WO2018190452A1 - 새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용 - Google Patents

새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용 Download PDF

Info

Publication number
WO2018190452A1
WO2018190452A1 PCT/KR2017/004258 KR2017004258W WO2018190452A1 WO 2018190452 A1 WO2018190452 A1 WO 2018190452A1 KR 2017004258 W KR2017004258 W KR 2017004258W WO 2018190452 A1 WO2018190452 A1 WO 2018190452A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
unsubstituted
substituted
tmg
Prior art date
Application number
PCT/KR2017/004258
Other languages
English (en)
French (fr)
Inventor
채필석
후세인하즈랏
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to US16/604,168 priority Critical patent/US10808003B2/en
Priority to CA3058892A priority patent/CA3058892C/en
Publication of WO2018190452A1 publication Critical patent/WO2018190452A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/14Acyclic radicals, not substituted by cyclic structures attached to a sulfur, selenium or tellurium atom of a saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1136General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by reversible modification of the secondary, tertiary or quarternary structure, e.g. using denaturating or stabilising agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • C07K1/306Extraction; Separation; Purification by precipitation by crystallization
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels

Definitions

  • the present invention relates to a newly developed tandem malonate-based amphiphilic molecule, a method for preparing the same, and a method for extracting, solubilizing, stabilizing, crystallizing or analyzing a membrane protein using the same.
  • Membrane proteins play an important role in biological systems. Since these bio-macromolecules contain hydrophilic and hydrophobic moieties, amphiphilic molecules are required to extract membrane proteins from cell membranes and to solubilize and stabilize them in aqueous solutions.
  • membrane protein crystals For the structural analysis of membrane proteins, it is necessary to obtain high-quality membrane protein crystals, which requires the structural stability of membrane proteins in aqueous solution.
  • amphiphilic molecules There are more than 100 existing amphiphilic molecules that have been used for membrane protein research, but only about 5 of them have been actively used for membrane protein structure research.
  • n-octyl- ⁇ -D-glucopyranoside OG
  • NG n-nonyl- ⁇ -D-glucopyranoside
  • DM n-decyl- ⁇ -D-maltopyranoside
  • DDM n- dodecyl- ⁇ -D-maltopyranoside
  • LDAO laauryldimethylamine- N- oxide
  • membrane proteins surrounded by these molecules have significant limitations in studying the function and structure of membrane proteins utilizing these molecules because their structure is easily denatured or aggregated and tends to lose their function quickly. This is because conventional molecules do not exhibit various characteristics due to their simple chemical structure.
  • amphiphilic molecules containing glucoside as a hydrophilic group in the structural analysis through the crystallization of the membrane protein although the overall decrease in membrane protein stabilization ability compared with the molecules containing maltoside, It is widely used for structural analysis through crystallization.
  • OG and NG generally have significantly less membrane protein stabilization ability than DDM, but are still widely used in membrane protein structure studies. Therefore, if the amphiphilic molecules including glucoside can be greatly improved the membrane protein stabilization ability will be widely used in determining the membrane protein structure.
  • amphiphilic molecules with glucose as a hydrophilic group have many limitations because they are not excellent for stabilizing membrane proteins.
  • the present inventors have developed amphiphilic molecules in which hydrophobic groups and hydrophilic groups have been introduced into tandem malonate core structures, and completed the present invention by confirming excellent membrane protein stabilization properties of the compounds.
  • Non-Patent Document 1 S. Newstead et al., Protein Sci . 17 (2008) 466-472.
  • Non-Patent Document 2 S. Newstead et al., Mol . Membr . Biol . 25 (2008) 631-638.
  • Non-Patent Document 3 PS Chae et al., Chem . Commun . 49 , (2013), 2287-2289.
  • An object of the present invention is to provide a compound represented by the formula (1).
  • Another object of the present invention is to provide a composition for extraction, solubilization, stabilization, crystallization or analysis of a membrane protein comprising the compound.
  • Another object of the present invention is to provide a method for preparing the compound.
  • Still another object of the present invention is to provide a method for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins using the compounds.
  • One embodiment of the present invention provides a compound represented by Formula 1:
  • R 1 and R 2 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or unsubstituted C 3 -C 30 aryl group Or an organic group comprising a steroid backbone;
  • X 1 to X 4 may be a saccharide
  • Y 1 and Y 2 may be CH 2 , O or S;
  • Z may be CH 2 or S.
  • saccharide refers to a compound that is relatively small molecule in carbohydrates and is sweet in water. Sugars are classified into monosaccharides, disaccharides and polysaccharides according to the number of molecules constituting the sugar.
  • the sugars used in the above embodiments may be monosaccharides or disaccharides, and specifically, may be glucose or maltose, but are not limited thereto.
  • the saccharide may act as a hydrophilic group.
  • Compound according to an embodiment of the present invention by connecting four hydrophilic groups of saccharides in parallel to increase the size of the hydrophilic group while minimizing the increase in length to reduce the size when forming a complex with the membrane protein. If the complex of the compound with the membrane protein is small, high quality membrane protein crystals can be obtained (GG Prive, Methods 2007, 41, 388-397).
  • R 1 to R 2 may act as a hydrophobic group.
  • the compound according to one embodiment of the present invention introduced two hydrophobic groups in order to optimize the hydrophile-lipophile balance (hydrophile-lipophile balance).
  • the compound according to one embodiment of the present invention may have a tandem malonate linker as a central structure. That is, the compound is an amphiphilic molecule in which four hydrophilic groups and two hydrophobic groups are introduced using tandem malonate as a center structure, and may have excellent performance in membrane protein stabilization and crystallization.
  • R 1 and R 2 may each independently be an organic group including a substituted or unsubstituted C 3 -C 30 alkyl group or steroid skeleton; And X 1 to X 4 may be glucose or maltose; Y 1 and Y 2 may be CH 2 , O or S; And Z may be CH 2 or S.
  • TMGs / TMMs tandem malonate-based glucosides / maltosides
  • R 1 and R 2 may be each independently a substituted or unsubstituted C 3 -C 30 alkyl group; And X 1 to X 4 may be glucose; Y 1 and Y 2 may be CH 2 ; And Z may be CH 2 .
  • TMG-As such a compound was named "TMG-As".
  • R 1 and R 2 may each independently be an organic group including a substituted or unsubstituted C 3 -C 30 alkyl group or a steroid skeleton; And X 1 to X 4 may be glucose or maltose; Y 1 and Y 2 may be O; And Z may be S.
  • TMG-Ts / TMMs tandem malonate-based glucosides / maltosides
  • R 1 and R 2 are C 9 alkyl groups; X 1 to X 4 are glucose; Y 1 and Y 2 are O; And the Z is S is named "TMG-T11". Therefore, the compound may be a compound represented by Formula 2:
  • the compound represented by Formula 1 wherein R One And R 2 Is a C 10 Alkyl group; X 1 to X 4 are glucose; Y 1 and Y 2 are O; And the compound Z is S named "TMG-T12". Therefore, the compound may be a compound represented by Formula 3:
  • the compound represented by Formula 1 wherein R One And R 2 Is a C 11 Alkyl group; X 1 to X 4 are glucose; Y 1 and Y 2 are O; And the compound Z is S named "TMG-T13". Accordingly, the compound may be a compound represented by Formula 4:
  • the compound represented by Chemical Formula 1, wherein R 1 and R 2 is an alkyl group of C 8 ; X 1 to X 4 are glucose; Y 1 and Y 2 are CH 2 ; And Z is CH 2 is named “TMG-A11”. Therefore, the compound may be a compound represented by Formula 6:
  • R 1 and R 2 are C 9 alkyl groups; X 1 to X 4 are glucose; Y 1 and Y 2 are CH 2 ; And wherein Z is CH 2 is named “TMG-A12”. Accordingly, the compound may be a compound represented by Formula 7:
  • the compound represented by Formula 1, wherein R One And R 2 Is a C 10 Alkyl group; X 1 to X 4 are glucose; Y 1 and Y 2 are CH 2 ; And Z is CH 2 is named "TMG-A13".
  • the compound may be a compound represented by the following formula (8):
  • the compound represented by Formula 1 wherein R One And R 2 Is a substituted C 22 Alkyl group; X 1 to X 4 are maltose; Y 1 and Y 2 are O; And the compound Z is S named "TMM-C22".
  • the compound may be a compound represented by Formula 10:
  • the compound represented by Formula 1 wherein R 1 And R 2 Is a substituted C 24 Alkyl group; X 1 to X 4 are maltose; Y 1 and Y 2 are O; And the compound Z is S named "TMM-C24". Accordingly, the compound may be a compound represented by Formula 11 below:
  • the compound represented by Formula 1 wherein R One And R 2 Is a substituted C 26 Alkyl group; X 1 to X 4 are maltose; Y 1 and Y 2 are O; And the compound Z is S named " TMM-C26. &Quot;
  • the compound may be a compound represented by Formula 12:
  • the compound represented by Formula 1, wherein R One And R 2 Is cholesterol; X 1 to X 4 are maltose; Y 1 and Y 2 are O; And the Z is S is named "TMM-A27".
  • the compound may be a compound represented by the following formula (13):
  • R 1 and R 2 are cholestanol; X 1 to X 4 are maltose; Y 1 and Y 2 are O; And the compound Z is S named " TMM-E27. &Quot;
  • the compound may be a compound represented by Formula 12:
  • R 1 and R 2 are diosgenin; X 1 to X 4 are maltose; Y 1 and Y 2 are O; And the compound Z is S named " TMM-D27. &Quot;
  • the compound may be a compound represented by Formula 15:
  • Compounds according to other embodiments of the invention may be, but are not limited to, amphiphilic molecules for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins.
  • the extraction may be to extract the membrane protein from the cell membrane.
  • amphiphilic molecule refers to a molecule in which a hydrophobic group and a hydrophilic group coexist in one molecule to have affinity for both polar and nonpolar solvents.
  • Phospholipid molecules present in the amphipathic molecules or cell membranes are amphiphilic molecules with hydrophilic groups at one end and hydrophobic groups at the other end, and have the characteristic of forming micelles or liposomes in aqueous solution. Since hydrophilic groups have polarity but nonpolar groups coexist, their amphiphilic molecules tend to be insoluble in aqueous solutions. However, when the concentration is above a certain limit concentration (critical micelle concentration, CMC), hydrophobic interaction causes hydrophobic groups to be collected inside and round or elliptic micelles with hydrophilic groups exposed to the surface, which greatly increases the solubility in water.
  • CMC critical micelle concentration
  • the method of measuring CMC is not particularly limited, but a method well known in the art may be used, and for example, may be measured by a fluorescence staining method using diphenylhexatriene (DPH).
  • DPH diphenylhexatriene
  • the compound according to one embodiment of the present invention may have a critical micelle concentration (CMC) in an aqueous solution of 0.0001 to 1 mM, specifically 0.0001 to 0.1 mM, more specifically 0.001 to 0.1 mM, even more specifically 0.001 to 0.05 mM Can be.
  • CMC critical micelle concentration
  • the TMGs of this embodiment have very small CMC values compared to the critical micelle concentration of 0.17 mM. Therefore, since TMGs easily form micelles even at low concentrations, it is possible to effectively study and analyze membrane proteins using a small amount, which may be advantageous in terms of utilization than DDM.
  • another embodiment of the present invention provides a composition for extraction, solubilization, stabilization, crystallization or analysis of membrane proteins comprising the compound.
  • the extraction may be to extract the membrane protein from the cell membrane.
  • composition may be, but is not limited to, a formulation of micelles, liposomes, emulsions or nanoparticles.
  • the micelle may have a radius of 2.0 nm to 20 nm, specifically 2.0 nm to 10.0 nm, for example, 3.0 nm to 4.0 nm, but is not limited thereto.
  • the method of measuring the radius of the micelle is not particularly limited, but a method well known in the art may be used, and may be measured using, for example, dynamic light scattering (DLS) experiments.
  • DLS dynamic light scattering
  • the micelles, liposomes, emulsions or nanoparticles can be combined with the membrane protein hydrophobic inside. That is, the micelles, liposomes, emulsions or nanoparticles can be wrapped by extracting the membrane protein present in the cell membrane. Therefore, it is possible to extract, solubilize, stabilize, crystallize or analyze membrane proteins from cell membranes by the micelles.
  • composition may further include a buffer or the like that may be helpful for extraction, solubilization, stabilization, crystallization or analysis of the membrane protein.
  • Another embodiment of the present invention provides a method for preparing a compound represented by the following Chemical Formula 1, comprising the following steps 1) to 5):
  • step 2 2) introducing an alkyl chain by performing an alkylation reaction on two alpha carbons present in the product of step 1);
  • step 4 performing a deprotection reaction (deprotection) reaction on the product of step 4), comprising:
  • R 1 and R 2 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, or a substituted or unsubstituted C 3 -C 30 aryl Group;
  • X 1 to X 4 are saccharides
  • Y 1 and Y 2 are CH 2 ;
  • Z is CH 2 .
  • step 2 2) introducing a saccharide to which a protecting group is attached by performing a glycosylation reaction on the product of step 1);
  • R 1 and R 2 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or unsubstituted C 3 -C 30 aryl group Or an organic group comprising a steroid backbone;
  • X 1 to X 4 may be a saccharide
  • Y 1 and Y 2 may be O or S;
  • Z may be S.
  • R 1 and R 2 may each independently be an organic group including a substituted or unsubstituted C 3 -C 30 alkyl group or a steroid skeleton;
  • X 1 to X 4 may be glucose or maltose.
  • the compound synthesized by the above method may be a compound of Formula 2 to 15 according to one embodiment of the present invention, but is not limited thereto.
  • the compound can be synthesized by a simple method through three or five short synthetic steps, thereby enabling mass production of the compound for membrane protein research.
  • Another embodiment of the present invention provides a method for extracting, solubilizing, stabilizing, crystallizing or analyzing membrane proteins.
  • the present invention provides a method for extracting, solubilizing, stabilizing, crystallizing, or analyzing a membrane protein, comprising treating the membrane protein with a compound represented by Formula 1 in an aqueous solution:
  • R 1 and R 2 are each independently a substituted or unsubstituted C 3 -C 30 alkyl group, a substituted or unsubstituted C 3 -C 30 cycloalkyl group, a substituted or unsubstituted C 3 -C 30 aryl group Or an organic group comprising a steroid backbone;
  • X 1 to X 4 may be a saccharide
  • Y 1 and Y 2 may be CH 2 , O or S;
  • Z may be CH 2 or S.
  • R 1 and R 2 may be each independently a substituted or unsubstituted C 3 -C 30 alkyl group;
  • X 1 to X 4 may be glucose or maltose;
  • Y 1 and Y 2 may be CH 2 ;
  • Z may be CH 2 .
  • R 1 and R 2 may each independently be a substituted or unsubstituted C 3 -C 30 alkyl group;
  • X 1 to X 4 may be glucose or maltose;
  • Y 1 and Y 2 may be O or S;
  • Z may be S.
  • R 1 and R 2 may be an organic group including a steroid skeleton; And X 1 to X 4 may be maltose; Y 1 and Y 2 may be O; And Z may be S.
  • the compound may be one of Formulas 2 to 15 according to one embodiment of the present invention, but is not limited thereto.
  • the extraction may be to extract the membrane protein from the cell membrane.
  • membrane protein is a generic term for proteins or glycoproteins that are introduced into cell membrane lipid bilayers. It exists in various states such as penetrating the entire layer of the cell membrane, located on the surface layer, or contacting the cell membrane.
  • membrane proteins include, but are not limited to, enzymes, receptors such as peptide hormones and local hormones, receptors such as sugars, ion channels, and cell membrane antigens.
  • the membrane protein includes any protein or glycoprotein introduced into the cell membrane lipid bilayer, and specifically, UapA (Uric acid-xanthine / H + symporter), LeuT (Leucine transporter), ⁇ 2 AR (human ⁇ 2 adrenergic receptor) , MelB St (Melibiose permease), or a combination of two or more thereof, but is not limited thereto.
  • UapA User acid-xanthine / H + symporter
  • LeuT Leucine transporter
  • ⁇ 2 AR human ⁇ 2 adrenergic receptor
  • MelB St MelB St
  • extraction of membrane proteins means the separation of membrane proteins from membranes.
  • membrane proteins As used herein, the term "solubilization" of membrane proteins means that membrane proteins that are insoluble in water are dissolved in micelles in aqueous solution.
  • stabilization of membrane proteins means the stable preservation of tertiary or quaternary structures such that the structure, function of the membrane protein does not change.
  • crystal growth of membrane proteins means the formation of crystals of membrane proteins in solution.
  • the term "analysis" of membrane protein means to analyze the structure or function of the membrane protein.
  • the analysis of the membrane protein may use a known method, but is not limited thereto.
  • the structure of the membrane protein may be analyzed using electron microscopy or nuclear magnetic resonance. can do.
  • the small glucoside groups of the amphipathic molecules according to the present invention tend to form small protein-detergent complexes (PDCs).
  • Small PDC sizes provide a large area of hydrophilic protein surface and are known to favor membrane protein crystallization. Protein crystal formation is promoted by interaction with the hydrophilic portion of the membrane protein.
  • the advantage of the small hydrophilic group of the amphiphilic molecule is related to the widespread use of conventional glucoside amphiphilic molecules (OG and NG) for membrane protein crystallization.
  • OG and NG conventional glucoside amphiphilic molecules
  • the hydrophilic group of an amphiphilic molecule is as small as glucose, it is disadvantageous in stabilizing membrane proteins than an amphiphilic molecule having a relatively large maltoside as a hydrophilic group.
  • TMGs according to the present invention are excellent for all proteins evaluated by membrane protein stabilizing effect than DDM, despite having a hydrophilic group glucose, and thus can be used not only for the crystallization of membrane proteins but also for stabilizing membrane proteins.
  • TMGs according to the present invention are excellent for all proteins evaluated by membrane protein stabilizing effect than DDM, despite having a hydrophilic group glucose, and thus can be used not only for the crystallization of membrane proteins but also for stabilizing membrane proteins.
  • tandem malonate-based compounds according to embodiments of the present invention can be stored for a long time stably compared to the existing compounds in aqueous solution, it can be utilized in the functional analysis and structural analysis through this.
  • Membrane protein structure and function analysis is one of the fields of greatest interest in current biology and chemistry, and thus it is applicable to the study of protein structure closely related to drug development.
  • the compound according to the embodiments of the present invention is small in size when forming a complex with the membrane protein can obtain a high quality membrane protein crystals can promote the crystallization of the membrane protein.
  • the compound according to the embodiments of the present invention can be synthesized from a readily available starting material by a simple method, thereby enabling mass production of the compound for membrane protein research.
  • Example 1 is a diagram showing a synthesis scheme of TMG-As according to Example 1 of the present invention.
  • Example 2 is a diagram illustrating a synthesis scheme of TMG-Ts according to Example 2 of the present invention.
  • FIG. 3 is a diagram illustrating a synthesis scheme of TMMs according to Embodiment 3 of the present invention.
  • Example 4 is a diagram showing a synthesis scheme of TMM-A, E, and D according to Example 3 of the present invention.
  • FIG. 5 shows the hydrodynamic radius ( R h ) of micelles formed by TMGs (1.0 wt%) measured through dynamic light scattering (DLS) experiments.
  • FIG. 6 shows the results of dynamic light scattering (DLS) experiments on the hydrodynamic radius ( R h ) of micelles formed by TMMs (1.0 wt%).
  • Figure 7 is the result of measuring the stability of the LHI-RC complex produced by CMC + 0.04 wt% amphiphilic molecules at regular intervals for 20 days.
  • Figure 8 is the result of measuring the stability of the LHI-RC complex produced by CMC + 0.2 wt% amphipathic molecules at regular intervals for 20 days.
  • Figure 10 shows the thermal stability of UapA protein dissolved in aqueous solution by CMC + 0.2 wt% TMGs or DDM, sulfhydryl-specific fluorophore, N- [4- (7-diethylamino-4-methyl-3-coumarinyl) phenyl] maleimide
  • Figure 10 shows the results measured using (CPM):
  • FIG. 11 shows the results of measuring LeuT (Leucine transporter) structural stability solubilized by CMC + 0.2 wt% TMGs or DDM. Protein stability was confirmed by measuring the substrate binding characteristics of the transporter through a scintillation proximity assay (SPA). The substrate binding properties of the proteins were measured at regular intervals while LeuT was incubated at room temperature for 10 days in the presence of each amphipathic molecule:
  • SPA scintillation proximity assay
  • LeuT Leucine transporter
  • DDM DDM of CMC + 0.04 wt%.
  • Protein stability was confirmed by measuring the substrate binding characteristics of the transporter through a scintillation proximity assay (SPA). The substrate binding properties of the proteins were measured at regular intervals while LeuT was incubated at room temperature for 10 days in the presence of each amphipathic molecule:
  • FIG. 13 shows the results of measuring the stability of LeuT (Leucine transporter) structure solubilized by TMMs or DDM of CMC + 0.04 wt% (a) and CMC + 0.2 wt% (b). Protein stability was confirmed by measuring the substrate binding characteristics of the transporter through a scintillation proximity assay (SPA). The substrate binding properties of the protein were measured at regular intervals while LeuT was incubated at room temperature for 10 days in the presence of each amphipathic molecule.
  • SPA scintillation proximity assay
  • FIG. 14 shows the initial ligand binding capacity of ( 2 ) T2s or DDM extracted and lysed from cell membranes by CMC + 0.2 wt% and (b) TMGs (TMG-A13, TMG-A14, TMG-T13, TMG-T14) or the long-term ligand binding capacity of lysed ⁇ 2 AR extracted from the cell membrane by DDM is measured by ligand binding assay of [ 3 H] -dihydroalprenolol (DHA) at regular intervals for 7 days.
  • DHA dihydroalprenolol
  • 15 is a graph measuring the long-term activity of ⁇ 2 AR dissolved in DDM, GNG-2, or GNG-3 at regular intervals for 6 days. Protein activity was confirmed by measuring the ligand [ 3 H] -dihydroalprenolol (DHA) binding capacity and the same experiment was carried out in a detergent-free condition as a control.
  • DHA dihydroalprenolol
  • FIG. 16 shows MelB St protein extracted using TMGs or DDM at a concentration of 1.5 wt% under four temperature (0, 45, 55, 65) conditions, incubated at the same temperature for 90 minutes, and then dissolved in an aqueous solution of MelB.
  • TMG-As The synthesis scheme of TMG-As is shown in FIG. 1.
  • Four kinds of TMG-As compounds were synthesized according to the synthesis methods of the following ⁇ 1-1> to ⁇ 1-5>.
  • TMG-A11a was synthesized in a yield of 54% according to the general synthesis procedure for the saccharification reaction of Examples 1-4.
  • TMG-A11 was synthesized in a yield of 95% according to the general synthesis procedure for the deprotection reaction of Examples 1-5.
  • TMG-A12a was synthesized in a yield of 53% according to the general synthesis procedure for the saccharification reaction of Examples 1-4.
  • 1 H NMR (400 MHz, CDCl 3 ): ⁇ 8.18-8.16 (m, 2H), 8.02-7.94 (m, 4H), 7.92-7.72 (m, 16H), 7.71-7.56 (m, 8H), 7.54- 7.48 (m, 10H), 7.43-7.37 (m, 10H), 7.29-7.24 (m, 16H), 7.21-7.10 (m, 8H), 5.66-5.41 (m, 8H), 4.48-4.34 (m, 6H ), 3.79-3.74 (m, 2H), 3.51-3.45 (m, 2H), 2.94-2.90 (m, 2H), 1.27-1.15 (m, 50H), 0.86 (t, J 7.1 Hz, 6H); 13 C NMR (100 MHz, CDCl 3 ): ⁇ 166.0, 165.9, 165.8,
  • TMG-A12 was synthesized in a yield of 95% according to the general synthesis procedure for the deprotection reaction of Examples 1-5.
  • TMG-A13a was synthesized in a yield of 53% according to the general synthesis procedure for the saccharification reaction of Examples 1-4.
  • 1 H NMR (400 MHz, CDCl 3 ): ⁇ 8.23-8.19 (m, 2H), 8.01-7.95 (m, 4H), 7.93-7.85 (m, 16H), 7.73-7.70 (m, 8H), 7.54- 7.48 (m, 6H), 7.47-7.42 (m, 10H), 7.41-7.35 (m, 16H), 7.34-7.23 (m, 8H), 7.21-7.17 (m, 6H), 5.65-5.59 (m, 8H ), 5.52-5.24 (m, 2H), 4.46-4.33 (m, 6H), 3.81-3.73 (m, 2H), 3.51-3.46 (m, 2H), 3.10-3.07 (m, 2H), 2.93-2.88 (m, 2H), 1.48-0.93 (m, 54H), 0.86 (t, J 6.9 Hz,
  • TMG-A13 was synthesized in a yield of 96% according to the general synthetic procedure for the deprotection reaction of Examples 1-5.
  • TMG-A14a was synthesized in a yield of 52% according to the general synthesis procedure for the saccharification reactions of Examples 1-4.
  • TMG-A14 was synthesized in a yield of 96% according to the general synthetic procedure for the deprotection reaction of Examples 1-5.
  • TMG-Ts The synthesis scheme of TMG-Ts is shown in FIG. 2.
  • Four TMG-Ts compounds were synthesized according to the synthesis methods of ⁇ 2-1> to ⁇ 2-3>.
  • reaction mixture was neutralized with Amberlite IR-120 (H + form) resin.
  • the resin was removed by filtration, washed with MeOH and the solvent was removed from the filtrate in vacuo .
  • the residue was recrystallized with CH 2 Cl 2 / MeOH / diethyl ether to give a white solid compound J having completely removed the protecting group.
  • TMG-T11 was synthesized in 94% yield following the general synthetic procedure for deprotection reaction of Example 2-3.
  • TMG-T12 was synthesized in a yield of 95% according to the general synthetic procedure for deprotection reaction of Example 2-3.
  • TMG-T13 was synthesized in a yield of 96% according to the general synthetic procedure for deprotection reaction of Example 2-3.
  • TMG-T14 was synthesized in a yield of 96% according to the general synthesis procedure for the deprotection reaction of Examples 2-3.
  • TMMs The synthesis scheme of TMMs is shown in FIGS. 3 and 4.
  • Six types of TMMs compounds were synthesized according to the synthesis methods of the following ⁇ 3-1> to ⁇ 3-3>.
  • reaction mixture was cooled at room temperature, quenched with ice-cold H 2 O (50 mL) and extracted with ether (3 ⁇ 100 mL). The combined organic layers were washed with brine (2 ⁇ 150 mL), dried over anhydrous Na 2 SO 4 and concentrated on a rotary evaporator.
  • the product (5.08 mmol, 1 equiv) was dissolved in DMF (20 mL) and KI (5.08 mmol, 1 equiv) was added to the solution.
  • reaction mixture was neutralized with Amberlite IR-120 (H + form) resin.
  • the resin was removed by filtration, washed with MeOH and the solvent was removed from the filtrate in vacuo .
  • the residue was recrystallized with CH 2 Cl 2 / MeOH / diethyl ether to obtain a white solid compound having completely removed the protecting group.
  • TMM-C22 was synthesized in a yield of 92% according to the general synthesis procedure for the deprotection reaction of Example 3-3.
  • TMM-C24 was synthesized in 92% yield following the general synthetic procedure for deprotection reaction of Example 3-3.
  • TMM-C26 was synthesized in a yield of 90% according to the general synthesis procedure for the deprotection reaction of Example 3-3.
  • TMM-A27 was synthesized in a yield of 92% according to the general synthesis procedure for the deprotection reaction of Example 3-3.
  • TMM-E27 was synthesized in a yield of 92% according to the general synthetic procedure for deprotection reaction of Example 3-3.
  • 1 H NMR 400 MHz, (CD 3 ) 2 SO): ⁇ 5.64-5.41 (m, 14H), 5.34-4.97 (m, 4H), 4.95-4.69 (m, 12H), 4.59-4.34 (m, 14H ), 3.23-3.14 (m, 12H), 2.10-0.83 (m, 68H), 0.82-0.52 (m, 14H); 13 C NMR (100 MHz, (CD 3 ) 2 SO): ⁇ 129.8, 103.6, 100.8, 79.5, 76.2, 75.0, 73.4, 73.3, 73.1, 72.4, 69.9, 60.8, 60.4, 41.8, 27.3, 22.6, 22.3, 19.0, 18.5, 11.6; MS (MALDI-TOF): calcd. for C 112 H 190 O 46 S [M + H] + 2304.7660, found 2304.1
  • TMM-D27 was synthesized in 92% yield following the general synthetic procedure for deprotection reaction of Example 3-3.
  • 1 H NMR 400 MHz, (CD 3 ) 2 SO): ⁇ 5.51-5.32 (m, 10H), 5.18-5.01 (m, 4H), 4.61-4.35 (m, 12H), 4.33-4.11 (m, 6H ), 3.89-3.68 (m, 20H), 3.67-3.49 (m, 16H), 3.19-2.97 (m, 14H), 2.10-0.82 (m, 64H), 0.81-0.51 (m, 12H); 13 C NMR (100 MHz, (CD 3 ) 2 SO): ⁇ 140.7, 108.4, 103.7, 100.8, 80.2, 79.5, 78.9, 76.2, 75.0, 73.4, 73.3, 73.1, 72.4, 69.9, 68.0, 60.8, 60.4, 55.7, 41.0, 36.4, 31.0, 19.1, 17.0, 16.0, 14.6; MS (MALDI
  • TMGs have two alkyl chains as hydrophobic groups and four glucoses as hydrophilic groups. TMGs are classified into TMG-As and TMG-Ts according to the structure of the linker.
  • TMG-As has a structure in which two malonate-derived units are connected to each other by a propylene linker and an alkyl chain is directly introduced into a tandem malonate-based central structure connected by the linker.
  • TMG-Ts on the other hand, has two alkylon-derived units linked by a thioether-functionalized linker and an alkyl chain ether on a tandem malonate-based central structure linked by the linker. It has a structure connected by.
  • TMMs have an organic group comprising an alkyl chain or steroid backbone branched into hydrophobic groups and four maltoses as hydrophilic groups. TMMs may have a dialkyl group, cholesterol, cholestanol or diosgenin branched into hydrophobic groups.
  • hydrophilic-hydrophobic balance Since the optimal balance between the hydrophilic and hydrophobic moieties (hydrophilic-hydrophobic balance) is essential for the stabilization of effective membrane proteins, the optimum balance is achieved by varying the type and chain length of the functional groups constituting the hydrophobic group according to the hydrophilicity of the hydrophilic group. Synthesis was performed to discover amphipathic molecules.
  • the molecular weight (MW), critical micellar concentration (CMC), and hydrodynamic radii ( R h ) of the micelles formed were measured.
  • CMC critical micelle concentration
  • the CMC values (0.002-0.020 mM) of all TMGs and TMMs were significantly smaller compared to the CMC values (0.17 mM) of DDM. Therefore, since TMGs and TMMs are easily formed in micelles even at low concentrations, TMGs and TMMs may exhibit the same or superior effects even with a smaller amount than DDM.
  • the CMC values of TMGs and TMMs decreased as the length of the alkyl chain increased, which is believed to be due to the increase in hydrophobicity with the extension of the alkyl chain length.
  • the size of micelles formed by TMGs and TMMs generally tended to increase with longer alkyl chains.
  • TMG-As and TMG-Ts formed micelles smaller than TMG-As.
  • TMMs tend to form micelles slightly larger than TMGs, especially micelle sizes of cholesethanol and cholesterol hydrophobic groups, TMM-A27 and TMM-E27.
  • TMM-D27 having a diosgenin hydrophobic group formed a relatively small micelle.
  • Analysis of the DLS data showed that all the amphiphilic molecules (TMGs and TMMs) of the present invention formed a single micelle population showing high micelle homogeneity (FIGS. 5 and 6).
  • Engineered Rhodobacter R. capsulatus superassembly expressed in the strain capsulatus was solubilized and purified according to the protocol known in the literature (PS Chae, Analyst , 2015, 140, 3157-3163.). A 10 mL aliquot of the frozen membrane was thawed and homogenized using a glass tissue homogenizer at room temperature. The homogenate was incubated with gentle stirring at 32 ° C. for 30 minutes. After addition of 1.0 wt% DDM, the homogenate was further incubated at 32 ° C. for 30 minutes.
  • the supernatant containing the solubilized light harvesting complex I and the reaction center (LHI-RC) complex was collected and incubated with Ni 2 + -NTA resin at 4 ° C. for 1 hour.
  • the resin was placed in 10 His-SpinTrap columns and washed twice with 500 ⁇ L binding buffer (10 mM Tris (pH 7.8), 100 mL NaCl, 1 ⁇ CMC DDM).
  • the LHI-RC complex purified by DDM was eluted from the column using a buffer containing 1.0 M imidazole (2 ⁇ 300 ⁇ l).
  • the LHI-RC complex purified by 80 ⁇ L of DDM was each diluted with 920 ⁇ L of the next amphiphilic molecule solution to reach a final amphipathic molecule concentration of CMC + 0.04 wt% or CMC + 0.2 wt%; TMG-As (TMG-A11, TMG-A12, TMG-A13 and TMG-A14), TMG-Ts (TMG-T11, TMG-T12, TMG-T13 and TMG-T14) or DDM.
  • TMG-As TMG-A11, TMG-A12, TMG-A13 and TMG-A14
  • TMG-Ts TMG-T11, TMG-T12, TMG-T13 and TMG-T14
  • DDM DDM.
  • the LHI-RC complex produced by each amphipathic molecule was incubated for 20 days at room temperature. Protein stability was measured at regular intervals during the incubation of the protein-amphiphilic sample by measuring the UV
  • the TMGs of the present invention were significantly superior to DDM in maintaining LHI-RC complex stability.
  • TMG-Ts was slightly better than TMG-As.
  • concentration of amphipathic molecules was reduced to CMC + 0.04 wt%, the difference in the ability to maintain LHI-RC complex stability between TMGs and DDM was reduced, but the overall tendency to maintain stability of LHI-RC complex was observed similarly. 7).
  • All TMGs were effective at stabilizing the LHI-RC complex at both CMC + 0.04 wt% and CMC + 0.2 wt% concentrations, but DDM increased its ability to stabilize the complex with increasing concentrations from CMC + 0.04 wt% to CMC + 0.2 wt%. Markedly reduced (FIGS. 7 and 8).
  • UapA uric acid-xanthine / H + symporter isolated from nidulans .
  • the structural stability of UapA was evaluated using (sulfhydryl-specific fluorophore, N- [4- (7-diethylamino-4-methyl-3-coumarinyl) phenyl] maleimide (CPM).
  • UapAG411V 1 -11 (hereinafter referred to as 'UapA') was expressed as a GFP fusion protein in Saccharomyces cerevisiae FGY217 strain, sample buffer (20 mM Tris (pH 7.5), 150 mM NaCl). , 0.03% DDM, 0.6 mM xanthine), following the method described in J. Leung et al . ( Mol . Membr . Biol . 2013, 30, 32-42). The protein was concentrated to about 10 mg / mL using a 100 kDa molecular weight cut off filter (Millipore).
  • TMG-As TMG-A11, TMG-A12, TMG-A13, and TMG-A14
  • TMG-Ts TMG-Ts (so that the final concentration was CMC + 0.04 wt% or CMC + 0.2 wt% in Greiner 96-well plates.
  • CPM dye (Invitrogen) stored in DMSO (Sigma) was diluted with staining buffer (20 mM Tris (pH 7.5), 150 mM NaCl, 0.03% DDM, 5 mM EDTA) and the 3 ⁇ L staining buffer was added to each sample It was. The reaction mixture was incubated at 40 ° C. for 125 minutes. Fluorescence emission was recorded using a microplate spectrofluorometer set to excitation and emission wavelengths of 387 nm and 463 nm, respectively. Relative amounts of folded protein were plotted over time using GraphPad Prism.
  • TMG-A TMG-A11
  • TMG-Ts TMG-A11
  • TMG TMG-A11 / T11
  • TMG-A13 / A14 long chain TMGs
  • TMG-T13 / A14 TMG-T13 / T14
  • TMG-T11 / A11 TMG amphiphilic molecules have superior transporter structure retention capabilities than MNG-3 with maltoside hydrophilic groups. In the case of this transporter, MNG-3 was only slightly superior to DDM.
  • thermophilic bacteria Aquifex Aquifex aeolicus ) derived wild type LeuT was purified by the method described previously ( Nature 1998, 392, 353-358 by G. Deckert et al .). LeuT was expressed in E. coli C41 (DE3) transformed with pET16b encoding the C-terminal 8xHis-tagged transporter (expression plasmids were provided by Dr E. Gouaux, Vollum Institute, Portland, Oregon, USA) .
  • Protein samples were stored at room temperature for 10 days, centrifuged at designated times, and protein properties were confirmed by measuring substrate ([ 3 H] -Leucine) binding capacity using SPA.
  • SPA was performed at a concentration specified above with a buffer containing 450 mM NaCl and the respective TMGs and TMMs.
  • SPA reactions were performed in the presence of 20 nM [ 3 H] -Leucine and 1.25 mg / ml copper chelate (His-Tag) YSi beads (Perkin Elmer, Denmark).
  • Total [ 3 H] -Leucine binding for each sample was measured using a MicroBeta liquid scintillation counter (Perkin Elmer).
  • TMG-As showed a significantly higher transporter substrate binding capacity than DDM only in LeuT samples solubilized in TMG-A12 at relatively low concentrations (CMC + 0.04 wt%) (FIG. 8). .
  • the improved substrate binding capacity compared to this DDM was well maintained for 10 days for LeuT dissolved by this TMG-A12. Similar trends were seen when the concentration of the amphipathic molecule was increased to CMC + 0.2 wt% (FIG. 12).
  • TMG-Ts was better at preserving the transporter's substrate binding capacity than TMG-As (FIGS. 8 and 9).
  • TMG-T11 / T12 / T13 / T14 showed better properties than DDM ( Figure 11), even when the concentration of amphiphilic molecules increased.
  • CMC + 0.04 wt%) TMG-Ts was more effective than DDM in preserving the transporter's substrate binding capacity (FIG. 12).
  • the initial LeuT activity (substrate binding capacity) was slightly lower than that of using DDM at low concentrations of CMC + 0.04 wt%, but in DDM the transporter activity gradually decreased over time. There was no significant decrease in protein activity with time for the new TMM. In particular, in the case of TMM-C22 and TMM-C24, the transporter activity tended to increase slightly with time. As a result, after 12 days of incubation at room temperature, the activity of the transporter dissolved by these two amphiphilic molecules was twice as high as that of the protein dissolved in DDM.
  • TMM-C24 showed the best characteristics among TMMs amphipathic molecules, superior to DDM, followed by TMM-C22 and TMM-C26. TMMs with steroid hydrophobic groups were generally inferior to DDM. Therefore, two amphiphilic molecules, TMM-C24 and TMM-C22, have potential for structural analysis of this transporter.
  • ⁇ 2 adrenergic receptor ⁇ 2 AR
  • GPCR G-protein linked receptor
  • the receptor was extracted from the cell membrane with 1% DDM and purified with 0.1% of the same amphiphilic molecule.
  • the DDM purified receptor was diluted with a buffer solution containing DDM or TMGs to bring the final compound concentration to CMC + 0.2 wt%.
  • ⁇ 2 AR solubilized by each amphipathic molecule was stored at room temperature for 7 days and incubated the sample with 10 nM [ 3 H] -Dihydroalprenolol (DHA) supplemented with 0.5 mg / ml BSA for 30 minutes at room temperature.
  • DHA dihydroalprenolol
  • TMG-A13 / A14 and TMG-T13 / T14 are as effective as DDM in maintaining the initial receptor activity.
  • DDM DDM
  • TMG-T14 had the best ligand binding retention activity, followed by TMG-A13 and TMG-A14 (FIG. 14). These results indicate that TMG-A13 and TMG-T14 may have important potential for GPCR research.
  • the new glucoside amphiphilic molecules GNG-2 and GNG-3 were not only low initial receptor activity, but also decreased rapidly over time, which makes it improper for GRCR studies (FIG. 15).
  • the activity of the receptor was determined to be very low when proceeding without amphiphilic molecules (detergent-free condition). In other words, protein activity could not be maintained without the help of new TMG amphiphilic molecules.
  • Salmonella typhimurium MelB St (melibiose permease) having a 10-His tag at the C-terminus was used in plasmid pK95AHB / WT MelB St / CH10 in E. coli DW2 cells (melB and lacZY). Expressed. Cell growth and membrane preparation were performed according to the method described in AS Ethayathulla et al . ( Nat. Commun . 2014, 5 , 3009). Protein assays were performed with the Micro BCA kit (Thermo Scientific, Rockford, IL). PS Chae et al. Nat. TMGs or DDM were evaluated for MelB St stability using the protocol described in Methods 2010, 7, 1003-1008.
  • Membrane samples containing MelB St (final protein concentration 10 mg / mL) were dissolved in solubilization buffer (20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10% glycerol) containing 1.5% (w / v) DDM or TMGs. , 20 mM melibiose) was incubated for 90 minutes at 4 temperatures (0, 45, 55, 65). To remove insoluble material, ultracentrifugation was performed at 355,590 g with a Beckman Optima TM MAX ultracentrifuge with a TLA-100 rotor at 4 for 45 minutes, then 20 ⁇ g of each protein sample was subjected to SDS-15% PAGE.
  • solubilization buffer 20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10% glycerol
  • the amount of MelB St solubilized in the O experiment was less than DDM in all TMG except TMG-A12 and TMG-A13.
  • all TMG except TMG-T14 maintained better solubility of MelB St than DDM.
  • the use of TMG-A12 was able to successfully extract almost all MelB St at the temperature and such excellent protein extraction efficiency was confirmed at 55. That is, TMG-A12 not only efficiently extracted MelB St protein but also maintained excellent solubility of the extracted MelB St.
  • DDM maintained only about 10% solubility of MelB St extracted at 55. At a temperature of 65, both Melt St protein and DDM and TMGs could not be dissolved in aqueous solution (Fig. 16).
  • DDM showed slightly better protein extraction efficiency than TMGs, while at higher temperatures (45 ° C), TMGs were similar to DDM, and at higher temperatures (55 ° C), TMGs were better than DDM.
  • TMGs were similar to DDM, and at higher temperatures (55 ° C), TMGs were better than DDM.
  • protein stabilization ability was found to be excellent TMGs (Fig. 16).

Abstract

본 발명은 새롭게 개발한 탠덤 말로네이트 기반의 양친매성 분자, 이의 제조방법 및 이를 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법에 관한 것이다. 또한, 이 화합물은 기존의 화합물보다 다양한 구조와 특성을 지닌 막단백질들을 세포막에서 효율적으로 추출하고 이를 수용액에서 장기간 안정적으로 보관할 수 있고, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다. 막단백질 구조 및 기능 분석은 신약 개발에 밀접한 관계가 있는 만큼 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이다.

Description

새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용
본 발명은 새롭게 개발한 탠덤 말로네이트 기반의 양친매성 분자, 이의 제조방법 및 이를 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법에 관한 것이다.
막단백질 (membrain proteins)은 생물학적 시스템에서 중요한 역할을 한다. 이 생체거대분자 (bio-macromolecules)는 친수성 및 소수성 부분을 포함하므로, 막단백질을 세포막으로부터 추출하고, 수용액에서 용해화와 안정화시키기 위해서는 양친매성 분자가 필요하다.
막단백질의 구조 분석을 위해서는 양질의 막단백질 결정을 얻어야 하는데 이를 위해서는 수용액에서의 막단백질의 구조적 안정성이 선행되어야 한다. 막단백질 연구에 사용되어 온 기존의 양친매성 분자들의 개수는 100가지 이상으로 다수가 존재하지만 그 중 5개 정도만 막단백질 구조 연구에 활발히 활용되어 왔다. 이 5개의 양쪽성 분자는 OG (n-octyl-β-D-glucopyranoside), NG (n-nonyl-β-D-glucopyranoside), DM (n-decyl-β-D-maltopyranoside), DDM (n-dodecyl-β-D-maltopyranoside), 및 LDAO (lauryldimethylamine-N-oxide)를 포함한다(비특허문헌 1, 비특허문헌 2). 하지만 이들 분자에 의해 둘러싸여 있는 많은 막단백질들은 그 구조가 쉽게 변성되거나 응집되어 그 기능을 빠르게 상실하는 경향이 있기 때문에 이 분자들을 활용한 막단백질의 기능 및 구조 연구에 상당한 제한점이 있다. 이는 종래의 분자들이 화학구조가 간단하여 다양한 특성을 나타내주지 못하기 때문이다.
특히 막단백질의 결정화를 통한 구조 분석 연구에 글루코사이드(glucoside)를 친수성기로 포함하고 있는 양친매성 분자들은 말토사이드 (maltoside)를 포함한 분자들에 비해 막단백질 안정화 능력에 있어 전반적으로 떨어짐에도 불구하고 막단백질 결정화를 통한 구조분석에 널리 사용되고 있다. 예를들면 OG나 NG는 전반적으로 DDM보다 막단백질 안정화 능력이 현격히 떨어지지만 막단백질 구조연구에 여전히 널리 사용되고 있다. 따라서 글루코사이드를 포함하는 양친매성 분자들의 막단백질 안정화 능력을 크게 향상시킬 수 있다면 막단백질 구조 결정에 널리 사용될 것이다. 하지만 현재까지 글루코즈를 친수성기로 갖는 양친매성 분자들은 막단백질 안정화에 탁월하지 않아 많은 한계점이 있었다. 구체적으로, 종래 제시한 글루코사이드를 2개 포함하고 있는 양친매성 분자 GNGs(Glucose-Neopentyl Glycol)의 경우, 막단백질 결정화 능력은 우수하지만 막 단백질의 안정화 능력은 DDM 보다 우수하지 못하다는 단점이 있었다(비특허문헌 3). 따라서 새로운 구조 설계를 통한 새롭고 우수한 특성을 지니는 새로운 글루코사이드 양친매성 물질의 개발이 필요하다.
이에 본 발명자들은 탠덤 말로네이트 중심구조에 소수성기와 친수성기가 도입된 양친매성 분자를 개발하였고, 이 화합물의 우수한 막단백질 안정화 특성을 확인하여 본 발명을 완성하였다.
[비특허문헌]
(비특허문헌 1) S. Newstead et al., Protein Sci . 17 (2008) 466-472.
(비특허문헌 2) S. Newstead et al., Mol . Membr . Biol . 25 (2008) 631-638.
(비특허문헌 3) P. S. Chae et al., Chem. Commun . 49, (2013), 2287-2289.
본 발명의 목적은 화학식 1로 표시되는 화합물을 제공하는 것이다.
본 발명의 다른 목적은 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 화합물의 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 화합물을 이용하여 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공하는 것이다.
본 발명의 일 구체예는 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2017004258-appb-I000001
상기 화학식 1에서,
상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 치환 또는 비치환된 C3-C30의 아릴기 또는 스테로이드 골격을 포함하는 유기기일 수 있고;
상기 X1 내지 X4 는 당류 (saccharide)일 수 있고;
상기 Y1 및 Y2는 CH2, O 또는 S일 수 있고; 및
상기 Z는 CH2 또는 S일 수 있다.
본 명세서에서 사용된 용어, "당류 (saccharide)"는 탄수화물 중에서 비교적 분자가 작고, 물에 녹아서 단맛이 나는 화합물을 의미한다. 당류는 당을 구성하는 분자의 수에 따라 단당류, 이당류, 다당류로 구분된다.
상기 구체예에서 사용된 당류는 단당류 (monosaccharide) 또는 이당류(disaccharide)일 수 있으며, 구체적으로 글루코스 (glucose) 또는 말토오스 (maltose)일 수 있으나, 이에 제한되지 않는다.
상기 당류는 친수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성기인 당류 4개를 병렬로 연결하여 친수성기의 크기를 크게 하면서도 길이의 증가를 최소화함으로써 막단백질과의 복합체 형성시 그 크기를 작게하였다. 상기 화합물과 막단백질과의 복합체의 크기가 작으면 양질의 막단백질 결정을 얻을 수 있다 (G. G. Prive, Methods 2007, 41, 388-397).
또한, 상기 R1 내지 R2는 소수성기로 작용할 수 있다. 본 발명의 일 구체예에 따른 화합물은 친수성도와 소수성도의 밸런스 (hydrophile-lipophile balance)를 최적으로 하기 위하여 2개의 소수성기를 도입하였다.
본 발명의 일 구체예에 따른 화합물은 중심구조로 탠덤 말로네이트 (tandem malonate) 링커를 가질 수 있다. 즉, 상기 화합물은 탠덤 말로네이트를 중심구조로 하여 4개의 친수성기 및 2개의 소수성기를 도입한 양친매성 분자로, 막단백질 안정화 및 결정화에 우수한 성능을 가질 수 있다.
구체적으로, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기 또는 스테로이드 골격을 포함하는 유기기일 수 있고; 그리고 상기 X1 내지 X4는 글루코스 (glucose) 또는 말토오스 (maltose)일 수 있고; 상기 Y1 및 Y2는 CH2, O또는 S일 수 있고; 및 상기 Z는 CH2 또는 S일 수 있다. 본 발명에서는 상기 이러한 화합물을 "TMGs/TMMs (tandem malonate-based glucosides/maltosides)"로 명명하였다.
보다 구체적으로, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기일 수 있고; 그리고 상기 X1 내지 X4는 글루코스 (glucose)일 수 있고; 상기 Y1 및 Y2는 CH2 일 수 있고; 및 상기 Z는 CH2 일 수 있다. 본 발명에서는 상기 이러한 화합물을 "TMG-As"로 명명하였다.
또한 구체적으로, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기 또는 스테로이드 골격을 포함하는 유기기일 수 있고 ; 그리고 상기 X1 내지 X4는 글루코스 (glucose) 또는 말토오스 (maltose)일 수 있고; 상기 Y1 및 Y2는 O일 수 있고; 및 상기 Z는 S일 수 있다. 본 발명에서는 상기 이러한 화합물을 "TMG-Ts/TMMs (tandem malonate-based glucosides/maltosides)"로 명명하였다.
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 C9의 알킬기이고; 상기 X1 내지 X4는 글루코스 (glucose)이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMG-T11"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 2로 표시되는 화합물일 수 있다:
[화학식 2]
Figure PCTKR2017004258-appb-I000002
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 C10의 알킬기이고; 상기 X1 내지 X4는 글루코스 (glucose)이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMG-T12"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 3로 표시되는 화합물일 수 있다:
[화학식 3]
Figure PCTKR2017004258-appb-I000003
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 C11의 알킬기이고; 상기 X1 내지 X4는 글루코스 (glucose)이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMG-T13"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 4로 표시되는 화합물일 수 있다:
[화학식 4]
Figure PCTKR2017004258-appb-I000004
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 C12의 알킬기이고; 상기 X1 내지 X4는 글루코스 (glucose)이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMG-T14"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 5로 표시되는 화합물일 수 있다:
[화학식 5]
Figure PCTKR2017004258-appb-I000005
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 C8의 알킬기이고; 상기 X1 내지 X4는 글루코스 (glucose)이고; 상기 Y1 및 Y2는 CH2이고; 및 상기 Z는 CH2인 화합물을 "TMG-A11"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 6로 표시되는 화합물일 수 있다:
[화학식 6]
Figure PCTKR2017004258-appb-I000006
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 C9의 알킬기이고; 상기 X1 내지 X4는 글루코스 (glucose)이고; 상기 Y1 및 Y2는 CH2이고; 및 상기 Z는 CH2인 화합물을 "TMG-A12"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 7로 표시되는 화합물일 수 있다:
[화학식 7]
Figure PCTKR2017004258-appb-I000007
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 C10의 알킬기이고; 상기 X1 내지 X4는 글루코스 (glucose)이고; 상기 Y1 및 Y2는 CH2이고; 및 상기 Z는 CH2인 화합물을 "TMG-A13"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 8로 표시되는 화합물일 수 있다:
[화학식 8]
Figure PCTKR2017004258-appb-I000008
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 C11의 알킬기이고; 상기 X1 내지 X4는 글루코스 (glucose)이고; 상기 Y1 및 Y2는 CH2이고; 및 상기 Z는 CH2인 화합물을 "TMG-A14"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 9로 표시되는 화합물일 수 있다:
[화학식 9]
Figure PCTKR2017004258-appb-I000009
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 치환된 C22의 알킬기이고; 상기 X1 내지 X4는 말토오스이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMM-C22"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 10로 표시되는 화합물일 수 있다:
[화학식 10]
Figure PCTKR2017004258-appb-I000010
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 치환된 C24의 알킬기이고; 상기 X1 내지 X4는 말토오스이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMM-C24"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 11로 표시되는 화합물일 수 있다:
[화학식 11]
Figure PCTKR2017004258-appb-I000011
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 치환된 C26의 알킬기이고; 상기 X1 내지 X4는 말토오스이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMM-C26"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 12로 표시되는 화합물일 수 있다:
[화학식 12]
Figure PCTKR2017004258-appb-I000012
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 콜레스테롤이고; 상기 X1 내지 X4는 말토오스이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMM-A27"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 13로 표시되는 화합물일 수 있다:
[화학식 13]
Figure PCTKR2017004258-appb-I000013
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 콜레스탄올이고; 상기 X1 내지 X4는 말토오스이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMM-E27"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 12로 표시되는 화합물일 수 있다:
[화학식 14]
Figure PCTKR2017004258-appb-I000014
본 발명의 일 실시예에서, 상기 화학식 1로 표시되는 화합물로서, 상기 R1 및 R2는 디오스게닌이고; 상기 X1 내지 X4는 말토오스이고; 상기 Y1 및 Y2는 O이고; 및 상기 Z는 S인 화합물을 "TMM-D27"로 명명하였다. 따라서, 상기 화합물은 하기 화학식 15로 표시되는 화합물일 수 있다:
[화학식 15]
Figure PCTKR2017004258-appb-I000015
본 발명의 다른 구체예에 따른 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하기 위한 양친매성 분자일 수 있으나, 이에 제한하지 않는다.
구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.
본 명세서에서 사용된 용어, "양친매성 분자"란 한 분자 내에 소수성기와 친수성기가 공존하여 극성, 비극성 용매 모두에 친화성을 가질 수 있는 분자를 의미한다. 양친매성 분자나 세포막에 존재하는 인지질 분자들은 한 끝에는 친수성기, 다른 끝에는 소수성기를 가진 분자로 양친매성을 갖고 수용액 중에서 미셀이나 리포좀을 형성하는 특징이 있다. 친수성기가 극성을 갖고 있으나 비극성기가 공존하기 때문에 이들의 양친매성 분자는 수용액에 잘 녹지 않는 경향이 있다. 그러나 농도가 어느 한계농도(임계 미셀 농도, CMC) 이상이 되면 소수성 상호작용에 의해 소수성기가 내부로 모이고 친수성기가 표면에 노출된 둥글거나 타원 형태의 미셀이 생성되어 물에 대한 용해성이 크게 증가한다.
CMC를 측정하는 방법은 특별히 제한되지 않으나, 당해 기술분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 디페닐헥사트리엔 (diphenylhexatriene; DPH)을 이용한 형광 염색 방법으로 측정할 수 있다.
본 발명의 일 구체예에 따른 화합물은 수용액에서 임계 미셀 농도 (CMC)가 0.0001 내지 1 mM일 수 있으며, 구체적으로 0.0001 내지 0.1 mM, 보다 구체적으로 0.001 내지 0.1 mM, 보다 더 구체적으로 0.001 내지 0.05 mM일 수 있다.
기존에 막단백질 연구에 주로 사용되고 있는 DDM의 경우 임계 미셀 농도가 0.17 mM인 것과 비교하여 본 구체예의 TMGs는 매우 작은 CMC 값을 가지고 있다. 따라서, TMGs는 낮은 농도에서도 미셀을 용이하게 형성하므로, 적은 양을 사용하여 막단백질을 효과적으로 연구 분석할 수 있어 DDM 보다 활용측면에서 유리하다 할 수 있다.
또한, 본 발명의 또 다른 구체예는 상기 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물을 제공한다.
구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.
상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것일 수 있으나, 이에 제한하지 않는다.
상기 미셀은 반지름이 2.0 nm 내지 20 nm일 수 있고, 구체적으로 2.0 nm 내지 10.0 nm일 수 있고, 예를 들어, 3.0 nm 내지 4.0 nm일 수 있으나, 이에 제한하지 않는다.
미셀의 반지름을 측정하는 방법은 특별히 제한되지 않으나, 당해 기술분야에서 널리 알려진 방법을 사용할 수 있으며, 예를 들어 동적 광산란(dynamic light scattering; DLS) 실험을 이용해 측정할 수 있다.
상기 미셀, 리포좀, 에멀션 또는 나노입자는 내부의 소수성으로 막단백질과 결합할 수 있다. 즉, 상기 미셀, 리포좀, 에멀션 또는 나노입자는 세포막에 존재하는 막단백질을 추출하여 감싸안을 수 있다. 따라서, 상기 미셀에 의하여 세포막으로부터 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 것이 가능하다.
상기 조성물은 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석에 도움이 될 수 있는 버퍼 등을 추가로 포함할 수 있다.
또한, 본 발명의 또 다른 구체예는 하기 1) 내지 5)의 단계를 포함하는 하기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:
1)2개의 디메틸 말로네이트(dimethyl malonate)를 알킬 사슬로 연결하여 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)를 합성하는 단계;
2)상기 단계 1)의 생성물에 존재하는 두 개의 알파 탄소에 알킬레이션(alkylation) 반응을 수행하여 알킬 사슬을 도입하는 단계;
3) 상기 단계 2)의 생성물의 4개의 메틸카복실레이트기를 알코올로 환원시키는 단계;
4)상기 단계 3)의 생성물에 글리코실레이션 (glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
5)상기 단계 4)의 생성물에 탈보호기화 (deprotection) 반응을 수행하는 단계;를 포함하는, 하기 화학식 1로 표시되는 화합물의 제조 방법:
[화학식 1]
Figure PCTKR2017004258-appb-I000016
상기 화학식 1에서,
상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기이고;
상기 X1 내지 X4 는 당류 (saccharide)이고;
상기 Y1 및 Y2는 CH2이고; 및
상기 Z는 CH2이다.
또 다른 일 실시예에서, 하기 1) 내지 3)의 단계를 포함하는 하기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다:
1) 1-알칸올(1-alkanol), 다이알킬화 모노올(dialkylated mono-ol), 콜레스테롤(cholesterol), 콜레스탄올(cholestanol) 또는 디오스게닌(diosgenin)의 용액에 5,5-비스-브로모메틸-2,2-디메틸-[1,3]디옥산(5,5-bis-bromomethyl-2,2-dimethyl-[1,3]dioxane)을 첨가하여 티오에터-포함 테트라올(thioether-containing tetraol)을 합성하는 단계;
2)상기 단계 1)의 생성물에 글리코실레이션 (glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
3)상기 단계 2)의 생성물에 탈보호기화 (deprotection) 반응을 수행하는 단계;를 포함하는, 하기 화학식 1로 표시되는 화합물의 제조 방법:
[화학식 1]
Figure PCTKR2017004258-appb-I000017
상기 화학식 1에서,
상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 치환 또는 비치환된 C3-C30의 아릴기 또는 스테로이드 골격을 포함하는 유기기일 수 있고;
상기 X1 내지 X4 는 당류 (saccharide)일 수 있고;
상기 Y1 및 Y2는 O 또는 S일 수 있고; 및
상기 Z는 S일 수 있다.
상기 화학식 1로 표시되는 화합물의 제조방법에서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기 또는 스테로이드 골격을 포함하는 유기기일 수 있고; 그리고 상기 X1 내지 X4 는 글루코스 또는 말토오스일 수 있다.
상기 방법에 의해 합성된 화합물은 본 발명의 일 실시예에 따른 화학식 2 내지 15 중 하나의 화합물일 수 있으나, 이에 제한되지 않는다.
본 구체예에서, 3단계 또는 5단계의 짧은 합성 단계를 거쳐 간단한 방법으로 화합물을 합성할 수 있으므로, 막단백질 연구를 위한 화합물의 대량 생산이 가능하다.
본 발명의 또 다른 구체예는 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공한다. 구체적으로, 수용액에서 하기 화학식 1로 표시되는 화합물을 막단백질에 처리하는 단계를 포함하는, 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법을 제공한다:
[화학식 1]
Figure PCTKR2017004258-appb-I000018
상기 화학식 1에서,
상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 치환 또는 비치환된 C3-C30의 아릴기 또는 스테로이드 골격을 포함하는 유기기일 수 있고;
상기 X1 내지 X4 는 당류 (saccharide)일 수 있고;
상기 Y1 및 Y2는 CH2, O 또는 S일 수 있고; 및
상기 Z는 CH2 또는 S일 수 있다.
구체적으로, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기일 수 있고; 상기 X1 내지 X4 는 글루코스 또는 말토오스일 수 있고; 상기 Y1 및 Y2는 CH2일 수 있고; 및 상기 Z는 CH2일 수 있다.
다른 일 실시예에서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기일 수 있고; 상기 X1 내지 X4 는 글루코스 또는 말토오스일 수 있고; 상기 Y1 및 Y2는 O 또는 S일 수 있고; 및 상기 Z는 S일 수 있다.
또 다른 일 실시예에서, 상기 R1 및 R2는 스테로이드 골격을 포함하는 유기기일 수 있고 ; 그리고 상기 X1 내지 X4는 말토오스 (maltose)일 수 있고; 상기 Y1 및 Y2는 O일 수 있고; 및 상기 Z는 S일 수 있다.
상기 화합물은 본 발명의 일 실시예에 따른 화학식 2 내지 15 중 하나의 화합물일 수 있으나, 이에 제한되지 않는다.
구체적으로, 상기 추출은 막단백질을 세포막으로부터 추출하는 것일 수 있다.
본 명세서에서 사용된 용어, "막단백질"이란 세포막 지질이중층으로 이입되는 단백질 또는 당단백질의 총칭이다. 이는 세포막 전체 층을 관통하거나, 표층에 위치하거나, 세포막을 배접하는 등 여러 상태로 존재하고 있다. 막단백질의 예로 효소, 펩티드호르몬과 국소호르몬 등의 수용체, 당 등의 수용담체, 이온채널, 세포막 항원 등이 있으나, 이에 제한되지 않는다.
상기 막단백질은 세포막 지질이중층으로 이입되는 단백질 또는 당단백질이라면 어느 것이나 포함하며, 구체적으로 UapA (Uric acid-xanthine/H+ symporter), LeuT (Leucine transporter), β2AR (human β2 adrenergic receptor), MelBSt (Melibiose permease), 또는 이들의 2 이상의 조합일 수 있으나, 이에 제한되지 않는다.
본 명세서에서 사용된 용어, "막단백질의 추출 (extraction)"이란 막단백질을 세포막 (membrane)으로부터 분리하는 것을 의미한다.
본 명세서에서 사용된 용어, "막단백질의 용해화 (solubilization)"란 물에 녹지 않는 막단백질을 수용액에서 미셀에 녹아들도록 하는 것을 의미한다.
본 명세서에서 사용된 용어, "막단백질의 안정화 (stabilization)"란 막단백질의 구조, 기능이 변하지 않도록 3차 또는 4차 구조를 안정하게 보존하는 것을 의미한다.
본 명세서에서 사용된 용어, "막단백질의 결정화 (crystallization)"란 용액에서 막단백질의 결정을 형성하는 것을 의미한다.
본 명세서에서 사용된 용어, "막단백질의 분석 (analysis)"이란 막단백질의 구조 또는 기능을 분석하는 것을 의미한다. 상기 구체예에서, 막단백질의 분석은 공지의 방법을 이용할 수 있으며, 이에 제한되지 않으나, 예를 들어 전자현미경 (electron microscopy) 또는 핵자기공명 (nuclear magnetic resonance)을 이용하여 막단백질의 구조를 분석할 수 있다.
또한, 본 발명에 따른 양친매성 분자의 작은 glucoside기는 작은 막단백질-양친매성 분자 복합체(protein-detergent complexes; PDCs)를 형성하는 경향이 있다. 작은 PDC 사이즈는 넓은 영역의 친수성 단백질 표면을 제공하여 막단백질 결정화(crystallization)에 유리한 것으로 알려져 있다. 단백질 결정 형성은 막단백질의 친수성 부분과의 상호작용에 의해 촉진된다. 양친매성 분자의 작은 친수성기의 이점은 종래 글루코사이드 양친매성 분자(OG 및 NG)들이 막단백질 결정화에 널리 이용되는 것과 관련이 있다. 반면, 양친매성 분자의 친수성기가 글루코스처럼 작은 경우는 비교적 큰 말토사이드(maltoside)를 친수성기로 가지는 양친매성 분자보다 막단백질을 안정화(stabilization)하는 데 불리하다. 따라서, 현재까지 많은 수의 막단백질에 대해서 DDM 보다 막단백질의 안정화 효과가 좋은 글루코사이드 양친매성 분자는 거의 개발되지 않았다. 그러나, 본 발명에 따른 TMGs는 친수성기로 글루코스를 가짐에도 불구하고, DDM 보다 막단백질 안정화 효과가 평가한 모든 단백질에 대해서 우수하므로, 막단백질의 결정화뿐만 아니라 막단백질의 안정화를 위하여도 우수하게 이용될 수 있음을 확인할 수 있었다.
본 발명의 구체예들에 따른 탠덤 말로네이트 기반의 화합물을 이용하면 기존 화합물 대비 막단백질을 수용액에서 장기간 안정적으로 보관할 수 있고, 이를 통해 그 기능분석 및 구조 분석에 활용될 수 있다.
막단백질 구조 및 기능 분석은 현 생물학 및 화학에서 가장 관심을 갖고 있는 분야 중 하나이므로, 신약 개발과 긴밀한 관계가 있는 단백질 구조 연구에 응용이 가능하다.
또한, 본 발명의 구체예들의 따른 화합물은 막단백질과의 복합체 형성시 그 크기가 작아 양질의 막단백질 결정을 얻을 수 있어 막단백질의 결정화를 촉진시킬 수 있다.
또한, 본 발명의 구체예들에 따른 화합물은 쉽게 구할 수 있는 출발물질로부터 간단한 방법으로 합성이 가능하므로, 막단백질 연구를 위한 화합물의 대량 생산이 가능하다.
도 1는 본 발명의 실시예 1에 따른 TMG-As의 합성스킴을 나타낸 도이다.
도 2는 본 발명의 실시예 2에 따른 TMG-Ts의 합성스킴을 나타낸 도이다.
도 3은 본 발명의 실시예 3에 따른 TMMs의 합성스킴을 나타낸 도이다.
도 4는 본 발명의 실시예 3에 따른 TMM-A, E 및 D의 합성 스킴을 나타낸 도이다.
도 5은 TMGs (1.0 wt%)에 의해 형성된 미셀의 유체역학적 반지름 (R h)을 동적 광산란 (dynamic light scattering; DLS) 실험을 통해 측정한 결과이다.
도 6은 TMMs (1.0 wt%)에 의해 형성된 미셀의 유체역학적 반지름 (R h)을 동적 광산란 (dynamic light scattering; DLS) 실험을 통해 측정한 결과이다.
도 7은 CMC + 0.04 wt%의 양친매성 분자에 의해 생성된 LHI-RC 복합체의 안정성을 20일동안 일정 간격으로 측정한 결과이다.
도 8는 CMC + 0.2 wt%의 양친매성 분자에 의해 생성된 LHI-RC 복합체의 안정성을 20일동안 일정 간격으로 측정한 결과이다.
도 9은 CMC + 0.04 wt%의 TMGs 또는 DDM에 의해 수용액에 용해된 UapA 단백질의 열적 안정성을 sulfhydryl-specific fluorophore, N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM)을 사용하여 측정한 결과를 나타낸 도이다:
(a) TMG-As
(b) TMG-Ts.
도 10은 CMC + 0.2 wt%의 TMGs 또는 DDM에 의해 수용액에 용해된 UapA 단백질의 열적 안정성을 sulfhydryl-specific fluorophore, N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM)을 사용하여 측정한 결과를 나타낸 도이다:
(a) TMG-As
(b) TMG-Ts.
도 11는 CMC + 0.2 wt%의 TMGs 또는 DDM에 의해 가용화된 LeuT (Leucine transporter) 구조 안정성을 측정한 결과이다. 단백질 안정성은 SPA (scintillation proximity assay)를 통해 트랜스포터의 기질 결합 특성을 측정함으로써 확인하였다. 각각의 양친매성 분자 존재하에 LeuT를 10일 동안 상온에서 인큐베이션하면서 단백질의 기질 결합 특성을 규칙적인 간격으로 측정하였다:
(a) TMG-As
(b) TMG-Ts.
도 12는 CMC + 0.04 wt%의 TMGs 또는 DDM에 의해 가용화된 LeuT (Leucine transporter) 구조 안정성을 측정한 결과이다. 단백질 안정성은 SPA (scintillation proximity assay)를 통해 트랜스포터의 기질 결합 특성을 측정함으로써 확인하였다. 각각의 양친매성 분자 존재하에 LeuT를 10일 동안 상온에서 인큐베이션하면서 단백질의 기질 결합 특성을 규칙적인 간격으로 측정하였다:
(a) TMG-As
(b) TMG-Ts.
도 13은 CMC + 0.04 wt%(a) 및 CMC + 0.2 wt%(b)의 TMMs 또는 DDM에 의해 가용화된 LeuT (Leucine transporter) 구조 안정성을 측정한 결과이다. 단백질 안정성은 SPA (scintillation proximity assay)를 통해 트랜스포터의 기질 결합 특성을 측정함으로써 확인하였다. 각각의 양친매성 분자 존재하에 LeuT를 10일 동안 상온에서 인큐베이션하면서 단백질의 기질 결합 특성을 규칙적인 간격으로 측정하였다.
도 14은 는 CMC + 0.2 wt%의 (a) TMGs 또는 DDM에 의해 세포막으로부터 추출 용해화된 β2AR의 초기 리간드 결합 능력과 (b) TMGs (TMG-A13, TMG-A14, TMG-T13, TMG-T14) 또는 DDM에 의해 세포막으로부터 추출 용해화된 β2AR의 장기간 리간드 결합 능력을 7일간 일정 간격으로 [3H]-dihydroalprenolol(DHA)의 ligand binding assay를 통해 측정한 결과를 나타낸 것이다.
도 15는 DDM, GNG-2, 또는 GNG-3에 녹아있는 β2AR의 장기간 활성을 6일간 일정 간격으로 측정한 그래프이다. 단백질 활성은 리간드인 [3H]-dihydroalprenolol(DHA) 결합 능력을 측정하여 확인하였고 대조구로써 새로운 양친매성 분자가 없는 조건 (detergent-free condition)에서 같은 실험을 진행하였다.
도 16은 TMGs 또는 DDM을 1.5 wt% 농도로 사용하여 MelBSt 단백질을 4개의 온도(0, 45, 55, 65 ) 조건하에서 추출 후, 90분 동안 같은 온도에서 인큐베이션한 다음 수용액에 용해되어 있는 MelBSt 단백질의 양을 측정한 결과이다:
(a) 각 양친매성 분자를 사용하여 추출한 MelBSt 단백질의 양을 나타낸 SDS-PAGE 및 Western Blotting 결과; 및
(b) 각 양친매성 분자를 사용하여 추출한 MelBSt 단백질의 양을 양친매성 분자 미처리 멤브레인 샘플 (Memb)에 존재하는 전체 단백질 양의 퍼센티지 (%)로 나타낸 히스토그램 (histogram).
이하 본 발명을 하기 실시예에서 보다 상세하게 기술한다. 다만, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아니다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 통상의 기술자가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다.
<실시예 1> TMG-As의 합성
TMG-As의 합성 스킴을 도 1 나타내었다. 하기 <1-1> 내지 <1-5>의 합성 방법에 따라 4종의 TMG-As 화합물을 합성하였다.
<1-1> 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 일반 합성 절차 (도 1의 단계 a)
무수 DMF (20 mL)에 K2CO3 (2.34 g, 16.9 mmol, 2.5 당량) 및 1,3-디아이오도프로판 (6.76 mmol, 1 당량)가 교반된 용액에 디메틸말로네이트 (16.9 mmol, 2.5 당량)을 첨가하였다. 실온에서 24 시간 동안 교반한 후, 반응 용기를 100 ℃의 예열된 오일조로 옮기고 4 시간 동안 더 교반하였다. 반응 (TLC로 모니터링) 완료 후, 반응 혼합물을 에터 (100 mL)로 희석하고, 물 (2 x 100 mL) 및 brine (100 mL)로 세척하고, 무수 Na2SO4로 건조시켰다. 용매를 제거한 후 잔여물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)에 의해 정제하여 고체 상태의 무색 오일(화합물 A)을 얻었다.
<1-2> 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 알킬화(alkylation)의 일반 절차(도 1의 단계 b)
건조 DMF (25 mL)에 NaH (15.8 mmol, 2.4 당량)가 교반된 현탁액에 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate) (6.57 mmol, 1 당량)를 첨가하였다. 15 분간 교반한 후, 1-아이오도알칸 (15.8 mmol, 2.4 당량)을 첨가하고 실온에서 밤새 교반한 후, 50 ℃에서 5 시간 동안 교반하였다. 반응 완료 후 (TLC로 모니터링), 아이스-콜드(ice-cold) 포화 NH4Cl을 첨가하여 반응을 종결(quenching)하고 디에틸에터 (150 mL)로 추출하였다. 유기층을 물 (2 x 100 mL), brine (100 mL)으로 세척하고 무수 Na2SO4로 건조시켰다. 용매를 완전히 증발시킨 후, 잔류물을 실리카 겔 컬럼 크로마토 그래피 (EtOAc/헥산)로 정제하여 디알킬화된 테트라 메틸 펜탄-1,1,5,5-테트라카르복실레이트 (화합물 B)를 유상 액체상태로 얻었다.
<1-3> 알킬화된 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 환원의 일반 절차(도 1의 단계 c)
0 ℃에서 무수 THF (20 mL)내 LiAlH4 (18.72 mmol, 6 당량)가 교반된 현탁액에 THF (15 mL)에 녹아있는 디알킬화된 테트라메틸 펜탄-1,1,5,5-테트라카르복실레이트 (화합물 B; 3.12 mmol, 1 당량)를 15 분 동안 천천히 첨가하였다. 상기 혼합물을 실온에서 6 시간 동안 교반하였다. 완료 후 (TLC로 모니터링), 0 ℃에서 MeOH, 물, 1N HCl 수용액으로 반응을 연속적으로 종결 (quenching)시켰다. 유기층을 DCM (200 mL)으로 추출하고 물 (2 x 150 mL), brine (100 mL)으로 세척하고 무수 Na2SO4로 건조시켰다. 유기 용매를 증발시킨 후, 반응 혼합물을 실리카 겔 컬럼 크로마토 그래피 (EtOAc/헥산)로 정제하여 백색 고체 상태의 디알킬-포함 테트라올(화합물 C)을 얻었다.
<1-4> 당화(glycosycosylation)반응의 일반 합성 절차 (도 1의 단계 d)
0 ℃에서 CH2Cl2 (15 mL)내 화합물 C 및 2,4,6-콜리딘 (collidine, 3.0 당량)이 교반된 용액에 AgOTf (5 당량)을 첨가하고 10분 동안 교반하였다. 5 당량의 퍼벤조일화된 글루코실브로마이드(perbenzoylated glucosylbromide)의 CH2Cl2 (10 mL) 용액을 상기 혼합물에 천천히 첨가하였다. 상기 반응은 0 ℃에서 30분 동안 교반하여 진행되었다. 반응 완료 후, 피리딘을 반응 혼합물에 첨가하고, 셀라이트 (celite)로 여과하기 전에 CH2Cl2 (20 mL)로 희석시켰다. 여과액을 1M Na2S2O3 수용액 (40 mL), 0.1 M HCl 수용액 (40 mL) 및 brine (3 x 40 mL)으로 연속적으로 세척하였다. 유기층을 무수 Na2SO4로 건조시키고, 용매를 회전 증발기로 제거하였다. 잔여물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여, 유리 고체 상태의 화합물 D를 얻었다.
<1-5> 탈보호기화 반응 (deprotection reaction)을 위한 일반 합성 절차 (도 1의 단계 e)
이 방법은 Zemplen's 조건하에 데-O-벤조일화 (de-O-benzoylation)를 수행하였다 (Ashton, P. R.; Boyd, S. E.; Brown, C. L.; Jayaraman, N.; Nepogodiev, S. A.; Stoddart, J. F. Chem .- Eur . J. 1996, 2, 1115-1128). O-protected 화합물 D를 무수 CH2Cl2 로 용해 시키고 침전이 생길 때까지 MeOH를 천천히 첨가하였다. 상기 반응 혼합물에 0.5M의 메탄올성 용액 (methanolic solution)인 NaOMe를 최종 농도가 0.05M이 되도록 처리하였다. 침전이 일어나는 것을 막기 위해 메탄올성 용액을 첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반시켰다. 반응 완료후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건 (in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 CH2Cl2/MeOH/diethyl ether를 이용하여 재결정화하여 보호기가 완전히 제거된 백색 고체상태의 화합물 E를 얻었다.
<제조예 1> TMG-A11의 합성
<1-1> 화합물 A (Tetramethyl pentane-1,1,5,5-tetracarboxylate)의 합성
실시예 1-1의 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 일반 합성 절차에 따라 화합물 A를 93%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.73 (s, 12H), 3.36 (t, J = 8.0 Hz, 2H), 1.96-1.90 (m, 4H), 1.39-1.33 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 170.0, 52.6, 51.4, 28.4, 25.1.
<1-2> 화합물 B1 (Tetramethyl heptacosane-12,12,16,16-tetracarboxylate)의 합성
실시예 1-2의 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 알킬화(alkylation)의 일반 절차에 따라 화합물 B1을 82%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.69 (s, 12H), 1.88-1.78 (m, 8H), 1.38-1.10 (m, 46H), 0.84 (t, J = 7.1 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 172.4, 57.7, 52.5, 34.3, 33.0, 32.9, 32.7, 32.1, 30.0, 29.8, 29.6, 29.0, 28.4, 24.3, 22.9, 19.1, 14.3.
<1-3> 화합물 C1 (2,6-bis(hydroxymethyl)-2,6-diundecylheptane-1,7-diol)의 합성
실시예 1-3의 알킬화된 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 환원의 일반 절차에 따라 화합물 C1을 83%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.54 (s, 8H), 1.68-1.25 (m, 46H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 32.1, 31.8, 30.8, 30.0, 29.8, 29.6, 27.0, 22.9, 19.1, 14.3.
<1-4> TMG-A11a의 합성
실시예 1-4의 당화 반응을 위한 일반적인 합성 절차에 따라 TMG-A11a를 54%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.23-8.19 (m, 2H), 8.10-8.02 (m, 4H), 8.01-7.85 (m, 16H), 7.84-7.76 (m, 8H), 7.53-7.39 (m, 10H), 7.38-7.28 (m, 10H), 7.27-7.18 (m, 16H), 7.17-7.10 (m, 8H), 7.09-7.05 (m, 6H), 5.72-5.57 (m, 6H), 5.56-5.52 (m, 2H), 4.62-4.42 (m, 6H), 3.81-3.76 (m, 2H), 3.49-3.43 (m, 2H), 3.19-3.01 (m, 2H), 2.96-2.93 (m, 2H), 1.45-0.91 (m, 46H), 0.88 (t, J = 6.7 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.1, 166.0, 165.9, 165.8, 165.2, 164.8, 164.7, 133.7, 133.5, 133.3, 133.0, 130.2, 130.1, 129.9, 129.8, 129.7, 129.4, 129.1, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.1, 128.0, 101.9, 101.6, 101.5, 72.9, 72.7, 72.5, 72.0, 71.7, 71.3, 70.0, 69.7, 69.5, 69.3, 62.9, 60.5, 40.6, 32.1, 31.0, 30.9, 30.7, 30.4, 30.0, 29.6, 22.8, 22.5, 14.3.
<1-5> TMG-A11의 합성
실시예 1-5의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMG-A11를 95%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 4.34 (d, J = 4.0 Hz, 4H), 3.92-3.85 (m, 4H), 3.75-3.63 (m, 8H), 3.48-3.35 (m, 4H), 3.25-3.19 (m, 4H), 1.33-1.22 (m, 46H), 0.88 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 105.0, 78.2, 77.8 , 75.3, 75.2, 73.3, 71.7, 62.9, 42.3, 33.2, 32.6, 32.0, 31.9, 31.2, 31.1, 31.0, 30.7, 23.9, 14.6; HRMS (EI): calcd. for C55H104O24[M+Na]+ 1149.4130, found 1149.9616.
<제조예 2> TMG-A12의 합성
<2-1> 화합물 A (Tetramethyl pentane-1,1,5,5-tetracarboxylate)의 합성
실시예 1-1의 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 일반 합성 절차에 따라 화합물 A를 93%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.73 (s, 12H), 3.36 (t, J = 8.0 Hz, 2H), 1.96-1.90 (m, 4H), 1.39-1.33 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 170.0, 52.6, 51.4, 28.4, 25.1.
<2-2> 화합물 B2 (Tetramethyl nonacosane-13,13,17,17-tetracarboxylate)의 합성
실시예 1-2의 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 알킬화(alkylation)의 일반 절차에 따라 화합물 B2을 83%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.70 (s, 12H), 1.89-1.80 (m, 8H), 1.28-1.10 (m, 50H), 0.88 (t, J = 7.1 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 172.3, 57.7, 52.5, 32.9, 32.7, 32.1, 30.7, 30.0, 29.9, 29.8, 29.6, 28.8, 24.3, 22.9, 19.1, 14.3.
<2-3> 화합물 C2 (2,6-didodecyl-2,6-bis(hydroxymethyl)heptane-1,7-diol)의 합성
실시예 1-3의 알킬화된 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 환원의 일반 절차에 따라 화합물 C2을 83%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.49 (s, 8H), 1.66-1.24 (m, 50H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 32.2, 31.9, 30.8, 30.0, 29.9, 29.6, 27.2, 23.0, 22.9, 14.4.
<2-4> TMG-A12a의 합성
실시예 1-4의 당화 반응을 위한 일반적인 합성 절차에 따라 TMG-A12a를 53%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.18-8.16 (m, 2H), 8.02-7.94 (m, 4H), 7.92-7.72 (m, 16H), 7.71-7.56 (m, 8H), 7.54-7.48 (m, 10H), 7.43-7.37 (m, 10H), 7.29-7.24 (m, 16H), 7.21-7.10 (m, 8H), 5.66-5.41 (m, 8H), 4.48-4.34 (m, 6H), 3.79-3.74 (m, 2H), 3.51-3.45 (m, 2H), 2.94-2.90 (m, 2H), 1.27-1.15 (m, 50H), 0.86 (t, J = 7.1 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.0, 165.9, 165.8, 165.7, 165.4, 165.2, 164.8, 164.7, 164.2, 133.7, 133.5, 133.2, 133.0, 130.4, 130.2, 130.0, 129.8, 129.7, 129.6, 129.4, 129.1, 129.0, 128.8, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 101.6, 101.5, 72.8, 72.6, 72.5, 72.0, 71.7, 71.4, 70.0, 69.7, 69.5, 69.3, 62.3, 40.6, 32.0, 30.9, 30.7, 30.4, 30.0, 29.9, 29.5, 22.8, 22.5, 14.3.
<2-5> TMG-A12의 합성
실시예 1-5의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMG-A12를 95%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 4.32 (d, J = 4.0 Hz, 4H), 3.88-3.83 (m, 4H), 3.75-3.65 (m, 8H), 3.48-3.35 (m, 4H), 3.24-3.17 (m, 4H), 1.39-1.15 (m, 50H), 0.88 (t, J = 6.6 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 105.1, 78.3, 78.1, 77.9, 75.4, 75.2, 73.3, 71.9, 62.9, 42.3, 33.3, 32.7, 32.1, 31.2, 31.1, 31.0, 30.7, 24.0, 16.9, 14.7; HRMS (EI): calcd. for C57H108O24[M+Na]+ 1177.4670, found 1177.7233.
<제조예 3> TMG-A13의 합성
<3-1> 화합물 A (Tetramethyl pentane-1,1,5,5-tetracarboxylate)의 합성
실시예 1-1의 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 일반 합성 절차에 따라 화합물 A를 93%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.73 (s, 12H), 3.36 (t, J = 8.0 Hz, 2H), 1.96-1.90 (m, 4H), 1.39-1.33 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 170.0, 52.6, 51.4, 28.4, 25.1.
<3-2> 화합물 B3 (Tetramethyl hentriacontane-14,14,18,18-tetracarboxylate)의 합성
실시예 1-2의 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 알킬화(alkylation)의 일반 절차에 따라 화합물 B3을 85%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.68 (s, 12H), 1.87-1.80 (m, 8H), 1.38-1.32 (m, 2H), 1.28 (s, 54H), 1.25-1.10 (m, 6H), 0.87 (t, J = 7.1 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 172.4, 57.6, 52.5, 34.3, 33.1, 32.9, 32.7, 32.1, 30.0, 29.9, 29.7, 29.6, 29.0, 28.4, 24.3, 22.9, 19.1, 14.3.
<3-3> 화합물 C3 (2,6-bis(hydroxymethyl)-2,6-ditridecylheptane-1,7-diol)의 합성
실시예 1-3의 알킬화된 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 환원의 일반 절차에 따라 화합물 C3을 85%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.49 (s, 8H), 1.67-1.10 (m, 54H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 32.2, 31.8, 30.9, 30.1, 29.9, 29.6, 27.0, 26.6, 22.9, 14.3.
<3-4> TMG-A13a의 합성
실시예 1-4의 당화 반응을 위한 일반적인 합성 절차에 따라 TMG-A13a를 53%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.23-8.19 (m, 2H), 8.01-7.95 (m, 4H), 7.93-7.85 (m, 16H), 7.73-7.70 (m, 8H), 7.54-7.48 (m, 6H), 7.47-7.42 (m, 10H), 7.41-7.35 (m, 16H), 7.34-7.23 (m, 8H), 7.21-7.17 (m, 6H), 5.65-5.59 (m, 8H), 5.52-5.24 (m, 2H), 4.46-4.33 (m, 6H), 3.81-3.73 (m, 2H), 3.51-3.46 (m, 2H), 3.10-3.07 (m, 2H), 2.93-2.88 (m, 2H), 1.48-0.93 (m, 54H), 0.86 (t, J = 6.9 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.1, 166.0, 165.9, 165.2, 165.1, 164.8, 164.7, 133.7, 133.5, 133.3, 133.2, 130.2, 130.0, 129.8, 129.7, 129.5, 129.3, 129.1, 129.0, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 101.6, 101.5, 72.6, 72.0, 71.6, 71.4, 70.0, 69.7, 63.3, 62.9, 60.4, 53.6, 40.6, 32.0, 30.9, 30.7, 30.4, 30.0, 29.9, 29.8, 29.6, 22.8, 22.5, 14.3.
<3-5> TMG-A13의 합성
실시예 1-5의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMG-A13를 96%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 4.32 (d, J = 4.0 Hz, 4H), 3.88-3.82 (m, 4H), 3.75-3.63 (m, 8H), 3.48-3.35 (m, 4H), 3.22-3.18 (m, 4H), 1.34-1.12 (m, 54H), 0.90 (t, J = 8.0 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 105.1, 78.3, 77.9, 75.4, 75.2, 73.4, 71.8, 62.9, 42.4, 33.3, 32.7, 32.1, 32.0, 31.2, 31.1, 31.0, 24.0, 14.7; HRMS (EI): calcd. for C59H112O24[M+Na]+ 1205.5210, found 1205.754.
<제조예 4>TMG-A14의합성
<4-1> 화합물 A (Tetramethyl pentane-1,1,5,5-tetracarboxylate)의 합성
실시예 1-1의 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 일반 합성 절차에 따라 화합물 A를 93%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.73 (s, 12H), 3.36 (t, J = 8.0 Hz, 2H), 1.96-1.90 (m, 4H), 1.39-1.33 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 170.0, 52.6, 51.4, 28.4, 25.1.
<4-2> 화합물 B4 (Tetramethyl tritriacontane-15,15,19,19-tetracarboxylate)의 합성
실시예 1-2의 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 알킬화(alkylation)의 일반 절차에 따라 화합물 B4을 87%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.69 (s, 12H), 1.89-1.80 (m, 8H), 1.26-1.05 (m, 58H), 0.87 (t, J = 7.1 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 172.4, 57.7, 52.5, 32.9, 32.8, 32.1, 30.0, 29.9, 29.8, 29.6, 24.3, 22.9, 19.1, 14.3.
<4-3> 화합물 C4 (2,6-bis(hydroxymethyl)-2,6-ditetradecylheptane-1,7-diol)의 합성
실시예 1-3의 알킬화된 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)의 환원의 일반 절차에 따라 화합물 C4을 86%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.55 (s, 8H), 1.67-1.16 (m, 58H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 32.2, 31.9, 31.1, 30.1, 29.9, 29.6, 27.1, 26.7, 22.9, 14.3.
<4-4> TMG-A14a의 합성
실시예 1-4의 당화 반응을 위한 일반적인 합성 절차에 따라 TMG-A14a를 52%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.24-8.20 (m, 2H), 8.02-7.96 (m, 4H), 7.95-7.89 (m, 16H), 7.75-7.71 (m, 8H), 7.54-7.48 (m, 6H), 7.47-7.41 (m, 10H), 7.39-7.35 (m, 16H), 7.34-7.23 (m, 8H), 7.21-7.17 (m, 6H), 5.65-5.60 (m, 8H), 5.54-5.43 (m, 2H), 4.46-4.33 (m, 6H), 3.82-3.73 (m, 2H), 3.53-3.47 (m, 2H), 3.14-3.09 (m, 2H), 2.95-2.86 (m, 2H), 1.49-0.94 (m, 58H), 0.86 (t, J = 7.1 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.1, 166.0, 165.9, 165.2, 165.1, 164.8, 164.7, 133.7, 133.5, 133.3, 133.2, 130.2, 130.0, 129.8, 129.7, 129.5, 129.3, 129.1, 129.0, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 101.6, 101.5, 72.6, 72.0, 71.6, 71.4, 70.0, 69.7, 69.2, 63.3, 63.0, 62.6, 60.4, 53.6, 40.6, 32.0, 30.9, 30.7, 30.4, 30.0, 29.9, 29.8, 29.5, 22.8, 22.5, 21.1, 14.9, 14.3.
<4-5> TMG-A14의 합성
실시예 1-5의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMG-A14를 96%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 4.34 (d, J = 4.0 Hz, 4H), 3.88-3.84 (m, 4H), 3.75-3.65 (m, 8H), 3.48-3.35 (m, 4H), 3.22-3.18 (m, 4H), 1.31-1.12 (m, 58H), 0.90 (t, J = 8.0 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 105.1, 78.2, 77.8, 75.3, 75.2, 73.3, 71.8, 62.9, 42.4, 33.2, 32.6, 32.1, 31.9, 31.2, 31.1, 31.0, 30.7, 24.0, 14.7; HRMS (EI): calcd. for C61H116O24[M+Na]+ 1233.5750, found 1233.7858.
<실시예 2> TMG-Ts의 합성
TMG-Ts의 합성 스킴을 도 2 나타내었다. 하기 <2-1> 내지 <2-3>의 합성 방법에 따라 4종의 TMG-Ts 화합물을 합성하였다.
<2-1>2,2'-(티오비스(메틸렌))비스(2-(알킬옥시)메틸)프로판-1,3-디올(2,2'-(thiobis(methylene))bis(2-(alkyloxy)methyl)propane-1,3-diol) 합성을 위한 일반 절차(도 2의 단계 f-h)
무수 DMF (25 mL)내 1-알칸올 (11.6 mmol, 1 당량)의 용액에 0 ℃에서 NaH (11.6 mmol, 1.2 당량, 60 %)를 첨가하였다. 상기 혼합물을 실온에서 30 분 동안 교반한 후 5,5-비스-브로모메틸-2,2-디메틸-[1,3]디옥산(5,5-bis-bromomethyl-2,2-dimethyl-[1,3]dioxane) (11.6 mmol, 1 당량)을 첨가하였다. 반응 용기를 100 ℃로 예열된 오일 조로 옮기고 15시간 동안 더 교반하였다. 반응 완료 후 (TLC로 모니터링), 반응 혼합물을 실온에서 냉각시키고, 아이스-콜드(ice-cold) H2O (50 mL)로 급냉시키고 에터 (3 x 100 mL)로 추출하였다. 혼합된 유기층을 brine (2 x 150 mL)으로 세척하고, 무수 Na2SO4로 건조시킨 다음 회전 증발기로 농축시켰다. 생성물 (5.08 mmol, 1 당량)을 DMF (20 mL)에 용해시키고, KI (5.08 mmol, 1 당량)를 용액에 첨가하였다. 이 혼합물에 물 (5 mL)내의 Na2S·9H2O (0.6 당량)를 첨가한 후, DMF (20 mL) 를 더 추가하고 상기 혼합물을 질소(N2)하에 90 ℃에서 20시간 동안 교반하였다. 냉각 후, 혼합물을 물 (300 mL)에 붓고 에터 (150 mL)로 추출하였다. 추출물을 물 (300 mL), 2.5 % NaOH 용액 (300 mL) 및 brine (100 mL)으로 순차적으로 세척하고, 무수 Na2SO4로 건조시켰다. 반응 혼합물을 실리카 겔 3g과 함께 교반하고, 여과하고, 회전 증발에 의해 농축시켰다. 농축시킨 반응 혼합물을 CH2Cl2 및 MeOH (50 mL)의 1:1 혼합물에 녹이고 p-톨루엔술폰산 (p-TSA) 모노하이드레이트 (200 mg)을 첨가하고 실온에서 6시간 동안 교반시켰다. 완료 후, 반응 혼합물을 NaHCO3 용액으로 중화시키고, 여과하고, 회전 증발로 건조시켰다. 플래시 컬럼 크로마토 그래피 (EtOAc/헥산)에 의해 백색 고체 상태의 티오에터-함유 테트라올 (화합물 H)을 얻었다.
<2-2> 당화(glycosycosylation)반응 의 일반 합성 절차 (도 2의 단계 d)
0 ℃에서 CH2Cl2 (15 mL)내 화합물 C 및 2,4,6-콜리딘 (collidine, 3.0 당량)이 교반된 용액에 AgOTf (5 당량)을 첨가하고 10분 동안 교반하였다. 5 당량의 퍼벤조일화된 글루코실브로마이드(perbenzoylated glucosylbromide)가 녹아있는 CH2Cl2 (10 mL)용액을 상기 혼합물에 천천히 첨가하였다. 상기 반응은 0 ℃에서 30분 동안 교반하여 진행되었다. 반응 완료 후, 피리딘을 반응 혼합물에 첨가하고, 셀라이트 (celite)로 여과하기 전에 CH2Cl2 (20 mL)로 희석시켰다. 여과액을 1M Na2S2O3 수용액 (40 mL), 0.1 M HCl 수용액 (40 mL) 및 brine (3 x 40 mL)으로 연속적으로 세척하였다. 유기층을 무수 Na2SO4로 건조시키고, 용매를 회전 증발기로 제거하였다. 잔여물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여, 유리 고체 상태의 화합물 I를 얻었다.
<2-3> 탈보호기화 반응 (deprotection reaction)을 위한 일반 합성 절차 (도 2의 단계 e)
이 방법은 Zemplen's 조건하에 데-O-벤조일화 (de-O-benzoylation)를 수행하였다 (Ashton, P. R.; Boyd, S. E.; Brown, C. L.; Jayaraman, N.; Nepogodiev, S. A.; Stoddart, J. F. Chem .- Eur . J. 1996, 2, 1115-1128). O-protected 화합물 D를 적은양의 무수 CH2Cl2 로 용해 시키고 침전이 생길 때까지 MeOH를 천천히 첨가하였다. 상기 반응 혼합물에 0.5M의 메탄올성 용액 (methanolic solution)인 NaOMe를 최종 농도가 0.05M이 되도록 처리하였다. 침전이 일어나는 것을 막기 위해 메탄올성 용액을천천히첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반시켰다. 반응 완료후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건 (in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 CH2Cl2/MeOH/diethyl ether를 이용하여 재결정화하여 보호기가 완전히 제거된 백색 고체상태의 화합물 J를 얻었다.
<제조예 5> TMG-T11의합성
<5-1> 화합물 H1(2,2'-(thiobis(methylene))bis(2-((undecyloxy)methyl)propane-1,3-diol))의 합성
실시예 2-1의 2,2'-(티오비스(메틸렌))비스(2-(알킬옥시)메틸)프로판-1,3-디올(2,2'-(thiobis(methylene))bis(2-(alkyloxy)methyl)propane-1,3-diol) 합성을 위한 일반 절차에 따라 화합물 H1을 60%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.65 (s, 4H), 3.51-3.31 (m, 8H), 3.30 (s, 8H), 1.58-1.49 (m, 4H), 1.29 (s, 32H), 0.89 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 73.8, 73.3, 72.7, 66.1, 56.2, 49.8, 47.0, 45.4, 45.2, 35.6, 33.2, 30.9, 30.8, 30.6, 28.8, 27.5, 23.9, 21.5, 14.6.
<5-2> TMG-T11a의 합성
실시예 2-2의 일반적인 당화 반응 절차에 따라 화합물 TMG-T11a을 52%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.35-8.31 (m, 2H), 8.16-8.14 (m, 4H), 7.99-7.91 (m, 16H), 7.90-7.78 (m, 8H), 7.72-7.63 (m, 10H), 7.52-7.44 (m, 10H), 7.42-7.32 (m, 16H), 7.31-7.23 (m, 12H), 6.91-6.78 (m, 2H), 5.82-5.78 (m, 6H), 5.77-5.52 (m, 4H), 4.61-4.39 (m, 8H), 3.92-3.72 (m, 4H), 3.53-3.42 (m, 4H), 3.41-3.12 (m, 8H), 1.49-1.32 (m, 4H), 1.31-0.97 (m, 32H), 0.86 (t, J = 8.0 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.1, 166.0, 165.8, 165.7, 165.4, 165.2, 165.0, 164.9, 164.7, 133.8, 133.7, 133.4, 133.2, 133.1, 130.5, 130.3, 130.0, 129.8, 129.7, 129.6, 129.4, 129.3, 129.2, 129.1, 129.0, 128.7, 128.6, 128.5, 128.4, 128.0, 72.7, 72.6, 72.5, 72.1, 71.8, 71.6, 71.5, 70.0, 69.9, 60.5, 45.2, 32.1, 29.9, 29.8, 29.7, 29.6, 26.2, 22.8, 14.3.
<5-3> TMG-T11의 합성
실시예 2-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMG-T11를 94%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 4.37-4.31 (m, 4H), 3.95-3.83 (m, 8H), 3.78-3.62 (m, 4H), 3.61-3.51 (m, 4H), 3.49-3.35 (m, 12H), 3.31-3.19 (m, 4H), 1.61-1.49 (m, 4H), 1.41-1.20 (m, 32H), 0.90 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 105.0, 104.8, 78.0, 77.8 , 75.2, 72.6, 71.6, 71.5, 71.4, 71.2, 70.7, 70.6, 63.0, 62.8, 46.4, 46.0, 33.2, 32.2, 31.0, 30.9, 30.8, 30.6, 27.5, 23.8, 14.6; HRMS (EI): calcd. for C56H106O26S[M+Na]+ 1227.4980 found 1227.6697.
<제조예 6> TMG-T12의합성
<6-1> 화합물 H2(2,2'-(thiobis(methylene))bis(2-(( dodecyloxy)methyl)propane-1,3-diol))의 합성
실시예 2-1의 2,2'-(티오비스(메틸렌))비스(2-(알킬옥시)메틸)프로판-1,3-디올(2,2'-(thiobis(methylene))bis(2-(alkyloxy)methyl)propane-1,3-diol) 합성을 위한 일반 절차에 따라 화합물 H2을 62%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.92 (s, 4H), 3.73-3.62 (m, 8H), 3.39 (s, 8H), 1.61-1.50 (m, 4H), 1.29 (s, 36H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 73.9, 73.4, 72.2, 67.3, 64.9, 64.5, 48.2, 45.4, 45.1, 40.4, 35.6, 32.1, 29.8, 29.6, 29.5, 28.9, 26.3, 22.8, 14.3.
<6-2> TMG-T12a의 합성
실시예 2-2의 일반적인 당화 반응 절차에 따라 화합물 TMG-T12a을 52%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.37-8.31 (m, 2H), 8.19-8.11 (m, 4H), 8.01-7.91 (m, 16H), 7.81-7.76 (m, 8H), 7.74-7.62 (m, 12H), 7.51-7.42 (m, 10H), 7.41-7.34 (m, 16H), 7.33-7.19 (m, 12H), 6.91-6.78 (m, 2H), 5.79-5.65 (m, 6H), 5.64-5.46 (m, 4H), 4.59-4.42 (m, 8H), 3.89-3.71 (m, 4H), 3.43-3.22 (m, 4H), 3.21-3.12 (m, 8H), 1.49-1.32 (m, 4H), 1.31-0.97 (m, 36H), 0.86 (t, J = 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 165.4, 165.2, 165.0, 164.9, 133.8, 133.5, 133.3, 133.2, 133.1, 130.5, 130.3, 130.1, 129.9, 129.8, 129.7, 129.5, 129.3, 129.2, 128.8, 128.6, 128.5, 128.4, 128.1, 101.7, 101.1, 72.8, 72.6, 72.2, 71.9, 71.6, 71.5, 70.1, 69.9, 63.3, 45.2, 32.2, 30.0, 29.9, 29.8, 29.7, 29.6, 26.3, 22.9, 14.4.
<6-3> TMG-T12의 합성
실시예 2-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMG-T12를 95%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 4.38-31 (m, 4H), 3.97-3.84 (m, 8H), 3.74-3.68 (m, 4H), 3.65-3.53 (m, 4H), 3.47-3.37 (m, 12H), 3.29-3.17 (m, 4H), 1.61-1.49 (m, 4H), 1.41-1.20 (m, 36H), 0.90 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 105.1, 105.0, 78.0, 77.8, 75.2, 72.7, 71.7, 71.6, 71.2, 70.8, 70.6, 70.4, 62.8, 46.4, 33.2, 31.0, 30.9, 30.8, 30.7, 27.6, 23.9, 14.7; HRMS (EI): calcd. for C58H110O26S[M+Na]+ 1255.5520 found 1255.7006.
<제조예 7> TMG-T13의합성
<7-1> 화합물 H3(2,2'-(thiobis(methylene))bis(2-((tridecyloxy)methyl)propane-1,3-diol))의 합성
실시예 2-1의 2,2'-(티오비스(메틸렌))비스(2-(알킬옥시)메틸)프로판-1,3-디올(2,2'-(thiobis(methylene))bis(2-(alkyloxy)methyl)propane-1,3-diol) 합성을 위한 일반 절차에 따라 화합물 H3을 63%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.92 (s, 4H), 3.75-3.63 (m, 8H), 3.41 (s, 8H), 1.61-1.51 (m, 4H), 1.29 (s, 40H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 73.9, 73.3, 72.2, 67.5, 64.9, 64.6, 64.4, 48.2, 45.4, 45.1, 44.6, 40.7, 40.4, 35.6, 32.1, 29.8, 29.6, 29.5, 28.9, 26.2, 22.8, 17.3, 14.3.
<7-2> TMG-T13a의 합성
실시예 2-2의 일반적인 당화 반응 절차에 따라 화합물 TMG-T13a을 51%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.37-8.31 (m, 2H), 8.21-8.12 (m, 4H), 8.01-7.91 (m, 16H), 7.83-7.76 (m, 8H), 7.72-7.62 (m, 12H), 7.50-7.42 (m, 10H), 7.41-7.35 (m, 16H), 7.34-7.20 (m, 12H), 6.83-6.76 (m, 2H), 5.81-5.64 (m, 6H), 5.63-5.48 (m, 4H), 4.59-4.38 (m, 8H), 3.87-3.71 (m, 4H), 3.43-3.22 (m, 4H), 3.21-3.12 (m, 8H), 1.49-1.32 (m, 4H), 1.31-1.08 (m, 40H), 0.86 (t, J = 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 166.1, 165.9, 165.7, 165.4, 165.2, 165.0, 164.9, 133.7, 133.4, 133.2, 133.1, 133.0, 130.5, 130.3, 130.0, 129.9, 129.8, 129.7, 129.6, 129.4, 129.3, 129.2, 129.1, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.0, 72.8, 71.6, 71.5, 71.4, 60.5, 45.2, 32.1, 29.9, 29.8, 29.7, 29.5, 26.2, 22.8, 21.2, 14.3.
<7-3> TMG-T13의 합성
실시예 2-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMG-T13를 96%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 4.37-4.28 (m, 4H), 3.98-3.84 (m, 8H), 3.73-3.62 (m, 4H), 3.62-3.51 (m, 4H), 3.47-3.38 (m, 12H), 3.27-3.17 (m, 4H), 1.62-1.49 (m, 4H), 1.41-1.20 (m, 40H), 0.90 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 106.0, 105.0, 104.9, 78.1, 78.0, 77.8 , 75.2, 74.7, 72.8, 72.7, 71.6, 71.5, 71.1, 62.8, 62.7, 46.4, 45.7, 33.2, 31.0, 30.9, 30.6, 27.5, 23.9, 14.6; HRMS (EI): calcd. for C60H114O26S[M+Na]+ 1283.7319 found 1283.7316.
<제조예 8> TMG-T14의합성
<8-1> 화합물 H4(2,2'-(thiobis(methylene))bis(2-(( dodecyloxy)methyl)propane-1,3-diol))의 합성
실시예 2-1의 2,2'-(티오비스(메틸렌))비스(2-(알킬옥시)메틸)프로판-1,3-디올(2,2'-(thiobis(methylene))bis(2-(alkyloxy)methyl)propane-1,3-diol) 합성을 위한 일반 절차에 따라 화합물 H4를 65%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.94 (s, 4H), 3.78-3.51 (m, 8H), 3.35 (s, 8H), 1.52-1.36 (m, 4H), 1.23 (s, 44H), 0.88 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 73.7, 73.2, 72.2, 71.8, 67.6, 67.1, 64.9, 64.7, 64.4, 48.3, 45.4, 45.1, 44.7, 40.8, 40.4, 38.8, 35.5, 32.0, 29.8, 29.6, 29.5, 28.8, 26.2, 22.8, 17.2, 14.3.
<8-2> TMG-T14a의 합성
실시예 2-2의 일반적인 당화 반응 절차에 따라 화합물 TMG-T14a을 51%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.37-8.32 (m, 2H), 8.21-8.14 (m, 4H), 8.01-7.89 (m, 16H), 7.83-7.78 (m, 8H), 7.73-7.64 (m, 12H), 7.52-7.40 (m, 10H), 7.39-7.32 (m, 16H), 7.31-7.18 (m, 12H), 6.83-6.76 (m, 2H), 5.81-5.63 (m, 6H), 5.62-5.49 (m, 4H), 4.57-4.34 (m, 8H), 3.88-3.72 (m, 4H), 3.45-3.23 (m, 4H), 3.22-3.12 (m, 8H), 1.50-1.32 (m, 4H), 1.31-1.04 (m, 44H), 0.86 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ 165.9, 165.8, 165.4, 165.2, 165.0, 164.9, 133.7, 133.5, 133.2, 133.1, 130.5, 130.3, 130.0, 129.9, 129.6, 129.4, 129.3, 129.2, 129.1, 129.0, 128.8, 128.6, 128.5, 128.4, 128.2, 128.0, 72.5, 72.3, 72.2, 71.8, 71.6, 71.5, 70.6, 69.9, 69.8, 69.2, 68.0, 63.9, 63.2, 45.2, 34.4, 32.1, 29.9, 29.8, 29.7, 29.6, 26.3, 22.9, 14.3.
<8-3> TMG-T14의 합성
실시예 2-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMG-T14를 96%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 4.38-4.28 (m, 4H), 3.97-3.82 (m, 8H), 3.74-3.65 (m, 4H), 3.64-3.51 (m, 4H), 3.48-3.38 (m, 12H), 3.29-3.16 (m, 4H), 1.62-1.50 (m, 4H), 1.42-1.18 (m, 44H), 0.90 (t, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CD3OD): δ 105.1, 105.0, 78.1, 77.8, 75.2, 72.7, 71.7, 71.6, 71.2, 70.8, 70.6, 70.4, 62.8, 46.4, 33.2, 31.0, 30.9, 30.8, 30.6, 27.6, 23.9, 14.7.
<실시예 3> TMMs의 합성
TMMs의 합성 스킴을 도 3 및 4에 나타내었다. 하기 <3-1> 내지 <3-3>의 합성 방법에 따라 6종의 TMMs 화합물을 합성하였다.
<3-1>티오에터 포함 테트라올(도 3 및 4의 화합물 B)의 합성을 위한 일반 절차(도 3 및 4의 단계 a-c)
건조 DMF (25 mL)에 용해된 다이알킬화 모노올, 콜레스테롤, 콜레스탄올 또는 디오스게닌(11.6 mmol, 1 당량)의 용액에 NaH (11.6 mmol, 1.2 당량, 60 %)를 첨가하였다. 상기 혼합물에 5,5-비스-브로모메틸-2,2-디메틸-[1,3]디옥산(5,5-bis-bromomethyl-2,2-dimethyl-[1,3]dioxane) (11.6 mmol, 1 당량)을 첨가하고 실온에서 30 분 동안 교반하였다. 반응 플라스크를 120 ℃로 예열된 오일 조로 옮기고 15시간 동안 더 교반하였다. 반응 완료 후 (TLC로 모니터링), 반응 혼합물을 실온에서 냉각시키고, 아이스-콜드(ice-cold) H2O (50 mL)로 급냉시키고 에터 (3 x 100 mL)로 추출하였다. 혼합된 유기층을 brine (2 x 150 mL)으로 세척하고, 무수 Na2SO4로 건조시킨 다음 회전 증발기로 농축시켰다. 생성물 (5.08 mmol, 1 당량)을 DMF (20 mL)에 용해시키고, KI (5.08 mmol, 1 당량)를 용액에 첨가하였다. 이 혼합물에 물 (5 mL)내의 Na2S·9H2O (0.6 당량)를 첨가한 후, DMF (20 mL) 를 더 추가하고 상기 혼합물을 100 ℃로 예열된 오일 조로 옮겨 질소(N2)하에 20시간 동안 교반하였다. 냉각 후, 혼합물을 물 (300 mL)에 붓고 유기층을 다이에틸에터 (150 mL)로 추출하였다. 유기층을 물 (300 mL), 2.5 % NaOH 용액 (300 mL) 및 brine (100 mL)으로 순차적으로 세척하고, 무수 Na2SO4로 건조시키고 여과하였다. 여과물을을 30분동안 실리카 겔 3g과 함께 교반하고, 여과하고, 회전 증발에 의해 농축시켰다. 농축시킨 반응 혼합물을 CH2Cl2 및 MeOH (50 mL)의 1:1 혼합물에 녹이고 p-톨루엔술폰산 (p-TSA) 모노하이드레이트 (200 mg)을 첨가하고 실온에서 6시간 동안 교반시켰다. 완료 후, 반응 혼합물을 NaHCO3 용액으로 중화시키고, 여과하고, 회전 증발로 건조시켰다. 플래시 컬럼 크로마토 그래피 (EtOAc/헥산)에 의해 백색 고체 상태의 티오에터-함유 테트라올 (화합물 B)을 얻었다.
<3-2> 당화(glycosycosylation)반응 의 일반 합성 절차 (도 3 및 4의 단계 d)
0 ℃에서 CH2Cl2 (15 mL)에 용해된 <3-1>에서 생성된 화합물 B 및 2,4,6-콜리딘 (collidine, 3.0 당량)이 교반된 용액에 AgOTf (5 당량)을 첨가하고 10분 동안 교반하였다. 5 당량의 퍼벤조일화된 말토실브로마이드(perbenzoylated maltosylbromide)가 녹아있는 CH2Cl2 (10 mL)용액을 상기 혼합물에 천천히 첨가하였다. 상기 반응은 0 ℃에서 30분 동안 교반하여 진행되었다. 반응 완료 후, 피리딘을 반응 혼합물에 첨가하고, 셀라이트 (celite)로 여과하기 전에 CH2Cl2 (20 mL)로 희석시켰다. 여과액을 1M Na2S2O3 수용액 (40 mL), 0.1 M HCl 수용액 (40 mL) 및 brine (3 x 40 mL)으로 연속적으로 세척하였다. 유기층을 무수 Na2SO4로 건조시키고, 용매를 회전 증발기로 제거하였다. 잔여물을 실리카 겔 컬럼 크로마토그래피 (EtOAc/헥산)로 정제하여, 유리 고체 상태의 화합물을 얻었다.
<3-3> 탈보호기화 반응 (deprotection reaction)을 위한 일반 합성 절차 (도 3 및 4의 단계 e)
이 방법은 Zemplen's 조건하에 데-O-벤조일화 (de-O-benzoylation)를 수행하였다 (Ashton, P. R.; Boyd, S. E.; Brown, C. L.; Jayaraman, N.; Nepogodiev, S. A.; Stoddart, J. F. Chem .- Eur . J. 1996, 2, 1115-1128). O-protected 화합물 D를 적은양의 무수 CH2Cl2 로 용해 시키고 침전이 생길 때까지 MeOH를 천천히 첨가하였다. 상기 반응 혼합물에 0.5M의 메탄올성 용액 (methanolic solution)인 NaOMe를 최종 농도가 0.05M이 되도록 처리하였다. 침전이 일어나는 것을 막기 위해 메탄올성 용액을천천히첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반시켰다. 반응 완료후, 반응 혼합물을 Amberlite IR-120 (H+ form) resin을 이용하여 중화시켰다. 여과하여 resin을 제거하고, MeOH로 세척하고, 진공 조건 (in vacuo)에서 여과물로부터 용매를 제거하였다. 잔여물을 CH2Cl2/MeOH/diethyl ether를 이용하여 재결정화하여 보호기가 완전히 제거된 백색 고체상태의 화합물을 얻었다.
<제조예 9> TMM-C22의 합성
<9-1> 화학물 B1의 합성
상기 실시예 <3-1>의 티오에터 포함 테트라올의 합성을 위한 일반 절차에 따라 화합물 B1을 53% 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.94 (s, 4H), 3.63 (s, 8H), 3.54 (d, J = 8.4 Hz, 4H), 3.21 (s, 4H), 1.58-1.49 (m, 2H), 1.26 (s, 72H), 0.89 (t, J = 7.6 Hz, 12H); 13C NMR (100 MHz, CDCl3): δ 73.3, 72.7, 66.1, 65.2, 45.4, 41.2, 35.6, 33.2, 30.9, 30.8, 28.8, 27.5, 23.9, 21.5, 14.6.
<9-2> TMM-C22a의 합성
실시예 3-2의 일반적인 당화 반응 절차에 따라 화합물 TMM-C22a을 51%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.21-7.90 (m, 32H), 7.89-7.78 (m, 18H), 7.77-7.59 (m, 10H), 7.58-7.45 (m, 28H), 7.44-7.32 (m, 20H), 7.31-7.11 (m, 32H), 6.14 (t, J = 8.4 Hz, 4H), 5.66 (s, 8H), 5.46-5.23 (m, 4H), 5.19-5.02 (m, 8H), 4.79-4.62 (m, 10H), 4.61-3.99 (m, 16H), 3.81-3.36 (m, 8H), 3.22-3.01 (m, 4H), 2.99-2.54 (m, 16H), 2.42-2.15 (m, 2H), 1.25 (s, 72H), 0.86 (t, J = 7.6 Hz, 12H); 13C NMR (100 MHz, CDCl3): δ 166.2, 165.9, 165.8, 165.6, 165.2, 165.0, 133.6, 133.3, 130.1, 129.9, 129.8, 129.4, 129.2, 129.0, 128.8, 128.5, 128.4, 95.8, 72.2, 71.5, 69.9, 69.2, 62.5, 60.6, 53.6, 32.1, 29.9, 29.6, 22.9, 21.2, 14.4.
<9-3> TMM-C22의 합성
실시예 3-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMM-C22를 92%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 5.21 (d, J = 3.8 Hz, 4H), 4.41-3.36 (m, 4H), 3.95-3.82 (m, 10H), 3.81-3.67 (m, 20H), 3.66-3.58 (m, 16H), 3.57-3.49 (m, 14H), 3.31-3.02 (m, 4H), 1.68-1.51 (m, 2H), 1.30 (s, 72H), 0.90 (t, J = 7.2 Hz, 12H); 13C NMR (100 MHz, CD3OD): δ 105.0, 103.1, 81.4, 77.9, 76.7, 75.2, 74.9, 74.3, 71.6, 62.9, 62.3, 46.7, 33.2, 31.7, 30.9, 30.8, 30.7, 23.9, 14.7; MS (MALDI-TOF): calcd. for C102H190O46S [M+H]+ 2184.6560, found 2184.1526.
<제조예 10> TMM-C24의 합성
<10-1> 화학물 B2의 합성
상기 실시예 <3-1>의 티오에터 포함 테트라올의 합성을 위한 일반 절차에 따라 화합물 B2을 53% 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.93 (s, 4H), 3.87 (s, 8H), 3.59 (d, J = 8.4 Hz, 4H), 3.21 (s, 4H), 1.53-1.46 (m, 2H), 1.26 (s, 80H), 0.88 (t, J = 7.6 Hz, 12H); 13C NMR (100 MHz, CDCl3): δ 73.3, 72.6, 67.9, 64.9, 45.5, 41.7, 37.9, 31.2, 30.8, 29.5, 28.8, 23.5, 21.6, 14.6.
<10-2> TMM-C24a의 합성
실시예 3-2의 일반적인 당화 반응 절차에 따라 화합물 TMM-C24a을 49%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.21-7.90 (m, 32H), 7.89-7.77 (m, 18H), 7.76-7.58 (m, 10H), 7.57-7.45 (m, 28H), 7.44-7.32 (m, 20H), 7.31-7.09 (m, 32H), 6.15 (t, J = 8.4 Hz, 4H), 5.65 (s, 8H), 5.46-5.21 (m, 4H), 5.20-5.01 (m, 8H), 4.79-4.62 (m, 10H), 4.61-3.99 (m, 16H), 3.81-3.35 (m, 8H), 3.21-3.01 (m, 4H), 2.97-2.54 (m, 16H), 2.42-2.18 (m, 2H), 1.25 (s, 80H), 0.86 (t, J = 7.6 Hz, 12H); 13C NMR (100 MHz, CDCl3): δ 166.3, 166.0, 165.8, 165.7, 165.2, 165.0, 164.7, 133.4, 133.2, 130.4, 130.1, 129.9, 129.7, 129.6, 129.4, 129.2, 129.0, 128.9, 128.7, 128.4, 127.9, 95.9,75.3, 74.7, 72.7, 72.2, 71.6, 70.5, 70.4, 69.9, 69.1, 63.7, 62.4, 60.5, 32.1, 30.6, 29.9, 29.6, 22.9, 22.3, 21.2, 14.3.
<10-3> TMM-C24의 합성
실시예 3-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMM-C24를 92%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 5.20 (d, J = 3.8 Hz, 4H), 4.39-3.37 (m, 4H), 3.94-3.82 (m, 12H), 3.81-3.68 (m, 18H), 3.67-3.59 (m, 18H), 3.58-3.49 (m, 12H), 3.32-3.03 (m, 4H), 1.69-1.52 (m, 2H), 1.30 (s, 80H), 0.90 (t, J = 7.2 Hz, 12H); 13C NMR (100 MHz, CD3OD): δ 105.0, 103.0, 81.4, 77.8, 76.7, 75.2, 74.9, 71.6, 62.8, 62.3, 33.2, 30.9, 30.7, 23.9, 14.7; MS (MALDI-TOF): calcd. for C106H198O46S [M+H]+ 2240.7640, found 2240.1177.
<제조예 11> TMM-C26의 합성
<11-1> 화학물 B3의 합성
상기 실시예 <3-1>의 티오에터 포함 테트라올의 합성을 위한 일반 절차에 따라 화합물 B3을 52% 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.84 (s, 4H), 3.78 (s, 8H), 3.40 (d, J = 8.4 Hz, 4H), 2.98 (s, 4H), 1.58-1.46 (m, 2H), 1.26 (s, 88H), 0.87 (t, J = 7.6 Hz, 12H); 13C NMR (100 MHz, CDCl3): δ 73.2, 72.6, 67.7, 64.8, 45.3, 41.4, 37.9, 32.1, 31.4, 30.8, 29.9, 29.6, 23.6, 22.9, 14.4.
<11-2> TMM-C26a의 합성
실시예 3-2의 일반적인 당화 반응 절차에 따라 화합물 TMM-C26a을 49%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.23-7.92 (m, 32H), 7.91-7.79 (m, 18H), 7.78-7.59 (m, 10H), 7.58-7.45 (m, 28H), 7.44-7.32 (m, 20H), 7.31-7.13 (m, 32H), 6.15 (t, J = 8.4 Hz, 4H), 5.66 (s, 8H), 5.45-5.22 (m, 4H), 5.20-5.04 (m, 8H), 4.78-4.64 (m, 10H), 4.63-3.98 (m, 16H), 3.81-3.36 (m, 8H), 3.22-3.02 (m, 4H), 2.99-2.54 (m, 16H), 2.42-2.18 (m, 2H), 1.26 (s, 88H), 0.86 (t, J = 5.7 Hz, 12H); 13C NMR (100 MHz, CDCl3): δ 166.2, 165.9, 165.7, 165.2, 165.0, 164.8, 133.6, 133.3, 133.1, 129.9, 129.8, 129.6, 129.4, 129.1, 129.0, 128.8, 128.5, 128.4, 95.9, 74.8, 72.2, 71.4, 69.9, 69.1, 63.5, 62.6, 32.1, 29.9, 29.6, 22.9, 14.3.
<11-3> TMM-C26의 합성
실시예 3-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMM-C26를 90%의 수득률로 합성하였다. 1H NMR (400 MHz, CD3OD): δ 5.18 (d, J = 3.8 Hz, 4H), 4.38-3.39 (m, 4H), 3.92-3.81 (m, 12H), 3.79-3.67 (m, 18H), 3.66-3.57 (m, 18H), 3.56-3.47 (m, 12H), 3.31-3.02 (m, 4H), 1.68-1.51 (m, 2H), 1.29 (s, 88H), 0.90 (t, J = 7.2 Hz, 12H); 13C NMR (100 MHz, CD3OD): δ 105.1, 103.0, 81.5, 77.9, 76.6, 75.2, 74.9, 74.3, 72.7, 71.6, 62.9, 62.4, 33.3, 31.0, 30.7, 27.6, 23.9, 14.7; MS (MALDI-TOF): calcd. for C110H206O46S [M+H]+ 2296.8720, found 2296.6560.
<제조예 12> TMM-A27의 합성
<12-1> 화학물 B4의 합성
상기 실시예 <3-1>의 티오에터 포함 테트라올의 합성을 위한 일반 절차에 따라 화합물 B4을 53% 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 3.79-3.58 (m, 12H), 3.52 (s, 4H), 3.21-3.17 (m, 2H), 3.00 (s, 2H), 2.78 (s, 2H), 1.96 (d, J = 6.4 Hz, 2H), 1.90-0.78 (m, 78H), 0.61 (s, 12H); 13C NMR (100 MHz, CDCl3): δ 80.0, 71.1, 65.2, 56.7, 56.5, 54.5, 44.9, 44.8, 42.8, 40.2, 39.7, 37.0, 36.4, 36.0, 35.9, 35.7, 34.8, 32.3, 29.0, 28.4, 28.3, 28.2, 24.4, 24.0 23.0, 22.8, 21.4, 18.9. 12.2.
<12-2> TMM-A27a의 합성
실시예 3-2의 일반적인 당화 반응 절차에 따라 화합물 TMM-A27a을 52%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.09-8.05 (m, 10H), 8.04-7.96 (m, 14H), 7.95-7.82 (m, 24H), 7.79-7.65 (m, 10H), 7.55-7.47 (m, 22H), 7.46-7.38 (m, 16H), 7.37-7.30 (m, 24H), 7.27-7.19 (m, 20H), 6.08 (t, J = 7.8 Hz, 4H), 5.69-5.54 (m, 10H), 5.40 (t, J = 7.8 Hz, 4H), 5.21-5.04 (m, 8H), 4.72-4.38 (m, 8H), 4.37-4.02 (m, 16H), 3.78-3.59 (m, 8H), 3.26-3.11 (m, 6H), 3.04-2.76 (m, 8H), 1.92-0.65 (m, 74H), 0.56 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 166.3, 165.9, 165.7, 165.2, 164.9, 133.7, 133.6, 133.3, 130.1, 130.0, 129.9, 129.8, 129.6, 129.5, 129.1, 129.0, 128.9, 128.8, 128.6, 128.4, 101.0, 95.9, 79.2, 74.9, 72.4, 72.2, 71.4, 70.0, 69.1, 69.0, 67.9, 63.6, 62.5, 56.5, 54.1, 44.8, 44.6, 42.7, 40.1, 39.7, 36.4, 36.0, 35.6, 35.4, 34.9, 31.9, 28.8, 28.4, 28.2, 28.1, 24.3, 24.0, 19.2, 12.9, 12.8.
<12-3> TMM-A27의 합성
실시예 3-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMM-A27를 92%의 수득률로 합성하였다. 1H NMR (400 MHz, (CD3)2SO): δ 5.67-5.44 (m, 12H), 5.37-5.01 (m, 4H), 4.98-4.71 (m, 12H), 4.61-4.35 (m, 14H), 3.21-3.11 (m, 12), 2.10-0.79 (m, 72H), 0.77-0.49 (m, 12H); 13C NMR (100 MHz, (CD3)2SO): δ 105.4, 100.5, 79.2, 75.9, 74.7, 73.1, 72.9, 72.8, 72.1, 69.5, 60.4, 60.1, 55.5, 44.8, 41.8, 39.8, 34.9, 34.7, 27.0, 22.3, 22.1, 18.2, 11.8; MS (MALDI-TOF): calcd. for C112H194O46S [M+H]+ 2308.7980, found 2308.2026.
<제조예 13> TMM-E27의 합성
<13-1> 화학물 B5의 합성
상기 실시예 <3-1>의 티오에터 포함 테트라올의 합성을 위한 일반 절차에 따라 화합물 B5을 52% 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 5.35 (t, J = 5.1 Hz, 2H), 3.66-3.58 (m, 12H), 3.43 (s, 2H), 3.35 (s, 4H), 3.20-3.17 (m, 2H), 2.78 (s, 2H), 2.99 (t, J = 4.8 Hz, 2H), 2.31-2.23 (m, 2H), 2.19-0.71 (m, 76H), 0.67 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 140.9, 122.0, 79.9, 75.1, 72.6, 71.2, 67.0, 65.1, 59.8, 57.0, 56.3, 50.4, 45.2, 42.5, 40.0, 39.7, 39.1, 37.4, 37.0, 36.4, 36.0, 32.1, 29.9, 28.5, 28.4, 28.2, 24.5, 24.0, 23.6, 22.8, 21.3, 19.6, 18.9, 12.1.
<13-2> TMM-E27a의 합성
실시예 3-2의 일반적인 당화 반응 절차에 따라 화합물 TMM-E27a을 51%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.09-8.05 (m, 10H), 8.04-7.95 (m, 14H), 7.94-7.82 (m, 22H), 7.79-7.65 (m, 12H), 7.55-7.46 (m, 22H), 7.45-7.37 (m, 16H), 7.36-7.30 (m, 24H), 7.27-7.19 (m, 20H), 6.07 (t, J = 7.8 Hz, 4H), 5.69-5.55 (m, 10H), 5.40 (t, J = 7.8 Hz, 4H), 5.21-5.03 (m, 10H), 4.71-4.40 (m, 8H), 4.37-4.02 (m, 16H), 3.78-3.59 (m, 8H), 3.26-3.11 (m, 6H), 3.04-2.76 (m, 8H), 1.92-0.65 (m, 76H), 0.56 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 166.3, 166.0, 165.7, 165.2, 165.0, 133.6, 133.3, 130.1, 129.9, 129.8, 129.7, 129.6, 129.5, 129.2, 129.1, 128.9, 128.8, 128.6, 128.4, 101.0, 95.9, 79.2, 74.9, 72.4, 72.2, 71.4, 70.0, 69.0, 67.8, 62.6, 56.5, 54.2, 44.8, 44.5, 42.7, 40.2, 39.7, 36.8, 36.0, 35.6, 35.4, 34.8, 28.6, 28.4, 28.2, 28.0, 23.0, 22.8, 19.4, 18.9, 14.4, 12.0.
<13-3> TMM-E27의 합성
실시예 3-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMM-E27를 92%의 수득률로 합성하였다. 1H NMR (400 MHz, (CD3)2SO): δ 5.64-5.41 (m, 14H), 5.34-4.97 (m, 4H), 4.95-4.69 (m, 12H), 4.59-4.34 (m, 14H), 3.23-3.14 (m, 12H), 2.10-0.83 (m, 68H), 0.82-0.52 (m, 14H); 13C NMR (100 MHz, (CD3)2SO): δ 129.8, 103.6, 100.8, 79.5, 76.2, 75.0, 73.4, 73.3, 73.1, 72.4, 69.9, 60.8, 60.4, 41.8, 27.3, 22.6, 22.3, 19.0, 18.5, 11.6; MS (MALDI-TOF): calcd. for C112H190O46S [M+H]+ 2304.7660, found 2304.1122.
<제조예 14> TMM-D27의 합성
<14-1> 화학물 B6의 합성
상기 실시예 <3-1>의 티오에터 포함 테트라올의 합성을 위한 일반 절차에 따라 화합물 B6을 53% 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 5.34 (t, J = 5.1 Hz, 2H), 4.39 (q, J = 5.7 Hz, 2H), 3.72 (s, 8H), 3.58-3.49 (m, 6H), 3.36 (s, 2H), 3.14 (t, J = 4.8 Hz, 2H), 2.68 (s, 4H), 2.38-2.28 (m, 2H), 2.21-0.85 (m, 70H), 0.83-0.75 (m, 12H); 13C NMR (100 MHz, CDCl3): δ 140.4, 121.7, 109.3, 80.8, 80.1, 70.9, 66.9, 65.0, 62.1, 56.5, 50.0, 44.6, 41.6, 40.3, 39.8, 38.8, 37.0, 32.1, 31.8, 31.4, 30.3, 28.8, 28.2, 20.9, 19.4, 17.2, 16.3, 14.6.
<14-2> TMM-D27a의 합성
실시예 3-2의 일반적인 당화 반응 절차에 따라 화합물 TMM-D27a을 52%의 수득률로 합성하였다. 1H NMR (400 MHz, CDCl3): δ 8.10-8.05 (m, 10H), 8.04-7.96 (m, 14H), 7.95-7.82 (m, 24H), 7.80-7.66 (m, 10H), 7.55-7.46 (m, 22H), 7.45-7.38 (m, 16H), 7.37-7.30 (m, 24H), 7.27-7.19 (m, 20H), 6.08 (t, J = 7.8 Hz, 4H), 5.69-5.54 (m, 12H), 5.40 (t, J = 7.8 Hz, 4H), 5.21-5.04 (m, 8H), 4.72-4.38 (m, 12H), 4.37-4.02 (m, 16H), 3.78-3.59 (m, 8H), 3.26-3.11 (m, 6H), 3.04-2.76 (m, 8H), 2.01-0.73 (m, 68H), 0.71-0.54 (m, 12H); 13C NMR (100 MHz, CDCl3): δ 166.2, 165.9, 165.8, 165.6, 165.1, 164.9, 140.8, 133.5, 133.3, 133.2, 130.0, 129.8, 129.7, 129.6, 129.5, 129.4, 129.0, 128.8, 128.7, 128.5, 128.4, 120.9, 109.4, 100.9, 81.0, 79.2, 74.8, 72.3, 72.2, 71.3, 69.9, 69.0, 67.8, 67.0, 63.5, 62.5, 62.2, 56.5, 49.8, 44.7 41.7, 40.3, 39.9, 38.8, 37.0, 36.8, 31.9, 31.5, 31.2, 30.4, 28.9, 28.3, 19.4, 17.3, 16.4, 14.7, 14.3.
<14-3> TMM-D27의 합성
실시예 3-3의 탈보호기화 반응을 위한 일반적인 합성 절차에 따라 TMM-D27를 92%의 수득률로 합성하였다. 1H NMR (400 MHz, (CD3)2SO): δ 5.51-5.32 (m, 10H), 5.18-5.01 (m, 4H), 4.61-4.35 (m, 12H), 4.33-4.11 (m, 6H), 3.89-3.68 (m, 20H), 3.67-3.49 (m, 16H), 3.19-2.97 (m, 14H), 2.10-0.82 (m, 64H), 0.81-0.51 (m, 12H); 13C NMR (100 MHz, (CD3)2SO): δ 140.7, 108.4, 103.7, 100.8, 80.2, 79.5, 78.9, 76.2, 75.0, 73.4, 73.3, 73.1, 72.4, 69.9, 68.0, 60.8, 60.4, 55.7, 41.0, 36.4, 31.0, 19.1, 17.0, 16.0, 14.6; MS (MALDI-TOF): calcd. for C112H182O46S [M+H]+ 2360.6980, found 2360.8740.
<실시예 4> TMGs/TMMs의 구조
TMGs은 소수성 그룹으로 두 개의 알킬 사슬과 친수성 그룹으로 4개의 글루코스를 가지고 있다. TMGs는 링커의 구조에 따라 TMG-As 및 TMG-Ts로 분류된다. TMG-As는 두 개의 말로네이트 유도체(malonate-derived units)가 프로필렌 링커(propylene linker)에 의해 서로 연결되고 상기 링커로 연결된 탠덤 말로네이트 기반의 중심 구조에 알킬 사슬이 직접 도입된 구조를 가진다. 반면에, TMG-Ts는 두 개의 말로네이트 유도체(malonate-derived units)가 티오에터 작용기 링커(thioether-functionalized linker)에 의해 연결되고 상기 링커로 연결된 탠덤 말로네이트 기반의 중심 구조에 알킬 사슬이 에터에 의해 연결된 구조를 가진다.
TMMs는 소수성 그룹으로 분지된 알킬 사슬 또는 스테로이드 골격을 포함하는 유기기를 가지고 친수성 그룹으로 4개의 말토오스를 가지고 있다. TMMs는 소수성 그룹으로 분지된 다이알킬기, 콜레스테롤, 콜레스탄올 또는 디오스게닌을 가질 수 있다.
친수성 부분과 소수성 부분간의 최적화된 균형(친수성-소수성 밸런스)이 효과적인 막 단백질의 안정화에 필수적이므로, 친수성기의 친수성정도에 따라 소수성 그룹을 구성하는 작용기의 종류 및 사슬 길이를 달리하여 최적의 균형을 갖는 양친매성 분자를 발굴하기 위해 합성하였다.
<실시예 5> TMGs 및 TMMs의 특성
TMGs 및 TMMs의 분자량 (M.W.), 임계미셀농도 (critical micellar concentration; CMC) 및 형성된 미셀의 유체역학적 반지름 (hydrodynamic radii; R h)을 측정하였다.
구체적으로, 임계미셀농도 (CMC)는 형광 염색, 디페닐헥사트리엔(diphenylhexatriene; DPH)을 이용하여 측정하였고, 각각의 제제 (1.0 wt%)에 의해 형성된 미셀의 유체역학적 반지름 (R h)은 동적 광산란 (dynamic light scattering; DLS) 실험을 통해 측정하였다. 측정된 결과를 기존의 양친매성 분자 (detergent)인 DDM과 비교하여 표 1에 나타내었다.
Detergent M.W. CMC (mM) CMC (wt%) R h (nm)
TMG-A11 1149.41 ~0.015 ~0.0017 3.1 ± 0.15
TMG-A12 1177.47 ~0.010 ~0.0012 3.3 ± 0.09
TMG-A13 1205.52 ~0.006 ~0.0007 3.6 ± 0.16
TMG-A14 1233.58 ~0.004 ~0.0005 3.8 ± 0.10
TMG-T11 1227.50 ~0.020 ~0.0025 3.0 ± 0.07
TMG-T12 1255.55 ~0.015 ~0.0019 3.1 ± 0.06
TMG-T13 1283.61 ~0.006 ~0.0008 3.3 ± 0.08
TMG-T14 1311.66 ~0.004 ~0.0005 3.8 ± 0.09
TMM-C22 2184.66 ~0.002 ~0.00044 3.6 ± 0.09
TMM-C24 2240.76 ~0.0015 ~0.00034 3.9 ± 0.08
TMM-C26 2296.87 ~0.0015 ~0.00034 4.3 ± 0.07
TMM-A27 2308.80 ~0.006 ~0.00014 4.1 ± 0.10
TMM-E27 2304.77 ~0.008 ~0.00018 4.7 ± 0.10
TMM-D27 2360.70 ~0.010 ~0.0024 3.1 ± 0.07
DDM 510.1 ~0.17 ~0.0087 3.4 ± 0.03
모든 TMGs 및 TMMs의 CMC 값 (0.002 내지 0.020 mM)은 DDM의 CMC 값 (0.17 mM)과 비교하여 상당히 작았다. 따라서, TMGs 및 TMMs는 낮은 농도에서도 미셀이 용이하게 형성되므로, DDM 보다 적은 양을 사용하고도 동일하거나 우월한 효과를 나타낼 수 있다. 또한, TMGs 및 TMMs의 CMC 값은 알킬 사슬의 길이가 증가함에 따라 감소하였는데, 이는 알킬 사슬 길이의 연장에 따라 소수성이 증가하기 때문인 것으로 판단된다. TMGs 및 TMMs에 의해 형성된 미셀의 크기는 대체적으로 알킬 사슬이 길어짐에 따라 증가하는 경향을 보였다. 이는 알킬 사슬의 길이가 길어지면 분자의 기하학구조가 좀 더 실린더 모양에 가까워 곡률이 큰 구모양의 자가조립구조를 형성하기 때문이다. TMG-As와 TMG-Ts를 비교한 경우, TMG-Ts가 TMG-As 보다 작은 미셀을 형성하였다. TMMs은 TMGs보다 약간 큰 미셀을 형성하는 경향이 있으며 특히 콜레스탄올,와 콜레스테롤 소수성기를 갖고 있는 TMM-A27과 TMM-E27의 미셀 크기가 크게 나타났다. 반면 디오스게닌을 소수성기로 갖는 TMM-D27은 비교적 작은 미셀을 형성하였다. DLS 데이터를 분석한 결과, 본 발명의 모든 양친매성 분자(TMGs 및 TMMs)은 단일 미셀 집단을 형성하여 높은 미셀 균질성을 나타내었다(도 5 및 6).
<실시예 6> TMGs에 의해 용해된 R. capsulatus superassembly 안정성 평가
조작된 로도박터 캡슐라투스 (Rhodobacter capsulatus) 균주에서 발현된 R. capsulatus 슈퍼어셈블리는 기존 문헌 (P. S. Chae, Analyst, 2015, 140, 3157-3163.)에 알려진 프로토콜에 따라 가용화되고 정제되었다. 동결된 멤브레인 (membrane)의 10 mL 분취량을 해동하고 실온에서 유리 조직 균질기 (glass tissue homogenizer)를 사용하여 균질화하였다. 균질액을 32 ℃에서 30 분 동안 천천히 교반하면서 인큐베이션하였다. 1.0 wt% DDM을 첨가 후, 균질액을 32 ℃에서 30 분 동안 더 인큐베이션하였다. 초 원심 분리 후, 가용화 된 LHI-RC(light harvesting complex I and the reaction centre) 복합체를 포함하는 상등액을 수집하고, Ni2 +-NTA 레진으로 4 ℃에서 1 시간 동안 인큐베이션하였다. 상기 레진을 10 개의 His-SpinTrap 컬럼에 각각 넣고 500 μL 결합 버퍼 (10 mM Tris (pH 7.8), 100 mL NaCl, 1 x CMC DDM)으로 2 회 세척하였다. 1.0 M 이미다졸 (2 × 300 ㎕)을 포함하는 버퍼을 사용하여 DDM에 의해 정제된 LHI-RC 복합체를 컬럼으로부터 용출시켰다. CMC + 0.04 wt% 또는 CMC + 0.2 wt%의 최종 양친매성 분자 농도에 도달하기 위해 80 μL의 DDM에 의해 정제된 LHI-RC 복합체를 920 μL의 다음의 양친매성 분자 용액으로 각각 희석시켰다; TMG-As (TMG-A11, TMG-A12, TMG-A13 및 TMG-A14), TMG-Ts (TMG-T11, TMG-T12, TMG-T13 및 TMG-T14) 또는 DDM. 각각의 양친매성 분자에 의해 생성된 LHI-RC 복합체를 실온에서 20일 동안 인큐베이션하였다. 650~950 nm의 범위에서 시료의 UV-가시광선 스펙트럼을 측정하여 단백질-양친매성분자 샘플을 인큐베이션하는 동안 일정한 간격으로 단백질 안정성을 측정하였다.
그 결과, 본 발명의 TMGs는 LHI-RC 복합체 안정성을 유지하는데 있어 DDM 보다 현저히 우수하였다. 두 그룹의 TMGs를 비교하는 경우, TMG-Ts가 TMG-As보다 조금 더 우수하였다. 양친매성 분자의 농도가 CMC + 0.04 wt%로 감소하는 경우, TMGs와 DDM간의 LHI-RC 복합체 안정성 유지 능력 차이는 감소하지만, 전체적으로 LHI-RC 복합체 안정성 유지 능력이 증가하여 서로 비슷한 경향이 관찰되었다(도 7). 모든 TMGs는 CMC + 0.04 wt% 및 CMC + 0.2 wt% 농도에서 모두 LHI-RC 복합체를 안정화 시키는데 효과적이었지만, DDM은 CMC + 0.04 wt%에서 CMC + 0.2 wt%로 농도가 증가함에 따라 복합체 안정화 능력이 현저하게 감소하였다(도 7 및 도 8).
<실시예 7> TMGs의 UapA 막단백질 구조 안정화 능력 평가
TMGs에 의한 아스페르길러스 니둘란스 (Aspergillus nidulans)로부터 분리된 UapA(uric acid-xanthine/H+ symporter)의 구조 안정성을 측정하는 실험을 하였다. UapA의 구조적 안정성은 (sulfhydryl-specific fluorophore, N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM)을 사용하여 평가되었다.
구체적으로, UapAG411V1 -11 (이하 'UapA'라고 함)은 사카로마이세스 세레비제(Saccharomyces cerevisiae) FGY217 균주에서 GFP 융합 단백질로 발현되었고, 샘플 버퍼 (20 mM Tris (pH 7.5), 150 mM NaCl, 0.03% DDM, 0.6 mM xanthine)로 분리하였으며, 이는 J. Leung 등의 논문(Mol . Membr . Biol . 2013, 30, 32-42)에 기재된 방법을 따랐다. 상기 단백질 100 kDa 분자량 컷 오프 필터 (Millipore)를 사용하여 약 10 mg/mL로 농축시켰다. Greiner 96-웰 플레이트에서 최종 농도가 CMC + 0.04 wt % 또는 CMC + 0.2 wt%가 되도록 상기 단백질을 TMG-As (TMG-A11, TMG-A12, TMG-A13 및 TMG-A14), TMG-Ts (TMG-T11, TMG-T12, TMG-T13 및 TMG- T14), MNG-3 또는 DDM를 각각 포함하는 버퍼로 1:150 비율로 희석시켰다. DMSO (Sigma)에 저장된 CPM 염료 (Invitrogen)를 염색 버퍼 (20 mM Tris (pH 7.5), 150 mM NaCl, 0.03 % DDM, 5 mM EDTA)로 희석하고, 상기 3 μL의 염색 버퍼를 각 샘플에 첨가하였다. 반응 혼합물을 40 ℃에서 125분 동안 항온 인큐베이션하였다. 형광 방출은 387 nm 및 463 nm의 흥분 및 방출 파장으로 각각 설정된 마이크로플레이트 분광 형광 측정기(microplate spectrofluorometer)를 사용하여 기록하였다. 접힌 단백질의 상대적 양은 GraphPad Prism을 사용하여 시간에 따라 도식하였다.
형광 방출 강도는 샘플에서 접힘이 풀린, 즉 변성된 단백질의 양에 따라 증가하고 CPM은 이 분석법에서 변성된 단백질의 양을 빠르게 스크리닝할 수 있다. 모든 TMGs는 트랜스포터를 접힌 상태로 보존하는 능력에 있어서 DDM보다 상당히 우수하였다(도 9). 그리고 양친매성 분자들을 CMC + 0.04 wt%에서 측정했을 때 TMG-Ts는 TMG-As보다 트랜스포터를 안정화하는 능력에 있어 전반적으로 좀 더 우수하였다. TMGs중에서는 가장 짧은 알킬 사슬을 가진 TMG-A (TMA-A11)가 가장 덜 우수하였다. 양친매성 분자의 농도를 CMC+0.2 wt% 로 증가했을 때에도 일반적으로 TMG-Ts가 TMG-As 보다 트랜스포터를 접힌 상태로 보전하는 능력에 있어서 우수하였다. 이 농도에서도 TMGs 중에서 가장 짧은 알킬 사슬을 가진 TMG(TMG-A11/T11)가 가장 효과가 떨어졌고, 이들은 DDM 보다 안정성 능력이 떨어졌다. 반면 사슬이 긴 TMG (TMG-A13/A14 또는 TMG-T13/T14)는 우수한 트랜트포터 접힘 안정화 효과를 보여주었다. 이러한 결과는 트랜스포터를 안정화시킬 때, 긴 알킬 사슬을 가진 TMG(TMG-T13/A14)가 짧은 알킬 사슬을 가진 TMG(TMG-T11/A11)보다 유리함을 시사하였다(도 9 및 도 10). 주목할 만한 사실중 하나는 TMG 양친매성 분자가 말토사이드 친수성기를 갖는 MNG-3보다도 트랜스포터 구조 유지 능력이 탁월하다는 것이다. 이 트랜스포터의 경우에는 MNG-3가 DDM보다 약간 우위에 있는 정도에 그쳤다.
<실시예 8> TMGs 및 TMMs에 의해 추출된 LeuT 막단백질 안정성 평가
TMGs 및 TMMs에 의한 LeuT 단백질의 안정성을 측정하는 실험을 하였다. 각각의 양친매성 분자는 (a) CMC + 0.04 wt% 또는 (b) CMC + 0.2 wt% 농도로 사용하였으며, LeuT 단백질의 안정성 평가는 LeuT의 기질에 대한 결합 특성을 [3H]-Leu를 사용하여 SPA (scintillation proximity assay)를 통해 수행하였다. 측정은 상온에서 10일 인큐베이션 기간 동안 규칙적인 간격으로 수행하였다.
구체적으로, 호열성 박테리아 아퀴펙스 아에오리쿠스 (Aquifex aeolicus) 유래 와일드 타입 LeuT (leucine transporter)를 이전에 설명된 방법에 의해 정제하였다 (G. Deckert 등의 Nature 1998, 392, 353-358). LeuT를 C-말단 8xHis-태그된 트랜스포터를 암호화하는 pET16b로 형질전환된 E. coli C41 (DE3)에서 발현시켰다 (발현 플라스미드는 Dr E. Gouaux, Vollum Institute, Portland, Oregon, USA로부터 제공받음). 요약하면, 박테리아 멤브레인의 분리 및 1% (w/v) DDM에서 용해화 후에, 단백질을 Ni2 +-NTA 수지 (Life Technologies, Denmark)에 결합시키고, 20 mM Tris-HCl (pH 8.0), 1mM NaCl, 199 mM KCl, 0.05%(w/v) DDM 및 300 mM 이미다졸(imidazole)에서 용리하였다. 그 후에, 정제된 LeuT (약 1.5 mg/ml)는 상기와 동등한 버퍼에서 DDM 및 이미다졸을 제외하고, TMGs 또는 DDM이 최종 농도 CMC + 0.04% (w/v) 또는 CMC + 0.2% (w/v)로 보충된 버퍼로 희석하였다. 단백질 샘플은 실온에서 10일 동안 저장하고, 지정된 시간에 원심분리하고, 단백질 특성을 SPA를 사용하여 기질 ([3H]-Leucine) 결합 능력을 측정함에 의하여 확인하였다. SPA를 450 mM NaCl 및 각각의 TMGs 및 TMMs를 함유하는 버퍼를 상기 특정된 농도에서 수행하였다. SPA 반응은 20 nM [3H]-Leucine 및 1.25 mg/ml copper chelate (His-Tag) YSi beads (Perkin Elmer, Denmark)의 존재하에 수행하였다. 각각의 샘플에 대한 전체 [3H]-Leucine 결합도는 MicroBeta liquid scintillation counter (Perkin Elmer)를 사용하여 측정하였다.
그 결과, TMG-As의 경우에는 비교적 낮은 농도에서 (CMC + 0.04 wt%) TMG-A12에 가용화된 LeuT 샘플에서만 DDM보다 실질적으로 더 높은 트랜스포터(transporter)의 기질 결합 능력을 나타냈다 (도 8). 이와 같은 DDM에 비해 향상된 기질 결합 능력은 이 TMG-A12에 의해 용해화된 LeuT의 경우에 10일 동안 잘 유지되었다. 양친매성 분자의 농도를 CMC + 0.2 wt%로 농도를 증가시켰을 때에도 비슷한 경향성을 보여주었다 (도 12). TMG-Ts의 경우에는 TMG-As 보다 트랜스포터의 기질 결합 능력을 보존하는데 더 우수하였다 (도 8 및 도 9). 낮은 농도에서는 (CMC + 0.04 wt%) 모든 TMG-Ts (TMG-T11/T12/T13/T14)의 경우에 있어서 DDM보다 우수한 특성을 보여주었고 (도 11), 양친매성 분자의 농도가 증가했을 때에도 (CMC + 0.04 wt%) TMG-Ts는 트랜스포터의 기질 결합 능력을 보존하는데 DDM보다 효과적이었다(도 12).
TMMs의 경우, 농도가 CMC+0.04 wt%로 낮을 때에는 초기 LeuT의 활성 (기질 결합능력)이 DDM을 사용했을 때의 값보다 다소 낮았으나 DDM의 경우에는 트랜스포터의 활성이 시간에 따라 점진적을 감소하였고 새로운 TMM의 경우에는 시간에 따라 단백질 활성에 있어 큰 감소가 없었다. 특히 TMM-C22와 TMM-C24의 경우에는 시간에 따라 트랜스포터의 활성이 약간 증가하는 경향성을 보여주었다. 결과적으로 상온에서 12일간 인큐베이션 한 후 이 두 양친매성 분자에 의해 용해된 트랜스포터의 활성은 DDM에 녹아있는 단백질의 그것보다 두배정도 높게 측정되었다.. 반면 TMG-C26과 스테로이드 소수성기를 갖는 양친매성 분자들의 경우에는 (TMM-A27, TMM-E27 그리고 TMM-D27) 12일 인큐베이션 후 DDM 과 비슷한 정도의 단백질 활성을 나타내었다(도 13a). 또한 농도를 CMC+0.2 wt%로 높여서 실험을 했을 때 낮은 농도에서 얻는 결과와 유사한 경향성을 확인할 수 있었다(도 13b).
결론적으로 TMMs 양친매성 분자들 중 TMM-C24가 가장 우수한 특성을 나타내어 DDM보다 우수하였고 그 다음으로 TMM-C22, TMM-C26 순이었다. 스테로이드 소수성기를 갖고 있는 TMMs의 경우에는 전반적으로 DDM보다 열등한 특성을 보여주었다. 따라서 TMM-C24와 TMM-C22 두개의 양친매성 분자가 본 트랜스포터의 구조분석에 잠재력이 있을 것으로 판단되었다.
<실시예 9> TMGs의 β2AR 장기간 안정성 측정(Long-term stability measurement)
TMGs에 의한 인간의 β2 아드레날린성 수용체 (β2AR), G-단백질 연결 수용체(GPCR) 안정성을 측정하는 실험을 하였다. 상기 수용체를 세포막으로부터 1% DDM으로 추출하고 0.1%의 동일한 양친매성 분자로 정제하였다. 상기 DDM으로 정제된 수용체를 DDM 또는 TMGs를 함유하는 버퍼 용액으로 희석시켜 최종 화합물 농도를 CMC+0.2 wt%로 맞추었다. 각각의 양친매성 분자에 의해 가용화된 β2AR을 실온에서 7일간 보존하였고 실온에서 30분 동안 0.5 mg/ml BSA로 보충된 10 nM [3H]-Dihydroalprenolol (DHA)로 상기 샘플을 인큐베이트 함으로써 이 기간동안 일정 간격으로 리간드 결합 능력을 평가하였다. 혼합물을 G-50 컬럼에 로딩하고, 통과액을 1 ml 바인딩 버퍼 (0.5 mg/ml BSA 및 20xCMC 각각의 양친매성 분자가 포함된 20 mM HEPES pH 7.5, 100 mM NaCl)로 수집하였다. 그리고 15 ml 섬광 유체 (scintillation fluid)로 채우고 수용체-결합된 [3H]-DHA는 섬광 카운터 (Beckman)로 측정했다. [3H]-DHA의 결합도는 컬럼 그래프로 나타내었다(도 10). 상기 실험을 세번 수행하였다.
그 결과, 특히 TMG-A13/A14 및 TMG-T13/T14와 같은 일부 TMG만이 초기 수용체 활성 유지에서 DDM만큼 효과적임을 확인할 수 있었다. 우수한 수용체 리간드 결합 유지 효과를 나타낸 상기 TMGs에 대하여 추가적으로 실온에서 7일 인큐베이트 과정 동안 규칙적으로 수용체 활성을 모니터링한 결과, TMG-A13/A14 및 TMG-T13/T14는 장기간 수용체의 리간드 결합을 유지하는데 있어 DDM보다 우수하였다(도 10). 특히, TMG-A14 및 TMG-T14는 장기간 수용체의 리간드 결합 유지면에서 DDM보다 우수하였으나 초기 수용체의 리간드 결합면에서 DDM보다 덜 우수하였다. TMGs 중 TMG-T14가 수용체의 리간드 결합 유지 활성이 가장 우수했으며 TMG-A13 및 TMG-A14가 뒤를 이었다(도 14). 이 결과는 TMG-A13과 TMG-T14가 GPCR 연구에 중요한 잠재력을 가질 수 있음을 의미한다. 반면 기존에 새로운 글루코사이드 양친매성 분자인 GNG-2와 GNG-3의 경우에는 초기 수용체 활성이 낮을 뿐만 아니라 시간이 지나면서 그 활성이 급감하여 GRCR연구에는 타당치 않음을 알 수 있었다 (도 15). 그리고 양친매성 분자의 교환을 위해 샘플을 묽힐 때 양친매성 분자 없이 진행했을 경우에 (detergent-free condition) 수용체의 활성은 매우 낮은 것으로 측정되었다. 즉 새로운 TMG 양친매성 분자의 도움없이 단백질 활성을 유지할 수 없었다.
<실시예 10> TMGs의 MelBSt 막단백질 구조 안정화 능력 평가
TMGs에 의한 MelBSt (Salmonella typhimurium melibiose permease) 단백질의 구조 안정성을 측정하는 실험을 하였다. MelBSt 단백질을 TMGs 또는 DDM을 사용하여 멤브레인에서 추출 후, 추출된 단백질의 양과 그 구조를 SDS-PAGE와 웨스턴 블롯팅 (Western Blotting)을 통해 분석하였다. 사용한 양친매성 분자의 농도는 1.5 wt%이며, 4개의 온도(0, 45, 55, 및 65 )에서 단백질을 추출 후 같은 온도에서 90분 동안 인큐베이션한 다음 수용액에서 용해된 상태로 남아있는 단백질의 양을 측정함으로서 화합물의 단백질 추출 효율과 안정화 능력 두 가지 성능을 동시에 평가하고자 하였다. 각각의 양친매성 분자에 의해 추출 및 안정화된 단백질의 양은 양친매성 분자를 처리하지 않은 멤브레인 샘플에 들어 있는 전체 단백질의 양에 상대적인 값 (%)으로 나타내었다.
구체적으로, 플라스미드 pK95AHB/WT MelBSt/CH10를 사용하여 C-말단에 10-His tag를 가지는 살모넬라 티피뮤리움 (Salmonella typhimurium) MelBSt (melibiose permease)를 E. coli DW2 세포 (melB 및 lacZY)에서 발현하였다. A. S. Ethayathulla 등의 논문(Nat. Commun. 2014, 5, 3009)에 기재된 방법에 따라 세포 성장 및 멤브레인 준비를 수행했다. 단백질 검정은 Micro BCA 키트 (Thermo Scientific, Rockford, IL)로 수행했다. P.S. Chae 등의 Nat. Methods 2010, 7, 1003-1008에 기재된 프로토콜을 사용하여 MelBSt 안정성에 대해 TMGs 또는 DDM을 평가하였다. MelBSt를 함유하는 멤브레인 샘플 (최종 단백질 농도는 10 mg/mL)을 1.5% (w/v) DDM 또는 TMGs를 함유하는 용해화 버퍼 (20 mM sodium phosphate, pH 7.5, 200 mM NaCl, 10% 글리세롤, 20 mM melibiose)에 90분 동안 4개의 온도 (0, 45, 55, 65)에서 인큐베이션하였다. 불용성 물질을 제거하기 위하여, 45분 동안 4 에서 TLA-100 rotor가 구비된 Beckman Optima™ MAX 초원심분리기로 355,590g에서 초원심분리를 수행한 후, 각 단백질 샘플의 20 μg을 SDS-15% PAGE로 분리하고, 그 다음 Penta-His-HRP 항체 (Qiagen, Germantown, MD)로 면역블로팅했다. MelBSt는 SuperSignal West Pico chemiluminescent 기질을 이용해 ImageQuant LAS 4000 Biomolecular Imager (GE Health Care Lifer Science)에 의해 측정했다.
O 실험에서 가용화된 MelBSt의 양은 TMG-A12 및 TMG-A13을 제외한 모든 TMG에서 DDM보다 적었다. 그러나 인큐베이션 온도가 45 로 증가하면 TMG-T14를 제외한 모든 TMG는 DDM보다 MelBSt의 용해도를 더 우수하게 유지하였다. 특히, TMG-A12를 사용하면 상기 온도에서 거의 모든 MelBSt를 성공적으로 추출할 수 있었고 이와 같은 우수한 단백질 추출 효율은 55 에서도 확인할 수 있었다. 즉, TMG-A12는 효율적으로 MelBSt 단백질을 추출하였을 뿐 만 아니라 추출한 MelBSt의 용해도를 우수하게 유지하였다. 대조적으로, DDM은 55 에서 추출된 MelBSt의 10 % 정도만 그 용해도를 유지하였다. 온도가 65에서는 DDM 및 TMGs 모두 수용액에 용해된 MelBSt 단백질을 확인할 수 없었다(도 16).
종합적으로 낮은 온도 (0 ℃)에서는 DDM이 TMGs보다 조금 우수한 단백질 추출 효율을 보여준 반면 비교적 높은 온도 (45 ℃)에서는 TMGs는 DDM과 비슷하고 더 높은 온도(55 ℃)에서는 TMGs이 DDM보다 더 우수한 것으로 보아 단백질 추출 효율은 DDM이 우수하지만 단백질 안정화 능력은 TMGs가 월등히 뛰어남을 알 수 있었다(도 16).

Claims (19)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2017004258-appb-I000019
    상기 화학식 1에서,
    상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 치환 또는 비치환된 C3-C30의 아릴기 또는 스테로이드 골격을 포함하는 유기기이고;
    상기 X1 내지 X4 는 당류 (saccharide)이고;
    상기 Y1 및 Y2는 CH2, O 또는 S이고; 및
    상기 Z는 CH2 또는 S이다.
  2. 제 1항에 있어서, 상기 당류는 단당류 (monosaccharide) 또는 이당류(disaccharide)인 화합물.
  3. 제 1항에 있어서, 상기 당류는 글루코스 (glucose) 또는 말토오스 (maltose)인 화합물.
  4. 제 1항에 있어서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고; 상기 X1 내지 X4 는 글루코스 또는 말토오스이고; 상기 Y1 및 Y2는 CH2이고; 그리고 상기 Z는 CH2인 화합물.
  5. 제 1항에 있어서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고; 상기 X1 내지 X4 는 글루코스 또는 말토오스이고; 상기 Y1 및 Y2는 O 또는 S이고; 그리고 상기 Z는 S인 화합물.
  6. 제 1항에 있어서, 상기 R1 및 R2는 스테로이드 골격을 포함하는 유기기이고; 상기 X1 내지 X4 는 말토오스이고; 상기 Y1 및 Y2는 O 또는 S이고; 및 상기 Z는 S인 화합물.
  7. 제 1항에 있어서, 상기 화합물은 하기 화학식 2 내지 15 중 하나인 화합물:
    [화학식 2]
    Figure PCTKR2017004258-appb-I000020
    [화학식 3]
    Figure PCTKR2017004258-appb-I000021
    [화학식 4]
    Figure PCTKR2017004258-appb-I000022
    [화학식 5]
    Figure PCTKR2017004258-appb-I000023
    [화학식 6]
    Figure PCTKR2017004258-appb-I000024
    [화학식 7]
    Figure PCTKR2017004258-appb-I000025
    [화학식 8]
    Figure PCTKR2017004258-appb-I000026
    [화학식 9]
    Figure PCTKR2017004258-appb-I000027
    [화학식 10]
    Figure PCTKR2017004258-appb-I000028
    [화학식 11]
    Figure PCTKR2017004258-appb-I000029
    [화학식 12]
    Figure PCTKR2017004258-appb-I000030
    [화학식 13]
    Figure PCTKR2017004258-appb-I000031
    [화학식 14]
    Figure PCTKR2017004258-appb-I000032
    [화학식 15]
    Figure PCTKR2017004258-appb-I000033
  8. 제 1항에 있어서, 상기 화합물은 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하기 위한 양친매성 분자인 화합물.
  9. 제 1항에 있어서, 상기 화합물은 수용액에서 임계 미셀 농도 (CMC)가 0.0001 내지 1 mM인 화합물.
  10. 제 1항에 따른 화합물을 포함하는 막단백질의 추출, 용해화, 안정화, 결정화 또는 분석용 조성물.
  11. 제 10항에 있어서, 상기 조성물은 미셀, 리포좀, 에멀션 또는 나노입자의 제형인 것인 조성물.
  12. 1) 2개의 디메틸 말로네이트(dimethyl malonate)를 알킬 사슬로 연결하여 테트라메틸 펜탄-1,1,5,5-테트라카복실레이트(tetramethyl pentane-1,1,5,5-tetracarboxylate)를 합성하는 단계;
    2) 상기 단계 1)의 생성물에 존재하는 두 개의 알파 탄소에 알킬레이션(alkylation) 반응을 수행하여 알킬 사슬을 도입하는 단계;
    3) 상기 단계 2)의 생성물의 4개의 메틸카복실레이트기를 알코올로 환원시키는 단계;
    4) 상기 단계 3)의 생성물에 글리코실레이션 (glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
    5) 상기 단계 4)의 생성물에 탈보호기화 (deprotection) 반응을 수행하는 단계;를 포함하는, 하기 화학식 1로 표시되는 화합물의 제조 방법:
    [화학식 1]
    Figure PCTKR2017004258-appb-I000034
    상기 화학식 1에서,
    상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 또는 치환 또는 비치환된 C3-C30의 아릴기이고;
    상기 X1 내지 X4 는 당류 (saccharide)이고;
    상기 Y1 및 Y2는 CH2이고; 및
    상기 Z는 CH2이다.
  13. 1) 1-알칸올(1-alkanol), 다이알킬화 모노올(dialkylated mono-ol), 콜레스테롤(cholesterol), 콜레스탄올(cholestanol) 또는 디오스게닌(diosgenin)의 용액에 5,5-비스-브로모메틸-2,2-디메틸-[1,3]디옥산(5,5-bis-bromomethyl-2,2-dimethyl-[1,3]dioxane)을 첨가하여 티오에터-포함 테트라올(thioether-containing tetraol)을 합성하는 단계;
    2)상기 단계 1)의 생성물에 글리코실레이션 (glycosylation) 반응을 수행하여 보호기가 부착된 당류를 도입하는 단계; 및
    3)상기 단계 2)의 생성물에 탈보호기화 (deprotection) 반응을 수행하는 단계;를 포함하는, 하기 화학식 1로 표시되는 화합물의 제조 방법:
    [화학식 1]
    Figure PCTKR2017004258-appb-I000035
    상기 화학식 1에서,
    상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 치환 또는 비치환된 C3-C30의 아릴기 또는 스테로이드 골격을 포함하는 유기기이고;
    상기 X1 내지 X4 는 당류 (saccharide)이고;
    상기 Y1 및 Y2는 O 또는 S이고; 및
    상기 Z는 S이다.
  14. 제 12항 또는 제 13항에 있어서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기 또는 스테로이드 골격을 포함하는 유기기이고; 그리고 상기 X1 내지 X4 는 글루코스 또는 말토오스인 화합물
  15. 수용액에서 하기 화학식 1로 표시되는 화합물을 막단백질에 처리하는 단계를 포함하는, 막단백질을 추출, 용해화, 안정화, 결정화 또는 분석하는 방법:
    [화학식 1]
    Figure PCTKR2017004258-appb-I000036
    상기 화학식 1에서,
    상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기, 치환 또는 비치환된 C3-C30의 사이클로알킬기, 치환 또는 비치환된 C3-C30의 아릴기 또는 스테로이드 골격을 포함하는 유기기이고;
    상기 X1 내지 X4 는 당류 (saccharide)이고;
    상기 Y1 및 Y2는 CH2, O 또는 S이고; 및
    상기 Z는 CH2 또는 S이다.
  16. 제 15항에 있어서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고; 그리고 상기 X1 내지 X4 는 글루코스 또는 말토오스이고; 상기 Y1 및 Y2는 CH2이고; 및 상기 Z는 CH2인 화합물.
  17. 제 15항에 있어서, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C3-C30의 알킬기이고; 그리고 상기 X1 내지 X4 는 글루코스 또는 말토오스이고; 상기 Y1 및 Y2는 O 또는 S이고; 및 상기 Z는 S인 화합물.
  18. 제 15항에 있어서, 상기 R1 및 R2는 스테로이드 골격을 포함하는 유기기이고; 상기 X1 내지 X4 는 말토오스이고; 상기 Y1 및 Y2는 O 또는 S이고; 및 상기 Z는 S인 화합물.
  19. 제 15항에 있어서, 상기 막단백질은 UapA (Uric acid-xanthine/H+ symporter), LeuT (Leucine transporter), β2AR (human β2 adrenergic receptor), MelBst (Melibiose permease), 또는 이들의 2 이상의 조합인 방법.
PCT/KR2017/004258 2017-04-13 2017-04-21 새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용 WO2018190452A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/604,168 US10808003B2 (en) 2017-04-13 2017-04-21 Amphipathic molecule based on tandem malonate and use thereof
CA3058892A CA3058892C (en) 2017-04-13 2017-04-21 Novel tandem malonate-based amphipathic molecule and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0047889 2017-04-13
KR1020170047889A KR102061762B1 (ko) 2017-04-13 2017-04-13 새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용

Publications (1)

Publication Number Publication Date
WO2018190452A1 true WO2018190452A1 (ko) 2018-10-18

Family

ID=63792546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004258 WO2018190452A1 (ko) 2017-04-13 2017-04-21 새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용

Country Status (4)

Country Link
US (1) US10808003B2 (ko)
KR (1) KR102061762B1 (ko)
CA (1) CA3058892C (ko)
WO (1) WO2018190452A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808003B2 (en) 2017-04-13 2020-10-20 Industry-University Cooperation Foundation Hanyang University Erica Campus Amphipathic molecule based on tandem malonate and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880892B (zh) * 2020-07-03 2023-06-27 上海科技大学 一种小分子去垢剂
US11884693B2 (en) * 2022-03-02 2024-01-30 Industry-University Cooperation Foundation Hanyang University Erica Campus 1,3-acetonedicarboxylate-derived amphipathic compounds and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001465A1 (en) * 2008-04-08 2013-01-03 Uchicago Argonne, Llc Amphiphiles for protein solubilization and stabilization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923583B1 (ko) 2016-07-11 2018-11-30 한양대학교 에리카산학협력단 새로운 메시틸렌 기반의 양친매성 화합물 및 이의 활용
KR102061762B1 (ko) 2017-04-13 2020-01-02 한양대학교 에리카산학협력단 새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001465A1 (en) * 2008-04-08 2013-01-03 Uchicago Argonne, Llc Amphiphiles for protein solubilization and stabilization

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAE, P. S.: "Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study", CHEMICAL COMMUNICATIONS, vol. 49, no. 23, 2013, pages 2287 - 2289, XP055536723 *
CHAE, P. S.: "Tripod amphiphiles for membrane protein manipulation", MOLECULAR BIOSYSTEMS, vol. 6, 2010, pages 89 - 94, XP055536722 *
EHSAN, M. ET AL.: "Highly branched pentasaccharide-bearing amphiphiles for membrane protein studies", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 138, no. 11, 2016, pages 3789 - 3796, XP055462432 *
ILKER, M. F.: "Modular norbornene derivatives for the preparation of well-defined amphiphilic polymers: Study of the lipid membrane disruption activities", MACROMOLECULES, vol. 37, no. 3, 2004, pages 694 - 700, XP055536713 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10808003B2 (en) 2017-04-13 2020-10-20 Industry-University Cooperation Foundation Hanyang University Erica Campus Amphipathic molecule based on tandem malonate and use thereof

Also Published As

Publication number Publication date
CA3058892A1 (en) 2018-10-18
KR20180115499A (ko) 2018-10-23
US10808003B2 (en) 2020-10-20
US20200048297A1 (en) 2020-02-13
CA3058892C (en) 2021-09-21
KR102061762B1 (ko) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2018190452A1 (ko) 새로운 탠덤 말로네이트 기반의 양친매성 분자 및 이의 활용
EP4069686A1 (en) Glp-1 receptor agonist
WO2017104897A1 (ko) 새로운 트리스 또는 네오펜틸 글리콜 기반의 양친매성 화합물 및 이의 활용
CN115087634A (zh) 制备n6-((2-叠氮乙氧基)羰基)赖氨酸的方法
WO2021137646A1 (ko) 피롤로벤조디아제핀 유도체 및 이의 리간드-링커 접합체
WO2010120013A1 (ko) 신규한 로다민 유도체 및 이를 포함한 차아염소산 검출 센서
WO2017179945A1 (ko) 새로운 오당류 친수성기를 가지는 양친매성 화합물 및 이의 활용
WO2018030602A1 (ko) 새로운 뷰테인-테트라올 기반의 양친매성 화합물 및 이의 활용
WO2018079951A2 (ko) 새로운 레졸신아렌 기반의 양친매성 화합물 및 이의 활용
WO2017043703A1 (ko) 새로운 만니톨 기반의 양친매성 화합물 및 이의 활용
WO2018012669A1 (en) Novel mesitylene-cored amphiphiles and uses thereof
WO2021101145A1 (ko) 소광자 및 이의 용도
WO2019074171A1 (ko) 덴드로닉 소수성기를 갖는 새로운 양친매성 화합물 및 이의 활용
WO2018139698A1 (ko) 새로운 노르보넨 기반의 양친매성 화합물 및 이의 활용
WO2021075904A1 (ko) 새로운 트라이아진 기반의 양친매성 화합물 및 이의 활용
WO2020036382A1 (ko) Sglt 저해제의 합성에 유용한 중간체의 제조
WO2022191485A1 (ko) 리포터 및 이의 용도
WO2020050470A1 (ko) 메로시아닌 화합물, 이의 이성질체를 포함하는 dsrna 검출용 조성물 및 dsrna 발현 분석을 이용한 암 진단을 위한 정보 제공 방법
WO2021225233A1 (ko) 혈관 누출 차단제 화합물의 신규 결정형
WO2021133033A1 (ko) 용액공정상 pna 올리고머의 제조방법
WO2017039107A1 (ko) 새로운 자일렌 기반의 양친매성 화합물 및 이의 활용
WO2019147092A1 (ko) 스핑고신-1-포스페이트 유사체 및 이의 합성 방법
WO2020036329A1 (ko) 미토콘드리아 내 nad(p)h 검출을 위한 형광 프로브 및 이를 이용한 검출방법
WO2018124644A1 (ko) 싸이에노피리미딘 화합물의 신규 제조방법 및 중간체
WO2022139292A1 (ko) 리포터 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3058892

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905462

Country of ref document: EP

Kind code of ref document: A1