WO2017039107A1 - 새로운 자일렌 기반의 양친매성 화합물 및 이의 활용 - Google Patents

새로운 자일렌 기반의 양친매성 화합물 및 이의 활용 Download PDF

Info

Publication number
WO2017039107A1
WO2017039107A1 PCT/KR2016/003929 KR2016003929W WO2017039107A1 WO 2017039107 A1 WO2017039107 A1 WO 2017039107A1 KR 2016003929 W KR2016003929 W KR 2016003929W WO 2017039107 A1 WO2017039107 A1 WO 2017039107A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
xma
compound
nmr
mhz
Prior art date
Application number
PCT/KR2016/003929
Other languages
English (en)
French (fr)
Inventor
채필석
조경호
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160045394A external-priority patent/KR101781929B1/ko
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to CA2997394A priority Critical patent/CA2997394C/en
Priority to US15/757,005 priority patent/US10647738B2/en
Publication of WO2017039107A1 publication Critical patent/WO2017039107A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/107Monocyclic hydrocarbons having saturated side-chain containing at least six carbon atoms, e.g. detergent alkylates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/04Disaccharides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a newly developed xylene-based amphiphilic compound and a method for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins using the same.
  • Membrane proteins play an important role in biological systems. Since these bio-macromolecules contain hydrophilic and hydrophobic moieties, amphiphilic molecules are required to extract membrane proteins from the lipid environment and to dissolve and stabilize them in aqueous solutions.
  • membrane protein crystals For the structural analysis of membrane proteins, it is necessary to obtain high-quality membrane protein crystals, which requires the structural stability of membrane proteins in aqueous solution.
  • amphiphilic molecules There are more than 100 existing amphiphilic molecules that have been used for membrane protein research, but only about 5 of them have been actively used for membrane protein structure research.
  • n-octyl- ⁇ -D-glucopyranoside OG
  • NG n-nonyl- ⁇ -D-glucopyranoside
  • DM n-decyl- ⁇ -D-maltopyranoside
  • DDM n- dodecyl- ⁇ -D-maltopyranoside
  • LDAO laauryldimethylamine- N- oxide
  • membrane proteins surrounded by these molecules have a significant limitation in studying the function and structure of membrane proteins utilizing these molecules because their structure is easily denatured or aggregated and quickly loses their function. This is because conventional molecules do not exhibit various characteristics due to their simple chemical structure. Thus, there is a need for the development of new amphoteric materials with new and superior properties through new structures.
  • the present inventors have developed a new amphiphilic compound that can be used for membrane protein research to complete the present invention.
  • Non-Patent Document 1 S. Newstead et al., Protein Sci . 17 (2008) 466-472.
  • Non-Patent Document 2 S. Newstead et al., Mol . Membr . Biol . 25 (2008) 631-638.
  • An object of the present invention is to provide a compound represented by the formula (1).
  • Another object of the present invention is to provide a composition for extraction, solubilization, stabilization, crystallization or analysis of a membrane protein comprising the compound.
  • Another object of the present invention is to provide a method for preparing the compound.
  • Still another object of the present invention is to provide a method for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins using the compounds.
  • One embodiment of the present invention provides a compound represented by Formula 1:
  • the position of A 2 may be ortho, meta or para relative to A 1 ;
  • a 1 and A 2 may be the same as or different from each other, and each independently may be represented by Formula 2;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group, a substituted or unsubstituted C 3 -C 26 cycloalkyl group, or a substituted or unsubstituted C 3 -C 26 aryl group;
  • X 1 and X 2 may each independently be a saccharide linked to oxygen
  • Formula 2 may be a part connected to the core structure of Formula 1.
  • saccharide refers to a compound that is relatively small molecule in carbohydrates and is sweet in water. Sugars are classified into monosaccharides, disaccharides and polysaccharides according to the number of molecules constituting the sugar.
  • the sugars used in the above embodiments may be monosaccharides or disaccharides, and in particular, may be glucose or maltose, but are not limited thereto.
  • the saccharide may act as a hydrophilic group.
  • Compound according to an embodiment of the present invention by connecting four hydrophilic groups of saccharides in parallel to increase the size of the hydrophilic group while minimizing the increase in length to reduce the size when forming a complex with the membrane protein. If the complex of the compound with the membrane protein is small, high quality membrane protein crystals can be obtained (GG Prive, Methods 2007, 41, 388-397).
  • R 1 may act as a hydrophobic group.
  • Compound according to an embodiment of the present invention introduced two alkyl groups as a hydrophobic group in order to optimize the hydrophile-lipophile balance (hydrophile-lipophile balance).
  • Compound according to an embodiment of the present invention is structurally rigid xylene, specifically p -xylene ( p -dimethylbenzene), m -xylene ( m -dimethylbenzene), o -xylene ( o -dimethylbenzene) linker. That is, by introducing two quaternary carbons at the end of xylene, the fluidity of the entire molecule is greatly restricted, thereby promoting the crystallization of the membrane protein.
  • a 1 and A 2 may be identical to each other; R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group; And X 1 and X 2 may be maltose (maltose) connected by oxygen.
  • XMAs Xylene-linked maltoside amphiphiles
  • a 2 may be para with respect to A 1 ;
  • a 1 and A 2 may be identical to each other;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group;
  • X 1 and X 2 may be maltose (maltose) connected by oxygen.
  • such compounds are termed "para-xylene-linked maltoside amphiphiles" (P-XMAs).
  • a 2 may be meta with respect to A 1 ;
  • a 1 and A 2 may be identical to each other;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group;
  • X 1 and X 2 may be maltose (maltose) connected by oxygen.
  • such compounds are termed "meta-xylene-linked maltoside amphiphiles" (M-XMAs).
  • a 2 may be ortho with respect to A 1 ;
  • a 1 and A 2 may be identical to each other;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group;
  • X 1 and X 2 may be maltose (maltose) connected by oxygen.
  • such compounds are termed "ortho-xylene-linked maltoside amphiphiles" (O-XMAs).
  • the compound may be a compound represented by Formula 6:
  • the position of said A 2 with respect to the A 1 p (para), and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 12 ; And X 1 and X 2 is a compound that is maltose (maltose) connected by oxygen was named "P-XMA-C12". Accordingly, the compound may be a compound represented by Formula 7:
  • the position of the A 2 is meta with respect to A 1 (meta), and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 11 ; And X 1 and X 2 is a compound that is maltose (maltose) connected by oxygen was named "M-XMA-C11".
  • the compound may be a compound represented by the following formula (8):
  • the position of the A 2 is meta with respect to A 1 (meta), and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 12 ; And X 1 and X 2 is a compound that is maltose (maltose) connected by oxygen was named "M-XMA-C12". Accordingly, the compound may be a compound represented by Formula 9:
  • the position of the A 2 is meta with respect to A 1 (meta), and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 14 ; And X 1 and X 2 is a compound that is maltose (maltose) connected by oxygen was named "M-XMA-C14". Accordingly, the compound may be a compound represented by Formula 10:
  • the position of the A 2 is meta with respect to A 1 (meta), and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 16 ; And X 1 and X 2 is a compound that is maltose (maltose) connected by oxygen was named "M-XMA-C16". Accordingly, the compound may be a compound represented by Formula 11 below:
  • the position of the A 2 is meta with respect to A 1 (meta), and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 18 ; And X 1 and X 2 is a compound that is maltose (maltose) connected by oxygen was named "M-XMA-C18".
  • the compound may be a compound represented by Formula 12:
  • the position of the A 2 is ortho with respect to A 1 (ortho) and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 11 ; And X 1 and X 2 is a compound which is maltose (maltose) connected by oxygen was named "O-XMA-C11".
  • the compound may be a compound represented by the following formula (13):
  • the position of the A 2 is ortho with respect to A 1 (ortho) and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 12 ; And X 1 and X 2 is a compound which is maltose (maltose) connected by oxygen was named "O-XMA-C12". Accordingly, the compound may be a compound represented by Formula 14 below:
  • the position of the A 2 is ortho with respect to A 1 (ortho) and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 14 ; And X 1 and X 2 is a compound that is maltose (maltose) connected by oxygen was named "O-XMA-C14".
  • the compound may be a compound represented by Formula 15:
  • the position of the A 2 is ortho with respect to A 1 (ortho) and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 16 ; And X 1 and X 2 is a compound that is maltose (maltose) connected by oxygen was named "O-XMA-C16". Accordingly, the compound may be a compound represented by Formula 16:
  • the position of the A 2 is ortho with respect to A 1 (ortho) and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 18 ; And X 1 and X 2 is a compound which is maltose (maltose) connected by oxygen was named "O-XMA-C18".
  • the compound may be a compound represented by Formula 17:
  • a 1 and A 2 may be identical to each other; R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group; And X 1 and X 2 may be glucose (glucose) connected by oxygen.
  • XGAs Xylene-linked glucoside amphiphiles
  • the position of the A 2 designated as "P-XGAs (para-xylene -linked glucoside amphiphiles)" when the parameter (para) with respect to A 1 in, and the position of said A 2 with respect to A 1 meth (meta) of the case “M-XGAs (meta-xylene -linked glucoside amphiphiles)” as named, and in the case of the a 2 position is in the ortho (ortho) with respect to a 1 "O-XGAs (ortho -xylene-linked glucoside amphiphiles).
  • the position of said A 2 with respect to the A 1 p (para), and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 4 ; And X 1 and X 2 are named “P-XGA-C4” compounds that are glucose linked by oxygen. Accordingly, the compound may be a compound represented by Formula 18:
  • the compound may be a compound represented by Formula 19:
  • the position of said A 2 with respect to the A 1 p (para), and; A 1 and A 2 are the same as each other; R 1 is an alkyl group of C 6 ; And X 1 and X 2 are named “P-XGA-C6” compounds that are glucose linked by oxygen.
  • the compound may be a compound represented by Formula 20:
  • Compounds according to other embodiments of the present invention may be, but are not limited to, amphiphilic molecules for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins.
  • amphiphilic molecule refers to a molecule having a hydrophobic group and a hydrophilic group in one molecule and having affinity for both polar and nonpolar solvents.
  • Phospholipid molecules present in surfactants and cell membranes are amphiphilic molecules with hydrophilic groups at one end and hydrophobic groups at the other end, and have the characteristic of forming micelles or liposomes in aqueous solution.
  • Hydrophilic groups have polarity, but because the nonpolar groups coexist, their amphiphilic molecules tend to be insoluble in water. However, when the concentration is above a certain limit concentration (critical micelle concentration, CMC), hydrophobic interactions cause hydrophobic groups to collect inside, and micelles with hydrophilic groups on the surface are formed, thereby increasing the solubility in water.
  • CMC critical micelle concentration
  • the method of measuring CMC is not particularly limited, but a method well known in the art may be used, and for example, may be measured by a fluorescence staining method using diphenylhexatriene (DPH).
  • DPH diphenylhexatriene
  • the compound according to one embodiment of the present invention may have a critical micelle concentration (CMC) in an aqueous solution of 0.1 ⁇ M to 1000 ⁇ M, specifically 0.1 ⁇ M to 100 ⁇ M, more specifically, 0.1 ⁇ M to 50 ⁇ M, even more specifically, 0.1 ⁇ M to 30 ⁇ M, even more specifically, 0.5 ⁇ M to 30 ⁇ M, for example 0.1 ⁇ M to 25 ⁇ M, 0.5 ⁇ M to 25 ⁇ M, but is not limited thereto.
  • CMC critical micelle concentration
  • the XMAs of this embodiment had very small CMC values compared to the critical micelle concentration of 170 ⁇ M. Therefore, since micelles are easily formed in a small amount, XMAs can be effectively studied and analyzed membrane proteins using a small amount, which was confirmed to be superior to DDM.
  • another embodiment of the present invention provides a composition for extraction, solubilization, stabilization, crystallization or analysis of membrane proteins comprising the compound.
  • composition may be, but is not limited to, a formulation of micelles, liposomes, emulsions or nanoparticles.
  • the micelles may have a radius of 2.0 nm to 4.5 nm, specifically, 2.0 nm to 4.4 nm, more specifically, 2.1 to 4.3 nm, for example, 2.2 nm to 4.2 nm. , But not limited to this.
  • the method of measuring the radius of the micelle is not particularly limited, but a method well known in the art may be used, and may be measured using, for example, dynamic light scattering (DLS) experiments.
  • DLS dynamic light scattering
  • the XMAs Compared to the DDM, which has a radius of 3.4 nm, the XMAs have similar micelle sizes. Therefore, the new molecules have similar geometrical shapes in the aqueous solution.
  • the micelles, liposomes, emulsions or nanoparticles may comprise a membrane protein therein. That is, the micelles, liposomes, emulsions or nanoparticles can be wrapped by extracting the membrane protein present in the cell membrane. Therefore, it is possible to extract, solubilize, stabilize, crystallize or analyze membrane proteins by the micelles.
  • composition may further include a buffer or the like that may be helpful for extraction, solubilization, stabilization, crystallization or analysis of the membrane protein.
  • Another embodiment of the present invention provides a method for preparing a compound represented by the following Chemical Formula 1, comprising the following steps 1) to 5):
  • step 2) coupling the product of step 1) with bis (bromomethyl) benzene to introduce xylene linkages;
  • the position of A 2 may be ortho, meta or para relative to A 1 ;
  • a 1 and A 2 may be the same as or different from each other, and each independently may be represented by Formula 2;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group, a substituted or unsubstituted C 3 -C 26 cycloalkyl group, or a substituted or unsubstituted C 3 -C 26 aryl group;
  • X 1 and X 2 may each independently be a saccharide linked to oxygen
  • Formula 2 may be a part connected to the core structure of Formula 1.
  • the bis (bromomethyl) benzene of step 2) may be p -bis (bromomethyl) benzene, m -bis (bromomethyl) benzene or o -bis (bromomethyl) benzene.
  • a 1 and A 2 may be identical to each other;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group;
  • X 1 and X 2 may be maltose (maltose) connected by oxygen.
  • a 1 and A 2 may be identical to each other;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group;
  • X 1 and X 2 may be glucose (glucose) connected by oxygen.
  • the compound may be one of Formulas 3 to 20 according to an embodiment of the present invention, but is not limited thereto.
  • the compound can be synthesized in a simple manner from readily available diethyl malonate.
  • the preparation method of the present invention since the synthesis of the compound is easy, mass production of the compound for membrane protein research is possible.
  • XMAs were prepared by performing the following steps according to the synthetic schemes described in FIG. 1, 3, or 4:
  • P-XGA-C4 to P-XGA-C6 were prepared by performing the following steps according to the synthetic scheme described in FIG.
  • Still another embodiment of the present invention provides a method for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins.
  • the present invention provides a method for extracting, solubilizing, stabilizing, crystallizing, or analyzing a membrane protein, comprising treating the membrane protein with a compound represented by Formula 1 in an aqueous solution:
  • the position of A 2 may be ortho, meta or para relative to A 1 ;
  • a 1 and A 2 may be the same as or different from each other, and each independently may be represented by Formula 2;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group, a substituted or unsubstituted C 3 -C 26 cycloalkyl group, or a substituted or unsubstituted C 3 -C 26 aryl group;
  • X 1 and X 2 may each independently be a saccharide linked to oxygen
  • Formula 2 may be a part connected to the core structure of Formula 1.
  • a 1 and A 2 may be identical to each other;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group;
  • X 1 and X 2 may be maltose (maltose) connected by oxygen.
  • a 1 and A 2 may be identical to each other;
  • R 1 may be a substituted or unsubstituted C 3 -C 26 alkyl group;
  • X 1 and X 2 may be glucose (glucose) connected by oxygen.
  • the compound may be one of Formulas 3 to 20 according to an embodiment of the present invention, but is not limited thereto.
  • membrane protein is a generic term for proteins or glycoproteins that are introduced into cell membrane lipid bilayers. It exists in various states such as penetrating the entire layer of the cell membrane, located on the surface layer, or contacting the cell membrane.
  • membrane proteins include, but are not limited to, receptors such as enzymes, peptide hormones, local hormones, receptors such as sugars, ion channels, and cell membrane antigens.
  • the membrane protein includes any protein or glycoprotein introduced into the cell membrane lipid bilayer, and specifically, Bor1 (Boron transporter), LeuT (Leucine transporter), MelB (Melibiose permease) or ⁇ 2 AR (human ⁇ 2 adrenergic receptor) Or a combination of two or more thereof, but is not limited thereto.
  • extraction of membrane proteins refers to the separation of membrane proteins from membranes.
  • membrane proteins As used herein, the term "solubilization" of membrane proteins means that membrane proteins that are insoluble in water are dissolved in micelles in aqueous solution.
  • stabilization of membrane proteins means the stable preservation of tertiary or quaternary structures such that the structure, function of the membrane protein does not change.
  • crystallization of membrane proteins means forming crystals of membrane proteins in solution.
  • the term "analyzation” refers to the analysis of the structure or function of the membrane protein.
  • the analysis of the membrane protein may use a known method, but is not limited thereto.
  • the structure of the membrane protein may be analyzed by electron microscopy.
  • xylene-based compound according to the embodiments of the present invention can be stored in a stable solution for a long time in aqueous solution compared to the existing compound, it can be utilized for its functional analysis and structural analysis.
  • Membrane protein structure and function analysis is one of the fields of greatest interest in current biology and chemistry, and thus it is applicable to the study of protein structure closely related to drug development.
  • the compound according to the embodiments of the present invention is small in size when forming a complex with the membrane protein to obtain a high-quality membrane protein crystals, not only has a structurally rigid xylene linker but also two quaternary By introducing carbon at the xylene end, it greatly limits the fluidity of the entire molecule, thereby promoting the crystallization of the membrane protein.
  • the compound according to the embodiments of the present invention can be synthesized from a readily available starting material by a simple method, thereby enabling mass production of the compound for membrane protein research.
  • FIG. 1 is a diagram showing a synthesis scheme of P-XMAs and P-XGAs according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing chemical structures of P-XMAs and P-XGAs according to embodiments of the present invention.
  • Example 3 is a diagram showing a synthesis scheme of M-XMAs according to Example 2 of the present invention.
  • Example 4 is a diagram showing a synthesis scheme of O-XMAs according to Example 2 of the present invention.
  • FIG. 5 is a diagram showing the chemical structures of M-XMAs and O-XMAs according to embodiments of the present invention.
  • Fig. 6 shows the 1 H NMR spectrum of P-XMA-C8.
  • Fig. 7 shows the 13 C NMR spectrum of P-XMA-C8.
  • FIG. 10 is a diagram showing a 1 H NMR spectrum of P-XMA-C10.
  • Fig. 11 shows the 13 C NMR spectrum of P-XMA-C10.
  • Fig. 13 shows the 13 C NMR spectrum of P-XMA-C11.
  • Fig. 14 shows the 1 H NMR spectrum of P-XMA-C12.
  • Fig. 15 shows the 13 C NMR spectrum of P-XMA-C12.
  • Fig. 16 shows the 1 H NMR spectrum of M-XMA-C11.
  • Fig. 17 shows the 13 C NMR spectrum of M-XMA-C11.
  • 18 is a diagram showing a 1 H NMR spectrum of M-XMA-C12.
  • Fig. 19 shows the 13 C NMR spectrum of M-XMA-C12.
  • 20 is a diagram showing a 1 H NMR spectrum of M-XMA-C14.
  • Fig. 21 shows the 13 C NMR spectrum of M-XMA-C14.
  • Fig. 22 shows the 1 H NMR spectrum of M-XMA-C16.
  • Fig. 23 shows the 13 C NMR spectrum of M-XMA-C16.
  • 24 is a diagram showing a 1 H NMR spectrum of M-XMA-C18.
  • Fig. 25 shows the 13 C NMR spectrum of M-XMA-C18.
  • Fig. 26 shows the 1 H NMR spectrum of O-XMA-C11.
  • Fig. 27 shows the 13 C NMR spectrum of O-XMA-C11.
  • Fig. 28 shows the 1 H NMR spectrum of O-XMA-C12.
  • Fig. 29 is the 13 C NMR spectrum of O-XMA-C12.
  • FIG. 30 is a diagram showing a 1 H NMR spectrum of O-XMA-C14.
  • Fig. 31 shows the 13 C NMR spectrum of O-XMA-C14.
  • Fig. 32 shows the 1 H NMR spectrum of O-XMA-C16.
  • Fig. 33 shows the 13 C NMR spectrum of O-XMA-C16.
  • Fig. 34 shows the 1 H NMR spectrum of O-XMA-C18.
  • Fig. 35 shows the 13 C NMR spectrum of O-XMA-C18.
  • FIG. 37 is a diagram showing the size distribution of micelles formed by M-XMAs (a) or O-XMAs (b). All amphiphilic compounds were used at 1.0 wt% concentration.
  • LeuT Leucine transporter
  • XMAs P-XMA-C11, M-XMAs, O-XMAs
  • SPA scintillation proximity assay
  • 40 is a SDS-PAGE showing the amount of MelB protein extracted and its structure after extraction of MelB protein at 4 temperatures (0, 45, 55, 65 ° C.) using P-XMAs or DDM at a concentration of 1.5 wt%; Western Blotting results.
  • Figure 41 shows the MelB protein extracted using XMAs (P-XMA-C11, M-XMAs) or DDM at 1.5 wt% concentration at four temperatures (0, 45, 55, 65 ° C), The result of measuring the quantity is:
  • FIG. 44 shows the results of measuring ⁇ 2 AR structural stability by DDM, P-XMA-C11, and P-XMA-C12 in an unliganded state, in the presence of ISO, and in the presence of ISO and G-protein.
  • FIG. 44 shows the results of measuring ⁇ 2 AR structural stability by DDM, P-XMA-C11, and P-XMA-C12 in an unliganded state, in the presence of ISO, and in the presence of ISO and G-protein.
  • 45 is a result of measuring ⁇ 2 AR structural stability by XMAs, and a ligand of ⁇ 2 AR dissolved in DDM, P-XMA-C11, M-XMAs (a) or O-XMAs (b) ([ 3 H] -DHA) binding activity measurement results.
  • the synthesis scheme of P-XMAs and P-XGAs is shown in FIG. 1. According to the synthesis method of the following ⁇ 1-1> to ⁇ 1-5>, five P-XMAs (Para-Xylene-linked Maltoside Amphiphiles) and three P-XGAs (Para-Xylene-linked Glucoside Amphiphiles) were synthesized. 2 is shown.
  • M-XMAs Metal-Xylene-linked Maltoside Amphiphiles
  • O-XMAs Organic-Xylene-linked Maltoside Amphiphiles
  • Tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-octylmalonic acid) (tetraethyl 2,2) according to the general procedure for introducing the xylene linkage of Example 1-2 '-(1,4-phenylenebis (methylene)) bis (2-octylmalonate)) ( 6 ) was synthesized in 84% yield.
  • 2,2 '-(1,4-phenylenebis (methylene)) bis (2-octylpropane-1,3-diol) (according to the general procedure for reducing esters using LAH of Examples 1-3) 2,2 '-(1,4-phenylenebis (methylene)) bis (2-octylpropane-1,3-diol)) ( 11 ) was synthesized in 90% yield.
  • FIG. 6 shows the 1 H NMR spectrum
  • FIG. 7 shows the 13 C NMR spectrum.
  • Tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-nonylmalonic acid) (tetraethyl 2,2) according to the general procedure for introducing the xylene linkage of Example 1-2 '-(1,4-phenylenebis (methylene)) bis (2-nonylmalonate)) ( 7 ) was synthesized at a yield of 81%.
  • 2,2 '-(1,4-phenylenebis (methylene)) bis (2-nonylpropane-1,3-diol) (according to the general procedure for reducing ester using LAH of Examples 1-3) 2,2 '-(1,4-phenylenebis (methylene)) bis (2-nonylpropane-1,3-diol)) ( 12 ) was synthesized at a yield of 90%.
  • P- XMA- C9a was prepared according to the general procedure for the glycosylation reaction of Examples 1-4. Synthesized at a yield of 82%.
  • FIG. 8 shows the 1 H NMR spectrum
  • FIG. 9 shows the 13 C NMR spectrum.
  • Tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-decylmalonic acid) (tetraethyl 2,2) according to the general procedure for introducing the xylene linkage of Example 1-2 '-(1,4-phenylenebis (methylene)) bis (2-decylmalonate)) ( 8 ) was synthesized at a yield of 82%.
  • 2,2 '-(1,4-phenylenebis (methylene)) bis (2-decylpropane-1,3-diol) (according to the general procedure for reducing ester using LAH of Examples 1-3) 2,2 '-(1,4-phenylenebis (methylene)) bis (2-decylpropane-1,3-diol)) ( 13 ) was synthesized at a yield of 89%.
  • FIG. 10 shows the 1 H NMR spectrum and FIG. 11 shows the 13 C NMR spectrum.
  • Tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-undecylmalonic acid) (tetraethyl 2,2) according to the general procedure for introducing the xylene linkage of Example 1-2 '-(1,4-phenylenebis (methylene)) bis (2-undecylmalonate)) ( 9 ) was synthesized at a yield of 82%.
  • Tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-dodecylmalonic acid) (tetraethyl 2,2) according to the general procedure for introducing the xylene linkage of Example 1-2 '-(1,4-phenylenebis (methylene)) bis (2-dodecylmalonate)) ( 10 ) was synthesized at a yield of 82%.
  • FIG. 14 shows the 1 H NMR spectrum
  • FIG. 15 shows the 13 C NMR spectrum.
  • Diethyl 2-butylmalonate was synthesized according to the general procedure for the synthesis of Compound A of Example 1-1. Tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-butylmalonic acid) according to the general procedure for introducing the xylene linkage of Example 1-2 (tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-butylmalonate)) was synthesized.
  • 2,2 '-(1,4-phenylenebis (methylene)) bis (2-butylpropane-1,3-diol) (according to the general procedure for reducing esters using LAH of Examples 1-3) 2,2 '-(1,4-phenylenebis (methylene)) bis (2-butylpropane-1,3-diol)) was synthesized.
  • P-XGA-C4a was synthesized using perbenzoylated glucosylbromide instead of perbenzoylated maltosylbromide in the general procedure for the glycosylation reaction of Example 1-4.
  • P-XGA-C4 was synthesized according to the general procedure for the deprotection reaction of Examples 1-5.
  • Diethyl 2-pentylmalonate was synthesized according to the general procedure for the synthesis of Compound A of Example 1-1. Tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-pentylmalonic acid) according to the general procedure for introducing the xylene linkage of Example 1-2 (tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-pentylmalonate)) was synthesized.
  • 2,2 '-(1,4-phenylenebis (methylene)) bis (2-pentylpropane-1,3-diol) (according to the general procedure for reducing ester using LAH of Examples 1-3) 2,2 '-(1,4-phenylenebis (methylene)) bis (2-pentylpropane-1,3-diol)) was synthesized.
  • P-XGA-C5a was synthesized using perbenzoylated glucosylbromide instead of perbenzoylated maltosylbromide in the general procedure for the glycosylation reaction of Example 1-4.
  • P-XGA-C5 was synthesized according to the general procedure for the deprotection reaction of Examples 1-5.
  • Diethyl 2-hexylmalonate was synthesized according to the general procedure for the synthesis of Compound A of Example 1-1. Tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-hexylmalonic acid) according to the general procedure for introducing the xylene linkage of Example 1-2 (tetraethyl 2,2 '-(1,4-phenylenebis (methylene)) bis (2-hexylmalonate)) was synthesized.
  • 2,2 '-(1,4-phenylenebis (methylene)) bis (2-hexylpropane-1,3-diol) (according to the general procedure for reducing ester using LAH of Examples 1-3) 2,2 '-(1,4-phenylenebis (methylene)) bis (2-hexylpropane-1,3-diol)) was synthesized.
  • P-XGA-C6a was synthesized using perbenzoylated glucosylbromide instead of perbenzoylated maltosylbromide in the general procedure for the glycosylation reaction of Example 1-4.
  • P-XGA-C6 was synthesized according to the general procedure for the deprotection reaction of Examples 1-5.
  • m -xylene linker according to the general procedure for introducing the xylene linkage of Example 2-2 to tetraethyl 2,2 '-(1,3-phenylenebis (methylene)) bis (2-undode Silalonic acid) (tetraethyl 2,2 '-(1,3-phenylenebis (methylene)) bis (2-undecylmalonate)) ( 6' ) was synthesized at a yield of 82%.
  • FIG. 16 shows the 1 H NMR spectrum
  • FIG. 17 shows the 13 C NMR spectrum.
  • Tetraethyl 2,2 '-(1,3-phenylenebis (methylene)) bis (2-dode was introduced by introducing m -xylene linker according to the general procedure for introducing the xylene linkage of Example 2-2.
  • Silalonic acid) tetraethyl 2,2 '-(1,3-phenylenebis (methylene)) bis (2-dodecylmalonate) ( 7' ) was synthesized at a yield of 80%.
  • FIG. 18 shows the 1 H NMR spectrum and FIG. 19 shows the 13 C NMR spectrum.
  • FIG. 20 shows the 1 H NMR spectrum and FIG. 21 shows the 13 C NMR spectrum.
  • Tetraethyl 2,2 '-(1,3-phenylenebis (methylene)) bis (2-hexa was prepared by introducing m -xylene linker according to the general procedure for introducing the xylene linkage of Example 2-2.
  • Decylmalonic acid) tetraethyl 2,2 '-(1,3-phenylenebis (methylene)) bis (2-hexadecylmalonate)
  • 9' was synthesized at a yield of 80%.
  • M- XMA- C16 was prepared according to the general procedure for the deprotection reaction of Example 2-5. At 92% yield Synthesized. 22 shows the 1 H NMR spectrum result and FIG. 23 shows the 13 C NMR spectrum result.
  • Tetraethyl 2,2 '-(1,3-phenylenebis (methylene)) bis (2-octa) was introduced by introducing an m -xylene linker according to the general procedure for introducing the xylene linkage of Example 2-2.
  • Decylmalonic acid) tetraethyl 2,2 '-(1,3-phenylenebis (methylene)) bis (2-octadecylmalonate) ( 10' ) was synthesized at a yield of 81%.
  • Tetraethyl 2,2 '-(1,2-phenylenebis (methylene)) bis (2-undene was introduced by introducing o -xylene linker according to the general procedure for introducing the xylene linkage of Example 2-2.
  • Silalonic acid) tetraethyl 2,2 '-(1,2-phenylenebis (methylene)) bis (2-undecylmalonate) ( 6'' ) was synthesized at a yield of 80%.
  • O- XMA- C11a was synthesized in a yield of 68% according to the general procedure for the glycosylation reaction of Examples 2-4.
  • FIG. 26 shows the 1 H NMR spectrum and FIG. 27 shows the 13 C NMR spectrum.
  • O- XMA- C12a was synthesized in a yield of 64% according to the general procedure for the glycosylation reaction of Examples 2-4.
  • FIG. 28 shows the 1 H NMR spectrum and FIG. 29 shows the 13 C NMR spectrum.
  • 1 H NMR 400 MHz, CDCl 3 ): ⁇ 7.10-7.08 (m, 2H), 7.06-7.03 (m, 2H), 4.21-4.06 (m, 8H).
  • O- XMA- C14a was synthesized in a yield of 65% according to the general procedure for the glycosylation reaction of Examples 2-4.
  • FIG. 30 shows the 1 H NMR spectrum result
  • FIG. 31 shows the 13 C NMR spectrum result.
  • Tetraethyl 2,2 '-(1,2-phenylenebis (methylene)) bis (2-hexa was prepared by introducing o -xylene linker according to the general procedure for introducing the xylene linkage of Example 2-2.
  • Decylmalonic acid) tetraethyl 2,2 '-(1,2-phenylenebis (methylene)) bis (2-hexadecylmalonate) ( 9'' ) was synthesized at a yield of 75%.
  • O- XMA- C16a was synthesized in a yield of 61% according to the general procedure for the glycosylation reaction of Examples 2-4.
  • O- XMA- C16 was prepared according to the general procedure for the deprotection reaction of Example 2-5. At 94% yield Synthesized. 32 shows the 1 H NMR spectrum result and FIG. 33 shows the 13 C NMR spectrum result.
  • O- XMA- C18a was synthesized in a yield of 62% according to the general procedure for the glycosylation reaction of Examples 2-4.
  • O- XMA- C18 was prepared according to the general procedure for the deprotection reaction of Example 2-5. At 91% yield Synthesized. 34 shows the 1 H NMR spectrum result and FIG. 35 shows the 13 C NMR spectrum result.
  • CMC critical micelle concentration
  • the CMC value of the XMAs was 1-20 ⁇ M, which was smaller compared to the DDM of 170 ⁇ M. In addition, as the alkyl chain length of the compound increases, the CMC value tends to decrease.
  • P-XMA-C8 having the shortest alkyl chain among P-XMAs has a CMC value of ⁇ 20 ⁇ M ( ⁇ 0.004 wt%).
  • P-XMA-C12 with the longest alkyl chain was determined to have a CMC value of 1 ⁇ M ( ⁇ 0.0002 wt%).
  • CMC values of M-XMAs and O-XMAs tended to decrease with increasing alkyl chain length.
  • O-XMA-C11 with the shortest alkyl chain had a CMC value of ⁇ 10 ⁇ M, the largest value
  • O-XMA-C18 with the longest alkyl chain had a CMC value of ⁇ 1.5 ⁇ M, the smallest value.
  • the CMC value of O-XMAs was slightly higher than the CMC value of M-XMAs. Therefore, since micelles are easily formed in a small amount of XMAs, the solubility was better than that of DDM.
  • the size of micelles formed by P-XMAs tended to increase with alkyl chain length. That is, the smallest micelle size was P-XMA-C8 (2.7 nm) and the largest micelle size was P-XMA-C12 (3.7 nm). In terms of micelle size, P-XMA-C8 and P-XMA-C9 were smaller than DDM, and P-XMA-C10 and P-XMA-C11 were similar to DDM.
  • M- / O-XMAs with longer alkyl chains formed larger micelles, consistent with experimental results for P-XMAs with varying alkyl chain lengths. In comparison between the isomers, M-XMAs tended to form larger micelles than O-XMAs.
  • M-XMAs had a small CMC value compared to O-XMAs and formed large micelles.
  • all XMAs had smaller CMC values than DDM, and micelle size was smaller or larger than micelle size of DDM depending on alkyl chain length.
  • the XMAs of the present invention have a lower CMC value than DDM, so that micelles are easily formed in a small amount, and thus the self-assembly tendency is much greater than that of DDM. It was confirmed that they are similar in terms of molecular geometry.
  • Bor1 was expressed as a fusion protein with a C-terminal GFP-His tag in S. cerevisiae . All steps were performed at 4 ° C. Membranes containing Bor1 were resuspended in PBS (pH 7.4), 100 mM NaCl, 10% glycerol, dissolved in 1% DDM with light agitation for 1 hour, and then 20 seconds at 200,000 g for 45 minutes. Centrifuged. Supernatants were adjusted with 10 mM imidazole and pre-equilibrated with buffer A (PBS (pH 7.4), 100 mM NaCl, 10% glycerol, 0.03% DDM) supplemented with 10 mM imidazole.
  • buffer A PBS (pH 7.4), 100 mM NaCl, 10% glycerol, 0.03% DDM
  • CPM dye N- [4- (7-diethylamino) -4-methyl-3-coumarinyl] phenyl) maleimide
  • DMSO Sigma
  • Invitrogen 4 mg / ml was supplemented with 0.03% DDM Diluted in test buffer (20 mM Tris, pH 7.5, 150 mM NaCl).
  • Nul 96-well clear bottom plates were loaded with 150 ⁇ l of test buffer supplemented with CMC + 0.04 wt% or CMC + 0.20 wt% P-XMAs or DDM.
  • 1 ⁇ l Bor1 (7 mg / ml) was added to each well before adding 3 ⁇ l diluted CPM dye. A clean plate cover was added and the fluorescence of each well was monitored at 40 ° C. for 120 minutes.
  • thermophilic bacteria Aquifex Aquifex aeolicus derived wild type LeuT (leucine transporter) was purified by the method described previously ( Nature 1998, 392, 353-358 by G. Deckert et al .).
  • LeuT was expressed in E. coli C41 (DE3) cultured in lysogeny broth medium supplemented with 0.1 mg / ml ampicillin. Protein expression was induced by adding isopropyl ⁇ -D-thiogalactopyranoside to a final concentration of 0.1 mM.
  • Cell membranes were isolated from crushed cells (Constant Systems Homogenizers, Kennesaw, GA), 1% (w / v) n-dodecyl- ⁇ -D-maltopyranoside (DDM; Affymetrix, Santa Clara, Calif.) Solubilization. After solubilization, LeuT was fixed in chelating Sepharose Fast Flow resin (GE Healthcare), and about 90-100% pure LeuT was dissolved in 20 mM Tris-HCl (pH 7.5), 199 mM KCl, 1 mM NaCl, 0.05% (w / v). ) Eluted in DDM and 300 mM imidazole.
  • DDM n-dodecyl- ⁇ -D-maltopyranoside
  • SPA was totally purified with 5 ⁇ L of each protein sample, 50 nM [ 3 H] -Leucine and 0.125 mg ml -1 copper chelate (His-Tag) YSi beads (Perkin Elmer, Denmark) dissolved in a buffer containing 450 mM NaCl. It was performed at a volume of 100 ⁇ L. [ 3 H] -Leucine binding was measured using a MicroBeta liquid scintillation counter (Perkin Elmer).
  • M-XMA-C12 and O-XMA-C12 showed substantial enhancement with regard to the long-term stability of LeuT compared to DDM.
  • M-XMA-C12 was better than O-XMA-C12.
  • the ligand binding activity of LeuT decreased as the alkyl chain length of XMAs was further increased from C12 to C18, indicating that C12 alkyl chain length was optimal for LeuT protein in XMA. Similar trends were observed when the amphipathic compound concentration was increased to CMC + 0.2 wt%.
  • M-XMA-C12 and O-XMA-C12 were better at maintaining ligand binding activity of LeuT than DDM, and M-XMA-C12 was overall better than O-XMA-C12 Had performance (FIG. 39).
  • M-XMA-C12 and O-XMA-C12 showed an improved efficiency in preserving the ligand binding affinity of LeuT compared to DDM, it was confirmed that it is excellent for stabilization of LeuT protein.
  • Protein assays were performed with the Micro BCA kit (Thermo Scientific, Rockford, IL). To measure solubilization / stability, membrane samples containing MelB St (final protein concentration was 10 mg / mL) were added to solubilization buffer (20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10).
  • P-XMAs P-XMA-C8, P-XMA-C9, P-XMA-C10, P-XMA-C11 and P-XMA-C12
  • M-XMAs M-XMAs
  • O-XMAs O-XMA-C11, O-XMA -C12, O-XMA-C14, O-XMA-C16 and O-XMA-C18
  • O-XMA-C11, O-XMA -C12, O-XMA-C14, O-XMA-C16 and O-XMA-C18 were incubated for 90 minutes at four different temperatures (0, 45, 55 and 65 ° C).
  • DDM showed high protein extraction efficiency at 0 and 45 ° C., but little protein was dissolved at temperatures above 55 ° C. This means that MelB st extracted by DDM denatures or aggregates as the temperature increases and disappears in solution.
  • P-XMA-C9, P-XMA-C10 and P-XMA-C12 increased the protein extraction efficiency at 45 °C and 55 °C, showing the same extraction efficiency as DDM at 45 °C. MelB st extraction ability was better than DDM.
  • DDM was unable to extract proteins at 65 °C temperature
  • P-XMA-C10 and P-XMA-C12 extracted MelB st .
  • M-XMAs eg, M-XMA-C16 and M-XMA-C18
  • M-XMAs and O-XMAs showed better or similar levels of protein extraction efficiency than P-XMA-C11.
  • M-XMAs and O-XMAs showed different trends with respect to the alkyl chain length of the amphiphilic compound hydrophobic group. MelB solubility efficiency tended to increase with increasing alkyl chain length of M-XMAs, but decreased with increasing alkyl chain length of O-XMAs.
  • the XMAs of the present invention have better MelB protein stabilization ability than DDM, and have better MelB protein extraction efficiency than DDM at 55 ° C.
  • M-XMA-C12 and O-XMA-C11 ⁇ C14 was found to be the optimal alkyl chain length.
  • ⁇ 2 AR dissolved in 0.1% DDM was purified according to the method described in DM Rosenbaum et al. ( Science 2007 , 318 , 1266-1273.) And then concentrated to about 1 mg / ml.
  • 500 ⁇ l of 0.04 + CMC% P-XMA-C11 or P-XMA- in 0.5 ⁇ l agarant-binding monobromobimane (mBB) -labeled ⁇ 2 AR dissolved in 50 ⁇ M in 0.1% DDM Diluted with C12 buffer (finally 50 nM receptor). Incubation for 30 minutes and mBBr spectra were measured and compared to the spectra of mBB-labeled receptors dissolved in 0.1% DDM.
  • mBBr- ⁇ 2 AR fluorescence was measured at 370 nm, and the results were measured using a Spex FluoroMax-3 spectrometer (Jobin Yvon Inc.) at 430-510 nm emission at 1 nm s -1 in 1-nm increments. The mode setting was to pass through 4-nm emission bandwidth. MBBR dissolved in DDM was used as a positive control.
  • the G protein coupling test used the following method. Monobromobimane (mBBr) -labeled ⁇ 2 AR (primarily at Cys265) was used to measure the change in fluorescence affected by local structural changes near TM6 (Transmembrane helix 6). This was followed by the method of SE Mansoor et al. ( Biochemistry 2002, 41 , 2475-2484.). 0.5 ⁇ l of 50 ⁇ M of non-ligand mBBr-labeled receptor was diluted for 10 min at RT with 500 ⁇ l 20 ⁇ CMC P-XMA-C11 or P-XMA-C12 buffer (finally 50 nM receptor).
  • isopreoterenol (Isopreoterenol; ISO) was added and incubated for another 10 minutes. After addition of 250 nM Gs and incubation for 15 minutes at RT, mBB- ⁇ 2 AR fluorescence was measured.
  • the bimane spectrum of the receptor dissolved by P-XMA-C11 or P-XMA-C12 when the full agonist isopreoterenol (ISO) is present is compared with the spectrum of the receptor dissolved by DDM. Similar. And the bimane spectrum of the receptor / G-protein complex dissolved by P-XMA-C11 was similar to that of the complex dissolved by DDM. Similar trends were also observed for receptors dissolved in P-XMA-C12 (FIG. 44).
  • NH buffer (20 mM HEPES pH 7.5, 100 mM NaCl) was dissolved in 0.5 ⁇ l biligand mBB-labeled receptor dissolved in 50 ⁇ M in P-XMA-C11 or P-XMA-C12 at 20 ⁇ CMC concentration. Diluted with. Proteins were incubated for 30 minutes and mBBr spectra were measured. Receptors dissolved in 0.1% DDM were diluted with NH buffer and used as controls.
  • ⁇ 2 AR dissolved in DDM showed obvious structural change by dilution, whereas receptor dissolved in P-XMA-C11 or P-XMA-C12 showed little structural change.
  • P-XMA-C11 or P-XMA-C12 had excellent structural stability of ⁇ 2 AR protein even at low concentrations below the CMC, compared to DDM. It means that they are slowly separated from the receptor.
  • a receptor (mBBr- ⁇ 2 AR) activity is purified by DDM or XMAs [3 H] - it was measured by a combination of dihydro alpeure nolol ([3 H] -DHA).
  • the radioligand binding test used the following method. ⁇ 2 AR was purified in the presence of 0.1% DDM. After reloading on the M1 Flag column in the presence of 2 mM CaCl 2 , the DDM (0.1%)-XMA (0.2%) buffer mixture was 50:50, 20:80, 10:90, 5:95 and 0: 100 ratios. Manufactured by. Receptors were eluted at 20 ⁇ CMC XMA with 5 mM EDTA and 0.2 mg / ml free Flag peptide.
  • 0.1 pmol of purified ⁇ 2 AR dissolved in DDM, P-XMA-C11, P-XMA-C12, M-XMAs or O-XMAs was 30 minutes with 10 nM of radioactive DHA [ 3 H] -Dihydroalprenolol (DHA).
  • DHA radioactive DHA
  • the mixture was loaded on a G-50 column, and the flow through was collected in binding buffer (20 mM HEPES pH 7.5, 100 mM NaCl supplemented with 0.5 mg / ml BSA) and filled with 15 ml scintillation fluid.
  • Receptor-bound [ 3 H] DHA was measured with a scintillation counter (Beckman).
  • Nonspecific binding of [ 3 H] -DHA was determined by adding 1 ⁇ M of alprenolol (Sigma) in the same binding reaction.
  • the degree of binding of [ 3 H] -DHA was determined by column graph.
  • the receptor purified by P-XMA-C11 or P-XMA-C12 had a radio-ligand bond similar to the receptor purified by DDM. This means that the XMAs amphipathic molecules maintain this receptor's activity well in the process of swapping with the DDM molecules surrounding the receptor.
  • M-XMA-C11 had better radio-ligand bond than P-XMA-C11.
  • the alkyl chain length of the amphiphilic molecule was increased from C11 to C12, the potency of the amphiphilic molecule was further increased.
  • M-XMA-C12 was better than O-XMA-C12 in maintaining ligand binding activity of the receptor, which was comparable to that of DDM.
  • the alkyl chain length was increased to C18 in M-XMAs, the potency of the amphiphilic compound decreased. That is, in M-XMAs, the C12 alkyl chain length was found to be optimal for maintaining receptor activity, which is consistent with the results for LeuT.
  • O-XMAs were different from M-XMAs, but O-XMAs had little change in the effect of maintaining the receptor activity due to the change in alkyl chain length. These different trends in M-XMAs and O-XMAs potency depending on alkyl chain length are expected to be due to different effects on binding to target membrane proteins due to different geometries.
  • P-XMA-C11, P-XMA-C12, M-XMA-C11, M-XMA-C12, and O-XMAs can be used as a substitute for DDM which is most used for ⁇ 2 AR studies. there was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Saccharide Compounds (AREA)

Abstract

본 발명은 자일렌 기반의 양친매성 화합물, 이의 제조방법 및 이를 이용하여 막단백질을 추출, 용해화, 안정화 또는 결정화하는 방법에 관한 것이다. 본 발명에 따른 자일렌 기반의 화합물을 이용하면 막단백질을 수용액에서 장기간 안정적으로 보관할 수 있고, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다. 막단백질 구조 및 기능 분석은 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이므로, 신약 개발과 긴밀한 관계가 있는 단백질 구조 연구에 응용이 가능하다.

Description

새로운 자일렌 기반의 양친매성 화합물 및 이의 활용
본 발명은 새롭게 개발한 자일렌(xylene) 기반의 양친매성 화합물 및 이를 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법에 관한 것이다.
막단백질(membrain proteins)은 생물학적 시스템에서 중요한 역할을 한다. 이 생체거대분자(bio-macromolecules)는 친수성 및 소수성 부분을 포함하므로, 막단백질을 지질 환경으로부터 추출하고, 수용액에서 용해화와 안정화시키기 위해서는 양친매성 분자가 필요하다.
막단백질의 구조 분석을 위해서는 양질의 막단백질 결정을 얻어야 하는데 이를 위해서는 수용액에서의 막단백질의 구조적 안정성이 선행되어야 한다. 막단백질 연구에 사용되어 온 기존의 양친매성 분자들의 개수는 100가지 이상으로 다수가 존재하지만 그 중 5개 정도만 막단백질 구조 연구에 활발히 활용되어 왔다. 이 5개의 양쪽성 분자는 OG (n-octyl-β-D-glucopyranoside), NG (n-nonyl-β-D-glucopyranoside), DM (n-decyl-β-D-maltopyranoside), DDM (n-dodecyl-β-D-maltopyranoside), 및 LDAO (lauryldimethylamine-N-oxide)를 포함한다(비특허문헌 1, 비특허문헌 2). 하지만 이들 분자에 의해 둘러싸여 있는 막단백질은 그 구조가 쉽게 변성되거나 응집되어 그 기능을 빠르게 상실하기 때문에 이 분자들을 활용한 막단백질의 기능 및 구조 연구에 상당한 제한점이 있다. 이는 종래의 분자들이 화학구조가 간단하여 다양한 특성을 나타내주지 못하기 때문이다. 따라서 새로운 구조를 통한 새롭고 우수한 특성을 지니는 새로운 양쪽성 물질 개발이 필요하다.
이에 본 발명자들은 막단백질 연구에 이용할 수 있는 새로운 양친매성 화합물을 개발하여 본 발명을 완성하였다.
(비특허문헌 1) S. Newstead et al., Protein Sci . 17 (2008) 466-472.
(비특허문헌 2) S. Newstead et al., Mol . Membr . Biol . 25 (2008) 631-638.
본 발명의 목적은 화학식 1로 표시되는 화합물을 제공하는 것이다.
본 발명의 다른 목적은 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 화합물의 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 화합물을 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공하는 것이다.
본 발명의 일 구체예는 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2016003929-appb-I000001
상기 화학식 1 에서,
상기 A2의 위치는 A1에 대하여 오쏘(ortho), 메타(meta) 또는 파라(para)일 수 있고;
상기 A1 및 A2는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 하기 화학식 2로 표시될 수 있고;
[화학식 2]
Figure PCTKR2016003929-appb-I000002
상기 R1은 치환 또는 비치환된 C 3-C26의 알킬기, 치환 또는 비치환된 C3-C26의 사이클로알 킬기, 또는 치환 또는 비치환된 C3-C26의 아릴기일 수 있고;
상기 X1 및 X2는 각각 독립적으로 산소로 연결된 당류(saccharide)일 수 있고; 그리고
상기 화학식 2의 *은 화학식 1의 코어구조에 연결되는 부분일 수 있다.
본 명세서에서 사용된 용어, "당류(saccharide)"는 탄수화물 중에서 비교적 분자가 작고, 물에 녹아서 단맛이 나는 화합물을 의미한다. 당류는 당을 구성하는 분자의 수에 따라 단당류, 이당류, 다당류로 구분된다.
상기 구체예에서 사용된 당류는 단당류(monosaccharide) 또는 이당류(disaccharide)일 수 있으며, 구체적으로 글루코스(glucose) 또는 말토오스(maltose)일 수 있으나, 이에 제한되지 않는다.
상기 당류는 친수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성기인 당류 4개를 병렬로 연결하여 친수성기의 크기를 크게 하면서도 길이의 증가를 최소화함으로써 막단백질과의 복합체 형성시 그 크기를 작게하였다. 상기 화합물과 막단백질과의 복합체의 크기가 작으면 양질의 막단백질 결정을 얻을 수 있다 (G. G. Prive, Methods 2007, 41, 388-397).
또한, 상기 R1은 소수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성도와 소수성도의 밸런스(hydrophile-lipophile balance)를 최적으로 하기 위하여 두 개의 알킬기를 소수성기로 도입하였다.
본 발명의 일 구체예에 따른 화합물은 구조적으로 경직되어 있는 자일렌(xylene), 구체적으로 p-자일렌(p-디메틸벤젠), m-자일렌(m-디메틸벤젠), o-자일렌(o-디메틸벤젠) 링커를 가질 수 있다. 즉, 2개의 4차 탄소를 자일렌 말단에 도입함으로써 분자 전체의 유동성을 크게 제약하므로 막단백질의 결정화를 촉진시킬 수 있다.
구체적으로, 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)일 수 있다. 본 발명의 일 실시예에서, 이러한 화합물을 "XMAs(Xylene-linked maltoside amphiphiles)"로 명명하였다.
보다 구체적으로, 상기 A2의 위치는 A1에 대하여 파라(para)일 수 있고; 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)일 수 있다. 본 발명의 일 실시예에서, 이러한 화합물을 "P-XMAs(para-xylene-linked maltoside amphiphiles)"로 명명하였다.
또한, 상기 A2의 위치는 A1에 대하여 메타(meta)일 수 있고; 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)일 수 있다. 본 발명의 일 실시예에서, 이러한 화합물을 "M-XMAs(meta-xylene-linked maltoside amphiphiles)"로 명명하였다.
또한, 상기 A2의 위치는 A1에 대하여 오쏘(ortho)일 수 있고; 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)일 수 있다. 본 발명의 일 실시예에서, 이러한 화합물을 "O-XMAs(ortho-xylene-linked maltoside amphiphiles)"로 명명하였다.
본 발명의 일 실시예에서, 상기 A2의 위치는 A1에 대하여 파라(para)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C8의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "P-XMA-C8"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 3으로 표시되는 화합물일 수 있다:
[화학식 3]
Figure PCTKR2016003929-appb-I000003
본 발명의 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 파라(para)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C9의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "P-XMA-C9"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 4로 표시되는 화합물일 수 있다:
[화학식 4]
Figure PCTKR2016003929-appb-I000004
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 파라(para)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C10의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "P-XMA-C10"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 5로 표시되는 화합물일 수 있다:
[화학식 5]
Figure PCTKR2016003929-appb-I000005
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 파라(para)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C11의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "P-XMA-C11"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 6으로 표시되는 화합물일 수 있다:
[화학식 6]
Figure PCTKR2016003929-appb-I000006
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 파라(para)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C12의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "P-XMA-C12"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 7로 표시되는 화합물일 수 있다:
[화학식 7]
Figure PCTKR2016003929-appb-I000007
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 메타(meta)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C11의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "M-XMA-C11"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 8로 표시되는 화합물일 수 있다:
[화학식 8]
Figure PCTKR2016003929-appb-I000008
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 메타(meta)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C12의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "M-XMA-C12"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 9로 표시되는 화합물일 수 있다:
[화학식 9]
Figure PCTKR2016003929-appb-I000009
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 메타(meta)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C14의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "M-XMA-C14"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 10으로 표시되는 화합물일 수 있다:
[화학식 10]
Figure PCTKR2016003929-appb-I000010
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 메타(meta)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C16의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "M-XMA-C16"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 11로 표시되는 화합물일 수 있다:
[화학식 11]
Figure PCTKR2016003929-appb-I000011
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 메타(meta)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C18의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "M-XMA-C18"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 12로 표시되는 화합물일 수 있다:
[화학식 12]
Figure PCTKR2016003929-appb-I000012
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 오쏘(ortho)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C11의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "O-XMA-C11"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 13으로 표시되는 화합물일 수 있다:
[화학식 13]
Figure PCTKR2016003929-appb-I000013
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 오쏘(ortho)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C12의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "O-XMA-C12"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 14로 표시되는 화합물일 수 있다:
[화학식 14]
Figure PCTKR2016003929-appb-I000014
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 오쏘(ortho)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C14의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "O-XMA-C14"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 15로 표시되는 화합물일 수 있다:
[화학식 15]
Figure PCTKR2016003929-appb-I000015
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 오쏘(ortho)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C16의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "O-XMA-C16"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 16으로 표시되는 화합물일 수 있다:
[화학식 16]
Figure PCTKR2016003929-appb-I000016
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 오쏘(ortho)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C18의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물을 "O-XMA-C18"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 17로 표시되는 화합물일 수 있다:
[화학식 17]
Figure PCTKR2016003929-appb-I000017
또한, 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 글루코스(glucose)일 수 있다. 본 발명의 일 실시예에서, 이러한 화합물을 "XGAs(Xylene-linked glucoside amphiphiles)"로 명명하였다. 보다 구체적으로, 여기에서 상기 A2의 위치가 A1에 대하여 파라(para)인 경우 "P-XGAs(para-xylene-linked glucoside amphiphiles)"로 명명하고, 상기 A2의 위치가 A1에 대하여 메타(meta)인 경우 "M-XGAs(meta-xylene-linked glucoside amphiphiles)"로 명명하고, 상기 A2의 위치가 A1에 대하여 오쏘(ortho)인 경우 "O-XGAs(ortho-xylene-linked glucoside amphiphiles)"로 명명하였다.
본 발명의 일 실시예에서, 상기 A2의 위치는 A1에 대하여 파라(para)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C4의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 글루코스인 화합물을 "P-XGA-C4"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 18로 표시되는 화합물일 수 있다:
[화학식 18]
Figure PCTKR2016003929-appb-I000018
본 발명의 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 파라(para)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C5의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 글루코스인 화합물을 "P-XGA-C5"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 19로 표시되는 화합물일 수 있다:
[화학식 19]
Figure PCTKR2016003929-appb-I000019
본 발명의 또 다른 실시예에서, 상기 A2의 위치는 A1에 대하여 파라(para)이고; 상기 A1 및 A2는 서로 동일하고; 상기 R1은 C6의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 글루코스인 화합물을 "P-XGA-C6"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 20으로 표시되는 화합물일 수 있다:
[화학식 20]
Figure PCTKR2016003929-appb-I000020
본 발명의 다른 구체예에 따른 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 도는 분석하기 위한 양친매성 분자일 수 있으나, 이에 제한하지 않는다.
본 명세서에서 사용된 용어, "양친매성 분자"란 한 분자 내에 소수성기와 친수성기가 존재하여 극성, 비극성 용매에 대해 2가지 성질 모두에 친화성을 갖는 분자를 의미한다. 계면활성제나 세포막에 존재하는 인지질 분자들은 한 끝에는 친수성기, 다른 끝에는 소수성기를 가진 분자로 양친매성을 갖고 수용액 중에서 미셀이나 리포좀을 형성하는 특징이 있다. 친수성기가 극성을 갖고 있으나 비극성기가 공존하기 때문에 이들의 양친매성 분자는 물에 잘 녹지 않는 경향이 있다. 그러나 농도가 어느 한계농도(임계 미셀 농도, CMC) 이상이 되면 소수성 상호작용에 의해 소수성기가 내부로 집합하여 친수성기가 표면에 오는 미셀이 생성되어 물에 대한 용해성이 증가한다.
CMC를 측정하는 방법은 특별히 제한되지 않으나, 당해 기술분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용한 형광 염색 방법으로 측정할 수 있다.
본 발명의 일 구체예에 따른 화합물은 수용액에서 임계 미셀 농도(CMC)가 0.1μM 내지 1000μM일 수 있으며, 구체적으로, 0.1μM 내지 100μM, 보다 구체적으로, 0.1μM 내지 50μM, 보다 더 구체적으로, 0.1μM 내지 30μM, 보다 더 구체적으로, 0.5μM 내지 30μM, 예를 들어 0.1μM 내지 25μM, 0.5μM 내지 25μM일 수 있으나, 이에 제한하지 않는다.
기존에 막단백질 연구에 주로 사용되고 있는 DDM의 경우 임계 미셀 농도가 170 μM인 것과 비교하여 본 구체예의 XMAs는 매우 작은 CMC 값을 가졌다. 따라서, XMAs는 적은 양으로도 미셀이 용이하게 형성되므로, 적은 양을 사용하여 막단백질을 효과적으로 연구 분석할 수 있어 DDM 보다 우수함을 확인할 수 있었다.
또한, 본 발명의 또 다른 구체예는 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공한다.
상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것일 수 있으나, 이에 제한하지 않는다.
상기 미셀은 반지름이 2.0 nm 내지 4.5 nm일 수 있고, 구체적으로, 2.0 nm 내지 4.4 nm일 수 있고, 보다 구체적으로, 2.1 내지 4.3 nm일 수 있고, 예를 들어, 2.2 nm 내지 4.2 nm일 수 있으나, 이에 제한하지 않는다.
미셀의 반지름을 측정하는 방법은 특별히 제한되지 않으나, 당해 기술분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 동적 광산란(dynamic light scattering; DLS) 실험을 이용해 측정할 수 있다.
DDM의 경우 3.4 nm의 반지름을 가지는 것과 비교하여, XMAs도 비슷한 수준의 미셀 크기를 가지므로, 이 새로운 분자의 경우 수용액에서의 기하학적 모양이 DDM과 유사하다는 점을 확인할 수 있었다.
상기 미셀, 리포좀, 에멀션 또는 나노입자는 내부에 막단백질을 포함할 수 있다. 즉, 상기 미셀, 리포좀, 에멀션 또는 나노입자는 세포막 내부에 존재하는 막단백질을 추출하여 감싸안을 수 있다. 따라서, 상기 미셀에 의하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 것이 가능하다.
상기 조성물은 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석에 도움이 될 수 있는 버퍼 등을 추가로 포함할 수 있다.
또한, 본 발명의 또 다른 구체예는 하기 1) 내지 5)의 단계를 포함하는 하기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:
1) 디에틸말론산(diethyl malonate)에 모노알킬레이션(monoalkylation) 반응을 수행하여 알킬기를 도입하는 단계;
2) 상기 단계 1)의 생성물을 비스(브로모메틸)벤젠과 커플링하여 자일렌(xylene) 연결고리를 도입하는 단계;
3) 상기 단계 2)의 생성물의 에스터 작용기를 알코올 작용기로 환원시키는 단계;
4) 상기 단계 3)의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
5) 상기 단계 4)의 생성물에 탈보호기화(deprotection) 반응을 수행하는 단계.
[화학식 1]
Figure PCTKR2016003929-appb-I000021
상기 화학식 1 에서,
상기 A2의 위치는 A1에 대하여 오쏘(ortho), 메타(meta) 또는 파라(para)일 수 있고;
상기 A1 및 A2는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 하기 화학식 2로 표시될 수 있고;
[화학식 2]
Figure PCTKR2016003929-appb-I000022
상기 R1은 치환 또는 비치환된 C 3-C26의 알킬기, 치환 또는 비치환된 C3-C26의 사이클로알 킬기, 또는 치환 또는 비치환된 C3-C26의 아릴기일 수 있고;
상기 X1 및 X2는 각각 독립적으로 산소로 연결된 당류(saccharide)일 수 있고; 그리고
상기 화학식 2의 *은 화학식 1의 코어구조에 연결되는 부분일 수 있다.
상기 단계 2)의 비스(브로모메틸)벤젠은 p-비스(브로모메틸)벤젠, m-비스(브로모메틸)벤젠 또는 o-비스(브로모메틸)벤젠일 수 있다.
구체적으로, 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)일 수 있다.
또한, 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 글루코스(glucose)일 수 있다.
상기 화합물은 본 발명의 일 실시예에 따른 화학식 3 내지 20 중 하나의 화합물일 수 있으나, 이에 제한되지 않는다.
본 구체예에서, 쉽게 구할 수 있는 디에틸 말론산(diethyl malonate)으로부터 간단한 방법으로 화합물을 합성할 수 있다. 이처럼 본 발명의 제조 방법에 의하면 화합물의 합성이 용이하므로, 막단백질 연구를 위한 화합물의 대량 생산이 가능하다.
본 발명의 일 실시예에서, 도 1, 도 3 또는 도 4에 기재된 합성 스킴에 따라 하기의 단계를 수행하여 XMAs를 제조하였다:
1) 디에틸 말론산에 1-브로모알칸(bromoalkane), K2CO3 THF, DMF을 넣고 모노알킬레이션 반응을 수행하여 화합물 A를 얻는다.
2) 화합물 A에 NaH, 비스(브로모메틸)벤젠(p-비스(브로모메틸)벤젠, m-비스(브로모메틸)벤젠 또는 o-비스(브로모메틸)벤젠), THF, DMF를 넣어 자일렌 연결고리가 도입된 생성물 B를 얻는다.
3) 생성물 B에 LiAlH4, THF를 넣고 에스터 작용기를 알코올 작용기로 환원시켜 생성물 C를 얻는다.
4) 생성물 C에 페르벤조일레이티드 말토실브로마이드(perbenzoylated maltosylbromide), AgOTf, CH2Cl2를 첨가하고 글리코실레이션 반응하여 보호기가 부착된 당류가 도입된 생성물 D를 얻는다.
5) 생성물 D에 NaOMe, MeOH를 첨가하고 탈보호기화 반응하여 생성물 E(XMAs)를 얻는다.
본 발명의 일 실시예에서, 도 1에 기재된 합성 스킴에 따라 하기의 단계를 수행하여 P-XGA-C4 내지 P-XGA-C6을 제조하였다:
1) 디에틸 말론산에 1-브로모알칸(bromoalkane), K2CO3, THF, DMF을 넣고 모노알킬레이션 반응을 수행하여 화합물 A를 얻는다.
2) 화합물 A에 NaH, 비스(브로모메틸)벤젠 (p-비스(브로모메틸)벤젠), THF, DMF를 넣어 자일렌 연결고리가 도입된 생성물 B를 얻는다.
3) 생성물 B에 LiAlH4, THF를 넣고 에스터 작용기를 알코올 작용기로 환원시켜 생성물 C를 얻는다.
4) 생성물 C에 페르벤조일레이티드 글루코실브로마이드(perbenzoylated glucosylbromide), AgOTf, CH2Cl2, 2,4,6-collidine을 첨가하고 글리코실레이션 반응하여 보호기가 부착된 당류가 도입된 생성물 D를 얻는다.
5) 생성물 D에 NaOMe, MeOH를 첨가하고 탈보호기화 반응하여 생성물 E(XGAs)를 얻는다.
또한, 본 발명의 또 다른 구체예는 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공한다. 구체적으로, 수용액에서 하기 화학식 1로 표시되는 화합물을 막단백질에 처리하는 단계를 포함하는, 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공한다:
[화학식 1]
Figure PCTKR2016003929-appb-I000023
상기 화학식 1 에서,
상기 A2의 위치는 A1에 대하여 오쏘(ortho), 메타(meta) 또는 파라(para)일 수 있고;
상기 A1 및 A2는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 하기 화학식 2로 표시될 수 있고;
[화학식 2]
Figure PCTKR2016003929-appb-I000024
상기 R1은 치환 또는 비치환된 C 3-C26의 알킬기, 치환 또는 비치환된 C3-C26의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C26의 아릴기일 수 있고;
상기 X1 및 X2는 각각 독립적으로 산소로 연결된 당류(saccharide)일 수 있고; 그리고
상기 화학식 2의 *은 화학식 1의 코어구조에 연결되는 부분일 수 있다.
구체적으로, 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)일 수 있다.
또한, 상기 A1 및 A2는 서로 동일할 수 있고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기일 수 있고; 그리고 상기 X1 및 X2는 산소로 연결된 글루코스(glucose)일 수 있다.
상기 화합물은 본 발명의 일 실시예에 따른 화학식 3 내지 20 중 하나의 화합물일 수 있으나, 이에 제한되지 않는다.
본 명세서에서 사용된 용어, "막단백질"이란 세포막 지질이중층으로 이입되는 단백질 또는 당단백질의 총칭이다. 이는 세포막 전체 층을 관통하거나, 표층에 위치하거나, 세포막을 배접하는 등 여러 상태로 존재하고 있다. 막단백질의 예로 효소, 펩티드호르몬, 국소호르몬 등의 수용체, 당 등의 수용담체, 이온채널, 세포막 항원 등이 있으나, 이에 제한되지 않는다.
상기 막단백질은 세포막 지질이중층으로 이입되는 단백질 또는 당단백질이라면 어느 것이나 포함하며, 구체적으로 Bor1 (Boron transporter), LeuT (Leucine transporter), MelB (Melibiose permease) 또는 β2AR (human β2 adrenergic receptor) 또는 이들의 2이상의 조합일 수 있으나, 이에 제한되지 않는다.
본 명세서에서 사용된 용어, "막단백질의 추출(extraction)"이란 막단백질을 세포막(membrane)으로부터 분리하는 것을 의미한다.
본 명세서에서 사용된 용어, "막단백질의 용해화(solubilization)"란 물에 녹지 않는 막단백질을 수용액에서 미셀에 녹아들도록 하는 것을 의미한다.
본 명세서에서 사용된 용어, "막단백질의 안정화(stabilization)"란 막단백질의 구조, 기능이 변하지 않도록 3차 또는 4차 구조를 안정하게 보존하는 것을 의미한다.
본 명세서에서 사용된 용어, "막단백질의 결정화(crystallization)"란 용액에서 막단백질의 결정을 형성하는 것을 의미한다.
본 명세서에서 사용된 용어, "막단백질의 분석(analyzation)"이란 막단백질의 구조 또는 기능을 분석하는 것을 의미한다. 상기 구체예에서, 막단백질의 분석은 공지의 방법을 이용할 수 있으며, 이에 제한되지 않으나, 예를 들어 전자현미경(electron microscopy)을 이용하여 막단백질의 구조를 분석할 수 있다.
본 발명의 구체예들에 따른 자일렌 기반의 화합물을 이용하면 기존 화합물 대비 막단백질을 수용액에서 장기간 안정적으로 보관할 수 있고, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다.
막단백질 구조 및 기능 분석은 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이므로, 신약 개발과 긴밀한 관계가 있는 단백질 구조 연구에 응용이 가능하다.
구체적으로, 본 발명의 구체예들에 따른 화합물은 막단백질과의 복합체 형성시 그 크기가 작아 양질의 막단백질 결정을 얻을 수 있으며, 구조적으로 경직되어 있는 자일렌 링커를 가질뿐만 아니라 2개의 4차 탄소를 자일렌 말단에 도입하여 분자 전체의 유동성을 크게 제약하므로 막단백질의 결정화를 촉진화시킬 수 있다.
또한, 본 발명의 구체예들에 따른 화합물은 쉽게 구할 수 있는 출발물질로부터 간단한 방법으로 합성이 가능하므로, 막단백질 연구를 위한 화합물의 대량 생산이 가능하다.
도 1는 본 발명의 실시예 1에 따른 P-XMAs와 P-XGAs의 합성스킴을 나타낸 도이다.
도 2는 본 발명의 실시예들에 따른 P-XMAs 및 P-XGAs의 화학 구조를 나타낸 도이다.
도 3은 본 발명의 실시예 2에 따른 M-XMAs의 합성스킴을 나타낸 도이다.
도 4는 본 발명의 실시예 2에 따른 O-XMAs의 합성스킴을 나타낸 도이다.
도 5는 본 발명의 실시예들에 따른 M-XMAs 및 O-XMAs의 화학 구조를 나타낸 도이다.
도 6은 P-XMA-C8의 1H NMR 스펙트럼을 나타낸 도이다.
도 7은 P-XMA-C8의 13C NMR 스펙트럼을 나타낸 도이다.
도 8은 P-XMA-C9의 1H NMR 스펙트럼을 나타낸 도이다.
도 9는 P-XMA-C9의 13C NMR 스펙트럼을 나타낸 도이다.
도 10은 P-XMA-C10의 1H NMR 스펙트럼을 나타낸 도이다.
도 11은 P-XMA-C10의 13C NMR 스펙트럼을 나타낸 도이다.
도 12는 P-XMA-C11의 1H NMR 스펙트럼을 나타낸 도이다.
도 13은 P-XMA-C11의 13C NMR 스펙트럼을 나타낸 도이다.
도 14는 P-XMA-C12의 1H NMR 스펙트럼을 나타낸 도이다.
도 15는 P-XMA-C12의 13C NMR 스펙트럼을 나타낸 도이다.
도 16은 M-XMA-C11의 1H NMR 스펙트럼을 나타낸 도이다.
도 17은 M-XMA-C11의 13C NMR 스펙트럼을 나타낸 도이다.
도 18은 M-XMA-C12의 1H NMR 스펙트럼을 나타낸 도이다.
도 19는 M-XMA-C12의 13C NMR 스펙트럼을 나타낸 도이다.
도 20은 M-XMA-C14의 1H NMR 스펙트럼을 나타낸 도이다.
도 21은 M-XMA-C14의 13C NMR 스펙트럼을 나타낸 도이다.
도 22는 M-XMA-C16의 1H NMR 스펙트럼을 나타낸 도이다.
도 23은 M-XMA-C16의 13C NMR 스펙트럼을 나타낸 도이다.
도 24는 M-XMA-C18의 1H NMR 스펙트럼을 나타낸 도이다.
도 25는 M-XMA-C18의 13C NMR 스펙트럼을 나타낸 도이다.
도 26은 O-XMA-C11의 1H NMR 스펙트럼을 나타낸 도이다.
도 27은 O-XMA-C11의 13C NMR 스펙트럼을 나타낸 도이다.
도 28은 O-XMA-C12의 1H NMR 스펙트럼을 나타낸 도이다.
도 29는 O-XMA-C12의 13C NMR 스펙트럼을 나타낸 도이다.
도 30은 O-XMA-C14의 1H NMR 스펙트럼을 나타낸 도이다.
도 31은 O-XMA-C14의 13C NMR 스펙트럼을 나타낸 도이다.
도 32는 O-XMA-C16의 1H NMR 스펙트럼을 나타낸 도이다.
도 33은 O-XMA-C16의 13C NMR 스펙트럼을 나타낸 도이다.
도 34는 O-XMA-C18의 1H NMR 스펙트럼을 나타낸 도이다.
도 35는 O-XMA-C18의 13C NMR 스펙트럼을 나타낸 도이다.
도 36은 P-XMA-C8 (a), P-XMA-C9 (b), P-XMA-C10 (c), P-XMA-C11 (d), P-XMA-C12 (e), DDM (f)에 의해 형성된 미셀의 크기 분포도를 나타낸 도이다.
도 37은 M-XMAs (a) 또는 O-XMAs (b)에 의해 형성된 미셀의 크기 분포도를 나타낸 도이다. 모든 양친매성 화합물은 1.0 wt% 농도로 사용되었다.
도 38은 P-XMAs에 의한 수용액에서의 Boron transporter (Bor1) 구조 안정성을 CPM assay를 이용하여 측정한 결과를 나타낸 도이다:
(a) P-XMAs 또는 DDM 농도가 CMC + 0.04 wt%; 및
(b) P-XMAs 또는 DDM 농도가 CMC + 0.2 wt%.
도 39는 XMAs (P-XMA-C11, M-XMAs, O-XMAs) 또는 DDM에 의한 수용액에서의 Leucine transporter (LeuT) 구조 안정성을 측정한 결과이다. 단백질 안정성은 SPA(scintillation proximity assay)를 통해 수용체의 리간드 결합 활성을 측정함으로써 확인하였다. 각각의 양친매성 화합물에서 LeuT를 12일 동안 상온에서 인큐베이션하면서 규칙적인 간격으로 측정하였다:
(a) XMAs 또는 DDM 농도가 CMC + 0.04 wt%; 및
(b) XMAs 또는 DDM 농도가 CMC + 0.2 wt%.
도 40은 MelB 단백질을 P-XMAs 또는 DDM을 1.5 wt% 농도로 사용하여 4개의 온도(0, 45, 55, 65 ℃)에서 추출 후, 추출된 MelB 단백질의 양과 그 구조를 나타낸 SDS-PAGE 및 Western Blotting 결과이다.
도 41은 MelB 단백질을 XMAs(P-XMA-C11, M-XMAs) 또는 DDM을 1.5 wt% 농도로 사용하여 4개의 온도(0, 45, 55, 65 ℃)에서 추출 후, 추출된 MelB 단백질의 양을 측정한 결과이다:
(a) MelB 단백질의 양과 그 구조를 나타낸 SDS-PAGE 및 Western Blotting 결과; 및
(b) MelB 단백질의 양을 양친매성 화합물 미처리 멤브레인 샘플(Memb)에 존재하는 전체 단백질 양의 퍼센티지로 나타낸 히스토그램(histogram).
도 42는 MelB 단백질을 XMAs(P-XMA-C11, O-XMAs) 또는 DDM을 1.5 wt% 농도로 사용하여 4개의 온도(0, 45, 55, 65 ℃)에서 추출 후, 추출된 MelB 단백질의 양을 측정한 결과이다:
(a) MelB 단백질의 양과 그 구조를 나타낸 SDS-PAGE 및 Western Blotting 결과; 및
(b) MelB 단백질의 양을 양친매성 화합물 미처리 멤브레인 샘플(Memb)에 존재하는 전체 단백질 양의 퍼센티지로 나타낸 히스토그램(histogram).
도 43은 P-XMAs에 의한 β2AR 구조 안정성을 측정한 결과를 나타낸 도이다:
(a) Full agonist (이소프레오테레놀 (ISO))의 존재유무, 또는 ISO와 G-단백질의 조합에 따른 P-XMA-C11과 DDM 미셀에 녹아 있는 mBBr-β2AR의 형광스펙트럼;
(b) CMC 이하 농도의 P-XMA-C11, P-XMA-C12 또는 DDM을 이용한 mBBr-β2AR의 형광스펙트럼; 및
(c) DDM, P-XMA-C11 또는 P-XMA-C12에 용해되어 있는 β2AR의 리간드([3H]-DHA) 결합 활성도 측정 결과.
도 44는 비리간드 형태(unliganded), ISO 존재 상태, ISO 및 G-단백질 존재 상태에서 DDM, P-XMA-C11, P-XMA-C12에 의한 β2AR 구조 안정성을 측정한 결과를 나타낸 도이다.
도 45는 XMAs에 의한 β2AR 구조 안정성을 측정한 결과로서, DDM, P-XMA-C11, M-XMAs (a) 또는 O-XMAs (b)에 용해되어 있는 β2AR의 리간드([3H]-DHA) 결합 활성도 측정 결과를 나타낸 도이다.
이하 본 발명을 하기 실시예에서 보다 상세하게 기술한다. 다만, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아니다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 통상의 기술자가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다.
< 실시예 1> P- XMAs 및 P- XGAs의 합성 방법
P-XMAs 및 P-XGAs의 합성 스킴을 도 1에 나타내었다. 하기 <1-1> 내지 <1-5>의 합성 방법에 따라 P-XMAs(Para-Xylene-linked Maltoside Amphiphiles) 5종 및 P-XGAs(Para-Xylene-linked Glucoside Amphiphiles) 3종을 합성하여 도 2에 나타내었다.
<1-1> 화합물 A의 합성
THF (20mL)와 DMF (20mL)를 1:1로 섞은 용매에 diethyl malonate (5.0 equiv.)를 녹인 후, 0℃의 ice bath 하에서 K2CO3 (5.0 equiv.)를 천천히 넣어주었다. 충분한 가스가 나올 때까지 혼합물을 섞어 준 후, 1-bromoalkane (1.0 equiv.)를 넣어준 후, 6시간 동안 90℃에서 반응을 진행시켰다. 반응이 끝난 후 diethyl ether와 1M 수용액 HCl (20 mL), brine (100mL) 를 이용하여 생성물을 유기층으로 추출하였다. 유기 층을 모든 후 무수 Na2SO4로 물을 제거하고 회전 증발기를 이용하여 용매를 증발시켰다. 실리카겔 크로마토그래피 (EtOAc/hexane)을 이용하여 액체상태의 생성물 A를 얻었다.
<1-2> 자일렌 연결고리를 도입하기 위한 일반적인 합성 절차 (step a;A →B)
THF (20mL)와 DMF (20mL)를 1:1로 섞은 용매에 화합물 A (2.4 equiv.) 와 NaH (3.0 equiv.)를 0℃의 ice bath 하에서 녹인 후, α,α'-dibromo-p-xylene (1.0 equiv.) 를 넣어주었다. 6시간 동안 상온에서 반응을 진행시켰다. 반응이 끝난 후 diethyl ether (50 mL) 와 1M 수용액 HCl (20 mL), brine (100mL) 를 이용하여 생성물을 유기층으로 추출하였다. 추출한 유기 층을 무수 Na2SO4를 사용하여 물을 제거하고 회전 증발기를 이용하여 용매를 제거하였다. 실리카겔 크로마토그래피 (EtOAc/hexane)을 이용하여 액체상태의 생성물 B를 얻었다.
<1-3> LAH (lithium aluminum hydride)를 사용하여 ester를 환원하기 위한 일반적인 합성 절차 (step b;B →C)
THF (20mL)에 화합물 B를 녹인 후, 0℃의 ice bath 하에서 LiAlH4 (5.0 equiv.)를 천천히 넣어주었다. 반응 혼합물을 상온에서 하루 동안 반응시켰다. 반응이 끝난 후 MeOH로 천천히 quenching 시킨 후, diethyl ether (2x30 mL) 와 1M 수용액 HCl, brine을 이용하여 유기층으로 추출하였다. 추출한 유기 층을 무수 Na2SO4와 회전 증발기를 이용하여 각각 물과 용매를 제거하였다. 실리카겔 크로마토그래피 (EtOAc/hexane)을 이용하여 고체상태의 생성물 C를 얻었다.
<1-4> Glycosylation reaction을 위한 일반적인 합성 절차 (step c;C →D)
이는 P.R.Ashton 등의 합성 방법(Chem . Eur . J. 1996, 2, 1115-1128.)에 따랐다. 무수의 CH2Cl2 (40 mL)에 알코올 유도체인 화합물 C와 AgOTf (5.0 equiv.), 2,4,6-collidine (2.0 equiv.)를 녹인 후, -45℃에서 섞어 주었다. 이 용액에 무수의 CH2Cl2 (40 mL)에 녹아 있는 perbenzoylated maltosylbromide (5.0 equiv.)를 30분 동안 첨가하였다. -45℃에서 30분 동안 반응을 진행시킨 후, 천천히 0℃로 온도를 올려 90분 동안 반응을 진행시켰다. 반응이 끝난 후 혼합물에 pyridine을 넣고, celite를 통해 여과하였다. 여과된 액체를 1M 수용액 Na2S2O3 (40mL)와 0.1M 수용액 HCl (40 mL), brine (2x40mL)를 이용하여 씻어내었다. 유기 층을 무수 Na2SO4를 사용하여 물을 제거하고 회전 증발기를 이용하여 용매를 증류하였다. 실리카겔 크로마토그래피 (EtOAc/hexane)을 이용하여 잔여물을 순수 정제하여 고체상태의 생성물 D를 얻었다.
<1-5> Deprotection reaction을 위한 일반적인 합성 절차 (step d;D →E)
이는 P.R.Ashton 등의 합성 방법(Chem . Eur . J. 1996, 2, 1115-1128.)에 따랐다. MeOH에 O-protected 화합물 D를 녹인 후, 0.5M의 메탄올성 용액(methanolic solution인 NaOMe) 의 마지막 농도가 0.05M이 되게 넣어주었다. 반응 혼합물을 상온에서 6시간 동안 반응을 보낸 후, Amberlite IR-120 (H+ form) resin을 이용하여 중화시켜주었다. 유리 필터를 사용해서 반응 혼합물에서 resin을 제거한 후, 실리카겔 크로마토그래피(MeOH/CH2Cl2)을 이용하여 잔여물을 순수 정제하였다. CH2Cl2/MeOH/diethyl ether를 이용하여 재결정화하여 더욱 순수한 하얀 고체 생성물 E를 얻었다. 이렇게 얻은 생성물 E가 본 발명의 화합물 P-XMAs이다.
< 실시예 2> M- XMAs 및 O- XMAs의 합성
M-XMAs의 합성 스킴을 도 3에 나타내고, O-XMAs의 합성 스킴을 도 4에 나타내었다. 하기 <2-1> 내지 <2-5>의 합성 방법에 따라 M-XMAs(Meta-Xylene-linked Maltoside Amphiphiles) 5종 및 O-XMAs(Ortho-Xylene-linked Maltoside Amphiphiles) 5종을 합성하여 도 5에 나타내었다.
<2-1> 화합물 A의 합성
THF (15mL)와 DMF (30mL)를 1:2로 섞은 용매에 diethyl malonate (5.0 equiv.)를 녹인 후, 0℃의 ice bath 하에서 K2CO3(5.0 equiv.)를 천천히 넣어주었다. 충분한 가스가 나올 때까지 혼합물을 섞어 준 후, 1-bromoalkane (1.0 equiv.)를 넣어준 후, 6시간 동안 60℃에서 반응을 진행시켰다. 반응이 끝난 후 diethyl ether와 0.1M 수용액 HCl (70 mL), brine (100mL) 를 이용하여 생성물을 유기층으로 추출하였다. 유기 층을 모든 후 무수 Na2SO4로 물을 제거하고 회전 증발기를 이용하여 용매를 증발시켰다. 실리카겔 크로마토그래피 (EtOAc/hexane)을 이용하여 오일리 액체(oily liquid)상태의 생성물 A를 얻었다.
<2-2> 자일렌 연결고리를 도입하기 위한 일반적인 합성 절차 (step a;A →B)
THF (10mL)와 DMF (20mL)를 1:2로 섞은 용매에 화합물 A (2.4 equiv.) 와 NaH (3.0 equiv.)를 0℃의 ice bath 하에서 녹인 후, m-xylylene dibromide 또는 o-xylylene dibromide (1.0 equiv.) 를 넣어주었다. 6시간 동안 상온에서 반응을 진행시켰다. 반응이 끝난 후 diethyl ether (50 mL) 와 0.1M 수용액 HCl (20 mL), brine (100mL) 를 이용하여 생성물을 유기층으로 추출하였다. 추출한 유기 층을 무수 Na2SO4를 사용하여 물을 제거하고 회전 증발기를 이용하여 용매를 제거하였다. 실리카겔 크로마토그래피 (EtOAc/hexane)을 이용하여 오일리 액체상태의 생성물 B를 얻었다.
<2-3> LAH (lithium aluminum hydride)를 사용하여 ester를 환원하기 위한 일반적인 합성 절차 (step b;B →C)
THF (30mL)에 화합물 B (1.0 equiv.)를 녹인 후, 0℃의 ice bath 하에서 LiAlH4 (5.0 equiv.)를 천천히 넣어주었다. 반응 혼합물을 상온에서 하루 동안 반응시켰다. 반응이 끝난 후 MeOH로 천천히 quenching 시킨 후, diethyl ether (2x30 mL) 와 1M 수용액 HCl, brine을 이용하여 유기층으로 추출하였다. 추출한 유기 층을 무수 Na2SO4와 회전 증발기를 이용하여 각각 물과 용매를 제거하였다. 실리카겔 크로마토그래피 (EtOAc/hexane)을 이용하여 흰색 고체상태의 생성물 C를 얻었다.
<2-4> Glycosylation reaction을 위한 일반적인 합성 절차 (step c;C→D)
이는 P.R.Ashton 등의 합성 방법(Chem . Eur . J. 1996, 2, 1115-1128.)에 따랐다. 무수의 CH2Cl2 (40 mL)에 알코올 유도체인 화합물 C와 AgOTf (5.0 equiv.), 2,4,6-collidine (2.0 equiv.)를 녹인 후, -45℃에서 섞어 주었다. 이 용액에 무수의 CH2Cl2 (40 mL)에 녹아 있는 perbenzoylated maltosylbromide (5.0 equiv.)를 30분 동안 첨가하였다. -45℃에서 30분 동안 반응을 진행시킨 후, 천천히 0℃로 온도를 올려 90분 동안 반응을 진행시켰다. 반응이 끝난 후 혼합물에 pyridine을 넣고, celite를 통해 여과하였다. 여과된 액체를 1M 수용액 Na2S2O3 (40mL)와 0.1M 수용액 HCl (40 mL), brine (2x40mL)를 이용하여 씻어내었다. 유기 층을 무수 Na2SO4를 사용하여 물을 제거하고 회전 증발기를 이용하여 용매를 증류하였다. 실리카겔 크로마토그래피 (EtOAc/hexane)을 이용하여 잔여물을 순수 정제하여 흰색 고체상태의 생성물 D를 얻었다.
<2-5> Deprotection reaction을 위한 일반적인 합성 절차 (step d;D→E)
이는 P.R.Ashton 등의 합성 방법(Chem . Eur . J. 1996, 2, 1115-1128.)에 따랐다. MeOH에 O-protected 화합물 D를 녹인 후, 0.5M의 메탄올성 용액(methanolic solution)인 NaOMe 의 마지막 농도가 0.05M이 되게 넣어주었다. 반응 혼합물을 상온에서 6시간 동안 반응을 보낸 후, Amberlite IR-120 (H+ form) resin을 이용하여 중화시켜주었다. 유리 필터를 사용해서 반응 혼합물에서 resin을 제거한 후, 실리카겔 크로마토그래피(MeOH/CH2Cl2)을 이용하여 잔여물을 순수 정제하였다. CH2Cl2/MeOH/diethyl ether를 이용하여 재결정화하여 더욱 순수한 하얀 고체 생성물 E를 얻었다. 이렇게 얻은 생성물 E가 본 발명의 화합물 M-XMAs 또는 O-XMAs이다.
<제조예 1> P-XMA-C8의 합성
<1-1> 디에틸 2-옥틸말론산 (diethyl 2-octylmalonate)의 합성 (1)
실시예 1-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-옥틸말론산 (diethyl 2-octylmalonate) (1)을 88%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 4.24-4.15 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.89-1.87 (m, 2H), 1.30-1.24 (m, 18H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100MHz, CDCl3): δ169.9, 61.4, 52.3, 33.1, 29.8, 29.7, 29.4, 28.9, 27.5, 22.9, 14.3.
<1-2> 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-옥틸말론산) (tetraethyl 2,2'-(1,4- phenylenebis(methylene))bis (2- octylmalonate ))의 합성 (6)
실시예 1-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-옥틸말론산) (tetraethyl 2,2'-(1,4-phenylenebis(methylene))bis(2-octylmalonate)) (6) 를 84%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 6.95 (s, 4H), 4.22-4.09 (m, 8H), 3.17 (s, 4H), 1.75-1.73 (m, 4H), 1.26-1.20 (m, 36H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 171.6, 135.1, 129.9, 61.3, 58.9, 37.8, 32.0, 31.9, 29.9, 29.5, 29.4, 24.2, 22.9, 14.3.
<1-3> 2,2'- (1,4-페닐렌비스(메틸렌))비스 (2- 옥틸프로판 -1,3- 디올 ) (2,2'-(1,4-phenylenebis(methylene))bis(2-octylpropane-1,3-diol))의 합성 (11)
실시예 1-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-옥틸프로판-1,3-디올) (2,2'-(1,4-phenylenebis(methylene))bis(2-octylpropane-1,3-diol)) (11) 를 90%의 수득률로 합성하였다. 1H NMR (400MHz, CD3OD): δ 7.10 (s, 4H), 3.41-3.53 (m, 8H), 2.56 (s, 4H), 1.34-1.21 (m, 24H), 1.12-1.08 (m, 4H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 137.1, 131.3, 65.9, 44.1, 37.5, 33.3, 32.1, 31.9, 31.0, 30.9, 30.7, 24.1, 23.9, 14.7.
<1-4> P-XMA-C8a의 합성
실시예 1-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 P- XMA -C8a 를 80%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 8.10-8.05 (m, 8H), 8.02-7.96 (m,8H), 7.91-7.84 (m, 16H), 7.82-7.79 (m, 16H), 7.74-7.71 (m, 8H), 7.64-7.19 (m, 84H), 6.71 (s, 4H), 6.14-6.09 (m, 4H), 5.80-5.71 (m, 10H), 5.68-5.63 (m, 4H), 5.29-5.15 (m, 9H), 4.65-4.56 (m, 9H), 4.53-4.26 (m, 20H), 3.33 (d, J = 7.2 Hz, 2H), 3.23 (d, J = 8.8 Hz, 2H), 2.80 (d, J = 8.8 Hz, 2H), 2.69 (d, J = 8.8 Hz, 2H), 2.27 (d, J = 13.2 Hz, 2H), 1.97 (d, J = 13.2 Hz, 2H), 1.25-1.11 (m, 28H), 0.92 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 166.2, 166.1, 165.9, 165.9, 165.6, 165.2, 164.9, 164.9, 134.7, 133.9, 133.6, 133.3, 133.2, 130.1, 130.0, 129.8, 129.7, 129.6, 129.4, 129.3, 129.1, 128.9, 128.8, 128.5, 128.4, 100.8, 95.9, 74.8, 72.6, 72.3, 72.1, 71.4, 71.1, 70.5, 69.9, 69.1, 63.3, 62.6, 60.5, 41.6,35.9, 32.1,30.3, 30.0, 29.9, 29.8, 29.6, 22.8, 22.4, 21.2, 14.3.
<1-5> P-XMA-C8의 합성
실시예 1-5의 Deprotection reaction을 위한 일반적인 절차에 따라 P- XMA - C8 95% 수득률로 합성하였다. 도 6에 1H NMR 스펙트럼 결과, 도 7에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400MHz, CD3OD): δ 7.17 (s, 4H), 5.19-5.16 (m, 4H), 4.40-4.37 (m, 4H), 3.92-3.80 (m, 14H), 3.76-3.52 (m, 28H), 3.48-3.33 (m, 16H), 3.29-3.24 (m, 6H), 2.69 (d, J = 13.2 Hz, 2H), 2.54 (d, J = 13.2 Hz, 2H), 1.34-1.20 (m, 28H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 131.5, 103.1, 78.1, 76.7, 75.2, 74.9, 74.3, 71.7, 62.9, 33.3, 30.9, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C78H134O44[M+Na]+ 1797.8146, found 1797.8130.
< 제조예 2> P- XMA -C9의 합성
<2-1> 디에틸 2-노닐말론산 (diethyl 2-nonylmalonate)의 합성 (2)
실시예 1-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-노닐말론산 (diethyl 2-nonylmalonate) (2) 을 89%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 4.22-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.86 (m, 2H), 1.34-1.25 (m, 20H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100MHz, CDCl3): δ 169.8, 61.5, 52.3, 33.1, 29.8, 29.7, 29.5, 29.4, 28.9, 27.5, 22.9, 14.3.
<2-2> 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-노닐말론산) (tetraethyl 2,2'-(1,4- phenylenebis(methylene))bis (2- nonylmalonate ))의 합성 (7)
실시예 1-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-노닐말론산) (tetraethyl 2,2'-(1,4-phenylenebis(methylene))bis(2-nonylmalonate)) (7) 를 81%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 6.95 (s, 4H), 4.20-4.11 (m, 8H), 3.17 (s, 4H), 1.75-1.73 (m, 4H), 1.25-1.20 (m, 40H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 171.6, 135.1, 129.9, 61.3, 58.9, 37.8, 32.0, 31.9, 29.9, 29.5, 29.4, 24.2, 22.9, 14.3.
<2-3> 2,2'- (1,4-페닐렌비스(메틸렌))비스 (2- 노닐프로판 -1,3- 디올 ) (2,2'-(1,4-phenylenebis(methylene))bis(2-nonylpropane-1,3-diol))의 합성 (12)
실시예 1-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-노닐프로판-1,3-디올) (2,2'-(1,4-phenylenebis(methylene))bis(2-nonylpropane-1,3-diol)) (12) 를 90%의 수득률로 합성하였다. 1H NMR (400MHz, CD3OD): δ 7.10 (s, 4H), 3.41-3.53 (m, 8H), 2.56 (s, 4H), 1.34-1.21 (m, 28H), 1.12-1.08 (m, 4H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 137.1, 131.3, 65.9, 44.1, 37.5, 33.3, 32.1, 31.9, 31.0, 30.9, 30.7, 24.1, 23.9, 14.7.
<2-4> P-XMA-C9a의 합성
실시예 1-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 P- XMA -C9a 82%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 8.10-8.05 (m, 8H), 8.02-7.96 (m,8H), 7.91-7.84 (m, 16H), 7.82-7.79 (m, 16H), 7.74-7.71 (m, 8H), 7.64-7.19 (m, 84H), 6.76 (s, 4H), 6.20-6.15 (m, 4H), 5.84-5.76 (m, 10H), 5.72-5.68 (m, 4H), 5.35-5.20 (m, 9H), 4.67-4.62 (m, 9H), 4.58-4.36 (m, 20H), 3.38 (d, J = 7.2 Hz, 2H) 3.26 (d, J = 8.8 Hz, 2H), 2.89 (d, J = 8.8 Hz, 2H), 2.72 (d, J = 8.8 Hz, 2H), 2.30 (d, J = 13.2 Hz, 2H), 2.01 (d, J = 13.2 Hz, 2H), 1.32-1.24 (m, 32H), 0.92 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 166.2, 166.1, 165.9, 165.6, 165.2, 164.9, 134.7, 133.9, 133.6, 133.3, 133.2, 130.1, 129.8, 129.7, 129.6, 129.5, 129.3, 129.1, 128.9, 128.8, 128.5, 128.4, 100.8, 95.9, 74.8, 72.6, 72.3, 72.1, 71.4, 71.1, 70.5, 69.9, 69.1, 63.3, 62.6, 60.5, 41.6,35.9, 32.1,30.3, 30.0, 29.9, 29.8, 29.6, 22.9, 22.4, 21.2, 14.3.
<2-5> P-XMA-C9의 합성
실시예 1-5의 Deprotection reaction을 위한 일반적인 절차에 따라 P- XMA - C9 를 94% 수득률로 합성하였다. 도 8에 1H NMR 스펙트럼 결과, 도 9에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400MHz, CD3OD): δ 7.18 (s, 4H), 5.19-5.16 (m, 4H), 4.40-4.37 (m, 4H), 3.92-3.80 (m, 14H), 3.76-3.52 (m, 28H), 3.48-3.33 (m, 16H), 3.29-3.24 (m, 6H), 2.68 (d, J = 13.2 Hz, 2H), 2.54 (d, J = 13.2 Hz, 2H), 1.37-1.16 (m, 32H), 0.92-0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 136.8, 131.5, 105.1, 103.0, 81.6, 81.5, 78.1, 76.7, 75.2, 75.0, 74.9, 74.3, 71.7, 62.9, 62.5, 43.6, 33.3, 31.9, 31.8, 31.0, 30.9, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C80H138O44[M+Na]+ 1825.8459, found 1825.8451.
<제조예 3> P-XMA-C10의 합성
<3-1> 디에틸 2-데실말론산 (diethyl 2-decylmalonate)의 합성 (3)
실시예 1-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-데실말론산 (diethyl 2-decylmalonate) (3) 를 89%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 4.22-4.17 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.91-1.87 (m, 2H), 1.34-1.25 (m, 22H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100MHz, CDCl3): δ 169.8, 61.5, 52.3, 32.1, 29.8, 29.7, 29.5, 29.4, 28.9, 27.5, 22.9, 14.3.
<3-2> 테트라에틸 2,2'- (1,4-페닐렌비스(메틸렌))비스(2-데실말론산 ) (tetraethyl 2,2'-(1,4- phenylenebis(methylene))bis (2- decylmalonate ))의 합성 (8)
실시예 1-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-데실말론산) (tetraethyl 2,2'-(1,4-phenylenebis(methylene))bis(2-decylmalonate)) (8) 를 82%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 6.95 (s, 4H), 4.17-4.13 (m, 8H), 3.17 (s, 4H), 1.75-1.73 (m, 4H), 1.25-1.22 (m, 44H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 171.6, 135.1, 129.7, 61.3, 58.8, 37.7, 32.1, 31.9, 29.9, 29.7, 29.6, 29.6, 22.2, 14.3.
<3-3> 2,2'- (1,4-페닐렌비스(메틸렌))비스(2-데실프로판 -1,3- 디올 ) (2,2'-(1,4-phenylenebis(methylene))bis(2-decylpropane-1,3-diol)) (13)
실시예 1-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-데실프로판-1,3-디올) (2,2'-(1,4-phenylenebis(methylene))bis(2-decylpropane-1,3-diol)) (13) 를 89%의 수득률로 합성하였다. 1H NMR (400MHz, CD3OD): δ 7.10 (s, 4H), 3.41-3.35 (m, 8H), 2.56 (s, 4H), 1.34-1.21 (m, 32H), 1.12-1.08 (m, 4H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 137.1, 131.3, 65.9, 44.1, 37.5, 33.3, 32.1, 31.9, 31.0, 30.9, 30.7, 24.1, 23.9, 14.7.
<3-4> P-XMA-C10a의 합성
실시예 1-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 P- XMA -C10a 를 82%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): 8.10-8.05 (m, 8H), 8.02-7.96 (m,8H), 7.91-7.84 (m, 16H), 7.82-7.79 (m, 16H), 7.74-7.71 (m, 8H), 7.64-7.19 (m, 84H), 6.71 (s, 4H), 6.15-6.10 (m, 4H), 5.81-5.72 (m, 10H), 5.69-5.64 (m, 4H), 5.30-5.15 (m, 9H), 4.65-4.57 (m, 9H), 4.53-4.26 (m, 20H), 3.35 (d, J = 7.2 Hz, 2H), 3.22 (d, J = 8.8 Hz, 2H), 2.81 (d, J = 8.8 Hz, 2H), 2.69 (d, J = 8.8 Hz, 2H), 2.25 (d, J = 13.2 Hz, 2H), 2.04 (d, J = 13.2 Hz, 2H), 1.27-1.21 (m, 36H), 0.92 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 166.2, 166.1, 165.9, 165.6, 165.2, 164.9, 134.7, 133.9, 133.6, 133.3, 133.2, 130.1, 130.0, 129.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.1, 128.9, 128.8, 128.5, 128.4, 100.8, 95.9, 95.8, 74.8, 72.6, 72.3, 72.1, 71.4, 71.1, 70.5, 69.9, 69.1, 63.3, 62.6, 60.5, 41.6, 35.9, 32.1, 30.3, 30.0, 29.9, 29.8, 29.6, 22.8, 22.4, 21.2, 14.3.
<3-5> P-XMA-C10의 합성
실시예 1-5의 Deprotection reaction을 위한 일반적인 절차에 따라 P- XMA -C10 95% 수득률로 합성하였다. 도 10에 1H NMR 스펙트럼 결과, 도 11에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400MHz, CD3OD): δ 7.17 (s, 4H), 5.19-5.16 (m, 4H), 4.40-4.37 (m, 4H), 3.90-3.81 (m, 14H), 3.73-3.55 (m, 28H), 3.49-3.24 (m, 16H), 3.29-3.24 (m, 6H), 2.68 (d, J = 13.2 Hz, 2H), 2.54 (d, J = 13.2 Hz, 2H), 1.37-1.16 (m, 28H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 136.8, 131.5, 105.1, 105.0, 103.0, 81.6, 81.5, 78.1, 76.6, 75.2, 75.0, 74.9, 74.3, 71.6, 62.9, 62.4, 43.6, 33.3, 31.8, 31.1, 30.9, 30.9, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C82H142O44[M+Na]+ 1853.8772, found 1853.8759.
<제조예 4> P-XMA-C11의 합성
<4-1> 디에틸 2-운데실말론산 (diethyl 2-undecylmalonate)의 합성 (4)
실시예 1-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-운데실말론산 (diethyl 2-undecylmalonate) (4) 를 89%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 4.23-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.24 (m, 24H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100MHz, CDCl3): δ 169.8, 61.5, 52.3, 33.1, 29.8, 29.7, 29.6, 29.4, 28.9, 27.5, 22.9, 14.3.
<4-2> 테트라에틸 2,2'- (1,4-페닐렌비스(메틸렌))비스(2-운데실말론산 ) (tetraethyl 2,2'-(1,4- phenylenebis(methylene))bis (2- undecylmalonate ))의 합성 (9)
실시예 1-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-운데실말론산) (tetraethyl 2,2'-(1,4-phenylenebis(methylene))bis(2-undecylmalonate)) (9) 를 82%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 6.96 (s, 4H), 4.21-4.0 (m, 8H), 3.18 (s, 4H), 1.76-1.74 (m, 4H), 1.27-1.20 (m, 48H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 171.6, 135.0, 129.9, 61.3, 58.9, 37.8, 32.1, 31.9, 29.9, 29.8, 29.6, 29.5, 22.3, 22.9, 14.3.
<4-3> 2,2'- (1,4-페닐렌비스(메틸렌))비스(2-운데실프로판 -1,3- 디올 ) (2,2'-(1,4-phenylenebis(methylene))bis(2-undecylpropane-1,3-diol)) (14)
실시예 1-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-운데실프로판-1,3-디올) (2,2'-(1,4-phenylenebis(methylene))bis(2-undecylpropane-1,3-diol)) (14) 를 87%의 수득률로 합성하였다. 1H NMR (400MHz, CD3OD): δ 7.10 (s, 4H), 3.41-3.35 (m, 8H), 2.56 (s, 4H), 1.34-1.21 (m, 36H), 1.21-1.08 (m, 4H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 137.1, 131.3, 65.9, 44.1, 37.5, 33.3, 32.1, 31.9, 31.0, 30.9, 30.9, 24.1, 23.9, 14.7.
<4-4> P-XMA-C11a의 합성
실시예 1-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 P- XMA -C11a 를 80%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 8.10-8.05 (m, 8H), 8.02-7.96 (m,8H), 7.91-7.84 (m, 16H), 7.82-7.79 (m, 16H), 7.74-7.71 (m, 8H), 7.64-7.19 (m, 84H), 6.71 (s, 4H), 6.15-6.10 (m, 4H), 5.81-5.72 (m, 10H), 5.69-5.64 (m, 4H), 5.30-5.15 (m, 9H), 4.65-4.57 (m, 9H), 4.53-4.26 (m, 20H), 3.35 (d, J = 7.2 Hz, 2H), 3.22 (d, J = 8.8 Hz, 2H), 2.81 (d, J = 8.8 Hz, 2H), 2.70 (d, J = 8.8 Hz, 2H), 2.26 (d, J = 13.2 Hz, 2H), 2.04 (d, J = 13.2 Hz, 2H), 1.27-1.21 (m, 40H), 0.93 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 166.2, 166.1, 165.9, 165.9, 165.6, 165.2, 164.9, 134.7, 133.9, 133.6, 133.3, 133.2, 130.1, 130.0, 129.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.1, 128.9, 128.8, 128.5, 128.4, 100.8, 100.7, 95.9, 95.8, 74.8, 72.6, 72.3, 72.1, 71.4, 71.1, 70.5, 69.9, 69.1, 63.3, 62.6, 60.5, 41.6, 35.9, 32.1, 30.3, 30.0, 29.9, 29.8, 29.6, 22.8, 22.4, 21.2, 14.3.
<4-5> P-XMA-C11의 합성
실시예 1-5의 Deprotection reaction을 위한 일반적인 절차에 따라 P- XMA -C11 를 95% 수득률로 합성하였다. 도 12에 1H NMR 스펙트럼 결과, 도 13에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400MHz, CD3OD): δ 7.18 (s, 4H), 5.19-5.16 (m,4H), 4.40-4.37 (m, 4H), 3.93-3.80 (m, 14H), 3.76-3.53 (m, 28H), 3.49-3.24 (m, 16H), 3.29-3.27 (m, 6H), 2.68 (d, J = 13.2 Hz, 2H), 2.54 (d, J = 13.2 Hz, 2H), 1.32-1.20 (m, 40H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 136.8, 131.5, 105.1, 105.0, 103.1, 81.6, 78.1, 76.7, 75.2, 75.0, 74.9, 74.3, 71.7, 62.9, 62.5, 43.6, 33.3, 31.8, 31.1, 31.0, 30.9, 30.9, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C84H146O44[M+Na]+ 1881.9085, found 1881.9091.
<제조예 5> P-XMA-C12의 합성
<5-1> 디에틸 2-도데실말론산 (diethyl 2-dodecylmalonate)의 합성 (5)
실시예 1-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-도데실말론산 (diethyl 2-dodecylmalonate) (5) 를 89%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 4.22-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 26H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.9, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 22.9, 14.4.
<5-2> 테트라에틸 2,2'- (1,4-페닐렌비스(메틸렌))비스(2-도데실말론산 ) (tetraethyl 2,2'-(1,4- phenylenebis(methylene))bis (2- dodecylmalonate ))의 합성 (10)
실시예 1-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-도데실말론산) (tetraethyl 2,2'-(1,4-phenylenebis(methylene))bis(2-dodecylmalonate)) (10) 를 82%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 6.95 (s, 4H), 4.20-4.11 (m, 8H), 3.17 (s, 4H), 1.75-1.73 (m, 4H), 1.25-1.20 (m, 52H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 171.6, 135.1, 129.7, 61.3, 58.8, 37.7, 32.1, 31.9, 29.9, 29.7, 29.6, 29.6, 22.2, 14.3.
<5-3> 2,2'- (1,4-페닐렌비스(메틸렌))비스(2-도데실프로판 -1,3- 디올 ) 2,2'-(1,4-phenylenebis(methylene))bis(2-dodecylpropane-1,3-diol) (15)
실시예 1-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-도데실프로판-1,3-디올) (2,2'-(1,4-phenylenebis(methylene))bis(2-dodecylpropane-1,3-diol)) (15) 을 89%의 수득률로 합성하였다. 1H NMR (400MHz, CD3OD): δ 7.10 (s, 4H), 3.41-3.35 (m, 8H), 2.56 (s, 4H), 1.34-1.21 (m, 40H), 1.21-1.08 (m, 4H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 137.1, 131.3, 65.9, 44.2, 37.5, 33.3, 32.1, 31.9, 31.0, 30.9, 30.9, 24.1, 23.9, 14.7.
<5-4> P-XMA-C12a의 합성
실시예 1-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 P- XMA -C12a 를 81%의 수득률로 합성하였다 1H NMR (400MHz, CDCl3): δ 8.10-8.05 (m, 8H), 8.02-7.96 (m,8H), 7.91-7.84 (m, 16H), 7.82-7.79 (m, 16H), 7.74-7.71 (m, 8H), 7.64-7.19 (m, 84H), 6.71 (s, 4H), 6.15-6.10 (m, 4H), 5.81-5.72 (m, 10H), 5.69-5.64 (m, 4H), 5.30-5.15 (m, 9H), 4.65-4.57 (m, 9H), 4.53-4.26 (m, 20H), 3.35 (d, J = 7.2 Hz, 2H), 3.22 (d, J = 8.8 Hz, 2H), 2.81 (d, J = 8.8 Hz, 2H), 2.69 (d, J = 8.8 Hz, 2H), 2.25 (d, J = 13.2 Hz, 2H), 2.04 (d, J = 13.2 Hz, 2H), 1.27-1.21 (m, 44H), 0.92 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 166.2, 166.1, 165.9, 165.6, 165.2, 164.9, 134.7, 133.9, 133.6, 133.6, 133.3, 133.2, 130.1, 130.0, 129.8, 129.7, 129.6, 129.5, 129.4, 129.3, 129.1, 128.9, 128.8, 128.5, 128.4, 100.8, 95.9, 74.8, 72.6, 72.3, 72.1, 71.4, 71.1, 70.5, 69.9, 69.1, 63.3, 62.6, 60.5, 41.6, 35.9, 32.1, 30.3, 30.0, 29.9, 29.8, 29.6, 22.8, 22.4, 21.2, 14.3.
<5-5> P-XMA-C12의 합성
실시예 1-5의 Deprotection reaction을 위한 일반적인 절차에 따라 P- XMA -C12 를 95% 수득률로 합성하였다. 도 14에 1H NMR 스펙트럼 결과, 도 15에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400MHz, CD3OD): δ 7.18 (s, 4H), 4.19-51.16 (m, 4H), 4.40-4.38 (m, 4H), 3.94-3.80 (m, 14H), 3.76-3.55 (m, 28H), 3.53-3.24 (m, 16H), 3.30-3.26 (m, 6H), 2.68 (d, J = 13.2 Hz, 2H), 2.54 (d, J = 13.2 Hz, 2H), 1.49-1.28 (m, 44H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100MHz, CD3OD): δ 136.8, 131.5, 105.1, 103.1, 81.6, 78.1, 76.7, 75.3, 75.0, 74.9, 74.3, 71.7, 62.9, 62.4, 43.6, 33.3, 31.8, 31.0, 30.9, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C86H150O44[M+Na]+ 1909.9398, found 1909.9387.
<제조예 6> P-XGA-C4의 합성
실시예 1-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-부틸말론산 (diethyl 2-butylmalonate)을 합성하였다. 실시예 1-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-부틸말론산) (tetraethyl 2,2'-(1,4-phenylenebis(methylene))bis(2-butylmalonate))를 합성하였다. 실시예 1-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-부틸프로판-1,3-디올) (2,2'-(1,4-phenylenebis(methylene))bis(2-butylpropane-1,3-diol))를 합성하였다. 실시예 1-4의 Glycosylation reaction을 위한 일반적인 절차 중 perbenzoylated maltosylbromide 대신 perbenzoylated glucosylbromide를 사용하여 P-XGA-C4a를 합성하였다. 실시예 1-5의 Deprotection reaction을 위한 일반적인 절차에 따라 P-XGA-C4를 합성하였다.
<제조예 7> P-XGA-C5의 합성
실시예 1-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-펜틸말론산 (diethyl 2-pentylmalonate)을 합성하였다. 실시예 1-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-펜틸말론산) (tetraethyl 2,2'-(1,4-phenylenebis(methylene))bis(2-pentylmalonate))를 합성하였다. 실시예 1-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-펜틸프로판-1,3-디올) (2,2'-(1,4-phenylenebis(methylene))bis(2-pentylpropane-1,3-diol))를 합성하였다. 실시예 1-4의 Glycosylation reaction을 위한 일반적인 절차 중 perbenzoylated maltosylbromide 대신 perbenzoylated glucosylbromide를 사용하여 P-XGA-C5a를 합성하였다. 실시예 1-5의 Deprotection reaction을 위한 일반적인 절차에 따라 P-XGA-C5를 합성하였다.
<제조예 8> P-XGA-C6의 합성
실시예 1-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-헥실말론산 (diethyl 2-hexylmalonate)을 합성하였다. 실시예 1-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 테트라에틸 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-헥실말론산) (tetraethyl 2,2'-(1,4-phenylenebis(methylene))bis(2-hexylmalonate))를 합성하였다. 실시예 1-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,4-페닐렌비스(메틸렌))비스(2-헥실프로판-1,3-디올) (2,2'-(1,4-phenylenebis(methylene))bis(2-hexylpropane-1,3-diol))를 합성하였다. 실시예 1-4의 Glycosylation reaction을 위한 일반적인 절차 중 perbenzoylated maltosylbromide 대신 perbenzoylated glucosylbromide를 사용하여 P-XGA-C6a를 합성하였다. 실시예 1-5의 Deprotection reaction을 위한 일반적인 절차에 따라 P-XGA-C6을 합성하였다.
<제조예 9> M-XMA-C11의 합성
<9-1> 디에틸 2-운데실말론산 (diethyl 2-undecylmalonate)의 합성 (1)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-운데실말론산 (diethyl 2-undecylmalonate) (1)을 91%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.23-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.24 (m, 24H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.8, 61.5, 52.3, 33.1, 29.8, 29.7, 29.6, 29.4, 28.9, 27.5, 22.9, 14.3.
<9-2> 테트라에틸 2,2'- (1,3-페닐렌비스(메틸렌))비스(2-운데실말론산 ) (tetraethyl 2,2'-(1,3- phenylenebis(methylene))bis (2- undecylmalonate ))의 합성 (6')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 m-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-운데실말론산) (tetraethyl 2,2'-(1,3-phenylenebis(methylene))bis(2-undecylmalonate)) (6') 를 82%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.12 (t, J = 7.6 Hz, 1H), 6.93-6.90 (m, 2H), 6.82 (s, 1H), 4.23-4.10 (m, 8H), 3.17 (s, 4H), 1.76-1.73 (m, 4H), 1.32-1.21 (m, 48H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.6, 136.4, 131.9,128.6, 128.2, 61.3, 58.9, 38.2, 32.1, 31.9.29.9, 29.6, 24.4, 22.9,14.3.
<9-3> 2,2'- (1,3-페닐렌비스(메틸렌))비스(2-운데실프로판 -1,3- 디올 ) (2,2'-(1,3-phenylenebis(methylene))bis(2-undecylpropane-1,3-diol))의 합성 (11')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-운데실프로판-1,3-디올) (2,2'-(1,3-phenylenebis(methylene))bis(2-undecylpropane-1,3-diol)) (11') 를 87%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.28 (s, 1H), 7.19 (t, J = 6.8 Hz, 1H), 6.99 (d, J = 7.2 Hz, 2H), 3.57 (d, J = 7.2 Hz, 4H), 3.45 (d, J = 7.2 Hz, 4H), 2.69 (s, 4H), 1.34-1.09 (m, 40H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 137.9, 133.5, 128.2, 127.8, 68.4, 43.0, 36.8, 32.2, 31.5, 30.8, 29.9, 29.6, 23.2, 22.9, 14.4.
<9-4> M-XMA-C11a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 M- XMA -C11a 를 73%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.17 (d, J = 7.2 Hz, 4H), 8.09-7.96 (m, 24H), 7.89-7.82 (m, 20H), 7.75-7.72 (m, 8H), 7.57-7.19 (m, 84H), 6.87 (t, J = 7.2 Hz, 1H), 6.72-6.70 (m, 2H), 6.65 (s, 1H), 6.17-6.09 (m, 4H), 5.76-5.57 (m, 10H), 5.33-5.24 (m, 4H), 5.20-5.09 (m, 4H), 4.74-4.65 (m, 10H), 4.54-4.11 (m, 20H), 3.20 (d, J = 8.8 Hz, 2H), 3.11 (d, J = 8.8 Hz, 2H), 3.01 (d, J = 8.8 Hz, 2H), 2.81 (d, J = 8.8 Hz, 2H), 2.47 (d, J = 8.8 Hz, 2H), 2.30 (d, J = 8.8 Hz, 2H), 1.29-1.13 (m, 40H), 0.87 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.7, 166.0, 165.8, 165.5, 165.4, 165.2, 165.0, 164.9, 164.7, 135.9, 134.0, 133.6, 133.5, 133.3, 133.2, 132.9, 130.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 100.9, 100.6, 96.4, 95.4, 74.7, 72.3, 72.1, 71.9, 71.8, 71.4, 71.0, 70.1, 69.2, 68.9, 62.8, 62.5, 41.6, 32.1, 30.4, 30.0, 29.9, 29.8, 29.5, 22.8, 22.3, 14.3.
<9-5> M-XMA-C11의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 M- XMA -C11 95% 수득률로 합성하였다. 도 16에 1H NMR 스펙트럼 결과, 도 17에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400 MHz, CD3OD): δ 7.18 (s, 1H), 7.12-7.10 (m, 3H), 5.21-5.17 (m, 4H), 4.42-4.37 (m, 4H), 3.92-3.82 (m, 14H), 3.75-3.51 (m, 28H), 3.48-3.32 (m, 16H), 3.31-3.25 (m, 6H), 2.72 (d, J = 13.2 Hz, 2H), 2.63 (d, J = 13.2 Hz, 2H), 1.34-1.23 (m, 40H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 138.8, 129.7, 105.1, 105.0, 103.0, 81.6, 81.5, 78.1, 76.6, 75.2, 74.9, 74.3, 72.9, 72.7, 71.6, 62.9, 62.4, 49.8, 49.6, 49.4, 48.7, 48.5, 43.7, 37.9, 33.3, 32.2, 31.9, 31.1, 30.9, 30.7, 24.1, 23.9, 14.7; HRMS (EI): calcd. for C84H146O44 [M+Na]+ 1881.9085, found 1881.9080.
<제조예 10> M-XMA-C12의 합성
<10-1> 디에틸 2-도데실말론산 (diethyl 2-dodecylmalonate)의 합성 (2)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-도데실말론산 (diethyl 2-dodecylmalonate) (2)을 89%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.22-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 26H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 22.9, 14.4.
<10-2> 테트라에틸 2,2'- (1,3-페닐렌비스(메틸렌))비스(2-도데실말론산 ) (tetraethyl 2,2'-(1,3- phenylenebis(methylene))bis (2- dodecylmalonate ))의 합성 (7')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 m-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-도데실말론산) (tetraethyl 2,2'-(1,3-phenylenebis(methylene))bis(2-dodecylmalonate)) (7') 를 80%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.12 (t, J = 7.6 Hz, 1H), 6.92-6.90 (m, 2H), 6.81 (s, 1H), 4.21-4.12 (m, 8H), 3.16 (s, 4H), 1.75-1.57 (m, 4H), 1.30-1.21 (m, 52H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.6, 136.4, 131.9, 128.6, 128.2, 61.3, 58.9, 32.1, 29.8, 29.6, 29.5, 22.9, 14.4, 14.3.
<10-3> 2,2'- (1,3-페닐렌비스(메틸렌))비스(2-도데실프로판 -1,3- 디올 ) (2,2'-(1,3-phenylenebis(methylene))bis(2-dodecylpropane-1,3-diol))의 합성 (12')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-도데실프로판-1,3-디올) (2,2'-(1,3-phenylenebis(methylene))bis(2-dodecylpropane-1,3-diol)) (12') 를 88%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.28 (s, 1H), 7.19 (t, J = 6.8 Hz, 1H), 6.99 (d, J = 7.2 Hz, 2H), 3.57 (d, J = 7.2 Hz, 4H), 3.45 (d, J = 7.2 Hz, 4H), 2.70 (s, 4H), 1.33-1.09 (m, 44H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 137.9, 133.5, 128.2, 127.8, 68.4, 43.0, 36.8, 32.2, 31.5, 30.8, 29.9, 29.6, 23.2, 22.9, 14.4.
<10-4> M-XMA-C12a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 M- XMA -C12a 를 70%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.17 (d, J = 7.2 Hz, 4H), 8.09-7.96 (m, 24H), 7.89-7.82 (m, 20H), 7.75-7.72 (m, 8H), 7.57-7.19 (m, 84H), 6.88 (t, J = 7.2 Hz, 1H), 6.73-6.71 (m, 2H), 6.65 (s, 1H), 6.17-6.10 (m, 4H), 5.76-5.57 (m, 10H), 5.33-5.24 (m, 4H), 5.20-5.09 (m, 4H), 4.74-4.65 (m, 10H), 4.54-4.11 (m, 20H), 3.21 (d, J = 8.8 Hz, 2H), 3.11 (d, J = 8.8 Hz, 2H), 3.01 (d, J = 8.8 Hz, 2H), 2.81 (d, J = 8.8 Hz, 2H), 2.47 (d, J = 8.8 Hz, 2H), 2.30 (d, J = 8.8 Hz, 2H), 1.29-1.13 (m, 40H), 0.87 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.7, 166.0, 165.8, 165.5, 165.4, 165.2, 165.0, 164.9, 164.7, 135.9, 134.0, 133.6, 133.5, 133.3, 133.2, 132.9, 130.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 100.9, 100.6, 96.4, 95.4, 74.7, 72.3, 72.1, 71.9, 71.8, 71.4, 71.0, 70.1, 69.2, 68.9, 62.8, 62.5, 41.6, 32.1, 30.4, 30.0, 29.9, 29.8, 29.5, 22.8, 22.3, 14.3.
<10-5> M-XMA-C12의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 M- XMA -C12 93% 수득률로 합성하였다. 도 18에 1H NMR 스펙트럼 결과, 도 19에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400 MHz, CD3OD): δ 7.19 (s, 1H), 7.12-7.10 (m, 3H), 5.21-5.17 (m, 4H), 4.42-4.37 (m, 4H), 3.92-3.82 (m, 14H), 3.75-3.51 (m, 28H), 3.48-3.32 (m, 16H), 3.31-3.25 (m, 6H), 2.71 (d, J = 13.2 Hz, 2H), 2.62 (d, J = 13.2 Hz, 2H), 1.37-1.23 (m, 44H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 138.8, 129.8, 105.1, 105.0, 103.1, 81.6, 81.5, 78.1, 76.7, 75.2, 74.9, 74.3, 71.6, 62.9, 62.4, 43.7, 33.3, 31.9, 31.1, 31.0, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C86H150O44 [M+Na]+ 1909.9398, found 1909.9402.
<제조예 11> M-XMA-C14의 합성
<11-1> 디에틸 2- 테트라데실말론산 (diethyl 2- tetradecylmalonate )의 합성 (3)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-테트라데실말론산 (diethyl 2-tetradecylmalonate) (3)을 90%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.22-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 30H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 22.9, 14.4.
<11-2> 테트라에틸 2,2'- (1,3-페닐렌비스(메틸렌))비스 (2- 테트라데실말론산 ) (tetraethyl 2,2'-(1,3- phenylenebis(methylene))bis (2- tetradecylmalonate ))의 합성 (8')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 m-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-테트라데실말론산) (tetraethyl 2,2'-(1,3-phenylenebis(methylene))bis(2-tetradecylmalonate)) (8') 를 83%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.12 (t, J = 7.6 Hz, 1H), 6.92-6.90 (m, 2H), 6.81 (s, 1H), 4.21-4.12 (m, 8H), 3.16 (s, 4H), 1.75-1.57 (m, 4H), 1.30-1.21 (m, 60H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.6, 136.4, 131.9, 128.6, 128.2, 61.3, 58.9, 32.1, 29.8, 29.6, 29.5, 22.9, 14.4, 14.3.
<11-3> 2,2'- (1,3-페닐렌비스(메틸렌))비스 (2- 테트라데실프로판 -1,3- 디올 ) (2,2'-(1,3-phenylenebis(methylene))bis(2-tetradecylpropane-1,3-diol))의 합성 (13')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-테트라데실프로판-1,3-디올) (2,2'-(1,3-phenylenebis(methylene))bis(2-tetradecylpropane-1,3-diol)) (13') 를 85%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.28 (s, 1H), 7.19 (t, J = 6.8 Hz, 1H), 6.99 (d, J = 7.2 Hz, 2H), 3.57 (d, J = 7.2 Hz, 4H), 3.45 (d, J = 7.2 Hz, 4H), 2.70 (s, 4H), 1.33-1.09 (m, 52H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 137.9, 133.5, 128.2, 127.8, 68.4, 43.0, 36.8, 32.2, 31.5, 30.8, 29.9, 29.6, 23.2, 22.9, 14.4.
<11-4> M-XMA-C14a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 M- XMA -C14a 를 68%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.17 (d, J = 7.2 Hz, 4H), 8.09-7.96 (m, 24H), 7.89-7.82 (m, 20H), 7.75-7.72 (m, 8H), 7.57-7.19 (m, 84H), 6.87 (t, J = 7.2 Hz, 1H), 6.72-6.70 (m, 2H), 6.65 (s, 1H), 6.17-6.09 (m, 4H), 5.76-5.57 (m, 10H), 5.33-5.24 (m, 4H), 5.20-5.09 (m, 4H), 4.74-4.65 (m,10H), 4.54-4.11 (m, 20H), 3.20 (d, J = 8.8 Hz, 2H), 3.11 (d, J = 8.8 Hz, 2H), 3.01 (d, J = 8.8 Hz, 2H), 2.81 (d, J = 8.8 Hz, 2H), 2.47 (d, J = 8.8 Hz, 2H), 2.30 (d, J = 8.8 Hz, 2H), 1.29-1.13 (m, 40H), 0.87 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.7, 166.0, 165.8, 165.5, 165.4, 165.2, 165.0, 164.9, 164.7, 135.9, 134.0, 133.6, 133.5, 133.3, 133.2, 132.9, 130.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 100.9, 100.6, 96.4, 95.4, 74.7, 72.3, 72.1, 71.9, 71.8, 71.4, 71.0, 70.1, 69.2, 68.9, 62.8, 62.5, 41.6, 32.1, 30.4, 30.0, 29.9, 29.8, 29.5, 22.8, 22.3, 14.3.
<11-5> M-XMA-C14의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 M- XMA -C14 96% 수득률로 합성하였다. 도 20에 1H NMR 스펙트럼 결과, 도 21에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400 MHz, CD3OD): δ 7.18 (s, 1H), 7.12-7.10 (m, 3H), 5.20-5.16 (m, 4H), 4.42-4.37 (m, 4H), 3.92-3.82 (m, 14H), 3.75-3.51 (m, 28H), 3.48-3.32 (m, 16H), 3.31-3.25 (m, 6H), 2.71 (d, J = 13.2 Hz, 2H), 2.61 (d, J = 13.2 Hz, 2H), 1.39-1.23 (m, 52H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 138.8, 129.8, 105.1, 103.1, 99.2, 81.6, 81.5, 78.1, 76.7, 75.2, 74.9, 74.3, 71.6, 62.9, 62.4, 43.7, 33.3, 31.9, 31.1, 30.9, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C90H158O44 [M+Na]+ 1967.0058, found 1967.0087.
<제조예 12> M-XMA-C16의 합성
<12-1> 디에틸 2- 헥사데실말론산 (diethyl 2- hexadecylmalonate )의 합성 (4)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-헥사데실말론산 (diethyl 2-hexadecylmalonate) (4)을 86%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.23-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 34H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 27.2, 22.9, 14.4.
<12-2> 테트라에틸 2,2'- (1,3-페닐렌비스(메틸렌))비스 (2- 헥사데실말론산 ) (tetraethyl 2,2'- (1,3-phenylenebis(methylene) ) bis (2- hexadecylmalonate ))의 합성 (9')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 m-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-헥사데실말론산) (tetraethyl 2,2'-(1,3-phenylenebis(methylene))bis(2-hexadecylmalonate)) (9') 를 80%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.12 (t, J = 7.6 Hz, 1H), 6.92-6.90 (m, 2H), 6.81 (s, 1H), 4.21-4.12 (m, 8H), 3.16 (s, 4H), 1.75-1.57 (m, 4H), 1.30-1.21 (m, 68H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.6, 136.4, 131.9, 128.6, 128.2, 61.3, 58.9, 32.1, 29.8, 29.6, 29.5, 22.9, 14.4, 14.3.
<12-3> 2,2'- (1,3-페닐렌비스(메틸렌))비스 (2- 헥사데실프로판 -1,3- 디올 ) (2,2'-(1,3-phenylenebis(methylene))bis(2-hexadecylpropane-1,3-diol))의 합성 (14')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-헥사데실프로판-1,3-디올) (2,2'-(1,3-phenylenebis(methylene))bis(2-hexadecylpropane-1,3-diol)) (14') 를 80%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.29 (s, 1H), 7.20 (t, J = 6.8 Hz, 1H), 6.99 (d, J = 7.2 Hz, 2H), 3.57 (d, J = 7.2 Hz, 4H), 3.45 (d, J = 7.2 Hz, 4H), 2.70 (s, 4H), 1.34-1.09 (m, 60H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 137.9, 133.5, 128.2, 127.8, 68.4, 43.0, 36.8, 32.2, 31.5, 30.8, 30.0, 29.9, 29.6, 23.2, 22.9, 14.4.
<12-4> M- XMA - C16a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 M- XMA -C16a 를 68%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.17 (d, J = 7.2 Hz, 4H), 8.09-7.96 (m, 24H), 7.89-7.82 (m, 20H), 7.75-7.72 (m, 8H), 7.57-7.19 (m, 84H), 6.87 (t, J = 7.2 Hz, 1H), 6.72-6.70 (m, 2H), 6.65 (s, 1H), 6.17-6.09 (m, 4H), 5.76-5.57 (m, 10H), 5.33-5.24 (m, 4H), 5.20-5.09 (m, 4H), 4.74-4.65 (m, 10H), 4.54-4.11 (m, 20H), 3.20 (d, J = 8.8 Hz, 2H), 3.11 (d, J = 8.8 Hz, 2H), 3.01 (d, J = 8.8 Hz, 2H), 2.81 (d, J = 8.8 Hz, 2H), 2.47 (d, J = 8.8 Hz, 2H), 2.30 (d, J = 8.8 Hz, 2H), 1.29-1.13 (m, 40H), 0.87 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.7, 166.0, 165.8, 165.5, 165.4, 165.2, 165.0, 164.9, 164.7, 135.9, 134.0, 133.6, 133.5, 133.3, 133.2, 132.9, 130.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 100.9, 100.6, 96.4, 95.4, 74.7, 72.3, 72.1, 71.9, 71.8, 71.4, 71.0, 70.1, 69.2, 68.9, 62.8, 62.5, 41.6, 32.1, 30.4, 30.0, 29.9, 29.8, 29.5, 22.8, 22.3, 14.3.
<12-5> M- XMA -C16의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 M- XMA -C16 92% 수득률로 합성하였다. 도 22에 1H NMR 스펙트럼 결과, 도 23에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400 MHz, CD3OD): δ 7.18 (s, 1H), 7.15-7.09 (m, 3H), 5.20-5.16 (m, 4H), 4.41-4.37 (m, 4H), 3.92-3.82 (m, 14H), 3.75-3.51 (m, 28H), 3.48-3.32 (m, 16H), 3.31-3.25 (m, 6H), 2.72 (d, J = 13.2 Hz, 2H), 2.59 (d, J = 13.2 Hz, 2H), 1.39-1.23 (m, 60H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 138.8, 129.8, 105.0, 103.1, 81.6, 78.1, 76.7, 75.2, 74.9, 74.4, 71.6, 62.9, 62.4, 43.7, 33.3, 31.9, 31.1, 31.0, 30.9, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C94H166O44 [M+Na]+ 2023.0684, found 2022.0645.
< 제조예 13> M- XMA -C18의 합성
<13-1> 디에틸 2-옥타데실말론산 (diethyl 2-octadecylmalonate)의 합성 (5)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-옥타데실말론산 (diethyl 2-octadecylmalonate) (5)을 88%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.23-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 38H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 27.2, 22.9, 14.4.
<13-2> 테트라에틸 2,2'- (1,3-페닐렌비스(메틸렌))비스 (2- 옥타데실말론산 ) (tetraethyl 2,2'-(1,3- phenylenebis(methylene))bis (2- octadecylmalonate ))의 합성 (10')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 m-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-옥타데실말론산) (tetraethyl 2,2'-(1,3-phenylenebis(methylene))bis(2-octadecylmalonate)) (10') 를 81%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.12 (t, J = 7.6 Hz, 1H), 6.92-6.90 (m, 2H), 6.81 (s, 1H), 4.21-4.12 (m, 8H), 3.16 (s, 4H), 1.75-1.57 (m, 4H), 1.30-1.21 (m, 76H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.6, 136.4, 131.9, 128.6, 128.2, 61.3, 58.9, 32.1, 29.8, 29.6, 29.5, 23.2, 22.9, 14.4, 14.3.
<13-3> 2,2'- (1,3-페닐렌비스(메틸렌))비스 (2- 옥타데실프로판 -1,3- 디올 ) (2,2'-(1,3-phenylenebis(methylene))bis(2-octadecylpropane-1,3-diol))의 합성 (15')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,3-페닐렌비스(메틸렌))비스(2-옥타데실프로판-1,3-디올) (2,2'-(1,3-phenylenebis(methylene))bis(2-octadecylpropane-1,3-diol)) (15') 를 75%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.29 (s, 1H), 7.20 (t, J = 6.8 Hz, 1H), 6.99 (d, J = 7.2 Hz, 2H), 3.57 (d, J = 7.2 Hz, 4H), 3.45 (d, J = 7.2 Hz, 4H), 2.70 (s, 4H), 1.34-1.09 (m, 68H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 137.9, 133.5, 128.2, 127.8, 68.4, 43.0, 36.8, 32.2, 31.5, 30.8, 30.0, 29.9, 29.6, 23.2, 22.9, 14.4, 14.2.
<13-4> M- XMA - C18a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 M- XMA -C18a 를 62%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.17 (d, J = 7.2 Hz, 4H), 8.09-7.96 (m, 24H), 7.89-7.82 (m, 20H), 7.75-7.72 (m, 8H), 7.57-7.19 (m, 84H), 6.87 (t, J = 7.2 Hz, 1H), 6.72-6.70 (m, 2H), 6.65 (s, 1H), 6.17-6.09 (m, 4H), 5.76-5.57 (m, 10H), 5.33-5.24 (m, 4H), 5.20-5.09 (m, 4H), 4.74-4.65 (m, 10H), 4.54-4.11 (m, 20H), 3.20 (d, J = 8.8 Hz, 2H), 3.11 (d, J = 8.8 Hz, 2H), 3.01 (d, J = 8.8 Hz, 2H), 2.81 (d, J = 8.8 Hz, 2H), 2.47 (d, J = 8.8 Hz, 2H), 2.30 (d, J = 8.8 Hz, 2H), 1.29-1.13 (m, 40H), 0.87 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.7, 166.0, 165.8, 165.5, 165.4, 165.2, 165.0, 164.9, 164.7, 135.9, 134.0, 133.6, 133.5, 133.3, 133.2, 132.9, 130.2, 130.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 100.9, 100.6, 96.4, 95.4, 74.7, 72.3, 72.1, 71.9, 71.8, 71.4, 71.0, 70.1, 69.2, 68.9, 62.8, 62.5, 41.6, 32.1, 30.4, 30.0, 29.9, 29.8, 29.5, 22.8, 22.3, 14.3.
<13-5> M- XMA -C18의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 M- XMA -C18 90% 수득률로 합성하였다. 도 24에 1H NMR 스펙트럼 결과, 도 25에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400 MHz, CD3OD + 1 % (CD3)2SO): δ 7.18 (s, 1H), 7.15-7.09 (m, 3H), 5.20-5.16 (m, 4H), 4.41-4.37 (m, 4H), 3.92-3.82 (m, 14H), 3.75-3.51 (m, 28H), 3.48-3.32 (m, 16H), 3.31-3.25 (m, 6H), 2.72 (d, J = 13.2 Hz, 2H), 2.59 (d, J = 13.2 Hz, 2H), 1.39-1.23 (m, 68H), 0.90 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CD3OD + 1 % (CD3)2SO): δ 138.8, 129.8, 105.0, 103.1, 81.6, 78.1, 76.7, 75.2, 74.9, 74.4, 71.6, 62.9, 62.4, 43.7, 33.3, 31.9, 31.1, 30.8, 31.0, 30.9, 30.7, 23.9, 14.7; HRMS (EI): calcd. for C98H174O44 [M+Na]+ 2079.1310, found 2079.1018.
< 제조예 14> O- XMA -C11의 합성
<14-1> 디에틸 2-운데실말론산 (diethyl 2-undecylmalonate)의 합성 (1)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-운데실말론산 (diethyl 2-undecylmalonate) (1)을 91%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.23-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.24 (m, 24H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.8, 61.5, 52.3, 33.1, 29.8, 29.7, 29.6, 29.4, 28.9, 27.5, 22.9, 14.3.
<14-2> 테트라에틸 2,2'- (1,2-페닐렌비스(메틸렌))비스(2-운데실말론산 ) (tetraethyl 2,2'- (1,2-phenylenebis(methylene) ) bis (2- undecylmalonate ))의 합성 (6'')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 o-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-운데실말론산) (tetraethyl 2,2'-(1,2-phenylenebis(methylene))bis(2-undecylmalonate)) (6'') 를 80%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.10-7.07 (m, 2H), 7.05-7.03 (m, 2H), 4.19-4.08 (m, 8H), 3.27 (s, 4H), 1.76-1.74 (m, 4H), 1.27-1.20 (m, 48H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.7, 135.9, 126.8, 61.3, 59.2, 33.9, 32.1, 30.0, 29.9, 29.8, 29.6, 24.6, 22.9, 14.2.
<14-3> 2,2'- (1,2-페닐렌비스(메틸렌))비스(2-운데실프로판 -1,3- 디올 ) (2,2'-(1,2-phenylenebis(methylene))bis(2-undecylpropane-1,3-diol))의 합성 (11'')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-운데실프로판-1,3-디올) (2,2'-(1,2-phenylenebis(methylene))bis(2-undecylpropane-1,3-diol)) (11'') 를 86%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.22-7.21 (m, 2H), 7.15-7.12 (m, 2H), 3.59-3.52 (m, 8H), 2.84 (s, 4H), 1.43-1.24 (m, 40H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 138.5, 124.7, 124.6, 66.9, 39.1, 35.9, 31.9, 31.2, 30.2, 29.6, 29.3, 22.7, 14.1.
<14-4> O- XMA - C11a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 O- XMA -C11a 를 68%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.02-7.96 (m, 27H), 7.93-7.91 (m, 4H), 7.89-7.86 (m, 8H), 7.83-7.77 (m, 8H), 7.76-7.74 (m, 8H), 7.67 (t, J = 7.2 Hz, 2H), 7.59 (t, J = 7.2 Hz, 2H), 7.54-7.24 (m, 81H), 7.13-7.11 (m, 2H), 6.54-6.52 (m, 2H), 6.18-6.11 (m, 4H), 5.75-5.63 (m, 8H), 5.37-5.30 (m, 4H), 5.26-5.20 (m, 4H), 5.17-5.13 (m, 4H), 4.66-4.15 (m, 32H), 3.39 (d, J = 8.8 Hz, 2H), 3.21 (d, J = 8.8 Hz, 2H), 2.87 (d, J = 8.8 Hz, 2H), 2.75 (d, J = 8.8 Hz, 2H), 2.24 (d, J = 8.8 Hz, 2H), 2.22 (d, J = 8.8 Hz, 2H), 1.27-1.07 (m, 40H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.2, 166.1, 166.0, 165.9, 165.7, 165.6, 165.3, 165.2, 164.9, 136.3, 133.9, 133.7, 133.6, 133.4, 133.3, 130.1, 129.9, 129.8, 129.6, 129.4, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 100.9, 96.1, 95.6, 74.8, 72.2, 72.0, 71.9, 71.6, 71.4, 69.9, 96.2, 69.1, 62.8, 62.7, 42.4, 32.1, 31.6, 30.8, 30.1, 30.0, 29.9, 29.7, 29.6, 23.7, 22.9, 14.3.
<14-5> O- XMA -C11의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 O- XMA -C11 96% 수득률로 합성하였다. 도 26에 1H NMR 스펙트럼 결과, 도 27에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400 MHz, CD3OD): δ 7.26-7.24 (m, 2H), 7.09-7.07 (m, 2H), 5.19-5.16 (m, 4H), 4.40-4.37 (m, 4H), 3.92-3.80 (m, 14H), 3.73-3.52 (m, 28H), 3.47-3.36 (m, 16H), 3.33-3.24 (m, 6H), 2.99 (d, J = 13.2 Hz, 2H), 2.75 (d, J = 13.2 Hz, 2H), 1.33-1.21 (m, 40H), 0.90 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 139.3, 132.9, 105.0, 104.9, 103.1, 81.7, 78.1, 76.6, 75.2, 75.0, 74.9, 74.3, 73.3, 72.9, 71.6, 67.1, 62.9, 62.6, 62.5, 44.4, 33.3, 32.9, 31.9, 31.0, 30.9, 30.7, 24.4, 23.9, 15.6, 14.7; HRMS (EI): calcd. for C84H146O44 [M+Na]+ 1881.9085, found 1881.9089.
< 제조예 15> O- XMA -C12의 합성
<15-1> 디에틸 2-도데실말론산 (diethyl 2-dodecylmalonate)의 합성 (2)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-도데실말론산 (diethyl 2-dodecylmalonate) (2)을 89%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.22-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 26H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 22.9, 14.4.
<15-2> 테트라에틸 2,2'- (1,2-페닐렌비스(메틸렌))비스(2-도데실말론산 ) (tetraethyl 2,2'- (1,2-phenylenebis(methylene) ) bis (2- dodecylmalonate ))의 합성 (7'')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 o-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-도데실말론산) (tetraethyl 2,2'-(1,2-phenylenebis(methylene))bis(2-dodecylmalonate)) (7'') 를 78%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.10-7.07 (m, 2H), 7.05-7.03 (m, 2H), 4.19-4.09 (m, 8H), 3.26 (s, 4H), 1.76-1.74 (m, 4H), 1.27-1.20 (m, 52H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.7, 135.9, 126.8, 61.3, 59.2, 33.9, 32.1, 30.0, 29.9, 29.8, 29.6, 24.6, 22.9, 14.4, 14.2.
<15-3> 2,2'- (1,2-페닐렌비스(메틸렌))비스(2-도데실프로판 -1,3- 디올 ) (2,2'-(1,2-phenylenebis(methylene))bis(2-dodecylpropane-1,3-diol))의 합성 (12'')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-도데실프로판-1,3-디올) (2,2'-(1,2-phenylenebis(methylene))bis(2-dodecylpropane-1,3-diol)) (12'') 를 83%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.10-7.07 (m, 2H), 7.05-7.03 (m, 2H), 4.19-4.09 (m, 8H), 3.26 (s, 4H), 1.76-1.74 (m, 4H), 1.27-1.20 (m, 52H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.7, 135.9, 126.8, 61.3, 59.2, 33.9, 32.1, 30.0, 29.9, 29.8, 29.6, 24.6, 22.9, 14.4, 14.2.
<15-4> O- XMA - C12a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 O- XMA -C12a 를 64%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 8.02-7.96 (m, 27H), 7.93-7.91 (m, 4H), 7.89-7.86 (m, 8H), 7.83-7.77 (m, 8H), 7.76-7.74 (m, 8H), 7.67 (t, J = 7.2 Hz, 2H), 7.59 (t, J = 7.2 Hz, 2H), 7.54-7.24 (m, 81H), 7.13-7.11 (m, 2H), 6.54-6.52 (m, 2H), 6.18-6.11 (m, 4H), 5.75-5.63 (m, 8H), 5.37-5.30 (m, 4H), 5.26-5.20 (m, 4H), 5.17-5.13 (m, 4H), 4.66-4.15 (m, 32H), 3.39 (d, J = 8.8 Hz, 2H), 3.21 (d, J = 8.8 Hz, 2H), 2.87 (d, J = 8.8 Hz, 2H), 2.75 (d, J = 8.8 Hz, 2H), 2.24 (d, J = 8.8 Hz, 2H), 2.22 (d, J = 8.8 Hz, 2H), 1.27-1.07 (m, 44H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 166.2, 166.1, 166.0, 165.9, 165.7, 165.6, 165.3, 165.2, 164.9, 136.3, 133.9, 133.7, 133.6, 133.4, 133.3, 130.1, 129.9, 129.8, 129.6, 129.4, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 100.9, 96.1, 95.6, 74.8, 72.2, 72.0, 71.9, 71.6, 71.4, 69.9, 96.2, 69.1, 62.8, 62.7, 42.4, 32.1, 31.6, 30.8, 30.1, 30.0, 29.9, 29.8, 29.6, 23.7, 22.9, 14.3.
<15-5> O- XMA -C12의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 O- XMA -C12 93% 수득률로 합성하였다. 도 28에 1H NMR 스펙트럼 결과, 도 29에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400 MHz, CD3OD): δ 7.26-7.24 (m, 2H), 7.09-7.07 (m, 2H), 5.20-5.16 (m, 4H), 4.41-4.37 (m, 4H), 3.92-3.81 (m, 14H), 3.73-3.52 (m, 28H), 3.47-3.36 (m, 16H), 3.33-3.24 (m, 6H), 3.00 (d, J = 13.2 Hz, 2H), 2.76 (d, J = 13.2 Hz, 2H), 1.34-1.21 (m, 44H), 0.90 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 139.3, 132.9, 126.6, 105.0, 104.9, 103.1, 81.7, 78.1, 76.6, 75.2, 75.0, 74.9, 74.3, 71.6, 62.9, 62.5, 44.4, 33.3, 32.9, 31.9, 31.0, 30.9, 30.7, 24.4, 23.9, 14.7; HRMS (EI): calcd. for C86H150O44 [M+Na]+ 1909.9398, found 1909.9406.
< 제조예 16> O- XMA -C14의 합성
<16-1> 디에틸 2- 테트라데실말론산 (diethyl 2- tetradecylmalonate )의 합성 (3)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-테트라데실말론산 (diethyl 2-tetradecylmalonate) (3)을 90%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.22-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 30H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 22.9, 14.4.
<16-2> 테트라에틸 2,2'- (1,2-페닐렌비스(메틸렌))비스 (2- 테트라데실말론산 ) (tetraethyl 2,2'- (1,2-phenylenebis(methylene) ) bis (2- tetradecylmalonate ))의 합성 (8'')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 o-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-테트라데실말론산) (tetraethyl 2,2'-(1,2-phenylenebis(methylene))bis(2-tetradecylmalonate)) (8'') 를 79%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.10-7.08 (m, 2H), 7.06-7.03 (m, 2H), 4.21-4.06 (m, 8H). 3.27 (s, 4H), 1.76-1.74 (m, 4H), 1.31-1.18 (m, 60H), 0.89 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.7, 135.9, 126.8, 61.3, 59.2, 33.9, 32.4, 32.1, 30.0, 29.9, 29.8, 29.6, 22.9, 14.4, 14.2.
<16-3> 2,2'- (1,2-페닐렌비스(메틸렌))비스 (2- 테트라데실프로판 -1,3- 디올 ) (2,2'-(1,2-phenylenebis(methylene))bis(2-tetradecylpropane-1,3-diol))의 합성 (13'')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-테트라데실프로판-1,3-디올) (2,2'-(1,2-phenylenebis(methylene))bis(2-tetradecylpropane-1,3-diol)) (13'') 를 84%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.22-7.21 (m, 2H), 7.15-7.12 (m, 2H), 3.59-3.52 (m, 8H), 2.84 (s, 4H), 1.43-1.24 (m, 52H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 138.5, 124.7, 124.6, 66.8, 39.1, 35.9, 31.9, 31.3, 30.2, 29.6, 29.3, 25.3, 22.7, 14.1.
<16-4> O- XMA - C14a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 O- XMA -C14a 를 65%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 8.02-7.96 (m, 27H), 7.93-7.91 (m, 4H), 7.89-7.86 (m, 8H), 7.83-7.77 (m, 8H), 7.76-7.74 (m, 8H), 7.67 (t, J = 7.2 Hz, 2H), 7.59 (t, J = 7.2 Hz, 2H), 7.54-7.24 (m, 81H), 7.13-7.11 (m, 2H), 6.54-6.52 (m, 2H), 6.18-6.11 (m, 4H), 5.75-5.63 (m, 8H), 5.37-5.30 (m, 4H), 5.26-5.20 (m, 4H), 5.17-5.13 (m, 4H), 4.66-4.15 (m, 32H), 3.39 (d, J = 8.8 Hz, 2H), 3.21 (d, J = 8.8 Hz, 2H), 2.87 (d, J = 8.8 Hz, 2H), 2.75 (d, J = 8.8 Hz, 2H), 2.24 (d, J = 8.8 Hz, 2H), 2.22 (d, J = 8.8 Hz, 2H), 1.27-1.07 (m, 52H), 0.88 (t, J = 7.2 Hz, 6H) ; 13C NMR (100MHz, CDCl3): δ 166.2, 166.1, 166.0, 165.9, 165.7, 165.6, 165.3, 165.2, 164.9, 136.3, 133.9, 133.7, 133.6, 133.4, 133.3, 130.1, 129.9, 129.8, 129.6, 129.4, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 100.9, 96.1, 95.6, 74.8, 72.2, 72.0, 71.9, 71.6, 71.4, 69.9, 96.2, 69.1, 62.8, 62.7, 42.4, 32.1, 31.6, 30.8, 30.1, 30.0, 29.9, 29.8, 29.6, 23.7, 22.9, 14.3.
<16-5> O- XMA -C14의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 O- XMA -C14 92% 수득률로 합성하였다. 도 30에 1H NMR 스펙트럼 결과, 도 31에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400MHz, CD3OD): δ 7.26-7.24 (m, 2H), 7.09-7.07 (m, 2H), 5.20-5.16 (m, 4H), 4.41-4.37 (m, 4H), 3.92-3.81 (m, 14H), 3.73-3.52 (m, 28H), 3.47-3.36 (m, 16H), 3.33-3.24 (m, 6H), 3.00 (d, J = 13.2 Hz, 2H), 2.76 (d, J = 13.2 Hz, 2H), 1.34-1.21 (m, 52H), 0.90 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 139.4, 126.6, 105.0, 104.9, 103.1, 81.7, 78.1, 76.7, 75.2, 75.0, 74.9, 74.3, 71.6, 62.9, 62.5, 44.4, 33.3, 31.9, 31.0, 30.9, 30.7, 24.4, 23.9, 14.7; HRMS (EI): calcd. for C90H158O44 [M+Na]+ 1967.0058, found 1967.0082.
< 제조예 17> O- XMA -C16의 합성
<17-1> 디에틸 2-헥사데실말론산 (diethyl 2-hexadecylmalonate)의 합성 (4)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-헥사데실말론산 (diethyl 2-hexadecylmalonate) (4)을 86%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.23-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 34H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 27.2, 22.9, 14.4.
<17-2> 테트라에틸 2,2'- (1,2-페닐렌비스(메틸렌))비스 (2- 헥사데실말론산 ) (tetraethyl 2,2'- (1,2-phenylenebis(methylene) ) bis (2- hexadecylmalonate ))의 합성 (9'')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 o-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-헥사데실말론산) (tetraethyl 2,2'-(1,2-phenylenebis(methylene))bis(2-hexadecylmalonate)) (9'') 를 75%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.10-7.07 (m, 2H), 7.05-7.03 (m, 2H), 4.19-4.08 (m, 8H), 3.27 (s, 4H), 1.76-1.74 (m, 4H), 1.27-1.20 (m, 68H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.7, 135.9, 126.8, 61.3, 59.2, 33.9, 32.1, 30.0, 29.9, 29.8, 29.6, 24.6, 22.9, 14.4, 14.2.
<17-3> 2,2'- (1,2-페닐렌비스(메틸렌))비스 (2- 헥사데실프로판 -1,3- 디올 ) (2,2'-(1,2-phenylenebis(methylene))bis(2-hexadecylpropane-1,3-diol))의 합성 (14'')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-헥사데실프로판-1,3-디올) (2,2'-(1,2-phenylenebis(methylene))bis(2-hexadecylpropane-1,3-diol)) (14'') 를 80%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.22-7.21 (m, 2H), 7.15-7.12 (m, 2H), 3.59-3.52 (m, 8H), 2.84 (s, 4H), 1.43-1.24 (m, 60H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 138.5, 124.7, 124.6, 66.8, 39.1, 35.8, 31.9, 31.2, 30.2, 29.6, 29.4, 25.2, 22.7, 14.1.
<17-4> O- XMA - C16a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 O- XMA -C16a 를 61%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.02-7.96 (m, 27H), 7.93-7.91 (m, 4H), 7.89-7.86 (m, 8H), 7.83-7.77 (m, 8H), 7.76-7.74 (m, 8H), 7.67 (t, J = 7.2 Hz, 2H), 7.59 (t, J = 7.2 Hz, 2H), 7.54-7.24 (m, 81H), 7.13-7.11 (m, 2H), 6.54-6.52 (m, 2H), 6.18-6.11 (m, 4H), 5.75-5.63 (m, 8H), 5.37-5.30 (m, 4H), 5.26-5.20 (m, 4H), 5.17-5.13 (m, 4H), 4.66-4.15 (m, 32H), 3.39 (d, J = 8.8 Hz, 2H), 3..21 (d, J = 8.8 Hz, 2H), 2.87 (d, J = 8.8 Hz, 2H), 2.75 (d, J = 8.8 Hz, 2H), 2.24 (d, J = 8.8 Hz, 2H), 2.22 (d, J = 8.8 Hz, 2H), 1.27-1.07 (m, 60H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100MHz, CDCl3): δ 166.2, 166.1, 166.0, 165.9, 165.7, 165.6, 165.3, 165.2, 164.9, 136.3, 133.9, 133.7, 133.6, 133.4, 133.3, 130.1, 129.9, 129.8, 129.6, 129.4, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 100.9, 96.1, 95.6, 74.8, 72.2, 72.0, 71.9, 71.6, 71.4, 69.9, 96.2, 69.1, 62.8, 62.7, 42.4, 32.1, 31.6, 30.8, 30.1, 30.0, 29.9, 29.8, 29.6, 23.7, 22.9, 14.3.
<17-5> O- XMA -C16의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 O- XMA -C16 94% 수득률로 합성하였다. 도 32에 1H NMR 스펙트럼 결과, 도 33에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400MHz, CD3OD): δ 7.26-7.24 (m, 2H), 7.09-7.07 (m, 2H), 5.20-5.16 (m, 4H), 4.41-4.37 (m, 4H), 3.92-3.81 (m, 14H), 3.73-3.52 (m, 28H), 3.47-3.36 (m, 16H), 3.33-3.24 (m, 6H), 3.00 (d, J = 13.2 Hz, 2H), 2.76 (d, J = 13.2 Hz, 2H), 1.34-1.21 (m, 52H), 0.90 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 139.3, 132.9, 105.0, 104.9, 103.1, 81.7, 78.1, 76.6, 75.2, 74.9, 74.3, 71.6, 62.9, 62.6, 44.4, 34.9, 33.3, 31.9, 31.0, 30.9, 30.7, 24.4, 23.9, 14.7; HRMS (EI): calcd. for C94H166O44 [M+Na]+ 2023.0684, found 2022.0647.
< 제조예 18> O- XMA -C18의 합성
<18-1> 디에틸 2-옥타데실말론산 (diethyl 2-octadecylmalonate)의 합성 (5)
실시예 2-1의 화합물 A 합성을 위한 일반적인 절차에 따라 디에틸 2-옥타데실말론산 (diethyl 2-octadecylmalonate) (5)을 88%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 4.23-4.16 (m, 4H), 3.31 (t, J = 7.6 Hz, 1H), 1.90-1.87 (m, 2H), 1.30-1.25 (m, 38H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 169.9, 61.5, 52.3, 32.1, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 28.9, 27.5, 27.2, 22.9, 14.4.
<18-2> 테트라에틸 2,2'- (1,2-페닐렌비스(메틸렌))비스 (2- 옥타데실말론산 ) (tetraethyl 2,2'- (1,2-phenylenebis(methylene) ) bis (2- octadecylmalonate ))의 합성 (10'')
실시예 2-2의 자일렌 연결고리를 도입하기 위한 일반적인 절차에 따라 o-자일렌 링커를 도입하여 테트라에틸 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-옥타데실말론산) (tetraethyl 2,2'-(1,2-phenylenebis(methylene))bis(2-octadecylmalonate)) (10'') 를 71%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.10-7.07 (m, 2H), 7.05-7.03 (m, 2H), 4.19-4.08 (m, 8H), 3.27 (s, 4H), 1.76-1.74 (m, 4H), 1.27-1.20 (m, 76H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 171.7, 135.9, 126.8, 61.3, 59.2, 33.9, 32.1, 30.0, 29.9, 29.8, 29.7, 29.6, 24.6, 22.9, 14.2.
<18-3> 2,2'- (1,2-페닐렌비스(메틸렌))비스 (2- 옥타데실프로판 -1,3- 디올 ) (2,2'-(1,2-phenylenebis(methylene))bis(2-octadecylpropane-1,3-diol))의 합성 (15'')
실시예 2-3의 LAH를 사용하여 ester를 환원하기 위한 일반적인 절차에 따라 2,2'-(1,2-페닐렌비스(메틸렌))비스(2-옥타데실프로판-1,3-디올) (2,2'-(1,2-phenylenebis(methylene))bis(2-octadecylpropane-1,3-diol)) (15'') 를 77%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 7.22-7.21 (m, 2H), 7.15-7.12 (m, 2H), 3.59-3.52 (m, 8H), 2.84 (s, 4H), 1.43-1.24 (m, 68H), 0.88 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 138.5, 124.7, 124.6, 66.8, 39.2, 35.9, 31.9, 31.2, 30.2, 29.6, 29.3, 25.2, 22.7, 14.1.
<18-4> O- XMA - C18a의 합성
실시예 2-4의 Glycosylation reaction을 위한 일반적인 절차에 따라 O- XMA -C18a 를 62%의 수득률로 합성하였다. 1H NMR (400MHz, CDCl3): δ 8.02-7.96 (m, 27H), 7.93-7.91 (m, 4H), 7.89-7.86 (m, 8H), 7.83-7.77 (m, 8H), 7.76-7.74 (m, 8H), 7.67 (t, J = 7.2 Hz, 2H), 7.59 (t, J = 7.2 Hz, 2H), 7.54-7.24 (m, 81H), 7.13-7.11 (m, 2H), 6.54-6.52 (m, 2H), 6.18-6.11 (m, 4H), 5.75-5.63 (m, 8H), 5.37-5.30 (m, 4H), 5.26-5.20 (m, 4H), 5.17-5.13 (m, 4H), 4.66-4.15 (m, 32H), 3.39 (d, J = 8.8 Hz, 2H), 3..21 (d, J = 8.8 Hz, 2H), 2.87 (d, J = 8.8 Hz, 2H), 2.75 (d, J = 8.8 Hz, 2H), 2.24 (d, J = 8.8 Hz, 2H), 2.22 (d, J = 8.8 Hz, 2H), 1.27-1.07 (m, 68H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (400MHz, CDCl3): δ 166.2, 166.1, 166.0, 165.9, 165.7, 165.6, 165.3, 165.2, 164.9, 136.3, 133.9, 133.7, 133.6, 133.4, 133.3, 130.1, 129.9, 129.8, 129.6, 129.4, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 100.9, 96.1, 95.6, 74.8, 72.2, 72.0, 71.9, 71.6, 71.4, 69.9, 96.2, 69.1, 62.8, 62.7, 42.4, 32.1, 31.6, 30.8, 30.1, 30.0, 29.9, 29.8, 29.6, 23.7, 22.9, 14.3.
<18-5> O- XMA -C18의 합성
실시예 2-5의 Deprotection reaction을 위한 일반적인 절차에 따라 O- XMA -C18 91% 수득률로 합성하였다. 도 34에 1H NMR 스펙트럼 결과, 도 35에 13C NMR 스펙트럼 결과를 나타내었다. 1H NMR (400MHz, CD3OD + 1 % (CD3)2SO): δ 7.27-7.25 (m, 2H), 7.09-7.07 (m, 2H), 5.19-5.16 (m, 4H), 4.40-4.37 (m, 4H), 3.91-3.81 (m, 14H), 3.72-3.51 (m, 28H), 3.46-3.34 (m, 16H), 3.30-3.23 (m, 6H), 2.98 (d, J = 13.2 Hz, 2H), 2.75 (d, J = 13.2 Hz, 2H), 1.34-1.23 (m, 52H), 0.90 (t, J = 7.2Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 139.3, 132.9, 105.0, 104.9, 103.0, 81.6, 78.1, 76.7, 75.2, 75.0, 74.9, 74.3, 73.2, 71.6, 62.8, 62.5, 44.4, 33.2, 31.9, 31.0, 30.9, 30.6, 23.9, 14.7; HRMS (EI): calcd. for C98H174O44 [M+Na]+ 2079.1310, found 2079.1541.
< 실시예 3> XMAs의 특성
상기 실시예 1의 합성 방법에 따라 합성된 제조예 1 내지 5의 P-XMAs, 그리고 실시예 2의 합성 방법에 따라 합성된 제조예 9 내지 18의 M-XMAs 및 O-XMAs의 특성을 확인하기 위하여, XMAs의 분자량(M.W.), 임계미셀농도(critical micellar concentration; CMC) 및 형성된 미셀의 유체역학적 반지름(hydrodynamic radii; Rh)을 측정하였다.
구체적으로, 임계미셀농도(CMC)는 형광 염색, 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용하여 측정하였고, 각각의 제제에 의해 형성된 미셀의 유체역학적 반지름(Rh)은 동적 광산란(dynamic light scattering; DLS) 실험을 통해 측정하였다. 측정된 결과를 기존의 양친매성 분자(detergent)인 DDM과 비교하여 표 1 및 표 2에 나타내었다.
Detergent M.W. CMC (μM) CMC (wt%) Rh (nm)
P-XMA-C8 1775.9 ~20 ~0.004 2.7 ± 0.04
P-XMA-C9 1803.9 ~10 ~0.002 3.2 ± 0.01
P-XMA-C10 1832.0 ~7 ~0.001 3.5 ± 0.01
P-XMA-C11 1860.0 ~3 ~0.0006 3.3 ± 0.03
P-XMA-C12 1888.1 ~1 ~0.0002 3.7 ± 0.01
DDM 510.1 ~170 ~0.0087 3.4 ± 0.02
Detergent M.W. CMC (μM) CMC (wt%) Rh (nm)
P-XMA-C11 1860.0 ~3.0 ~0.0006 3.3 ± 0.03
M-XMA-C11 1860.0 ~6.0 ~0.0011 3.2 ± 0.01
O-XMA-C11 1860.0 ~10 ~0.0019 3.0 ± 0.02
M-XMA-C12 1888.1 ~4.0 ~0.0008 3.4 ± 0.02
O-XMA-C12 1888.1 ~6.0 ~0.0011 3.2 ± 0.03
M-XMA-C14 1994.2 ~2.5 ~0.0005 3.6 ± 0.07
O-XMA-C14 1994.2 ~3.0 ~0.0006 3.5 ± 0.04
M-XMA-C16 2000.3 ~2.0 ~0.0004 3.9 ± 0.04
O-XMA-C16 2000.3 ~2.0 ~0.0004 3.9 ± 0.06
M-XMA-C18 2056.4 ~1.5 ~0.0003 4.1 ± 0.04
O-XMA-C18 2056.4 ~1.5 ~0.0003 3.9 ± 0.04
DDM 510.1 ~170 ~0.0087 3.4 ± 0.02
XMAs의 CMC 값은 1 내지 20 μM로 DDM이 170 μM인 것과 비교하여 더 작은 것으로 나타났다. 또한, 화합물의 알킬 사슬 길이가 증가함에 따라 CMC 값은 작아지는 경향을 보였는데, P-XMAs 중 가장 짧은 알킬 사슬을 가지는 P-XMA-C8은 ~20 μM (~0.004 wt%)의 CMC 값을 가지고, 가장 긴 알킬 사슬을 가지는 P-XMA-C12는 1 μM (~0.0002 wt%)의 CMC 값을 가지는 것으로 측정되었다. M-XMAs 및 O-XMAs의 CMC 값은 알킬 사슬 길이가 증가함에 따라 감소하는 경향이 있었다. 구체적으로, 가장 짧은 알킬 사슬을 갖는 O-XMA-C11은 가장 큰 값인 ~10 μM의 CMC 값을 가지고, 가장 긴 알킬 사슬을 갖는 O-XMA-C18은 가장 작은 값인 ~1.5 μM의 CMC 값을 가졌다. 이성질체 간의 비교에서, O-XMAs의 CMC 값은 M-XMAs의 CMC 값보다 약간 높았다. 따라서, XMAs는 적은 양으로도 미셀이 용이하게 형성되므로, DDM 보다 용해성이 좋음을 확인할 수 있었다.
P-XMAs에 의해 형성된 미셀의 크기는 알킬 사슬 길이에 따라 증가하는 경향을 보였다. 즉, 가장 작은 미셀 크기는 P-XMA-C8 (2.7 nm)이고, 가장 큰 미셀 크기는 P-XMA-C12 (3.7 nm)였다. 미셀 크기와 관련하여, P-XMA-C8 및 P-XMA-C9는 DDM보다 작았고, P-XMA-C10 및 P-XMA-C11은 DDM과 비슷했다. 또한, 더 긴 알킬 사슬을 갖는 M-/O-XMAs는 더 큰 미셀을 형성하였고, 이는 알킬 사슬 길이 변화에 따른 P-XMAs에 대한 실험 결과와 일치하였다. 이성질체 간의 비교에서, M-XMAs는 O-XMAs 보다 더 큰 미셀을 형성하는 경향이 있었다.
그러므로, M-XMAs는 O-XMAs와 비교하여 작은 CMC 값을 가지고, 큰 미셀을 형성하였다. P-XMAs는 더 작은 CMC 값을 가지고, 더 큰 미셀을 형성하는 경향이 있었다. 이성질체 XMAs 사이의 CMC 값(즉, 응집 경향) 및 미셀 크기에서의 차이점은 표적 막단백질에 대한 양친매성 화합물의 효율에서의 차이와 연관이 있는 것으로 생각되었다. DDM과 비교하여, 모든 XMA는 DDM 보다 더 작은 CMC 값을 가졌고, 미셀 크기는 알킬 사슬 길이에 따라 DDM의 미셀 크기보다 작거나 컸다.
한편, XMAs 미셀의 크기 분포를 측정해본 결과를 도 36 및 도 37에 나타내었다. P-XMA-C8 및 P-XMA-C9는 DDM과 같이 하나의 군집을 보여주었으나, P-XMA-C10, P-XMA-C11 및 P-XMA-C12는 서로 다른 반지름을 가지는 2개의 미셀 군집을 가졌다 (도 36). 2 세트의 미셀에 대한 개수 비율은 106 이상으로 추정되고, 이는 산란광 강도가 미셀 반지름의 6 제곱에 비례한다는 사실에 근거한다. 그러므로, P-XMA-C10, P-XMA-C11 또는 P-XMA-C12를 포함하는 양친매성 용액에는 더 작은 크기를 갖는 미셀의 세트가 거의 전적으로 존재한다. 또한, M-XMAs 및 O-XMAs는 크기와 관련하여 미셀 군집의 단일 세트를 보여주었고, 이는 높은 미셀 균질성을 나타낸다 (도 37).
이러한 결과로부터 본 발명의 XMAs는 DDM보다 낮은 CMC 값을 가져 적은 양으로도 미셀이 용이하게 형성되므로 자가조립경향성이 DDM 보다 훨씬 크며, XMAs에 의해 형성된 미셀의 크기가 DDM과 비슷하여 기존의 DDM과 분자의 기하학적 구조 측면에서 유사하다는 것을 확인할 수 있었다.
< 실시예 4> 본 발명에 따른 화합물의 막단백질 ( Bor1 ) 구조 안정화 능력 평가
P-XMAs에 의한 수용액에서의 Bor1 (Boron transporter) 구조 안정성을 측정하는 실험을 하였다. Bor1의 구조적 안정성은 CPM 검정을 활용하여 측정하였으며, P-XMAs와 DDM의 농도는 CMC + 0.04 wt% (a)와 CMC + 0.2 wt% (b)에서 접힌 단백질의 상대적인 양을 측정하여 양친매성 분자의 농도에 따른 Bor1 단백질 안정성을 조사하였다.
구체적으로, Bor1은 S. cerevisiae에서 C-terminal GFP-His tag를 가지는 융합 단백질로서 발현되었다. 모든 단계는 4 ℃에서 수행하였다. Bor1을 포함하는 멤브레인은 PBS (pH 7.4), 100 mM NaCl, 10% 글리세롤(glycerol)로 재현탁하고, 1% DDM에서 1시간 동안 가벼운 교반과 함께 용해화한 후, 200,000g로 45분 동안 초원심분리하였다. 상층액은 10 mM 이미다졸(imidazole)로 조정하고, 10 mM 이미다졸로 보충된 버퍼 A (PBS (pH 7.4), 100 mM NaCl, 10% 글리세롤, 0.03% DDM)로 전-평형된(pre-equilibrated) 2개의 5 ml Ni2 +-NTA 컬럼에 적용하였다. 컬럼은 30 mM 이미다졸로 보충된 버퍼 A 5CV로 세척하고, 50 mM 이미다졸로 보충된 버퍼 A 5 CV로 세척하고, 500 mM 이미다졸로 보충된 버퍼 A 용출시켰다. Bor1-GFP를 포함하는 분획물은 10% 글리세롤로 보충된 버퍼 B (20 mM Tris (pH 7.5), 150 mM NaCl, 0.03% DDM)에서 희석하고(1:10), GFP-His tag를 절단하기 위하여 등몰(equi-molar) 농도의 His-tagged TEV 프로테아제(protease)와 함께 밤새 배양했다. 샘플은 20 mM 이미다졸로 보충된 버퍼 B로 전-평형된 5 ml Ni2 +-NTA 컬럼에 적용하여 GFP-His tag 및 TEV로부터 Bor1을 분리하였다. Bor1을 포함하는 통과액은 원심 농축기를 이용하여 0.5 ml로 농축했다. 단백질은 버퍼 B로 전-평형된 Superdex 200 10/300 컬럼을 이용해 겔 여과 정제 단계를 거쳤다. Bor1은 원심 농축기를 이용하여 7 mg/ml로 농축했다. DMSO (Sigma)에 저장된 CPM dye(N-[4-(7-디에틸아미노)-4-메틸-3-쿠마리닐]페닐)말레이미드) (Invitrogen) 4 mg/ml은 0.03% DDM으로 보충된 시험 버퍼(20 mM Tris (pH 7.5), 150 mM NaCl)에서 희석했다. Nunc 96-well clear bottom plate에 CMC + 0.04 wt% 또는 CMC + 0.20 wt%의 P-XMAs 또는 DDM으로 보충된 시험 버퍼 150 ㎕를 로드했다. 3 ㎕ 희석된 CPM dye를 첨가하기 전에 각각의 well에 1 ㎕의 Bor1 (7 mg/ml)을 첨가했다. 깨끗한 plate 커버를 추가하고 각각의 well의 형광도를 40 ℃에서 120분 동안 모니터링했다.
도 38에 나타난 결과와 같이, 40 ℃에서 배양 2시간 후에 DDM에 녹아 있는 Bor1은 가장 불안정한 상태를 나타낸 반면, 각각의 P-XMA 용액에서는 구조가 변성된 단백질의 양이 상대적으로 적어 Bor1 단백질 안정화 효력을 제시하였다. 또한, CMC+0.04 wt% 및 CMC+0.2 wt% 의 농도에서 모든 P-XMAs가 DDM 보다 Bor1을 안정화시키는 능력이 우수했으며, 모든 P-XMAs가 비슷한 수준으로 단백질을 안정화시켰다.
이러한 결과로부터 P-XMAs는 기존의 DDM 보다 Bor1 구조 안정화 능력이 우수함을 알 수 있었다.
< 실시예 5> 본 발명에 따른 화합물의 막단백질 ( LeuT ) 구조 안정화 능력 평가
M-XMAs 또는 O-XMAs에 의한 LeuT 단백질의 구조 안정성을 측정하는 실험을 하였다. 각각의 양친매성 화합물은 CMC + 0.04 wt% (a) 또는 CMC + 0.2 wt% (b) 농도로 사용하였으며, LeuT의 리간드 결합 활성을 [3H]-Leu를 사용하여 SPA(scintillation proximity assay)를 통해 측정하였다. 측정은 상온에서 12일 인큐베이션 기간 동안 규칙적인 간격으로 수행하였다.
구체적으로, 호열성 박테리아 아퀴펙스 아에오리쿠스(Aquifex aeolicus) 유래 와일드 타입 LeuT (leucine transporter)를 이전에 설명된 방법에 의해 정제하였다 (G. Deckert 등의 Nature 1998, 392, 353-358). 요약하면, LeuT를 0.1 mg/ml 엠피실린(ampicillin)으로 보충된 용원성(lysogeny) 브로스(broth) 배지에서 배양된 E. coli C41 (DE3)에서 발현시켰다. 단백질 발현은 이소프로필 β-D-티오갈락토피라노사이드(thiogalactopyranoside)를 최종 농도 0.1 mM로 첨가함에 의해 유도하였다. 세포 멤브레인은 분쇄된 세포로부터 분리하였고 (Constant Systems Homogenizers, Kennesaw, GA), 1% (w/v) n-도데실-β-D-말토피라노사이드 (DDM; Affymetrix, Santa Clara, CA)에 용해화하였다. 용해화 후에, LeuT를 chelating Sepharose Fast Flow resin (GE Healthcare)에 고정시키고, 약 90~100% 순수 LeuT를 20 mM Tris-HCl (pH 7.5), 199 mM KCl, 1mM NaCl, 0.05%(w/v) DDM 및 300 mM 이미다졸(imidazole)에서 용리하였다. 그 후에, 정제된 LeuT (약 1.2 mg mL- 1)는 상기와 동등한 버퍼에서 DDM 및 이미다졸을 제외하고, M-XMAs 및 O-XMA를 최종 농도 CMC + 0.04% (w/v) 또는 CMC + 0.2% (w/v)로 보충된 버퍼로 10배 희석하였다. DDM 및 P-XMA-C11을 양성 대조군으로 사용하였다. 단백질 샘플은 상온에서 저장하고 지정된 시간에 단백질 활성을 SPA를 사용하여 [3H]-Leucine 결합을 측정함에 의하여 확인하였다. SPA는 450 mM NaCl을 함유하는 버퍼에 용해된 5μL의 각각의 단백질 샘플, 50 nM [3H]-Leucine 및 0.125 mg ml-1 copper chelate (His-Tag) YSi beads (Perkin Elmer, Denmark)로 전체 부피 100 μL에서 수행하였다. [3H]-Leucine 결합도는 MicroBeta liquid scintillation counter (Perkin Elmer)를 사용하여 측정하였다.
그 결과, M-XMA-C12 및 O-XMA-C12는 DDM과 비교하여 LeuT의 장기간 안정성에 관하여 실질적인 강화를 보여주었다. M-XMA-C12는 O-XMA-C12 보다 더 우수하였다. 다만, XMAs의 알킬 사슬 길이를 C12에서 C18까지 더 증가시킴에 따라 LeuT의 리간드 결합 활성이 감소하였으므로, XMA에서 C12 알킬 사슬 길이가 LeuT 단백질에 최적임을 알 수 있었다. 양친매성 화합물 농도를 CMC + 0.2 wt%로 증가시켰을 때에도 유사한 경향이 관찰되었다. C12 알킬 사슬을 갖는 XMAs (M-XMA-C12 및 O-XMA-C12)는 DDM 보다 LeuT의 리간드 결합 활성을 유지하는 데 더 우수하였고, M-XMA-C12는 O-XMA-C12 보다 전체적으로 더 우수한 성능을 가졌다 (도 39).
따라서, M-XMA-C12 및 O-XMA-C12는 DDM과 비교하여 LeuT의 리간드 결합 친화도를 보존하는 데 향상된 효율을 나타내었으므로, LeuT 단백질의 안정화에 탁월함을 확인할 수 있었다.
<실시예 6> 본 발명에 따른 화합물의 막단백질(MelB) 구조 안정화 능력 평가
XMAs에 의한 MelB(Salmonella typhimurium melibiose permease) 단백질의 구조 안정성을 측정하는 실험을 하였다. MelB 단백질을 XMAs와 DDM을 사용하여 멤브레인에서 추출 후, 추출된 단백질의 양과 그 구조를 SDS-PAGE와 웨스턴 블롯팅(Western Blotting)을 통해 분석하였다. 사용한 화합물의 농도는 1.5 wt%이며, 4개의 온도(0, 45, 55, 또는 65 ℃)에서 단백질을 추출하여 화합물의 단백질 추출 효율과 안정화 능력 두 가지 성능을 동시에 평가하였다. XMAs 또는 DDM을 처리하지 않은 멤브레인 샘플을 대조군(control)으로 사용하였다.
구체적으로, 본 발명자의 2010년 논문(P. S. Chae, et al., Nat. Methods 2010, 7, 1003-1008.)에 기재된 방법에 따라 DDM과 XMAs에 의한 MelBSt 안정성을 평가하였다. C-말단에 10-His tag를 가지는 wild-type MelB를 암호화하는 플라스미드 pK95△AHB/WT MelBSt/CH10 및 살모넬라 티피뮤리움 (Salmonella typhimurium) DW2 세포 (△melB 및 △lacZY)를 이용하여 단백질(MelBst)을 생산했다. A. S. Ethayathulla 등의 논문(Nat. Commun. 2014, 5, 3009)에 기재된 방법에 따라 세포 성장 및 멤브레인 준비를 수행했다. 단백질 검정은 Micro BCA 키트 (Thermo Scientific, Rockford, IL)로 수행했다. 용해화(solubilization)/안정성(stability)을 측정하기 위하여, MelBSt를 포함하는 멤브레인 샘플 (최종 단백질 농도는 10 mg/mL)을 용해화 버퍼 (20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10% 글리세롤, 20 mM melibiose) 및 1.5% (w/v) DDM, P-XMAs (P-XMA-C8, P-XMA-C9, P-XMA-C10, P-XMA-C11 및 P-XMA-C12), M-XMAs (M-XMA-C11, M-XMA-C12, M-XMA-C14, M-XMA-C16 및 M-XMA-C18) 또는 O-XMAs (O-XMA-C11, O-XMA-C12, O-XMA-C14, O-XMA-C16 및 O-XMA-C18)와 함께 4개의 다른 온도(0, 45, 55 및 65 ℃)에서 90분 동안 배양했다. 45분 동안 4 ℃에서 TLA-100 rotor를 이용하여 Beckman Optima™ MAX 초원심분리기로 355,590g에서 초원심분리한 후, 20 ㎍ 단백질을 SDS-16% PAGE에 의해 분리하고, 그 다음 Penta-His-HRP 항체 (Qiagen, Germantown, MD)로 면역블로팅했다. MelBst는 SuperSignal West Pico chemiluminescent 기질을 이용해 ImageQuant LAS 4000 Biomolecular Imager (GE Health Care Lifer Science)에 의해 측정했다.
도 40에 나타난 결과와 같이, DDM의 경우 0 및 45 ℃에서는 높은 단백질 추출 효율을 보여주었으나 55 ℃ 이상의 온도에서 용해된 단백질이 거의 관찰되지 않았다. 이는 DDM에 의해 추출된 MelBst가 온도가 높아짐에 따라 변성 또는 응집되어 용액 내에서 사라졌음을 의미한다. 그러나, P-XMA-C9, P-XMA-C10 및 P-XMA-C12는 45 ℃, 55 ℃ 온도에서 단백질 추출 효율이 증가하여 45 ℃에서는 DDM과 동등 수준으로 추출 효율을 보여주었으며, 55 ℃에서는 DDM 보다 MelBst 추출 능력이 우수하였다. 또한 65 ℃ 온도에서 DDM이 단백질을 추출하지 못하는 것과 달리 P-XMA-C10 및 P-XMA-C12는 MelBst를 추출하였다. 이러한 결과는 P-XMA-C9, P-XMA-C10 및 P-XMA-C12가 DDM 보다 MelBst의 안정화 능력이 더 우수함을 보여준다.
또한, 도 41 및 도 42에 나타난 결과와 같이, 0℃에서 긴 알킬 사슬을 갖는 M-XMAs (예를 들어, M-XMA-C16 및 M-XMA-C18)은 DDM과 거의 비슷한 수준의 단백질 추출 효율을 보여주었다. 그러나, M-XMAs와 O-XMAs는 P-XMA-C11 보다 우수하거나 비슷한 수준의 단백질 추출 효율을 보여주었다. M-XMAs와 O-XMAs는 양친매성 화합물 소수성기의 알킬 사슬 길이와 관련하여 서로 다른 경향을 나타내었다. MelB 용해화 효율은 M-XMAs의 알킬 사슬 길이가 증가함에 따라 증가하는 경향을 나타내었으나, O-XMAs의 알킬 사슬 길이가 증가함에 따라 감소하는 경향을 나타내었다. 온도를 45℃로 증가시켰을 때, 전체적인 경향은 0℃에서와 비슷하였다. 또한, 용해화 수율은 M-XMAs의 알킬 사슬 길이가 증가함에 따라 증가하는 경향을 나타낸 반면, O-XMAs의 경우에 알킬 사슬 길이가 증가함에 따라 감소하는 경향을 나타내었다. 온도를 55℃로 증가시켰을 때, DDM은 MelB의 용해화를 유지하는 데 실패하였는데, 이는 높은 온도에서 DDM으로 용해화된 단백질이 응집되거나 변성되었기 때문일 것이다. 반면에, M-XMA-C18 및 O-XMA-C18을 제외하고 모든 M-XMAs 및 O-XMAs는 MelB 용해화를 유지하는 능력을 가졌다. M-XMAs 중에, M-XMA-C14가 가장 효율적이었고, 약 70%의 용해화된 MelB를 보유하였다. M-XMA-C14의 MelB 용해성을 보유하는 능력은 온도 변화에 따라 크게 변화하지 않았으므로, 이 화합물은 막단백질 용해화 및 안정화에 효율적임을 알 수 있었다.
이러한 결과로부터 본 발명의 XMAs는 DDM 보다 MelB 단백질 안정화 능력이 우수하고, 45 ℃에서 DDM 만큼, 55 ℃에서는 DDM보다 우수한 MelB 단백질 추출 효율이 있음을 확인할 수 있었다. 특히 MelB 단백질의 안정화와 관련하여, M-XMA-C12 및 O-XMA-C11~C14가 최적의 알킬 사슬 길이임을 알 수 있었다.
< 실시예 6> 본 발명에 따른 화합물의 막단백질 ( β 2 AR ) 구조 안정화 능력 평가
XMAs에 의한 인간 β2 아드레날린성 수용체 (β2AR), G-단백질 연결 수용체(GPCR) 구조 안정성을 측정하는 실험을 하였다.
<6-1> Full agonist ( ISO ) 존재 유무 또는 ISO와 G-단백질 조합에 따라 XMAs와 DDM 미셀에 녹아 있는 mBBr - β 2 AR의 측정
Full agonist (ISO) 존재 유무 또는 ISO와 G-단백질 조합에 따른 P-XMA-C11와 DDM에 의한 mBBr-β2AR 구조적 변화 및 그 구조적 안정성을 측정하는 실험을 하였다.
구체적으로, 0.1% DDM에 용해된 β2AR을 D. M. Rosenbaum 등의 논문(Science 2007, 318, 1266-1273.)에 기재된 방법에 따라 정제한 다음, 약 1 mg/ml으로 농축했다. 0.1% DDM에 50 μM로 용해된 0.5 ㎕ 비리간드 상태의 BI(agonist)-결합된 monobromobimane (mBB)-라벨된 β2AR를 500 ㎕의 0.04+CMC % P-XMA-C11 또는 P-XMA-C12 버퍼 (최종적으로 50 nM 수용체)로 희석하였다. 30분 동안 배양하고 mBBr 스펙트럼을 측정하여, 0.1% DDM에 용해된 mBB-라벨된 수용체의 스펙트럼과 비교하였다. mBBr-β2AR 형광은 370 nm에서 측정되었고, 결과는 430 내지 510 nm 방출을 1-nm 단위에서 1nm s-1로 Spex FluoroMax-3 분광기(Jobin Yvon Inc.)를 이용하여 측정하였고, 광자계수 모드 설정은 4-nm 방출 대역폭 통과로 하였다. DDM에 용해된 mBBR이 양성 대조군(positive control)으로 사용되었다.
한편, G 단백질 커플링 시험은 다음과 같은 방법을 이용했다. Monobromobimane (mBBr)-라벨된 β2AR (주로 Cys265에서)를 사용하여 TM6(Transmembrane helix 6) 근처의 국부 구조적 변화에 의해 영향받는 형광의 변화를 측정하였다. 이는 S. E. Mansoor 등의 방법(Biochemistry 2002, 41, 2475-2484.)에 따랐다. 50 μM의 비리간드 mBBr-라벨된 수용체 0.5 ㎕을 500 ㎕ 20xCMC P-XMA-C11 또는 P-XMA-C12 버퍼 (최종적으로 50 nM 수용체)로 10분 동안 RT에서 희석시켰다. 그리고 2 μM 이소프레오테레놀 (Isopreoterenol; ISO)을 첨가하고 다시 10분 동안 배양하였다. 250 nM Gs를 추가적으로 첨가하고 RT에서 15분 배양한 후, mBB-β2AR 형광을 측정하였다.
도 43a에 나타난 결과와 같이, full agonist인 이소프레오테레놀 (ISO)이 존재할 때 P-XMA-C11 또는 P-XMA-C12에 의해 용해된 수용체의 bimane 스펙트럼은 DDM에 의해 용해된 수용체의 스펙트럼과 유사했다. 그리고 P-XMA-C11에 의해 용해된 수용체/G-단백질 복합체의 bimane 스펙트럼은 DDM에 의해 용해된 복합체의 스펙트럼과 유사했다. 또한 P-XMA-C12로 용해된 수용체의 경우에도 유사한 경향이 관찰되었다(도 44).
이 결과는 P-XMA-C11 및 P-XMA-C12가 G-단백질 커플링에 의한 수용체 활성화에 잘 기능하고 있음을 나타낸다. 이와 같은 형광 강도의 감소 및 최대 방출 파장의 변화는 ISO 및 G-단백질의 결합에 의해 발생하는 비활성으로부터 활성 상태로의 구조적 변화를 의미하며, 이는 P-XMA-C11 또는 P-XMA-C12에 녹아있는 β2AR의 구조가 세포막에 존재하는 수용체와 비슷한 양상으로 거동함을 시사한다.
<6-2> CMC 이하의 농도에서 mBBr - β 2 AR의 측정
양친매성 분자의 CMC 이하 농도에서 XMAs와 DDM의 단백질 구조 변화를 비교하기 위한 실험을 하였다.
구체적으로, 20 x CMC 농도의 P-XMA-C11 또는 P-XMA-C12에 50 μM로 용해된 0.5 ㎕ 비리간드 mBB-라벨된 수용체를 500 ㎕ NH 버퍼 (20 mM HEPES pH 7.5, 100 mM NaCl)로 희석했다. 단백질은 30분 동안 배양하고, mBBr 스펙트럼을 측정했다. 0.1% DDM에 용해된 수용체가 NH 버퍼로 희석되어 컨트롤(control)로 사용되었다.
도 43b에 나타난 결과와 같이, DDM으로 용해된 β2AR은 희석에 의해 명백한 구조적 변화를 보여준 반면, P-XMA-C11 또는 P-XMA-C12로 용해된 수용체는 적은 구조적 변화를 보여주었다.
이러한 결과로부터 P-XMA-C11 또는 P-XMA-C12는 DDM과 비교하여 그 CMC 이하의 낮은 농도에서도 β2AR 단백질의 구조 안정성이 우수함을 확인할 수 있었고, 이는 CMC 이하의 조건 하에서 이 양친매성 분자들이 수용체에서 분리되는 속도가 느림을 의미한다.
<6-3> 방사성 리간드 결합 시험을 이용한 mBBr - β 2 AR의 리간드( DHA ) 결합 활성 측정
DDM 또는 XMAs에 의해 정제된 수용체(mBBr-β2AR) 활성도를 [3H]-디하이드로알프레놀올 ([3H]-DHA)의 결합에 의해 측정하였다.
구체적으로, 방사성 리간드 결합 시험은 다음과 같은 방법을 이용하였다. β2AR는 0.1% DDM 존재 하에 정제되었다. 2 mM CaCl2 의 존재 하에 M1 Flag 컬럼에 재로딩한 후에, DDM (0.1%)-XMA (0.2%) 버퍼 혼합물을 50:50, 20:80, 10:90, 5:95 및 0:100 비율로 제조했다. 수용체는 5 mM EDTA 및 0.2 mg/ml free Flag 펩티드로 20xCMC XMA에서 용출시켰다. DDM, P-XMA-C11, P-XMA-C12, M-XMAs 또는 O-XMAs에 용해된 0.1 pmol의 정제된 β2AR은 10 nM의 방사성 DHA [3H]-Dihydroalprenolol (DHA)로 30분 동안 실온에서 배양했다. 혼합물을 G-50 컬럼에 로딩하고, 통과액을 바인딩 버퍼 (0.5 mg/ml BSA로 보충된 20 mM HEPES pH 7.5, 100 mM NaCl)로 수집하고, 그리고 15 ml 섬광 유체(scintillation fluid)로 채웠다. 수용체-결합된 [3H]DHA는 섬광 카운터 (Beckman)으로 측정했다. [3H]-DHA의 비특이적 결합은 같은 결합 반응에서 1 μM의 alprenolol (Sigma)를 첨가함으로써 측정하였다. [3H]-DHA의 결합도는 컬럼 그래프로 측정되었다.
도 43c에 나타난 결과와 같이, P-XMA-C11 또는 P-XMA-C12에 의해 정제된 수용체는 DDM으로 정제된 수용체와 유사한 방사성-리간드 결합도를 가졌다. 이는 이 XMAs 양친매성 분자들이 이 수용체를 둘러싸고 있는 DDM 분자들과 자리바꿈하는 과정에서 이 수용체의 활성도를 잘 유지하고 있음을 의미한다.
또한, 도 45에 나타난 결과와 같이, M-XMA-C11은 P-XMA-C11 보다 우수한 방사성-리간드 결합도를 가졌다. 양친매성 분자의 알킬 사슬 길이를 C11에서 C12로 증가시켰을 때, 양친매성 분자의 효력이 더욱 증가하였다. 수용체의 리간드 결합 활성을 유지하는 데 있어서 O-XMA-C12 보다 M-XMA-C12가 더 우수하였고, 이는 DDM과 비슷한 수준의 효력이었다. M-XMAs에서 알킬 사슬 길이를 C18까지 증가시킴에 따라, 양친매성 화합물의 효력은 감소하였다. 즉, M-XMAs에서, C12 알킬 사슬 길이가 수용체 활성을 유지하는 데 최적임을 알 수 있었고, 이는 LeuT에 대한 결과와 일치하였다. O-XMAs은 M-XMAs와 차이가 있었는데, O-XMAs는 알킬 사슬 길이 변화에 따른 수용체 활성 유지 효력의 변화가 적었다. 이와 같이 알킬 사슬 길이에 따른 M-XMAs와 O-XMAs 효력에서의 서로 다른 경향은 서로 다른 기하학적 구조 때문에 표적 막단백질에 대한 결합에 미치는 영향이 다르기 때문일 것으로 예상된다.
이러한 결과로부터 P-XMA-C11, P-XMA-C12, M-XMA-C11, M-XMA-C12, O-XMAs는 β2AR 연구에 가장 많이 이용되는 DDM의 대체제로 사용될 수 있음을 알 수 있었다.

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2016003929-appb-I000025
    상기 화학식 1에서,
    상기 A2의 위치는 A1에 대하여 오쏘(ortho), 메타(meta) 또는 파라(para)이고;
    상기 A1 및 A2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2로 표시되고;
    [화학식 2]
    Figure PCTKR2016003929-appb-I000026
    상기 R1은 치환 또는 비치환된 C3-C26의 알킬기, 치환 또는 비치환된 C3-C26의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C26의 아릴기이고;
    상기 X1 및 X2는 각각 독립적으로 산소로 연결된 당류(saccharide)이고; 그리고
    상기 화학식 2의 *은 화학식 1의 코어구조에 연결되는 부분이다.
  2. 제 1항에 있어서, 상기 당류는 단당류(monosaccharide) 또는 이당류(disaccharide)인 화합물.
  3. 제 1항에 있어서, 상기 당류는 글루코스(glucose) 또는 말토오스(maltose)인 화합물.
  4. 제 1항에 있어서, 상기 A1 및 A2는 서로 동일하고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 말토오스(maltose)인 화합물.
  5. 제 1항에 있어서, 상기 A1 및 A2는 서로 동일하고; 상기 R1은 치환 또는 비치환된 C3-C26의 알킬기이고; 그리고 상기 X1 및 X2는 산소로 연결된 글루코스(glucose)인 화합물.
  6. 제 1항에 있어서, 상기 화합물은 하기 화학식 3 내지 20 중 하나인 화합물:
    [화학식 3]
    Figure PCTKR2016003929-appb-I000027
    [화학식 4]
    Figure PCTKR2016003929-appb-I000028
    [화학식 5]
    Figure PCTKR2016003929-appb-I000029
    [화학식 6]
    Figure PCTKR2016003929-appb-I000030
    [화학식 7]
    Figure PCTKR2016003929-appb-I000031
    [화학식 8]
    Figure PCTKR2016003929-appb-I000032
    [화학식 9]
    Figure PCTKR2016003929-appb-I000033
    [화학식 10]
    Figure PCTKR2016003929-appb-I000034
    [화학식 11]
    Figure PCTKR2016003929-appb-I000035
    [화학식 12]
    Figure PCTKR2016003929-appb-I000036
    [화학식 13]
    Figure PCTKR2016003929-appb-I000037
    [화학식 14]
    Figure PCTKR2016003929-appb-I000038
    [화학식 15]
    Figure PCTKR2016003929-appb-I000039
    [화학식 16]
    Figure PCTKR2016003929-appb-I000040
    [화학식 17]
    Figure PCTKR2016003929-appb-I000041
    [화학식 18]
    Figure PCTKR2016003929-appb-I000042
    [화학식 19]
    Figure PCTKR2016003929-appb-I000043
    [화학식 20]
    Figure PCTKR2016003929-appb-I000044
  7. 제 1항에 있어서, 상기 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하기 위한 양친매성 분자인 화합물.
  8. 제 1항에 있어서, 상기 화합물은 수용액에서 임계 미셀 농도(CMC)가 0.1 내지 1000 μM인 화합물.
  9. 제 1항에 따른 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물.
  10. 제 9항에 있어서, 상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것인 조성물.
  11. 1) 디에틸말론산(diethyl malonate)에 모노알킬레이션(monoalkylation) 반응을 수행하여 알킬기를 도입하는 단계;
    2) 상기 단계 1)의 생성물을 비스(브로모메틸)벤젠과 커플링하여 자일렌(xylene) 연결고리를 도입하는 단계;
    3) 상기 단계 2)의 생성물의 에스터 작용기를 알코올 작용기로 환원시키는 단계;
    4) 상기 단계 3)의 생성물에 글리코실레이션(glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
    5) 상기 단계 4)의 생성물에 탈보호기화(deprotection) 반응을 수행하는 단계;를 포함하는 하기 화학식 1로 표시되는 화합물의 제조 방법:
    [화학식 1]
    Figure PCTKR2016003929-appb-I000045
    상기 화학식 1에서,
    상기 A2의 위치는 A1에 대하여 오쏘(ortho), 메타(meta) 또는 파라(para)이고;
    상기 A1 및 A2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2로 표시되고;
    [화학식 2]
    Figure PCTKR2016003929-appb-I000046
    상기 R1은 치환 또는 비치환된 C3-C26의 알킬기, 치환 또는 비치환된 C3-C26의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C26의 아릴기이고;
    상기 X1 및 X2는 각각 독립적으로 산소로 연결된 당류(saccharide)이고; 그리고
    상기 화학식 2의 *은 화학식 1의 코어구조에 연결되는 부분이다.
  12. 수용액에서 하기 화학식 1로 표시되는 화합물을 막단백질에 처리하는 단계를 포함하는, 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법:
    [화학식 1]
    Figure PCTKR2016003929-appb-I000047
    상기 화학식 1에서,
    상기 A2의 위치는 A1에 대하여 오쏘(ortho), 메타(meta) 또는 파라(para)이고;
    상기 A1 및 A2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2로 표시되고;
    [화학식 2]
    Figure PCTKR2016003929-appb-I000048
    상기 R1은 치환 또는 비치환된 C3-C26의 알킬기, 치환 또는 비치환된 C3-C26의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C26의 아릴기이고;
    상기 X1 및 X2는 각각 독립적으로 산소로 연결된 당류(saccharide)이고; 그리고
    상기 화학식 2의 *은 화학식 1의 코어구조에 연결되는 부분이다.
  13. 제 12항에 있어서, 상기 막단백질은 Bor1 (Boron transporter), LeuT (Leucine transporter), MelB (Melibiose permease), β2AR (human β2 adrenergic receptor), 또는 이들의 2 이상의 조합인 방법.
PCT/KR2016/003929 2015-09-03 2016-04-15 새로운 자일렌 기반의 양친매성 화합물 및 이의 활용 WO2017039107A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2997394A CA2997394C (en) 2015-09-03 2016-04-15 Novel xylene-based amphiphilic compound and use thereof
US15/757,005 US10647738B2 (en) 2015-09-03 2016-04-15 Xylene-based amphiphilic compound and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150124705 2015-09-03
KR10-2015-0124705 2015-09-03
KR10-2016-0045394 2016-04-14
KR1020160045394A KR101781929B1 (ko) 2015-09-03 2016-04-14 새로운 자일렌 기반의 양친매성 화합물 및 이의 활용

Publications (1)

Publication Number Publication Date
WO2017039107A1 true WO2017039107A1 (ko) 2017-03-09

Family

ID=58187889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003929 WO2017039107A1 (ko) 2015-09-03 2016-04-15 새로운 자일렌 기반의 양친매성 화합물 및 이의 활용

Country Status (1)

Country Link
WO (1) WO2017039107A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090270598A1 (en) * 2008-04-08 2009-10-29 Warf - Wisconsin Alumni Research Foundation Amphiphiles for protein solubilization and stabilization
WO2014182710A1 (en) * 2013-05-06 2014-11-13 The Regents Of The University Of Minnesota Sugar containing, amphiphilic copolymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090270598A1 (en) * 2008-04-08 2009-10-29 Warf - Wisconsin Alumni Research Foundation Amphiphiles for protein solubilization and stabilization
WO2014182710A1 (en) * 2013-05-06 2014-11-13 The Regents Of The University Of Minnesota Sugar containing, amphiphilic copolymers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHAE, P. S. ET AL.: "A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins", CHEMISTRY-A EUROPEAN JOURNAL, vol. 18, no. 31, 22 June 2012 (2012-06-22), pages 9485 - 9490, XP055377703 *
CHAE, P. S. ET AL.: "Maltose-neopentyl Glycol (MNG) Amphiphiles for Solubilization, Stabilization and Crystallization of Membrane Proteins", NATURE METHODS, vol. 7, no. 12, 31 October 2010 (2010-10-31), pages 1003 - 1008, XP055377701 *
CHAE, P. S. ET AL.: "Tandem Facial Amphiphiles for Membrane Protein Stabilization", J. AM. CHEM. SOC., vol. 132, no. 47, 4 November 2010 (2010-11-04), pages 16750 - 16752, XP055377702 *
CHO, K. H. ET AL.: "Novel Benzene-centered Maltoside Amphihiles (BMAs) for Membrane Protein Study", 115TH GENERAL MEETING AND CONFERENCE OF THE KOREAN CHEMICAL SOCIETY, vol. 55, no. 4, 15 April 2015 (2015-04-15) *
CHO, K. H. ET AL.: "Novel Xylene-linked. Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation", CHEMISTRY-A EUROPEAN JOURNAL, vol. 21, no. 28, 26 May 2015 (2015-05-26), pages 10008 - 10013, XP055377704 *

Similar Documents

Publication Publication Date Title
WO2017010852A1 (ko) 염료 화합물
WO2012161518A2 (ko) RORα의 활성자로서의 신규한 thiourea 유도체 및 이를 함유하는 약학적 조성물
WO2021137646A1 (ko) 피롤로벤조디아제핀 유도체 및 이의 리간드-링커 접합체
WO2010120013A1 (ko) 신규한 로다민 유도체 및 이를 포함한 차아염소산 검출 센서
WO2013048177A2 (ko) 셀레노펜-접합 방향족 화합물, 및 이의 제조 방법
WO2015111864A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021118318A2 (ko) 신규한 인돌 유도체 및 이의 용도
WO2018062978A1 (ko) 신규 헤테로아릴 화합물, 이의 거울상 이성질체, 부분 입체 이성질체 또는 약학적으로 허용가능한 염, 및 이를 유효성분으로 함유하는 항바이러스용 조성물
WO2018190452A1 (ko) 새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용
WO2020101382A1 (en) Novel compound as protein kinase inhibitor, and pharmaceutical composition comprising thereof
WO2017104897A1 (ko) 새로운 트리스 또는 네오펜틸 글리콜 기반의 양친매성 화합물 및 이의 활용
WO2017179945A1 (ko) 새로운 오당류 친수성기를 가지는 양친매성 화합물 및 이의 활용
WO2018030602A1 (ko) 새로운 뷰테인-테트라올 기반의 양친매성 화합물 및 이의 활용
WO2017039107A1 (ko) 새로운 자일렌 기반의 양친매성 화합물 및 이의 활용
WO2017043703A1 (ko) 새로운 만니톨 기반의 양친매성 화합물 및 이의 활용
WO2018079951A2 (ko) 새로운 레졸신아렌 기반의 양친매성 화합물 및 이의 활용
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2009093872A2 (ko) 신규한 디아민 화합물 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 암 치료용 약학 조성물
WO2018012669A1 (en) Novel mesitylene-cored amphiphiles and uses thereof
WO2021075904A1 (ko) 새로운 트라이아진 기반의 양친매성 화합물 및 이의 활용
WO2021225233A1 (ko) 혈관 누출 차단제 화합물의 신규 결정형
WO2019074171A1 (ko) 덴드로닉 소수성기를 갖는 새로운 양친매성 화합물 및 이의 활용
WO2019147092A1 (ko) 스핑고신-1-포스페이트 유사체 및 이의 합성 방법
WO2021096314A1 (ko) 신규한 벤즈이미다졸 유도체 및 이의 용도
WO2020036329A1 (ko) 미토콘드리아 내 nad(p)h 검출을 위한 형광 프로브 및 이를 이용한 검출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2997394

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15757005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842073

Country of ref document: EP

Kind code of ref document: A1