WO2017034362A1 - 상부구조물이 연결된 치과용 결정화 유리 블록 및 이의 제조방법 - Google Patents

상부구조물이 연결된 치과용 결정화 유리 블록 및 이의 제조방법 Download PDF

Info

Publication number
WO2017034362A1
WO2017034362A1 PCT/KR2016/009486 KR2016009486W WO2017034362A1 WO 2017034362 A1 WO2017034362 A1 WO 2017034362A1 KR 2016009486 W KR2016009486 W KR 2016009486W WO 2017034362 A1 WO2017034362 A1 WO 2017034362A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
glass
crystallized glass
heat treatment
lithium disilicate
Prior art date
Application number
PCT/KR2016/009486
Other languages
English (en)
French (fr)
Inventor
김용수
전현준
임형봉
오경식
하성호
김철영
김준형
홍영표
Original Assignee
주식회사 하스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하스 filed Critical 주식회사 하스
Priority to CN201680001590.7A priority Critical patent/CN106536438B/zh
Priority to JP2016572791A priority patent/JP6645988B2/ja
Publication of WO2017034362A1 publication Critical patent/WO2017034362A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/16Refractive index
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/833Glass-ceramic composites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/876Calcium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • C03C4/0021Compositions for glass with special properties for biologically-compatible glass for dental use
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates

Definitions

  • the present invention is to produce a artificial tooth by CAD / CAM processing method using a crystallized glass block, which is an artificial tooth material, a method of bonding a high strength zirconia post that can act as a core inside the crystallized glass block, implant high
  • the present invention relates to a method of bonding a metal link coupled to a fixture to a zirconia column, a crystallized glass that can be bonded to a zirconia column, and a method of manufacturing the same.
  • Crown material means a prosthetic material that repairs the dentin and enamel of the damaged tooth, and may be classified into inlays, onlays, veneers, crowns, and the like, depending on the application area. Since the crown material is repaired at the outer surface of the tooth, aesthetic characteristics are greatly demanded, and high strength is required because of fractures such as wear or chipping with the opposing teeth.
  • Conventionally used crown materials include leucite glass-ceramics, tempered porcelain or fluorapatite (Ca 5 (PO 4 ) 3 F) crystallized glass, which have excellent aesthetic properties but high strength. It has a disadvantage of low fracture rate of 80 ⁇ 120 MPa. Thus, research is currently underway to develop high strength crown materials of various materials.
  • Lithium silicate crystallized glass was produced by Marcus P. Borom and Anna M. Turkalo in 1973 (The Pacific Coast Regional Meeting, The American Ceramic Society, San Francisco, CA, October 31, 1973 (Glass division, No. 3-G-73P)).
  • the crystal phase and strength of Li 2 O-Al 2 O 3 -SiO 2 -Li 2 OK 2 OB 2 O 3 -P 2 O 5 glass were investigated for various nucleation and growth annealing conditions.
  • the high-temperature lithium disilicate crystal phase from low-temperature lithium metasilicate showed 30 ⁇ 35 KPS of strength, which is due to the residual stress due to the difference in thermal expansion coefficient of matrix glass, mother glass, Li 2 SiO 5 , Li 2 SiO 3 phases. It was because.
  • Patent Document 1 Materials and methods for producing artificial teeth using glass containing lithium disilicate crystals (monolithic dental crowns) are known (Patent Document 1).
  • the known crystallized glass is a material for producing a monolithic crown, and no crystallized glass material for bonding to zirconia / metal and applied to a tri-layered block has not been introduced yet. . This is because the crystallized glass material must match the thermal expansion coefficient of zirconia, and an inorganic bond capable of bonding the crystallized glass, zirconia, zirconia and metal, respectively, is an important factor.
  • the crystallized glass block has been applied to the implant aesthetic prosthesis in combination with a metal link in the past, at this time is aesthetically problematic due to allergens due to metal ions or opacity peculiar to metallic.
  • metal and crystallized glass are combined, fracture or bonding at the interface is not easy due to the difference in physical properties of the two materials.
  • the problem to be solved by the present invention is to propose a crystallized glass material that can be bonded to zirconia.
  • Another object of the present invention is to propose an inorganic bond capable of thermally bonding crystalline glass materials that can be bonded to zirconia.
  • Another problem to be solved by the present invention is to propose an abutment crystallized glass block that combines high strength zirconia to the inner core to utilize both strength and aesthetic strength.
  • the lithium silicate glass of the present invention is 10 to 15% by weight of Li 2 O, 68 to 76% by weight of SiO 2 , P 2 O 5 2 to 5% by weight to act as a nucleating agent, increasing the glass transition temperature and softening point , 0-5% by weight of Al 2 O 3 to enhance the chemical durability of the glass, 2-3% by weight of ZrO 2 , 0.5-3% by weight CaO to increase the thermal expansion rate of the glass, 0.5-5% by weight of Na 2 O, K It contains 0.5-5% by weight of 2 O, 1-2% by weight of colorant, and 0-2.0% by weight of a mixture of MgO, ZnO, F, La 2 O 3 .
  • the lithium disilicate crystallized glass containing the cristobalite crystal phase of the present invention has Li 2 O 10-15% by weight, SiO 2 68-76% by weight, P 2 O 5 2-5% by weight as a nucleating agent , Al 2 O 3 0 ⁇ 5% by weight, ZrO 2 2 ⁇ 3% by weight, CaO 0.5 ⁇ 3% by weight, increasing the thermal expansion rate of glass, increasing glass transition temperature and softening point 0-5 wt% of 2 O 0.5-5 wt%, K 2 O 0.5-5 wt%, 1-2 wt% colorant, 0-2.0 wt% of a mixture of MgO, ZnO, F, La 2 O 3 It includes.
  • the method for producing a lithium disilicate crystallized glass containing the cristobalite crystal phase of the present invention comprises the steps of melting the glass composition and crystal growth, the first crystallization heat treatment step for 1 minute to 2 hours at 700 °C to 900 °C and Crystal growth in a second heat treatment at 800 ° C. to 920 ° C. for 1 minute to 2 hours.
  • the inorganic binder of the present invention is 8 to 12% by weight of Li 2 O, 50 to 70% by weight of SiO 2 , 0 to 3% by weight of Al 2 O 3 , CaO 0.5 to 5% by weight, Na 2 O 0.5 ⁇ 3% by weight, 0.5-2% by weight of K 2 O is added, 0.5-7% by weight of nucleating agent P 2 O 5, 0.5-1% by weight of colorant, a mixture of MgO, ZnO, F, La 2 O 3 0 to 1.0% by weight, the coefficient of thermal expansion is characterized in that 9.5 ⁇ 10.8 x 10 -6 / °C.
  • the crystallized glass for zirconia bonding, and the inorganic bond, according to the present invention enable the production of artificial aesthetic prostheses through CAD / CAM processing of metal links / zirconia posts / crystallized glasses, which were previously impossible. This has the effect of improving the low bond strength, low fracture resistance, aesthetic inhibition of the metal / crystallized glass existing implant aesthetic prosthesis.
  • the inorganic bond inorganic bond
  • the inorganic binder proposed in the present invention between the zirconia and the crystallized glass uniform and dense structure It is formed to improve the mechanical strength by strengthening the bonding strength between the two materials, as well as reducing the possibility of secondary infection by bacterial invasion.
  • FIG. 1 is a conceptual diagram of a CAD / CAM processing aesthetic prosthetic block to which three materials of crystallized glass / zirconia / metal proposed in the present invention is applied.
  • FIG. 2 is a view comparing shear bond strength between zirconia and crystallized glass and shear bond strength of existing products when an inorganic bond according to an embodiment of the present invention is applied.
  • FIG. 3 illustrates a microstructure of a specimen in which crystallized glass, an inorganic bond, and zirconia are bonded according to an embodiment of the present invention.
  • the high-strength crystallized glass for teeth proposed in the present invention includes cristobalite, lithium disilicate crystals and glass, and has a very similar color to the teeth as a whole so that it can be used as a dental material. Suitable for
  • Aesthetics especially light transmission, have a significant effect on the scattering of light due to the difference in refractive index of heterogeneous crystal phases in dense bulk bodies.
  • the refractive index of cristolite is 1.48, and as the content thereof increases, the interface with the mother glass or lithium disilicate crystal phase increases, so that light scattering becomes severe and the transmittance decreases. Therefore, only a suitable amount of cristolite crystal phase should be formed in the glass in order to exhibit usable light transmission for dental use.
  • the strength of the crystallized glass can be improved by the stresses formed on the phases having different coefficients of thermal expansion.
  • the coefficient of thermal expansion of Cristobalite is known as 10.9 x 10 -6 / ° C (F. Aumento, The American Mineralogist, vol. 51, July. 1966) .
  • the coefficient of thermal expansion of lithium disilicate is 11.4 x 10 -6 / ° C.
  • Known. Marcus P. Borom, Journal of The American Ceramic Society, vol. 58, no. 9-10, 1975
  • the conventional lithium disilicate crystallized glass has a biaxial strength higher than the strength (about 350 MPa) of the conventional lithium disilicate crystallized glass, and it is understood that it can be applied as an aesthetic prosthetic material in terms of light transmittance.
  • Such glass or crystallized glass can be applied monolithically to single crowns or dentures, and when applied to high-strength prostheses, they are adhered to the top of zirconia, resulting in both strength and aesthetics, and high loads such as posterior parts and bridges. It can be applied to the site of application. At this time, the bond strength of the zirconia and lithium silicate crystallized glass showed more than twice the tensile bond strength of the conventional porcelain fuse to metal (PFM).
  • PFM porcelain fuse to metal
  • the high-strength crystallized glass for dental proposed in the present invention is a crystallized glass including lithium disilicate crystals, cristobalite, and lithium phosphate crystals, and the glass applicable to enhance the strength and aesthetic light transmittance of the present invention is Li 2 O 10 ⁇ .
  • the alkali oxide may be K 2 O or Na 2 O, and may also include K 2 O and Na 2 O together.
  • High-strength crystallized glass for teeth may further comprise 1 to 2% by weight of the colorant as described above to give the same or similar color as the teeth.
  • the colorant is to give the same or similar color and fluorescence as teeth, red iron oxide (Fe 2 O 3 ), yellow ceria (CeO 2 ), orange vanadium pentoxide (V 2 O 5 ), black trioxide Vanadium (V 2 O 3 ), Er 2 O 3 , Tb 2 O 3 , Pr 2 O 3 , TaO 2 , MnO 2 or mixtures thereof can be used.
  • red iron oxide (Fe 2 O 3 ), ceria (CeO 2 ) or vanadium pentoxide (V 2 O 5 ) is added together with the starting material, and when melted, it becomes light yellow similar to the color of teeth.
  • Titanium oxide (TiO 2 ) is white to give a color very similar to that of teeth.
  • Li 2 CO 3 may be added instead of Li 2 O
  • carbon dioxide (CO 2 ) which is a carbon (C) component of Li 2 CO 3
  • K 2 CO 3 and Na 2 CO 3 may be added instead of K 2 O and Na 2 O in the alkali oxide
  • carbon dioxide (CO 2 ) which is a carbon (C) component of K 2 CO 3 and Na 2 CO 3
  • the ball milling process uses a dry mixing process, and a ball milling process or the like may be used as the dry mixing process.
  • the starting material is charged to a ball milling machine, and the ball mill is rotated at a constant speed to mechanically crush the starting material and mix uniformly.
  • the ball used in the ball mill may use a ball made of a ceramic material such as zirconia or alumina, and the ball size may be the same or may have a ball having at least two sizes. Considering the target particle size, adjust the size of the ball, milling time, revolution per minute of the ball mill.
  • the size of the ball may be set in the range of about 1 mm to 30 mm, and the rotation speed of the ball mill may be set in the range of about 50 to 500 rpm.
  • Ball milling is preferably performed for 1 to 48 hours in consideration of the target particle size and the like. Ball milling causes the starting material to be ground into particles of fine size, to have a uniform particle size and to be mixed at the same time.
  • the mixed starting materials are put in a melting furnace, and the starting materials are melted by heating a melting furnace containing the starting materials.
  • melting means that the starting material is changed into a material state having a viscosity of a liquid state rather than a solid state.
  • the melting furnace is preferably made of a material having a high melting point and a high contact point and a low contact angle in order to suppress the sticking of the melt.
  • platinum (Pt) diamond-like-carbon (DLC), chamotte
  • the furnace is made of the same material or whose surface is coated with a material such as platinum (Pt) or diamond-like-carbon (DLC).
  • Melting is preferably performed for 1 to 12 hours at atmospheric pressure at 1400 ⁇ 2000 °C. If the melting temperature is less than 1400 °C the starting material may not be melted at all, and if the melting temperature exceeds 2000 °C it is not economical to consume excessive energy, it is preferable to melt at the above-mentioned temperature range Do. In addition, when the melting time is too short, the starting material may not be sufficiently melted, and when the melting time is too long, it is not economical because excessive energy consumption is required. It is preferable that the temperature increase rate of the melting furnace is about 5 to 50 ° C./min.
  • the temperature rising rate of the melting furnace is too slow, it takes a long time and the productivity decreases, and if the temperature rising rate of the melting furnace is too fast, Since the volatilization amount increases and the physical properties of the crystallized glass may not be good, it is preferable to raise the temperature of the melting furnace at the temperature increase rate in the above-mentioned range. Melting is preferably carried out in an oxidizing atmosphere such as oxygen (O 2 ), air.
  • the melt is poured into a predetermined molding mold to obtain a crystallized glass for dental of the desired shape and size.
  • the molding mold is preferably made of a material having a high melting point and a high contact point and a low contact angle to prevent the glass melt from sticking.
  • the molding mold is made of a material such as graphite and carbon, and thermal shock In order to prevent the preheating to 200 ⁇ 300 °C it is preferable to pour the melt into the molding mold.
  • the melt contained in the molding mold When the melt contained in the molding mold is cooled to 60 to 100 ° C., it is transferred to a crystallization heat treatment kiln to nucleate and crystal grow the glass.
  • the first stage heat treatment is crystallization heat treatment is performed in the 700 ⁇ 900 °C section, the holding time is performed over 1 minute ⁇ 2 hours.
  • the two-stage heat treatment process can be applied as a prosthesis immediately after processing without the two-stage heat treatment process after the one-stage heat treatment, or it can be applied as a prosthesis after increasing the strength by increasing the crystal growth through the two-stage heat treatment process.
  • the two-stage heat treatment process is performed for 1 minute to 2 hours at 800 ⁇ 920 °C, and the two-stage heat treatment option is selectively made by the consumer in consideration of the strength requirement according to the prosthetic application field and the reduction of the prosthetic manufacturing process. You can decide.
  • the one-stage heat treatment temperature is less than 700 ° C., due to the low temperature, the inorganic bond does not melt, so that zirconia and glass cannot be bonded, and low strength is required for processing the crystallized glass.
  • the first stage heat treatment temperature is 900 ° C. or more, the size of the nucleus may increase, making machining difficult, and deformation of the block may occur.
  • the two-stage heat treatment process is a customer's option. It is inefficient because coarse crystal growth does not occur rapidly when the two-stage heat treatment temperature is lower than 800 °C, and it cannot be used because the deformation of crystallized glass occurs above 920 °C. .
  • CAD / CAM processing is possible both after nucleation heat treatment or nucleation-crystal growth heat treatment, preferably after one step heat treatment. At this time, the lithium disilicate crystal phase formed is subjected to a compressive stress due to the thermal expansion coefficient difference of the mother glass, and can be machined by a fine size.
  • the temperature increase rate up to the heat treatment temperature is about 10 to 60 ° C./min. If the temperature increase rate is too slow, it takes a long time and productivity decreases. If the temperature increase rate is too fast, the volatilization amount of the starting material is increased by a sudden temperature increase. It is preferable to raise the temperature at a temperature increase rate in the above-described range because the physical properties of the crystallized glass may be poor.
  • Heat treatment is preferably carried out in an oxidizing atmosphere such as oxygen (O 2 ), air (air). The heat treatment causes the movement of atoms in the glass structure, resulting in a phase change of the glass. That is, crystal growth occurs by heat treatment, and crystallization including lithium silicate crystal occurs, whereby crystallized glass can be obtained.
  • the kind of crystals produced and the content of the crystals may vary depending on the heat treatment temperature. Depending on the heat treatment temperature, there may be growth of crystals such as lithium disilicate (Li 2 Si 2 O 5 ), lithium phosphate (Li 3 PO 4 ), cristobalite (SiO 2 )
  • crystals such as lithium disilicate (Li 2 Si 2 O 5 ), lithium phosphate (Li 3 PO 4 ), cristobalite (SiO 2 )
  • the kind of crystals produced and the content of the crystals may vary depending on the constituents of the starting material and the content of the constituents.
  • the zirconia-bonded crystallized glass block or metal / zirconia-bonded crystallized glass block obtained through the above-described crystallization heat treatment is processed into a crown shape through cutting to impart color characteristics to approximate natural teeth, and then bond to the implant medium.
  • Pressurized casting is carried out by lowering the viscosity of the glass or crystallized glass ingot in the section of 920 °C to 1000 °C to push into the hollow space of the crown shape located in the investment.
  • the glass phase is phase-converted to the lithium disilicate crystal phase, and the lithium disilicate ingot becomes the lithium disilicate crystal phase as it is after the pressure casting heat treatment, and the crystal shape increases in the uniaxial direction.
  • Metal / zirconia / crystallized glass bonding by inorganic bonds can be done simultaneously or separately. These bonding conditions are made by hot bonding for 1 minute to 2 hours in the 700 ⁇ 900 °C section as described above. Inorganic bonds were invented in an active composition capable of chemically bonding with an inert zirconia material.
  • Li 2 O which is highly reactive with zirconia is 8-12% by weight, 50-70% by weight of SiO 2 which is a structural skeleton, Al 2 O 3 0 which increases the glass transition temperature and softening point and improves the chemical durability of glass ⁇ 3% by weight, 0.5-5% by weight of CaO, 0.5-3% by weight of Na 2 O, 0.5-3% by weight of K 2 O to increase the thermal expansion rate of the glass, and the nucleus to show the opacity when giving the color to the bond 0.5 ⁇ 7% by weight P 2 O 5 as a forming agent
  • Other colorants include 0.5 ⁇ 1% by weight, MgO, ZnO, F, La 2 O 3 affects the light transmittance, so 0 ⁇ 1.0% by weight .
  • the composition of the inorganic bond is designed to have a coefficient of thermal expansion of 9.5 to 10.8 x 10 -6 / °C so that the thermal expansion coefficient between metal and zirconia, zirconia and crystallized glass blocks, as well as chemical bonding with zirconia is matched. do.
  • the crystallized glass for zirconia bonding and the inorganic bond according to the present invention are applied to artificial aesthetic prostheses through CAD / CAM processing of the crown prosthetic material including a metal link / zirconia post / crystallized glass, which was previously impossible. Make it possible. This has the effect of improving the low bond strength, low fracture resistance, aesthetic inhibition of the metal / crystallized glass existing implant aesthetic prosthesis.
  • an inorganic bond that enables chemical bonding of zirconia, which is an inert material through hot bonding is the first attempted bonding method. Inorganic bonds cannot be commercialized even if the crystallized glass does not match the thermal expansion coefficient of zirconia, even if the set conditions are met.
  • This crystallized glass composition is also the first invention proposed for hot zirconia bonding.
  • FIG. 1 is a conceptual diagram of a CAD / CAM processed aesthetic prosthetic block to which crystallized glass blocks / zirconia columns / metal links are applied.
  • the crystallized glass block 1 and the zirconia post 2 are hot-bonded by an inorganic bond, and at this time, the crystallized glass block is free from deformation even at a temperature at which the hot-bonding is performed, and workability is ensured. Should be a composition.
  • the crystallized glass of the present invention is capable of machining even after undergoing conditions for 1 minute to 2 hours of hot bonding in a 700 to 900 ° C section, and then has a lightness and color, which is an aesthetic characteristic that can be directly applied to an artificial prosthetic material. Must be expressed.
  • the metal link 3 is a portion that engages with the implant fixture, and the fastening screw hole 4 is machined inside.
  • Conventional metal link and zirconia bonding was used resin-based cement, in the present invention was carried out by hot bonding to increase the bonding strength and to increase the applicability of the prosthesis. Bonding of metal links (3) and zirconia posts (2) is also possible at the time of crystalline glass / zirconia / metal bonding, and in order to reduce the oxidation of the metal during heat treatment, the low temperature of the metal links to the already bonded crystallized glass / zirconia It is also possible to join at.
  • the inorganic bond developed in the present invention exhibits a bond strength that is two times or more than that of the existing zirconia / veneer ceramics.
  • Figure 2 shows the shear bond strength between the existing zirconia veneer products and products to which the technology proposed in the present invention is applied.
  • the product to which the technique proposed in the present invention is applied not only increases the mechanical stability due to the strong bonding between the two materials, but also reduces the possibility of secondary infection due to bacterial penetration. .
  • Inorganic bonds are formed in a uniform and dense structure between the zirconia and the crystallized glass, and chemical bonds due to the formation of secondary crystal phases occur while certain components of the inorganic bond elute zirconia. Seems to be.
  • the present invention is to produce a artificial tooth by CAD / CAM processing method using a crystallized glass block, which is an artificial tooth material, a method of bonding a high strength zirconia post that can act as a core inside the crystallized glass block, implant high
  • the present invention relates to a method of bonding a metal link coupled to a fixture to a zirconia column, a crystallized glass that can be bonded to a zirconia column, and a method of manufacturing the same.
  • the crystallized glass for zirconia bonding, and the inorganic bond, according to the present invention enable the production of artificial aesthetic prostheses through CAD / CAM processing of metal links / zirconia posts / crystallized glasses, which were previously impossible. This has the effect of improving the low bond strength, low fracture resistance, aesthetic inhibition of the metal / crystallized glass existing implant aesthetic prosthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Structural Engineering (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Dentistry (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Dental Prosthetics (AREA)
  • Dental Preparations (AREA)

Abstract

본 발명은 인공치아 소재인 결정화 유리 블록을 이용하여 CAD/CAM 가공방법으로 인공치아를 제조하는데 있어, 결정화 유리 블록 내부에 코어 역할을 할 수 있는 고강도 지르코니아 기둥(post)을 결합시키는 방법, 임플란트 고정체(fixture)와 체결되는 금속링크를 지르코니아 기둥에 결합시키는 방법 및 지르코니아 기둥에 접합 가능한 결정화 유리 및 이의 제조 방법에 관한 것이다. 이를 위해 본 발명의 리튬 실리케이트 유리는 Li2O 10~15중량%, SiO2 68~76중량%, 핵 형성제 역할을 하는 P2O5 2~5중량%, 유리전이온도와 연화점을 증가시키며, 유리의 화학적 내구성을 증진시키는 Al2O3 0~5중량%, ZrO2 2~3중량%, 유리의 열팽창율을 증가시키는 CaO 0.5~3중량%, Na2O 0.5~5중량%, K2O 0.5~5중량%, 조색제(colorant) 1~2중량%를 포함하며, MgO, ZnO, F, La2O3의 혼합물 0~2.0중량%의 유리 조성물을 포함한다.

Description

상부구조물이 연결된 치과용 결정화 유리 블록 및 이의 제조방법
본 발명은 인공치아 소재인 결정화 유리 블록을 이용하여 CAD/CAM 가공방법으로 인공치아를 제조하는데 있어, 결정화 유리 블록 내부에 코어 역할을 할 수 있는 고강도 지르코니아 기둥(post)을 결합시키는 방법, 임플란트 고정체(fixture)와 체결되는 금속링크를 지르코니아 기둥에 결합시키는 방법 및 지르코니아 기둥에 접합 가능한 결정화 유리 및 이의 제조 방법에 관한 것이다.
경제가 발전하고 국민소득이 향상되면서 외모에 대한 관심이 높아지며, 이러한 관심에 부응하여 치과 보철물의 심미성에 대한 관심 역시 높아지고 있다. 이에 따라 심미감을 갖는 많은 종류의 치과 보철 수복재가 소개되고 있으며, 그 중에서도 금속을 사용하지 않는 비금속 크라운 재료가 다양하게 개발되고 있는 상황이다.
크라운 재료는 손상된 치아의 상아질과 법랑질에 해당하는 부분을 수복하는 보철재료를 의미하며, 적용 부위에 따라 인레이, 온레이, 비니어, 크라운 등으로 구분할 수 있다. 크라운 재료가 수복되는 위치는 치아의 겉 표면이기 때문에 심미적 특성이 크게 요구되고, 대합치와의 마모나 치핑(chipping)등 파절 때문에 높은 강도가 요구된다. 기존에 크라운 재료로 사용되는 소재는 루사이트 결정화 유리(leucite glass-ceramics), 강화 포세린이나 불화아파타이트(fluorapatite, Ca5(PO4)3F) 결정화 유리가 있으며, 이들은 우수한 심미적 특성이 있지만 강도가 80~120 MPa로 낮아 파절 가능성이 높다는 단점이 있다. 이에, 현재 다양한 소재의 고강도 크라운 소재를 개발하려는 연구가 진행 중이다.
리튬실리케이트 결정화 유리는 1973년 Marcus P. Borom과 Anna M. Turkalo(The Pacific Coast Regional Meeting, The American Ceramic Society, San Francisco, CA, October 31, 1973 (Glass division, No. 3-G-73P))에 의해서 소개되었다. Li2O-Al2O3-SiO2-Li2O-K2O-B2O3-P2O5 계 유리를 이용해 다양한 결정핵 형성과 성장 열처리 조건별로 결정상과 강도에 대해서 연구하였다. 저온의 리튬 메타실리케이트로부터 고온의 리튬디실리케이트 결정상을 나타낼 때 30~35 KPS의 강도를 보였고, 이는 기지유리, 모유리, Li2SiO5, Li2SiO3 상들의 열팽창계수 차이에 기인한 잔류응력 때문이었다.
리튬 디실리케이트 결정을 포함한 유리를 이용하여 인공치아를 제작하는 소재 및 방법(monolithic dental crown)은 공지되어 있다(특허문헌 1). 하지만 공지된 결정화 유리는 모노리식(monolithic) 구조의 크라운을 제작하기 위한 소재이고, 지르코니아/금속에 접합시켜 삼층구조의 블록(tri-layered block)에 적용하기 위한 결정화 유리 소재는 아직 소개된 바 없다. 이는 결정화 유리소재가 지르코니아의 열팽창계수와 맞아야(matching)하고, 결정화 유리와 지르코니아, 지르코니아와 금속을 각각 접합시킬 수 있는 무기 접합제(inorganic bond)가 중요한 요소이다.
즉, 기존에는 결정화 유리 블록이 금속재질의 링크와 결합되어 임플란트 심미 보철에 적용되어 왔는데, 이 때 금속 이온에 의한 알레르기나 금속성 특유의 불투명성으로 심미적으로 문제점이 되고 있다. 특히 금속과 결정화 유리가 결합되다 보니 두 소재의 물성차이에 의해 계면에서 파절이나 접합이 용이하지 않았다.
본 발명이 해결하려는 과제는 지르코니아에 접합 가능한 결정화 유리소재를 제안함에 있다.
본 발명이 해결하려는 다른 과제는 지르코니아에 접합 가능한 결정화 유리소재들을 열 접합 가능한 무기 접합제(inorganic bond)를 제안함에 있다.
본 발명이 해결하려는 또 다른 과제는 내부 코어에 고강도의 지르코니아를 결합시켜 강도와 심미적인 강점을 모두 살리는 어버트먼트 결정화 유리 블록을 제안함에 있다.
이를 위해 본 발명의 리튬 실리케이트 유리는 Li2O 10~15중량%, SiO2 68~76중량%, 핵 형성제 역할을 하는 P2O5 2~5중량%, 유리전이온도와 연화점을 증가시키며, 유리의 화학적 내구성을 증진시키는 Al2O3 0~5중량%, ZrO2 2~3중량%, 유리의 열팽창율을 증가시키는 CaO 0.5~3중량%, Na2O 0.5~5중량%, K2O 0.5~5중량%, 조색제(colorant) 1~2중량%를 포함하며, MgO, ZnO, F, La2O3의 혼합물 0~2.0중량%의 유리 조성물을 포함한다.
이를 위해 본 발명의 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리는 Li2O 10~15중량%, SiO2 68~76중량%, 핵 형성제 역할을 하는 P2O5 2~5중량%, 유리전이온도와 연화점을 증가시키며, 유리의 화학적 내구성을 증진시키는 Al2O3 0~5중량%, ZrO2 2~3중량%, 유리의 열팽창율을 증가시키는 CaO 0.5~3중량%, Na2O 0.5~5중량%, K2O 0.5~5중량%, 조색제(colorant) 1~2중량%를 포함하며, MgO, ZnO, F, La2O3의 혼합물 0~2.0중량%의 유리 조성물을 포함한다.
이를 위해 본 발명의 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리를 제조하는 방법은 유리 조성물을 융용 후 결정 성장하는 단계, 700℃ ~ 900℃에서 1분~2시간동안 1차 결정화 열처리 단계 및 800℃ ~ 920℃에서 1분~2시간동안 2차 열처리로 결정 성장하는 단계를 포함한다.
이를 위해 본 발명의 무기 접합제는 Li2O가 8~12중량%, SiO2가 50~70중량%, Al2O3 0~3중량%, CaO 0.5~5중량%, Na2O 0.5~3중량%, K2O 0.5~3중량% 첨가되며, 핵 형성제인 P2O5 0.5~7중량%, 조색제(colorant) 0.5~1중량%, MgO, ZnO, F, La2O3의 혼합물 0~1.0중량%이며, 열팽창계수는 9.5~10.8 x 10-6/℃임을 특징으로 한다.
본 발명에 따른 지르코니아 접합용 결정화 유리, 그리고 무기 접합제(inorganic bond)는 기존에 불가능 했던 금속 링크/지르코니아 기둥(post)/결정화 유리를 CAD/CAM 가공을 통해 인공 심미보철로 제작 가능하게 한다. 이는 기존의 임플란트 심미보철이 갖고 있는 금속/결정화 유리간 낮은 접합강도, 낮은 파절 저항성, 심미성 저해를 개선하는 효과가 있다.
또한, 무기 접합제(inorganic bond)는 조건이 갖춰졌다 하더라도 결정화 유리가 지르코니아의 열팽창계수와 매칭되지 않으면 제품화가 불가능 하나, 본 발명에서 제안하는 무기 접합제는 지르코니아와 결정화 유리 사이에 균일하고 치밀한 구조로 형성되어 두 소재간 접합 강도를 강화시켜 기계적 안정성을 높일 뿐만 아니라 세균침투에 의한 2차 감염의 가능성을 줄여 준다.
도 1은 본 발명에서 제안하는 결정화 유리/지르코니아/금속의 세 가지 소재가 적용된 CAD/CAM가공 심미보철 블록의 개념도이다.
도 2는 본 발명의 일실시 예에 따른 무기 접합제(inorganic bond)를 적용했을 때 지르코니아와 결정화 유리 간 전단결합강도와 기존 제품의 전단결합강도를 비교한 도면이다.
도 3은 본 발명의 일실시 예에 따른 결정화 유리, 무기 접합제(inorganic bond), 지르코니아가 결합된 시편을 에칭한 미세구조를 도시하고 있다.
전술한, 그리고 추가적인 본 발명의 양상들은 첨부된 도면을 참조하여 설명되는 바람직한 실시 예들을 통하여 더욱 명백해질 것이다. 이하에서는 본 발명의 이러한 실시 예를 통해 당업자가 용이하게 이해하고 재현할 수 있도록 상세히 설명하기로 한다.
본 발명에서 제안하는 치아용 고강도 결정화 유리는 크리스토벌라이트(cristobalite), 리튬 디실리케이트(lithium disilicate) 결정과 유리질을 포함하며, 전체적으로 치아와 매우 유사한 색상을 나타내므로 심미성이 높아 치과용 재료로 사용하기에 적합하다.
심미성 특히 투광성은 치밀한 벌크체에서 이종 결정상의 굴절률(refractive index) 차이에 의한 빛의 산란정도가 크게 영향을 미친다. 크리스토벌라이트의 굴절률은 1.48로 그 함유량이 증가할수록 모유리 또는 리튬 디실리케이트 결정상과의 계면이 증가하므로 빛의 산란이 심해져 투과율이 낮아진다. 따라서 치과용의 사용가능한 투광성을 나타내기 위해서는 적절한 양의 크리스토벌라이트 결정상만을 유리 내에 형성시켜야 한다.
결정화 유리의 강도는 서로 다른 열팽창 계수를 갖는 상에 형성된 응력(compressive stress)에 의해 향상될 수 있다. 크리스토벌라이트의 열팽창 계수는 10.9 x 10-6/℃로 알려져 있으며,(F. Aumento, The American Mineralogist, vol. 51, July. 1966) 리튬 디실리케이트의 열팽창 계수는 11.4 x 10-6/℃로 알려져 있다. (Marcus P. Borom, Journal of The American Ceramic Society, vol. 58, no. 9-10, 1975) 따라서 유리(mother glass) 내에서 압축응력을 유도하기위해 크리스토벌라이트 결정상의 열팽창계수보다 낮은 열팽창계수를 갖는 유리조성의 설계가 중요하다.
또한, 기존의 리튬 디실리케이트(lithium disilicate) 결정화 유리의 강도(350 MPa정도)보다 높은 이축강도를 가지며, 투광성 면에서도 심미보철소재로 적용이 가능한 것으로 파악되었다. 이러한 유리 또는 결정화 유리는 모노리식하게 단일크라운이나 교의치에 적용가능하며, 고강도의 보철물에 적용 시에는 지르코니아 상단에 접착되며, 이로 인해 강도와 심미성이 동시에 구현되며, 구치부나 브릿지와 같이 높은 하중이 인가되는 부위에 적용할 수 있다. 이 때 지르코니아와 리튬 실리케이트 결정화 유리의 접합계면을 접착강도는 기존의 porcelain fuse to metal(PFM)보다 2배 이상의 인장접착강도(tensile bond strength)를 나타내었다.
이하에서, 본 발명의 바람직한 실시예에 따른 지르코니아 기둥(post)가 결합된 CAD/CAM용 결정화 유리 및 무기 접합제(inorganic bond) 제조방법에 대해 알아보기로 한다.
본 발명에서 제안하는 치아용 고강도 결정화 유리는 리튬 디실리케이트 결정, 크리스토벌라이트, 리튬 포스페이트 결정을 포함하는 결정화 유리로서, 본 발명의 강도와 심미 투광성을 증진하기 위해서 적용 가능한 유리는 Li2O 10~15중량%, SiO2 68~76중량%, 핵 형성제 역할을 하는 P2O5 2~5중량%, 유리전이온도와 연화점을 증가시키며, 유리의 화학적 내구성을 증진시키는 Al2O3 0~5중량%, ZrO2는 2~3중량%, 유리의 열팽창율을 증가시키는 CaO 0.5~3중량%, Na2O 0.5~5중량%, K2O 0.5~5중량%을 보이며, 기타 조색제(colorant)는 1~2중량%를 포함하며 MgO, ZnO, F, La2O3는 투광성에 영향을 주므로 혼합하여 0~2.0중량% 첨가된다. 알칼리 산화물은 K2O 또는 Na2O일 수 있으며, 또한, K2O와 Na2O가 함께 포함된 것일 수도 있다.
본 발명의 바람직한 실시예에 따른 치아용 고강도 결정화 유리는 치아와 동일 또는 유사한 색상을 부여하기 위해 상술한 바와 같이 조색제 1~2중량%를 더 포함할 수 있다. 조색제는 치아와 동일 또는 유사한 색상 및 형광성을 부여하기 위한 것으로, 적색 산화철(Fe2O3), 노란색을 나타내는 세리아(CeO2), 오렌지색을 나타내는 오산화바나듐(V2O5), 흑색을 나타내는 삼산화바나듐(V2O3), Er2O3, Tb2O3, Pr2O3, TaO2, MnO2 또는 이들의 혼합물을 사용할 수 있다. 예컨대, 적색 산화철(Fe2O3), 세리아(CeO2) 또는 오산화바나듐(V2O5)은 출발원료와 함께 첨가되어 용융이 이루어지면 치아의 색상과 유사한 연한 노란색(yellow)을 띠게 되며, 산화티타늄(TiO2)은 백색을 띠어 치아의 색상과 매우 유사한 색상을 부여하게 된다.
상술한 출발원료들을 칭량하여 혼합하고, 이때 Li2O 대신에 Li2CO3를 첨가할 수도 있으며, Li2CO3의 탄소(C) 성분인 이산화탄소(CO2)는 유리의 용융 공정에서 가스로 배출되어 빠져나가게 된다. 또한, 알칼리 산화물에서 K2O 및 Na2O 대신에 각각 K2CO3, Na2CO3를 첨가할 수도 있으며, K2CO3, Na2CO3의 탄소(C) 성분인 이산화탄소(CO2)는 유리의 용융 공정에서 가스로 배출되어 빠져나가게 된다.
혼합은 건식 혼합 공정을 이용하며, 건식 혼합 공정으로는 볼 밀링(ball milling) 공정 등을 사용할 수 있다. 볼 밀링 공정에 대해 구체적으로 살펴보면, 출발원료를 볼 밀링기(ball milling machine)에 장입하고, 볼 밀링기를 일정 속도로 회전시켜 출발원료를 기계적으로 분쇄하고 균일하게 혼합한다. 볼 밀링기에 사용되는 볼은 지르코니아나 알루미나와 같은 세라믹 재질로 이루어진 볼을 사용할 수 있으며, 볼의 크기는 모두 동일하거나 적어도 2가지 이상의 크기를 갖는 볼을 사용할 수 있다. 목표하는 입자의 크기를 고려하여 볼의 크기, 밀링 시간, 볼 밀링기의 분당 회전속도 등을 조절한다. 일 예로, 입자의 크기를 고려하여 볼의 크기는 1㎜~30㎜ 정도의 범위로 설정하고, 볼 밀링기의 회전속도는 50~500rpm 정도의 범위로 설정할 수 있다. 볼 밀링은 목표하는 입자의 크기 등을 고려하여 1~48 시간 동안 실시하는 것이 바람직하다. 볼 밀링에 의해 출발원료는 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기를 가지며 동시에 균일하게 혼합되게 된다.
혼합된 출발원료를 용융로에 담고, 출발원료가 담긴 용융로를 가열하여 출발원료를 용융한다. 여기서, 용융이라 함은 출발원료가 고체 상태가 아닌 액체 상태의 점성을 갖는 물질 상태로 변화되는 것을 의미한다. 용융로는 고융점을 가지면서 강도가 크고 용융물이 달라붙는 현상을 억제하기 위하여 접촉각이 낮은 물질로 이루어지는 것이 바람직하며, 이를 위해 백금(Pt), DLC(diamond-like-carbon), 샤모트(chamotte)와 같은 물질로 이루어지거나 백금(Pt) 또는 DLC(diamond-like-carbon)와 같은 물질로 표면이 코팅된 용융로인 것이 바람직하다.
용융은 1400~2000℃에서 상압으로 1~12시간 동안 수행하는 것이 바람직하다. 용융 온도가 1400℃ 미만인 경우에는 출발원료가 미처 용융되지 않을 수 있으며, 상기 용융 온도가 2000℃를 초과하는 경우에는 과도한 에너지의 소모가 필요하여 경제적이지 못하므로 상술한 범위의 온도에서 용융하는 것이 바람직하다. 또한, 용융 시간이 너무 짧은 경우에는 출발원료가 충분하게 용융되지 않을 수 있고, 용융 시간이 너무 긴 경우에는 과도한 에너지의 소모가 필요하여 경제적이지 못하다. 용융로의 승온 속도는 5~50℃/min 정도인 것이 바람직한데, 용융로의 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 용융로의 승온 속도가 너무 빠른 경우에는 급격한 온도 상승으로 인해 출발원료의 휘발량이 많아져서 결정화 유리의 물성이 좋지 않을 수 있으므로 상술한 범위의 승온 속도로 용융로의 온도를 올리는 것이 바람직하다. 용융은 산소(O2), 공기(air)와 같은 산화 분위기에서 수행하는 것이 바람직하다.
용융물을 원하는 형태 및 크기의 치아용 결정화 유리를 얻기 위하여 정해진 성형몰드에 붇는다. 성형몰드는 고융점을 가지면서 강도가 크고 유리 용융물이 달라붙는 현상을 억제하기 위하여 접촉각이 낮은 물질로 이루어진 것이 바람직하며, 이를 위해 흑연(graphite), 카본(carbon)과 같은 물질로 이루어지며, 열충격을 방지하기 위해 200~300℃로 예열을 하고 용융물을 성형몰드에 붓는 것이 바람직하다.
성형몰드에 담긴 용융물이 냉각되어 60~100℃가 되면 결정화 열처리 소성로로 옮겨 유리를 핵형성 및 결정 성장시킨다. 1단계 열처리는 700~900℃ 구간에서 결정화 열처리가 이루어지며, 유지시간은 1분~2시간에 걸쳐 이뤄진다. 2단계 열처리 공정은 선택사항으로 1단계 열처리 후 2단계 열처리 공정없이 가공 후 바로 보철로 적용될 수도 있고, 2단계 열처리 공정을 통해 결정성장을 증가시켜 강도를 증가시킨 후 보철로 적용 할 수 있다. 이 때 2단계 열처리 공정은 800~920℃에서 유지시간 1분~2시간 이루어지며, 2단계 열처리 선택사항은 보철 적용분야에 따른 강도 요구정도, 보철 제조 공정의 단축 등을 고려하여 소비자가 선택적으로 결정할 수 있다.
1단계 열처리 온도가 700℃ 미만인 경우에는 낮은 온도로 인해 무기 접합제(inorganic bond)가 녹지 않아 지르코니아와 유리를 결합시킬 수 없고, 결정화 유리를 가공하기에는 낮은 강도를 나타낸다. 1단계 열처리 온도가 900℃ 이상에서는 핵의 크기가 증가할 수 있어 가공이 어렵고, 블록의 변형이 발생할 수 있다. 2단계 열처리 공정은 소비자의 선택사항으로 2단계 열처리 온도가 800℃ 미만에서는 조대한(coarse) 결정성장이 신속히 이뤄지지 않아 비효율적이고, 920℃ 이상에서는 결정화 유리의 변형이 발생하는 온도이기 때문에 사용할 수 없다. CAD/CAM 가공은 핵형성 열처리 또는 핵 형성-결정성장 열처리 후에 모두 가능하고, 1단계 열처리 이후가 바람직하다. 이때 형성되는 리튬 디실리케이트 결정상은 모유리의 열팽창계수 차에 기인한 압축응력이 인가되고 미세한 크기에 의해 기계가공이 가능하다.
열처리 시간이 너무 짧은 경우에는 결정 성장이 충분하게 일어나지 않을 수 있고, 열처리 시간이 너무 긴 경우에는 과도한 에너지의 소모가 필요하여 경제적이지 못하다. 열처리 온도까지의 승온 속도는 10~60℃/min 정도인 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 출발 원료의 휘발량이 많아져서 결정화 유리의 물성이 좋지 않을 수 있으므로 상술한 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 열처리는 산소(O2), 공기(air)와 같은 산화 분위기에서 수행하는 것이 바람직하다. 열처리에 의해 유리 구조 내 원자들의 이동이 이루어져 유리는 상변화가 있게 된다. 즉, 열처리에 의해 결정 성장이 일어나서 리튬 실리케이트 결정을 포함하는 결정화가 일어나게 되고, 이로부터 결정화 유리를 얻을 수 있다.
열처리 온도에 따라 생성되는 결정의 종류와 그 결정의 함량은 달라질 수 있다. 열처리 온도에 따라 리튬 디실리케이트(lithium disilicate)(Li2Si2O5), 리튬포스페이트(lithium phosphate)(Li3PO4), 크리스토벌라이트(cristobalite)(SiO2)와 같은 결정의 성장이 있게 되며, 생성되는 결정의 종류와 그 결정의 함량은 출발원료의 구성성분 및 구성성분의 함량 등에 따라서 달라질 수 있다.
상술한 결정화 열처리를 통해 얻어진 지르코니아 접합 결정화 유리 블록 또는 금속/지르코니아 접합 결정화 유리 블록은 절삭가공을 통해 크라운 형상으로 가공되어 자연 치아에 가깝도록 색 특성을 부여한 후 임플란트 매식물에 결합시키게 된다.
이하에서는 리튬 디실리케이트 결정화 유리/또는 유리를 가압주조 방법을 이용하여 인공 보철무로 제작하는 방법에 대해 알아보기로 한다.
가압주조는 유리 또는 결정화 유리 잉곳을 920℃ ~ 1000℃ 구간에서 유리물의 점성을 낮추어 매몰제 안에 위치한 크라운 형상의 빈 공간으로 밀어 넣는 방식으로 진행된다. 또한 동시에 유리상이 리튬 디실리케이트 결정상으로 상 전환되며, 리튬 디실리케이트 잉곳은 가압주조 열처리 후 그대로 리튬 디실리케이트 결정상이 되며, 결정 형상이 일축방향으로 증가하는 차이를 보인다.
무기 본드에 의한 금속/지르코니아/결정화 유리 접합은 동시도 가능하고, 별개로도 가능하다. 이들 접합 조건은 앞서 기술한 바와 같이 700~900℃ 구간에 1분~2시간동안 열간 접합으로 이뤄진다. 무기 접합제(inorganic bond)는 불활성(inert) 지르코니아 소재와 화학적 결합이 가능한 활성도가 높은(active) 조성으로 발명하였다. 지르코니아와 반응성이 높은 Li2O가 8~12중량%, 구조골격에 해당하는 SiO2가 50~70중량%, 유리전이온도와 연화점을 증가시키며, 유리의 화학적 내구성을 증진시키는 Al2O3 0~3중량%, 유리의 열팽창율을 증가시키는 CaO 0.5~5중량%, Na2O 0.5~3중량%, K2O 0.5~3중량% 첨가되며, 본드에 조색 부여시 불투명성을 나타내기 위해 핵 형성제인 P2O5 0.5~7중량% 기타 조색제(colorants)는 0.5~1중량%를 포함하며 MgO, ZnO, F, La2O3는 투광성에 영향을 주므로 혼합하여 0~1.0중량% 첨가된다. 이 무기 접합제(inorganic bond)의 조성은 지르코니아와의 화학적 결합은 물론 금속과 지르코니아, 지르코니아와 결정화 유리 블록 사이에서 열팽창계수가 매칭 되도록 9.5~10.8 x 10-6/℃열팽창 계수를 갖는 조성으로 설계된다.
본 발명에 따른 지르코니아 접합용 결정화 유리, 무기 접합제(inorganic bond)는 기존에 불가능 했던 금속 링크/지르코니아 기둥(post)/결정화 유리를 포함하는 크라운 보철재료를 CAD/CAM 가공을 통해 인공 심미보철로 제작 가능하게 한다. 이는 기존의 임플란트 심미보철이 갖고 있는 금속/결정화 유리간 낮은 접합강도, 낮은 파절 저항성, 심미성 저해를 개선하는 효과가 있다. 특히 불활성재료인 지르코니아를 열간 접합을 통해 화학적 결합을 가능하게 하는 무기 접합제(inorganic bond)는 처음 시도된 결합방식이라 하겠다. 그리고 이 무기 접합제(inorganic bond)는 설정된 조건이 갖춰졌다 하더라도 결정화 유리가 지르코니아의 열팽창계수와 매칭되지 않으면 제품화가 불가능하므로, 이 결정화 유리 조성도 지르코니아 열간 접합에 있어 처음 제안되는 발명이다.
도 1은 결정화 유리 블록/지르코니아 기둥/금속 링크가 적용된 CAD/CAM가공 심미보철 블록의 개념도이다. 결정화 유리 블록(1)과 지르코니아 기둥(post)(2)이 무기 접합제(inorganic bond)에 의해 열간 접합이 이뤄지고, 이 때 결정화 유리 블록은 열간 접합이 이뤄지는 온도에서도 변형이 없고, 가공성이 확보되는 조성이어야 한다. 본 발명의 결정화 유리는 700~900℃ 구간에 1분~2시간 열간 접합하는 조건을 거친 후에도 기계가공이 가능한 것이 핵심이고, 이후 바로 인공 보철소재로 적용가능 할 정도의 심미적 특성인 투광성과 색이 발현되어야 한다. 그리고 필요에 의해 2차 결정화 열처리 공정(800~920℃에서 유지시간 1분~2시간 )을 거치면서 강도를 증가시켜 보다 고하중이 인가되는 적용분야에 사용할 수 있는 사용상 선택이 가능한 소재이다.
금속 링크(3)는 임플란트 고정체와 결합하는 부위이며, 그 내부는 체결나사 홀(4)이 가공되어진다. 금속 링크와 지르코니아 접합은 기존에 레진계열의 시멘트를 사용하였는데, 본 발명에서는 열간 접합을 실시하여 접합력을 증가시키고 보철 적용성을 높이고자 하였다. 금속 링크(3)와 지르코니아 기둥(post)(2)접합은 결정화 유리/지르코니아/금속 접합시에도 가능하며, 열처리 시 금속의 산화를 줄이기 위해서 이미 결합 된 결정화 유리/지르코니아에 금속 링크를 따로 낮은 온도에서 접합하는 것도 가능하다.
본 발명에서 개발한 무기 접합제(inorganic bond)는 기존의 지르코니아/비니어 도재간의 접합력보다 2배 이상의 결합강도를 나타낸다.
도 2는 기존 지르코니아 비니어 제품과 본 발명에서 제안한 기술이 적용된 제품간의 전단결합강도를 도시하고 있다. 도 2에 도시되어 있는 바와 같이 본 발명에서 제안한 기술이 적용된 제품은 기존 제품에 비해 두 소재간 강한 결합으로 인해 기계적 안정성을 증가되었을 뿐만 아니라 세균침투에 의한 2차 감염의 가능성을 줄여주는 역할도 한다.
도 3은 접합계면에 대한 에칭 후 미세구조를 나타낸다. 지르코니아와 결정화 유리 사이에서 무기 접합제(inorganic bond)가 균일하고 치밀한 구조로 형성되어 있고, 무기 접합제(inorganic bond)의 특정 성분이 지르코니아를 용출시키면서 2차 결정상 형성에 의한 화학적 결합이 발생하고 있는 것으로 보인다.
본 발명은 도면에 도시된 일실시 예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
본 발명은 인공치아 소재인 결정화 유리 블록을 이용하여 CAD/CAM 가공방법으로 인공치아를 제조하는데 있어, 결정화 유리 블록 내부에 코어 역할을 할 수 있는 고강도 지르코니아 기둥(post)을 결합시키는 방법, 임플란트 고정체(fixture)와 체결되는 금속링크를 지르코니아 기둥에 결합시키는 방법 및 지르코니아 기둥에 접합 가능한 결정화 유리 및 이의 제조 방법에 관한 것이다.
본 발명에 따른 지르코니아 접합용 결정화 유리, 그리고 무기 접합제(inorganic bond)는 기존에 불가능 했던 금속 링크/지르코니아 기둥(post)/결정화 유리를 CAD/CAM 가공을 통해 인공 심미보철로 제작 가능하게 한다. 이는 기존의 임플란트 심미보철이 갖고 있는 금속/결정화 유리간 낮은 접합강도, 낮은 파절 저항성, 심미성 저해를 개선하는 효과가 있다.

Claims (14)

  1. Li2O 10~15중량%, SiO2 68~76중량%, 핵 형성제 역할을 하는 P2O5 2~5중량%, 유리전이온도와 연화점을 증가시키며, 유리의 화학적 내구성을 증진시키는 Al2O3 0~5중량%, ZrO2 2~3중량%, 유리의 열팽창율을 증가시키는 CaO 0.5~3중량%, Na2O 0.5~5중량%, K2O 0.5~5중량%, 조색제(colorant) 1~2중량%를 포함하며, MgO, ZnO, F, La2O3의 혼합물 0~2.0중량%의 유리 조성물을 포함함을 특징으로 하는 리튬 실리케이트 유리.
  2. 제 1항에 있어서, 상기 리튬 실리케이트 유리 조성물은,
    K2O+Na2O 1~10중량%, 바람직하게는 K2O는 0.5~5 중량%이며,
    CaO 0.5~3중량%를 더 포함함을 특징으로 하는 리튬 실리케이트 유리.
  3. 제 1항에 있어서, 상기 유리의 열팽창 계수는,
    100℃ 내지 400℃의 온도 범위 내에서 9.8~10.5 x10-6/℃임을 특징으로 하는 리튬 실리케이트 유리.
  4. 제 1항에 있어서, Li2O 10~13중량%, SiO2 70~75중량%, P2O5 2~5중량%, Al2O3 1~5중량%, ZrO2는 2~3중량%, K2O 0.5~5중량%임을 특징으로 하는 리튬 실리케이트 유리.
  5. Li2O 10~15중량%, SiO2 68~76중량%, 핵 형성제 역할을 하는 P2O5 2~5중량%, 유리전이온도와 연화점을 증가시키며, 유리의 화학적 내구성을 증진시키는 Al2O3 0~5중량%, ZrO2 2~3중량%, 유리의 열팽창율을 증가시키는 CaO 0.5~3중량%, Na2O 0.5~5중량%, K2O 0.5~5중량%, 조색제(colorant) 1~2중량%를 포함하며, MgO, ZnO, F, La2O3의 혼합물 0~2.0중량%의 유리 조성물을 포함함을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리.
  6. 제 5항에 있어서, 상기 리튬 실리케이트 유리 조성물은,
    K2O+Na2O 1~10중량%, 바람직하게는 K2O는 0.5~5 중량%이며,
    CaO 0.5~3중량%를 더 포함함을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리.
  7. 제 5항에 있어서, 상기 유리의 열팽창 계수는,
    100℃ 내지 400℃의 온도 범위 내에서 9.8~10.5 x10-6/℃임을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리.
  8. 제 5항에 있어서, Li2O 10~13중량%, SiO2 70~75중량%, P2O5 2~5중량%, Al2O3 1~5중량%, ZrO2는 2~3중량%, K2O 0.5~5중량%임을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리.
  9. 제 5항 또는 제 6항 중 어느 한 항의 유리 조성물을 융용 후 결정 성장하는 단계; 및
    700℃ ~ 900℃에서 1분~2시간동안 1차 결정화 열처리 단계;를 포함함을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리 제조 방법.
  10. 제 9항에 있어서, 상기 1차 열처리 단계 이후에,
    800℃ ~ 920℃에서 1분~2시간동안 2차 열처리로 결정 성장하는 단계를 포함함을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리 제조 방법.
  11. 제 10항의 열처리 단계에 있어서,
    상기 1차 결정화 열처리 단계에 의해 유리질을 주 성분으로 리튬 디실리케이트가 형성되며, 2차 열처리 단계에 의해 리튬 디실리케이트 결정상을 주성분 크리스토벌라이트 결정이 부가적으로 형성됨을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리 제조 방법.
  12. 제 9항에 있어서, 상기 1차 열처리를 수행한 결정화 유리를 지르코니아 기둥(post)에 700℃ ~ 900℃ 상에서 접착하는 단계를 포함하며,
    상기 무기 접합제(inorganic bond)는 700℃ ~ 900℃ 상에서 1분~2시간 열처리함을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리 제조 방법.
  13. 제 12항에 있어서, 상기 무기 접합제(inorganic bond)의 조성은 Li2O가 8~12중량%, SiO2가 50~70중량%, Al2O3 0~3중량%, CaO 0.5~5중량%, Na2O 0.5~3중량%, K2O 0.5~3중량% 첨가되며, 핵 형성제인 P2O5 0.5~7중량%, 조색제(colorant) 0.5~1중량%, MgO, ZnO, F, La2O3의 혼합물 0~1.0중량%이며, 열팽창계수는 9.5~10.8 x 10-6/℃임을 특징으로 하는 크리스토벌라이트 결정상을 함유하는 리튬 디실리케이트 결정화 유리 제조 방법.
  14. 제 1항 또는 제 5항 중 어느 한 항에 있어서, 상기 크리스토벌라이트 함유 리튬디실리케이트 유리 또는 결정화 유리에 의해 제조된 단일치, 교의치를 위한 보철 크라운.
PCT/KR2016/009486 2015-08-26 2016-08-26 상부구조물이 연결된 치과용 결정화 유리 블록 및 이의 제조방법 WO2017034362A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680001590.7A CN106536438B (zh) 2015-08-26 2016-08-26 连接上部结构物的牙科结晶玻璃块体及其制备方法
JP2016572791A JP6645988B2 (ja) 2015-08-26 2016-08-26 上部構造物が連結された歯科用結晶化ガラスブロック及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0120264 2015-08-26
KR1020150120264A KR101796196B1 (ko) 2015-08-26 2015-08-26 상부구조물이 연결된 치과용 결정화 유리 블록 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017034362A1 true WO2017034362A1 (ko) 2017-03-02

Family

ID=56137080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009486 WO2017034362A1 (ko) 2015-08-26 2016-08-26 상부구조물이 연결된 치과용 결정화 유리 블록 및 이의 제조방법

Country Status (6)

Country Link
US (1) US9926223B2 (ko)
EP (1) EP3135269B1 (ko)
JP (1) JP6645988B2 (ko)
KR (1) KR101796196B1 (ko)
CN (1) CN106536438B (ko)
WO (1) WO2017034362A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813488B1 (ko) * 2016-04-06 2017-12-29 주식회사 하스 나노 크기의 결정상을 갖는 리튬 디실리케이트 결정화 유리 제조 방법
KR101975548B1 (ko) * 2017-03-07 2019-05-08 주식회사 하스 열처리 온도의 변화로 가공성 또는 투광성 조절이 가능한 결정화 유리 제조 방법
US10556819B2 (en) 2017-03-08 2020-02-11 Hass Co., Ltd Method for preparing glass-ceramics, capable of adjusting machinability or translucency through change in temperature of heat treatment
ES2927633T3 (es) * 2017-03-09 2022-11-08 Hass Co Ltd Método para preparar materiales vitrocerámicos, capaz de ajustar la maquinabilidad o la translucidez a través del cambio de temperatura del tratamiento térmico
EP3415114B1 (en) * 2017-06-14 2021-01-13 Coltène/Whaledent AG Dental blank with an insert
KR102037401B1 (ko) * 2017-08-14 2019-10-29 주식회사 하스 치아 법랑질 수복이 가능한 고투광성 실리케이트 유리
DE102018104839A1 (de) * 2018-03-02 2019-09-05 Friedmar Hütter Ohrimplantat
CN109279781A (zh) * 2018-10-12 2019-01-29 沈阳建筑大学 用于氧化锆和二硅酸锂玻璃陶瓷的粘结剂及其制法和应用
US11524918B2 (en) 2018-11-26 2022-12-13 Owens Corning Intellectual Capital, Llc High performance fiberglass composition with improved specific modulus
MX2021005461A (es) 2018-11-26 2021-06-18 Owens Corning Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento con modulo de elasticidad mejorado.
KR102228118B1 (ko) * 2019-02-12 2021-03-16 주식회사 하스 결정화 유리를 포함하는 치과용 복합체
US20220183803A1 (en) * 2019-03-29 2022-06-16 Gc Corporation Method of producing block for dental prostheses, and method of producing dental prosthesis
KR102246195B1 (ko) * 2019-05-29 2021-04-29 주식회사 하스 절삭가공을 위한 치과용 벌크 블록 및 그 제조방법
KR102410507B1 (ko) 2020-04-10 2022-06-17 주식회사 하스 절삭가공용 어버트먼트 일체형 보철블록 및 그 제작방법
CN111658201A (zh) * 2020-07-08 2020-09-15 西安交通大学口腔医院 一种口腔修复体的自动化加工方法
CN117042721A (zh) * 2021-05-28 2023-11-10 株式会社哈斯 用于切削加工的牙科用大型块体及其制造方法
AU2021451277A1 (en) * 2021-06-15 2023-12-21 Hass Co., Ltd. Dental bulk block, and method for manufacturing same
CN114671616B (zh) * 2022-04-01 2024-02-23 河北省沙河玻璃技术研究院 一种高强度透明微晶玻璃及制备方法
CN115010370B (zh) * 2022-07-15 2024-03-22 成都贝施美生物科技有限公司 一种调节玻璃陶瓷透度的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420288B2 (en) * 1997-11-10 2002-07-16 Ivoclar Ag Process for the preparation of shaped translucent lithium disilicate glass ceramic products
KR20120073710A (ko) * 2010-12-27 2012-07-05 주식회사 하스 치아용 고강도 결정화유리 및 그 제조방법
KR20140077948A (ko) * 2011-10-14 2014-06-24 이보클라 비바덴트 아게 2가 금속 산화물을 포함하는 리튬 실리케이트 유리 세라믹 및 리튬 실리케이트 유리
KR20150013225A (ko) * 2012-05-04 2015-02-04 이보클라 비바덴트 아게 리튬 디실리케이트-애퍼타이트 유리-세라믹
KR20150043633A (ko) * 2013-10-14 2015-04-23 주식회사 하스 지르코니아 상단에 안착되는 리튬 실리케이트 유리 또는 리튬 실리케이트 결정화 유리 및 이의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219799A (en) * 1991-10-07 1993-06-15 Corning Incorporated Lithium disilicate-containing glass-ceramics some of which are self-glazing
US5507981A (en) 1994-05-31 1996-04-16 Tel Ventures, Inc. Method for molding dental restorations
US6818573B2 (en) * 1994-05-31 2004-11-16 Tec Ventures, Inc. Method for molding dental restorations and related apparatus
ATE186286T1 (de) 1996-09-05 1999-11-15 Ivoclar Ag Sinterbare lithiumdisilikat-glaskeramik
JP2000086289A (ja) 1998-09-10 2000-03-28 Ngk Insulators Ltd 結晶化ガラスの核形成剤、結晶化ガラス、磁気ディスク基板および磁気ディスク
JP2001288027A (ja) * 2000-02-24 2001-10-16 Tec Ventures Inc 歯科修復物の形成方法及び関連の装置
EP1396237A1 (en) 2002-09-05 2004-03-10 Elephant Dental B.V. Strengthened ceramic restoration
PT1688398E (pt) 2005-02-08 2014-07-25 Ivoclar Vivadent Ag Vitrocerâmica de silicato de lítio
KR20120099696A (ko) 2009-10-28 2012-09-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 치과용 임플란트 밀 블랭크 용품 및 이를 제조하는 방법
WO2013107653A2 (en) * 2012-01-20 2013-07-25 Straumann Holding Ag Prosthetic element
CN104108883B (zh) * 2014-08-11 2019-03-08 中国地质大学(北京) 一种高强度二硅酸锂玻璃陶瓷及其制备方法
KR101648175B1 (ko) 2014-08-29 2016-08-16 주식회사 하스 고강도와 심미성을 지닌 크리스토벌라이트 결정상 함유 리튬 디실리케이트 결정화 유리 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420288B2 (en) * 1997-11-10 2002-07-16 Ivoclar Ag Process for the preparation of shaped translucent lithium disilicate glass ceramic products
KR20120073710A (ko) * 2010-12-27 2012-07-05 주식회사 하스 치아용 고강도 결정화유리 및 그 제조방법
KR20140077948A (ko) * 2011-10-14 2014-06-24 이보클라 비바덴트 아게 2가 금속 산화물을 포함하는 리튬 실리케이트 유리 세라믹 및 리튬 실리케이트 유리
KR20150013225A (ko) * 2012-05-04 2015-02-04 이보클라 비바덴트 아게 리튬 디실리케이트-애퍼타이트 유리-세라믹
KR20150043633A (ko) * 2013-10-14 2015-04-23 주식회사 하스 지르코니아 상단에 안착되는 리튬 실리케이트 유리 또는 리튬 실리케이트 결정화 유리 및 이의 제조방법

Also Published As

Publication number Publication date
EP3135269A1 (en) 2017-03-01
KR20170026697A (ko) 2017-03-09
KR101796196B1 (ko) 2017-11-13
US9926223B2 (en) 2018-03-27
CN106536438A (zh) 2017-03-22
JP6645988B2 (ja) 2020-02-14
US20170057865A1 (en) 2017-03-02
CN106536438B (zh) 2021-06-25
JP2017531607A (ja) 2017-10-26
EP3135269B1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2017034362A1 (ko) 상부구조물이 연결된 치과용 결정화 유리 블록 및 이의 제조방법
WO2016032097A1 (ko) 고강도와 심미성을 지닌 크리스토벌라이트 결정상 함유 리튬 디실리케이트 결정화 유리 및 이의 제조방법
WO2015056900A1 (ko) 지르코니아 상단에 안착되는 리튬 실리케이트 유리 또는 리튬 실리케이트 결정화 유리 및 이의 제조방법
US7846857B2 (en) Dental glass ceramics
US9878939B2 (en) Lithium silicate glass ceramic and glass with monovalent metal oxide
KR101975548B1 (ko) 열처리 온도의 변화로 가공성 또는 투광성 조절이 가능한 결정화 유리 제조 방법
US11759290B2 (en) Silicate glass, method for preparing silicate glass-ceramics by using the silicate glass, and method for preparing nano lithium disilicate glass-ceramics by using the silicate glass
AU2019448021B2 (en) Dental bulk block for machining and manufacturing method therefor
US9757311B2 (en) Lithium silicate glass ceramics and lithium silicate glass containing cesium oxide
HUE027960T2 (en) Lithium silicate glass ceramics and glass containing ZrO2
JP2000139953A (ja) セラミック歯科修復物およびその製造方法
CA2942864C (en) Glass ceramic having a quartz solid solution phase
KR101975547B1 (ko) 금속합금 상단에 안착되는 리튬 실리케이트 유리 또는 리튬 실리케이트 결정화 유리 및 이의 제조방법
US6080692A (en) High-strength, translucent mica glass-ceramics
JPS63287709A (ja) 歯科用磁製組成物とその製造方法および歯科用磁製組成物からなる義歯

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016572791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839650

Country of ref document: EP

Kind code of ref document: A1