WO2017033994A1 - 金属箔触媒及びその製造方法、並びに触媒コンバータ - Google Patents

金属箔触媒及びその製造方法、並びに触媒コンバータ Download PDF

Info

Publication number
WO2017033994A1
WO2017033994A1 PCT/JP2016/074783 JP2016074783W WO2017033994A1 WO 2017033994 A1 WO2017033994 A1 WO 2017033994A1 JP 2016074783 W JP2016074783 W JP 2016074783W WO 2017033994 A1 WO2017033994 A1 WO 2017033994A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
catalyst
catalyst layer
metal
layer
Prior art date
Application number
PCT/JP2016/074783
Other languages
English (en)
French (fr)
Inventor
町田 正人
嘉志 芳田
聡士 日隈
仁志 三角
Original Assignee
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人熊本大学 filed Critical 国立大学法人熊本大学
Priority to JP2017536476A priority Critical patent/JP6789491B2/ja
Publication of WO2017033994A1 publication Critical patent/WO2017033994A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust

Definitions

  • the present invention relates to a metal foil catalyst, a method for producing the same, and a catalytic converter.
  • This application claims priority based on Japanese Patent Application No. 2015-166264 for which it applied to Japan on August 25, 2015, and uses the content here.
  • the exhaust gas of automobiles (gasoline cars) using gasoline as fuel includes hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO x ), and the like. For this reason, exhaust gas purification of gasoline vehicles has become a major social problem in terms of air pollution and the like.
  • Gasoline vehicles are equipped with a device (catalytic converter) that purifies the components in the exhaust gas by reduction and oxidation.
  • catalytic converters are mainly manufactured by a wet impregnation method.
  • a catalytic converter (so-called honeycomb catalyst) in which a honeycomb-shaped base material is coated with a powdery catalyst component is manufactured by the following steps (i) to (v).
  • a precious metal of a bullion is pulverized into a powder.
  • This powder is dissolved in a solvent to prepare a solution of a noble metal salt.
  • porous powder such as alumina is added and stirred to prepare a dispersion (slurry) of porous powder impregnated with the noble metal salt solution.
  • a honeycomb-shaped substrate is prepared, and a washcoat layer is formed in advance on the surface of the substrate.
  • the slurry is applied to a honeycomb-shaped substrate on which a washcoat layer is formed, and fired.
  • FIG. 12 shows an embodiment of a conventional honeycomb catalyst.
  • a honeycomb catalyst 200 shown in FIG. 12 includes a honeycomb-shaped substrate 210 (carrier) and a catalyst layer 220 provided on the substrate 210.
  • the thickness of the substrate 210 is 40 ⁇ m or more, and the thickness of the catalyst layer 220 is about 10 to 30 ⁇ m.
  • the substrate 210 for example, a metal honeycomb substrate (thickness 40 to 50 ⁇ m) made of metal or a ceramic honeycomb substrate (thickness 100 to 200 ⁇ m) made of ceramic is used.
  • the catalyst layer 220 includes a porous powder such as alumina and a noble metal supported thereon.
  • Patent Document 1 discloses a catalyst in which a catalyst layer is formed by applying a slurry obtained by kneading ⁇ -alumina powder, metal component powder, and water to a surface of a stainless steel metal honeycomb substrate and drying the slurry. A converter is disclosed.
  • a honeycomb catalyst as proposed in Patent Document 1 or the like is manufactured by supporting a noble metal on a honeycomb-shaped base material by a wet process. For this reason, when manufacturing a honeycomb catalyst, a substrate (carrier) having a predetermined shape is required.
  • the method for manufacturing a honeycomb catalyst by a wet process has disadvantages in terms of manufacturability such that the number of manufacturing steps increases and loss of precious metal is likely to occur in each manufacturing step.
  • conventional catalytic converters are required to have improved catalytic activity and further improved durability at high temperatures (eg, 900 ° C or higher). Is done.
  • the present invention has been made in view of the above circumstances, and does not require a base material (carrier) having a predetermined shape, can be molded with a high degree of freedom, and has a high catalytic activity.
  • An object of the present invention is to provide a method for producing the metal foil catalyst excellent in manufacturability and a catalytic converter.
  • a honeycomb catalyst is manufactured by preparing a honeycomb-shaped substrate (support) and coating the support with a powdery catalyst component in which a noble metal is supported on alumina or the like by a wet process.
  • the inventors of the present invention adopted a metal foil as a carrier in the study, and formed a catalyst layer containing a noble metal with a specific thickness on the metal foil, which was more than before. The inventors have found that a metal foil capable of exhibiting a higher catalytic function can be obtained even if the amount of noble metal used is significantly suppressed, and the present invention has been completed.
  • the metal foil catalyst of the present invention includes a metal foil and a catalyst layer provided on the metal foil, and the catalyst layer contains a noble metal, and the thickness T S (nm) of the metal foil.
  • the thickness T C (nm) of the catalyst layer satisfies the following formula (1). 20 ⁇ T S / T C (1)
  • the noble metal is preferably selected from the group consisting of rhodium, palladium, platinum, silver, iridium, and alloys containing one or more thereof.
  • the metal foil catalyst of the present invention further includes an intermediate layer disposed between and adjacent to the metal foil and the catalyst layer, and the catalyst layer is a layer containing rhodium, and the intermediate layer Also preferred is a layer containing zirconium.
  • the method for producing a metal foil catalyst of the present invention is a method for producing the metal foil catalyst of the present invention, wherein the catalyst layer forming material containing the noble metal is vapor-deposited on the metal foil by arc discharge. It has the catalyst layer formation process which forms the said catalyst layer, It is characterized by the above-mentioned.
  • the catalyst layer forming material is preferably vapor-deposited continuously by arc discharge on the metal foil while the metal foil is conveyed in a roll-to-roll manner.
  • the metal foil it is preferable to use a metal foil whose surface layer has been oxidized in advance.
  • the catalytic converter of the present invention is a processed product of the metal foil catalyst of the present invention.
  • a metal foil catalyst that can be molded with a high degree of freedom and does not require a base material (carrier) having a predetermined shape, and whose catalytic activity is enhanced, and its production with excellent manufacturability Methods and catalytic converters can be provided.
  • FIG.8 (a) is a graph which shows the change of the surface layer composition with respect to reaction temperature about a heat resistant SUS foil
  • FIG.8 (b) is a graph which shows the measurement result by X-ray diffraction (XRD) method.
  • NO conversion rate versus reaction temperature CO conversion is a graph showing each change of C 3 H 6 conversion
  • FIG. 10B is a graph for the case of using the Rh / heat resistant SUS foil catalyst
  • FIG. 10B is a graph for the case of using the powdery catalyst component (conventional type).
  • 11A is a graph showing changes in NO conversion rate, CO conversion rate, and C 3 H 6 conversion rate with respect to reaction temperature when a mixed gas is brought into contact with the catalyst in each example.
  • FIG. The graph about the case where a metal foil catalyst (Rh / heat-resistant SUS foil catalyst) is used
  • FIG. 11 (b) shows the case where the metal foil catalyst (Rh / Zr / heat-resistant SUS foil catalyst) of Example 8 is used. It is a graph. It is sectional drawing which shows one Embodiment of the conventional honeycomb catalyst.
  • the metal foil catalyst of the present invention comprises a metal foil and a catalyst layer provided on the metal foil.
  • FIG. 1 shows an embodiment of a metal foil catalyst.
  • the metal foil catalyst 1 of this embodiment includes a metal foil 10 and a catalyst layer 20 provided on the metal foil 10.
  • the thickness of the metal foil 10 is T S
  • the thickness of the catalyst layer 20 is T C.
  • Metal foil catalyst 1 is a thickness T C of the thickness T S (nm) and the catalyst layer 20 of the metal foil 10 (nm) satisfies the following formula (1). 20 ⁇ T S / T C (1)
  • T S / T C is greater than 20, preferably lower limit is 50 or more, more and preferably 100 or more, more preferably 500 or more, particularly preferably 1000 or more, and most preferably 2000 or more.
  • the preferable upper limit is 20000 or less, preferably 10,000 or less, more preferably 6000 or less, further preferably 5000 or less, particularly preferably 4000 or less, and most preferably 3000 or less. If T S / T C is the lower limit value greater than the even catalyst layer 20 is provided thinner the metal foil 10, sufficient catalytic function is exhibited, there is a technical significance of the present invention. If T S / T C is less preferred upper limit of the sufficient strength it is easily maintained as a metal foil catalyst 1.
  • the thickness (T S + T C ) of the metal foil catalyst 1 is preferably 5000 to 70000 nm, more preferably 10,000 to 70000 nm, still more preferably 30000 to 70000 nm, and particularly preferably 40000 to 60000 nm.
  • the material of the metal foil 10 is appropriately selected in consideration of heat resistance required according to the application, and examples thereof include stainless steel, aluminum, and titanium. Among these, stainless steel is preferable from the viewpoint of durability and workability. For example, when the metal foil catalyst 1 is used in a catalytic converter of a gasoline vehicle, it is exposed to high-temperature exhaust gas. Therefore, stainless steel having high heat resistance (heat resistant stainless steel) is used as the material of the metal foil 10. preferable. For example, stainless steel having heat resistance with respect to 600 to 1000 ° C. can be mentioned, and stainless steel having heat resistance with respect to 900 to 1000 ° C. is more preferable.
  • Preferable heat resistant stainless steel is, for example, 75 to 80 mass% of iron, 15 to 20 mass% of chromium, and 5 to 10 mass% of aluminum with respect to the total amount (100 mass%) of the components constituting the heat resistant stainless steel. And those containing.
  • the thickness T S (nm) of the metal foil 10 is appropriately determined depending on the application and the like, and is preferably 5000 to 70000 nm, more preferably 10,000 to 70000 nm, still more preferably 30000 to 70000 nm, and particularly preferably 40000 to 60000 nm. is there.
  • the catalyst layer 20 contains a noble metal that is a catalyst component.
  • a noble metal that is a catalyst component.
  • Preferred examples of such noble metals include those selected from the group consisting of rhodium, palladium, platinum, silver, iridium, and alloys containing one or more of these.
  • Such noble metals may be used alone or in combination of two or more.
  • the noble metal is more preferably selected from the group consisting of rhodium, palladium, platinum, and alloys containing one or more of these, since the catalytic activity is further enhanced, and those containing rhodium. Particularly preferred.
  • the content of the noble metal is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably based on the total amount (100% by mass) of the catalyst layer 20. It is 90 mass% or more, and may be 100 mass%.
  • the catalyst layer 20 may contain components other than noble metals.
  • components other than noble metals include cerium and zirconium.
  • the thickness T C (nm) of the catalyst layer 20 is appropriately determined depending on the application and the like, and is preferably 1000 nm or less, more preferably 500 nm or less, still more preferably 200 nm or less, particularly preferably 100 nm or less, and most preferably 50 nm. It is as follows. On the other hand, the preferred lower limit is 1 nm or more, preferably 2 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, particularly preferably 15 nm or more, and most preferably 20 nm or more.
  • the metal foil catalyst 1 of the present embodiment is such that the catalyst layer 20 containing a noble metal is provided on the metal foil 10 with a specific thickness (20 ⁇ T S / T C ). .
  • the metal foil catalyst 1 can be manufactured without the need for a base material (carrier) having a predetermined shape, and since it has a foil shape, it can be molded with a high degree of freedom.
  • the metal foil catalyst 1 since the metal foil catalyst 1 has the catalyst layer 20 on its surface, it has a catalytic function and has enhanced catalytic activity.
  • the metal foil catalyst 1 exhibits a catalytic action in the exhaust gas purification reaction.
  • the metal foil catalyst 1 of this embodiment since the catalyst layer 20 is provided much thinner than the conventional with respect to the metal foil 10, the usage-amount of a noble metal is suppressed.
  • metal foil catalyst 1 of the embodiment described above is a laminated body of the metal foil 10 and the catalyst layer 20, the present invention is not limited to this and may be another embodiment.
  • FIG. 2 shows another embodiment of the metal foil catalyst.
  • the metal foil catalyst 2 shown in FIG. 2 is a laminate of a metal foil 12, a catalyst layer 22 containing rhodium, and an intermediate layer 60 containing zirconium.
  • the intermediate layer 60 is disposed between the metal foil 12 and the catalyst layer 22 and is adjacent to both of them.
  • the thickness of the metal foil 12 is T S
  • the thickness of the catalyst layer 22 is T C
  • the thickness of the intermediate layer 60 is T I.
  • Metal foil catalyst 2 is a thickness of the metal foil 12 T S (nm) and the thickness T C of the catalyst layer 22 (nm) satisfies the following formula (2). 20 ⁇ T S / T C (2)
  • the preferred range of T S / T C is the same as the above T S / T C.
  • a preferable lower limit of T S / (T I + T C ) is 20 or more, more preferably 50 or more, and still more preferably 100 or more.
  • a preferable upper limit is 1000 or less, more preferably 500 or less, and still more preferably 200 or less.
  • the thickness (T S + T I + T C ) of the metal foil catalyst 2 is preferably 5000 to 70000 nm, more preferably 10,000 to 60000 nm.
  • the description of the metal foil 12 is the same as that of the metal foil 10.
  • the catalyst layer 22 is a layer containing at least rhodium as a noble metal.
  • the rhodium content is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass with respect to the total amount (100% by mass) of the catalyst layer 22. It may be 100% by mass or more.
  • the catalyst layer 22 may contain components other than rhodium. Examples of components other than rhodium include palladium, platinum, silver, iridium and the like.
  • the catalyst layer 22 may be a layer containing an alloy of these components other than rhodium and rhodium.
  • the thickness T C of the catalyst layer 22 is appropriately determined in accordance with the application etc., for example, it is preferably from 1000 nm, more preferably 500nm or less, more preferably 200nm or less, particularly preferably 100nm or less, and most preferably is 50nm or less .
  • the lower limit is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 5 nm or more, and particularly preferably 10 nm or more.
  • the intermediate layer 60 is a layer containing zirconium.
  • the zirconium content is 50% by mass or more with respect to the total amount (100% by mass) of the intermediate layer 60, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90%. It may be 100% by mass or more.
  • the intermediate layer 60 may contain components other than zirconium. Examples of components other than zirconium include cerium and yttrium.
  • the thickness T I (nm) of the intermediate layer 60 is appropriately determined according to the use etc., For example, 50 nm or more is preferable, More preferably, it is 100 nm or more, More preferably, it is 200 nm or more.
  • the upper limit is preferably 1000 nm or less, more preferably 500 nm or less, and still more preferably 300 nm or less.
  • the metal foil catalyst 2 shown in FIG. 2 described above can be produced without the need for a substrate (carrier) having a predetermined shape, like the metal foil catalyst 1.
  • the metal foil catalyst 2 since the metal foil catalyst 2 has the catalyst layer 22 on its surface, it has a catalytic function and has enhanced catalytic activity.
  • the metal foil catalyst 2 exhibits a catalytic action in the exhaust gas purification reaction.
  • the metal foil catalyst 2 since the metal foil 12 and the catalyst layer 22 are disposed via the intermediate layer 60, the distribution of rhodium contained in the catalyst layer 22 in a uniform and dense state is maintained. High catalytic action can be achieved stably. This further enhances the durability particularly at high temperature use.
  • the metal foil catalyst 2 since the metal foil catalyst 2 is extremely thin as a whole even if the intermediate layer 60 is interposed and has a foil shape, it can be molded with a high degree of freedom, a surface area, an aperture ratio, and a cell density. is there.
  • the method for producing a metal foil catalyst of the present invention is the above-described method for producing a metal foil catalyst, wherein the catalyst layer is deposited on the metal foil by arc discharge by vapor deposition of the catalyst layer-forming material containing the noble metal.
  • the catalyst layer forming material includes a noble metal and, if necessary, a component other than the noble metal.
  • the components other than the noble metal and the noble metal here include the same noble metals as those contained in the catalyst layer 20 and the components other than the noble metal that the catalyst layer 20 may contain.
  • the content of the noble metal is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, with respect to the total amount (100% by mass) of the catalyst layer forming material. More preferably, it is 90 mass% or more, and may be 100 mass%.
  • the metal foil catalyst 1 shown in FIG. 1 can be manufactured by using the manufacturing apparatus shown in FIG. 1
  • FIG. 3 shows an embodiment of a metal foil catalyst production apparatus.
  • a manufacturing apparatus 100 shown in FIG. 3 includes an arc vapor deposition source 30 and a metal foil traveling unit 40.
  • the arc vapor deposition source 30 and the metal foil traveling unit 40 are arranged such that the surface of the metal foil 10 on which the catalyst layer is formed faces the arc vapor deposition source 30.
  • the arc vapor deposition source 30 is made of a cylindrical insulator 31 and a catalyst layer forming material, and is arranged so as to be in contact with a columnar cathode 50 disposed so as to be in contact with the inner peripheral surface of the insulator 31 and the outer peripheral surface of the insulator 31.
  • a cylindrical trigger electrode 32 arranged, an anode 33 arranged concentrically on the outer peripheral side of the trigger electrode 32, and a power supply unit 34 are provided.
  • the power supply unit 34 includes an arc power supply 34a, a trigger power supply 34b, and a capacitor 34c.
  • the arc power supply 34 a is connected to the anode 33 via the wiring 35 a and is connected to the cathode 50 via the wiring 35 c so that a voltage can be applied between the anode 33 and the cathode 50.
  • the trigger power supply 34b is connected to the trigger electrode 32 via the wiring 35b, is connected to the cathode 50 via the wiring 35c, and is configured to be able to apply a voltage between the trigger electrode 32 and the cathode 50.
  • the capacitor 34c is connected to be charged by the arc power supply 34a.
  • the metal foil traveling unit 40 employs a roll-to-roll system including a pair of transport rolls 41 and 42 arranged in parallel to each other.
  • the metal foil 10 is sent out from the transport roll 41 side to the transport roll 42 side (in the direction of the arrow) and wound up at the tip.
  • the state in which the catalyst layer forming material made into plasma by the arc discharge is irradiated (pulse discharge) onto the metal foil 10 traveling on the metal foil traveling unit 40 is indicated by a wavy arrow. It is expressed.
  • the catalyst layer is formed on the metal foil 10 by vapor deposition of a catalyst layer forming material by arc discharge using the manufacturing apparatus 100. That is, while the metal foil 10 is being conveyed in a roll-to-roll manner, the catalyst layer 20 is formed on the metal foil 10 by continuously vapor-depositing the catalyst layer forming material by arc discharge, whereby the metal foil catalyst 1 is manufactured. Is done.
  • the catalyst layer forming step is performed as follows as an example. First, the arc vapor deposition source 30 and the metal foil traveling unit 40 are arranged in a vacuum chamber (not shown) so that the surface of the metal foil 10 on which the catalyst layer 20 is formed faces the arc vapor deposition source 30. Further, the metal foil traveling unit 40 is arranged so that the metal foil 10 travels from the transport roll 41 side to the transport roll 42 side. Next, the inside of the vacuum chamber is adjusted to a predetermined vacuum atmosphere. Next, a voltage is applied between the trigger electrode 32 and the cathode 50 by the trigger power supply 34b while a voltage is applied between the anode 33 and the cathode 50 by the arc power supply 34a.
  • a trigger discharge is generated between the trigger electrode 32 and the cathode 50, and the catalyst layer forming material starts to evaporate.
  • arc discharge is generated between the anode 33 and the cathode 50 by the electric charge charged in the capacitor 34c. Due to the occurrence of the arc discharge, plasma of evaporated particles of the catalyst layer forming material is formed, and the evaporated particles fly to the surface of the metal foil 10 and are deposited, and the catalyst layer 20 is formed on the metal foil 10.
  • the portion of the metal foil 10 on which the catalyst layer 20 is formed after reaching the predetermined number of times of plasma irradiation (the number of shots) is sequentially sent out to the transport roll 42 side and wound up. At the same time, a new metal foil 10 portion is sent out from the transport roll 41 side to a position facing the arc vapor deposition source 30. Then, the catalyst layer 20 is formed on the new metal foil 10 in the same manner as described above.
  • the voltage (discharge voltage) applied between the anode 33 and the cathode 50 by the arc power supply 34a is preferably 80 to 150V.
  • the voltage applied between the trigger electrode 32 and the cathode 50 by the trigger power supply 34b is preferably 2 to 5 kV.
  • the capacitance of the capacitor 34c is preferably 250 to 500 ⁇ F.
  • the frequency of arc discharge is preferably 1 to 5 Hz.
  • the number of times of plasma irradiation (number of shots) from the arc deposition source 30 is appropriately determined in consideration of the heat resistance required according to the application, and is preferably 4000 shots or more, more preferably 6000 shots or more, and still more preferably. Is 8000 shots or more, particularly preferably 8000 to 10,000 shots.
  • the amount of the noble metal supported on the metal foil 10 is appropriately determined in consideration of the heat resistance required according to the application, and is preferably 10 to 40 ⁇ g ⁇ cm ⁇ 2 , more preferably 15 to 30 ⁇ g. -Cm -2 .
  • the catalytic activity of the metal foil catalyst and the durability at high temperature use are further improved. Even if the number of shots or the amount of noble metal supported exceeds the preferable upper limit, the catalytic activity of the metal foil catalyst and the effect of improving durability at high temperature use tend to reach a peak.
  • Loading of the thickness T C and the noble metal of the catalyst layer 20 on the metal foil 10 can be controlled by the number of times of the plasma illumination from the arc evaporation source 30 (number of shots).
  • the surface state of the manufactured metal foil catalyst for example, X-ray diffraction (XRD) method, X-ray fluorescence elemental analysis (XRF) method, X-ray photoelectron spectroscopy (XPS) method, scanning electron microscope / energy dispersive type This can be confirmed using a method using X-rays (SEM / EDX).
  • the manufacturing method of the metal foil catalyst described above is a complete dry process, and furthermore, the metal foil catalyst is obtained by a one-step operation of depositing and winding the catalyst layer forming material on the metal foil 10 by arc discharge. Can be manufactured. That is, such a manufacturing method has a significantly smaller number of manufacturing steps than the conventional wet honeycomb catalyst manufacturing method, and can save the process. In addition, such a manufacturing method is less prone to loss of precious metals during the manufacturing process and is excellent in manufacturability.
  • the metal foil catalyst manufactured by such a manufacturing method is easy to process because the metal foil has ductility even after the catalyst layer is formed.
  • the noble metal is vapor-deposited uniformly and directly on the surface of the metal foil.
  • the produced metal foil catalyst has a stronger interaction between the metal foil (carrier) and the noble metal than the conventional wet honeycomb catalyst, and exhibits a high catalytic action in the exhaust gas purification reaction.
  • the metal foil which has a catalyst function can be obtained simply.
  • the metal foil catalyst 2 shown in FIG. 2 can also be manufactured by using the manufacturing apparatus shown in FIG. For example, an intermediate layer forming step of forming an intermediate layer 60 by vapor-depositing an intermediate layer forming material containing zirconium on the metal foil 12 by arc discharge, and an intermediate layer 60 formed in the intermediate layer forming step, A catalyst layer forming step (2) in which a catalyst layer forming material (2) containing rhodium is deposited by arc discharge to form the catalyst layer 22 is used.
  • the intermediate layer forming material includes zirconium and, if necessary, components other than zirconium.
  • the zirconium content is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, based on the total amount (100% by mass) of the intermediate layer forming material. More preferably, it is 90 mass% or more, and may be 100 mass%.
  • the catalyst layer forming material (2) contains rhodium and, if necessary, components other than rhodium.
  • the rhodium content is 50% by mass or more, preferably 70% by mass or more, more preferably based on the total amount (100% by mass) of the catalyst layer forming material (2). Is 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass.
  • ⁇ Intermediate layer forming step> In the intermediate layer forming step, the same operation is performed using the manufacturing apparatus 100 shown in FIG. 3 except that in the above-described ⁇ catalyst layer forming step>, the catalyst layer forming material is changed to the intermediate layer forming material. Good.
  • the number of times of plasma irradiation (number of shots) from the arc vapor deposition source 30 is appropriately determined in consideration of heat resistance required according to the application, for example, preferably 5000 shots or more, more preferably It is 10,000 shots or more, more preferably 20,000 shots or more, and particularly preferably 20,000 to 40,000 shots.
  • the amount of zirconium supported on the metal foil 12 is appropriately determined in consideration of the heat resistance required according to the application, and is preferably 50 to 300 ⁇ g ⁇ cm ⁇ 2 , more preferably 100 to 200 ⁇ g. -Cm -2 .
  • the thickness T I of the intermediate layer 60 and the supported amount of zirconium on the metal foil 12 can be controlled by the number of times of plasma irradiation (the number of shots) from the arc deposition source 30.
  • ⁇ Catalyst layer forming step (2)> the catalyst layer 22 is formed by vapor-depositing the catalyst layer forming material (2) on the intermediate layer 60 by arc discharge using the manufacturing apparatus 100 shown in FIG.
  • a catalyst layer formation process (2) what is necessary is just to perform operation of ⁇ catalyst layer formation process> mentioned above similarly.
  • Loading of the thickness T C and the noble metal of the catalyst layer 22 in the intermediate layer 60 on is possible to control the number of the plasma illumination from the arc evaporation source 30 (number of shots).
  • vapor deposition by arc discharge is continuously performed using the manufacturing apparatus 100 including the metal foil traveling unit 40 adopting the roll-to-roll method.
  • the method is not limited to this, and the metal foil traveling unit 40 may be subjected to vapor deposition by arc discharge by replacing a metal foil holding unit, for example, a metal foil having a fixed shape, with a new metal foil every time of vapor deposition. .
  • a metal foil holding unit for example, a metal foil having a fixed shape
  • the metal foil which oxidized the surface layer beforehand is a metal foil.
  • the metal foil catalyst using the metal foil whose surface layer has been oxidized in advance is not exposed to the surface because it is difficult for the metal foil to be oxidized due to heat applied during the exhaust gas purification reaction, for example. This is because the concentration of the precious metal that is the catalyst component is easily maintained.
  • the metal foil whose surface layer has been oxidized can be produced, for example, by performing a heat treatment at about 900 to 1000 ° C. for 5 to 30 hours.
  • the catalytic converter of the present invention is a processed product of the metal foil catalyst described above.
  • Examples of such a catalytic converter include a metal honeycomb catalyst.
  • exhaust gas hydrogen (HC), carbon monoxide (CO), nitrogen oxide (NO x ), etc.
  • HC is oxidized or reduced to carbon dioxide and water
  • CO is oxidized to carbon dioxide
  • NO x is oxidized or reduced to nitrogen (N 2 ).
  • a catalytic converter which is a processed product of a metal foil catalyst in which a rhodium-containing catalyst layer is provided on a metal foil made of heat-resistant stainless steel is particularly suitable for a gasoline vehicle, and CO— It exhibits catalytic activity for the NO—C 3 H 6 —O 2 reaction (theoretical air-fuel ratio), and all exhaust gas components are purified in a reaction temperature range of 300 ° C. or higher.
  • the metal foil catalyst described above has a foil shape in which a catalyst layer is thinly provided on a metal foil with a specific thickness (20 ⁇ T S / T C ), and the catalytic activity is enhanced. According to the catalytic converter of the present invention employing such a metal foil catalyst, it is possible to reduce the size and improve the performance. Further, the above-described metal foil catalyst can be manufactured by a dry process, and in addition, can be processed into various shapes such as a honeycomb shape, and can be molded with a high degree of freedom. By adopting such a metal foil catalyst, it is possible to realize an innovative production line different from the conventional ones in the catalytic converter production without depending on the shape of the final product.
  • Example 1 Heat resistant stainless steel foil (heat resistant SUS foil) was used as the metal foil, and rhodium (Rh) was used as the catalyst layer forming material.
  • the heat-resistant SUS foil size 30 mm ⁇ 30 mm, the thickness T S using 51 [mu] m, what composition consisting of 75 wt% and chromium 20% by mass of aluminum 5 mass% iron.
  • an arc plasma gun manufactured by ULVAC-RIKO Inc. having the same form as the arc deposition source 30 in FIG. 3 was used.
  • the obtained metal foil catalyst (fresh, aged) is characterized by X-ray diffraction (XRD) method, X-ray photoelectron spectroscopy (XPS) method, scanning electron microscope / energy dispersive X-ray (SEM / EDX). The method was used.
  • XRD X-ray diffraction
  • XPS X-ray photoelectron spectroscopy
  • SEM / EDX scanning electron microscope / energy dispersive X-ray
  • the thickness T C of the Rh layer, the amount of supported Rh, showed T S / T C to Table 1, respectively.
  • Composition of mixed gas 0.050% NO, 0.51% CO, 0.039% C 3 H 6 , 0.40% O 2 , He balance Mixed gas flow rate: 100 mL ⁇ min ⁇ 1 Reaction temperature: range from room temperature (25 ° C.) to 600 ° C. Rate of temperature increase: 10 ° C. ⁇ min ⁇ 1
  • Gas analysis method non-dispersive infrared absorption method (NDIR)
  • FIG. 5 shows the NO with respect to the reaction temperature when the mixed gas is brought into contact with the metal foil catalysts (fresh) of Examples 1 to 4 having different shot numbers and the metal foil catalyst (aged) subjected to heat treatment.
  • conversion, CO conversion is a graph showing each change of C 3 H 6 conversion.
  • metal foil catalyst fresh: In any metal foil catalyst, all the gases reacted at 400 to 500 ° C., indicating a high conversion rate.
  • metal foil catalyst (aged) In the metal foil catalyst (aged) in Example 1 (2000 shots), a significant decrease in catalyst activity due to heat treatment is observed. As the number of shots increases (that is, the amount of Rh supported increases), the catalytic activity increases, and if the number of shots is 8000 shots, all the gas is purified at about 500 ° C. at almost 100%. I can confirm.
  • Rh is uniformly distributed on the surface layer, and the state is substantially maintained even after heat treatment at 900 ° C. for 25 hours. It can be confirmed. Also, in the metal foil catalyst (aged), Al, Fe, and Cr are unevenly distributed (Al that is raised by heat treatment covers a part of Fe and Cr); , Rh is present on the surface layer.
  • the upper image in FIG. 7 is an SEM image showing the surface state of the heat-resistant SUS foil used as the metal foil.
  • the lower image in FIG. 7 is an SEM image showing a surface state after heat-resistant SUS foil is subjected to heat treatment at 1000 ° C. for 25 hours in an air atmosphere.
  • FIG. 8 (a) shows the surface layer composition (analysis result by XPS method) of heat-resistant SUS foil after heat-resistant SUS foil is subjected to heat treatment at each reaction temperature for 25 hours in an air atmosphere. Yes.
  • the heat-resistant SUS foil is heated at 1000 ° C., it can be confirmed that almost 100% of the elements detected as components constituting the surface layer are aluminum.
  • FIG. 8B is a graph showing measurement results by the X-ray diffraction (XRD) method, where the horizontal axis represents the incident angle and the vertical axis represents the diffraction intensity.
  • (X1) shows the results for the heat-resistant SUS foil that was heat-treated at 1000 ° C. for 25 hours in the air atmosphere.
  • (X2) shows the results for ⁇ -Al 2 O 3 .
  • (X3) shows the results for ⁇ -Al 2 O 3 . It can be confirmed that the position of the peak observed in (X1) and the position of the peak observed in (X2) are almost the same.
  • the heat-resistant SUS foil is oxidized by heat treatment at 1000 ° C., and an aluminum oxide film ( ⁇ -Al 2 O 3 film) is formed on the surface.
  • Rh oxidation state Rh 0 , Rh 3+ , Rh 4+ etc.
  • Rh distribution state Rh 0 , Rh 3+ , Rh 4+ etc.
  • Rh oxidation state Rh 0 , Rh 3+ , Rh 4+ etc.
  • Rh distribution state is considered to be different.
  • Rh distribution In the metal foil catalyst (fresh), Rh is distributed on the heat resistant SUS foil to form an Rh layer (FIG. 6).
  • Rh In the metal foil catalyst (aged), as the aluminum oxide film is formed on the surface layer, Rh diffuses inside the heat-resistant SUS foil, and the surface layer contains Rh oxide (Rh 2 O 3 Etc.) was confirmed (XPS depth analysis).
  • Example 5 ⁇ Manufacture of metal foil catalyst (2)> (Example 5)
  • the heat-resistant SUS foil used in Examples 1 to 4 was subjected to a heat treatment at 1000 ° C. for 25 hours in an air atmosphere (thickness T S 52000 nm).
  • the metal foil catalyst of Example 5 fresh.
  • the number of shots of plasma irradiation from the arc deposition source was 2000 shots.
  • the thickness T C of the Rh layer is 5.07 nm
  • the supported amount of Rh is 6.2 ⁇ g ⁇ cm ⁇ 2
  • T S / T C 10256.
  • Example 5 Further, the metal foil catalyst (fresh) of Example 5 was deteriorated by being subjected to a heat treatment at 900 ° C. for 25 hours in an atmosphere in which 10% H 2 O / air flows at 25 mL ⁇ min ⁇ 1. A metal foil catalyst (aged) was obtained.
  • FIG. 9 shows the NO conversion rate, CO conversion rate, C, and the reaction temperature when the mixed gas was brought into contact with the metal foil catalyst (fresh) of Example 5 and the metal foil catalyst (aged) subjected to the heat treatment. It is a graph showing each change in 3 H 6 conversion.
  • Example 5 In the metal foil catalyst (aged) in Example 1 (2000 shots), a significant decrease in catalytic activity was observed due to heat treatment, but in the metal foil catalyst (aged) in Example 5 (2000 shots), the decrease in catalyst activity was It is not recognized, and it can be confirmed that at about 500 ° C., all the gases are purified at almost 100%.
  • the metal foil catalyst (fresh, aged) in Example 5 (2000shots) is the same as the metal foil catalyst (fresh, aged) in Example 4 (8000shots), NO conversion, CO conversion, C 3 H 6 conversion with respect to the reaction temperature.
  • the rate behavior is similar. That is, by using a heat-resistant SUS foil that has been heat-treated in advance (a metal foil that has been previously oxidized on the surface layer) as the metal foil, the metal foil catalyst has improved durability at high temperatures. The amount of precious metal used is reduced.
  • Example 6 ⁇ Manufacture of metal foil catalyst (3)> (Example 6)
  • the heat-resistant SUS foil used in Examples 1 to 4 was subjected to a heat treatment at 1000 ° C. for 25 hours in an air atmosphere (thickness T S 52000 nm).
  • the metal foil catalyst of Example 6 Rh / heat resistant SUS foil catalyst was obtained.
  • the number of shots of plasma irradiation from the arc deposition source was 2000 shots.
  • the thickness T C of the Rh layer was 5.07 nm
  • the supported amount of Rh was 6.2 ⁇ g ⁇ cm ⁇ 2
  • T S / T C 10256.
  • Rh was vapor deposited on the porous powder Al 2 O 3 by arc discharge to obtain a powdery catalyst component. At that time, the ratio of Rh in the total (100% by mass) of Al 2 O 3 and Rh in the porous powder was set to 0.7% by mass. With respect to the powdery catalyst component (0.7 wt% Rh / Al 2 O 3 ) of Comparative Example 1, the amount of Rh supported on Al 2 O 3 was 350 ⁇ g ⁇ cm ⁇ 2 .
  • FIG. 10 is a graph showing changes in the NO conversion rate, CO conversion rate, and C 3 H 6 conversion rate with respect to the reaction temperature when the mixed gas is brought into contact with the catalyst of each example.
  • FIG. 10A shows the result when the metal foil catalyst (Rh / heat-resistant SUS foil catalyst) of Example 6 to which the present invention is applied is used.
  • FIG. 10B shows the results when the catalyst of Comparative Example 1 (powder catalyst component (conventional type)) was used. From the comparison between Example 6 and Comparative Example 1, the metal foil catalyst to which the present invention is applied can reduce the amount of noble metal used compared to the conventional type catalyst (suppressed to about 1/100), And it can confirm that there exists a higher catalytic action in exhaust gas purification reaction.
  • Example 7 Further, the metal foil catalyst (fresh) of Example 7 was deteriorated by being subjected to a heat treatment at 900 ° C. for 25 hours in an atmosphere in which 10% H 2 O / air flows at 25 mL ⁇ min ⁇ 1. A metal foil catalyst (aged) was obtained.
  • Example 8 As the metal foil, the heat resistant SUS foil used in Examples 1 to 4, zirconium (Zr) as the intermediate layer forming material, and Rh as the catalyst layer forming material were used.
  • Intermediate layer forming process An arc evaporation source having a Zr cathode target is installed in a vacuum chamber, and arc discharge (capacitor capacity 360 ⁇ F, discharge voltage 125 V, discharge voltage 125 V, on one side of a heat-resistant SUS foil, the number of shots of plasma irradiation from the arc evaporation source is 20000 shots Zr was vapor-deposited at a frequency of 1 Hz to form an intermediate layer.
  • Catalyst layer forming step Next, an arc vapor deposition source having an Rh cathode target was installed, and the number of shots of plasma irradiation from the arc vapor deposition source was set to 2000 shots on the intermediate layer, and arc discharge (capacitor capacity 360 ⁇ F, discharge voltage 125 V, frequency 1 Hz)
  • the metal foil catalyst (fresh) of Example 8 was obtained by forming a catalyst layer.
  • the thickness T I of the intermediate layer is 259 nm
  • the thickness T C is 5.07nm of the catalyst layer
  • loading of Zr is 168Myug ⁇
  • the supported amounts of cm ⁇ 2 and Rh are 6.2 ⁇ g ⁇ cm ⁇ 2
  • T S / T C 10059
  • T S / (T I + T C ) 193.
  • Example 8 Further, the metal foil catalyst (fresh) of Example 8 was deteriorated by being subjected to a heat treatment at 900 ° C. for 25 hours in an atmosphere in which 10% H 2 O / air flows at 25 mL ⁇ min ⁇ 1. A metal foil catalyst (aged) was obtained.
  • the catalyst layer thickness T C , Rh loading, intermediate layer thickness T I , Zr loading, T S / T C , T S / (T I + T C ) is shown in Table 2.
  • FIG. 11 is a graph showing changes in the NO conversion rate, the CO conversion rate, and the C 3 H 6 conversion rate with respect to the reaction temperature when the mixed gas is brought into contact with the catalyst of each example.
  • FIG. 11A shows the result when the metal foil catalyst (Rh / heat resistant SUS foil catalyst) of Example 7 which is the same embodiment as FIG. 1 is used.
  • FIG.11 (b) has shown the result at the time of using the metal foil catalyst (Rh / Zr / heat resistant SUS foil catalyst) of Example 8 which is the same embodiment as FIG.
  • Example 7 In the metal foil catalyst (aged) in Example 7 (without the intermediate layer), a significant decrease in catalytic activity was observed due to the heat treatment, but in the metal foil catalyst (aged) in Example 8 (with the intermediate layer), the catalyst No decrease in activity is observed, and it can be confirmed that at about 500 ° C., all the gases are purified by almost 100%. That is, by providing an intermediate layer of Zr between the metal foil and the Rh catalyst layer, the metal foil catalyst has improved durability when used at high temperatures.
  • the metal foil catalyst according to the present invention is useful as a material for a catalytic converter mounted on a two-wheel or four-wheel gasoline vehicle. Since such a metal foil catalyst has a high degree of freedom in molding, it can be used for a wide range of vehicle types. Moreover, the metal foil catalyst can be expected to be further improved in catalyst performance and used in a catalytic converter for diesel vehicles by selecting a noble metal.
  • metal foil catalyst 1 metal foil catalyst, 2 metal foil catalyst, 10 metal foil, 12 metal foil, 20 catalyst layer, 22 catalyst layer, 30 arc deposition source, 31 insulator, 32 trigger electrode, 33 anode, 34 power supply unit, 34a arc power supply, 34b Trigger power supply, 34c capacitor, 40 metal foil traveling section, 41 transport roll, 42 transport roll, 50 cathode, 60 intermediate layer, 100 manufacturing equipment, 200 honeycomb catalyst, 210 base material, 220 catalyst layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

所定形状の基材(担体)を必要とせず、高い自由度での成形も可能であり、かつ、触媒活性が高められた金属箔触媒として、金属箔と、金属箔上に設けられた触媒層と、を備え、触媒層は、貴金属を含有し、金属箔の厚さTS(nm)及び触媒層の厚さTC(nm)が次式(1)を満たす、金属箔触媒を提供する。 20<T/T ・・・(1) そして、製造性に優れた当該金属箔触媒の製造方法として、金属箔上に、アーク放電によって、貴金属を含む触媒層形成用材料を蒸着させて触媒層を形成する触媒層形成工程を有する。

Description

金属箔触媒及びその製造方法、並びに触媒コンバータ
本発明は、金属箔触媒及びその製造方法、並びに触媒コンバータに関する。
本願は、2015年8月25日に日本に出願された特願2015-166264号に基づき優先権を主張し、その内容をここに援用する。
ガソリンを燃料とする自動車(ガソリン車)の排ガスには、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)等が含まれる。このため、大気汚染等の点から、ガソリン車の排ガス浄化は、大きな社会問題となっている。
ガソリン車には、前記の排ガス中の成分を還元・酸化によって浄化する装置(触媒コンバータ)が備えられている。
従来、触媒コンバータは、主に湿式含浸法によって製造されている。
例えば、下記の工程(i)~(v)により、ハニカム形状の基材がパウダー状の触媒成分で被覆された触媒コンバータ(いわゆるハニカム触媒)が製造される。
(i)地金の貴金属を粉砕して粉末にする。
(ii)この粉末を溶媒に溶解して、貴金属塩の溶液を調製する。
(iii)この貴金属塩の溶液に、アルミナ等の多孔質パウダーを添加して撹拌し、貴金属塩の溶液が含浸した多孔質パウダーの分散液(スラリー)を調製する。
(iv)別途、ハニカム形状の基材を用意し、当該基材の表面にウォッシュコート層を予め形成する。
(v)前記スラリーを、ウォッシュコート層が形成されたハニカム形状の基材に塗布し、焼成する。
図12は、従来のハニカム触媒の一実施形態を示している。
図12に示すハニカム触媒200は、ハニカム形状の基材210(担体)と、基材210上に設けられた触媒層220と、を備える。好ましくは、基材210の厚さは40μm以上、触媒層220の厚さは約10~30μmとされる。
基材210には、例えば、メタル製のメタルハニカム基材(厚さ40~50μm)、セラミックス製のセラミックスハニカム基材(厚さ100~200μm)が用いられる。
触媒層220には、アルミナ等の多孔質パウダーとこれに担持される貴金属とが含まれる。
特許文献1には、ステンレス製のメタルハニカム基材表面に、γアルミナ粉末と金属成分粉末と水とを混錬して得たスラリーを塗布し乾燥させることにより触媒層が形成されてなる、触媒コンバータが開示されている。
特開2006-223925号公報
特許文献1等で提案されているようなハニカム触媒は、湿式プロセスによって、ハニカム形状の基材に貴金属を担持させて製造される。このため、ハニカム触媒を製造する際には、所定形状の基材(担体)が必要となる。加えて、湿式プロセスによるハニカム触媒の製造方法においては、製造工程数が多くなる、その製造工程毎で貴金属の損失が生じやすい、といったような製造性の点で不具合がある。
また、近年、自動車エンジン性能の向上、排出ガス規制の強化等に伴い、従来の触媒コンバータには、触媒活性の向上や、高温(例えば900℃以上)使用での耐久性の更なる向上が要求される。
本発明は、上記事情に鑑みてなされたものであり、所定形状の基材(担体)を必要とせず、高い自由度での成形も可能であり、かつ、触媒活性が高められた金属箔触媒、製造性に優れた当該金属箔触媒の製造方法、並びに触媒コンバータを提供することを課題とする。
ハニカム触媒は、従来、ハニカム形状の基材(担体)を用意し、湿式プロセスによって、当該担体を、アルミナ等に貴金属が担持されたパウダー状の触媒成分でコーティングすることにより製造されている。
これに対し、本発明者らは、検討の中で、担体として金属箔を採用し、当該金属箔上に、貴金属を含有する触媒層を特定の厚さで薄く形成して、これまでよりも貴金属の使用量を大幅に抑えても、より高い触媒機能を発揮し得る金属箔が得られることを見出し、本発明を完成するに至った。
すなわち、本発明の金属箔触媒は、金属箔と、当該金属箔上に設けられた触媒層と、を備え、前記触媒層は、貴金属を含有し、前記金属箔の厚さT(nm)及び前記触媒層の厚さT(nm)が下式(1)を満たすことを特徴とする。
20<T/T ・・・(1)
前記貴金属は、ロジウム、パラジウム、白金、銀、イリジウム、及びこれらの1種以上を含む合金からなる群より選択されることが好ましい。
本発明の金属箔触媒としては、前記金属箔と前記触媒層との間に配置され、これらの両方に隣接する中間層をさらに備え、前記触媒層は、ロジウムを含む層であり、前記中間層は、ジルコニウムを含む層であるものも好適に挙げられる。
また、本発明の金属箔触媒の製造方法は、前記本発明の金属箔触媒の製造方法であって、前記金属箔上に、アーク放電によって、前記貴金属を含む触媒層形成用材料を蒸着させて前記触媒層を形成する触媒層形成工程を有することを特徴とする。
前記触媒層形成工程においては、前記金属箔をロールツーロール方式で搬送しながら、前記金属箔上に連続的にアーク放電によって前記触媒層形成用材料を蒸着させることが好ましい。
前記金属箔として、予め表層を酸化させた金属箔を用いることが好ましい。
また、本発明の触媒コンバータは、前記本発明の金属箔触媒の加工品であることを特徴とする。
本発明によれば、所定形状の基材(担体)を必要とせず、高い自由度での成形が可能であり、かつ、触媒活性が高められた金属箔触媒、及び製造性に優れたその製造方法、並びに触媒コンバータを提供できる。
金属箔触媒の一実施形態を示す断面図である。 金属箔触媒の他の実施形態を示す断面図である。 金属箔触媒の製造装置の一実施形態についての概略構成を示す模式図である。 アーク蒸着源からのプラズマ照射の回数(ショット数)と、触媒層(Rh層)の厚さ及び貴金属(Rh)の担持量と、の関係を示すグラフである。 実施例1~4の金属箔触媒(fresh)とこれらに加熱処理を施した金属箔触媒(aged)に混合ガスを接触させた際の、反応温度に対するNO転化率、CO転化率、C転化率の各変化を示すグラフである。 Rh/耐熱性SUS箔触媒における、加熱処理前(上段;fresh)及び加熱処理後(下段;900℃ aged)の各表面状態を示す画像である。 耐熱性SUS箔における、加熱処理の前後の各表面状態を示す画像である。 図8(a)は、耐熱性SUS箔についての、反応温度に対する表層組成の変化を示すグラフであり、図8(b)はX線回折(XRD)法による測定結果を示すグラフである。 予め加熱処理を施した耐熱性SUS箔を用いて製造されたRh/耐熱性SUS箔触媒に混合ガスを接触させた際の、反応温度に対するNO転化率、CO転化率、C転化率の各変化を示すグラフである。 各例の触媒に混合ガスを接触させた際の、反応温度に対するNO転化率、CO転化率、C転化率の各変化を示すグラフであり、図10(a)は本発明を適用したRh/耐熱性SUS箔触媒を用いた場合についてのグラフ、図10(b)はパウダー状触媒成分(従来タイプ)を用いた場合についてのグラフである。 各例の触媒に混合ガスを接触させた際の、反応温度に対するNO転化率、CO転化率、C転化率の各変化を示すグラフであり、図11(a)は実施例7の金属箔触媒(Rh/耐熱性SUS箔触媒)を用いた場合についてのグラフ、図11(b)は実施例8の金属箔触媒(Rh/Zr/耐熱性SUS箔触媒)を用いた場合についてのグラフである。 従来のハニカム触媒の一実施形態を示す断面図である。
(金属箔触媒)
本発明の金属箔触媒は、金属箔と、当該金属箔上に設けられた触媒層と、を備えるものである。
図1は、金属箔触媒の一実施形態を示している。
本実施形態の金属箔触媒1は、金属箔10と、金属箔10上に設けられた触媒層20と、を備える。
図1では、金属箔10の厚さをT、触媒層20の厚さをTとしている。
金属箔触媒1は、金属箔10の厚さT(nm)及び触媒層20の厚さT(nm)が下式(1)を満たすものである。
20<T/T ・・・(1)
金属箔触媒1において、T/Tは、20超であり、好ましい下限値は50以上であり、より好ましくは100以上であり、さらに好ましくは500以上、特に好ましくは1000以上、最も好ましくは2000以上である。
一方、好ましい上限値は20000以下であり、加えて好ましくは10000以下、より好ましくは6000以下、さらに好ましくは5000以下、特に好ましくは4000以下、最も好ましくは3000以下である。
/Tが前記の下限値超であれば、触媒層20が金属箔10に対して薄く設けられていても、充分な触媒機能が発揮され、本発明の技術的意義がある。
/Tが前記の好ましい上限値以下であれば、金属箔触媒1として充分な強度が保たれやすくなる。
金属箔触媒1の厚さ(T+T)は、好ましくは5000~70000nmであり、より好ましくは10000~70000nm、さらに好ましくは30000~70000nm、特に好ましくは40000~60000nmである。
<金属箔>
金属箔10の材料としては、用途に応じて要求される耐熱性などを勘案して適宜選択され、例えばステンレス鋼、アルミニウム、チタン等が挙げられる。これらの中でも、耐久性及び加工性などの点から、ステンレス鋼が好ましい。
例えば、金属箔触媒1がガソリン車の触媒コンバータに利用される場合、高温の排ガスに晒されるため、金属箔10の材料として、高い耐熱性を有するステンレス鋼(耐熱性ステンレス鋼)を用いることが好ましい。例えば、600~1000℃に対して耐熱性を有するステンレス鋼が挙げられ、より好ましくは900~1000℃に対して耐熱性を有するステンレス鋼が挙げられる。
好ましい耐熱性ステンレス鋼としては、耐熱性ステンレス鋼を構成する成分の総量(100質量%)に対し、例えば、鉄75~80質量%と、クロム15~20質量%と、アルミニウム5~10質量%と、を含有するものが挙げられる。
金属箔10の厚さT(nm)は、用途等に応じて適宜決定され、例えば5000~70000nmが好ましく、より好ましくは10000~70000nm、さらに好ましくは30000~70000nm、特に好ましくは40000~60000nmである。
<触媒層>
触媒層20は、触媒成分である貴金属を含有する。
かかる貴金属の好ましいものとしては、例えば、ロジウム、パラジウム、白金、銀、イリジウム、及びこれらの1種以上を含む合金からなる群より選択されるものが挙げられる。
合金としては、ロジウムと白金との合金(例えば、質量比が前者:後者=1:6)、パラジウムと白金との合金(例えば、質量比が前者:後者=1:1)等が挙げられる。
かかる貴金属は、1種単独で用いてもよいし2種以上を用いてもよい。
上記の中でも、かかる貴金属としては、触媒活性がより高められることから、ロジウム、パラジウム、白金、及びこれらの1種以上を含む合金からなる群より選択されるものがより好ましく、ロジウムを含むものが特に好ましい。
触媒層20中、かかる貴金属の含有量は、触媒層20の総量(100質量%)に対して50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%でもよい。
触媒層20は、貴金属以外の成分を含有してもよい。
貴金属以外の成分としては、例えばセリウム、ジルコニウム等が挙げられる。
触媒層20の厚さT(nm)は、用途等に応じて適宜決定され、例えば1000nm以下が好ましく、より好ましくは500nm以下、さらに好ましくは200nm以下、特に好ましくは100nm以下、最も好ましくは50nm以下である。
一方、好ましい下限値は1nm以上であり、好ましくは2nm以上、より好ましくは5nm以上、さらに好ましくは10nm以上、特に好ましくは15nm以上、最も好ましくは20nm以上である。
以上説明したように、本実施形態の金属箔触媒1は、金属箔10上に、貴金属を含有する触媒層20が特定の厚さ(20<T/T)で設けられたものである。
金属箔触媒1は、所定形状の基材(担体)を必要とせずに製造でき、箔形状であることから、高い自由度での成形が可能である。
加えて、金属箔触媒1は、その表面に触媒層20を備えることから触媒機能を有し、触媒活性が高められている。そして、金属箔触媒1は、排ガス浄化反応において触媒作用を奏する。
また、本実施形態の金属箔触媒1によれば、金属箔10に対して触媒層20が従来に比べて格段に薄く設けられているため、貴金属の使用量が抑えられる。
上述した実施形態の金属箔触媒1は、金属箔10と触媒層20との積層体であったが、本発明はこれに限定されず、他の実施形態であってもよい。
図2は、金属箔触媒の他の実施形態を示している。
図2に示す金属箔触媒2は、金属箔12と、ロジウムを含む触媒層22と、ジルコニウムを含む中間層60と、の積層体である。中間層60は、金属箔12と触媒層22との間に配置され、これらの両方に隣接している。
図2では、金属箔12の厚さをT、触媒層22の厚さをT、中間層60の厚さをTとしている。
金属箔触媒2は、金属箔12の厚さT(nm)及び触媒層22の厚さT(nm)が下式(2)を満たすものである。
20<T/T ・・・(2)
金属箔触媒2において、T/Tの好適な範囲は、上記T/Tと同様である。
/(T+T)は、好ましい下限値は20以上、より好ましくは50以上、さらに好ましくは100以上である。一方、好ましい上限値は1000以下、より好ましくは500以下、さらに好ましくは200以下である。
金属箔触媒2の厚さ(T+T+T)は、好ましくは5000~70000nmであり、より好ましくは10000~60000nmである。
金属箔12についての説明は、上記金属箔10と同様である。
触媒層22は、貴金属として少なくともロジウムを含む層である。
触媒層22中、ロジウムの含有量は、触媒層22の総量(100質量%)に対して50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%でもよい。
触媒層22は、ロジウム以外の成分を含有してもよい。ロジウム以外の成分としては、例えば、パラジウム、白金、銀、イリジウム等が挙げられる。触媒層22は、これらのロジウム以外の成分とロジウムとの合金を含む層でもよい。
触媒層22の厚さTは、用途等に応じて適宜決定され、例えば1000nm以下が好ましく、より好ましくは500nm以下、さらに好ましくは200nm以下、特に好ましくは100nm以下、最も好ましくは50nm以下である。一方、下限値は1nm以上が好ましく、より好ましくは2nm以上、さらに好ましくは5nm以上、特に好ましくは10nm以上である。
<中間層>
中間層60は、ジルコニウムを含む層である。
中間層60中、ジルコニウムの含有量は、中間層60の総量(100質量%)に対して50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%でもよい。
中間層60は、ジルコニウム以外の成分を含有してもよい。ジルコニウム以外の成分としては、例えばセリウム、イットリウム等が挙げられる。
中間層60の厚さT(nm)は、用途等に応じて適宜決定され、
例えば50nm以上が好ましく、より好ましくは100nm以上、さらに好ましくは200nm以上である。一方、上限値は1000nm以下が好ましく、より好ましくは500nm以下、さらに好ましくは300nm以下である。
上述した図2に示す金属箔触媒2は、金属箔触媒1と同様、所定形状の基材(担体)を必要とせずに製造できる。加えて、金属箔触媒2は、その表面に触媒層22を備えることから触媒機能を有し、触媒活性が高められている。そして、金属箔触媒2は、排ガス浄化反応において触媒作用を奏する。
また、金属箔触媒2においては、中間層60を介して金属箔12と触媒層22とが配置されているため、触媒層22に含まれるロジウムの均一に密な状態での分布が維持されて、高い触媒作用を安定的に奏し得る。これによって、特に高温使用での耐久性がより高められている。
また、かかる金属箔触媒2は、中間層60が介在していても全体としての厚みが極めて薄く、箔形状であることから、高い自由度、表面積、開口率およびセル密度での成形が可能である。
(金属箔触媒の製造方法)
本発明の金属箔触媒の製造方法は、上述した金属箔触媒の製造方法であって、前記金属箔上に、アーク放電によって、前記貴金属を含む触媒層形成用材料を蒸着させて前記触媒層を形成する触媒層形成工程を有する。
触媒層形成用材料は、貴金属と、必要に応じて貴金属以外の成分と、を含む。ここでの貴金属、貴金属以外の成分としては、上述した触媒層20が含有する貴金属、触媒層20が含有してもよい貴金属以外の成分と同様のものが挙げられる。
触媒層形成用材料中、かかる貴金属の含有量は、触媒層形成用材料の総量(100質量%)に対して50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%でもよい。
例えば、図1に示す金属箔触媒1は、図3に示す製造装置を用いることによって製造できる。
図3は、金属箔触媒の製造装置の一実施形態を示している。
図3に示す製造装置100は、アーク蒸着源30と金属箔走行部40とから構成される。アーク蒸着源30と金属箔走行部40とは、触媒層が形成される金属箔10面がアーク蒸着源30と対向するように配置されている。
アーク蒸着源30は、円筒状の碍子31と、触媒層形成用材料からなり、碍子31の内周面に接するように配置された円柱状のカソード50と、碍子31の外周面に接するように配置された円筒状のトリガ電極32と、トリガ電極32の外周側に同心状に離間して配置されたアノード33と、電源ユニット34と、を備える。
電源ユニット34は、アーク電源34aとトリガ電源34bとコンデンサ34cとを有する。
アーク電源34aは、配線35aを介してアノード33と接続され、配線35cを介してカソード50と接続され、アノード33とカソード50との間に電圧を印加できるように構成されている。
トリガ電源34bは、配線35bを介してトリガ電極32と接続され、配線35cを介してカソード50と接続され、トリガ電極32とカソード50との間に電圧を印加できるように構成されている。
コンデンサ34cは、アーク電源34aによって充電されるように接続されている。
金属箔走行部40には、相互に平行に配置された一対の搬送ロール41、42を備えるロールツーロール(roll-to-roll)方式が採用されている。
図3において、金属箔10は、搬送ロール41側から搬送ロール42側へ(矢印方向に)送り出され、その先で巻き取られる。
尚、図3では、アーク放電によってプラズマ(Plasma)とされた触媒層形成用材料が、金属箔走行部40を走行する金属箔10上へ照射(パルス放電)されている状態、が波線矢印で表現されている。
<触媒層形成工程>
触媒層形成工程では、例えば、製造装置100を用いて、金属箔10上に、アーク放電により触媒層形成用材料を蒸着させて触媒層を形成する。すなわち、金属箔10をロールツーロール方式で搬送しながら、金属箔10上に、連続的にアーク放電によって触媒層形成用材料を蒸着させて触媒層20が形成されて、金属箔触媒1が製造される。
触媒層形成工程は、一例として以下のように行われる。
まず、真空チャンバ(不図示)内に、アーク蒸着源30と金属箔走行部40とを、触媒層20が形成される金属箔10面がアーク蒸着源30と対向するように配置する。また、金属箔10が搬送ロール41側から搬送ロール42側へ走行するように金属箔走行部40を配置する。
次いで、真空槽内を、所定の真空雰囲気に調整する。
次いで、アーク電源34aによって、アノード33とカソード50との間に電圧を印加しつつ、トリガ電源34bによって、トリガ電極32とカソード50との間に電圧を印加する。これにより、トリガ電極32とカソード50との間でトリガ放電が発生して、触媒層形成用材料が蒸発し始める。この後、コンデンサ34cに充電された電荷によって、アノード33とカソード50との間でアーク放電が発生する。かかるアーク放電の発生により、触媒層形成用材料の蒸発粒子のプラズマが形成されて、当該蒸発粒子は金属箔10面へ飛行して蒸着し、金属箔10上に触媒層20が形成される。
所定のプラズマ照射の回数(ショット数)に達して触媒層20が形成された金属箔10部分は、搬送ロール42側へ順次送り出され、巻き取られていく。これと同時に、搬送ロール41側からアーク蒸着源30と対向する位置に新たな金属箔10部分が送り出される。そして、新たな金属箔10部分には、上記と同様にして触媒層20が形成される。
アーク電源34aによって、アノード33とカソード50との間に印加する電圧(放電電圧)は、好ましくは80~150Vとされる。
トリガ電源34bによって、トリガ電極32とカソード50との間に印加する電圧は、好ましくは2~5kVとされる。
コンデンサ34cの容量は、好ましくは250~500μFとされる。
アーク放電の周波数は、好ましくは1~5Hzとされる。
アーク蒸着源30からのプラズマ照射の回数(ショット数)は、用途に応じて要求される耐熱性などを勘案して適宜決定され、例えば4000ショット以上が好ましく、より好ましくは6000ショット以上、さらに好ましくは8000ショット以上、特に好ましくは8000~10000ショットとされる。
金属箔10上に担持されている貴金属の担持量は、用途に応じて要求される耐熱性などを勘案して適宜決定され、例えば10~40μg・cm-2が好ましく、より好ましくは15~30μg・cm-2とされる。
プラズマ照射のショット数、又は貴金属の担持量が前記の好ましい下限値以上であれば、金属箔触媒の触媒活性及び高温使用での耐久性がより高められる。当該ショット数又は貴金属の担持量が前記の好ましい上限値を超えても、金属箔触媒の触媒活性及び高温使用での耐久性の向上効果は頭打ちの傾向にある。
金属箔10上における触媒層20の厚さT及び貴金属の担持量は、アーク蒸着源30からのプラズマ照射の回数(ショット数)によって制御が可能である。
製造された金属箔触媒の表面状態等については、例えば、X線回折(XRD)法、蛍光X線元素分析(XRF)法、X線光電子分光(XPS)法、走査型電子顕微鏡/エネルギー分散型X線(SEM/EDX)による方法などを用いて確認できる。
以上説明した金属箔触媒の製造方法は、完全な乾式プロセスであり、しかも、金属箔10上にアーク放電により触媒層形成用材料を蒸着させて巻き取る、という1段階の操作で金属箔触媒を製造できる。すなわち、かかる製造方法は、従来の湿式によるハニカム触媒の製造方法に比べて、製造工程数が大幅に少なく省プロセス化が図れている。加えて、かかる製造方法は、製造途中での貴金属の損失も生じにくく、製造性に優れる。
かかる製造方法により製造された金属箔触媒は、触媒層が形成された後も、金属箔が延性を有することから、加工が容易である。
かかる製造方法によれば、金属箔表面に貴金属が均一に、かつ、直接に蒸着する。このため、製造された金属箔触媒は、従来の湿式によるハニカム触媒に比べて、金属箔(担体)と貴金属との相互作用がより強められ、排ガス浄化反応において高い触媒作用を奏する。
また、かかる製造方法によれば、触媒機能を有する金属箔が簡便に得られる。
図2に示す金属箔触媒2についても、図3に示す製造装置を用いることによって製造できる。
例えば、金属箔12上に、アーク放電によって、ジルコニウムを含む中間層形成用材料を蒸着させて中間層60を形成する中間層形成工程と、中間層形成工程で形成された中間層60上に、アーク放電によって、ロジウムを含む触媒層形成用材料(2)を蒸着させて触媒層22を形成する触媒層形成工程(2)と、を有する製造方法が用いられる。
中間層形成用材料は、ジルコニウムと、必要に応じてジルコニウム以外の成分と、を含む。
中間層形成用材料中、ジルコニウムの含有量は、中間層形成用材料の総量(100質量%)に対して50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%でもよい。
触媒層形成用材料(2)は、ロジウムと、必要に応じてロジウム以外の成分と、を含む。
触媒層形成用材料(2)中、ロジウムの含有量は、触媒層形成用材料(2)の総量(100質量%)に対して50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%でもよい。
<中間層形成工程>
中間層形成工程では、上述した<触媒層形成工程>において、触媒層形成用材料を前記中間層形成用材料に変更する以外は、図3に示す製造装置100を用いて同様の操作を行えばよい。
中間層形成工程において、アーク蒸着源30からのプラズマ照射の回数(ショット数)は、用途に応じて要求される耐熱性などを勘案して適宜決定され、例えば5000ショット以上が好ましく、より好ましくは10000ショット以上、さらに好ましくは20000ショット以上、特に好ましくは20000~40000ショットとされる。
金属箔12上に担持されているジルコニウムの担持量は、用途に応じて要求される耐熱性などを勘案して適宜決定され、例えば50~300μg・cm-2が好ましく、より好ましくは100~200μg・cm-2とされる。
金属箔12上における中間層60の厚さT及びジルコニウムの担持量は、アーク蒸着源30からのプラズマ照射の回数(ショット数)によって制御が可能である。
<触媒層形成工程(2)>
触媒層形成工程(2)では、例えば、図3に示す製造装置100を用いて、中間層60上に、アーク放電により触媒層形成用材料(2)を蒸着させて触媒層22を形成する。触媒層形成工程(2)の操作については、上述した<触媒層形成工程>の操作を同様にして行えばよい。
中間層60上における触媒層22の厚さT及び貴金属の担持量は、アーク蒸着源30からのプラズマ照射の回数(ショット数)によって制御が可能である。
上述した金属箔触媒の製造方法では、ロールツーロール方式を採用した金属箔走行部40を備えた製造装置100を用いて連続的にアーク放電による蒸着が行われているが、本発明に係る製造方法はこれに限定されず、金属箔走行部40を、金属箔保持部、例えば一定形状の金属箔を、蒸着の都度新たな金属箔に交換してアーク放電による蒸着を行うようにしてもよい。
但し、製造装置100を用いることにより、省プロセス化に加えて、生産ラインの連続化も同時に実現できる。
また、上述した金属箔触媒の製造方法においては、金属箔として、予め表層を酸化させた金属箔を用いることが好ましい。これによって、高温使用での耐久性がさらに高められる、及び貴金属の使用量をより抑えられる、という効果が得られる。
かかる効果が得られるのは、予め表層を酸化させた金属箔を用いてなる金属箔触媒は、例えば排ガス浄化の反応の際に加えられる熱による、金属箔の酸化が生じにくく、表面に露出している触媒成分である貴金属の濃度が維持されやすいためである。
表層が酸化した金属箔は、例えば900~1000℃程度で5~30時間の加熱処理を施すことによって作製できる。
(触媒コンバータ)
本発明の触媒コンバータは、上述した金属箔触媒の加工品である。かかる触媒コンバータとしては、例えばメタルハニカム触媒等が挙げられる。
かかる触媒コンバータによれば、ガソリン車の排ガス(炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)等)が充分に浄化される。例えば、HCは二酸化炭素と水とに、COは二酸化炭素に、NOは窒素(N)にそれぞれ酸化又は還元される。
特に、耐熱性ステンレス鋼を材料とする金属箔上に、ロジウムを含有する触媒層が設けられた金属箔触媒の加工品である触媒コンバータは、ガソリン車用として特に好適なものであり、CO-NO-C-O反応(理論空燃比)に対して触媒活性を示し、300℃以上の反応温度領域で全ての排ガス成分が浄化される。
上述した金属箔触媒は、金属箔に触媒層が特定の厚さ(20<T/T)で薄く設けられた箔形状であり、かつ、触媒活性が高められたものである。かかる金属箔触媒を採用した本発明の触媒コンバータによれば、小型化及び高性能化が図れる。
また、上述した金属箔触媒は、乾式プロセスにより製造でき、加えて、ハニカム形状など種々の形状に加工でき、高い自由度での成形が可能である。かかる金属箔触媒を採用することで、触媒コンバータ生産において、最終製品の形状に依存せず、これまでと異なる革新的生産ラインを実現し得る。
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
<金属箔触媒の製造(1)>
(実施例1~4)
金属箔として耐熱性ステンレス鋼箔(耐熱性SUS箔)と、触媒層形成用材料としてロジウム(Rh)と、を用いた。
耐熱性SUS箔には、サイズ30mm×30mm、厚さTが51μm、組成が鉄75質量%とクロム20質量%とアルミニウム5質量%とからなるものを用いた。
アーク蒸着源には、図3中のアーク蒸着源30と同様の形態を有するアークプラズマガン(アルバック理工株式会社製)を用いた。
得られた金属箔触媒(fresh、aged)に対するキャラクタリゼーションには、X線回折(XRD)法、X線光電子分光(XPS)法、走査型電子顕微鏡/エネルギー分散型X線(SEM/EDX)による方法を用いた。
≪金属箔触媒(fresh)の作製≫
真空チャンバ内に、Rhカソードターゲットをもつアーク蒸着源を設置し、耐熱性SUS箔の片面に、アーク放電(コンデンサ容量360μF、放電電圧125V、周波数1Hz)によって、Rhを蒸着させて触媒層を形成し、プラズマ照射のショット数の異なる金属箔触媒(Rh/耐熱性SUS箔触媒)を得た。
図4は、上述した製造における、アーク蒸着源からのプラズマ照射のショット数と、触媒層(Rh層)の厚さT及び貴金属(Rh)の担持量と、の関係を示すグラフである。
ショット数とRh層の厚さとの関係、及び、ショット数とRhの担持量との関係は、それぞれ、ほぼ比例関係にあることが確認できる(点線:近似直線)。
各例のRh/耐熱性SUS箔触媒について、Rh層の厚さT、Rhの担持量、T/Tをそれぞれ表1に示した。
Figure JPOXMLDOC01-appb-T000001
≪金属箔触媒(aged)の作製≫
各例の金属箔触媒(fresh)に対し、10%HO/airが25mL・min-1で通流する雰囲気下、900℃で25時間の加熱処理を施すことにより、劣化させた金属箔触媒(aged)を得た。
<金属箔触媒の触媒活性についての評価(1)>
評価用試料として、2mm×30mmの短冊状の金属箔触媒を切り出して用意した。
固定床流通型反応装置を用い、前記の評価用試料(金属箔触媒)が配置された反応装置内に、昇温しながら、混合ガスを、金属箔触媒に接触するように通流して、ガスの浄化を行った。
混合ガスの組成、混合ガスの流量、反応温度、昇温速度、ガス分析方法を以下のように設定した。
混合ガスの組成:0.050%NO,0.51%CO,0.039%C,0.40%O,He balance
混合ガスの流量:100mL・min-1
反応温度:室温(25℃)から600℃の範囲
昇温速度:10℃・min-1
ガス分析方法:非分散赤外線吸収法(NDIR)
ガスの浄化を行った際、NDIRにより、NO転化率、CO転化率、C転化率をそれぞれ求めた。
図5は、ショット数の異なる実施例1~4の金属箔触媒(fresh)とこれらに加熱処理を施した金属箔触媒(aged)とにそれぞれ混合ガスを接触させた際の、反応温度に対するNO転化率、CO転化率、C転化率の各変化を示すグラフである。
金属箔触媒(fresh)について:
いずれの金属箔触媒も、400~500℃で全てのガスが反応しており、高い転化率を示している。
金属箔触媒(aged)について:
実施例1(2000shots)における金属箔触媒(aged)では、加熱処理による著しい触媒活性の低下が見られる。
ショット数が増加する(すなわちRhの担持量が多くなる)のに伴い、触媒活性が高まること、ショット数8000shotsであれば、約500℃で全てのガスがほぼ100%で浄化されること、が確認できる。
≪金属箔触媒の表層状態についての評価≫
図6は、上段の画像が実施例4の金属箔触媒(fresh)についての表面状態、下段の画像が実施例4の金属箔触媒(fresh)に加熱処理を施した金属箔触媒(aged)についての表面状態を示している。各金属箔触媒の表面状態は、SEM/EDXによる方法を用いて解析した。
金属箔触媒(fresh)及び金属箔触媒(aged)のいずれも、表層にはRhが均一に密な状態で分布していること、900℃で25時間の加熱処理後もその状態がほぼ維持されていること、が確認できる。
また、金属箔触媒(aged)において、Al、Fe及びCrが不均一に分布していること(加熱処理により隆起したAlがFe及びCrの一部を被覆していること);加熱処理によっても、Rhが表層に存在していること、が確認できる。
図7の上段の画像は、金属箔として用いた耐熱性SUS箔の表面状態を示すSEM像である。
図7の下段の画像は、耐熱性SUS箔に対し、air雰囲気下、1000℃で25時間の加熱処理を施した後の表面状態を示すSEM像である。
図8(a)は、耐熱性SUS箔に対し、air雰囲気下、各反応温度で25時間の加熱処理を施した後の、耐熱性SUS箔の表層組成(XPS法による解析結果)を示している。
耐熱性SUS箔を1000℃で加熱した場合、表層を構成する成分として検出された元素のほぼ100%がアルミニウムであること、が確認できる。
図8(b)は、X線回折(XRD)法による測定結果を示すグラフであり、横軸は入射角、縦軸は回折強度を表している。
図8(b)中、(X1)は、air雰囲気下、1000℃で25時間の加熱処理が施された耐熱性SUS箔についての結果を示している。(X2)は、α-Alについての結果を示している。(X3)は、γ-Alについての結果を示している。
(X1)で観察されるピークの位置と、(X2)で観察されるピークの位置と、がほぼ一致していること、が確認できる。
図7及び図8より、耐熱性SUS箔においては、1000℃の加熱処理によって酸化を生じ、表面にアルミニウムの酸化皮膜(α-Al皮膜)が形成されていること、が分かる。
また、XPS法による解析から、金属箔触媒(fresh)と金属箔触媒(aged)との間で、反応温度に対するNO転化率、CO転化率、C転化率の挙動が大きく異なるのは、Rhの酸化状態(Rh、Rh3+、Rh4+等)が異なること、又は、Rhの分布状態が異なることに起因する、と考えられる。
Rhの分布状態について:
金属箔触媒(fresh)においては、耐熱性SUS箔上にRhが分布してRh層を形成している(図6)。これに対し、金属箔触媒(aged)においては、アルミニウムの酸化皮膜が表層に形成されるのに伴い、耐熱性SUS箔の内部にRhが拡散し、表層にはRh酸化物(Rh等)が存在していること、が確認された(XPS depth分析)。
<金属箔触媒の製造(2)>
(実施例5)
金属箔として、実施例1~4で用いた耐熱性SUS箔に対し、air雰囲気下、1000℃で25時間の加熱処理を施したもの(厚さT52000nm)を用いた。
この予め加熱処理を施した耐熱性SUS箔と、触媒層形成用材料としてRhと、を用い、上述した≪金属箔触媒(fresh)の作製≫と同様にして、実施例5の金属箔触媒(fresh)を得た。
アーク蒸着源からのプラズマ照射のショット数を2000shotsとした。
この実施例5の金属箔触媒について、Rh層の厚さTは5.07nm、Rhの担持量は6.2μg・cm-2、T/T=10256である。
また、実施例5の金属箔触媒(fresh)に対し、10%HO/airが25mL・min-1で通流する雰囲気下、900℃で25時間の加熱処理を施すことにより、劣化させた金属箔触媒(aged)を得た。
<金属箔触媒の触媒活性についての評価(2)>
上述した評価(1)と同様にして、ガスの浄化を行い、NDIRにより、NO転化率、CO転化率、C転化率をそれぞれ求めた。
図9は、実施例5の金属箔触媒(fresh)とこれに加熱処理を施した金属箔触媒(aged)に混合ガスを接触させた際の、反応温度に対するNO転化率、CO転化率、C転化率の各変化を示すグラフである。
実施例1(2000shots)における金属箔触媒(aged)では、加熱処理による著しい触媒活性の低下が見られたが、実施例5(2000shots)における金属箔触媒(aged)においては、触媒活性の低下は認められず、約500℃で全てのガスがほぼ100%で浄化されていること、が確認できる。
実施例5(2000shots)における金属箔触媒(fresh、aged)は、実施例4(8000shots)における金属箔触媒(fresh、aged)と、反応温度に対するNO転化率、CO転化率、C転化率の挙動が似ている。すなわち、金属箔として、予め加熱処理を施した耐熱性SUS箔(予め表層を酸化させた金属箔)を用いたことで、金属箔触媒は、高温使用での耐久性が高められている、また、貴金属の使用量が抑えられている。
<金属箔触媒の製造(3)>
(実施例6)
金属箔として、実施例1~4で用いた耐熱性SUS箔に対し、air雰囲気下、1000℃で25時間の加熱処理を施したもの(厚さT52000nm)を用いた。
この予め加熱処理を施した耐熱性SUS箔と、触媒層形成用材料としてRhと、を用い、上述した≪金属箔触媒(fresh)の作製≫と同様にして、実施例6の金属箔触媒(Rh/耐熱性SUS箔触媒)を得た。
アーク蒸着源からのプラズマ照射のショット数を2000shotsとした。
この実施例6の金属箔触媒について、Rh層の厚さTは5.07nm、Rhの担持量は6.2μg・cm-2、T/T=10256であった。
(比較例1)
多孔質パウダーのAlに、アーク放電によって、Rhを蒸着させてパウダー状触媒成分を得た。その際、多孔質パウダーのAlとRhとの合計(100質量%)に占めるRhの割合を0.7質量%とした。
この比較例1のパウダー状触媒成分(0.7wt%Rh/Al)について、Alに担持されたRhの担持量は350μg・cm-2であった。
<金属箔触媒の触媒活性についての評価(3)>
上述した評価(1)と同様にして、ガスの浄化を行い、NDIRにより、NO転化率、CO転化率、C転化率をそれぞれ求めた。
図10は、各例の触媒に混合ガスを接触させた際の、反応温度に対するNO転化率、CO転化率、C転化率の各変化を示すグラフである。
図10(a)は、本発明を適用した実施例6の金属箔触媒(Rh/耐熱性SUS箔触媒)を用いた場合の結果を示している。
図10(b)は、比較例1の触媒(パウダー状触媒成分(従来タイプ))を用いた場合の結果を示している。
実施例6と比較例1との対比から、本発明を適用した金属箔触媒は、従来タイプの触媒に比べて、貴金属の使用量を少なく抑えることができ(約1/100に抑えられ)、かつ、排ガス浄化反応においてより高い触媒作用を奏すること、が確認できる。
<金属箔触媒の製造(4)>
(実施例7)
金属箔として、実施例1~4で用いた耐熱性SUS箔と、触媒層形成用材料としてRhと、を用い、上述した≪金属箔触媒(fresh)の作製≫と同様にして、実施例7の金属箔触媒(fresh)を得た。
アーク蒸着源からのプラズマ照射のショット数を2000shotsとした。
この実施例7の金属箔触媒(Rh/耐熱性SUS箔触媒)について、触媒層の厚さTは5.07nm、Rhの担持量は6.2μg・cm-2、T/T=10059である。
また、実施例7の金属箔触媒(fresh)に対し、10%HO/airが25mL・min-1で通流する雰囲気下、900℃で25時間の加熱処理を施すことにより、劣化させた金属箔触媒(aged)を得た。
(実施例8)
金属箔として、実施例1~4で用いた耐熱性SUS箔と、中間層形成用材料としてジルコニウム(Zr)と、触媒層形成用材料としてRhと、を用いた。
中間層形成工程:
真空チャンバ内に、Zrカソードターゲットをもつアーク蒸着源を設置し、耐熱性SUS箔の片面に、アーク蒸着源からのプラズマ照射のショット数を20000shotsとして、アーク放電(コンデンサ容量360μF、放電電圧125V、周波数1Hz)により、Zrを蒸着させて中間層を形成した。
触媒層形成工程:
次いで、Rhカソードターゲットをもつアーク蒸着源を設置し、中間層上に、アーク蒸着源からのプラズマ照射のショット数を2000shotsとして、アーク放電(コンデンサ容量360μF、放電電圧125V、周波数1Hz)により、Rhを蒸着させて触媒層を形成して、実施例8の金属箔触媒(fresh)を得た。
この実施例8の金属箔触媒(Rh/Zr/耐熱性SUS箔触媒)について、中間層の厚さTは259nm、触媒層の厚さTは5.07nm;Zrの担持量は168μg・cm-2、Rhの担持量は6.2μg・cm-2、T/T=10059、T/(T+T)=193である。
また、実施例8の金属箔触媒(fresh)に対し、10%HO/airが25mL・min-1で通流する雰囲気下、900℃で25時間の加熱処理を施すことにより、劣化させた金属箔触媒(aged)を得た。
各例の金属箔触媒について、触媒層の厚さT、Rhの担持量、中間層の厚さT、Zrの担持量、T/T、T/(T+T)をそれぞれ表2に示した。
Figure JPOXMLDOC01-appb-T000002
<金属箔触媒の触媒活性についての評価(4)>
上述した評価(1)と同様にして、ガスの浄化を行い、NDIRにより、NO転化率、CO転化率、C転化率をそれぞれ求めた。
図11は、各例の触媒に混合ガスを接触させた際の、反応温度に対するNO転化率、CO転化率、C転化率の各変化を示すグラフである。
図11(a)は、図1と同一の実施形態である実施例7の金属箔触媒(Rh/耐熱性SUS箔触媒)を用いた場合の結果を示している。
図11(b)は、図2と同一の実施形態である実施例8の金属箔触媒(Rh/Zr/耐熱性SUS箔触媒)を用いた場合の結果を示している。
実施例7(中間層無し)における金属箔触媒(aged)では、加熱処理による著しい触媒活性の低下が見られたが、実施例8(中間層有り)における金属箔触媒(aged)においては、触媒活性の低下は認められず、約500℃で全てのガスがほぼ100%で浄化されていること、が確認できる。すなわち、金属箔と、Rhの触媒層と、の間にZrの中間層を設けることで、金属箔触媒は、高温使用での耐久性が高められている。
本発明に係る金属箔触媒は、二輪又は四輪のガソリン車に搭載する触媒コンバータの材料として有用である。かかる金属箔触媒は、成形の自由度が高いことから、幅広い車種に対して利用可能である。
また、かかる金属箔触媒は、貴金属を選択することで、更なる触媒性能の向上、ディーゼル車向けの触媒コンバータへの利用が期待できる。
1 金属箔触媒、2 金属箔触媒、10 金属箔、12 金属箔、20 触媒層、22 触媒層、30 アーク蒸着源、31 碍子、32 トリガ電極、33 アノード、34 電源ユニット、34a アーク電源、34b トリガ電源、34c コンデンサ、40 金属箔走行部、41 搬送ロール、42 搬送ロール、50 カソード、60 中間層、100 製造装置、200 ハニカム触媒、210 基材、220 触媒層。

Claims (7)

  1. 金属箔と、当該金属箔上に設けられた触媒層と、を備え、
    前記触媒層は、貴金属を含有し、
    前記金属箔の厚さT(nm)及び前記触媒層の厚さT(nm)が下式(1)を満たす、金属箔触媒。
    20<T/T ・・・(1)
  2. 前記貴金属は、ロジウム、パラジウム、白金、銀、イリジウム、及びこれらの1種以上を含む合金からなる群より選択される、請求項1に記載の金属箔触媒。
  3. 前記金属箔と前記触媒層との間に配置され、これらの両方に隣接する中間層をさらに備え、
    前記触媒層は、ロジウムを含む層であり、
    前記中間層は、ジルコニウムを含む層である、請求項2に記載の金属箔触媒。
  4. 請求項1又は2に記載の金属箔触媒の製造方法であって、
    前記金属箔上に、アーク放電によって、前記貴金属を含む触媒層形成用材料を蒸着させて前記触媒層を形成する触媒層形成工程を有する、金属箔触媒の製造方法。
  5. 前記触媒層形成工程において、前記金属箔をロールツーロール方式で搬送しながら、前記金属箔上に連続的にアーク放電によって前記触媒層形成用材料を蒸着させる、請求項4に記載の金属箔触媒の製造方法。
  6. 前記金属箔として、予め表層を酸化させた金属箔を用いる、請求項4又は5に記載の金属箔触媒の製造方法。
  7. 請求項1~3のいずれか一項に記載の金属箔触媒の加工品である、触媒コンバータ。
PCT/JP2016/074783 2015-08-25 2016-08-25 金属箔触媒及びその製造方法、並びに触媒コンバータ WO2017033994A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017536476A JP6789491B2 (ja) 2015-08-25 2016-08-25 金属箔触媒及びその製造方法、並びに触媒コンバータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-166264 2015-08-25
JP2015166264 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017033994A1 true WO2017033994A1 (ja) 2017-03-02

Family

ID=58100425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074783 WO2017033994A1 (ja) 2015-08-25 2016-08-25 金属箔触媒及びその製造方法、並びに触媒コンバータ

Country Status (2)

Country Link
JP (1) JP6789491B2 (ja)
WO (1) WO2017033994A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111229290A (zh) * 2020-03-24 2020-06-05 苏州道一至诚纳米材料技术有限公司 一种复合式非贵金属脱硝催化剂及其制备方法
JP2021133331A (ja) * 2020-02-28 2021-09-13 いすゞ自動車株式会社 触媒用部材、触媒、および触媒用部材の製造方法
JP2021143619A (ja) * 2020-03-11 2021-09-24 本田技研工業株式会社 内燃機関の排ガス浄化システム
KR20220128880A (ko) * 2021-03-15 2022-09-22 한국과학기술원 이산화탄소 저감을 위한 합금 촉매 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280310A (ja) * 1989-04-21 1990-11-16 Kobe Steel Ltd 電解コンデンサ用電極材料の製造方法
JPH0549945A (ja) * 1991-08-14 1993-03-02 Mitsubishi Heavy Ind Ltd 金属基触媒及びその製造方法
JPH05154381A (ja) * 1991-04-26 1993-06-22 Nippon Steel Corp 排気ガス浄化触媒形成方法
JPH08332394A (ja) * 1995-06-07 1996-12-17 Calsonic Corp 排気浄化用金属担体触媒およびその製造方法
JPH09272968A (ja) * 1996-04-09 1997-10-21 Kobe Steel Ltd アークイオンプレーティング装置における膜厚制御方法及び膜厚制御装置
JP2007203256A (ja) * 2006-02-03 2007-08-16 Nippon Steel Materials Co Ltd 排気ガス浄化用触媒コンバータ
JP2012016707A (ja) * 2011-10-24 2012-01-26 Sumitomo Electric Ind Ltd 触媒構造体およびこれを用いたカーボンナノ構造体の製造方法
JP2013532234A (ja) * 2010-07-12 2013-08-15 ドライステゲン ゲーエムベーハー アーク放電による基材の被覆方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035597A (ja) * 2000-07-28 2002-02-05 Toto Ltd 光触媒部材及びその製造方法
JP2002035598A (ja) * 2000-07-28 2002-02-05 Toto Ltd 光触媒部材
US7326669B2 (en) * 2001-09-20 2008-02-05 Honda Motor Co., Ltd. Substrate having catalyst compositions on surfaces of opposite sides

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280310A (ja) * 1989-04-21 1990-11-16 Kobe Steel Ltd 電解コンデンサ用電極材料の製造方法
JPH05154381A (ja) * 1991-04-26 1993-06-22 Nippon Steel Corp 排気ガス浄化触媒形成方法
JPH0549945A (ja) * 1991-08-14 1993-03-02 Mitsubishi Heavy Ind Ltd 金属基触媒及びその製造方法
JPH08332394A (ja) * 1995-06-07 1996-12-17 Calsonic Corp 排気浄化用金属担体触媒およびその製造方法
JPH09272968A (ja) * 1996-04-09 1997-10-21 Kobe Steel Ltd アークイオンプレーティング装置における膜厚制御方法及び膜厚制御装置
JP2007203256A (ja) * 2006-02-03 2007-08-16 Nippon Steel Materials Co Ltd 排気ガス浄化用触媒コンバータ
JP2013532234A (ja) * 2010-07-12 2013-08-15 ドライステゲン ゲーエムベーハー アーク放電による基材の被覆方法
JP2012016707A (ja) * 2011-10-24 2012-01-26 Sumitomo Electric Ind Ltd 触媒構造体およびこれを用いたカーボンナノ構造体の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI YOSHIDA ET AL.: "Arc Plasma-ho ni yoru Stainless-Haku no Shokubai Kinoka (2", SHOKUBAI TORONKAI KOEN YOKOSHU, vol. 117, 10 March 2016 (2016-03-10) *
HITOSHI MISUMI ET AL.: "Arc Plasma-ho ni yoru Stainless-Haku no Shokubai Kinoka", SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 116, 9 September 2015 (2015-09-09) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133331A (ja) * 2020-02-28 2021-09-13 いすゞ自動車株式会社 触媒用部材、触媒、および触媒用部材の製造方法
JP7419107B2 (ja) 2020-02-28 2024-01-22 いすゞ自動車株式会社 触媒用部材の製造方法
JP2021143619A (ja) * 2020-03-11 2021-09-24 本田技研工業株式会社 内燃機関の排ガス浄化システム
JP7153039B2 (ja) 2020-03-11 2022-10-13 本田技研工業株式会社 内燃機関の排ガス浄化システム
US11486292B2 (en) 2020-03-11 2022-11-01 Honda Motor Co., Ltd. Exhaust-gas purification system of internal combustion engine
CN111229290A (zh) * 2020-03-24 2020-06-05 苏州道一至诚纳米材料技术有限公司 一种复合式非贵金属脱硝催化剂及其制备方法
CN111229290B (zh) * 2020-03-24 2020-12-15 苏州道一至诚纳米材料技术有限公司 一种复合式非贵金属脱硝催化剂及其制备方法
KR20220128880A (ko) * 2021-03-15 2022-09-22 한국과학기술원 이산화탄소 저감을 위한 합금 촉매 제조 방법
KR102497272B1 (ko) 2021-03-15 2023-02-08 한국과학기술원 이산화탄소 저감을 위한 합금 촉매 제조 방법

Also Published As

Publication number Publication date
JPWO2017033994A1 (ja) 2018-07-19
JP6789491B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2017033994A1 (ja) 金属箔触媒及びその製造方法、並びに触媒コンバータ
RU2549880C1 (ru) Катализатор для ограничения выброса отработанных газов
JP6415738B2 (ja) 排ガス浄化用触媒、その製造方法、及びその触媒を含む排ガス浄化装置
US10350581B2 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
JP2012040547A (ja) 排ガス浄化用触媒
JP6676394B2 (ja) コアシェル担体及びその製造方法、そのコアシェル担体を用いた排ガス浄化用触媒及びその製造方法、並びに、その排ガス浄化用触媒を用いた排ガス浄化方法
JP2011140011A (ja) Co酸化触媒の製造方法及びそれによって得られるco酸化触媒
JP5491745B2 (ja) 排ガス浄化用触媒及びその製造方法
Misumi et al. Thermal evolution of the structure and activity of Rh overlayer catalysts prepared by pulsed arc-plasma deposition
JP5019753B2 (ja) 排気ガス浄化用触媒コンバータ
WO2015087780A1 (ja) 排ガス浄化用触媒
JP5515635B2 (ja) 貴金属担持炭化ケイ素粒子とその製造方法及びそれを含有する触媒並びにその製造方法
JP7211709B2 (ja) 排ガス浄化用三元触媒及びその製造方法、並びに一体構造型排ガス浄化用触媒
JP3441267B2 (ja) 触媒の製造方法
US20220203337A1 (en) Exhaust gas-purification catalyst having multi-layer structure including precious metal thin layer as top layer, and method for producing same
JP5295196B2 (ja) 優れた高温耐酸化性を有する排気ガス浄化触媒コンバータ用ハニカム基材及び排気ガス浄化用触媒コンバータ
JP4694220B2 (ja) 優れた高温耐酸化性を有する排気ガス浄化触媒コンバータ用ハニカム基材及び排気ガス浄化用触媒コンバータ
JP2005279437A (ja) 排ガス浄化用触媒
RU2571099C1 (ru) Способ получения каталитически активных композитных слоев на сплаве алюминия
JP4306625B2 (ja) 自動車の排ガス浄化用触媒体およびその製造方法
JP2021181070A (ja) コアシェル型酸素吸放出材料
JP2021062325A (ja) 排気ガス浄化触媒粉末
JP6583735B2 (ja) 有機ハイドライド用脱水素触媒及びその製造方法
JP5935816B2 (ja) 排気ガス浄化用触媒
JP2017185438A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839341

Country of ref document: EP

Kind code of ref document: A1