、図14に示すように、1つの発光素子52および液溜め14の液位検知用とした1つの受光素子51を含む6つの受光素子51を、第12実施形態に係る滴下検出装置1のようにハウジング31に収容した構成とした点である。このハウジング31にも、発光素子52と受光素子51とを結ぶ光路53が通る細孔32が形成されている。
 第13実施形態に係る滴下検出装置1は、上記ハウジング31を備えることにより、第12実施形態と同様に、滴下検出装置1の外部から入射する太陽光などの外乱光の影響を遮断する機能を有することができる。これにより図15に示すように、フォトインタラプタ5によって、液滴の滴下のより正確な検知とともに、液溜め14の液位についても異常の発生をより正確に検知することができる。たとえば図15においては、フォトインタラプタ5によって液溜め14の液位が高位、中位または低位であるとして検知されるときの光路53の例をそれぞれ示している。なお、液滴の滴下を検知する受光素子51と液位検知用の受光素子51とは一定の距離を有して配設されることが好ましい。これによって点滴筒11内の液溜め14に液滴が滴下される際に、液面から跳ね返った液滴を液位検知用の受光素子51が誤って液位の異常として検知することを防ぐことができる。ハウジング31は、第12実施形態と同様に、上記外乱光が入射する影響を遮断することができる限り、その材質が限定されることがなく、点滴筒11の側面の一部を人間などが目視できるように、一部に間隙が設けられていることが好ましい。
 さらに図15において、液溜め14の液位をフォトインタラプタ5によって検知するとき、本図が正面図であるがゆえに光路53は上下方向の変化のみが現れている。このため図15に表された滴下検出装置1は、液溜め14の液位が高位であるとき、発光素子52からの光が液位検知用の受光素子51へ入射しているように把握される。しかしながら図16の平面視による説明図に示すように、本実施形態に係る滴下検出装置1は液溜め14の液位が高位であるとき、発光素子52からの光は、その光路53が液溜め14によって平面方向に光が屈折するため液位検知用の受光素子51へ入射しない。したがって本実施形態に係る滴下検出装置1は、液溜め14の液位が中位の場合と同じく高位の場合であっても、その液位の異常を検知することができる。なお図16においては、液溜め14の液位が低位であるときの滴下検出装置1も示し(下側に図示)、その場合、発光素子52からの光は、その光路53が液溜め14によって屈折することなく液位検知用の受光素子51へ入射する。
 ここで、例えば、本発明に係る滴下検出装置において3つの受光素子を配置した場合の好ましい回路構成について、図17A~図17Cを参照しつつ説明する。
 例えば、図17Aおよび図17Bに示すように、それぞれの受光素子51に抵抗6を直列に接続し、受光素子51と抵抗6との間の電位をそれぞれ検出する回路構成とする。この場合、それぞれの受光素子51の受光部において独立して、発光素子52から照射された光が滴下中の液滴13によって遮断されたか否かを捕えることができる。このため、液滴13が滴下されたことを極めて的確に検出することができるので有利である。
 また、図17Cに示すように、3つの受光素子51を全て直列に接続した上で抵抗6と直列に接続し、流れる電流が減少するという電位の変化を検出する回路構成とする。この場合、少なくともいずれかの受光素子51の受光部において、発光素子52から照射された光が滴下中の液滴13によって遮断されたか否かを捕えれば、上記電位の変化を検出することができる。したがって、このような回路構成であっても、液滴13が滴下されたことを極めて的確に検出することができるので有利である。
 あるいは、発光素子52と受光素子51とをそれぞれ複数配置する場合、発光素子52を時分割で順番に発光させ、これに対応するように、点滴筒11を介して対向または略対向している受光素子51で順番に液滴13による遮光の有無を検出する構成とする。例えば、3個の発光素子52と、3個の受光素子51とを対向させている上記第4実施形態および第5実施形態では、3個の発光素子52を例えば、数10kHzの周波数で順番に照射させ、これらに対向する受光素子51で順番に、照射された光が滴下中の液滴13によって遮断されたか否かを捕らえるのである。この場合も液滴13が滴下されたことを極めて的確に検出することができる。
 なお上述のように、受光素子の受光部は、発光素子から照射された光が滴下中の液滴を透過することによって、その光量が変化することを捕らえる構成であっても液滴の滴下を的確に検出することができる。
 以上、本発明の例示としていくつかの実施形態について説明を行なったが、上述の各実施形態の構成を適宜組み合わせたり、様々に変形したりすることも当初から予定している。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 滴下検出装置、11 点滴筒、12 ノズル、13 液滴、14 液溜め、15 チューブ、16 チューブ、21 カメラ(撮像部)、22 照明器具(照明部)、31 ハウジング、32 細孔、5 フォトインタラプタ、51 受光素子、52 発光素子、53 光路、6 抵抗、R 液滴の滴下を検出できる点滴筒内部の範囲。

Claims (8)

  1.  上方よりノズルが挿入され、該ノズルの下端から滴下する液滴を内部で受ける筒状の点滴筒と、
     光を照射する1以上の発光素子および前記光を受光する2以上の受光素子を有するフォトインタラプタと、を備え、
     前記1以上の発光素子と前記2以上の受光素子とは、前記点滴筒を挟んで対向または略対向する位置に配置され、かつ前記1以上の発光素子と前記2以上の受光素子とを結ぶ2以上の光路は、前記ノズルの下端より下側に位置する、滴下検出装置。
  2.  前記受光素子へ向かう前記2以上の光路のうち少なくとも1つが、他の前記光路と平面視において非平行である、請求項1に記載の滴下検出装置。
  3.  前記受光素子へ向かう前記2以上の光路のうち少なくとも1つが、他の前記光路と正面視において非平行である、請求項1または請求項2に記載の滴下検出装置。
  4.  前記発光素子を1つ有する、請求項1~3のいずれか1項に記載の滴下検出装置。
  5.  前記点滴筒は、前記発光素子と前記受光素子との間であって前記受光素子に近い側に配置される、請求項4に記載の滴下検出装置。
  6.  前記2以上の光路のうち少なくとも1つが、前記ノズルの下端で成長中の液滴と交差する、請求項1~5のいずれか1項に記載の滴下検出装置。
  7.  前記2以上の光路のうち少なくとも1つが、前記点滴筒内部の液溜めの液位検知用である、請求項1~6のいずれか1項に記載の滴下検出装置。
  8.  前記ノズルの下端で成長中の液滴を撮影する撮像部と、
     前記撮像部と前記点滴筒を挟んで対向または略対向する位置に配置された照明部と、を備え、
     前記撮像部と前記受光素子とは、前記点滴筒を挟んで対向または略対向する位置に配置される、請求項1~7のいずれか1項に記載の滴下検出装置。
PCT/JP2016/076596 2015-09-09 2016-09-09 滴下検出装置 WO2017043623A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680051733.5A CN108025135B (zh) 2015-09-09 2016-09-09 滴下检测装置
JP2017538537A JP6315149B2 (ja) 2015-09-09 2016-09-09 滴下検出装置
US15/913,170 US11419982B2 (en) 2015-09-09 2018-03-06 Dripping detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-177588 2015-09-09
JP2015177588 2015-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/913,170 Continuation US11419982B2 (en) 2015-09-09 2018-03-06 Dripping detection apparatus

Publications (1)

Publication Number Publication Date
WO2017043623A1 true WO2017043623A1 (ja) 2017-03-16

Family

ID=58240019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076596 WO2017043623A1 (ja) 2015-09-09 2016-09-09 滴下検出装置

Country Status (4)

Country Link
US (1) US11419982B2 (ja)
JP (1) JP6315149B2 (ja)
CN (1) CN108025135B (ja)
WO (1) WO2017043623A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167636A1 (ja) * 2018-02-28 2019-09-06 株式会社村田製作所 点滴状態検出装置、点滴装置、および点滴状態検出方法
CN112858718A (zh) * 2021-01-21 2021-05-28 广东电网有限责任公司 一种变压器渗漏油的油速测量方法、装置及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371559B2 (en) * 2017-04-17 2019-08-06 The Boeing Company Differential spectral liquid level sensor
WO2020051438A1 (en) * 2018-09-06 2020-03-12 Lansinoh Laboratories, Inc. Closed loop electric breast pump
WO2020051456A1 (en) 2018-09-06 2020-03-12 Lansinoh Laboratories, Inc. Breast pumps
CN112638438A (zh) 2018-09-06 2021-04-09 兰思诺实验室有限公司 用于吸乳器的振动波形
JP7335259B2 (ja) * 2018-10-04 2023-08-29 テルモ株式会社 点滴監視センサ
TR201901924A2 (tr) * 2019-02-08 2019-03-21 Hem Teknoloji Mueh Ltd Sti İnfüzyon taki̇p ve kontrol si̇stemi̇
CN112043914B (zh) * 2020-08-26 2023-03-14 深圳市道尔智控科技有限公司 一种输液管道的液体检测系统
US11712518B2 (en) * 2021-01-10 2023-08-01 Polaray Technology Corp. Infusion set with capability of controlling quantity of an injection infused to a limb and system for detecting and controlling drip rate of an infusion device
CN113231118B (zh) * 2021-05-10 2022-08-05 海南医学院 一种有机化学实验的分馏装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528962A (ja) * 2005-01-20 2008-07-31 メド−アイ−ダイナミクス フルイド モニタリング リミティド 液滴検出システム
WO2014160058A2 (en) * 2013-03-14 2014-10-02 Baxter International Inc. Drip chamber with integrated optics
JP2014204897A (ja) * 2013-04-15 2014-10-30 欣也 石坂 輸液ポンプ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038981A (en) * 1974-07-26 1977-08-02 Burron Medical Products, Inc. Electronically controlled intravenous infusion set
US4314484A (en) * 1979-10-09 1982-02-09 University Of Utah Research Foundation Self-compensating optical drop count apparatus for measuring volumetric fluid flow
US4328801A (en) * 1980-10-30 1982-05-11 Alvin J. Marx Automated intravenous fluid regulating and administering apparatus
JPH01197613A (ja) * 1988-02-02 1989-08-09 Power Reactor & Nuclear Fuel Dev Corp 滴下液滴の光学的定量方法
NL9101825A (nl) * 1991-10-30 1993-05-17 Academisch Ziekenhuis Vrije Un Werkwijze voor nauwkeurige uitstroomdebiet bepaling van vloeistoffen en op een inrichting voor het uitvoeren van die werkwijze.
US6049381A (en) * 1993-10-29 2000-04-11 The United States Of America As Represented By The Secretary Of The Navy Real time suspended particle monitor
US6159186A (en) * 1998-03-13 2000-12-12 Wft Projects (Proprietary) Limited Infusion delivery system
US7889345B2 (en) * 2007-03-28 2011-02-15 Allan Bruce Shang Method and system for detecting the level of anesthesia agent in an anesthesia vaporizer
US20100134303A1 (en) * 2008-12-02 2010-06-03 Perkins James T Fluid level detector for an infusion fluid container
JP5583939B2 (ja) * 2009-09-17 2014-09-03 テルモ株式会社 点滴検出装置、輸液ポンプとその制御方法
US9151646B2 (en) * 2011-12-21 2015-10-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US8622979B2 (en) * 2010-10-19 2014-01-07 Baxter Healthcare S.A. Infusion system using optical imager for controlling flow and method thereof
US9476825B2 (en) * 2010-10-19 2016-10-25 Baxter International Inc. Optical imaging system with multiple imaging channel optical sensing
JP5696297B2 (ja) * 2010-12-16 2015-04-08 秋田県 点滴モニタ装置
JP5009427B1 (ja) * 2011-05-30 2012-08-22 大昭電機株式会社 薬液検出装置
JP6232846B2 (ja) * 2013-02-18 2017-11-22 株式会社ジェイ・エム・エス 液滴検出装置
US9352081B2 (en) * 2013-03-14 2016-05-31 Baxter International Inc. Drip chamber with hydrophobic interior surface
DE112016000229T5 (de) * 2015-01-13 2017-09-07 Murata Manufacturing Co., Ltd. Tropfraten-Messvorrichtung, Tropfraten-Controller, Tropfinfusionsvorrichtung, und Flüssigkeitstropfen-Volumenmessvorrichtung
WO2016147519A1 (ja) * 2015-03-16 2016-09-22 テルモ株式会社 点滴検出装置、及びこれを利用した輸液ポンプ
US10231567B2 (en) * 2015-06-11 2019-03-19 LifeFuels, Inc. System, method, and apparatus for dispensing variable quantities of additives and controlling characteristics thereof in a beverage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528962A (ja) * 2005-01-20 2008-07-31 メド−アイ−ダイナミクス フルイド モニタリング リミティド 液滴検出システム
WO2014160058A2 (en) * 2013-03-14 2014-10-02 Baxter International Inc. Drip chamber with integrated optics
JP2014204897A (ja) * 2013-04-15 2014-10-30 欣也 石坂 輸液ポンプ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167636A1 (ja) * 2018-02-28 2019-09-06 株式会社村田製作所 点滴状態検出装置、点滴装置、および点滴状態検出方法
JPWO2019167636A1 (ja) * 2018-02-28 2020-12-03 株式会社村田製作所 点滴状態検出装置、点滴装置、および点滴状態検出方法
CN112858718A (zh) * 2021-01-21 2021-05-28 广东电网有限责任公司 一种变压器渗漏油的油速测量方法、装置及系统
CN112858718B (zh) * 2021-01-21 2023-09-05 广东电网有限责任公司 一种变压器渗漏油的油速测量方法、装置及系统

Also Published As

Publication number Publication date
CN108025135B (zh) 2021-07-23
US11419982B2 (en) 2022-08-23
CN108025135A (zh) 2018-05-11
US20180193559A1 (en) 2018-07-12
JP6315149B2 (ja) 2018-04-25
JPWO2017043623A1 (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6315149B2 (ja) 滴下検出装置
KR100664644B1 (ko) 영상 신호 처리를 이용한 링거액 유량 측정 시스템
JP6371829B2 (ja) 画像マルチチャネル光検出による光学画像装置
ES2291967T3 (es) Procedimiento para evaluar una señal de luz dispersa y detector de luz dispersa para ejecutar el procedimiento.
JP6590317B2 (ja) 液滴量測定装置及び測定方法
AU2003236420B2 (en) Sampling tube-type smoke detector
EP3220124B1 (en) Particle sensor, and electronic device provided with same
CN106404618A (zh) 粒子检测传感器
JP5945529B2 (ja) 微粒子撮影装置及び流速計測装置
JP2013246023A (ja) 光学式粒子検出装置及び粒子の検出方法
WO2012033527A1 (en) "system and method for reading, measuring and/or controlling intensity of light emitted from an led"
CN112313720A (zh) 散射光检测器和具有散射光检测器的吸气式火灾检测系统
JP6432690B2 (ja) 点滴装置
JP6232846B2 (ja) 液滴検出装置
EP2838333B1 (en) Component mounting machine
CN109073531B (zh) 粒子检测装置以及粒子检测装置的检查方法
JP2017202259A (ja) 点滴検出器
JP2013107709A (ja) クレーン振れセンサ及びクレーン
JP6172422B1 (ja) 点滴筒および輸液セット
JP2005227103A (ja) 分注装置
US20150276982A1 (en) Illumination for the detection of raindrops on a window by means of a camera
EP3398000B1 (en) Optical detection system with light sampling
JP5278845B2 (ja) 感度調整部付き能動型物体検知装置
JP2004074898A (ja) 進入角指示灯の監視装置
WO2019167636A1 (ja) 点滴状態検出装置、点滴装置、および点滴状態検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844484

Country of ref document: EP

Kind code of ref document: A1