WO2017037996A1 - 部品、基板モジュール、機器、および光学フィルタ - Google Patents

部品、基板モジュール、機器、および光学フィルタ Download PDF

Info

Publication number
WO2017037996A1
WO2017037996A1 PCT/JP2016/003430 JP2016003430W WO2017037996A1 WO 2017037996 A1 WO2017037996 A1 WO 2017037996A1 JP 2016003430 W JP2016003430 W JP 2016003430W WO 2017037996 A1 WO2017037996 A1 WO 2017037996A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bonding material
metal bonding
component
substrate
Prior art date
Application number
PCT/JP2016/003430
Other languages
English (en)
French (fr)
Inventor
大鳥居 英
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017537198A priority Critical patent/JP6969379B2/ja
Priority to US15/752,271 priority patent/US10483438B2/en
Priority to CN201680048754.1A priority patent/CN107924846A/zh
Publication of WO2017037996A1 publication Critical patent/WO2017037996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32501Material at the bonding interface
    • H01L2224/32503Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting the layer connector during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/8321Applying energy for connecting using a reflow oven
    • H01L2224/83211Applying energy for connecting using a reflow oven with a graded temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02375Positioning of the laser chips

Definitions

  • the present technology relates to a light emitting element and other components, a substrate module configured by mounting this component, a device including the substrate module, and an optical filter using the component.
  • Patent Document 1 discloses a semiconductor element connected to a submount via a solder layer. Electrode layers are provided on the upper surface and the lower surface of the semiconductor element, respectively. The lower electrode layer is connected to a metal thin film provided on the upper surface of the submount via a solder layer. The lower surface side electrode layer is not formed in the entire region of the lower surface of the semiconductor element, but is not formed at the end portion in the longitudinal direction of the lower surface, and those end portions of the semiconductor layer are exposed. The solder layer has poor wettability with respect to the semiconductor layer and good wettability with respect to the electrode layer.
  • solder layer does not adhere to both end portions of the semiconductor element, and the solder swells (crawls up) on the side surface (including the laser emission surface) of the semiconductor element is prevented (for example, in the description of Patent Document 1) [0010], [0017], [0029], see FIGS.
  • the electronic device described in Patent Document 2 includes an electronic component (semiconductor chip), a printed circuit board on which a noble metal layer is printed, and solder for joining them.
  • the back electrode of the semiconductor chip and the noble metal layer of the printed board are joined by solder.
  • the noble metal layer is provided in a continuous annular shape so as to surround the projection area (component projection area) of the semiconductor chip.
  • the molten solder wets and spreads along the noble metal layer into a continuous ring surrounding the entire outer periphery of the component projection area, so that the thickness of the solder is uniform at the four corners of the component projection area. It becomes easy to. Therefore, the inclination of the semiconductor chip is prevented when the semiconductor chip is mounted (see, for example, paragraphs [0052], [0078], [0079] of FIG. 1A to FIG. 1C). .
  • JP 2010-171047 A JP 2010-245161
  • An object of the present disclosure is to provide a technique capable of suppressing the inclination of a component connected to a substrate.
  • a component according to the present technology includes a main body, a first layer, and a second layer.
  • the main body has a bottom surface.
  • the first layer is provided on the bottom surface of the main body and has a bottom surface.
  • the second layer is a second layer which is bonded to the metal bonding material on the substrate and is physically integrated.
  • the second layer has a wettability higher than the wettability of the first layer with respect to the metal bonding material in a molten state, and the second layer has a wettability higher than that of the first layer.
  • the first layer is provided so as to protrude from the bottom surface side so that at least a part of the bottom surface is exposed.
  • the wettability of the second layer with respect to the metal bonding material in the molten state is higher than that of the first layer, and the bottom surface of the first layer is exposed on the entire outer peripheral side of the second layer.
  • the position of the surface of the metal bonding material is determined so that the surface of the metal bonding material is formed from the vicinity of the boundary between the first layer and the second layer on the bottom surface of this layer.
  • the second layer is provided so as to protrude from the bottom surface side of the first layer. Thereby, the side surface of the main body is not wetted by the metal bonding material in the molten state, and the occurrence of tilting of the parts can be suppressed.
  • the main body is not limited to a material composed of one kind of element, and may be composed of a compound or a multilayer material.
  • the first layer may be configured to have non-wetting properties with respect to the metal bonding material.
  • the boundary surface of the metal bonding material is surely formed in the vicinity between the second layer having relatively high wettability and the first layer having non-wetting property.
  • the first layer may have a non-exposed bottom region covered with the second layer other than the exposed bottom region.
  • the bottom surface of the first layer is viewed in a cross-section in the stacking direction of the first layer and the second layer, and the exposed bottom surface region of the bottom surface of the first layer has a first width.
  • the non-exposed bottom surface region may have a second width smaller than the first width.
  • the bottom surface of the first layer is viewed in a cross section in the stacking direction of the first layer and the second layer, and the width of the exposed bottom surface region of the bottom surface of the first layer is the second layer.
  • This layer may be configured to be larger than the protruding height in the protruding direction from the bottom surface of the first layer.
  • the width of the exposed region of the bottom surface of the first layer that is unlikely to get wet with the metal bonding material is configured to be larger than the protruding height of the second layer that is likely to get wet with the metal bonding material. The possibility that the side surface of the main body gets wet with the metal bonding material can be further reduced.
  • the main body may include a semiconductor material as a main constituent material, the first layer may be an insulating material, and the second layer may be an electrode.
  • the first layer may be configured to have non-wetting properties with respect to the metal bonding material.
  • the first layer may contain SiO2, SiN, or a poly resin.
  • the at least bottom layer of the second layer may be composed of the Au.
  • the volume amount occupied by the Au in the second layer may be 3% or less of the volume amount of the metal bonding material.
  • the second layer may contain Pt or Ni.
  • a substrate module according to the present technology includes the above component, a substrate having a bonding layer, and a metal bonding material that connects the component to the bonding layer of the substrate.
  • the component projection area in which the component is projected onto the substrate may be arranged on the inner side of the outer peripheral edge of the contact area where the bonding layer and the metal bonding material are in contact with each other.
  • the substrate module may further include a film having an opening facing the bonding layer, and an opening shape of the opening having a protrusion radially from the center.
  • the metal bonding material may be configured in a planar shape substantially the same as the opening shape of the opening provided in the opening of the film.
  • the component is fixed to a region corresponding to the central portion of the metal bonding material, and the protrusions of the opening of the film are substantially equiangular with each other along at least three directions in rotational symmetry from the central portion.
  • the tip may be arranged on a circumference centered on the central portion and may be tapered toward the tip.
  • the metal bonding material provided in the opening of the film and the bonding layer may be connected.
  • the thickness of the metal bonding material may be 2 ⁇ m or more and 1/2 or less of the width of the second layer of the component.
  • the device according to the present technology or the optical filter includes the substrate module.
  • FIG. 1A is a plan view showing a component according to an embodiment of the present technology.
  • FIG. 1B is a partial cross-sectional view thereof, and
  • FIG. 1C is a bottom view thereof.
  • FIG. 2 is a diagram for explaining wettability.
  • 3A to 3C are a plan view, a partial cross-sectional view, and a bottom view showing the light-emitting element.
  • FIG. 4A is a cross-sectional view showing a substrate module including the light emitting element, and FIG. 4B is a plan view thereof.
  • 5A to 5C show a substrate module in which a light emitting device according to a reference example is mounted on a substrate.
  • 6A to 6C show a substrate module according to Comparative Example 1.
  • FIG. 7 is a diagram for explaining a problem caused by a film (electrode film) of an electrode layer formed on a semiconductor wafer being not uniform on one semiconductor wafer.
  • 8A to 8D show a substrate module according to Comparative Example 2.
  • FIG. 9 is a diagram for explaining the behavior when the solder melts in the reflow process.
  • FIG. 10 shows a state in which the light emitting device according to the comparative example 1 is bonded to the substrate by solder reflow.
  • FIG. 11 shows a state in which the light-emitting element according to Comparative Example 2 is bonded to the substrate by solder reflow.
  • FIG. 12 shows a state in which the light-emitting element according to the present technology is bonded to the substrate by solder reflow.
  • FIG. 13 is a photomicrograph of a substrate module having solder on which a bridge made of an AuSn alloy is formed.
  • FIG. 14 is a graph showing an example of a temperature profile of a reflow process using Sn-based solder.
  • FIG. 15 is a graph showing an actual measurement of the relationship between the thickness of the solder and the inclination of the light emitting element.
  • FIG. 16 is a graph showing the relationship between the width of the electrode layer and the inclination of the light emitting element having the electrode layer;
  • FIG. 17 is a cross-sectional view of a component according to another embodiment 1 of the present technology.
  • 18A is a cross-sectional view taken along line AA in FIG. 18B.
  • FIG. 18B is a plan view of a substrate module according to another embodiment 3;
  • FIG. 19 is a cross-sectional view illustrating a component according to still another embodiment of the present technology.
  • top”, “bottom”, “left”, “right”, “vertical”, “horizontal”, “bottom” are used to indicate the direction and position of parts and devices. May be used, but this is only for convenience of explanation. That is, these terms are often used for easy understanding of the explanation, and may not coincide with the direction and position in the scene where the device or device is actually manufactured or used.
  • FIG. 1A is a plan view showing components according to an embodiment of the present technology.
  • FIG. 1B is a partial cross-sectional view thereof, and
  • FIG. 1C is a bottom view thereof.
  • the component 20 is used as one light-emitting element or as one component included in the optical filter.
  • the component 20 includes a main body 22, a first layer 24, and a second layer 26.
  • the main body 22 has a top surface and a bottom surface.
  • the first layer 24 is provided on the bottom surface of the main body 22.
  • the second layer 26 is provided so as to protrude from the bottom surface 245 of the first layer 24.
  • An opening 24a is provided at a predetermined position of the first layer 24, for example, the center, but this is not essential.
  • the main body 22 is typically configured in a rectangular parallelepiped shape or a cubic shape.
  • the main body 22 may have another prismatic shape or a cylindrical shape.
  • the shape of the first layer 24 and the second layer 26 is not particularly limited as long as the first layer 24 and the second layer 26 are configured in the same shape as the main body 22, similar to the main body 22, and / or a shape close to them as seen in the bottom view shown in FIG. 1C. Good.
  • the second layer 26 is physically provided integrally. That is, a plurality of second layers 26 are not provided.
  • the second layer 26 is an electrode as will be described later, it constitutes a single electrode (single-side single electrode).
  • the second layer 26 has a bottom surface of the first layer 24 such that a part of the bottom surface 245 of the first layer 24 is exposed on the entire outer peripheral side of the second layer 26. It protrudes downward from H.245.
  • the protruding direction is not limited to being perpendicular to the bottom surface 245 of the first layer 24, and may be provided with an inclination.
  • the second layer 26 protrudes from the bottom surface 245 of the first layer 24, and the first layer 24 is covered with the second layer 26 other than the exposed region 245a of the bottom surface 245. And a non-exposed bottom region 245b.
  • This component 20 is connected to a board (not shown).
  • the second layer 26 is bonded onto the substrate via a metal bonding material.
  • solder is used as the metal bonding material, as will be described later.
  • the second layer 26 is made of a material having a wettability higher than that of the first layer 24 with respect to the metal bonding material.
  • the first layer 24 is composed of a material that is non-wetting with respect to the metal bonding material.
  • wetting is defined by the contact angle of a metal bonding material in a molten state with respect to the surface of the material (layer) as shown in FIG.
  • the contact angle ⁇ is in the range of 1 ° to 90 °, 1 ° to 70 °, or 1 ° to 60 °, or 10 ° to 50 °, the material exhibits high wettability. If the contact angle ⁇ is greater than 90 ° and less than 180 °, greater than 70 ° and less than 180 °, or greater than 60 ° and less than 180 °, it exhibits non-wetting properties.
  • the relationship of the thicknesses of the main body 22, the first layer 24, and the second layer 26 in the vertical direction in the figure is: main body 22> second layer 26> first layer 24.
  • the relationship between these thicknesses can be changed as appropriate according to the type of the component 20.
  • 3A to 3C are a plan view, a partial cross-sectional view, and a bottom view showing the light-emitting element 10.
  • the light emitting element 10 is typically a light emitting diode, a laser diode, or the like. Since the basic configuration of the light emitting element 10 is the same as the configuration of the component 20 described with reference to FIGS. 1A to 1C, detailed description of the same portions will be simplified or omitted.
  • the light emitting element 10 includes a semiconductor layer 12 as a main body, an insulating layer 14 as a first layer, and an electrode layer 16 as a second layer.
  • An upper electrode 17 is connected to the upper part of the semiconductor layer 12.
  • the semiconductor layer 12 is provided with a first conductivity type layer made of an n-type or p-type semiconductor, a second conductivity type layer made of a semiconductor of a conductivity type different from the first conductivity type layer, and between them.
  • An active layer formed.
  • An opening 14 a is provided at a predetermined position of the insulating layer 14, for example, at the center.
  • the electrode layer 16 is in contact with the first conductivity type layer of the semiconductor layer 12 through the opening 14a.
  • the upper electrode 17 is in contact with the second conductivity type layer of the semiconductor layer 12.
  • the electrode layer 16 that is the second layer protrudes downward from the insulating layer 14 so that the bottom surface 145 of the insulating layer 14 is exposed on the entire outer peripheral side of the electrode layer 16. Is provided. With such a structure, the bottom surface 145 has an exposed region 145a and a non-exposed bottom region 145b.
  • the material of the semiconductor layer 12 known materials such as a gallium compound semiconductor and a phosphorus compound semiconductor are used. However, the material is not particularly limited as long as it is a material capable of emitting light by this structure.
  • the wettability of the electrode layer 16 with respect to solder as a metal bonding material is higher than that of the insulating layer 14. As described with reference to FIG. 2, the wettability is defined by the contact angle of the metal bonding material in the molten state with respect to the electrode layer 16 and the insulating layer 14.
  • the material of the insulating layer 14 is used as the material of the insulating layer 14.
  • the thickness of the insulating layer 14 is preferably 2 nm or more and 500 nm or less, and more preferably 4 nm or more and 250 nm or less. These insulating layers 14 are non-wetting with respect to solder.
  • the material of the insulating layer 14 may be, for example, a poly resin.
  • the width of the insulating layer 14 is preferably 5 ⁇ m or more and 500 ⁇ m or less, and more preferably 5 ⁇ m or more and 250 ⁇ m or less.
  • the “width” is the length of one side when the outer shape of the insulating layer 14 is a triangle or a rectangle when viewed in the stacking direction of each layer (that is, when viewed in a plane as in FIGS. 3A and 3C).
  • the “width” is the length of the longest diagonal line (line connecting two vertexes).
  • the “width” is a diameter or a major axis.
  • the electrode layer 16 for example, a platinum group element such as Pt, Au, or Ni is used. Or the electrode layer 16 may be comprised by multiple layers with such materials. Typically, the electrode layer 16 is composed of three layers of Ti, Pt, and Au from the insulating layer 14 side. Ti has a function of improving the adhesion between Au or Pt and the insulating layer 14. Au has a function of preventing oxidation on the surface of the electrode layer 16.
  • the thickness of the electrode layer 16 is preferably 10 nm or more and 500 nm or less, more preferably 20 nm or more and 400 nm or less.
  • the electrode layer 16 is composed of Ti, Pt, and Au as described above
  • examples of the film thickness are as follows. Ti is 0.1 ⁇ m, Pt is 0.2 ⁇ m, and Au is 0.05 ⁇ m. Of course, each film thickness is not limited to these values.
  • the light emitting element 10 is manufactured by, for example, photolithography and an etching process using a resist as a mask. By this process, the interface between the electrode layer 16 and the insulating layer 14 can be formed with high accuracy.
  • the outer shape of the light-emitting element 10 is, for example, rectangular when viewed in the stacking direction of each layer (vertical direction in the figure). Similarly, the outer shapes of the insulating layer 14 and the electrode layer 16 are also rectangular. These outer shapes are not limited to rectangles, and may be configured by pentagons or more. Alternatively, the outer shape may be a circle or an ellipse.
  • the width of the light emitting element 10 is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the length of one side of the light emitting element 10 is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the light emitting element 10 is rectangular, it may be rectangular or square.
  • the lower limit of the short side is 5 ⁇ m and the upper limit of the long side is 300 ⁇ m.
  • the length of the longest diagonal is set to 5 ⁇ m or more and 300 ⁇ m or less, and is a circle or an ellipse
  • the diameter or length of the major axis is set to 5 ⁇ m or more and 300 ⁇ m or less.
  • the width of the electrode layer 16 is set to 4 ⁇ m or more and 200 ⁇ m or less, for example.
  • the length of one side is set to, for example, 4 ⁇ m or more and 200 ⁇ m or less (see FIG. 3C).
  • the length of the longest diagonal line is set within the above range, and is set to 4 ⁇ m or more and 200 ⁇ m or less. Is set to 4 ⁇ m or more and 200 ⁇ m or less.
  • the length of one side, diagonal line, diameter or major axis of the electrode layer 16 is 10 to 190, 10 to 100, 10 to 50, 10 to 30, 10 to 20, 10 to 15, 5 to 100, 10 to 50, It is set to 5 to 15, 5 to 10, 5 to 9, 5 to 8, or 5 to 7 (unit: ⁇ m).
  • FIG. 4A is a cross-sectional view showing a substrate module including the light emitting element 10.
  • FIG. 4B is a plan view thereof.
  • the board module 100 includes a board (for example, a circuit board for mounting) 50, the light emitting element 10 mounted on the board 50, and a metal bonding material that connects them.
  • the substrate 50 has a substrate electrode layer 51 as a bonding layer.
  • the electrode layer 16 of the light emitting element 10 is connected to the substrate electrode layer 51 via the solder 23 as a metal bonding material. Since the wettability of the solder 23 in the molten state with respect to the electrode layer 16 and the insulating layer 14 is different, the solder 23 is solidified and formed as shown in the figure. That is, since the insulating layer 14 has non-wetting property and the electrode layer 16 has wetting property, the solder 23 is prevented from coming into contact with the insulating layer 14 in a state where the solder 23 is solidified, and the electrode 23 The layer 16 is provided so as to contact the entire bottom surface and side surface. In other words, the position of the surface of the solder 23 is determined such that the surface of the solder 23 is formed near the boundary between the insulating layer 14 and the electrode layer 16 on the bottom surface 145 of the insulating layer 14.
  • a rectangular component projection area PA indicated by oblique lines obtained by projecting the light emitting element 10 onto the substrate 50 is an outer peripheral edge of the solder 23 in a solidified state (the substrate electrode layer 51 of the solder 23).
  • the outer peripheral edge of the contact area in contact with 231) is arranged on the inner side.
  • the ratio (wa: wb) between the width wa of the component projection area PA and the width wb of the contact area of the solder 23 is set to 1: 1.1 to 3, preferably 1: 1.1 to 2. Is done.
  • the width of the substrate electrode layer 51 (the width in the left-right direction in the figure) and the width of the outer peripheral edge of the solder 23 (the outer peripheral edge of the contact contact area) are the same.
  • the width of the substrate electrode layer 51 may be wider than the width of the outer peripheral edge of the solder 23.
  • the “width” referred to here can also be defined with the same meaning as the definition of “width” described above.
  • the side surface of the semiconductor layer 12 is not wetted by the solder 23 in the molten state, and the occurrence of the tilt of the light emitting element 10 can be suppressed.
  • the width of the substrate electrode layer 51 is preferably set to 115% or more and 300% or less of the width of the light emitting element 10 (semiconductor layer 12) in the same direction, and more preferably set to 130% or more and 200% or less. .
  • the width of the bottom surface of the solder 23 (that is, the width of the contact region) is preferably set to 115% or more and 300% or less of the width in the same direction of the light emitting element 10 (semiconductor layer 12), and more preferably 130% or more. Set to 200% or less.
  • FIG. 5A shows a substrate module in which the light emitting device 110 according to the reference example is mounted on the substrate without tilting.
  • 5B and 5C show a substrate module in which the light emitting element 110 according to the reference example is inclined and mounted on the substrate 50.
  • molten solder a sufficient amount of molten solder is used to center the light emitting element 110 by the surface tension of solder that is in a molten state in a reflow process (hereinafter referred to as molten solder) and to suppress the inclination of the light emitting element 110. Is required. This is because the light emitting element 110 on the molten solder can move to some extent in a direction parallel to the mounting surface of the substrate 50 (the upper surface of the substrate electrode layer 51).
  • Centering is positioning to the center in the contact area (in the present embodiment, coincides with the upper surface area of the substrate electrode layer 51). In the case of this embodiment, centering is performed by self-alignment. “Inclination” means an inclination due to rotation of the light emitting element 110 around an axis parallel to the mounting surface of the substrate 50.
  • the parallelism between the plurality of electrodes and the solder can be maintained. This is because most of the elements having a plurality of general electrodes are positioned in an even arrangement on the bottom surface of the light emitting element, and the plurality of electrodes serve as a base (leg part) at the time of bonding. Because. Therefore, it is easy to suppress the inclination of a light emitting element having a plurality of electrodes on the bottom surface.
  • the molten solder 23 may spread and spread in layers other than the electrode 36. There is also a risk of tilting.
  • the difficulty level differs between a light-emitting element having a single electrode on one side and a light-emitting element having a plurality of electrodes on one side, and the difficulty level of a light-emitting element having a single electrode is markedly increased. Therefore, some device is required for the structure of the light emitting element having a single electrode or the structure on the substrate 50 side.
  • the wettability of the electrode layer 16 and the insulating layer 14 with respect to the solder 23 is different, and the insulating layer is formed on the entire outer peripheral side of the electrode layer 16.
  • 14 is provided to protrude downward from the insulating layer 14 so that the bottom surface 145 of the 14 is exposed. That is, the electrode layer 16 and the insulating layer 14 have a so-called “screw-back” structure or an “overhang” structure.
  • the bottom surface 145 of the insulating layer 14 prevents the solder 23 from getting wet or scooping up, so that the contact angle of the solder 23 with respect to the electrode layer 16 is stabilized. Thereby, the inclination of the light emitting element 10 can be suppressed.
  • FIG. 6A shows a substrate module according to Comparative Example 1.
  • the light emitting element 120 of the substrate module according to Comparative Example 1 is the same as the light emitting element 10 according to the present technology in that the insulating layer 44 and the electrode layer 46 are provided below the semiconductor layer 12.
  • the light emitting element 10 and the light emitting element 120 are different in that the insulating layer 44 and the electrode layer 46 have substantially the same thickness, that is, their bottom surfaces are substantially flush with each other.
  • the component 20 and the light emitting element 10 according to the present technology are configured such that the first layer 24 is the second layer 26 other than the exposed region 245 a in the bottom surface 245.
  • the structure of the light emitting element 120 according to the comparative example 1 is different also in that it has a covered non-exposed bottom surface region 245b.
  • FIGS. 6B and 6C are enlarged views of the main part of the substrate module shown in FIG. 6A.
  • a slight difference in the thickness of the electrode caused by a manufacturing error of the light emitting element 120 causes a difference in the way of wetting at the peripheral edge of the electrode. That is, the contact angle of the solder 23 to the light emitting element 120 may vary.
  • FIG. 6B shows a form in which, for example, the thickness of the electrode layer 46 is slightly smaller than the thickness of the insulating layer 44
  • FIG. 6C shows a form in which those thicknesses are the same.
  • the light emitting element 10 tends to be inclined.
  • FIG. 7 shows that the electrode layer film (electrode film) 46 ′ formed on the semiconductor wafer W is not uniform on one semiconductor wafer in the process of manufacturing the light emitting device 10 shown in FIG. 6A. It is a figure explaining the problem which arises by a cause. That is, the film thickness of the electrode film 46 ′ on the semiconductor wafer W tends to be thicker at the center of the semiconductor wafer W and thinner at the edge. This is as described in FIGS. 6B and 6C. In FIG. 7, light emitting elements having different electrode layer 46 thicknesses are indicated by reference numerals 120A and 120B.
  • an electrode film 46 ′ having a different inclination may be formed depending on the region on the semiconductor wafer W.
  • the electrode film 46 ′ has an inclination as described above, it becomes more difficult to suppress the inclination of the light emitting element 10.
  • the light-emitting element including the inclined electrode layer 46 is denoted by reference numerals 120 ⁇ / b> C and 120 ⁇ / b> D.
  • FIG. 8A shows a substrate module according to Comparative Example 2.
  • the light emitting element 10 of the substrate module according to the comparative example 2 includes an insulating layer 54 and an electrode layer 56 having substantially the same area when viewed in the stacking direction.
  • 8B to 8D are enlarged views of main parts of the substrate module of FIG. 8A, respectively.
  • the width of the electrode layer 56 may differ from the width of the insulating layer 54 due to manufacturing errors. Since the insulating layer 54 according to these examples is not a surface bearing structure (the exposed bottom surface 145 of the insulating layer 14 as illustrated in FIG. 3B) as in the present technology, the contact angle of the solder 23 to the light emitting element 130 is set. Variations are likely to occur. Therefore, depending on the contact angle, the light emitting element 130 is likely to be inclined.
  • FIG. 9 is a diagram for explaining the behavior when the solder 23 melts in the reflow process.
  • FIG. 10 shows a state in which the light emitting element 120 according to the comparative example 1 is bonded to the substrate 50 by reflow of the solder 23.
  • the width of the solder 23 width in the direction parallel to the mounting surface of the substrate 50
  • the shape of the molten solder 23 is a dome shape as shown in the left figure.
  • the light emitting element 120 is pushed up at a stretch to become.
  • the molten solder 23 extends beyond the side surface of the insulating film 44 and spreads to the side surface of the semiconductor layer 12. As a result, the possibility that the light emitting element 120 tilts increases.
  • FIG. 11 shows a state in which the light emitting element 130 according to the comparative example 2 is joined to the substrate 50 by reflow of the solder 23 as in FIG.
  • the bonding operation in this case also exhibits the same behavior as in the case of FIG. 10, and the possibility that the light emitting element 130 tilts increases.
  • FIG. 12 shows a state in which the light emitting element 10 according to the present technology is bonded to the substrate 50 by reflow of the solder 23.
  • the solder 23 When the solder 23 is in a solidified state, the solder 23 and the insulating layer 14 are separated from each other.
  • the solder 23 is melted, the molten solder 23 climbing up to the electrode layer 16 having high wettability is received by the region 145 a exposed on the entire outer peripheral side of the electrode layer 16. In this way, the insulating layer 14 can stop the molten solder 23. Thereby, the light emitting element 10 can maintain a horizontal state without inclining.
  • the weight of the light emitting element is very light. Therefore, if the wettability of the solder which is a metal bonding material is slightly reduced (for example, if the thickness of Au in the electrode layer 16 is reduced), solder bonding becomes difficult. For example, in a manufacturing process, when a plurality of light-emitting elements continuously bonded on a semiconductor wafer are separately etched for each light-emitting element, when an electrode is used as a mask, the electrode layer is etched and thinned.
  • the Au when Au is used for the lowermost layer of the electrode layer (the layer closest to the substrate side), the Au may be lost by etching. In this case, solder bonding becomes difficult as described above. It is also conceivable that Au peeled off by etching adheres to the side surface of the insulating layer or the side surface of the semiconductor. In this case, in the solder reflow process, there is a possibility that the molten solder travels along the Au and spreads to the side surface of the semiconductor. In this case, as described above, the light emitting element may be inclined with respect to the substrate. As a result, there is a risk that the yield will decrease.
  • the Au layer is excessively thick to make the electrode layer 16 have high solder wettability, Au diffuses into the solder (Sn), and a brittle AuSn alloy IMC (Inner Metallic Compound) grows. To do. That is, a bridge (or column) made of an AuSn alloy is formed between the electrode layer Au and the substrate electrode layer in the Sn solder. When the bridge is formed in the solder in this manner, the movement of the light emitting element is hindered in the reflow process, and self alignment becomes difficult.
  • FIG. 13 is a photomicrograph of a substrate module having solder on which such an AuSn-IMC bridge is formed. As can be seen from this photograph, if the Au thickness is too thick, bridges made of AuSn alloy are excessively formed, and the light emitting element may be fixed in an inclined state. As a result of investigation by the inventors, it has been found that the upper limit of the thickness of Au that is not adversely affected is 3% or less of the solder by weight.
  • the thickness of the oxidation preventing Au layer of the electrode layer 16 is 10 nm or more and 100 nm or less, preferably 20 nm.
  • the thickness is 80 nm or less, more preferably 30 nm or more and 70 nm or less, or 40 nm or more and 60 nm or less. Typically, it is about 50 nm.
  • a photolithography process instead of a process of separating a plurality of light-emitting elements continuously bonded on a semiconductor wafer by separation etching. That is, by using the resist as a mask, the problem that the electrode material adheres to the side surface of the insulating layer or the side surface of the semiconductor using the electrode as a mask is solved.
  • the thickness of the solder is smaller than about 2 ⁇ m, the light emitting element cannot be self-aligned by the above-described AuSn-IMC. This is the same when the solder is made of SnAg-based or SnAgCu-based material. The reason is the reflow temperature. When the reflow process is performed with Sn-based solder, the temperature profile uses substantially the same conditions.
  • FIG. 14 is a graph showing an example of a temperature profile of a reflow process using Sn-based solder.
  • Solder melts at the highest temperature, for example, around 245 ° C.
  • thin Au formed on the surface of the electrode layer of the light emitting element or the substrate electrode layer diffuses into the molten solder, and AuSn-IMC diffuses.
  • the diffusion depth is approximately 2 ⁇ m. That is, in order for the light-emitting element 10 according to the present technology to be self-aligned and horizontal, it is desirable that the solder thickness be 2 ⁇ m or more.
  • thermo profile shown in FIG. 14 is merely an example, and the present technology may take other temperature profiles.
  • FIG. 15 is a graph showing an actual measurement of the relationship between the thickness of the solder 23 and the inclination of the light emitting element 10.
  • the length (that is, the width) of one side of the rectangular electrode layer 16 in the light emitting element 10 having a rectangular outer shape was set to 13 ⁇ m.
  • the electrode layer 16 was made of Ti, Pt, and Au, and the thicknesses thereof were 0.1 ⁇ m, 0.2 ⁇ m, and 0.05 ⁇ m, respectively.
  • the thickness of the solder is preferably half or less of the width of the electrode layer 16 (in this example, 6.5 ⁇ m or less).
  • the present technology desirably satisfies the following conditions in order to suppress the inclination of the light emitting element 10.
  • the volume of Au provided on the surface layer of the electrode layer 16 is 3% or less of the volume of the solder 23.
  • the thickness of the Sn-based solder (solidified state) is 2 ⁇ m or more and 1/2 or less of the width of one side of the electrode layer 16 of the light emitting element 10.
  • FIG. 16 is a graph showing the results of the verification, and shows the relationship between the width of the electrode layer 16 (in the case of a rectangle, the length of one side) and the actual inclination.
  • the width of the rectangular light emitting element 10 and the width of the insulating layer 14 were fixed at 15 ⁇ m, and the width of the electrode layer 16 was changed. From the experimental results shown in FIG. 16, the effect of the unique structure according to the present technology was confirmed although there was some instability. In other words, it was confirmed that the inclination of the electrode layer 16 tends to increase because the exposed region 145a of the bottom surface 145 of the insulating layer 14 decreases as the width increases beyond a predetermined width (9 ⁇ m in the experiment). .
  • FIG. 17 is a cross-sectional view of a component according to another embodiment 1.
  • the width (first width) w1 of a region 245a (hereinafter referred to as an exposed bottom surface region) exposed on the entire outer peripheral side of the second layer 26 in the bottom surface 245 of the first layer. Is configured to be wider than the width w2 in the same direction of the non-exposed bottom surface region 245b.
  • the exposed bottom surface region 245a of the first layer 24 has a rectangular opening pattern shape when seen in a plan view.
  • the alignment accuracy at the time of exposure for forming this opening pattern by photolithography is higher than the alignment accuracy in an apparatus for mounting this component on a substrate.
  • the result is that the deviation margin (allowable deviation) of the exposure apparatus having high alignment accuracy is set smaller than the deviation margin of the mounting apparatus having lower alignment accuracy. .
  • the deviation margin of the mounting apparatus having low accuracy is increased.
  • FIG. 17 is referred to as a cross-sectional view of a component according to another embodiment 2.
  • the width w1 of the exposed bottom surface region 245a is larger than the protruding height h1 of the second layer 26 in the protruding direction from the bottom surface of the first layer 24.
  • the main body 22 is configured such that the width w1 of the exposed bottom surface region that is unlikely to get wet with the metal bonding material is larger than the protrusion height h1 of the second layer 26 that is highly likely to get wet with the metal bonding material. It is possible to further reduce the possibility that the side surface of the metal is wet with the metal bonding material.
  • FIG. 18B is a plan view of a substrate module according to another embodiment 3, and FIG. 18A is a cross-sectional view taken along line AA in FIG. 18B.
  • the substrate module includes a substrate 50, an insulating film (film) 5 having openings 5 a and 5 b, a substrate electrode layer (bonding layer) 51, solder patterns (metal bonding materials) 23 a and 23 b, and a light emitting element 10.
  • the light emitting element 10 and the substrate electrode layer 51 are connected by solder patterns 23a and 23b provided in the opening 5a.
  • the opening shape of the opening 5a of the insulating film 5 has protrusions (for example, four) radially from the center of the opening 5a.
  • the solder pattern 23 a has a planar shape substantially the same as the opening shape of the opening 5 a at the opening 5 a of the insulating film 5.
  • the light emitting element 10 is fixed to a region corresponding to the central portion of the opening 5a.
  • the bottom surface of the light emitting element 10 has a shape such as a polygon of a triangle or more, a circle, an ellipse, and the like. In FIG. 18, it is a rectangle.
  • the protrusions of the opening 5a are arranged at substantially equal angles with each other along at least three directions in rotational symmetry from the central part, and the tip thereof is arranged on a circumference centering on the central part, And it has the shape which becomes thin toward the front-end
  • substantially equiangular includes an error range of angles within a range in which the protrusion can effectively position the element.
  • protrusions For example, 3 to 6 protrusions or more are provided. In FIG. 18B, there are four protrusions.
  • the light-emitting element 10 is surely self-aligned with the central portion of the opening 5a. 7).
  • the form in which the second layer 26 protrudes from the bottom face 245 side of the first layer 24, and the form in which the entire bottom face 245 is exposed are also within the scope of the present technology. included. That is, in this embodiment, the second layer 26 protrudes from the bottom surface side of the first layer 24 so that the outer peripheral side surface 26b of the second layer 26 protrudes from within the opening 24a of the first layer 24. Yes.
  • the light emitting element 10 has been described as an example of the component 20 (see FIGS. 1A to 1C) according to the above embodiment, but the present technology may be applied to a component that constitutes an optical filter, for example.
  • the main body may constitute a mirror or a light transmitting part.
  • An optical filter such as a color filter or a polarizing filter can be realized by arranging a plurality of components on a substrate in a matrix or zigzag pattern.
  • the main body of the component is not limited to the semiconductor layer 12 and may be a metal or a resin. A transparent resin may be used as the resin.
  • the first layer 24 is not limited to a material having an electrical insulating function
  • the second layer 26 is not limited to a material having a conductive function.
  • a metal other than solder may be employed as the metal bonding material.
  • Examples of the device using the light emitting element 10 include a display device, a scanner, or a printer.
  • the light emitting elements 10 are used in a display device, the light emitting elements 10 are arranged on the substrate so that each light emitting element 10 corresponds to each pixel.
  • the plurality of light emitting elements 10 are used in a scanner, a printer, or the like, they are used as light sources for irradiating light for reading and photosensitive.
  • this technique can also take the following structures.
  • the component according to (1) or (2), The first layer has a non-exposed bottom surface region covered with the second layer other than the exposed bottom surface region.
  • the bottom surface of the first layer is seen in a cross section in the stacking direction of the first layer and the second layer, Of the bottom surface of the first layer, the exposed bottom surface region has a first width, The non-exposed bottom surface region has a second width smaller than the first width.
  • the main body has a semiconductor material as a main constituent material, The first layer is made of an insulating material; The second layer is an electrode.
  • the component according to (7) above, The first layer includes SiO2, SiN, or a poly resin.
  • the component according to any one of (6) to (8) A component in which at least the bottom layer of the second layer is made of the Au.
  • the component according to (9) above, The volume amount occupied by the Au in the second layer is 3% or less of the volume amount of the metal bonding material.
  • the second layer includes Pt or Ni.
  • the parts are A body having a bottom surface; A first layer provided on a bottom surface of the main body and having a bottom surface; A single second layer that is bonded to the metal bonding material and is physically integrated, and has higher wettability than the first layer with respect to the metal bonding material in a molten state.
  • a second layer protruding from the bottom surface side of the first layer so that at least a part of the bottom surface of the first layer is exposed on the entire outer peripheral side of the second layer. Having a substrate module.
  • the board module according to (12) A component projection region in which the component is projected onto the substrate is disposed on the inner side of an outer peripheral edge of a contact region where the bonding layer and the metal bonding material are in contact with each other.
  • the film further includes an opening facing the bonding layer, and the opening shape of the opening has a protrusion radially from the center,
  • the metal bonding material is provided in the opening of the film, and is configured in a planar shape substantially the same as the opening shape of the opening,
  • the component is fixed to a region corresponding to the central portion of the metal bonding material,
  • the protrusions of the opening of the membrane are arranged at substantially equal angles to each other along at least three directions in rotational symmetry from the central portion, and the tip thereof is a circumference centered on the central portion.
  • a substrate module in which the metal bonding material provided in the opening of the film is connected to the bonding layer is connected to the bonding layer.
  • the parts are A body having a bottom surface; A first layer provided on a bottom surface of the main body and having a bottom surface; A single second layer that is bonded to the metal bonding material and is physically integrated, and has higher wettability than the first layer with respect to the metal bonding material in a molten state.
  • a second layer protruding from the bottom surface side of the first layer so that at least a part of the bottom surface of the first layer is exposed on the entire outer peripheral side of the second layer.
  • SYMBOLS 5 Insulating film 5a ... Opening part 10 ... Light emitting element 12 ... Semiconductor layer 14 ... Insulating layer 16 ... Electrode layer 20, 20A ... Component 22 ... Main body 23a ... Solder pattern 23 ... Solder 24 ... 1st layer 26 ... 2nd Layer 50 ... Substrate 51 ... Substrate electrode layer (bonding layer) DESCRIPTION OF SYMBOLS 100 ... Substrate module 145, 245 ... Bottom face 145a, 245a ... Exposed area of bottom face (exposed bottom area) 145b, 245b ... non-exposed bottom region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Polarising Elements (AREA)
  • Die Bonding (AREA)
  • Optical Filters (AREA)

Abstract

【解決手段】部品は、本体と、第1の層と、第2の層とを具備する。前記本体は、底面を有する。前記第1の層は、前記本体の底面に設けられ、底面を有する。前記第2の層は、基板上の金属接合材に接合され物理的に一体に設けられた第2の層である。前記第2の層は、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくも一部が露出するように、前記第1の層の底面側から突出して設けられている。

Description

部品、基板モジュール、機器、および光学フィルタ
 本技術は、発光素子やその他の部品、この部品が実装されて構成される基板モジュール、この基板モジュールを含む機器、およびこの部品を用いた光学フィルタに関する。
 特許文献1には、サブマウントに半田層を介して接続された半導体素子が開示されている。半導体素子の上面および下面にそれぞれ電極層が設けられている。その下面側電極層が、半田層を介して、サブマウントの上面に設けられた金属薄膜に接続されている。下面側電極層は、半導体素子の下面の全領域に形成されるのではなく、その下面の長手方向の端部には形成されず、半導体層のそれら端部が露出している。半田層は、半導体層に対して濡れ性が悪く、電極層に対して濡れ性が良い。したがって、半田層が半導体素子の両端部に付着せず、半導体素子の側面(レーザの出射面を含む)への半田の盛り上がり(這い上がり)が防止される(例えば、特許文献1の明細書段落[0010]、[0017]、[0029]、図1、2、6参照。)。
 特許文献2に記載の電子装置は、電子部品(半導体チップ)、貴金属層が印刷されたプリント基板、およびこれらを接合する半田を備える。半導体チップの裏面電極と、プリント基板の貴金属層とが半田により接合されている。貴金属層は、半導体チップの投影領域(部品投影領域)を取り囲むように連続した環状をなして設けられている。半田接合時に、溶融した半田は、貴金属層上に沿って、部品投影領域の全外周を囲む連続した環状に濡れ拡がるから、部品投影領域の4個の角部にて、半田の厚さを均一にしやすくなる。そのため、半導体チップの搭載時に、半導体チップの傾きが防止される(例えば、特許文献1の明細書段落[0052]、[0078]、[0079]、図1(a)~(c)参照。)。
特開2010-171047号公報 特開2010-245161号公報
 上記特許文献1、2のような技術を用いても、素子(部品)への半田の這い上がりや基板に対する傾きを抑制することが難しい場合がある。特に、部品のサイズが小さい場合にはそのような問題が顕著になる。
 本開示の目的は、基板に接続される部品の傾きを抑制することができる技術を提供することにある。
 上記目的を達成するため、本技術に係る部品は、本体と、第1の層と、第2の層とを具備する。
 前記本体は、底面を有する。
 前記第1の層は、前記本体の底面に設けられ、底面を有する。
 前記第2の層は、基板上の金属接合材に接合され物理的に一体に設けられた第2の層である。前記第2の層は、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられている。
 溶融状態にある金属接合材に対する第2の層の濡れ性が第1の層のそれより高く、かつ、第2の層の全外周側で第1の層の底面が露出することにより、第1の層の底面において、金属接合材の表面が第1の層と第2の層の境界付近から形成されるように、当該金属接合材の表面の位置が決められる。そして、第2の層が第1の層の底面側から突出して設けられる。これにより、溶融状態にある金属接合材により本体の側面が濡れず、部品の傾きの発生を抑制することができる。
 本体は、一種類の元素でなる材料に限られず、化合物または多層の材料で構成されていてもよい。
 前記第1の層が、前記金属接合材に対して非濡れ性を持つように構成されていてもよい。
 これにより、比較的高い濡れ性を持つ第2の層と、非濡れ性を持つ第1の層との間近傍で、金属接合材の境界面が確実に形成される。
 前記第1の層は、前記露出した底面領域以外の、前記第2の層で覆われた非露出底面領域を有していてもよい。
 前記第1の層の底面は、前記第1の層および前記第2の層の積層方向の断面で見て、前記第1の層の底面のうち前記露出した底面領域は、第1の幅でなり、前記非露出底面領域は、前記第1の幅より小さい第2の幅でなっていてもよい。
 これにより、比較的低い位置合わせ精度の実装装置を用いても、実装位置ずれによる悪影響を受けにくくなる、というメリットがある。
 前記第1の層の底面は、前記第1の層および前記第2の層の積層方向の断面で見て、前記第1の層の底面のうち前記露出した底面領域の幅は、前記第2の層の、前記第1の層の底面からの突出方向における突出高さより大きく構成されていてもよい。
 このように、金属接合材で濡れる可能性が低い第1の層の底面の露出した領域の幅が、金属接合材で濡れる可能性が高い第2の層の突出高さより大きく構成されることで、本体の側面が金属接合材で濡れる可能性をさらに低減することができる。
 前記本体は、半導体材料を主要構成材料として有し、前記第1の層は、絶縁材料でなり、前記第2の層は、電極であってもよい。
 前記第1の層が、前記金属接合材に対して非濡れ性を持つように構成されていてもよい。
 前記第1の層は、SiO2、SiN、または、ポリ系樹脂を含んでいてもよい。
 前記第2の層の少なくとも底面の層が、前記Auにより構成されていてもよい。
 前記第2の層のうち前記Auが占める体積量が、前記金属接合材の体積量の3%以下であってもよい。
 前記第2の層は、Pt、またはNiを含んでいてもよい。
 本技術に係る基板モジュールは、上記部品と、接合層を有する基板と、前記部品を前記基板の前記接合層に接続する金属接合材とを具備する。
 前記部品を前記基板に投射した部品投射領域が、前記接合層と前記金属接合材とが接触する接触領域の外周縁より内側に配置されていてもよい。
 これにより、接合面領域の面積を部品投射領域に応じて適宜設計することにより、金属接合材の溶融時に、確実な部品の位置決めおよび傾き防止を実現することができる。
 前記基板モジュールは、前記接合層に対向して開口部を有するとともに、前記開口部の開口形状が中央部から放射状に突起部を有してなる膜をさらに具備してもよい。この場合、前記金属接合材は、前記膜の前記開口部に設けられた、前記開口部の開口形状と略同一の平面形状で構成されていてもよい。前記部品は、前記金属接合材の前記中央部に対応する領域に固定され、前記膜の開口部の前記突起部は、前記中央部から回転対称に少なくとも3方向に沿って互いに実質的に等角度を保って配置されるとともに、その先端が前記中央部を中心とした円周上に配置され、かつ前記先端に向かって細くなる形状を有していてもよい。前記膜の開口部内に設けられた前記金属接合材と、前記接合層とが接続されていてもよい。
 前記金属接合材の厚さが、2μm以上であり、かつ、前記部品の前記第2の層の幅の1/2以下であってもよい。
 本技術に係る機器、あるいは光学フィルタは、上記基板モジュールを具備する。
 以上、本技術によれば、基板に対する部品の傾きの発生を抑制することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
図1Aは、本技術の一実施形態に係る部品を示す平面図である。図1Bは、その一部断面図であり、図1Cは、その底面図である。 図2は、濡れ性を説明するための図である。 図3A~Cは、その発光素子を示す平面図、一部断面図、および底面図である。 図4Aは、上記発光素子を含む基板モジュールを示す断面図であり、図4Bは、その平面図である。 図5A~Cは、参考例に係る発光素子が基板上に実装されている基板モジュールを示す。 図6A~Cは、比較例1に係る基板モジュールを示す。 図7は、半導体ウェハ上に形成された電極層の膜(電極膜)が、1枚の半導体ウェハ上で均一にならないことが原因で起こる問題を説明する図である。 図8A~Dは、比較例2に係る基板モジュールを示す。 図9は、リフロープロセスで半田が溶融する時の挙動を説明するための図である。 図10は、上記比較例1に係る発光素子を、半田のリフローにより基板に接合する様子を示す。 図11は、比較例2に係る発光素子を、半田のリフローにより基板に接合する様子を示す。 図12は、本技術に係る発光素子を、半田のリフローにより基板に接合する様子を示す。 図13は、AuSn合金でなるブリッジが形成された半田を有する基板モジュールの顕微鏡写真である。 図14は、Sn系半田によるリフロープロセスの温度プロファイルの例を示すグラフである。 図15は、半田の厚さと発光素子の傾きとの関係の実測を示すグラフである。 図16は、電極層の幅と、その電極層を持つ発光素子の傾きとの関係を示すグラフであり、 図17は、本技術の他の実施形態1に係る部品の断面図である。 図18Aは、図18BにおけるA-A線断面図である。図18Bは、他の実施形態3に係る基板モジュールの平面図であり、 図19は、本技術のさらに別の実施形態に係る部品を示す断面図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 以下の説明では、図面を参照する場合において、部品や装置の方向や位置を指し示すために「上」、「下」、「左」、「右」、「縦」、「横」、「底」などの文言を用いる場合があるが、これは説明の便宜上の文言に過ぎない。すなわち、これらの文言は、説明を理解しやすくするために使用される場合が多く、素子や装置が実際に製造されたり使用されたりする場面における方向や位置と一致しない場合がある。
 1.部品
 1.1)部品の構成
 図1Aは、本技術の一実施形態に係る部品を示す平面図である。図1Bは、その一部断面図であり、図1Cは、その底面図である。この部品20は、後述するように、1つの発光素子として、または光学フィルタに含まれる1つの部品として用いられる。
 部品20は、本体22、第1の層24、および第2の層26を備える。本体22は、上面および底面を有する。第1の層24は本体22の底面に設けられている。第2の層26は、第1の層24の底面245から突出して設けられている。第1の層24の所定の位置、例えば中央には開口24aが設けられているが、これは必須ではない。
 本体22は、典型的には、直方体形状あるいは立方体形状で構成される。本体22は、その他の角柱形状、または円柱形状であってもよい。第1の層24、第2の層26の形状は、特に限定されないが、図1Cに示す底面図で見て、本体22と同一、相似、および/またはそれらに近い形状で構成されていればよい。
 第2の層26は、物理的に一体に設けられている。すなわち、第2の層26は、複数設けられない。第2の層26が後述するように電極である場合、それは単電極(片側単電極)を構成する。
 図1Cに示すように、第2の層26は、その第2の層26の全外周側で、第1の層24の底面245の一部が露出するように、第1の層24の底面245から下方へ突出して設けられている。この突出方向は、第1の層24の底面245に垂直に限られず、傾斜が設けられていてもよい。このように、第2の層26が第1の層24の底面245から突出しており、第1の層24は、底面245のうち、露出した領域245a以外の、第2の層26で覆われた非露出底面領域245bを有する。
 この部品20は、図示しない基板に接続される。具体的には、第2の層26が金属接合材を介して基板上に接合される。金属接合材は、典型的には、後述するように半田が用いられる。第2の層26は、金属接合材に対して、第1の層24の濡れ性より高い濡れ性を持つ材料で構成される。典型的には、第1の層24は、金属接合材に対して非濡れ性を持つ材料で構成される。
 本明細書では、「濡れ性」は、図2に示すように、材料(層)の表面に対して、溶融状態にある金属接合材の接触角で定義される。接触角αが°1°~90°、1°~70°、または、1°~60°、または、10°~50°の範囲にある時、その材料は高い濡れ性を示す。接所角αが90°を超え180°未満、70°を超え180°未満、または、60°を超え180°未満の場合、それは非濡れ性を示す。
 本体22、第1の層24、第2の層26の、図中上下方向の厚さの関係は、本体22>第2の層26>第1の層24、となっている。しかし、これらの厚さの関係は、部品20の種類に応じて適宜変更可能である。
 1.2)発光素子としての部品の構成
 次に、部品が発光素子である形態について説明する。図3A~Cは、その発光素子10を示す平面図、一部断面図、および底面図である。発光素子10は、典型的には、発光ダイオードやレーザダイオード等である。発光素子10の基本的な構成は、図1A~Cを参照して説明した部品20の構成と同様であるので、同様の部分についてはその詳細な説明を簡略化または省略する。
 図3Bに示すように、この発光素子10は、本体としての半導体層12、第1の層としての絶縁層14、および第2の層としての電極層16を備える。なお、半導体層12の上部には上部電極17が接続されている。
 図示しないが、半導体層12は、nまたはp型の半導体でなる第1導電型層、第1導電型層とは異なる導電型の半導体でなる第2導電型層、および、それらの間に設けられた活性層を有している。絶縁層14の所定の位置、例えば中央には開口14aが設けられている。電極層16は、その開口14aを介して、半導体層12の第1導電型層に接している。上部電極17は、半導体層12の第2導電型層に接している。
 図1を参照して説明した通り、第2の層である電極層16は、その電極層16の全外周側で、絶縁層14の底面145が露出するように、絶縁層14から下方へ突出して設けられている。このような構造により、底面145は、露出した領域145aと、非露出底面領域145bを有することになる。
 半導体層12の材料としては、例えばガリウム系化合物半導体、リン系化合物半導体等、公知の材料が用いられる。しかし、本構造により発光可能な材料であれば特に限定されない。
 金属接合材としての半田(溶融時の半田)に対する電極層16の濡れ性は、絶縁層14のそれより高い。濡れ性は、図2を参照して説明したように、電極層16および絶縁層14に対する、溶融状態にある金属接合材の接触角により規定される。
 絶縁層14の材料としては、例えばSiO2、SiN、Al2O3、TiO2、TiN等が用いられる。絶縁層14の厚さは、好ましくは2nm以上500nm以下とされ、より好ましくは、4nm以上250nm以下とされる。これら絶縁層14の材料は、半田に対して非濡れ性を示す。絶縁層14の材料は、例えば、ポリ系樹脂であってもよい。
 絶縁層14の幅は、好ましくは5μm以上500μm以下とされ、より好ましくは、5μm以上250μm以下とされる。「幅」とは、各層の積層方向で見て(つまり図3A、Cのように平面で見て)、絶縁層14の外形が3角形または矩形の場合、その一辺の長さである。平面で見て、絶縁層14の外形が5角形以上の多角形の場合、「幅」は、最も長い対角線(2点の頂点を結ぶ線)の長さである。絶縁層14の外形が円または楕円の場合、「幅」は、直径または長径である。
 電極層16の材料としては、例えば、Pt等の白金族元素、Au、またはNiなどが用いられる。あるいは、電極層16は、これらの材料で複数層で構成されていてもよい。典型的には、電極層16は、絶縁層14側からTi、Pt、およびAuの3層で構成される。Tiは、AuまたはPtと、絶縁層14との密着性を高める機能を有する。Auは電極層16表面の酸化防止の機能を有する。
 電極層16の厚さは、好ましくは10nm以上500nm以下とされ、より好ましくは、20nm以上400nm以下とされる。
 電極層16が上記のようにTi、Pt、およびAuで構成される場合、それらの膜厚の例は、次のような値となる。Tiが0.1μm、Ptが0.2μm、Auが0.05μmである。もちろん、各膜厚はこれらの値に限られない。
 この発光素子10は、例えばフォトリソグラフィおよびレジストをマスクとしたエッチングのプロセスにより製造される。本プロセスにより、電極層16および絶縁層14の界面を精度良く形成することができる。
 発光素子10の外形は、各層の積層方向(図中上下方向)で見て、例えば矩形に構成されている。絶縁層14および電極層16の外形も、同様に矩形で構成される。これらの外形形状は、矩形に限られず、5角形以上の多角形で構成されていてもよい。あるいは、外形形状は、円や楕円で構成されていてもよい。
 発光素子10の幅は、例えば5μm以上300μm以下とされる。具体的には、発光素子10、絶縁層14および電極層16の外形が3角形または矩形で構成される場合、発光素子10の一辺の長さが、例えば5μm以上300μm以下とされる。発光素子10が矩形の場合、長方形でもよいし、正方形でもよい。発光素子10が長方形の場合、例えば短辺の下限が5μm、長辺の上限が300μmとされる。
 発光素子10の外形が、上記のように5角形以上の多角形の場合、最も長い対角線(2点の頂点を結ぶ線)の長さが5μm以上300μm以下に設定され、円または楕円である場合、直径または長径の長さが5μm以上300μm以下に設定される。
 電極層16の幅は、例えば4μm以上200μm以下に設定される。具体的には、電極層16の外形が3角形または矩形の場合、その一辺の長さは、例えば4μm以上200μm以下に設定される(図3C参照)。電極層16の外形が、5角形以上の多角形の場合、最も長い対角線の長さが上記範囲に設定され、4μm以上200μm以下に設定され、円または楕円である場合、直径または長径の長さが4μm以上200μm以下に設定される。
 例えば、電極層16の一辺、対角線、直径または長径の長さは、10~190、10~100、10~50、10~30、10~20、10~15、5~100、10~50、5~15、5~10、5~9、5~8、または、5~7に設定される(単位はμm)。
 2.基板モジュール
 図4Aは、上記発光素子10を含む基板モジュールを示す断面図である。図4Bは、その平面図である。基板モジュール100は、基板(例えば実装用の回路基板)50と、この基板50に実装された発光素子10と、これらを接続する金属接合材を備える。
 基板50の主材料として、ガラスまたは樹脂が用いられる。基板50は、接合層としての基板電極層51を有する。基板電極層51に、金属接合材としての半田23を介して発光素子10の電極層16が接続されている。電極層16および絶縁層14に対する、溶融状態にある半田23の濡れ性が異なるので、半田23は図に示すように固化し、形成される。すなわち、絶縁層14は非濡れ性を有し、電極層16は濡れ性を有するので、半田23が固化した状態では、半田23は、絶縁層14に接触するのを避けるように、かつ、電極層16の底面および側面の全体に接するように設けられる。他の表現を用いると、絶縁層14の底面145において、半田23の表面が、絶縁層14と電極層16との境界付近から形成されるように当該半田23の表面の位置が決められる。
 また、図4Bに示すように、発光素子10を基板50に投射して得られる斜線で示す矩形の部品投射領域PAが、固化状態にある半田23の外周縁(半田23の、基板電極層51に接触する接触領域の外周縁)231より内側に配置される。特に、部品投射領域PAの幅waと、半田23の接触領域の幅wbとの比(wa:wb)は、1:1.1~3に設定され、このましくは、1:1.1~2に設定される。
 本実施形態では、基板電極層51の幅(図中左右方向の幅)と、半田23の外周縁(接触触領域の外周縁)の幅とが一致している。しかし、基板電極層51の幅が、半田23の外周縁の幅より広く構成されていてもよい。なお、ここで言う「幅」も、上述した「幅」の定義と同様の趣旨で定義され得る。
 以上のような発光素子10の絶縁層14および電極層16の構成により、溶融状態にある半田23により半導体層12の側面が濡れず、発光素子10の傾きの発生を抑制することができる。
 基板電極層51の幅は、好ましくは、発光素子10(半導体層12)の同方向での幅の115%以上300%以下に設定され、より好ましくは、130%以上200%以下に設定される。
 半田23の底面の幅(つまり接触領域の幅)は、好ましくは、発光素子10(半導体層12)の同方向での幅の115%以上300%以下に設定され、より好ましくは、130%以上200%以下に設定される。
 これらのような基板電極層51の幅や半田23の底面の幅の設計により、後述するように、発光素子10のセルフアライメント(自己整合位置決め)が確実になされる。
 3.参考例、比較例
 3.1)参考例に係る発光素子(および基板モジュール)の問題点
 次に、本技術の部品である発光素子10とは異なる構成を持つ参考例に係る発光素子を含む基板モジュールの問題点について説明する。図5Aは、参考例に係る発光素子110が傾き無しで基板上に実装されている基板モジュールを示す。図5B、Cは、参考例に係る発光素子110が傾いて基板50上に実装されている基板モジュールを示す。
 発光素子110を、例えばリフロープロセスにおいて溶融状態にある半田(以下、溶融半田と言う。)の表面張力によりセンタリングし、かつ、発光素子110の傾きを抑制するためには、十分な量の溶融半田が必要になる。これは、溶融半田上の発光素子110が基板50の実装面(基板電極層51の上面)に平行方向に、ある程度移動できるようにするためである。
 「センタリング」とは、接触領域(本実施形態では基板電極層51の上面領域に一致)内の中央への位置決めである。本実施形態の場合、セルフアライメントによりセンタリングが行われる。「傾き」とは、基板50の実装面に平行な軸の周りにおける発光素子110の回転による傾きを意味する。
 発光素子が、その底面に複数の電極を持つ一般的な構成の場合、複数電極および半田の間の平行度を保つことができる。これは、一般的な複数電極を持つ素子のほとんどにおいて、それら電極が、発光素子の底面に均等な配置で位置することがほとんどであり、その複数電極が接合時の土台(脚部)となるからである。したがって、底面に複数電極を有する発光素子の傾き抑制は容易である。
 しかしながら、片側(底面側)の単電極、つまり、発光素子等の部品において物理的に一体に設けられた電極36が設けられる場合に、半田23の量が多い場合には、発光素子110は、図5Bに示すように、自重により溶融半田23の隅部にむけてずれ落ち、傾く場合がある。これにより位置決めも困難になる。
 あるいは、図5Cに示すように、例えば発光素子110の各層のうち電極36以外において高い濡れ性を持つ層が設けられる場合、電極36以外の層に溶融半田23が濡れ広がるおそれがあり、この場合も傾きが発生するおそれがある。
 このように、片側に単電極を持つ発光素子と、片側に複数電極を持つ発光素子とでは、その難易度が異なり、単電極を持つ発光素子では、その難易度が格段に上がる。したがって、単電極を持つ発光素子の構造、あるいは基板50側の構造に、何らかの工夫が必要となる。
 この点、本技術に係る発光素子10では、図4Aに示したように、電極層16および絶縁層14の、半田23に対する濡れ性が異なり、また、電極層16の全外周側で、絶縁層14の底面145が露出するように、絶縁層14から下方へ突出して設けられている。つまり、電極層16および絶縁層14が、いわゆる「ねずみ返し」構造、あるいは「オーバーハング」構造を有している。このような構成により、絶縁層14の底面145が、半田23の濡れ上り、あるいは這い上がりを止めるので、電極層16に対する半田23の接触角が安定する。これにより、発光素子10の傾きを抑制することができる。
 3.2)比較例
 以下では、傾きが発生しやすい構造を持つ、いくつかの比較例に係る発光素子について説明する。
 3.2.1)比較例1
 図6Aは、比較例1に係る基板モジュールを示す。比較例1に係る基板モジュールの発光素子120は、半導体層12の下部に絶縁層44および電極層46が設けられる点で、本技術に係る発光素子10と同様である。しかし、絶縁層44および電極層46の厚さがほぼ同一、すなわちそれらの底面同士がほぼ面一である点で、発光素子10と発光素子120は異なる。また、本技術に係る部品20や発光素子10は、図1、3で示したように、第1の層24が、その底面245のうち、露出した領域245a以外の、第2の層26で覆われた非露出底面領域245bを有する点においても、比較例1に係る発光素子120の構造とは異なる。
 図6B、Cは、図6Aに示す基板モジュールの要部の拡大図である。図6B、Cに示すように、発光素子120の製造誤差により生じた電極のわずかな厚さの違いによって、電極の周縁部での濡れ方に違いが生じる。すなわち、発光素子120への半田23の接触角がばらつくおそれがある。図6Bは、例えば電極層46の厚さが、絶縁層44の厚さよりわずかに小さい形態を示し、図6Cは、それらの厚さが同一である形態を示す。このように、接触角によっては、発光素子10に傾きが発生しやすくなる。
 図7は、図6Aに示した発光素子10を製造する工程において、半導体ウェハW上に形成された電極層の膜(電極膜)46'が、1枚の半導体ウェハ上で均一にならないことが原因で起こる問題を説明する図である。すなわち、半導体ウェハW上の電極膜46'の成膜厚さは、半導体ウェハWの中央部で厚く、エッジ部で薄くなる傾向がある。これは図6B、Cで説明した通りである。図7において、電極層46の厚さが異なる発光素子を、符号120A、120Bで示した。
 また、半導体ウェハW上の領域に応じて、異なる傾斜を持つ電極膜46'が形成される場合もある。このように電極膜46'が傾斜を持つと、発光素子10の傾きを抑制することはさらに困難になる。図7において、傾斜を持つ電極層46を備える発光素子を、符号120C、120Dで示した。
 3.2.2)比較例2
 図8Aは、比較例2に係る基板モジュールを示す。比較例2に係る基板モジュールの発光素子10は、積層方向で見てほぼ同じ面積を有する絶縁層54および電極層56を備えている。図8B~Dは、それぞれ、図8Aの基板モジュールの要部の拡大図である。
 図8B~Dに示すように、製造誤差によって、電極層56の幅が絶縁層54の幅に対して異なる場合がある。これらの例に係る絶縁層54は、本技術のように面受け構造(図3Bに示すように、絶縁層14の露出した底面145)ではないので、発光素子130への半田23の接触角にばらつきが発生しやすい。したがって、接触角によっては、発光素子130に傾きが発生しやすくなる。
 3.2.3)リフロー時における半田の挙動の観点からの、本技術に係る構造の利点
 図9は、リフロープロセスで半田23が溶融する時の挙動を説明するための図である。図9において左図に示すように半田23が固化している状態から、右図に示すように溶融する場合を考える。半田温度が融点に達すると、半田23は一瞬で溶解し、その高さ(厚さ)は2倍以上のドーム形状になる。例えば、図中、h=3μm、2h=6μmとなる。その後、15秒程度で、リフロー温度低下に伴い、半田23は固化する。
 図10は、上記比較例1に係る発光素子120を、半田23のリフローにより基板50に接合する様子を示す。図に示すように、半田23の幅(基板50の実装面に平行の方向の幅)が、発光素子120の幅より大きい場合、左図に示すように、溶融した半田23の形状がドーム形状になろうとして、発光素子120を一気に突き上げる。そうすると、溶融半田23は絶縁膜44の側面を超え、半導体層12の側面まで濡れ広がってしまう。その結果、発光素子120が傾く可能性が高くなる。
 図11は、図10と同様に、比較例2に係る発光素子130を、半田23のリフローにより基板50に接合する様子を示す。この場合の接合動作も、図10の場合と同様の挙動を示し、発光素子130が傾く可能性が高くなる。
 図12は、本技術に係る発光素子10を、半田23のリフローにより基板50に接合する様子を示す。半田23が固化状態にある時、半田23と絶縁層14とが離間している。半田23が溶融すると、高い濡れ性を持つ電極層16に這い上がって来る溶融半田23を、電極層16の全外周側に露出した領域145aで受ける。このようにして、溶融半田23を絶縁層14が食い止めることができる。これにより、発光素子10は傾くことなく、水平状態を保つことができる。
 4.電極層のAu層の厚さについて
 特に、5μm以上300μm以下の幅(矩形の場合は一辺の長さ)でなる微小な発光素子10が用いられる場合、発光素子の重量は非常に軽い。そのため、金属接合材である半田の濡れ性がわずかにでも低下すると(例えば電極層16におけるAuの厚さが薄くなると)、半田接合が困難になる。例えば製造工程において、半導体ウェハ上で連続して結合された複数の発光素子を、発光素子ごとに分離エッチングする場合、電極をマスクとして用いた場合には、電極層がエッチングされて薄くなる。例えば、電極層の最下層(基板側に最も近い層)にAuが用いられる場合、Auがエッチングにより無くなる場合がある。この場合、上記のように半田接合が困難になる。また、エッチングにより剥がれたAuが、絶縁層の側面や半導体の側面に付着することも考えられる。この場合、半田のリフロー工程において、溶融半田がそのAuを伝って半導体の側面にまで濡れ広がるおそれがある。この場合、上で説明したように、発光素子は基板に対して傾く可能性がある。結果として、歩留りの低下が生じるおそれがある。
 一方、電極層16に半田の高い濡れ性を持たせるため、Au厚さを過剰にすると、Auが半田(Sn)に拡散して、流動性に乏しくもろいAuSn合金のIMC(InnerMetallic Compound)が成長する。すなわち、Snである半田内に、電極層のAuと基板電極層との間に、AuSn合金でなるブリッジ(または柱)が形成される。このようにブリッジが半田内に形成されると、リフロープロセスにおいて発光素子の移動が阻害され、セルフアライメントが困難になる。
 図13は、このうようなAuSn-IMCのブリッジが形成された半田を有する基板モジュールの顕微鏡写真である。この写真からわかるように、Au厚さが厚すぎると、AuSn合金でなるブリッジが過剰に形成され、発光素子が傾いた状態で固定されてしまう場合がある。発明者が検討した結果、上記の悪影響を受けないAuの厚さの上限は、重量比で半田の3%以下であることが分かった。
 以上より、微小な発光素子10、つまり5μm以上300μm以下の幅を持つ発光素子10を製造する場合、電極層16の酸化防止用のAu層の厚さは、10nm以上100nm以下、好ましくは、20nm以上80nm以下、さらに好ましくは、30nm以上70nm以下や、40nm以上60nm以下とされる。典型的には、50nm程度とされる。
 また、以上より、半導体ウェハ上で連続して結合された複数の発光素子を、分離エッチングにより分離するプロセスではなく、フォトリソグラフィによるプロセスを用いるのが好適である。すなわち、レジストをマスクとすることにより、電極をマスクとして電極材料が絶縁層の側面や半導体の側面に付着する問題が解決される。
 5.金属接合材(半田)の厚さについて
 本発明者の検証によれば、半田の厚さが約2μmより小さくなると、上述したAuSn-IMCにより、発光素子がセルフアライメントできなくなる。このことは、半田がSnAg系、もしくはSnAgCu系の材料でなる場合も同様である。その理由として、リフロー温度が関係している。Sn系の半田でリフロープロセスを行う場合、温度プロファイルは、ほぼ同様の条件が使用される。
 図14は、Sn系半田によるリフロープロセスの温度プロファイルの例を示すグラフである。半田は、最も高い温度、例えば245℃付近で溶融する。このような条件で半田が溶融すると、発光素子の電極層、または基板電極層の表面に形成された薄いAuが、溶融半田内に拡散し、AuSn-IMCが拡散する。その拡散深さは、おおよそ2μmである。すなわち、本技術に係る発光素子10が、セルフアライメントし、かつ、水平になるためには、半田の厚さは2μm以上とされることが望ましい。
 なお、図14に示す温度プロファイルは、単なる一例に過ぎず、本技術は他の温度プロファイルも採り得る。
 一方、過剰に半田が厚くなると、傾きは増してしまう。図15は、半田23の厚さと発光素子10の傾きとの関係の実測を示すグラフである。この実験において、矩形の外形を持つ発光素子10における、矩形の電極層16の一辺の長さ(つまり幅)は、13μmとされた。電極層16は、図3に示したように、Ti、Pt、およびAuで構成され、それぞれの厚さは、0.1μm、0.2μm、0.05μmとされた。
 グラフからわかるように、半田の厚さがおおよそ電極層16の幅の半分より大きくなると、発光素子10の傾きが増し、姿勢が不安定になるおそれがある。これは、溶融半田の表面の曲率が大きくなることに伴い、発光素子10がずれ落ちやすくなる現象として説明できる(図3B参照)。したがって、半田の厚さは、電極層16の幅の半分以下(この例では、6.5μm以下)であることが好ましいと言える。
 以上より、本技術は、発光素子10の傾きを抑制するため、以下のような条件を満たすことが望ましいと言える。
 (1)電極層16のうち、当該電極層16の表層に設けられたAuの体積量が、半田23の体積量の3%以下であること。
 (2)Sn系の半田(固化状態)の厚さは、2μm以上であり、かつ、発光素子10の電極層16の一辺の幅の1/2以下であること。
 上述したように、部品20(発光素子10)の傾きを抑制するための前提条件としては、上述したように、第2の層26(電極層16)の全外周側で第1の層24(絶縁層14)の底面245(145)が露出するように、第1の層24の底面245側から突出して設けられた第2の層26が設けられることである。図16は、その検証を行った結果を示すグラフであり、電極層16の幅(矩形の場合、一辺の長さ)と、実際の傾きとの関係を示す。
 この実験では、矩形の発光素子10の幅および絶縁層14の幅を15μmで固定し、電極層16の幅を変えた。図16に示す実験結果から、多少不安定さはあるものの、本技術に係る上記特有の構造による効果が確認された。すなわち、電極層16は、所定幅(実験では9μm)以上において、その幅が大きいほど、絶縁層14の底面145の露出した領域145aが減るので、傾きが大きくなる傾向にあることが確かめられた。
 6.他の実施形態に係る部品または基板モジュール
 6.1)実施形態1
 図17は、他の実施形態1に係る部品の断面図である。この断面図で見て、第1の層の底面245のうち、第2の層26の全外周側で露出した領域245a(以下、露出底面領域と言う。)の幅(第1の幅)w1は、非露出底面領域245bの同方向の幅w2より広く構成されている。
 第1の層24の露出底面領域245aは、平面で見て矩形の開口パターン形状を有する。この開口パターンをフォトリソグラフィで形成するための例えば露光時の位置合わせ精度は、この部品を基板へ実装する装置における位置合わせ精度よりも高い。図17に示す構成によれば、高い位置合わせの精度を持つ露光装置のずれマージン(ずれの許容範囲)を、それより低い位置合わせの精度を持つ実装装置のずれマージンより小さく設定する結果となる。すなわち、低い精度を持つ実装装置のずれマージンを拡大する、というメリットがある。
 6.2)実施形態2
 他の実施形態2に係る部品の断面図として、図17を参照する。この断面図で見て、露出底面領域245aの幅w1が、第2の層26の、第1の層24の底面からの突出方向における突出高さh1より大きくなっている。このように、金属接合材で濡れる可能性が低い露出底面領域の幅w1が、金属接合材で濡れる可能性が高い第2の層26の突出高さh1より大きく構成されることで、本体22の側面が金属接合材で濡れる可能性をさらに低減することができる。
 6.3)実施形態3
 図18Bは、他の実施形態3に係る基板モジュールの平面図であり、図18Aは、図18BにおけるA-A線断面図である。この基板モジュールは、基板50、開口部5a、5bを有する絶縁膜(膜)5、基板電極層(接合層)51、半田パターン(金属接合材)23a、23b、発光素子10を備える。開口部5a内に設けられた半田パターン23a、23bにより、発光素子10と基板電極層51とが接続されている。
 図18Bに示すように、絶縁膜5の開口部5aの開口形状は、その開口部5aの中央部から放射状に突起部(例えば4本)を有してなる。半田パターン23aは、絶縁膜5の開口部5aにて、開口部5aの開口形状と略同一の平面形状を有する。発光素子10は、その開口部5aの中央部に対応する領域に固定されている。
 具体的には、発光素子10の底面は、上述したように、3角形以上の多角形、円形、楕円等の形状などの形状を有する。図18では矩形である。開口部5aの突起部は、中央部から回転対称に少なくとも3方向に沿って互いに実質的に等角度を保って配置されるとともに、その先端が中央部を中心とした円周上に配置され、かつ先端に向かって細くなる形状を有する。実質的に等角度とは、突起部が有効に素子を位置決めすることができる範囲での角度の誤差範囲も含まれる。
 突起部は、例えば3~6本、あるいはそれ以上設けられている。図18Bでは、突起部は、4本とされている。
 このような基板モジュールによれば、半田パターン23aのリフロープロセスにおいて、発光素子10が、開口部5aの中央部に確実にセルフアライメントされる。
 7.他の種々の実施形態
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 例えば図19に示す部品20Aの形態のように、第1の層24の底面245側から第2の層26が突出する形態として、当該底面245の全部が露出する形態も、本技術の範囲に含まれる。すなわち、この形態では、第1の層24の開口24a内から、第2の層26の外周の側面26bが突出するように、第2の層26が第1の層24の底面側から突出している。
 上記実施形態に係る部品20(図1A~C参照)として、発光素子10を例に挙げたが、例えば光学フィルタを構成する部品に本技術を適用してもよい。この場合、例えば複数の部品は、本体がミラーまたは透光部を構成してもよい。複数の部品が、マトリクス状、あるいは千鳥状に基板上に配列されることにより、カラーフィルタ、偏光フィルタ等の光学フィルタを実現することができる。部品の本体は、半導体層12に限られず、金属や樹脂であってもよい。樹脂として透明樹脂が用いられてもよい。また、第1の層24は電気的絶縁機能を有する材料に限られず、また、第2の層26は、導電機能を有する材料に限られない。さらに、金属接合材も、半田以外の金属が採用されてもよい。
 上記発光素子10を利用した機器として、ディスプレイ装置、スキャナ、またはプリンタ等が挙げられる。発光素子10がディスプレイ装置に利用される場合、個々の発光素子10が個々の画素に対応するように、それら発光素子10が基板上に配置される。複数の発光素子10が、スキャナ、プリンタ等に利用される場合、読取用、感光用の光を照射する光源として用いられる。
 以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。
 なお、本技術は以下のような構成もとることができる。
(1)
 底面を有する本体と、
 前記本体の底面に設けられ、底面を有する第1の層と、
 基板上の金属接合材に接合され物理的に一体に設けられた第2の層であって、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられた第2の層と
 を具備する部品。
(2)
 前記(1)に記載の部品であって、
 前記第1の層が、前記金属接合材に対して非濡れ性を持つように構成される
 部品。
(3)
 前記(1)または(2)に記載の部品であって、
 前記第1の層は、前記露出した底面領域以外の、前記第2の層で覆われた非露出底面領域を有する
 部品。
(4)
 前記(3)に記載の部品であって、
 前記第1の層の底面は、前記第1の層および前記第2の層の積層方向の断面で見て、
  前記第1の層の底面のうち前記露出した底面領域は、第1の幅でなり、
  前記非露出底面領域は、前記第1の幅より小さい第2の幅でなる
 部品。
(5)
 前記(3)または(4)に記載の部品であって、
 前記第1の層の底面は、前記第1の層および前記第2の層の積層方向の断面で見て、
  前記第1の層の底面のうち前記露出した底面領域の幅は、前記第2の層の、前記第1の層の底面からの突出方向における突出高さより大きく構成されている
 部品。
(6)
 前記(1)に記載の部品であって、
 前記本体は、半導体材料を主要構成材料として有し、
 前記第1の層は、絶縁材料でなり、
 前記第2の層は、電極である
 部品。
(7)
 前記(6)に記載の部品であって、
 前記第1の層が、前記金属接合材に対して非濡れ性を持つように構成される
 部品。
(8)
 前記(7)記載の部品であって、
 前記第1の層は、SiO2、SiN、または、ポリ系樹脂を含む
 部品。
(9)
 前記(6)から(8)のうちいずれか1項に記載の部品であって、
 前記第2の層の少なくとも底面の層が、前記Auにより構成される
 部品。
(10)
 前記(9)に記載の部品であって、
 前記第2の層のうち前記Auが占める体積量が、前記金属接合材の体積量の3%以下である
 部品。
(11)
 前記(6)から(10)のうちいずれか1項に記載の部品であって、
 前記第2の層は、Pt、またはNiを含む
 部品。
(12)
 部品と、
 接合層を有する基板と、
 前記部品を前記基板の前記接合層に接続する金属接合材とを具備し、
 前記部品は、
  底面を有する本体と、
  前記本体の底面に設けられ、底面を有する第1の層と、
  前記金属接合材に接合され物理的に一体に設けられた単一の第2の層であって、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられた第2の層とを有する
 基板モジュール。
(13)
 前記(12)に記載の基板モジュールであって、
 前記部品を前記基板に投射した部品投射領域が、前記接合層と前記金属接合材とが接触する接触領域の外周縁より内側に配置される
 基板モジュール。
(14)
 前記(12)に記載の基板モジュールであって、
 前記接合層に対向して開口部を有するとともに、前記開口部の開口形状が中央部から放射状に突起部を有してなる膜をさらに具備し、
 前記金属接合材は、前記膜の前記開口部に設けられた、前記開口部の開口形状と略同一の平面形状で構成され、
 前記部品は、前記金属接合材の前記中央部に対応する領域に固定され、
 前記膜の開口部の前記突起部は、前記中央部から回転対称に少なくとも3方向に沿って互いに実質的に等角度を保って配置されるとともに、その先端が前記中央部を中心とした円周上に配置され、かつ前記先端に向かって細くなる形状を有し、
 前記膜の開口部内に設けられた前記金属接合材と、前記接合層とが接続されている
 基板モジュール。
(15)
 前記(12)から(14)のうちいずれか1項に記載の基板モジュールであって、
 前記金属接合材の厚さが、2μm以上であり、かつ、前記部品の前記第2の層の幅の1/2以下である
 基板モジュール。
(16)
 部品と、
 接合層を有する基板と、
 前記部品を前記基板の前記接合層に接続する金属接合材とを具備し、
 前記部品は、
  底面を有する本体と、
  前記本体の底面に設けられ、底面を有する第1の層と、
  前記金属接合材に接合され物理的に一体に設けられた単一の第2の層であって、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられた第2の層とを有する
 機器。
(17)
 部品と、
 接合層を有する基板と、
 前記部品を前記基板の前記接合層に接続する金属接合材とを具備し、
 前記部品は、
  底面を有する本体と、
  前記本体の底面に設けられ、底面を有する第1の層と、
  前記金属接合材に接合され物理的に一体に設けられた単一の第2の層であって、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられた第2の層とを有する
 光学フィルタ。
 5…絶縁膜
 5a…開口部
 10…発光素子
 12…半導体層
 14…絶縁層
 16…電極層
 20、20A…部品
 22…本体
 23a…半田パターン
 23…半田
 24…第1の層
 26…第2の層
 50…基板
 51…基板電極層(接合層)
 100…基板モジュール
 145、245…底面
 145a、245a…底面の露出した領域(露出底面領域)
 145b、245b…非露出底面領域

Claims (17)

  1.  底面を有する本体と、
     前記本体の底面に設けられ、底面を有する第1の層と、
     基板上の金属接合材に接合され物理的に一体に設けられた第2の層であって、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられた第2の層と
     を具備する部品。
  2.  請求項1に記載の部品であって、
     前記第1の層が、前記金属接合材に対して非濡れ性を持つように構成される
     部品。
  3.  請求項1に記載の部品であって、
     前記第1の層は、前記露出した底面領域以外の、前記第2の層で覆われた非露出底面領域を有する
     部品。
  4.  請求項3に記載の部品であって、
     前記第1の層の底面は、前記第1の層および前記第2の層の積層方向の断面で見て、
      前記第1の層の底面のうち前記露出した底面領域は、第1の幅でなり、
      前記非露出底面領域は、前記第1の幅より小さい第2の幅でなる
     部品。
  5.  請求項3に記載の部品であって、
     前記第1の層の底面は、前記第1の層および前記第2の層の積層方向の断面で見て、
      前記第1の層の底面のうち前記露出した底面領域の幅は、前記第2の層の、前記第1の層の底面からの突出方向における突出高さより大きく構成されている
     部品。
  6.  請求項1に記載の部品であって、
     前記本体は、半導体材料を主要構成材料として有し、
     前記第1の層は、絶縁材料でなり、
     前記第2の層は、電極である
     部品。
  7.  請求項6に記載の部品であって、
     前記第1の層が、前記金属接合材に対して非濡れ性を持つように構成される
     部品。
  8.  請求項7に記載の部品であって、
     前記第1の層は、SiO2、SiN、または、ポリ系樹脂を含む
     部品。
  9.  請求項6に記載の部品であって、
     前記第2の層の少なくとも底面の層が、前記Auにより構成される
     部品。
  10.  請求項9に記載の部品であって、
     前記第2の層のうち前記Auが占める体積量が、前記金属接合材の体積量の3%以下である
     部品。
  11.  請求項6に記載の部品であって、
     前記第2の層は、Pt、またはNiを含む
     部品。
  12.  部品と、
     接合層を有する基板と、
     前記部品を前記基板の前記接合層に接続する金属接合材とを具備し、
     前記部品は、
      底面を有する本体と、
      前記本体の底面に設けられ、底面を有する第1の層と、
      前記金属接合材に接合され物理的に一体に設けられた単一の第2の層であって、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられた第2の層とを有する
     基板モジュール。
  13.  請求項12に記載の基板モジュールであって、
     前記部品を前記基板に投射した部品投射領域が、前記接合層と前記金属接合材とが接触する接触領域の外周縁より内側に配置される
     基板モジュール。
  14.  請求項12に記載の基板モジュールであって、
     前記接合層に対向して開口部を有するとともに、前記開口部の開口形状が中央部から放射状に突起部を有してなる膜をさらに具備し、
     前記金属接合材は、前記膜の前記開口部に設けられた、前記開口部の開口形状と略同一の平面形状で構成され、
     前記部品は、前記金属接合材の前記中央部に対応する領域に固定され、
     前記膜の開口部の前記突起部は、前記中央部から回転対称に少なくとも3方向に沿って互いに実質的に等角度を保って配置されるとともに、その先端が前記中央部を中心とした円周上に配置され、かつ前記先端に向かって細くなる形状を有し、
     前記膜の開口部内に設けられた前記金属接合材と、前記接合層とが接続されている
     基板モジュール。
  15.  請求項12に記載の基板モジュールであって、
     前記金属接合材の厚さが、2μm以上であり、かつ、前記部品の前記第2の層の幅の1/2以下である
     基板モジュール。
  16.  部品と、
     接合層を有する基板と、
     前記部品を前記基板の前記接合層に接続する金属接合材とを具備し、
     前記部品は、
      底面を有する本体と、
      前記本体の底面に設けられ、底面を有する第1の層と、
      前記金属接合材に接合され物理的に一体に設けられた単一の第2の層であって、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられた第2の層とを有する
     機器。
  17.  部品と、
     接合層を有する基板と、
     前記部品を前記基板の前記接合層に接続する金属接合材とを具備し、
     前記部品は、
      底面を有する本体と、
      前記本体の底面に設けられ、底面を有する第1の層と、
      前記金属接合材に接合され物理的に一体に設けられた単一の第2の層であって、溶融状態にある前記金属接合材に対して、前記第1の層の濡れ性より高い濡れ性を持ち、前記第2の層の全外周側で前記第1の層の底面の少なくとも一部が露出するように、前記第1の層の底面側から突出して設けられた第2の層とを有する
     光学フィルタ。
PCT/JP2016/003430 2015-09-04 2016-07-22 部品、基板モジュール、機器、および光学フィルタ WO2017037996A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017537198A JP6969379B2 (ja) 2015-09-04 2016-07-22 部品、基板モジュール、機器、および光学フィルタ
US15/752,271 US10483438B2 (en) 2015-09-04 2016-07-22 Component, substrate module, apparatus, and optical filter
CN201680048754.1A CN107924846A (zh) 2015-09-04 2016-07-22 部件、基板模块、设备和光学滤波器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015175062 2015-09-04
JP2015-175062 2015-09-04

Publications (1)

Publication Number Publication Date
WO2017037996A1 true WO2017037996A1 (ja) 2017-03-09

Family

ID=58188458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003430 WO2017037996A1 (ja) 2015-09-04 2016-07-22 部品、基板モジュール、機器、および光学フィルタ

Country Status (4)

Country Link
US (1) US10483438B2 (ja)
JP (1) JP6969379B2 (ja)
CN (1) CN107924846A (ja)
WO (1) WO2017037996A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207984A (ja) * 2018-05-30 2019-12-05 住友電工デバイス・イノベーション株式会社 半導体装置およびその製造方法
JP2021118199A (ja) * 2020-01-22 2021-08-10 スタンレー電気株式会社 深紫外光を発する発光装置及びそれを用いた水殺菌装置
US11362024B2 (en) 2018-05-30 2022-06-14 Sumitomo Electric Device Innovations, Inc. Semiconductor device and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020000921A5 (de) * 2019-02-25 2021-11-04 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Kontrollierte benetzung bei der herstellung von elektronischen bauteilen
JP2021141235A (ja) 2020-03-06 2021-09-16 株式会社東芝 半導体装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258459A (ja) * 2007-04-06 2008-10-23 Toshiba Corp 発光装置及びその製造方法
JP2010171047A (ja) * 2009-01-20 2010-08-05 Mitsubishi Electric Corp 半導体レーザ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211833B2 (en) * 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US20050194584A1 (en) * 2003-11-12 2005-09-08 Slater David B.Jr. LED fabrication via ion implant isolation
JP4709563B2 (ja) * 2005-03-31 2011-06-22 株式会社東芝 半導体装置の製造方法
JP2010034130A (ja) * 2008-07-25 2010-02-12 Sumitomo Electric Ind Ltd 面発光装置およびその製造方法
JP4888473B2 (ja) * 2008-11-20 2012-02-29 ソニー株式会社 実装基板
JP2010245161A (ja) * 2009-04-02 2010-10-28 Denso Corp 電子装置およびその製造方法
JP2011223035A (ja) * 2011-07-25 2011-11-04 Toshiba Corp 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258459A (ja) * 2007-04-06 2008-10-23 Toshiba Corp 発光装置及びその製造方法
JP2010171047A (ja) * 2009-01-20 2010-08-05 Mitsubishi Electric Corp 半導体レーザ装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207984A (ja) * 2018-05-30 2019-12-05 住友電工デバイス・イノベーション株式会社 半導体装置およびその製造方法
US11362024B2 (en) 2018-05-30 2022-06-14 Sumitomo Electric Device Innovations, Inc. Semiconductor device and method of manufacturing the same
JP7095844B2 (ja) 2018-05-30 2022-07-05 住友電工デバイス・イノベーション株式会社 半導体装置およびその製造方法
JP2021118199A (ja) * 2020-01-22 2021-08-10 スタンレー電気株式会社 深紫外光を発する発光装置及びそれを用いた水殺菌装置
JP7397687B2 (ja) 2020-01-22 2023-12-13 スタンレー電気株式会社 深紫外光を発する発光装置及びそれを用いた水殺菌装置

Also Published As

Publication number Publication date
US20180240942A1 (en) 2018-08-23
JP6969379B2 (ja) 2021-11-24
JPWO2017037996A1 (ja) 2018-06-21
CN107924846A (zh) 2018-04-17
US10483438B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2017037996A1 (ja) 部品、基板モジュール、機器、および光学フィルタ
US10041663B2 (en) Light source and method of mounting light-emitting device
JP4581848B2 (ja) 光素子
US20160254428A1 (en) Light emitting device and fabricating method thereof
US10439359B2 (en) Light source device
JP2023052842A (ja) 発光装置
US10644477B2 (en) Light source device
KR102037866B1 (ko) 전자장치
JP2018018918A (ja) 発光装置
WO2015151401A1 (ja) 半導体ユニット、半導体素子、発光装置、表示装置、半導体素子の製造方法
US10700487B2 (en) Light source device
JP2006032779A (ja) 窒化物半導体発光素子
JP6970336B2 (ja) 光源装置
JP4868833B2 (ja) 半導体発光素子及び発光装置
JP6128267B2 (ja) 半導体素子実装部材及び半導体装置
JP2001284696A (ja) 光実装基板および光モジュール
JP2007103804A (ja) 半導体レーザ装置
JP6701628B2 (ja) 半導体装置及びその製造方法
JP2019216217A (ja) 半導体装置及びその製造方法
US12035481B2 (en) Circuit board, light emitting device, and manufacturing method thereof
JP7454439B2 (ja) 半導体発光装置
US20230343912A1 (en) Micro element structure and display device
JP2018046227A (ja) 半導体レーザ装置およびその製造方法
JP2010212646A (ja) 機能素子搭載方法及び機能素子搭載基板
JP2023067026A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537198

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15752271

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841040

Country of ref document: EP

Kind code of ref document: A1