WO2017038148A1 - 揚鉱システム及び揚鉱方法 - Google Patents

揚鉱システム及び揚鉱方法 Download PDF

Info

Publication number
WO2017038148A1
WO2017038148A1 PCT/JP2016/061280 JP2016061280W WO2017038148A1 WO 2017038148 A1 WO2017038148 A1 WO 2017038148A1 JP 2016061280 W JP2016061280 W JP 2016061280W WO 2017038148 A1 WO2017038148 A1 WO 2017038148A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pumping
float
pump
uplift
Prior art date
Application number
PCT/JP2016/061280
Other languages
English (en)
French (fr)
Inventor
徹三 永田
穣 中谷
Original Assignee
徹三 永田
穣 中谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徹三 永田, 穣 中谷 filed Critical 徹三 永田
Priority to EP16841180.9A priority Critical patent/EP3342976A4/en
Priority to US15/523,026 priority patent/US20180187395A1/en
Priority to CN201680003371.2A priority patent/CN107075946A/zh
Priority to KR1020187006199A priority patent/KR102019197B1/ko
Priority to JP2017510600A priority patent/JP6208401B2/ja
Priority to AU2016314824A priority patent/AU2016314824A1/en
Priority to CA2964213A priority patent/CA2964213A1/en
Priority to TW106106507A priority patent/TW201736199A/zh
Publication of WO2017038148A1 publication Critical patent/WO2017038148A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/905Manipulating or supporting suction pipes or ladders; Mechanical supports or floaters therefor; pipe joints for suction pipes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8858Submerged units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/006Dredgers or soil-shifting machines for special purposes adapted for working ground under water not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for

Definitions

  • the present invention relates to a pumping system and a pumping method for mining and mining mineral resources such as valuable metals on the seabed.
  • a U-shaped pipe one of which is a downcomer and the other is a riser (corresponding to a pumping pipe), is vertically held from the deep sea floor to the sea surface.
  • Seawater is transported to the upper end opening so that the seawater circulates and flows in the U-shaped pipe, and the mineral block mined in the deep sea bottom is sent to the bottom of the rising pipe so that the liquid level is maintained at the same opening at both ends.
  • the mineral block floats on the sea surface by placing the riser on the rising seawater.
  • the conventional pumping equipment has the following problems. That is, when a steel uplift pipe is lowered from an ore processing vessel to the seabed at a depth of 1600 to 5000 m, for example, even if a certain degree of buoyancy acts on the uplift pipe itself, its substantial weight is: 50-150 tons. In order to support this heavy lifting pipe, a large ore processing ship that can sufficiently withstand its weight and has sufficient buoyancy is required.
  • the next problem after the pumping pipe is the development of a pump system that can transport seawater containing crushed ore from the deep sea floor to the ore processing ship on the sea.
  • a pump system that can transport seawater containing crushed ore from the deep sea floor to the ore processing ship on the sea.
  • the above-described transport from the deep sea of 1600 to 6000 m inevitably deviates from the ability of one pump, and thus a pump system using a combination of a plurality of or many pumps is necessary. No measures have been taken.
  • the present invention was devised in view of the above points, and includes a pump system that can transport seawater containing crushed ore from the deep sea floor to an ore processing ship on the sea, Make sure that it does not drop off from the connection part of the pipe by its own weight, and that the ore processing ship that supports it does not need to be enlarged more than necessary to secure buoyancy.
  • a pump system that can transport seawater containing crushed ore from the deep sea floor to an ore processing ship on the sea, Make sure that it does not drop off from the connection part of the pipe by its own weight, and that the ore processing ship that supports it does not need to be enlarged more than necessary to secure buoyancy.
  • the ore processing vessel etc. will not be damaged due to the waves shaking, and the lifting pipe will not be abandoned and it will not be necessary to evacuate
  • An object is to provide a pumping system and a pumping method.
  • the pumping system of the present invention sucks a solid-liquid mixture including a drilling unit for drilling minerals at the bottom of the sea or the bottom of the sea, and the mineral and seawater obtained by the drilling.
  • a submarine work machine capable of moving operation having a pump for pumping, a power supply unit having a power cable for supplying electric power as a power source to the submarine work machine, having a required buoyancy,
  • a main float floated in the sea, the main float and the pump of the submarine working machine are connected, and a solid-liquid mixture containing mineral and seawater sucked by the pump is transported to the main float side and has a required length.
  • a pipe an auxiliary float that is arranged at a required interval in the longitudinal direction of the uplift pipe, and imparts a required buoyancy to the uplift pipe, and a solid-liquid mixture conveyed to the main float side by the uplift pipe
  • Sorting minerals from A Ageko system comprising a Mel mineral sorting unit.
  • the operation of the pumping system of the present invention will be described by taking as an example the case of performing a work of lifting valuable minerals to the sea in the deep sea.
  • the submarine working machine is located on a predetermined deep sea floor where the deposit is located, and the main float is floating on the sea.
  • the mineral sorting unit or the power supply unit can be installed in a work ship such as a mother ship, for example, and the power cable constituting the power supply unit is connected to the power receiving unit of the submarine work machine.
  • the traveling unit, excavation unit, and pump of the submarine work machine are driven by supplied electric power.
  • a signal cable for exchanging signals for excavation part control, traveling part control, pump control, etc. of the submarine work machine can be provided. .
  • the pump and the main float of the submarine work machine are connected by a long uplift pipe suspended vertically from the main float, and the solid-liquid mixture transported by the uplift pipe is further equipped in a work ship etc. Sent to the mineral sorting department.
  • auxiliary floats are attached to the uplift pipe at required intervals, and a predetermined buoyancy is imparted to the uplift pipe.
  • the mine pipe is floating so that it does not fall to the seabed.
  • the bottom end of the pumping pipe near the seabed and the pump of the submarine work machine will not interfere with the movement of the submarine work machine or even if the position of the pumping pipe floating in the sea fluctuates. It is preferable to connect with a flexible tube so that there is no problem.
  • buoyancy is given to the long pumping pipe by the main float and each auxiliary float so that the pumping pipe does not fall to the seabed. Since the auxiliary floats are arranged at a required interval in the longitudinal direction of the uplift pipe, the weight of the uplift pipe is shared and supported by these auxiliary floats.
  • each auxiliary float when a large number of auxiliary floats are attached at a required interval in the longitudinal direction of the pumping pipe, each auxiliary float imparts buoyancy by the weight of the pumping pipe of the length between the auxiliary floats. By doing so, theoretically, it is possible to prevent the load of a long uplift pipe from acting on the top of the uplift pipe.
  • auxiliary float in the longitudinal direction of the pumping pipe, a large load in the gravitational direction is not partially applied in the longitudinal direction of the pumping pipe. It is also effective in the sense that an average load is applied at a required interval. In addition, this makes it possible to prevent the mine pipe from breaking halfway due to its own heavy load, or if the mine pipe is connected to a number of pipes, the pipe joints being destroyed. The pumping pipe will not fall to the seabed.
  • the total buoyancy of the main float and each auxiliary float that floats the uplift pipe is set as appropriate, but it does not necessarily require the buoyancy to float the uppermost main float on the sea surface. It is preferable that the buoyancy is such that the lower end of the slab can be floated while maintaining a state where it does not fall to the seabed (a state where it floats in the sea without sinking).
  • the buoyancy can maintain a state where at least the upper side is vertical and floating in the sea.
  • buoyancy is given to heavy lifting pipes by the main float and each auxiliary float, and a work ship such as a mother ship that controls the pumping system or a processing ship does not necessarily need to support the lifting pipe. There is no need to increase the size of the ship.
  • the substantial weight of the pumping pipe becomes heavier than when it is empty because the weight of the solid-liquid mixture conveyed through the inside is added during the operation of the system. Therefore, when setting the buoyancy by each of the floats, it is needless to say that this need not be set based on the weight of the empty pumping pipe.
  • submarine work machines are not only valuable minerals such as precious metals and rare metals (rare metals) existing at the bottom of the sea or below the sea, for example, several thousand meters deep, but also methane hydrate (for example, surface type methane hydrate) that is a fossil fuel. It is used by placing it on the seabed in an area that contains a lot of useful resources such as rate.
  • the pumping system can also be used as a system for lifting useful resources other than minerals from the deep sea floor to the sea.
  • the present invention can be configured such that the pump of the submarine working machine is a slurry pump.
  • the solid-liquid mixture containing mineral and seawater can be transported (pressure fed) without damaging the movable part of the pump.
  • the slurry pump even a solid-liquid mixture containing a relatively large amount of sand and mineral particles can be sent. According to this, even if the ratio of solids such as sand and mineral particles and seawater fluctuates during operation, it can be handled flexibly without difficulty and the operation can be continued.
  • the slurry pump is structurally excellent in suction capability, and can transport the solid-liquid mixture efficiently.
  • the type and structure of the slurry pump are not particularly limited as long as the solid-liquid mixture can be conveyed without damaging the movable part.
  • a gravel pump, a sand pump, or a hose pump can be used.
  • the present invention may have a structure including an auxiliary pump that injects a liquid flow having a required pressure for assisting the conveyance of the solid-liquid mixture into a required portion of the uplift pipe.
  • an auxiliary pump that injects a liquid flow having a required pressure for assisting the conveyance of the solid-liquid mixture into a required portion of the uplift pipe.
  • the auxiliary pump does not need to inject the solid-liquid mixture into the pumping pipe, and only needs to inject surrounding seawater. Therefore, the auxiliary pump has a multistage swirl having a pump other than the slurry pump, for example, an impeller. Pumps such as pumps and diaphragm pumps can be employed.
  • the present invention corrects the position so as to maintain the set position by comparing the GPS receiver, the position information received by the GPS receiver, and the set position of the predetermined pumping system. It can be set as the structure provided with a position correction apparatus. In this case, it is possible to maintain a preset position of the pumping system using GPS (Global Positioning System). That is, position information indicating the position of the pumping system is acquired by a GPS receiver installed at a required location (for example, the main float) of the pumping system.
  • GPS Global Positioning System
  • the reference position information set in advance and the position information acquired by the GPS receiver are compared by the position correction device. Based on the difference, the position of the pumping system (in this case, the position of the main float) is maintained by the position correction device so as to maintain the reference position (set position) or approach the reference position. Move (toward) to correct.
  • This position correction may be performed constantly during the operation of the system, or may be performed at regular intervals.
  • the position correction device is located at the required position of the pumping system floating in the sea as a whole and can move part or all of the system.
  • the configuration of the position correction device is not particularly limited as long as the position information obtained by the GPS receiver and the reference position information determined in advance can be compared and the position can be corrected based on the difference.
  • a motor For example, a motor, a plurality of screws driven by the motor in different propulsion directions, a battery as a motor drive source, a comparison of the above positional information, and a control unit that selects and drives the motor and screw according to the result It is. Further, a plurality of position correction devices can be arranged in the system.
  • the position correction apparatus is provided in a position where a GPS receiver is installed, but this is not necessarily required and can be set as appropriate.
  • both the GPS receiver and the position correction device may be provided in the main float, or the GPS receiver is provided in the float when the power cable is supported by the float, and the position correction device is provided in the main float. Also good. Even in the latter case, as long as the distance between the float, which is the supporting portion of the power cable, and the main float is maintained constant or substantially constant, the position can be corrected substantially the same as the former.
  • the present invention may be configured to include a water injection / drainage device that performs water injection to the inside of the main float and water discharge to the outside and adjusts the buoyancy of the float.
  • the buoyancy of the main float itself can be appropriately adjusted by taking seawater into the main float or discharging the internal seawater to the outside by the pouring / draining device.
  • the buoyancy of the main float it is possible to make a part of the main float come out of the sea surface or to sink all below the sea surface.
  • the height of the main float below the sea level when it sinks can be adjusted.
  • the main float When the main float is submerged below the sea level, the main float becomes less susceptible to waves (up and down movement of the sea surface). For example, if the main float floats on the sea surface during a typhoon or stormy weather when the typhoon approaches, it will repeatedly move up and down and roll under the influence of severe waves, and connected to the main float. There is a high possibility that the installation part of the existing ore pipe or its peripheral part will be deformed or damaged. In many cases, waves are generated on the sea surface from several meters to 10 meters below the sea level, and if the main float can be kept floating at a deeper depth, it should be hardly affected by waves in the typhoon. Can do.
  • the structure of the drainage device is not particularly limited.
  • the main float has a structure including a waterproof lithium storage battery, a pump driven by the electric power, a water intake valve, and a drain valve.
  • the amount of seawater can be adjusted by draining seawater in the space or by absorbing water from the outside.
  • the present invention includes a work ship, and the work ship includes the power supply unit and the mineral sorting unit, and also constitutes a power cable and the mineral sorting unit that constitute the power supply unit,
  • the feed pipe that receives the solid-liquid mixture from the pipe can be configured to be able to be disconnected while the system can be restored to operation.
  • the power cable and the supply pipe are connected and each functions. And when the work ship has to leave the sea area, for example, during stormy weather due to the approach of a typhoon, or for any other reason, the power cable or the supply pipe must be Can be separated.
  • the disconnected side was fixed or connected to some support part such as a float so that the power cable or the supply pipe would not sink into the sea or fall to the seabed even if it was disconnected. It is in a state.
  • the present invention has a suspension device for supporting the uplift pipe at a portion where the uplift pipe is connected to the main float, and the uplift pipe in the vicinity of the suspension device includes the uplift pipe. It can be set as the structure which can be vibrated in the range of a required deflection within the space
  • the mine pipe in the main float through which the mine pipe is passed or connected, the mine pipe is supported by a suspension system, and the mine pipe in the vicinity of the suspension system has the required runout in the gap. Therefore, the portion of the ore pipe has a high degree of freedom of movement and is not fixed.
  • the pumping pipe will not be deformed in the vicinity of the suspension system. Since it can move freely to some extent, such as moving back and forth in the longitudinal direction and vibrating or swinging in the diametrical direction, it is unlikely to be damaged or broken due to, for example, metal fatigue.
  • the structure of the suspension device is not particularly limited.
  • the suspension device is configured by a coil spring that can support a pumping pipe or a link mechanism combined with an urging member.
  • the suspension system can support the substantial weight of the uplift pipe to which buoyancy is imparted by the auxiliary float at the sea side, and has a structure having a buffering action when the uplift pipe moves back and forth in its longitudinal direction. ing.
  • This invention can be set as the structure by which the required buoyancy is provided to the power cable by arrange
  • the required buoyancy is imparted to the power cable by the buoyancy of the auxiliary float, as in the case of the above-described pumping pipe. Thereby, it can prevent that it breaks in the middle of the length direction by the weight of electric power cable itself.
  • the mineral sorting unit may include a wastewater treatment device.
  • the mineral sorting unit can sort and collect the minerals, and the waste water treatment device disposes the clear water after the waste liquid has been subjected to the necessary treatment by ocean input (also called ocean dumping). be able to.
  • the present invention may be configured such that the mineral sorting unit includes a magnetic deposition apparatus that magnetically deposits and sorts minerals.
  • the metal or mineral contained in the pumping is collected by a magnetic deposition device such as an electric magnet installed on the ore processing ship, Thereafter, the seabed mud can be removed by the same method as that used in general sewage treatment such as a sedimentation method. In other words, this can be dealt with by making the work ship an ore treatment ship equipped with a wastewater treatment device.
  • examples of magnetic minerals include iron, chromium, nickel and cobalt. All of these minerals are valuable metals, and can be collected by efficiently selecting from the pumped water from the sea floor to the sea.
  • the present invention can be configured such that the uplift pipe has a double pipe structure made of steel and light alloy, a structure in which the steel pipe is reinforced with carbon fiber, or a structure in which the peripheral wall is hollow.
  • the uplift pipe has a double pipe structure made of steel and light alloy, a structure in which the steel pipe is reinforced with carbon fiber, or a structure in which the peripheral wall is hollow.
  • the biggest challenge in the pumping system is how to reduce the weight of pumping pipes with a total length of several thousand meters.
  • the weight of the uplift pipe in addition to the method for reducing the substantial weight by giving buoyancy to the uplift pipe as described above, the weight of the uplift pipe itself as in the invention of this section. There are ways to alleviate this.
  • a method of reducing the weight of the ore pipe itself there is a method of making a double pipe structure made of, for example, a light alloy or steel, and making an uplift pipe having an airtight space between an inner pipe and an outer pipe.
  • an airtight space can be provided on the peripheral wall, and the buoyancy can partially offset the weight of the uplift pipe, reducing the burden on other places due to the weight of the uplift pipe.
  • the outer pipe of the inner pipe made of steel and making the outer surface of the resin pipe reinforced with carbon fiber.
  • the resin-made reinforcing tube contributes to the protection of the metal inner tube.
  • the present invention is a pumping method in which a required buoyancy is provided by a float to a pumping pipe that sends a solid-liquid mixture containing minerals and seawater excavated and crushed on the seabed or under the seabed to the sea.
  • a required buoyancy is provided by a float to a pumping pipe that sends a solid-liquid mixture containing minerals and seawater excavated and crushed on the seabed or under the seabed to the sea.
  • the pumping pipe and the communication / power cable are supported by a float to reduce the gravity of the pumping pipe.
  • the present invention includes a large metal float having a hollow inside floating on the sea surface, a pumping pipe supported by the float, a communication cable, and a power cable, in order to cope with the weight of the pumping pipe.
  • Large floats with seawater discharge and seawater intake valves for buoyancy adjustment can also be included.
  • the large float can have a diving function by driving the waterproof storage battery and the pump mounted (equipped) on the large float and supplying and draining seawater to the cavity below the large float.
  • a small float group equipped in the middle of the uplift pipe in the sea can be provided. It is also possible to provide a resin-made uplift pipe reinforced with carbon fibers to reduce weight and maintain strength.
  • An ore transporting pump can be mounted (equipped) on a submarine ore mining machine to provide a system in which the suction pipe is shortened.
  • a pump system for injecting pressure water may be provided to supply fluid energy to the intermediate part of the pumping pipe.
  • an electric type or permanent magnet type magnet device may be provided to extract ore from seawater containing crushed ore (fine pulverized ore) sent to a marine ore processing ship by a lifting pipe.
  • collection on an ore processing ship can also be provided.
  • the present invention is equipped with a pump system capable of transporting seawater containing crushed ore from the deep sea floor to an ore processing ship on the sea, and the pumped ore pipe lowered to the deep sea floor is its own weight from the connection part of the pipe body, etc. Make sure that the ore processing boats that support it do not fall out and do not need to be larger than necessary to secure buoyancy, and when the sea is rough due to typhoons, etc.
  • a pumping system and a pumping method in which a pumping pipe is prevented from being damaged due to the fact that it is swayed by a wave, and the pumping pipe is abandoned so that it is not necessary to evacuate. it can.
  • the pumping system S sorts valuable minerals from a mining unit 1 for mining minerals on the seabed, a pumping unit 2 for pumping mined minerals and seawater to the sea, and a solid-liquid mixture pumped by the pumping unit 2. It is comprised by the selection unit 3 which is a mineral selection part.
  • the mining unit 1 has a submarine work machine 13 that can be moved from outside.
  • the submarine working machine 13 includes a crawler traveling machine 130, an excavator 131 mounted on the crawler traveling machine 130, and a slurry pump 132 that sucks and pumps a solid-liquid mixture containing mineral and seawater obtained by excavation.
  • the seabed working machine 13 has a structure capable of working under high pressure on the deep seabed, such as making each part highly watertight.
  • the slurry pump 132 constitutes a pump system together with each pressure injection pump 24 described later.
  • the excavator 131 is capable of crushing and excavating minerals in the deposit by rotation or vibration of the drill at the tip.
  • another structure can also be employ
  • the slurry pump 132 can pump a mixture (solid-liquid mixture) of mineral and seawater that has been excavated and crushed, and can adopt, for example, a mixed flow type or a mixed flow type.
  • the pumping capacity of the slurry pump 132 is not particularly limited, but at least the solid-liquid mixture of seawater and pulverized mineral is pumped to the sea in cooperation with the pressure injection pump 24 that is an auxiliary pump described later. It only has to have the ability to do so.
  • the transfer energy from the slurry pump 132 to the lower part of the uplift pipe 21 described later is supplied by the slurry pump 132, and the transfer energy in the uplift pipe 21 above it is provided in the middle of the uplift pipe 21. Further, it can be supplied by a pressure injection pump 24 which is a plurality of auxiliary pumps described later.
  • the submarine working machine 13 is connected to a power receiving unit (not shown) with a power cable 12 for supplying power as a power source to the crawler traveling machine 130, the excavator 131, and the slurry pump 132.
  • the end of the power cable 12 on the sea side is once connected to a float 11 that floats on the sea surface, whereby the weight of the power cable 12 is supported by the float 11.
  • assistant float for providing a buoyancy similarly to the uplift pipe 21 mentioned later can also be attached.
  • the power cable 12 connected to the float 11 is supplied with power through a power cable 120 from a generator (not shown) as a power supply unit mounted on the work ship 10 as a mother ship.
  • the power cables 12 and 120 are attached to them to exchange signals for controlling the excavator 131 of the submarine work machine 13, the crawler traveling machine 130, the slurry pump 132, and the like.
  • the pumping unit 2 has a pumping pipe 21.
  • the pumping pipe 21 is connected to a large number of pipes 210 having a required length, and has a length of 5000 m, for example, corresponding to the depth of the sea area to be pumped.
  • the structure of the tube body 210 will be described in detail later.
  • the long uplift pipe 21 is substantially connected so that the upper end side is hung on the main float 20 floating on the sea surface. Further, the uplift pipe 21 is substantially connected so as to hang on the auxiliary float 22 at every required interval in the longitudinal direction on the underwater side (for each tubular body 210 in the present embodiment).
  • the main float 20 has a watertight and hollow sealed case 200.
  • the outer shape of the sealing case 200 is a so-called donut shape, and a space portion 201 is formed in the inside so as to draw a circle in plan view. Further, a circular through hole 202 that is separated from the space portion 201 by a wall portion is provided through the central portion of the sealing case 200.
  • the space part 201 in the sealed case 200 is divided in a liquid-tight state vertically by a separating member 203 fixed over the entire circumference at a substantially intermediate position in the vertical direction.
  • a pouring / draining pump 204 which is fixed to the separating member 203 and constitutes a pouring / draining device is disposed in the upper space 201a.
  • a battery 205 is fixedly disposed on the isolation member 203, and a waterproof lithium storage battery is adopted for the battery 205 in this embodiment, and power is supplied to the pouring / draining pump 204.
  • the battery 205 is connected to the control panel 206, and the power cable 26 is connected to the control panel 206 from the outside.
  • the power cable 26 is connected to a generator (not shown) which is a power supply unit mounted on the mineral processing ship 30 described later, and the battery 205 stores power supplied from the generator.
  • the lower space portion 201b divided by the isolation member 203 in the sealed case 200 is a water storage tank, and the water amount (and the air amount if necessary) inside the lower space portion 201b can be adjusted by the pouring / drainage pump 204. It is. By adjusting the amount of water, the buoyancy of the main float 20 itself can be increased and floated on the sea surface, or the buoyancy can be reduced, as required, so that the water can be submerged. The diving may be performed only on the main float 20 or may be performed as a whole including the uplift pipe 21 and can be appropriately selected.
  • a GPS receiver 207 that receives a signal from the GPS satellite 27 is installed.
  • the GPS receiver 207 is also supplied with power via the power cable 26.
  • a plurality of propulsion devices 208 constituting a position correction device are attached to the lower surface of the sealing case 200.
  • the propulsion device 208 has a structure that obtains thrust by rotating a screw with a motor.
  • the configuration of the position correction device compares the position information obtained by the GPS receiver with the predetermined reference position information, and corrects the position by operating each propulsion unit 208 based on the difference.
  • the control panel 206 which is a control unit that can be used, is included. Electric power is supplied to each propulsion device 208 from the battery 205, and the main float 20 is moved in a required direction at sea by driving the propulsion devices 208 in appropriate combination by automatic control by GPS. Can be made.
  • the tube body 210 at the upper end of the ore pipe 21 is passed through the through hole 202 of the sealing case 200.
  • a large number of pipes 210 constituting the pumping pipe 21 have the structure shown in FIG.
  • the tube body 210 has connection flanges 211 and 212 at both ends in the longitudinal direction, and the tube portion has a double tube structure including an inner tube 213 and an outer tube 214. Between the inner tube 213 and the outer tube 214, a so-called circular tube-shaped space portion 215 that creates buoyancy for weight reduction is formed.
  • the outer diameter of the outer tube 214 of the tube body 210 is formed smaller than the inner diameter of the through hole 202 of the sealing case 200, and a gap 209 is provided between the tube body 210 and the through hole 202. . Further, the flange 211 of the uppermost tube body 210 (which is attached later after being inserted into the through hole 202) is on the upper side of the sealing case 200, and the upper side gradually increases between the upper surface of the sealing case 200 and the flange 211. A compression coil spring 28 having a small diameter is disposed.
  • the pipe body 210 and many other pipe bodies 210 connected to the lower side of the pipe body 210 are buffered by the urging force of the compression coil spring 28 even if the pipe body 210 moves up and down, so that an impact and a large load applied to the main float 20 are applied. Can be reduced. Further, the tube 210 can be moved or swung within a certain range within the through hole 202 by the action of the gap 209.
  • a flexible supply pipe 25 is connected to the upper end of the tube body 210 at the upper end, and the distal end side of the supply pipe 25 is introduced into the sorting unit 3 described later.
  • the pumping pipe 21 is a watertight connection of a large number of pipes 210, and one end of a flexible relay pipe 23 having a required length is connected to the lower end of the lowermost pipe 210. Has been.
  • the other end of the relay pipe 23 is connected to the discharge port (reference numeral omitted) of the slurry pump 132.
  • the suction port (reference numeral omitted) of the slurry pump 132 is arranged in the vicinity of the drill of the excavator 131 so that the excavated and crushed mineral can be sucked together with seawater.
  • the long uplift pipe 21 is substantially connected so that the upper flange 211 is hung on the auxiliary float 22 for each tubular body 210 in the longitudinal direction on the sea side.
  • the auxiliary float 22 has a watertight and hollow sealing case 220.
  • the outer shape of the sealing case 220 is a so-called donut shape, and a space portion 221 is formed in the inside so as to draw a circle in plan view. Further, a circular through hole 222 that is separated from the space portion 221 by a wall portion is provided through the central portion of the sealing case 220.
  • the outer diameter of the outer tube 214 of the tube body 210 is smaller than the inner diameter of the through hole 222 of the sealing case 220, and a gap 229 is provided between the tube body 210 and the through hole 222.
  • assistant float 22 is a structure (known structure) which can be mounted
  • auxiliary floats 22 can slide relative to each tube 210 even when each tube 210 moves up and down, and the auxiliary float 22 can be connected to a flange 211 of the tube 210 or to be described later.
  • the pressure injection pump 24 hits the injection pipe 241
  • the mutual slide stops Since the auxiliary float 22 and each tubular body 210 are easy to escape from each other, it is difficult for an impact or a large load to act on them. Further, the tube body 210 can move or swing within a certain range within the through hole 202 by the action of the gap 229.
  • each auxiliary float 22 can give a required buoyancy to the uplift pipe 21.
  • the buoyancy may be set so as to be the same as the weight of the uplift pipe 21 so that the main float 20 does not bear the weight of the uplift pipe 21.
  • the buoyancy is set to be slightly smaller than the weight of the uplift pipe 21 so that the main float 20 is moderately loaded with the uplift pipe 21, and the uplift pipe 21 is made more stable in the sea. May be.
  • the auxiliary float 22 in the deep sea may be provided with a rib structure for reinforcement in the same manner as the auxiliary float 22a described later so as to withstand high water pressure.
  • each pressure injection pump 24 sucks the surrounding seawater and injects the seawater into the pumping pipe 21, and assists in the conveyance (pumping) of the pumped water (solid-liquid mixture) passing through the pumping pipe 21.
  • each pressure injection pump 24 receives the buoyancy of the float 242 connected with the suspension wire 243, and maintains a required depth. Moreover, electric power is supplied to each pressure injection pump 24 via the power cable 240 connected to the generator of the mineral processing ship 30 which is a work ship. Further, a float may be attached to the power cable 240 in order to impart buoyancy.
  • the power cable 120 connecting the work boat 10 and the float 11 has a structure that can be disconnected from the float 11.
  • the mineral processing ship 30 has a structure capable of separating the supply pipe 25 and the power cable 26 from the main float 20. According to this, for example, when the work ship 10 or the mineral processing ship 30 is called, it is possible to leave the work area in a state where it can be restored later.
  • the sorting unit 3 is mounted on the mineral processing ship 30.
  • the mineral processing ship 30 is equipped with a generator (not shown), which supplies power to the main float 20 and the pressure injection pumps 24.
  • the sorting unit 3 sorts valuable minerals from the solid-liquid mixture of seawater and ground minerals pumped by the pumping unit 2.
  • the sorting unit 3 includes a sorting tank 31, a sedimentation tank 32, a water storage tank 33, and an accumulation tank 34 in the order of processing.
  • the sedimentation tank 32, the water storage tank 33, and the accumulation tank 34 comprise a waste water treatment apparatus.
  • the solid-liquid mixture containing the crushed mineral 50 is sent to the sorting tank 31 from the supply pipe 25.
  • the pulverized mineral 50 that is a magnetic material is collected by being magnetized by an electromagnet (not shown) attached to the arm tip of the rotating body 311.
  • minerals other than magnetic materials and other valuable minerals are collected by various known means such as using a sieve.
  • the seawater containing the sludge that has passed through the sorting tank 31 is sent to the precipitation tank 32 through the screen 320, and the sludge is precipitated and separated on the tank bottom. Then, the seawater from which the sludge has been removed is sent to the water storage tank 33 through the screen 331, and is sent to the next accumulation tank 34 by the pump 330. In the accumulation tank 34, finer sludge is precipitated and removed by chemical treatment or the like, and the clear seawater after the treatment passes through the drain pipe 35 by the water wheel 340 and is discharged to the outside (the sea).
  • the operation of the pumping system S of the present invention will be described by taking as an example the case of performing a work of lifting valuable minerals to the sea in the deep sea.
  • the seabed working machine 13 is disposed on a predetermined deep seabed 4 where the deposit 5 is located, and the main float 20 is floating on the sea.
  • the submarine work machine 13 is operated using electric power supplied via the power cable 120 according to a signal from the control unit of the work ship 10, and excavation is performed by the excavator 131 while moving on the traveling machine 130.
  • the mixture of the crushed mineral 50 (shown in FIG. 4) and seawater (solid-liquid mixture) is sucked by the slurry pump 132 in parallel with the excavation, and is pumped upward from the relay pipe 23 through the uplift pipe 21. .
  • energy from the water flow is injected by a number of pressure injection pumps 24 in the vertical path of the ore pipe 21, and the solid-liquid mixture is pumped to the sorting unit 3 of the upper mineral processing ship 30 for processing and clarification. Only the treated water is dumped into the sea.
  • auxiliary floats 22 are connected to the uplift pipe 21, and a predetermined buoyancy is imparted to the uplift pipe 21.
  • the main float 20 and the auxiliary floats 22 give buoyancy to the extent that the pumping pipe 21 does not fall on the seabed 4 with respect to the long pumping pipe 21 of several thousand meters. . Since the required number (many) of the auxiliary floats 22 is arranged in the longitudinal direction of the pumping pipe 21, the weight of the pumping pipe 21 is shared and supported by the pipes 210 by these auxiliary floats 22.
  • each auxiliary float 22 is a part of the weight of the uplift pipe 21 having a length between the auxiliary floats 22. If only buoyancy is applied, it is theoretically possible to prevent the load of the long pumping pipe 21 from acting on the upper part of the pumping pipe 21.
  • the above configuration is also effective in the sense that an average load is applied at a required interval in the longitudinal direction of the uplift pipe 21.
  • the total buoyancy of the main float 20 and the auxiliary floats 22 that float the uplift pipe 21 is set as appropriate, but it does not necessarily require buoyancy to float the uppermost main float 20 on the sea surface. It is preferable that the buoyancy is such that at least the lower end portion of the uplift pipe 21 does not fall to the seabed, that is, the state where it floats in the sea without sinking and can float. Moreover, even if the lower end side of the uplift pipe 21 touches the seabed, it is preferable that the buoyancy can maintain a state where at least the upper side is vertical and floating in the sea.
  • the lifting pipe which is heavy, is given buoyancy by the main float and each auxiliary float, and the work ship 10 or the ore processing ship 30 that controls the lifting system does not necessarily need to support the lifting pipe. There is no need to increase the size of the ship.
  • the main float 20 can adjust the buoyancy by adjusting the amount of water inside by the pouring / draining pump 204.
  • a part of the main float 20 can be made to come out from the sea surface like a submarine, or the whole can be made to sink below the sea surface.
  • the height (depth) of the main float 20 below the sea level when it sinks can be adjusted.
  • the main float 20 When the main float 20 is submerged below the sea level, the main float 20 becomes less susceptible to waves. For example, if the main float 20 floats on the surface of the sea during a typhoon or when the typhoon approaches, the main float 20 will repeatedly move and roll under the influence of severe waves. There is a high possibility that the connecting portion of the connected ore pipe 21 or its peripheral portion is deformed or damaged.
  • waves are generated on the sea surface from several meters to about 10 m below the sea surface, and the main float 20 is maintained so as to float together with the upper part of the ore pipe 21 by remote control, and thereafter If the main float 20 can be lifted, it can be hardly affected by waves in a typhoon.
  • the main float 20 includes a GPS receiver 207 and a propulsion device 208, and can maintain a preset position of the ore system S using GPS. That is, the GPS receiver 207 installed in the main float 20 acquires position information indicating the position of the pumping system, and the position information that is set in advance and the position information acquired by the GPS receiver 207 Are compared by a position correction device.
  • each propulsion unit maintains the position (set position) serving as the reference by the position correction device, or approaches (becomes) the reference position by the position correction device. 208 is operated to correct the position.
  • This position correction may be performed constantly during the operation of the ore system S, or may be performed at regular intervals (intermittently).
  • the submarine working machine 13 is not only a valuable mineral such as a precious metal or a rare metal (rare metal) existing at the sea bottom 4 or under the sea bottom, for example, having a depth of several thousand meters, but also methane hydrate (for example, a surface layer type) that is a fossil fuel. It can be used by being placed on the seabed in an area that contains a lot of useful resources such as methane hydrate.
  • the pumping system S can also be used as a system for lifting useful resources other than such minerals from the deep sea floor to the sea.
  • the tube body 210a has a double tube structure in which the outer tube 214a of the steel inner tube 213a is integrally formed with an acrylic resin reinforced with carbon fiber. This reduces the weight of the tube body 210a and increases the tensile strength. Further, flanges 211a and 212a are provided at both ends of the tube body 210a. By combining the steel inner tube 213a having sufficient strength and the light and tough outer tube 214a, it is possible to keep the weight equal to that of the tube body 210 while maintaining a predetermined strength.
  • the auxiliary float 22a shown in FIG. 7 includes a sealing case 220a having a cylindrical outer shape formed in a watertight manner.
  • a sealing case 220a having a cylindrical outer shape formed in a watertight manner.
  • reinforcing ribs 225 in which ribs are assembled vertically and horizontally are fixed to the inner surface of the sealing case 220a.
  • the auxiliary float 22a is attached to the ore pumping pipe 21 via the connecting member 226. Thereby, predetermined buoyancy is given to the uplift pipe 21.
  • the auxiliary float 22a can maintain a predetermined buoyancy by providing a reinforcing rib 225 inside and securing a space without being crushed even under a high pressure in the deep sea.
  • S pumping system 1 mining unit 10 work boat, 11 float, 12 power cable, 120 power cable, 13 submarine working machine, 130 crawler traveling machine, 131 excavator, 132 slurry pump, 2 pumping units, 20 main floats, 200 sealed cases, 201 space part, 201a upper space part, 201b lower space part, 202 through-hole, 203 isolation member, 204 drainage pump, 205 battery, 206 control panel, 207 GPS receiver, 208 propulsion device, 209 gap, 21 pumping pipe, 210 pipe, 211, 212 flange, 213 inner tube, 214 outer tube, 215 space, 210a tube, 211a, 212a flange, 213a inner tube, 214a outer tube, 22 auxiliary float, 220 sealing case, 221 space, 222 through holes, 22a auxiliary float, 220a sealing case, 221a space, 225 reinforcing ribs, 226 connecting members, 229 gaps, 23 relay pipe, 24 pressure injection pump, 240 power cable, 24

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

揚鉱システムSは、海底で鉱物を掘削する掘削機131と、鉱物と海水の固液混合物を吸引圧送するスラリーポンプ132を有する海底作業機13と、海底作業機13に電力ケーブル12で電力を供給する発電機と、主フロート20と、主フロート20側へ固液混合物を送る揚鉱管21と、揚鉱管21に所要間隔で取り付けられて浮力を付与する補助フロート22と、主フロート20側に搬送された固液混合物から鉱物を選別して集める選別ユニット3を備える。

Description

揚鉱システム及び揚鉱方法
 本発明は、海底にある有価金属などの鉱物資源を採掘して揚鉱する揚鉱システム及び揚鉱方法に関するものである。
 例えば、水深20m程度の浅海において、海底砂に含まれる砂鉄や錫などを砂と共にポンプで吸引し、これを陸上に搬送する技術は確立しており、すでに産業上での実用化もなされている。また、このような浅い海底において、鉱石を含む岩盤などを粉砕して細分化することも鉱業分野で広く使われている技術である。
 しかし、近年になって、日本の領海・排他的経済水域(EEZ)には多くの海底鉱床が存在することが、実際の調査などによって明らかになってきた。この鉱床に含まれる鉄、銅、亜鉛、金などが採掘され、この金属類が海上に搬送できれば、元来資源に乏しいとされ、専ら輸入に頼ってきた日本も、国内において資源を得ることができる。これにより、特に国内において、産業をより活性化させることが可能となり、また世界の資源供給にも貢献することが可能となる。
 なお、例えば水深1600~5000mの深海底の鉱石を採削機で粉砕する技術はすでに存在する。しかしながら、深海で粉砕した鉱石を海上まで搬送する技術は、未だ確立していない。搬送技術としては、ポンプ搬送と機械式(バケット式)搬送が考えられるが、機械式はいかにも生産性が低く、現在はポンプ式のものが提案の主流となっている。このようなポンプ式のものとしては、例えば特許文献1に記載の揚鉱装置がある。
 特許文献1記載の揚鉱装置は、一方が下降管、他方が上昇管(揚鉱管に相当)となるU字管を深海底から海面にかけて鉛直保持し、上昇管の上端開口から下降管の上端開口に海水を輸送してU字管内で海水が循環流動するようにし、深海底で採掘された鉱物塊を上昇管の底部に送り込んで、両端開口部で液面が同じ高さに維持されるU字管の特性を活用し、上昇管を上昇する海水にのせて鉱物塊を海面に浮上させるというものである。
特開2003-269070号公報
 しかしながら、上記従来の揚鉱装置には、次のような課題があった。
 すなわち、鉱石処理船から、例えば水深1600~5000mの海底まで鋼鉄製の揚鉱管を降ろして装備する場合、揚鉱管自体にある程度の浮力が作用するとしても、その実質的な重さは、50~150トンにもなる。この重量物である揚鉱管を支持するために、その重量に充分に耐えうる頑丈で浮力に余裕がある大型の鉱石処理船などが必要となる。
 また、鉱石処理船などにつながれ、構成単位である管体を多数接続して形成される長尺な揚鉱管においては、海面に近いほど接続部に上記のような大きな荷重がかかるので、各管体を強固に接続するためにどのような構造とするかが、非常に難しい課題となっていた。
 なお、鉱石処理船または支持船に、上記のように極端に長く重い揚鉱管を降ろして運用した場合、更に以下のような困難が予想される。まず、鉱石処理船などが波浪による海面の動揺に伴い、揚鉱管が相対的に首を振るような動き、または首を折るような動きをすることになり、これが原因で揚鉱管の破損や破壊に至る可能性が高い点である。
 また、台風などの荒天時、鉱石処理船などが一時的に退避しなければならないときに、揚鉱管をつないだままでは航行が妨げられるため、揚鉱管を切り離さざるを得ない場合がある点である。このような場合、揚鉱管をどのようにして切り離すか、また切り離した揚鉱管をどのようにして回収するかなど、大きな課題がある。
 更に、揚鉱管の次に問題になるのが、粉砕鉱石を含む海水を深海底より海上の鉱石処理船まで搬送することができるポンプシステムの開発である。つまり、例えば1600~6000mの深海からの上記のような搬送は、どうしても1台のポンプの能力を逸脱してしまうので、複数または多数のポンプの組合せによるポンプシステムが必要になるが、従来、充分な対策はとられていない。
 本発明は、以上の点を鑑みて創案されたものであり、粉砕鉱石を含む海水を深海底より海上の鉱石処理船まで搬送することができるポンプシステムを備え、深海へ降ろした揚鉱管が自身の重さで管体の接続部などから脱落することがないようにすると共に、それを支持する鉱石処理船などを浮力確保のため必要以上に大型化しなくてすむようにし、また、台風などで海が荒れているとき、鉱石処理船などが波で揺れることが理由で揚鉱管が破損してしまうことがないようにすると共に、揚鉱管を放棄して避難しなくてすむようにした揚鉱システム及び揚鉱方法を提供することを目的とする。
(1)上記の目的を達成するために、本発明の揚鉱システムは、海底面または海底下において鉱物を掘削する掘削部と、掘削して得られた鉱物と海水を含む固液混合物を吸引し圧送するポンプとを有する移動操作が可能な海底作業機と、該海底作業機に対し、動力源となる電力を供給する電力ケーブルを有する電力供給部と、所要の浮力を有し、海上または海中に浮かせられる主フロートと、該主フロートと前記海底作業機のポンプをつなぎ、前記ポンプで吸引した鉱物と海水を含む固液混合物を前記主フロート側へ搬送する、所要長さを有する揚鉱管と、該揚鉱管の長手方向に所要間隔で配置されており、前記揚鉱管に所要の浮力を付与する補助フロートと、前記揚鉱管により前記主フロート側に搬送された固液混合物から鉱物を選別して集める鉱物選別部とを備える揚鉱システムである。
 本発明の揚鉱システムの作用を深海において有価鉱物を海上まで揚げる作業を行う場合を例にとり説明する。
 揚鉱システムは、海底作業機が鉱床がある所定の深海底に配置され、主フロートは海上に浮かんでいる。また、鉱物選別部、あるいは電力供給部などは、例えば母船などの作業船に装備することができ、電力供給部を構成する電力ケーブルは、海底作業機の受電部に接続されている。海底作業機の走行部、掘削部及びポンプは、供給される電力により駆動される。
 なお、電力ケーブルと共に、これに添設する形で、海底作業機の掘削部の制御、走行部の制御、あるいはポンプの制御などを行うための信号のやり取りを行う信号ケーブルを装備することもできる。
 海底作業機のポンプと主フロートは、主フロートに鉛直方向に吊設された長尺な揚鉱管によりつながれており、揚鉱管で搬送される固液混合物は、更に作業船などに装備された鉱物選別部に送られるようになっている。
 揚鉱管には、所要箇所に、例えば一定間隔で多数の補助フロートが取り付けられており、揚鉱管に対して所定の浮力が付与されている。これにより、揚鉱管は海底に落ちることのないように、浮かせてある。なお、揚鉱管の海底近くの下端部と海底作業機のポンプは、海底作業機の移動動作に支障のないように、あるいは海中で浮遊している揚鉱管の位置が変動しても支障のないように、フレキシブルな管でつなぐのが好ましい。
 揚鉱システムでは、長尺な揚鉱管に対し、主フロートと各補助フロートにより、揚鉱管が海底に落ちることのない程度の浮力を付与している。補助フロートは、揚鉱管の長手方向に所要間隔で配置されているので、これらの補助フロートで揚鉱管の重量が分担されて支持される。
 つまり、補助フロートが、揚鉱管の長手方向に所要間隔で多数取り付けられているときに、各補助フロートが、各補助フロート間の長さの揚鉱管の重さの分だけ浮力を付与するようにすると、理論上は揚鉱管の上部に長尺な揚鉱管の荷重が作用しないようにすることができる。
 このように、補助フロートによって適正な浮力を付与すれば、揚鉱管の長手方向において、一部に偏って重力方向の大きな荷重が作用することはなく、上記構成は、揚鉱管の長手方向に所要間隔で平均的に荷重がかかるようにする意味においても効果的である。また、これにより、揚鉱管が自身の大荷重により途中から破断したり、揚鉱管が多数の管体をつないだ構成であれば、管体の接続部が破壊されたりすることを防止でき、揚鉱管が海底に落ちてしまうことはない。
 なお、揚鉱管を浮かせる主フロート及び各補助フロートのトータルの浮力は、適宜設定されるが、必ずしも最上部の主フロートを海面に浮かせるだけの浮力を必要とするわけではなく、少なくとも揚鉱管の下端部が海底に落ちない状態(沈まずに海中を漂う状態)が維持されて浮遊できる浮力であるのが好ましい。
 また、仮に揚鉱管の下端部側が海底に触れたとしても、少なくともそれより上部側が海中で縦になり浮遊している状態を維持できる浮力であるのが好ましい。
 なお、重量物である揚鉱管は、主フロート及び各補助フロートにより浮力が付与され、揚鉱システムの管制を行う母船などの作業船、あるいは処理船は、必ずしも揚鉱管を支持する必要はないので、船を大型化する必要がない。
 また、揚鉱管の実質的な重さは、システムの運転中においては、内部を通り搬送される固液混合物の重さが加わるために、空の場合より重くなる。したがって、上記各フロートによる浮力の設定にあたっては、空の揚鉱管の重さを基準とした設定をせず、この点を勘案する必要があるのはいうまでもない。
 そして、遠隔操作により海底作業機を適宜移動させながら、例えば鉱床のある海底面または海底下を掘削部で掘削することにより、所要の粒径に粉砕された鉱物粒が得られる。これら鉱物粒は、周囲の砂や海水と共にポンプによって吸引され、固液混合物となって揚鉱管を通り、海上の主フロート側へ搬送される。主フロート側へ搬送された上記固液混合物は、鉱物選別部へ送られて、その中から有価鉱物が集められる。
 なお、海底作業機は、例えば水深数千mの、海底面または海底下に存在する貴金属やレアメタル(希少金属)などの有価鉱物だけではなく、化石燃料であるメタンハイドレート(例えば表層型メタンハイドレート)などの有用資源が多く含まれる領域の海底に置かれて使用される。揚鉱システムは、鉱物以外の有用資源を深海底から海上まで揚げるシステムとしても利用可能である。
(2)本発明は、前記海底作業機が有するポンプがスラリーポンプである構成とすることができる。
 この場合は、鉱物と海水を含む固液混合物をポンプの可動部分に損傷を与えることなく、搬送(圧送)することができる。また、スラリーポンプによれば、比較的多量の砂や鉱物粒を含む固液混合物でも送ることができる。これによれば、運転中に砂や鉱物粒などの固形物と海水との比率が変動しても、無理なく柔軟に対応することができ、運転を継続することができる。更には、スラリーポンプは、構造的に吸い込み能力に優れており、固液混合物の搬送を効率的に行うことができる。
 スラリーポンプとしては、上記の固液混合物を、可動部に損傷を与えることなく搬送することができれば、その種類、構造は特に限定するものではない。例えば、グラベルポンプ、サンドポンプ、あるいはホースポンプなどを挙げることができる。
(3)本発明は、前記揚鉱管の所要箇所に固液混合物の搬送を補助するための所要圧力の液流を注入する補助ポンプを備える構造とすることができる。
 この場合は、例えば数千mの深海底から固液混合物を海上まで、一台で搬送することができるポンプが仮になくても、揚鉱管の途中に補助ポンプによって所要圧力の液流を注入し、搬送を補助することにより、例えば深海底から海上までの数千mの長い距離を搬送することが可能になる。
 補助ポンプは、上記した目的からは、揚鉱管に固液混合物を注入する必要はなく、周りの海水を注入すればよいので、スラリーポンプ以外のポンプ、例えば羽根車(インペラー)を有する多段渦巻ポンプやダイヤフラムポンプなどのポンプを採用することができる。
 なお、例えば1600m以上の深海用の粉砕鉱石搬送ポンプは実用化が困難とされている現在、4000~6000mの超深海部の開発は困難を極めることは想像に難くない。この解決策としては、既存のポンプを複数、あるいは多数組合せることが有効である。揚鉱管が数千mと長くなると、1台の海中揚水ポンプ(混流、斜流)では、特に粉砕鉱石を含むような固液混合物を海面上の作業船まで搬送することはできない。
 しかし、揚鉱管の途中で固液混合物を搬送するためのエネルギーが不足している場合、少流量で高圧の海水を揚鉱管の途中にポンプで注入することでこの問題の解消が可能である。ポンプが流体に伝える動力(エネルギー)は、圧力Pと流量Qの積P×Qで決まるので、圧力が超高圧で極端に少流量のポンプが効率化を図る上で好適である。また、少流量であればポンプの小型化が可能である。
(4)本発明は、GPS受信機と、該GPS受信機で受信した位置情報とあらかじめ決められている揚鉱システムの設定位置とを比較して設定位置を維持するように位置の補正を行う位置補正装置とを備える構成とすることができる。
 この場合では、GPS(全地球測位システム:Global Positioning System)を利用して、あらかじめ設定されている揚鉱システムの位置を維持することができる。すなわち、揚鉱システムの所要の箇所(例えば主フロートなど)に設置してあるGPS受信機で、揚鉱システムの位置を示す位置情報を取得する。
 次に、あらかじめ設定されている基準となる位置情報と、GPS受信機で取得した位置情報を位置補正装置によって比較する。そして、その差を基に揚鉱システムの位置(この場合は主フロートの位置)を位置補正装置によって、基準となる位置(設定位置)を維持するように、あるいは基準となる位置に近付くように(向かうように)動かして補正する。なお、この位置の補正は、システムの運転中、常時行うようにしてもよいし、一定時間ごとに行ってもよい。
 位置補正装置は、全体として海に浮遊している揚鉱システムの所要位置に配置されており、システムの一部または全部を移動させることができる。位置補正装置の構成は、GPS受信機で得られた位置情報と、あらかじめ決められた基準の位置情報を比較して、その差を基に位置を補正することができれば、特に限定しない。
 例えば、モーターと、モーターで駆動される推進方向が異なる複数のスクリューと、モーターの駆動源となるバッテリーと、上記の位置情報の比較と、その結果によりモーター及びスクリューを選択し駆動する制御部などである。また、位置補正装置は、システムの中で複数配置することができる。
 また、位置補正装置は、GPS受信機が設置してあるものに設けるのがより好ましいが、必ずしもそうでなくてもよく、適宜設定が可能である。例えば、GPS受信機と位置補正装置の両方が主フロートに設けられていてもよいし、あるいはGPS受信機をフロートで電力ケーブルを支持した場合のフロートに設け、位置補正装置を主フロートに設けてもよい。後者の場合でも、電力ケーブルの支持部であるフロートと主フロートの距離が構造的に一定またはほぼ一定に保たれるのであれば、実質的に前者と変わりなく位置の補正が可能である。
(5)本発明は、前記主フロートの内部への注水と外部への排水を行い、同フロートの浮力を調節する注排水装置を備える構成とすることができる。
 この場合は、注排水装置によって主フロートの内部に海水を取り入れたり、内部の海水を外部に排出したりすることで、主フロート自体の浮力を適宜調節することができる。このように主フロートの浮力を調節することにより、主フロートの一部が海面から出るようにしたり、全部が海面下に沈むようにしたりすることができる。また、沈むようにした際の主フロートの海面下における高さも調節が可能である。
 主フロートを海面下に沈めると、主フロートは波浪(海面の上下運動)の影響を受けにくくなる。例えば、台風の中、あるいは台風が接近した際の荒天時に、主フロートが海面上に浮いたままでは、激しい波浪の影響を受けて上下運動や横揺れを繰り返すことになり、主フロートに接続されている揚鉱管の取り付け部分、あるいはその周辺部が変形したり破損したりする可能性が高くなる。なお、海面に波浪が生じるのは、多くは海面下数mから10m程度であり、主フロートをそれより深いところで浮遊するように維持できれば、台風の中でも波浪の影響をほとんど受けないようにすることができる。
 注排水装置の構造は特に限定しないが、例えば、主フロートに防水リチウム蓄電池と、その電力で駆動されるポンプ及び吸水弁、排水弁を備える構造とし、ポンプを駆動することで、主フロートの内部の空間にある海水を排水したり、外から吸水したりして、海水の量を調整することができるものである。
(6)本発明は、作業船を備えており、該作業船は前記電力供給部と前記鉱物選別部を有すると共に、前記電力供給部を構成する電力ケーブル及び前記鉱物選別部を構成し揚鉱管から固液混合物を受け取る送給管が、システムの運転の復旧が可能な状態で切り離しが可能である構成とすることができる。
 この場合は、システムの運転時においては、電力ケーブルと送給管はつながっており、それぞれは機能している。そして、例えば台風の接近などによる荒天時、あるいはその他の何等かの理由で作業船を寄港させなければならないなど、作業船が現場海域を離脱しなければならないときには、電力ケーブル、または送給管を切り離すことができる。
 その際、電力ケーブル、または送給管は、切り離しても海中に沈んだり海底に落ちたりすることがないように、切り離し後も切り離した側がフロートなど何等かの支持部に固定されたりつながったりした状態となるようにしてある。
 また、作業船を離脱させる理由が解消したときには、作業船を作業海域に戻して、電力ケーブル、または送給管を作業船側と接続して、揚鉱システムをもとの状態に復帰させることにより、システムの運転を再開することができる。このように、システムからの作業船の離脱と復帰が可能であり、例えば主フロートや揚鉱管などを放棄して避難しなければならない事態が生じることはなく、作業船の移動を柔軟に行うことができるので、システムの運用がしやすい。
(7)本発明は、前記主フロートにおける前記揚鉱管がつながれた部分に同揚鉱管を支える懸架装置を有しており、該懸架装置近傍の同揚鉱管は、同揚鉱管を通す空隙内において所要の振れの範囲で振動が可能である構成とすることができる。
 この場合は、揚鉱管が通されているか、あるいはつながれている主フロートにおいて、揚鉱管は懸架装置によって支持されており、しかも懸架装置近傍の同揚鉱管は、空隙内において所要の振れの範囲で振動、あるいは揺動が可能であるので、揚鉱管の当該部分の動きの自由度が高く、固定された状態とはならない。
 これによれば、特に主フロートが海上に浮いている場合、波浪の影響を受けて主フロートが上下運動や横揺れを繰り返しても、揚鉱管は懸架装置近傍で変形をあまり伴わない状態で、長手方向の進退動や直径方向の振動あるいは揺動をするなど、ある程度自由に動くことができるので、例えば金属疲労などによる破損や破壊が起こりにくい。
 なお、懸架装置の構造は特に限定しないが、例えば揚鉱管を支持することができるコイルバネ、あるいは付勢体と組み合わせられたリンク機構などで構成される。懸架装置は、海中側で補助フロートにより浮力が付与されている揚鉱管の実質的な重量を支持可能であり、揚鉱管がその長手方向に進退動したときに緩衝作用を有する構成となっている。
(8)本発明は、前記電力ケーブルの長手方向に、補助フロートが所要間隔で配置されることにより、電力ケーブルに所要の浮力が付与されている構成とすることができる。この場合は、上述の揚鉱管の場合と同様に、補助フロートの浮力によって電力ケーブルに所要の浮力が付与される。これにより、電力ケーブル自身の重さによって、長さ方向の途中で破断してしまうことを防止できる。
(9)本発明は、鉱物選別部が、廃水処理装置を備える構成とすることもできる。この場合は、鉱物選別部により鉱物を選別して集めることができると共に、廃水処理装置により、廃液に所要の処理を施した後の清澄な水を海洋投入(海洋投棄ともいう)などにより処分することができる。
(10)本発明は、前記鉱物選別部が、鉱物を磁着して選別する磁着装置を備えている構成とすることもできる。この場合は、揚水と同時に上昇する海底泥が環境破壊の原因となる問題に対して、揚海中に含まれる金属または鉱物を鉱石処理船上に設けた電気式マグネットなどの磁着装置により採取し、その後、沈殿式など一般の下水処理で行われている方法と同様の方法で海底泥を除去することができる。つまり、これは作業船を廃水処理装置を装備した鉱石処理船とすることで対応できる。
 なお、磁性を有する鉱物としては、例えば鉄、クロム、ニッケル、コバルトなどがあげられる。これらの鉱物は、いずれも有価金属であり、海底から海上まで揚げる揚水から効率よく選別を行って集めることができる。
(11)本発明は、揚鉱管が、鋼と軽合金製の二重管構造、鋼管を炭素繊維で補強した構造または周壁を中空とした構造である構成とすることができる。この場合は、揚鉱管を軽量化することが可能になる。そもそも揚鉱システムにおける最大の課題は、全長が数千mにもおよぶ揚鉱管の重量を如何に軽減するかである。この揚鉱管の重量を軽減するためには、上述のように揚鉱管に浮力を与えて実質的な重量を軽減する方法に加えて、本項の発明のように揚鉱管自体の重量を軽減する方法がある。
 揚鉱管自体の重量を軽減する方法として、例えば軽合金または鋼製の二重管構造とし、内管と外管との間に気密空間を持つ揚鉱管とする方法がある。また、周壁に気密空間を設けて、その浮力で揚鉱管の重量を一部相殺することが可能であり、揚鉱管の自重による他所への負担は軽減できる。
 また、揚鉱管自体の重量を軽減する他の方法としては、例えば内管は鋼製で製作されたものの外表面を、炭素繊維で補強された樹脂製とした揚鉱管とする方法がある。また、樹脂製の補強管は、金属製内管の保護にも貢献するものである。
(12)本発明は、海底面または海底下において掘削し粉砕した鉱物と海水を含む固液混合物を海上まで送る揚鉱管にフロートで所要の浮力を付与する揚鉱方法である。この方法によれば、揚鉱管を海底に沈まないように海面に浮いた主フロートなどを使用して支持する場合、揚鉱管に所要の浮力を付与することができるので、例えば揚鉱管の重量から浮力を差し引いた重量と同じ重量とすることにより、揚鉱管を支持する主フロートには実質的に重量が作用しないようにすることができる。また、フロートによる浮力を上記よりやや小さくして、揚鉱管が鉛直方向となったバランスを保つことができるようにすることもできる。
 なお、本発明は、揚鉱管及び通信・電力ケーブルをフロートによって支持し、揚鉱管の重力を軽減するものである。また、本発明は、海面上で浮遊する内部に空洞を有する金属製の大型フロートと、このフロートによって支持される揚鉱管及び通信、電力ケーブルを含み、揚鉱管の重量に対応するために、浮力調整用の海水排出及び海水吸入弁を有する大型フロートを含めることもできる。
 また、大型フロートに騎乗させている(装備されている)防水蓄電池とポンプを駆動し大型フロートの下部の空洞部に海水を給排水する事により、大型フロートに潜水機能を持たせることができる。
 更に、大型フロートで支持された揚鉱管の重量軽減のために、海海中の揚鉱管の中途に装備された小型フロート群を備えることもできる。また、重量軽減と強度維持のために炭素繊維で補強された樹脂製の揚鉱管を備えることもできる。
 重量を軽減するために、二重パイプの間隙に空洞を持つ揚鉱管を備えることもできる。荒天時や海上鉱石処理船の現場離脱時、大型フロートで支持された揚鉱管及び通信、電力ケーブルが鉱石処理船から離脱可能な構造とすることができる。
 鉱石搬送用ポンプを海底鉱石採掘機に騎乗させて(装備して)、吸込み管を短縮したシステムとすることができる。揚鉱管の中間部に、流体エネルギーを供給するため、圧力水を注入するポンプシステムを備えることもできる。
 更に、揚鉱管で海上の鉱石処理船に送った粉砕鉱石(細粉化鉱石)を含む海水から、鉱石を採取するために電気式、あるいは永久磁石式のマグネット装置を備えるものでもよい。また、鉱石処理船上に鉱石採取後の排水処理を行う装置を備えることもできる。
 本発明は、粉砕鉱石を含む海水を深海底より海上の鉱石処理船まで搬送することができるポンプシステムを備え、深海底へ降ろした揚鉱管が自身の重さで管体の接続部などから脱落することがないようにすると共に、それを支持する鉱石処理船などを浮力確保のため必要以上に大型化しなくてすむようにし、また、台風などで海が荒れているとき、鉱石処理船などが波で揺れることが理由で揚鉱管が破損してしまうことがないようにすると共に、揚鉱管を放棄して避難しなくてすむようにした揚鉱システム及び揚鉱方法を提供することができる。
本発明に係る揚鉱システムの一実施の形態を示す説明図である。 主フロートと補助フロートによる揚鉱管の吊り下げ構造を示す一部を省略した断面説明図である。 主フロート及びその近傍の構造を示す断面説明図である。 揚鉱システムに使用される作業船が備える廃水処理装置の構造を示す説明図である。 揚鉱システムに使用される揚鉱管を構成する管体の構造を示す断面説明図である。 揚鉱システムに使用される揚鉱管を構成する管体の他の構造を示す断面説明図である。 補助フロートの他の構造を示し、(a)は縦断面説明図、(b)はA-Aに対応する断面説明図である。
 図1ないし図6を参照して、本発明の実施の形態を更に詳細に説明する。
 揚鉱システムSは、海底において鉱物の採掘を行う採掘ユニット1と、採掘した鉱物と海水を海上に揚げる揚鉱ユニット2と、揚鉱ユニット2で揚げられた固液混合物から有価鉱物を選別する鉱物選別部である選別ユニット3により構成されている。
(採掘ユニット1)
 採掘ユニット1は、外部より移動操作が可能な海底作業機13を有している。海底作業機13は、クローラ走行機130と、その上部に搭載されている掘削機131及び掘削して得られた鉱物と海水を含む固液混合物を吸引し圧送するスラリーポンプ132を有している。海底作業機13は、各部を高水密につくるなど深海底における高圧下での作業が可能な構造としてある。スラリーポンプ132は、後述する各圧力注入ポンプ24と共にポンプシステムを構成する。
 掘削機131は、先端のドリルの回転または振動により鉱床の鉱物を破砕し掘削することができるようにしてある。なお、掘削機には、他の構造を採用することもできる。スラリーポンプ132は、掘削し破砕された鉱物と海水の混合物(固液混合物)を圧送することができるものであり、例えば斜流式や混流式の採用が可能である。
 なお、スラリーポンプ132の圧送能力は、特に限定するものではないが、少なくとも、後述する補助的なポンプである圧力注入ポンプ24と協働して、海水と粉砕鉱物の固液混合物を海上まで揚げることができる能力を有していればよい。この場合、例えばスラリーポンプ132から後述する揚鉱管21の下部までの搬送エネルギーはスラリーポンプ132が供給し、それより上の揚鉱管21内の搬送エネルギーは、揚鉱管21の途中に設けた後述する複数個の補助ポンプである圧力注入ポンプ24によって供給することができる。
 海底作業機13には、クローラ走行機130、掘削機131及びスラリーポンプ132に動力源となる電力を供給するための電力ケーブル12が受電部(符号省略)に接続されている。電力ケーブル12の海上側の端部は、一旦は海面に浮かぶフロート11に接続されており、これにより電力ケーブル12の重さがフロート11により支持されている。なお、フロート11にかかる電力ケーブル12の重さを軽減するために、後述する揚鉱管21と同様に浮力を付与するための補助フロートを取り付けることもできる。
 フロート11に接続された電力ケーブル12には、母船である作業船10に搭載された電力供給部である発電機(図示省略)から電力ケーブル120を介して電力が供給されるようにしてある。また、電力ケーブル12、120には、これらに添設する形で、海底作業機13の掘削機131の制御、クローラ走行機130の制御、あるいはスラリーポンプ132の制御などを行うための信号のやり取りを作業船10が備える管制部との間で行う信号ケーブル(図示省略)が装備されている。
(揚鉱ユニット2)
 揚鉱ユニット2は、揚鉱管21を有している。揚鉱管21は、所要長さの管体210を多数接続し、揚鉱作業の対象となる海域の深さに対応して、例えば5000mの長さに形成されている。なお、管体210の構造は、後で詳述する。そして、この長尺な揚鉱管21は、上端側が海面に浮かぶ主フロート20に掛けるようにして実質的に接続されている。また、揚鉱管21は、海中側において長手方向の所要間隔毎に(本実施の形態では各管体210毎に)、補助フロート22に掛けるようにして実質的に接続されている。
 まず、図3を参照して、主フロート20の構造及び主フロート20に対する揚鉱管21の接続構造について説明する。
 主フロート20は、水密かつ中空構造の密封ケース200を有している。密封ケース200の外形は、いわゆるドーナツ形であり、内部には平面視で円を描くように空間部201が形成されている。また、密封ケース200の中心部には、空間部201とは壁部で隔離された円孔形状の通し孔202が貫通して設けられている。
 密封ケース200内の空間部201は、上下方向のほぼ中間位置に全周にわたり固定された隔離部材203によって上下に液密状態で分割されている。上部空間部201aには、隔離部材203に固定して注排水装置を構成する注排水ポンプ204が配置されている。また、同様にバッテリー205が隔離部材203に固定して配されており、バッテリー205には本実施の形態では防水リチウム蓄電池が採用されており、注排水ポンプ204に対し電力を供給する。
 バッテリー205は制御盤206に接続されており、制御盤206には、電力ケーブル26が外部から接続されている。電力ケーブル26は、後述する鉱物処理船30に搭載された電力供給部である発電機(図示省略)に接続されており、バッテリー205には発電機から供給される電力が蓄電される。
 密封ケース200内の隔離部材203によって分割された下部空間部201bは貯水タンクとなっており、注排水ポンプ204によって下部空間部201b内部の水量(必要に応じて空気量も)が調整できるようにしてある。この水量の調整により、必要に応じて主フロート20自体の浮力を大きくして海面に浮かせたり、あるいは浮力を小さくしたりして、潜水させることができるようにしている。なお、潜水は、主フロート20のみ行うようにしてもよいし、揚鉱管21まで含めて全体として行うようにしてもよく、適宜選択できる。
 密封ケース200の上面には、GPS衛星27の信号を受信するGPS受信機207が設置されている。GPS受信機207にも、電力ケーブル26を介し電力が供給されるようになっている。また、密封ケース200の下面には、位置補正装置を構成する複数の推進機208が取り付けられている。推進機208は、モーターでスクリューを回転させて推力を得る構造である。
 なお、位置補正装置の構成は、GPS受信機で得られた位置情報と、あらかじめ決められた基準の位置情報を比較して、その差を基に各推進機208を作動させて位置を補正することができる制御部である上記制御盤206を含むものである。各推進機208には、バッテリー205から電力が供給されるようになっており、各推進機208をGPSによる自動制御により適宜組み合わせて駆動することで、主フロート20を海上において所要の方向に移動させることができる。
 密封ケース200の通し孔202には、揚鉱管21の上端部の管体210が通されている。揚鉱管21を構成している多数の管体210は、図5に示す構造を有している。管体210は、長手方向の両端に接続用のフランジ211、212を有しており、管の部分は内管213と外管214からなる二重管構造となっている。内管213と外管214の間には、軽量化のために浮力を生み出す、言わば円管形状の空間部215を形成している。
 なお、管体210の外管214の外径は、密封ケース200の通し孔202の内径より径小に形成されており、管体210と通し孔202の間には空隙209が設けられている。また、最上部の管体210のフランジ211(通し孔202に挿通後、後付けにしている。)は、密封ケース200の上側にあり、密封ケース200上面とフランジ211の間には、上部側が次第に径小となった圧縮コイルバネ28が配置されている。
 この構造により、管体210及びその下方につながれている他の多数の管体210は、上下動しても圧縮コイルバネ28の付勢力により緩衝され、主フロート20に対してかかる衝撃や大きな荷重を軽減できる。また、管体210は、空隙209の作用により通し孔202内部で、ある一定の範囲で遊動または揺動できるようになっている。なお、上端部の管体210の上端には、フレキシブルな供給管25が接続されており、供給管25の先端側は後述する選別ユニット3へ導入されている。
 揚鉱管21は、上記したように多数の管体210を水密に接続したものであり、最下部の管体210の下端部には、所要長さのフレキシブルな中継管23の一端部が接続されている。中継管23の他端部は、上記スラリーポンプ132の吐出口(符号省略)に接続されている。なお、スラリーポンプ132の吸引口(符号省略)は、上記掘削機131のドリル近傍に配置してあり、掘削され破砕された鉱物を海水と共に吸引できるようになっている。
 そして、上記したように、この長尺な揚鉱管21は、海中側において長手方向の各管体210毎に、上部側のフランジ211を補助フロート22に掛けるようにして実質的に接続されている。補助フロート22は、水密かつ中空構造の密封ケース220を有している。密封ケース220の外形は、いわゆるドーナツ形であり、内部には平面視で円を描くように空間部221が形成されている。また、密封ケース220の中心部には、空間部221とは壁部で隔離された円孔形状の通し孔222が貫通して設けられている。
 管体210の外管214の外径は、密封ケース220の通し孔222の内径より径小に形成されており、管体210と通し孔222の間には空隙229が設けられている。なお、補助フロート22は、具体的な構造は示していないが、管体210の管の部分に横方向から嵌め込むように装着可能で取り外しも可能な構造(公知構造)である。
 この構造により、多数の補助フロート22は、各管体210が上下動したときにも各管体210に対し相対的にスライド可能であり、補助フロート22は、管体210のフランジ211、または後述する圧力注入ポンプ24の注入管241に当たったときに相互のスライドが停止する。補助フロート22と各管体210は、互いに逃げが利くために、衝撃や大きな荷重が作用しにくい。また、管体210は、空隙229の作用により通し孔202内部で、ある一定の範囲で遊動または揺動できるようになっている。
 また、各補助フロート22は、揚鉱管21に対して所要の浮力を付与することができる。この浮力の設定は、例えば揚鉱管21の重量と同じになるようにして主フロート20に揚鉱管21の重さがほとんどかからないようにしてもよい。また、浮力が揚鉱管21の重量よりやや小さくなるようにして、主フロート20に対し揚鉱管21の加重が適度にかかるようにすると共に、揚鉱管21を海中でより安定させるようにしてもよい。なお、深海にある補助フロート22は、高い水圧に耐えるように、後述する補助フロート22aと同様に内部に補強のためのリブ構造を備えるようにしてもよい。
 そして、揚鉱管21を構成している管体210のうち、所要間隔で位置する管体210の管の部分には、各々圧力注入ポンプ24の吐出口(符号省略)に接続してある注入管241が接続されている。各圧力注入ポンプ24は、周囲の海水を吸引して揚鉱管21の内部に注入するものであり、揚鉱管21を通る揚水(固液混合物)の上方への搬送(圧送)を助ける。
 なお、各圧力注入ポンプ24は、吊りワイヤ243でつながれたフロート242の浮力を受けて所要の深さを維持するようになっている。また、各圧力注入ポンプ24に対しては、作業船である鉱物処理船30の発電機に接続されている電力ケーブル240を介し電力が供給される。また、この電力ケーブル240にも、浮力を付与するためにフロートを取り付けるようにしてもよい。
 そして、上記作業船10とフロート11をつないでいる電力ケーブル120は、フロート11から切り離すことができる構造である。また、上記鉱物処理船30は、供給管25と電力ケーブル26を主フロート20から切り離すことができる構造となっている。これによれば、例えば作業船10や鉱物処理船30を寄港させる場合など、後で復帰が可能な状態で作業域から離脱させることができる。
(選別ユニット3)
 上記選別ユニット3は、鉱物処理船30に搭載されている。鉱物処理船30には、発電機(図示省略)が搭載されており、この発電機は、上記主フロート20及び各圧力注入ポンプ24に対し電力を供給する。選別ユニット3は、揚鉱ユニット2で揚げられた海水と粉砕された鉱物の固液混合物から有価鉱物を選別するものである。
 図4を参照する。揚鉱管21内を上昇し供給管25を通して海上の鉱石処理船30に至った粉砕鉱物50を含む固液混合物の処理方法を説明する。
 選別ユニット3は、処理の順に選別槽31、沈殿槽32、貯水槽33及び集積槽34を備えている。なお、沈殿槽32、貯水槽33及び集積槽34は、廃水処理装置を構成する。
 選別槽31には、上記供給管25から粉砕された鉱物50を含む固液混合物が送られる。磁性体である粉砕された鉱物50は、回転体311のアーム先端に取り付けられた電磁石(符号省略)によって磁着されて集められる。なお、磁性体でない鉱物その他の有価鉱物は、例えば篩を使用するなど、各種公知手段によって集められる。
 また、選別槽31を通ったスラッジを含む海水はスクリーン320を通って沈殿槽32へ送られ、スラッジが槽底に沈殿し分離される。そして、スラッジが除かれた海水は、スクリーン331を通って貯水槽33に送られ、ポンプ330によって次の集積槽34に送られる。集積槽34内においては、薬品処理などによりさらに細かなスラッジが沈殿して除かれ、処理後の清澄な海水は水車340により排水管35を通り、外部(海)へ排出される。
(作用)
 本発明の揚鉱システムSの作用を深海において有価鉱物を海上まで揚げる作業を行う場合を例にとり説明する。
 揚鉱システムSは、図1に示すように海底作業機13が鉱床5がある所定の深海底4に配置され、主フロート20は海上に浮かんでいる。
 作業船10の管制部からの信号により、電力ケーブル120を介し供給される電力を使用して海底作業機13が操作され、走行機130で移動しながら掘削機131により掘削が行われる。破砕された鉱物50(図4に図示)と海水の混合物(固液混合物)は、掘削と並行してスラリーポンプ132により吸引され、中継管23から揚鉱管21を通り、上方へ圧送される。このとき、揚鉱管21の鉛直方向の経路において、多数の圧力注入ポンプ24によって水流によるエネルギーが注入され、固液混合物が上方の鉱物処理船30の選別ユニット3に揚げられて処理され、清澄な処理水のみ海に投棄される。
 また、揚鉱管21には、多数の補助フロート22が接続されており、揚鉱管21に対して所定の浮力が付与されている。揚鉱システムSでは、数千mと長尺な揚鉱管21に対し、主フロート20と各補助フロート22により、揚鉱管21が海底4に落ちることのない程度の浮力を付与している。補助フロート22は、揚鉱管21の長手方向に所要数(多数)配置されているので、これらの補助フロート22で揚鉱管21の重量が管体210ごとに分担されて支持される。
 つまり、補助フロート22が、揚鉱管21の長手方向に所要間隔で多数取り付けられているときに、各補助フロート22が、各補助フロート22間の長さの揚鉱管21の重さの分だけ浮力を付与するようにすると、理論上は揚鉱管21の上部に長尺な揚鉱管21の荷重が作用しないようにすることができる。
 このように、補助フロート22によって適正な浮力を付与すれば、揚鉱管21の長手方向において、一部に偏って重力方向の大きな荷重が作用することはない。したがって、上記構成は揚鉱管21の長手方向に所要間隔で平均的に荷重がかかるようにする意味においても効果的である。また、これにより、揚鉱管21が自身の大荷重により途中から破断したり、管体210の接続部が破壊されたりすることを防止することができ、揚鉱管21が海底に落ちてしまう不都合は生じない。
 なお、揚鉱管21を浮かせる主フロート20及び各補助フロート22のトータルの浮力は、適宜設定されるが、必ずしも最上部の主フロート20を海面に浮かせるだけの浮力を必要とするわけではなく、少なくとも揚鉱管21の下端部が海底に落ちない状態、すなわち沈まずに海中を漂う状態が維持されて浮遊できる浮力であるのが好ましい。また、仮に揚鉱管21の下端部側が海底に触れたとしても、少なくともそれより上部側が海中で縦になり浮遊している状態を維持できる浮力であるのが好ましい。
 なお、重量物である揚鉱管は、主フロート及び各補助フロートにより浮力が付与され、揚鉱システムの管制を行う作業船10、あるいは鉱石処理船30は、必ずしも揚鉱管を支持する必要はないので、船を大型化する必要がない。
 また、揚鉱管21の実質的な重さは、システムの運転中においては、内部を通り搬送される固液混合物の重さが加わるために、より重くなる。したがって、上記各フロート2、22による浮力の設定にあたっては、空の揚鉱管21の重さを基準とした設定をせず、この点を勘案する必要がある。
 また、主フロート20は、注排水ポンプ204により内部の水量を調節することにより、浮力の調節が可能である。これにより、例えば潜水艦のように主フロート20の一部が海面から出るようにしたり、全部が海面下に沈むようにしたりすることができる。また、沈むようにした際の主フロート20の海面下における高さ(深さ)も調節が可能である。
 主フロート20を海面下に沈めると、主フロート20は波浪の影響を受けにくくなる。例えば、台風の中、あるいは台風が接近した際の荒天時に、主フロート20が海面上に浮いたままでは、激しい波浪の影響を受けて上下運動や横揺れを繰り返すことになり、主フロート20に接続されている揚鉱管21の取り付け部分、あるいはその周辺部が変形したり破損したりする可能性が高くなる。
 なお、海面に波浪が生じるのは、多くは海面下数mから10m程度であり、主フロート20を遠隔操作によって揚鉱管21の上部と共にそれより深いところで浮遊するように維持すると共に、その後の主フロート20の浮上を可能にすれば、台風の中でも波浪の影響をほとんど受けないようにすることができる。
 また、主フロート20は、GPS受信機207と推進機208を備えており、GPSを利用して、あらかじめ設定されている揚鉱システムSの位置を維持することができる。すなわち、主フロート20に設置してあるGPS受信機207で、揚鉱システムの位置を示す位置情報を取得し、あらかじめ設定されている基準となる位置情報と、GPS受信機207で取得した位置情報を位置補正装置によって比較する。
 そして、その差を基に、主フロート20の位置が、位置補正装置によって基準となる位置(設定位置)を維持するように、あるいは基準となる位置に近付くように(向かうように)各推進機208を作動させて位置の補正を行う。なお、この位置の補正は、揚鉱システムSの運転中、常時行うようにしてもよいし、一定時間ごとに(間欠的に)行うようにしてもよい。
 そして、海底作業機13は、例えば水深数千mの、海底面4または海底下に存在する貴金属やレアメタル(希少金属)などの有価鉱物だけではなく、化石燃料であるメタンハイドレート(例えば表層型メタンハイドレート)などの有用資源が多く含まれる領域の海底に置かれて使用することができる。揚鉱システムSは、このような鉱物以外の有用資源を深海底から海上まで揚げるシステムとしても利用可能である。
 図6を参照する。図6には、揚鉱システムに使用される揚鉱管を構成する管体の他の構造を示す。
 管体210aは、鋼製の内管213aの外管214aは、炭素繊維で補強されたアクリル樹脂で一体化して形成されている二重管構造である。これにより、管体210aの重量を軽量化すると共に、引っ張り強度を増加させている。また、管体210aの両端部には、フランジ211a、212aが設けられている。充分な強度を有する鋼製の内管213aと軽量かつ強靱な外管214aを組み合わせることにより、所定の強度を維持しながら上記管体210と同等の重量に抑えることができる。
 図7を参照する。図7に示す補助フロート22aは、水密に形成された外形が円柱形状の密封ケース220aを有している。密封ケース220a内部の空間部221aには、リブを縦横に組んだ補強リブ225が密封ケース220aの内面に固定して設けられている。そして、補助フロート22aは、連結部材226を介して揚鉱管21に取り付けられる。これにより、揚鉱管21に所定の浮力が付与される。
 また、補助フロート22aは、内部に補強リブ225を設けることにより、深海の高圧下でも潰れることなく、空間部を確保することで、所定の浮力を維持することができる。
 本明細書及び特許請求の範囲で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書及び特許請求の範囲に記述された特徴及びその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形態様が可能であるということは言うまでもない。
 S 揚鉱システム
 1 採掘ユニット、10 作業船、11 フロート、
 12 電力ケーブル、120 電力ケーブル、
 13 海底作業機、130 クローラ走行機、 
 131 掘削機、132 スラリーポンプ、
 2 揚鉱ユニット、20 主フロート、200 密封ケース、
 201 空間部、201a 上部空間部、201b 下部空間部、
 202 通し孔、203 隔離部材、204 注排水ポンプ、
 205 バッテリー、206 制御盤、
 207 GPS受信機、208 推進機、209 空隙、
 21 揚鉱管、210 管体、211、212 フランジ、
 213 内管、214 外管、215 空間部、
 210a 管体、211a、212a フランジ、213a 内管、
 214a 外管、
 22 補助フロート、220 密封ケース、221 空間部、
 222 通し孔、
 22a 補助フロート、220a 密封ケース、221a 空間部、
 225 補強リブ、 226 連結部材、 229 空隙、
 23 中継管、24 圧力注入ポンプ、240 電力ケーブル、
 241 注入管、242 フロート、243 吊りワイヤ、
 25 供給管、26 電力ケーブル、27 GPS衛星、
 28 圧縮コイルバネ、
 3 選別ユニット、30 鉱物処理船、31 選別槽、
 311 回転体、
 32 沈殿槽、320 スクリーン、33 貯水槽、
 330 ポンプ、331 スクリーン、34 集積槽、340 水車、
 35 排水管
 5 鉱床、50 粉砕鉱物

Claims (12)

  1.  海底面または海底下において鉱物を掘削する掘削部と、掘削して得られた鉱物と海水を含む固液混合物を吸引し圧送するポンプとを有する移動操作が可能な海底作業機と、
     該海底作業機に対し、動力源となる電力を供給する電力ケーブルを有する電力供給部と、
     所要の浮力を有し、海上または海中に浮かせられる主フロートと、
     該主フロートと前記海底作業機のポンプをつなぎ、前記ポンプで吸引した鉱物と海水を含む固液混合物を前記主フロート側へ搬送する、所要長さを有する揚鉱管と、
     該揚鉱管の長手方向に所要間隔で配置されており、前記揚鉱管に所要の浮力を付与する補助フロートと、
     前記揚鉱管により前記主フロート側に搬送された固液混合物から鉱物を選別して集める鉱物選別部とを備える
     揚鉱システム。
  2.  前記海底作業機が有するポンプがスラリーポンプである
     請求項1の揚鉱システム。
  3.  前記揚鉱管の所要箇所に前記固液混合物の搬送を補助するための所要圧力の液流を注入する補助ポンプを備える
     請求項1の揚鉱システム。
  4.  GPS受信機と、該GPS受信機で受信した位置情報とあらかじめ決められている揚鉱システムの設定位置とを比較して設定位置を維持するように位置の補正を行う位置補正装置とを備える
     請求項1の揚鉱システム。
  5.  前記主フロートの内部への注水と外部への排水を行い、同主フロートの浮力を調節する注排水装置を備える
     請求項1の揚鉱システム。
  6.  作業船を備えており、該作業船は前記電力供給部と前記鉱物選別部を有すると共に、前記電力供給部を構成する電力ケーブル及び前記鉱物選別部を構成し揚鉱管から固液混合物を受け取る送給管が、システムの運転の復旧が可能な状態で切り離しが可能である
     請求項1の揚鉱システム。
  7.  前記主フロートにおける前記揚鉱管がつながれた部分に同揚鉱管を支える懸架装置を有しており、該懸架装置近傍の同揚鉱管は、同揚鉱管を通す空隙内において所要の振れの範囲で振動が可能である
     請求項1の揚鉱システム。
  8.  前記電力ケーブルの長手方向に、補助フロートが所要間隔で配置されることにより、電力ケーブルに所要の浮力が付与されている
     請求項1の揚鉱システム。
  9.  鉱物選別部が、廃水処理装置を備える
     請求項1の揚鉱システム。
  10.  前記廃水処理装置が、鉱物を磁着して選別する磁着装置を備えている
     請求項1の揚鉱システム。
  11.  揚鉱管が、鋼と軽合金製の二重管構造、鋼管を炭素繊維で補強した構造または周壁を中空とした構造である
     請求項1の揚鉱システム。
  12.  海底面または海底下において掘削し粉砕した鉱物と海水を含む固液混合物を海上まで送る揚鉱管にフロートで所要の浮力を付与する揚鉱方法。
PCT/JP2016/061280 2015-08-28 2016-04-06 揚鉱システム及び揚鉱方法 WO2017038148A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16841180.9A EP3342976A4 (en) 2015-08-28 2016-04-06 MINERAL LIFTING SYSTEM AND MINERAL LIFTING METHOD
US15/523,026 US20180187395A1 (en) 2015-08-28 2016-04-06 Mineral lifting system and mineral lifting method
CN201680003371.2A CN107075946A (zh) 2015-08-28 2016-04-06 扬矿系统及扬矿方法
KR1020187006199A KR102019197B1 (ko) 2015-08-28 2016-04-06 양광 시스템
JP2017510600A JP6208401B2 (ja) 2015-08-28 2016-04-06 揚鉱システム及び揚鉱方法
AU2016314824A AU2016314824A1 (en) 2015-08-28 2016-04-06 Mineral lifting system and mineral lifting method
CA2964213A CA2964213A1 (en) 2015-08-28 2016-04-06 Mineral lifting system and mineral lifting method
TW106106507A TW201736199A (zh) 2015-08-28 2017-02-24 礦物揚升系統及礦物揚升方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-182281 2015-08-28
JP2015182281 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038148A1 true WO2017038148A1 (ja) 2017-03-09

Family

ID=58187366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061280 WO2017038148A1 (ja) 2015-08-28 2016-04-06 揚鉱システム及び揚鉱方法

Country Status (9)

Country Link
US (1) US20180187395A1 (ja)
EP (1) EP3342976A4 (ja)
JP (1) JP6208401B2 (ja)
KR (1) KR102019197B1 (ja)
CN (1) CN107075946A (ja)
AU (1) AU2016314824A1 (ja)
CA (1) CA2964213A1 (ja)
TW (1) TW201736199A (ja)
WO (1) WO2017038148A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120063A (ja) * 2018-01-09 2019-07-22 株式会社不動テトラ キャリア物質、これを用いる海底有価物質の揚鉱方法及び揚鉱装置
CN110206545A (zh) * 2019-05-17 2019-09-06 中国海洋大学 深海采矿机器人浮力随动调节系统
CN111411965A (zh) * 2019-05-17 2020-07-14 中国海洋大学 深海采矿坐底式接驳处理中心
KR20230029045A (ko) * 2021-08-23 2023-03-03 울산과학기술원 고속수분사형 해저 굴삭기
CN115263314B (zh) * 2022-08-09 2024-06-07 西南石油大学 利用天然气水合物分解气辅助海底采矿举升的方法及系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044491A (ja) * 2017-09-04 2019-03-22 三菱重工機械システム株式会社 海水圧駆動装置、採鉱機、及び海水圧駆動装置の使用方法
CN108861613A (zh) * 2018-06-25 2018-11-23 长沙矿冶研究院有限责任公司 一种水下磁力输送系统
CN108978758B (zh) * 2018-07-25 2021-08-06 上海栋青睐生态科技有限公司 水下清淤设备
CN109403979B (zh) * 2018-11-23 2020-03-24 武汉理工大学 一种用于深海多金属结核采集的机器人及采集方法
CN109630122B (zh) * 2019-02-01 2024-01-19 上海交通大学 一种海底集矿系统的矿物海泥分离装置及其方法
SG10201902911YA (en) * 2019-04-01 2020-11-27 Keppel Marine & Deepwater Tech Pte Ltd Apparatus and method for seabed resources collection
TWI810300B (zh) * 2019-05-16 2023-08-01 日商原啟股份有限公司 海底基礎構築機器人
CN110685694B (zh) * 2019-09-30 2021-04-06 中国船舶工业集团公司第七0八研究所 一种适用于深水采矿的抽吸设备
CN111173515B (zh) * 2020-01-17 2021-07-02 江苏科技大学 一种深海采矿提升系统
EP3889360A1 (en) * 2020-04-02 2021-10-06 Soil Machine Dynamics Limited Apparatus for removing material from a floor of a body of water
CN113513486B (zh) * 2021-03-19 2023-08-11 四川宏华石油设备有限公司 用于提升海中矿浆的泵单元及组合结构及采矿提升系统
KR102362248B1 (ko) * 2021-03-30 2022-02-14 이종민 수중 구조물 청소 장치
CN113982590B (zh) * 2021-12-27 2022-03-22 中国海洋大学 一种浮力自升式传输多金属结核系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043001A (ja) * 1973-07-18 1975-04-18
JPS54116301A (en) * 1978-03-01 1979-09-10 Hitachi Shipbuilding Eng Co Multistage type mining system
JPS60212591A (ja) * 1984-02-24 1985-10-24 シヤンテイエ−ル デユ ノ−ル エ ド ラ メデイテラネ− 海底から鉱石を採掘するための装備
JP2000248874A (ja) * 1999-02-25 2000-09-12 Zipangu:Kk 海底資源の採取方法及び採取システム並びにこれらに使用する装置
JP2015151856A (ja) * 2014-02-17 2015-08-24 株式会社ユアーズ 鉱物資源の海底鉱床の採掘法並びに装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2019968A (en) * 1933-07-14 1935-11-05 Herman H Holloway Dredging apparatus
US3429062A (en) * 1966-03-11 1969-02-25 Arthur J Nelson Deep water harvesting system
US3543422A (en) * 1968-06-28 1970-12-01 Bendix Corp Underwater mining assembly
US3504943A (en) * 1968-10-08 1970-04-07 Bethlehem Steel Corp Deep sea nodule mining
FR2326229A1 (fr) * 1975-10-03 1977-04-29 Grihangne Andre Agencement de parois minces constituant l'enveloppe de revolution d'un conduit d'aspiration ou d'un reservoir en depression par rapport au milieu exterieur
CN2228563Y (zh) * 1995-04-22 1996-06-05 长沙矿山研究院海洋采矿研究所 深海采矿清水泵提升装置
JPH1157527A (ja) * 1997-08-27 1999-03-02 Jipangu:Kk 砂金掘削分別方法及び掘削分別システム
JP2003269070A (ja) 2002-03-19 2003-09-25 Japan Science & Technology Corp 深海底鉱物資源の揚鉱方法及び揚鉱装置
JP5222312B2 (ja) * 2010-02-04 2013-06-26 大成建設株式会社 マンガン団塊の採取装置と採取方法
JP5432022B2 (ja) * 2010-03-28 2014-03-05 新日鉄住金エンジニアリング株式会社 揚鉱システム
JP5754581B2 (ja) * 2011-01-14 2015-07-29 新日鉄住金エンジニアリング株式会社 海底鉱床の採鉱方法およびその採鉱ユニット
NL2006782C2 (en) * 2011-05-13 2012-11-14 Ihc Holland Ie Bv Dredger provided with a remotely operable dredging vehicle, and method for dredging using such a dredger system.
WO2013090976A1 (en) * 2011-12-23 2013-06-27 Nautilus Minerals Pacific Pty Ltd A disconnectable method and system for seafloor mining
NL2011156C2 (en) * 2013-07-12 2015-01-13 Ihc Holland Ie Bv Riser flow control.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043001A (ja) * 1973-07-18 1975-04-18
JPS54116301A (en) * 1978-03-01 1979-09-10 Hitachi Shipbuilding Eng Co Multistage type mining system
JPS60212591A (ja) * 1984-02-24 1985-10-24 シヤンテイエ−ル デユ ノ−ル エ ド ラ メデイテラネ− 海底から鉱石を採掘するための装備
JP2000248874A (ja) * 1999-02-25 2000-09-12 Zipangu:Kk 海底資源の採取方法及び採取システム並びにこれらに使用する装置
JP2015151856A (ja) * 2014-02-17 2015-08-24 株式会社ユアーズ 鉱物資源の海底鉱床の採掘法並びに装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3342976A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120063A (ja) * 2018-01-09 2019-07-22 株式会社不動テトラ キャリア物質、これを用いる海底有価物質の揚鉱方法及び揚鉱装置
CN110206545A (zh) * 2019-05-17 2019-09-06 中国海洋大学 深海采矿机器人浮力随动调节系统
CN111411965A (zh) * 2019-05-17 2020-07-14 中国海洋大学 深海采矿坐底式接驳处理中心
KR20230029045A (ko) * 2021-08-23 2023-03-03 울산과학기술원 고속수분사형 해저 굴삭기
KR102604077B1 (ko) 2021-08-23 2023-11-21 울산과학기술원 고속수분사형 해저 굴삭기
CN115263314B (zh) * 2022-08-09 2024-06-07 西南石油大学 利用天然气水合物分解气辅助海底采矿举升的方法及系统

Also Published As

Publication number Publication date
TW201736199A (zh) 2017-10-16
JP6208401B2 (ja) 2017-10-11
CN107075946A (zh) 2017-08-18
EP3342976A4 (en) 2019-08-07
AU2016314824A1 (en) 2018-03-08
KR20180035891A (ko) 2018-04-06
CA2964213A1 (en) 2017-03-09
JPWO2017038148A1 (ja) 2017-08-31
KR102019197B1 (ko) 2019-11-04
EP3342976A1 (en) 2018-07-04
US20180187395A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6208401B2 (ja) 揚鉱システム及び揚鉱方法
CN102165119B (zh) 深海开采上升器及提升系统
JP6890129B2 (ja) 海底鉱物形態回収システム
JP6106165B2 (ja) 海底ストックパイルシステム及び方法
KR101980221B1 (ko) 해저 채광을 위한 분리 가능한 방법 및 시스템
JP2013528728A (ja) 海底採掘用システム
CN102650137A (zh) 水底淤泥疏浚装置
JP5342300B2 (ja) 採取装置及び水底資源の採取方法
CN103857922A (zh) 气泡举升系统以及气泡举升方法
US5199767A (en) Method of lifting deepsea mineral resources with heavy media
JP2019078018A (ja) 採掘装置およびこれを備える海洋資源揚鉱装置、並びに、海洋資源の揚鉱方法
US20070221112A1 (en) Solution mining to refloat and dispose of an offshore floating structure
JP5594729B2 (ja) 海底鉱物処理システム
JP2012057350A5 (ja)
KR20170127836A (ko) 해저 광물 채굴용 리프팅 장치
JP2023129165A (ja) 深海底の堆積資源物の採掘・引上げ・湿式製錬・残泥処理工法と資源採取バケット,圧力増減タンク,湿式製錬圧密槽及び資源採掘船
JP2019143309A (ja) ガスハイドレート採掘装置および採掘方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017510600

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2964213

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016841180

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006199

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016314824

Country of ref document: AU

Date of ref document: 20160406

Kind code of ref document: A