WO2017033548A1 - エンジン装置 - Google Patents

エンジン装置 Download PDF

Info

Publication number
WO2017033548A1
WO2017033548A1 PCT/JP2016/068414 JP2016068414W WO2017033548A1 WO 2017033548 A1 WO2017033548 A1 WO 2017033548A1 JP 2016068414 W JP2016068414 W JP 2016068414W WO 2017033548 A1 WO2017033548 A1 WO 2017033548A1
Authority
WO
WIPO (PCT)
Prior art keywords
blow
gas
engine
cooling water
mixing joint
Prior art date
Application number
PCT/JP2016/068414
Other languages
English (en)
French (fr)
Inventor
正善 古川
誠治 幸重
久保 山瀬
嵩司 島
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015167118A external-priority patent/JP2017044144A/ja
Priority claimed from JP2015167117A external-priority patent/JP2017044143A/ja
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to US15/755,471 priority Critical patent/US20180171946A1/en
Publication of WO2017033548A1 publication Critical patent/WO2017033548A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10268Heating, cooling or thermal insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M13/0405Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil arranged in covering members apertures, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/06Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding lubricant vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10236Overpressure or vacuum relief means; Burst protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K49/00Means in or on valves for heating or cooling
    • F16K49/005Circulation means for a separate heat transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0455Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a de-icing or defrosting system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0472Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil using heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0477Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil by separating water or moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an engine device such as a diesel engine mounted as a power source in various power devices such as work vehicles, agricultural machines, generators, and refrigerators, and in particular, a blow-by gas reduction mechanism that reduces blow-by gas to an intake system. It is related with an engine apparatus provided with.
  • the blow-by gas in the crankcase leaking from the combustion chamber is returned to the intake system
  • the blow-by gas contains moisture as well as the oil that is the lubricating oil, so it is used in cold regions, especially in extremely cold regions of -20 ° C or lower.
  • cold regions especially in extremely cold regions below -20 ° C
  • blowby gas is rapidly cooled at the confluence of intake air (external air) and blowby gas, moisture contained in blowby gas freezes, and blowby gas flows.
  • the phenomenon of icing on the pipeline occurs.
  • the blow-by gas conduit is blocked by ice, the pressure in the crankcase of the engine device increases, and the lubricating oil inside the crankcase leaks.
  • the equipment for example, the supercharger
  • the present disclosure solves the above-described problems, and solves the problem caused by blow-by gas leaking from the combustion chamber even in a cold region, particularly in an extremely cold region of ⁇ 20 ° C. or less, and the lubricating oil inside the crankcase
  • An object of the present invention is to provide a highly reliable and safe engine device that does not leak.
  • One aspect according to the present disclosure is an engine apparatus having a blow-by gas reduction mechanism that recirculates blow-by gas leaking from a combustion chamber to an intake pipe through which intake air flows.
  • a cooling water in the engine device is used as a heating source in the heating means.
  • an aspect of the present disclosure provides an engine apparatus having a blow-by gas reduction mechanism that recirculates blow-by gas leaking from a combustion chamber to an intake pipe through which intake air flows.
  • a pressure adjusting unit having a blow-by gas passage through which the blow-by gas from the combustion chamber flows;
  • a reduction hose connected to the blow-by gas passage;
  • a blow-by gas mixing joint for introducing the blow-by gas flowing through the reduction hose into the intake pipe;
  • the pressure adjusting unit includes a pressure adjusting valve that communicates the blow-by gas passage with the outside when the pressure in the blow-by gas passage exceeds a predetermined pressure.
  • the present disclosure even in a cold region, particularly in an extremely cold region of ⁇ 20 ° C. or less, the problem caused by the blow-by gas leaking from the combustion chamber is solved, and the lubricating oil inside the crankcase does not leak. And a highly safe engine device can be provided.
  • FIG. 1 The perspective view which shows the diesel engine of Embodiment 1 which concerns on this indication.
  • FIG. 1 The top view which looked at one part including the head cover in the diesel engine of Embodiment 1 from upper direction Sectional drawing of the direction orthogonal to the flow direction of the intake air in the blowby gas mixing joint in the diesel engine of Embodiment 1 Sectional drawing which cut
  • FIG. 11 is a cross-sectional view taken along the line XII-XII in FIG. Sectional drawing which cut
  • FIG. 13 is a cross-sectional view of the pressure adjustment section taken along line XIV-XIV in FIG.
  • the figure which shows schematic arrangement
  • Schematic which shows the structure of the reduction
  • a first aspect according to the present disclosure is an engine apparatus having a blow-by gas reduction mechanism that recirculates blow-by gas leaking from a combustion chamber to an intake pipe through which intake air flows.
  • the engine device configured as described above includes a blow-by gas leaked from a combustion chamber, intake air (outside air), even in a cold region, particularly in an extremely cold region of ⁇ 20 ° C. or lower. Therefore, it is possible to prevent clogging of the pipe line in the mixed region by icing and to provide a highly reliable and safe engine device.
  • the heating unit in the first aspect is in a mixing region of the intake air flowing through the blow-by gas mixing joint and the blow-by gas introduced from the reduction hose. You may comprise so that the said cooling water may flow into the outer peripheral surface of the said blowby gas mixing joint.
  • the mixing region of the intake air flowing through the blow-by gas mixing joint and the blow-by gas introduced from the reduction hose is warmed. The icing is suppressed and the pipe is prevented from being blocked.
  • the heating unit according to the first aspect is disposed upstream of the introduction region of the blow-by gas introduced from the reduction hose in the blow-by gas mixing joint. You may comprise so that the said cooling water may flow into an outer peripheral surface.
  • the intake air on the upstream side from the introduction region of the blow-by gas introduced from the reduction hose in the blow-by gas mixing joint for example, even in the use in a cold region Since it is warmed, icing on the pipeline in the mixing region is suppressed, and the pipeline is prevented from being blocked.
  • the heating unit according to the first aspect includes an upstream side of an introduction region of the blow-by gas introduced from the reduction hose in the blow-by gas mixing joint, and
  • the cooling water may be configured to flow on the outer peripheral surface on the downstream side.
  • the heating unit according to the first aspect is configured by a cooling water pipe disposed so as to warm the blow-by gas flowing through the reduction hose with the cooling water. May be.
  • the blow-by gas introduced from the reduction hose in the blow-by gas mixing joint is warmed. The icing on the pipeline is suppressed and the pipeline is prevented from being blocked.
  • the engine device is a cooling water pipe in which the heating unit in the first aspect is disposed upstream of a region where the blowby gas is introduced in the blowby gas mixing joint. It may be configured.
  • the intake air on the upstream side from the region where the blow-by gas is introduced in the blow-by gas mixing joint is warmed.
  • the icing on the pipe line in the mixing area is suppressed, and the pipe line is prevented from being blocked.
  • the heating unit in the first aspect is configured by a member having thermal conductivity provided in at least a part of the blow-by gas mixing joint,
  • the heating unit is a blow-by gas introduction pipe to which the reduction hose is connected;
  • the blow-by gas introduction pipe is fixed so as to conduct heat, and a spacer that is in close contact with the outer peripheral surface of the blow-by gas mixing joint, It is good also as a structure provided with the cooling water pipe which closely arrange
  • the mixing region where the blow-by gas is introduced in the blow-by gas mixing joint is warmed even in use in a cold region, for example.
  • the icing on the road is suppressed and the pipe is prevented from being blocked.
  • An eighth aspect according to the present disclosure is an engine device having a blow-by gas reduction mechanism that recirculates blow-by gas leaking from a combustion chamber to an intake pipe through which intake air flows.
  • a pressure adjusting unit having a blow-by gas passage through which the blow-by gas from the combustion chamber flows; A reduction hose connected to the blow-by gas passage; A blow-by gas mixing joint for introducing the blow-by gas flowing through the reduction hose into the intake pipe; and
  • the pressure adjusting unit includes a pressure adjusting valve that communicates the blow-by gas passage with the outside when the pressure in the blow-by gas passage exceeds a predetermined pressure.
  • the engine device configured as described above is provided with a conduit for blow-by gas leaked from the combustion chamber, particularly in a cold region, particularly in an extremely cold region where the outside air temperature is ⁇ 20 ° C. or less. Even if the pipe near the mixing area where the intake air (external air: fresh air) and blow-by gas merge and icing and the pipe is blocked with ice, the pressure inside the engine body becomes the desired pressure. Maintained.
  • the pressure adjusting unit according to the eighth aspect includes a storage portion below the blow-by gas passage, and the storage portion passes through the blow-by gas passage. You may comprise so that the liquid component contained in gas may be collected.
  • liquid components such as moisture and / or oil contained in the blow-by gas introduced from the engine body to the blow-by gas mixing joint in the blow-by gas passage. Because it is configured to be removed, for example, even in the use in extremely cold regions, icing of the pipeline in the mixing region of the intake air and blow-by gas in the blow-by gas mixing joint is suppressed, and unnecessary oil is removed. Is possible.
  • An engine apparatus is configured such that the pressure regulating valve according to the ninth aspect is configured to open an opening on a bottom surface of the reservoir portion by the weight of the liquid accumulated in the reservoir portion. May be.
  • the liquid such as water and / or lubricating oil removed in the blow-by gas passage can be automatically moved to another region. The maintenance management is easy.
  • the reduction hose according to the eighth aspect may be connected to the blowby gas mixing joint so as to introduce blowby gas from below.
  • the engine device according to the eleventh aspect of the present disclosure configured as described above it is possible to store liquid components such as moisture and oil contained in the blow-by gas introduced from the engine body into the blow-by gas mixing joint. Become.
  • the pressure adjusting unit according to the eleventh aspect is disposed at a lowermost position in a path through which blowby gas flows from the combustion chamber to the blowby gas mixing joint.
  • the liquid component contained in the blow-by gas may be discharged.
  • liquid components such as moisture and / or oil contained in the blow-by gas introduced from the engine body to the blow-by gas mixing joint with a simple configuration. It can be removed.
  • Embodiment 1 A diesel engine as an engine device of Embodiment 1 according to the present disclosure will be described with reference to the accompanying drawings.
  • the direction of the arrow UP will be described as the upward direction.
  • FIG. 1 is a perspective view showing an overall configuration of a diesel engine 1 of Embodiment 1 according to the present disclosure.
  • FIG. 2 is a perspective view showing the vicinity of the head cover that covers the upper surface portion of the cylinder head in the diesel engine 1 of the first embodiment, and a part thereof is shown in cross section.
  • the diesel engine 1 according to the first embodiment includes a continuously regenerative exhaust gas purification device 2.
  • the diesel engine 1 according to Embodiment 1 is provided with a blow-by gas reduction mechanism 3 (see FIG. 2) that recirculates blow-by gas in the crankcase leaking from the combustion chamber to the intake system (intake pipe).
  • a blow-by gas reduction mechanism 3 is provided on a head cover 10 that covers an intake valve and an exhaust valve provided on an upper surface portion of a cylinder head of the diesel engine 1.
  • the blow-by gas reduction mechanism 3 has a gas pressure adjusting unit 4 formed by partially bulging upward the upper surface of the head cover 10.
  • a blow-by gas intake chamber 5 into which blow-by gas leaked from the combustion chamber of the diesel engine 1 and the like and a blow-by gas in the blow-by gas intake chamber 5 are supplied to the inside of the gas pressure adjusting unit 4 through a gas pressure adjusting valve.
  • a blow-by gas expansion chamber 6 is formed.
  • the check valve rotates by the weight of the lubricating oil component and drops the lubricating oil component to the upper surface side of the cylinder head.
  • a leaf spring that bends downward due to weight is provided.
  • the lubricating oil component accumulated in the blow-by gas expansion chamber 6 falls to the upper surface side of the cylinder head and is collected in the diesel engine.
  • a plurality of partition plates are provided to form a plurality of labyrinth-like passages, and when the blow-by gas swells in the plurality of labyrinth-like passages, a lubricating oil component in the blow-by gas Is a configuration in which is removed.
  • the removed lubricating oil component accumulates on the bottom surface of the blow-by gas expansion chamber 6, and by its own weight, for example, a leaf spring bends and falls to the upper surface side of the cylinder head and is collected in the diesel engine.
  • blow-by gas from which the lubricating oil component has been removed in the blow-by gas expansion chamber 6 is introduced into the intake pipe via the conduit of the reduction hose 12 (see FIG. 2) connected to the exhaust port 11 of the blow-by gas expansion chamber 6. 13 (refer to FIG. 3 described later) is configured to be fed into the pipeline.
  • An exhaust port 11 of the blow-by gas expansion chamber 6 is integrally formed with the head cover 10 and protrudes from the upper surface of the head cover 10.
  • FIG. 3 is a plan view of a part including the head cover 10 in the diesel engine 1 of Embodiment 1 as viewed from above.
  • FIG. 3 shows a state in which the exhaust port 11 of the blow-by gas expansion chamber 6 formed in the head cover 10 and the intake pipe 13 are connected by the reduction hose 12.
  • An intake pipe 13 shown in FIG. 3 is an intake pipe through which intake air (external air: fresh air) flows toward a supercharger (turbocharger) 7 via an air cleaner (not shown). In the pipe 13, the intake air flows from top to bottom.
  • a blow-by gas mixing joint 20 for introducing blow-by gas from the blow-by gas expansion chamber 6 in the head cover 10 into the intake pipe 13 is provided on the pipe line of the intake pipe 13.
  • the reduction hose 12 connecting the blow-by gas mixing joint 20 connected to the intake pipe 13 and the exhaust port 11 of the blow-by gas expansion chamber 6 is formed of a flexible material having heat resistance and cold resistance, for example, a rubber material. Yes.
  • FIG. 4 is a cross-sectional view taken along a direction orthogonal to the flow direction of intake air in the blow-by gas mixing joint 20.
  • FIG. 4 shows a cross section including the center of a blow-by gas inlet 20b (described later) to which the reducing hose 12 having a circular cross section is joined.
  • FIG. 5 is a cross-sectional view of the blow-by gas mixing joint 20 cut along the flow direction of intake air (intake direction).
  • the blow-by gas mixing joint 20 has a three-way joint structure, and has a structure in which a blow-by gas inlet 20b is provided in an intake passage 20a connected to a pipe line of the intake pipe 13. As shown in FIG. One end of the reduction hose 12 is connected to the blow-by gas inlet 20b.
  • the blow-by gas mixing joint 20 is provided with a temperature sensor 14 (see FIG. 3), and detects the intake air temperature in the intake passage 20a.
  • the temperature sensor 14 is inserted in a direction orthogonal to the intake direction of the intake passage 20a, and is held by a sensor holding portion 20c (see FIG. 4) that is led out from the outer peripheral surface of the intake passage 20a.
  • a holding plate (not shown) on which the temperature sensor 14 is mounted is screwed to the sensor holding unit 20c, and the temperature sensor 14 is held by the sensor holding unit 20c.
  • the temperature detection region of the temperature sensor 14 includes a surface orthogonal to the intake direction including the center line extending in the introduction direction of the blow-by gas introduction port 20b. That is, the temperature sensor 14 is provided in the vicinity of the blow-by gas inlet 20b of the blow-by gas mixing joint 20 and is configured to detect the temperature in the vicinity of the blow-by gas inlet 20b.
  • the temperature sensor 14 is located upstream from the position of the blow-by gas inlet 20b in the intake direction. It may be arranged at a position offset to the side and / or downstream side to detect the intake air temperature before and / or after the introduction of blow-by gas.
  • the introduction direction of the blow-by gas introduction port 20b and the arrangement direction of the temperature sensor 14 are orthogonal to each other. However, this configuration is appropriately changed according to the component arrangement configuration in the diesel engine 1.
  • a heating unit 21 that is a heating unit is provided in the vicinity of the outlet portion of the blow-by gas introduction port 20 b in the blow-by gas mixing joint 20. ing.
  • the heating unit 21 is provided in the circulation path of the engine cooling water, and the cooling water inlet 21a to which the engine cooling water is supplied and the cooling water drain port that is discharged after the blow-by gas mixing joint 20 is heated. 21b.
  • the heating unit 21 is provided in close contact with the outer peripheral surface of the blow-by gas mixing joint 20 and includes the intake air flowing through the intake passage 20a of the blow-by gas mixing joint 20 and the blow-by gas supplied from the blow-by gas introduction port 20b.
  • engine cooling water of about 70 ° C. has a function as a heating means for heating the mixing region by flowing into the heating unit 21.
  • the heating unit 21 is formed of a heat-resistant resin material, and may be formed integrally with the blow-by gas mixing joint 20 formed of a resin material.
  • blow-by gas inlet 20 b of the blow-by gas mixing joint 20 the cooling water inlet 21 a of the heating unit 21, and the cooling of the heating unit 21 are illustrated.
  • arrangement position of the water drain port 21b is drawn on the same cross section, the actual arrangement of each is appropriately changed according to the component configuration in the diesel engine 1.
  • the intake air temperature fresh air temperature
  • the intake air temperature fresh air temperature
  • the blow-by gas in the crankcase that leaks from the combustion chamber is simply mixed with the intake air at such an intake temperature, the moisture contained in the blow-by gas freezes instantaneously, and the mixing region of the intake and blow-by gas
  • icing occurs in this pipe line and the pipe line is blocked.
  • the diesel engine 1 which is the engine device of the first embodiment configured as described above as a power source is used in an extremely cold region.
  • the intake passage 20a of the blow-by gas mixing joint 20 is provided on the outer peripheral surface thereof.
  • the heating unit 21 is warmed to 0 ° C. or higher. That is, the engine cooling water (for example, about 70 ° C.) flowing in the heating unit 21 is near the joint portion between the intake passage 20a and the blowby gas inlet 20b of the blowby gas mixing joint 20, that is, between the intake and blowby gas.
  • the mixing area is warmed. For this reason, even if blow-by gas is introduced into the intake passage 20a from the blow-by gas introduction port 20b, moisture contained in the blow-by gas is prevented from being rapidly cooled by intake air in the intake passage 20a, and the blow-by gas introduction port 20b. Is prevented from icing on the pipe wall in the intake passage 20a in the vicinity of.
  • the heating unit 21 that is a heating unit is in close contact with the outer peripheral surface of the blow-by gas mixing joint 20.
  • the heat of the engine cooling water is provided to conduct heat to the blow-by gas mixing joint 20. Therefore, in the vicinity of the blow-by gas inlet 20b of the blow-by gas mixing joint 20 and / or the intake passage 20a, moisture contained in the blow-by gas is prevented from instantly freezing and icing on the pipe wall. It becomes the structure which does not block
  • the heating unit 21 is used for the piping of the piping through which engine cooling water flows.
  • the cooling water piping for EGR cooler or the piping for oil cooler is used. You may comprise so that cooling water may be poured through the heating part 21 using. Further, the cooling water in the diesel engine 1 that is the engine device may be extracted from the outlet of the cooling water pump.
  • the diesel engine 1 of Embodiment 1 of the present disclosure even in cold regions, particularly in extremely cold regions of ⁇ 20 ° C. or less, the problem caused by blow-by gas leaking from the combustion chamber is solved. It is possible to provide a highly reliable and safe engine device in which the lubricating oil inside the crankcase does not leak.
  • the diesel engine 1 of the first embodiment of the present disclosure even in cold regions, particularly in extremely cold regions where the outside air temperature is ⁇ 20 ° C. or less, the pipelines of the blow-by gas leaking from the combustion chamber, particularly the intake and blow-by It is possible to provide a highly reliable and safe engine device in which a portion where the gas and gas are joined is not blocked by ice.
  • Embodiment 2 a diesel engine as an engine apparatus according to Embodiment 2 of the present disclosure will be described focusing on differences from Embodiment 1 described above.
  • the difference from the configuration of the first embodiment is the configuration of a heating unit that is a heating means provided in the blow-by gas mixing joint, and other configurations are the same as those of the first embodiment. Is the same. Therefore, in the description of the second embodiment, elements having the same functions, configurations, and functions as those of the first embodiment are denoted by the same reference numerals, and detailed descriptions of the elements having the same reference numerals are omitted. To do.
  • FIG. 6 is a cross-sectional view taken along the intake direction of the blow-by gas mixing joint 20A in the diesel engine 1 according to the second embodiment of the present disclosure.
  • the heating unit 22 serving as a heating means is in close contact with the outer peripheral surface of the intake passage 20a upstream from the blowby gas introduction port 20b of the blowby gas mixing joint 20A. It is provided to conduct heat of the heating unit 22.
  • the heating unit 22 is provided with a cooling water introduction port 22a and a cooling water drain port 22b, and is disposed in the circulation path of the engine cooling water.
  • the heating unit 22 is provided on the outer peripheral surface of the intake passage 20a upstream from the blow-by gas introduction port 20b. For this reason, for example, even when the engine device of the second embodiment is used as a power source in an extremely cold region (for example, the outside air temperature is ⁇ 20 ° C.), it is upstream of the blow-by gas inlet 20b of the blow-by gas mixing joint 20A.
  • the intake air (fresh air) flowing through the intake passage 20a on the side is warmed to 0 ° C. or higher by engine cooling water (for example, about 70 ° C.) flowing through the heating unit 22.
  • the heating unit 22 has been described as being provided on the outer peripheral surface of the intake passage 20a upstream of the blow-by gas inlet 20b.
  • the portion 22 may be provided in close contact with the outer peripheral surface of the reduction hose 12 connected to the blow-by gas inlet 20 b so that the heat of the heating portion 22 is conducted to the reduction hose 12.
  • the pipeline for blow-by gas leaking from the combustion chamber even in a cold region, particularly in a very cold region where the outside air temperature is ⁇ 20 ° C. or lower In particular, it is possible to provide a highly reliable and safe engine device in which a portion where the intake air and the blow-by gas merge is not blocked by ice.
  • Embodiment 3 a diesel engine as an engine device of Embodiment 3 according to the present disclosure will be described focusing on differences from Embodiment 1 described above.
  • the difference from the configuration of the first embodiment is that a reducing hose that protrudes from the upper surface of the head cover and forms a pipe line from the exhaust port to the blow-by gas inlet of the blow-by gas mixing joint. It is the structure of the heating means provided in the above.
  • Other configurations of the engine device of the third embodiment are the same as those of the first embodiment. Therefore, in the description of the third embodiment, elements having the same functions, configurations, and functions as those of the first embodiment are denoted by the same reference numerals, and detailed descriptions of the elements having the same reference numerals are omitted. To do.
  • FIG. 7 is a cross-sectional view illustrating the reduction hose 12 that connects the exhaust port 11 of the head cover 10 to the blow-by gas introduction port 20b of the blow-by gas mixing joint 20B in the diesel engine 1 according to the third embodiment of the present disclosure.
  • a cooling water conduit 23 is disposed inside the reduction hose 12.
  • the cooling water pipe 23 is a pipe through which engine cooling water, which is cooling water after engine cooling, flows, and is provided over substantially the entire length of the reduction hose 12.
  • positioned inside the reduction hose 12 is provided at least to the vicinity of the blow-by gas inlet 20b of the blow-by gas mixing joint 20B.
  • cooling water conduit 23 of the heating means in the configuration of the third embodiment will be described with a configuration connected to a pipe through which engine cooling water, which is cooling water after engine cooling, flows.
  • a cooling water pipe 23 using an EGR cooler cooling water pipe or an oil cooler pipe may be provided inside the reduction hose 12.
  • the cooling water pipe 23 shown in FIG. 7 has been described as an example in which the cooling water pipe 23 is disposed inside the reduction hose 12.
  • the cooling water pipe is in close contact with the outer peripheral surface of the reduction hose 12, for example, along the flow of cooling water. It may be configured in a straight line shape or a winding shape, or may be arranged by winding the outer peripheral surface of the reduction hose in a spiral shape.
  • the cooling water conduit 23 through which the cooling water passes is provided in the reduction hose 12. Therefore, for example, even when the engine device of Embodiment 3 is used as a power source in an extremely cold region (for example, the outside air temperature is ⁇ 20 ° C.), blow-by gas mixing is performed from the exhaust port 11 of the head cover 10 in the diesel engine 1.
  • the blow-by gas flowing inside the narrow reducing hose 12 up to the blow-by gas inlet 20b of the joint 20B is warmed to 0 ° C. or higher by engine cooling water (for example, about 70 ° C.) flowing through the cooling water conduit 23. .
  • the cooling water conduit 23 as a heating means through which the cooling water flows may be provided on the upstream side of the blow-by gas introduction region in the blow-by gas mixing joint 20B.
  • the intake air upstream of the region where the blow-by gas is introduced is warmed, and the intake air temperature in the region where the intake air flowing into the blow-by gas mixing joint 20B and the blow-by gas introduced from the reduction hose 12 are mixed is set. It becomes possible to raise, and there exists an effect similar to the above-mentioned effect at the time of providing the cooling water pipe line 23 in the reduction hose 12.
  • the diesel engine 1 of the third embodiment according to the present disclosure in a cold region, particularly in a very cold region where the outside air temperature is ⁇ 20 ° C. or lower, In particular, it is possible to provide a highly reliable and safe engine device in which a portion where the intake air and the blow-by gas merge is not blocked by ice.
  • Embodiment 4 a diesel engine as an engine device of Embodiment 4 according to the present disclosure will be described focusing on differences from Embodiment 1 described above.
  • the difference from the configuration of the first embodiment is the configuration of the blow-by gas mixing joint.
  • Other configurations of the engine apparatus of the fourth embodiment are the same as those of the first embodiment. Therefore, in the description of the fourth embodiment, elements having the same functions, configurations, and functions as those of the first embodiment are denoted by the same reference numerals, and detailed descriptions of the elements having the same reference numerals are omitted. To do.
  • FIG. 8 is a perspective view showing a blow-by gas mixing joint 20C in the diesel engine 1 according to the fourth embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view taken along the intake direction of the blowby gas mixing joint 20C shown in FIG.
  • the blow-by gas mixing joint 20C in the diesel engine 1 of the fourth embodiment is provided on the pipe line of the intake pipe 13 and leaks from the combustion chamber, as in the configurations of the first to third embodiments.
  • the blow-by gas is introduced into the intake pipe 13.
  • the blow-by gas mixing joint 20 ⁇ / b> C connected to the intake pipe 13 is provided with a blow-by gas introduction pipe 24 to which the reduction hose 12 is connected.
  • the blow-by gas mixing joint 20C is provided with a spacer 25 for fixing the blow-by gas introduction pipe 24 to the blow-by gas mixing joint 20C.
  • a cooling water pipe 26 through which engine cooling water after engine cooling flows is fixed in contact with the blow-by gas introduction pipe 24 and the spacer 25.
  • the blow-by gas introduction pipe 24, the spacer 25, and the cooling water pipe 26 are made of a metal having good heat conductivity, such as copper, aluminum, brass, and the like, and are fixed to each other while maintaining good heat conduction using welding or the like. Has been.
  • the spacer 25 is brought into close contact with the pipe wall of the intake passage 20a in a liquid-proof state. It is fixed with bolts. A predetermined contact area is secured between the pipe wall of the intake passage 20a and the spacer 25 so as to conduct heat.
  • the cooling water pipe 26 through which the cooling water from the engine passes is in contact with the blow-by gas introduction pipe 24 to which the reduction hose 12 is connected and the pipe wall of the intake passage 20a. It is provided so as to conduct heat to the spacer 25.
  • the engine device of Embodiment 4 when used as a power source in an extremely cold region (for example, the outside air temperature is ⁇ 20 ° C.), mixing of the blow-by gas containing moisture and the intake air in the blow-by gas mixing joint 20C The region is warmed to 0 ° C. or higher by engine cooling water (for example, about 70 ° C.) through which the cooling water pipe 26 flows.
  • engine cooling water for example, about 70 ° C.
  • the pipeline for blow-by gas leaking from the combustion chamber even in a cold region, particularly in a very cold region where the outside air temperature is ⁇ 20 ° C. or lower In particular, it is possible to provide a highly reliable and safe engine device in which a portion where the intake air and the blow-by gas merge is not blocked by ice.
  • Embodiment 5 a diesel engine as an engine apparatus according to Embodiment 5 of the present disclosure will be described focusing on differences from Embodiment 1 described above.
  • the difference from the configuration of the first embodiment is that a pressure adjusting unit as a pressure adjusting means is provided on the reduction hose.
  • the blow-by gas mixing joint is provided with a heating unit 21 that is a heating means.
  • a pressure is used instead of the heating means. It is good also as a structure which provided the adjustment means.
  • Other configurations of the diesel engine of the fifth embodiment are the same as those of the first embodiment.
  • elements having the same functions, configurations, and functions as those of the first embodiment are denoted by the same reference numerals, and detailed descriptions of those elements having the same reference numerals are omitted.
  • the overall configuration of the diesel engine 1 according to the fifth embodiment of the present disclosure is the configuration shown in the perspective view of FIG. Further, the head cover that covers the upper surface portion of the cylinder head in the diesel engine 1 of the fifth embodiment is the same as the configuration shown in the perspective view of FIG. 2 described above, and functions in the same manner and produces the same effects.
  • the diesel engine 1 of the fifth embodiment is also provided with a continuous regeneration type exhaust gas purification device 2 as in the above-described embodiment.
  • FIG. 10 is a plan view of a part of the diesel engine 1 including the head cover 10 in the diesel engine 1 of the fifth embodiment as viewed from above.
  • FIG. 10 shows a state where the exhaust hose 11 of the blow-by gas expansion chamber 6 formed in the head cover 10 and the intake pipe 13 are connected by the reduction hose 12.
  • the intake air (external air: fresh air) is supplied to a supercharger (turbocharger) via an air cleaner (not shown) as in the configuration of the first embodiment shown in FIG. ) 7 is an intake pipe that flows toward 7, and in the intake pipe 13 shown in FIG. 10, intake air flows from top to bottom.
  • a blow-by gas mixing joint 20 ⁇ / b> D for introducing blow-by gas from the blow-by gas expansion chamber 6 in the head cover 10 into the intake pipe 13 is provided on the pipe line of the intake pipe 13.
  • the reduction hose 12 connecting the blow-by gas mixing joint 20D connected to the intake pipe 13 and the exhaust port 11 (valve arm chamber outlet) of the diesel engine main body via a pressure adjusting unit 121 described later has heat resistance and cold resistance. It is made of a flexible material such as a rubber material.
  • FIG. 11 is a cross-sectional view showing the pressure adjusting unit 121 provided in the reduction hose 12 that connects the exhaust port 11 of the engine body and the blow-by gas mixing joint 20D, and is cut along the flow direction of the blow-by gas. It is a cross section.
  • FIG. 12 is a cross-sectional view of the pressure adjusting unit 121 taken along line XII-XII in FIG.
  • the pressure adjustment unit 121 has a blow-by gas passage 121 a that is a conduit for flowing blow-by gas exhausted from the exhaust port 11 (valve arm chamber outlet) to the reduction hose 12. Yes. That is, one end of the blow-by gas passage 121a formed by the pressure adjustment unit 121 is connected to the exhaust port 11, and the other end of the blow-by gas passage 121a is connected to a reduction hose joint 12a provided at one end of the reduction hose 12. Yes.
  • the pressure adjusting unit 121 is joined to the exhaust port 11 of the engine main body and the end of the reduction hose joint 12a with a joining means 124, for example, a band, sealed with a sealing material and screwed, Joined by fixing with an adhesive or the like.
  • a joining means 124 for example, a band, sealed with a sealing material and screwed, Joined by fixing with an adhesive or the like.
  • the blow-by gas sent to the reduction hose 12 from the blow-by gas passage 121a of the pressure adjusting unit 121 is mixed with the intake air from the intake pipe 13 in the blow-by gas mixing joint 20D.
  • the blow-by gas mixing joint 20 ⁇ / b> D has a three-way joint structure, and has a structure in which a blow-by gas introduction port is provided in an intake passage connected to a pipe line of the intake pipe 13. The other end of the reduction hose 12 is connected to the blow-by gas inlet.
  • the blow-by gas mixing joint 20D is provided with a temperature sensor 14 to detect the intake air temperature in the intake passage of the blow-by gas mixing joint 20D.
  • the pressure adjusting unit 121 provided in the diesel engine 1 is configured to flow the blow-by gas exhausted from the exhaust port 11 that is the blow-by gas outlet from the engine body to the reduction hose 12.
  • the blow-by gas passage 121a is formed with a pressure adjusting hole 121b that can communicate with the outside.
  • the pressure adjustment hole 121b is formed above the blow-by gas passage 121a, and the upper end of the blow-by gas passage 121a is opened.
  • the pressure adjusting unit 121 is provided with a pressure adjusting valve 122 that closes the upper end opening of the pressure adjusting hole 121b in a normal state.
  • a leaf spring that starts to bend when a predetermined pressure is received is used as the pressure adjustment valve 122.
  • the predetermined pressure in the fifth embodiment is set within a range from 5 kPa to 8 kPa, for example, 5 kPa.
  • the upper end opening of the pressure adjustment hole 121b is closed in an airtight state by the pressure adjustment valve 122 that is a leaf spring. It is a configuration.
  • the pressure adjustment valve 122 that is a leaf spring.
  • the blow-by gas passage 121a may be opened when the inside of the blow-by gas passage 121a becomes equal to or higher than a predetermined pressure.
  • the supercharger 7 (see FIG. 10) is provided on the downstream side of the blow-by gas mixing joint 20D connected to the intake pipe 13 through which intake air flows.
  • the inside of the blow-by gas passage 121a of the pressure adjusting unit 121 connected to the blow-by gas mixing joint 20D via the reduction hose 12 is in a negative pressure state. Therefore, the blow-by gas discharged from the exhaust port 11 of the engine body flows through the blow-by gas passage 121a of the pressure adjusting unit 121 and flows to the blow-by gas mixing joint 20D via the reduction hose 12.
  • the blow-by gas from the exhaust port 11 of the engine body passes through the pressure adjusting unit 121 and the reduction hose 12 and is introduced into the blow-by gas mixing joint 20D. Are mixed and sucked into the supercharger 7.
  • the blow-by gas passage 121a is in a negative pressure state, and the leaf spring that is the pressure adjusting valve 122 does not operate.
  • the diesel engine 1 of the fifth embodiment when used as a power source in an extremely cold region (for example, the outside air temperature is ⁇ 20 ° C.), when the blowby gas and the intake air are mixed in the blowby gas mixing joint 20D, the blowby Moisture contained in the gas instantly freezes due to the intake air (for example, the intake air temperature is ⁇ 20 ° C.), and a phenomenon occurs that the tube wall near the mixed region of the blow-by gas and the intake air is icing.
  • an extremely cold region for example, the outside air temperature is ⁇ 20 ° C.
  • the reducing hose 12 which is the blow-by gas pipe upstream from the closed position, the blow-by gas passage 121a of the pressure adjustment unit 121, the crank of the engine body
  • the internal pressure inside the case increases.
  • a predetermined pressure for example, 5 kPa
  • the leaf spring that is the pressure adjustment valve 122 starts to bend, and the upper end opening of the pressure adjustment hole 121b opens. Opened.
  • the blow-by gas in the blow-by gas passage 121a of the pressure adjusting unit 121 is released to the outside, and the internal pressure of the crankcase decreases. Accordingly, it is possible to reliably prevent a problem that the pressure in the crankcase abnormally increases and the engine oil in the crankcase leaks.
  • the leaf spring that is the pressure adjustment valve 122 in the pressure adjustment unit 121 functions to adjust the pressure.
  • the pressure in the blow-by gas pipe upstream of the closed pipe does not increase, and the pressure inside the crankcase is kept below a predetermined pressure.
  • the pipe line closed by freezing is communicated due to an increase in temperature, a heating process of the frozen part, or the like, the inside of the pipe line becomes a predetermined pressure or lower, so that the leaf spring that is the pressure adjustment valve 122 of the pressure adjustment unit 121 Returns to the normal state, and the upper end opening of the pressure adjusting hole 121b is hermetically closed.
  • the pressure adjustment unit 121 is described as being directly connected to the exhaust port 11 of the engine body, and the pressure adjustment valve 122 of the pressure adjustment unit 121 is provided in the vicinity of the exhaust port 11 of the engine body. ing.
  • the pressure adjusting unit 121 is a position where the blowby gas does not freeze even when the temperature of the blowby gas is high and the outside air temperature is low. That is, it is preferable to provide it as close as possible to the valve arm chamber of the engine body.
  • the diesel engine 1 of Embodiment 5 of the present disclosure even in cold regions, particularly in extremely cold regions of ⁇ 20 ° C. or less, the problem caused by blow-by gas leaking from the combustion chamber is solved. It is possible to provide a highly reliable and safe engine device in which the lubricating oil inside the crankcase does not leak.
  • the engine device of the fifth embodiment is closed by icing in the pipeline of the mixed region of the blow-by gas leaked from the combustion chamber and the intake air (outside air) even in a cold region, particularly in an extremely cold region of ⁇ 20 ° C. or lower. Even if it is peeled off, the pressure in the crankcase is maintained at a predetermined pressure, and the engine oil device is highly reliable and safe without leaking the lubricating oil inside the crankcase.
  • Embodiment 6 a diesel engine as an engine device according to Embodiment 6 of the present disclosure will be described focusing on differences from Embodiments 1 and 5 described above.
  • the difference from the configuration of the fifth embodiment is the configuration of the pressure adjusting unit, and the other configurations are the same as those of the first and fifth embodiments. Therefore, in the description of the sixth embodiment, elements having the same functions, configurations, and operations as those of the first and fifth embodiments are denoted by the same reference numerals, and elements having the same reference numerals are denoted. Detailed description is omitted.
  • FIG. 13 is a cross-sectional view showing the pressure adjustment unit 125 in the diesel engine 1 of Embodiment 6 according to the present disclosure, which is a cross section cut along the flow direction of blow-by gas.
  • 14 is a cross-sectional view of the pressure adjusting unit 125 taken along the line XIV-XIV in FIG.
  • the pressure adjustment unit 125 has a blow-by gas passage 125 a that is a conduit for flowing blow-by gas exhausted from the exhaust port 11 of the engine body to the reduction hose 12. That is, one end of the blow-by gas passage 125a formed by the pressure adjusting unit 125 in the sixth embodiment is connected to the exhaust port 11 of the engine body, and the other end of the blow-by gas passage 125a is connected to one end of the reduction hose 12. It is connected to the provided reduction hose joint 12a.
  • the pressure adjusting unit 125 is joined to the end of the exhaust port 11 and the reduction hose joint 12a of the engine body by a joining means 124, for example, a band, sealed with a sealing material and screwed, Joined by fixing with an adhesive or the like.
  • a joining means 124 for example, a band, sealed with a sealing material and screwed, Joined by fixing with an adhesive or the like.
  • blow-by gas sent to the reduction hose 12 from the blow-by gas passage 125a of the pressure adjusting unit 125 is mixed with the intake air from the intake pipe 13 in the blow-by gas mixing joint 20D (see FIG. 10).
  • the pressure adjusting unit 125 provided in the diesel engine 1 flows the blow-by gas exhausted from the exhaust port 11 that is the blow-by gas outlet from the engine main body through the reduction hose 12.
  • the blow-by gas passage 125a is provided.
  • a storage portion 125c as a space is formed below the blow-by gas passage 125a.
  • a pressure adjusting hole 125b that can communicate with the outside is formed in the bottom surface of the reservoir 125c. That is, the pressure adjustment hole 125b is formed below the blow-by gas passage 125a, and the lower end of the pressure adjustment hole 125b is opened.
  • the pressure adjustment unit 125 is provided with a pressure adjustment valve 126 that closes the lower end opening of the pressure adjustment hole 125b in a normal state.
  • a leaf spring that starts to bend when a predetermined pressure is received is used as the pressure adjustment valve 126.
  • the predetermined pressure in the sixth embodiment is set within a range of 5 kPa to 8 kPa, for example, 5 kPa.
  • the lower end opening of the pressure adjustment hole 125b is closed in an airtight state by the pressure adjustment valve 126, which is a leaf spring, in a normal state where the inside of the blow-by gas passage 125a is equal to or lower than a predetermined pressure. It is configured.
  • the pressure adjustment valve 126 which is a leaf spring
  • a configuration example in which a leaf spring is used as the pressure regulating valve 126 and a screw is used as the fixing means 127 will be described.
  • the present disclosure is limited to such a configuration.
  • the blow-by gas passage 125a may be opened when the inside of the blow-by gas passage 125a reaches a predetermined pressure or more.
  • the inside of the blow-by gas passage 125a of the pressure adjusting unit 125 in the sixth embodiment is in a negative pressure state. Therefore, the blow-by gas from the exhaust port 11 of the engine body passes through the blow-by gas passage 125a of the pressure adjusting unit 125 and flows to the blow-by gas mixing joint 20D through the reduction hose 12.
  • the blow-by gas discharged from the exhaust port 11 of the engine main body passes through the pressure adjusting unit 125 and the reduction hose 12 and is introduced into the blow-by gas mixing joint 20D. And the intake air are mixed and sucked into the supercharger 7 (see FIG. 10).
  • the blow-by gas passage 125a is in a negative pressure state in the pressure adjusting unit 125, and the leaf spring as the pressure adjusting valve 126 does not operate.
  • the diesel engine 1 of the sixth embodiment when used as a power source in an extremely cold region (for example, the outside air temperature is ⁇ 20 ° C.), when the blowby gas and the intake air are mixed in the blowby gas mixing joint 20D, the blowby Moisture contained in the gas instantly freezes due to the intake air (for example, the intake air temperature is ⁇ 20 ° C.), and a phenomenon occurs in which the tube wall near the mixed region of the blow-by gas and the intake air is icing.
  • the intake air temperature for example, the intake air temperature is ⁇ 20 ° C.
  • the blow-by gas passage 125a of the pressure adjustment unit 125 increases.
  • a predetermined pressure for example, 5 kPa
  • the leaf spring that is the pressure adjusting valve 126 starts to bend, and the lower end opening of the pressure adjusting hole 125b opens. Opened.
  • the blow-by gas in the blow-by gas passage 125a of the pressure adjusting unit 125 is released to the outside, and the internal pressure of the crankcase decreases. Therefore, in the configuration of the sixth embodiment, it is possible to reliably prevent a problem that the pressure in the crankcase abnormally increases and the engine oil inside the crankcase leaks.
  • the pressure adjusting unit 125 has a storage unit 125c below the blow-by gas passage 125a.
  • the blow-by gas discharged from the exhaust port 11 of the engine body contains moisture.
  • the blow-by gas discharged from the exhaust port 11 of the engine body is rapidly cooled by the pressure adjusting unit 125 particularly when the outside air temperature is low. For this reason, in the pressure adjusting unit 125, the moisture of the blow-by gas is liquefied and accumulated in the reservoir 125c below the blow-by gas passage 125a.
  • the leaf spring as the pressure regulating valve 126 is bent by the dead weight of the accumulated water, the lower end opening of the pressure regulating hole 125b is opened, and the water in the reservoir 125c is released.
  • the blow-by gas pipeline upstream from the closed position is opened and mixed with intake air. Reducing the moisture in the blow-by gas, reducing the formation amount and formation speed of ice formed when the blow-by gas is mixed with the intake air, and the pipe line near the mixing region where the blow-by gas is mixed with the intake air. It is reduced from being closed by ice.
  • the leaf spring that is the pressure adjustment valve 126 in the pressure adjustment unit 125 functions to adjust the pressure.
  • the pressure in the blow-by gas pipe upstream of the closed pipe does not increase, and the pressure inside the crankcase is kept below a predetermined pressure.
  • the inside of the pipe line becomes a predetermined pressure or lower, so that the plate that is the pressure regulating valve 126 of the pressure regulating unit 125 The spring returns to a state in which the lower end opening of the pressure adjusting hole 125b is airtightly closed.
  • the pressure adjustment unit 125 is described as being directly connected to the exhaust port 11 of the engine body, and the pressure adjustment valve 126 of the pressure adjustment unit 125 is located near the exhaust port 11 of the engine body.
  • the pressure adjusting unit 125 is a position where the temperature of the blow-by gas does not freeze even when the temperature of the blow-by gas is high and the outside air temperature is low. That is, it is preferable to provide it as close as possible to the valve arm chamber of the engine body.
  • the engine device is a mixture of blow-by gas leaked from the combustion chamber and intake air (outside air) even in a cold region, particularly in an extremely cold region of ⁇ 20 ° C. or lower. Closure can be suppressed by ice in the pipe line in the vicinity of the region, and even if the pipe line is blocked by icing, the pressure in the crankcase is maintained at a predetermined pressure, and the inside of the crankcase This makes the engine device highly reliable and safe without leaking the lubricant.
  • the difference from the configuration of the fifth embodiment is the configuration of the reducing hose through which blowby gas flows from the engine body to the blowby gas mixing joint, and the other configurations are the same as in the first embodiment.
  • FIG. 15 is a diagram illustrating a schematic arrangement of a reduction hose through which blow-by gas flows from the exhaust port of the engine body to the blow-by gas mixing joint in the diesel engine 1 according to the seventh embodiment of the present disclosure.
  • FIG. 16 is a diagram illustrating a configuration of a reduction hose in the diesel engine 1 according to the seventh embodiment.
  • the reduction hose 130 in the diesel engine 1 of the seventh embodiment is an upstream reduction hose arranged downward so as to flow downward from the exhaust port 11 (see FIG. 10) of the engine body. 112A and a downstream reduction hose 112B for flowing blow-by gas to the blow-by gas mixing joint 20D (see FIG. 10) via the reduction hose intermediate connecting portion 129. That is, in the reduction hose 130, the reduction hose intermediate connection portion 129 is disposed at the lowermost position, and the upstream reduction hose 112A and the downstream reduction hose 112B are led out upward from the reduction hose intermediate connection portion 129. It is installed. Further, a discharge pipe 132 is provided from the reduction hose intermediate connecting portion 129 toward the oil pan. In the configuration of the seventh embodiment, the reduction hose intermediate connecting portion 129 has the function of the pressure adjusting portion in the fifth and sixth embodiments.
  • a substantially U-shaped blow-by gas passage 128 is formed in the reduction hose intermediate connecting portion 129, and the upstream-side reduction hose 112 ⁇ / b> A and the downstream-side reduction hose are formed at respective ends of the blow-by gas passage 128.
  • Each hose 112B is connected.
  • An opening is formed at the lowermost end portion of the reduction hose intermediate connecting portion 129, and a pressure regulating valve 131, for example, a leaf spring is provided so as to close the opening.
  • the pressure regulating valve 131 which is a pressure regulating unit in the seventh embodiment has the same function as the pressure regulating valve (122, 126) of the pressure regulating unit (121, 125) in the above-described embodiment, and is an engine main body.
  • blow-by gas flowing from the engine body toward the blow-by gas mixing joint 20D flows through the substantially U-shaped blow-by gas passage 128, so that the lower end portion of the blow-by gas passage 128 is included in the blow-by gas.
  • Reservoir 128a is formed so that the accumulated moisture is accumulated. Therefore, the pressure adjustment valve 131 is disposed on the bottom surface of the storage portion 128a. The leaf spring as the pressure regulating valve 131 bends due to the weight of the water accumulated in the storage portion 128a, and the opening at the lowermost end portion of the reduction hose intermediate connection portion 129 is opened. As a result, the water accumulated in the reservoir 128a is discharged from the discharge pipe 132 connected to the opening to the oil pan below the diesel engine 1.
  • the engine device is a mixture of blow-by gas leaked from the combustion chamber and intake air (outside air) even in cold regions, particularly in extremely cold regions of ⁇ 20 ° C. or less. Closure can be suppressed by ice in the pipe line in the vicinity of the region, and even if the pipe line is blocked by icing, the pressure in the crankcase is maintained at a predetermined pressure, and the inside of the crankcase This makes the engine device highly reliable and safe without leaking the lubricant.
  • the blow-by gas reduction mechanism that recirculates the blow-by gas in the engine body leaking from the combustion chamber to the intake system is provided, and in the blow-by gas reduction mechanism, the intake air and the blow-by gas are provided.
  • the circulation path of the cooling water is disposed in the pipe line near the mixing region where the water flows and is heated.
  • a blow-by gas reduction mechanism that recirculates the blow-by gas in the crankcase leaking from the combustion chamber to the intake system is provided, and the pressure adjustment mechanism is provided in the blow-by gas reduction mechanism.
  • the pressure adjustment mechanism in the blow-by gas reduction mechanism, for example, even when the engine device of the present disclosure is used as a power source in a cold region or a very cold region, it is included in the blow-by gas in the blow-by gas mixing joint. Even if the water freezes and the pipe is closed, the pressure in the engine body is maintained at a predetermined pressure, and the engine device is highly reliable and safe without leakage of lubricating oil.
  • the present disclosure is used for an engine device such as a diesel engine mounted as a power source in various power devices such as a work vehicle, an agricultural machine, a generator, and a refrigerator, and particularly in an engine device used in a cold region or a very cold region. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

寒冷地、特に-20℃以下の極寒地の使用においても、信頼性および安全性の高いエンジン装置を提供するために、エンジン装置は、ブローバイガス混合継手(20,20A,20B,20C,20D)に流れる吸気と還元ホース(12)から導入されるブローバイガスとの混合領域における温度を上昇させるために加温部(21,22,23,24,25,26)、および/または燃焼室からのブローバイガスが流れるブローバイガス通路を有する圧力調整部(121,125)を備える。

Description

エンジン装置
 本開示は、作業車両、農業機械、発電機および冷凍機などの各種動力機器における動力源として搭載されるディーゼルエンジンなどのエンジン装置に係り、特に、ブローバイガスを吸気系に還元するブローバイガス還元機構を備えるエンジン装置に関する。
 近年、内燃機関であるエンジン装置に対する排出ガス規制は年々厳しくなっており、エンジン装置においては排出ガス規制に対応すべく各種対策が提案されている。従来からのディーゼルエンジンなどにおける排気ガス対策としては、排気ガスの一部を吸気側に還元させるEGR(Exhaust Gas Recirculation:排気ガス再循環)装置を設けて、燃焼温度を低く抑えて、排気ガス中のNOx(窒素酸化物)の量を低減させる対策が施されていた。例えば、ディーゼルエンジンに用いられる排気ガス浄化装置を改善した構成(例えば、特許文献1参照)や、ブローバイガス還元装置の部品点数を削減し、保守点検作業を簡略化した構成(例えば、特許文献2参照)などが提案されている。また、燃焼室から漏れ出たブローバイガスから潤滑油を分離し、潤滑油が分離されたブローバイガスを吸気系統に戻して再循環させる技術が提案されている。
特開2013-133796号公報 特開2013-148010号公報
 燃焼室から漏れ出たクランクケース内のブローバイガスを吸気系統に戻す構成において、ブローバイガスには潤滑油である油分とともに水分が含まれているため、寒冷地、特に-20℃以下の極寒地の使用においては大きな課題を有していた。寒冷地、特に-20℃以下の極寒地においては、吸気(外部空気)とブローバイガスとの合流部分において、ブローバイガスが急激に冷やされて、ブローバイガスに含まれる水分が凍り、ブローバイガスが流れる管路に着氷するという現象が生じる。この結果、ブローバイガスの管路が氷で塞がれてしまい、エンジン装置のクランクケース内の圧力が上昇し、クランクケースの内部の潤滑油が漏出するという不具合が生じていた。さらに、潤滑油が漏出した結果、潤滑油が不足し、機器(例えば、過給器)が破損するおそれがあった。
 本開示は、上記の課題を解決するものであり、寒冷地、特に-20℃以下の極寒地の使用においても、燃焼室から漏れ出たブローバイガスによる問題を解消し、クランクケース内部の潤滑油が漏れ出ることのない、信頼性および安全性の高いエンジン装置を提供することを目的とする。
 本開示に係る一態様は、燃焼室から漏れ出るブローバイガスを吸気が流れる吸気管に還流させるブローバイガス還元機構を有するエンジン装置において、
 前記燃焼室からの前記ブローバイガスが流れる還元ホースと、
 前記吸気管に前記還元ホースに流れる前記ブローバイガスを導入するためのブローバイガス混合継手と、
 前記ブローバイガス混合継手に流れる吸気と前記還元ホースから導入される前記ブローバイガスとの混合領域における吸気温度を上昇させる加温手段と、を備え、
 前記加温手段における加熱源として当該エンジン装置における冷却水を用いて構成されている。
 また、本開示に係る一態様は、燃焼室から漏れ出るブローバイガスを吸気が流れる吸気管に還流させるブローバイガス還元機構を有するエンジン装置において、
 前記燃焼室からの前記ブローバイガスが流れるブローバイガス通路を有する圧力調整部と、
 前記ブローバイガス通路に接続された還元ホースと、
 前記吸気管に前記還元ホースに流れる前記ブローバイガスを導入するためのブローバイガス混合継手と、を備え、
 前記圧力調整部は、前記ブローバイガス通路内の圧力が所定の圧力を超えたとき、前記ブローバイガス通路を外部と連通させ圧力調整弁を有して構成されている。
 本開示によれば、寒冷地、特に-20℃以下の極寒地の使用においても、燃焼室から漏れ出たブローバイガスによる問題を解消し、クランクケース内部の潤滑油が漏れ出ることのない、信頼性および安全性の高いエンジン装置を提供することができる。
本開示に係る実施の形態1のディーゼルエンジンを示す斜視図 実施の形態1のディーゼルエンジンにおけるシリンダヘッドの上面部分を覆うヘッドカバーの近傍を示す斜視図 実施の形態1のディーゼルエンジンにおけるヘッドカバーを含む一部を上方から見た平面図 実施の形態1のディーゼルエンジンにおけるブローバイガス混合継手における吸気の流れ方向に直交する方向の断面図 実施の形態1のディーゼルエンジンにおけるブローバイガス混合継手を吸気の流れ方向に沿って切断した断面図 本開示に係る実施の形態2のディーゼルエンジンにおけるブローバイガス混合継手の吸気方向に沿って切断した断面図 本開示に係る実施の形態3のディーゼルエンジンにおける還元ホースなどを示す断面図 本開示に係る実施の形態4のディーゼルエンジンにおけるブローバイガス混合継手を示す斜視図 図8に示したブローバイガス混合継手の吸気方向に沿って切断した断面図 実施の形態5のディーゼルエンジンにおけるヘッドカバーを含む一部を上方から見た平面図 実施の形態5のディーゼルエンジンにおける還元ホースに設けられた圧力調整部をブローバイガスの流れ方向に沿って切断した断面図 図11におけるXII-XII線において圧力調整部を切断した断面図 本開示に係る実施の形態6のディーゼルエンジンにおける圧力調整部をブローバイガスの流れ方向に沿って切断した断面図 図13におけるXIV-XIV線において圧力調整部を切断した断面図 本開示に係る実施の形態7のディーゼルエンジンにおけるエンジン本体の排気口からブローバイガス混合継手までのブローバイガスが流れる還元ホースの概略配置を示す図 実施の形態7のディーゼルエンジンにおける還元ホースの構成を示す概略図
 本開示に係る第1の態様は、燃焼室から漏れ出るブローバイガスを吸気が流れる吸気管に還流させるブローバイガス還元機構を有するエンジン装置において、
 前記燃焼室からの前記ブローバイガスが流れる還元ホースと、
 前記吸気管に前記還元ホースに流れる前記ブローバイガスを導入するためのブローバイガス混合継手と、
 前記ブローバイガス混合継手に流れる吸気と前記還元ホースから導入される前記ブローバイガスとの混合領域における吸気温度を上昇させる加温部と、を備え、
 前記加温部における加熱源として当該エンジン装置における冷却水を用いて構成されている。
 上記のように構成された本開示に係る第1の態様のエンジン装置は、寒冷地、特に-20℃以下の極寒地の使用においても、燃焼室から漏れ出たブローバイガスと吸気(外気)との混合領域の管路において着氷で塞がれることを防止して、信頼性および安全性の高いエンジン装置となる。
 本開示に係る第2の態様のエンジン装置は、前記の第1の態様における前記加温部を、前記ブローバイガス混合継手に流れる吸気と前記還元ホースから導入される前記ブローバイガスとの混合領域における前記ブローバイガス混合継手の外周面に前記冷却水が流れるように構成してもよい。このように構成された本開示に係る第2の態様のエンジン装置は、ブローバイガス混合継手に流れる吸気と還元ホースから導入されるブローバイガスとの混合領域が温められるため、混合領域の管路に着氷することが抑制され、当該管路は閉塞されることが防止されている。
 本開示に係る第3の態様のエンジン装置は、前記の第1の態様における前記加温部を、前記ブローバイガス混合継手において、前記還元ホースから導入される前記ブローバイガスの導入領域より上流側の外周面に前記冷却水が流れるように構成してもよい。このように構成された本開示に係る第3の態様のエンジン装置は、例えば、極寒地の使用においても、ブローバイガス混合継手における還元ホースから導入されるブローバイガスの導入領域より上流側の吸気が温められるため、混合領域の管路に着氷することが抑制され、当該管路は閉塞されることが防止されている。
 本開示に係る第4の態様のエンジン装置は、前記の第1の態様における前記加温部を、前記ブローバイガス混合継手において、前記還元ホースから導入される前記ブローバイガスの導入領域より上流側および下流側の外周面に前記冷却水が流れるように構成してもうよい。このように構成された本開示に係る第4の態様のエンジン装置においては、例えば、極寒地の使用においても、ブローバイガス混合継手における還元ホースから導入されるブローバイガスの導入領域より上流側および下流側の吸気が温められるため、混合領域の管路に着氷することが抑制され、当該管路は閉塞されることが防止されている。
 本開示に係る第5の態様のエンジン装置は、前記の第1の態様における前記加温部を、前記還元ホースを流れるブローバイガスを前記冷却水により温めるように配設した冷却水管路で構成してもよい。このように構成された本開示に係る第5の態様のエンジン装置においては、例えば、極寒地の使用においても、ブローバイガス混合継手における還元ホースから導入されるブローバイガスが温められるため、混合領域の管路に着氷することが抑制され、当該管路は閉塞されることが防止されている。
 本開示に係る第6の態様のエンジン装置は、前記の第1の態様における前記加温部を、前記ブローバイガス混合継手におけるブローバイガスが導入される領域より上流側に配設した冷却水管路で構成してもよい。このように構成された本開示に係る第6の態様のエンジン装置は、例えば、極寒地の使用においても、ブローバイガス混合継手におけるブローバイガスが導入される領域より上流側の吸気が温められるため、混合領域の管路に着氷することが抑制され、当該管路は閉塞されることが防止されている。
 本開示に係る第7の態様のエンジン装置は、前記の第1の態様における前記加温部が、前記ブローバイガス混合継手における少なくとも一部に設けられた熱伝導性を有する部材で構成され、
 前記加温部が、前記還元ホースが接続されるブローバイガス導入パイプと、
 前記ブローバイガス導入パイプが熱伝導するように固着され、前記ブローバイガス混合継手の外周面に熱伝導するように密着した間座と、
 前記ブローバイガス導入パイプと前記間座に熱伝導するように密着して配設され、前記冷却水が流れる冷却水パイプと、を備える構成としてもよい。このように構成された本開示に係る第7の態様のエンジン装置は、例えば、極寒地の使用においても、ブローバイガス混合継手におけるブローバイガスが導入される混合領域が温められるため、混合領域の管路に着氷することが抑制され、当該管路は閉塞されることが防止されている。
 本開示に係る第8の態様は、燃焼室から漏れ出るブローバイガスを吸気が流れる吸気管に還流させるブローバイガス還元機構を有するエンジン装置において、
 前記燃焼室からの前記ブローバイガスが流れるブローバイガス通路を有する圧力調整部と、
 前記ブローバイガス通路に接続された還元ホースと、
 前記吸気管に前記還元ホースに流れる前記ブローバイガスを導入するためのブローバイガス混合継手と、を備え、
 前記圧力調整部は、前記ブローバイガス通路内の圧力が所定の圧力を超えたとき、前記ブローバイガス通路を外部と連通させ圧力調整弁を有して構成されている。
 上記のように構成された本開示に係る第8の態様のエンジン装置は、寒冷地、特に外気温度が-20℃以下の極寒地においても、燃焼室から漏れ出たブローバイガスの管路、特に、吸気(外部空気:新気)とブローバイガスとが合流する混合領域近傍の管路に着氷して当該管路が氷で塞がれたとしても、エンジン本体内の圧力が所望の圧力に維持される。
 本開示に係る第9の態様のエンジン装置は、前記の第8の態様における前記圧力調整部が、前記ブローバイガス通路の下方に貯溜部を有し、前記貯溜部が前記ブローバイガス通路を通るブローバイガスに含まれる液分を溜るように構成してもよい。このように構成された本開示に係る第9の態様のエンジン装置においては、エンジン本体からブローバイガス混合継手に導入されるブローバイガスに含まれる水分および/または油分などの液分がブローバイガス通路において除去されるように構成されているため、例えば、極寒地の使用においても、ブローバイガス混合継手における吸気とブローバイガスとの混合領域における管路の着氷が抑制されるとともに、不要な油分の除去が可能となる。
 本開示に係る第10の態様のエンジン装置は、前記の第9の態様における前記圧力調整弁を、前記貯溜部に溜まった液体の自重により前記貯溜部の底面の開口を開放するように構成してもよい。このように構成された本開示に係る第10の態様のエンジン装置においては、ブローバイガス通路において除去された水および/または潤滑油などの液体を自動的に他の領域へ移動することが可能となり、保守管理が容易な構成となる。
 本開示に係る第11の態様のエンジン装置は、前記の第8の態様における前記還元ホースを、前記ブローバイガス混合継手に対してブローバイガスを下方から導入するように接続してもよい。このように構成された本開示に係る第11の態様のエンジン装置においては、エンジン本体からブローバイガス混合継手に導入されるブローバイガスに含まれる水分や油分などの液分を貯溜することが可能となる。
 本開示に係る第12の態様のエンジン装置は、前記の第11の態様における前記圧力調整部が、前記燃焼室から前記ブローバイガス混合継手にブローバイガスを流す経路における最下端の位置に配置されており、ブローバイガスに含まれる液分を排出するよう構成してもよい。このように構成された本開示に係る第12の態様のエンジン装置においては、エンジン本体からブローバイガス混合継手に導入されるブローバイガスに含まれる水分および/または油分などの液分を簡単な構成で取り除くことが可能となる。
 以下、本開示に係る実施の形態について、添付の図面を参照しながら説明する。なお、以下の実施の形態の記載の構成によって本発明の構成が限定されるものではない。本開示のエンジン装置においては、以下の実施の形態においてはディーゼルエンジンを例示として説明するが、実施の形態のディーゼルエンジンの構成に限定されるものではなく、実施の形態において説明する技術的思想と同等の技術的思想に基づいて構成されるエンジン装置を含むものである。
 (実施の形態1)
 本開示に係る実施の形態1のエンジン装置としてディーゼルエンジンについて添付の図面を参照して説明する。なお、図において、矢印UPの方向を上方向として説明する。
 図1は、本開示に係る実施の形態1のディーゼルエンジン1の全体構成を示す斜視図である。図2は、実施の形態1のディーゼルエンジン1におけるシリンダヘッドの上面部分を覆うヘッドカバーの近傍を示す斜視図であり、一部を断面で示している。実施の形態1のディーゼルエンジン1は、連続再生式の排気ガス浄化装置2を備えている。
 実施の形態1のディーゼルエンジン1には、燃焼室から漏れ出るクランクケース内のブローバイガスを吸気系(吸気管)に還流させるブローバイガス還元機構3(図2参照)が設けられている。ディーゼルエンジン1のシリンダヘッドの上面部分に設けられた吸気弁および排気弁などを覆うヘッドカバー10にブローバイガス還元機構3が設けられている。ブローバイガス還元機構3は、ヘッドカバー10の上面の一部が上方に膨出して形成されたガス調圧部4を有する。ガス調圧部4の内部にはディーゼルエンジン1の燃焼室などから漏れ出たブローバイガスが取り入れられるブローバイガス取入れ室5と、ブローバイガス取入れ室5内のブローバイガスがガス調圧弁を介して供給されるブローバイガス膨張室6が形成されている。ブローバイガス膨張室6の底面には当該ブローバイガス膨張室6に潤滑油成分が溜まったとき、その潤滑油成分の重みにより回動して潤滑油成分をシリンダヘッドの上面側に落下させる逆止弁、例えば、重みにより下方に曲がる板バネ、が設けられている。上記のように、ブローバイガス膨張室6に溜まった潤滑油成分は、シリンダヘッドの上面側に落下して、ディーゼルエンジン内に回収される構成である。
 なお、実施の形態1の構成においては、ブローバイガス膨張室6の底面に板バネである逆止弁が設けられているため、シリンダヘッドの上面側から逆止弁に向けて潤滑油が飛散しても、飛散した潤滑油がブローバイガス膨張室6に混入することが防止されている。
 ブローバイガス膨張室6には、例えば、複数の仕切板を設けて複数の迷路状通路が形成されており、ブローバイガスが複数の迷路状通路において膨出することにより、ブローバイガス中の潤滑油成分が除去される構成である。除去された潤滑油成分はブローバイガス膨張室6の底面に溜まり、その自重により、例えば板バネが曲がりシリンダヘッドの上面側に落下し、ディーゼルエンジン内に回収される。
 一方、ブローバイガス膨張室6内において潤滑油成分が除去されたブローバイガスは、ブローバイガス膨張室6の排気口11に接続された還元ホース12(図2参照)の管路を介して、吸気管13(後述の図3参照)の管路内に送り込まれるよう構成されている。ブローバイガス膨張室6の排気口11は、ヘッドカバー10に一体成形されており、ヘッドカバー10の上面に突設されている。
 図3は、実施の形態1のディーゼルエンジン1におけるヘッドカバー10を含む一部を上方から見た平面図である。図3においては、ヘッドカバー10に形成されたブローバイガス膨張室6の排気口11と吸気管13との間を還元ホース12により接続されている状態を示している。
 図3に示す吸気管13は、吸気(外部空気:新気)がエアークリーナ(図示なし)を介して過給器(ターボチャージャ)7の方へ流れる吸気管路であり、図3に示す吸気管13においては吸気が上から下へ流れている。吸気管13の管路上には、ヘッドカバー10内のブローバイガス膨張室6からのブローバイガスを吸気管13内に導入するためのブローバイガス混合継手20が設けられている。吸気管13に接続されたブローバイガス混合継手20とブローバイガス膨張室6の排気口11とを接続する還元ホース12は、耐熱性および耐寒性を有する可撓性材料、例えばゴム材で形成されている。
 図4は、ブローバイガス混合継手20における吸気の流れ方向に直交する方向で切断した断面図である。図4においては、断面が円形の還元ホース12が接合されるブローバイガス導入口20b(後述)の中心を含む断面を示している。図5は、ブローバイガス混合継手20を吸気の流れ方向(吸気方向)に沿って切断した断面図である。
 図4および図5に示すように、ブローバイガス混合継手20は三方継手構造を有しており、吸気管13の管路に繋がる吸気通路20aにブローバイガス導入口20bが設けられた構成である。ブローバイガス導入口20bには還元ホース12の一端が接続されている。
 実施の形態1のディーゼルエンジン1において、ブローバイガス混合継手20には温度センサ14(図3参照)が設けられており、吸気通路20aにおける吸気温度を検出している。温度センサ14は、吸気通路20aの吸気方向に直交する方向に挿入されており、吸気通路20aの外周面から外側へ導出するセンサ保持部20c(図4参照)により保持されている。実施の形態1の構成においては、温度センサ14が装着された保持板(図示なし)がセンサ保持部20cに螺着されて、温度センサ14がセンサ保持部20cに保持される構成である。
 実施の形態1の構成においては、温度センサ14の温度検出領域がブローバイガス導入口20bの導入方向に延びる中心線を含む吸気方向に直交する面を含んでいる。即ち、温度センサ14は、ブローバイガス混合継手20のブローバイガス導入口20bの近傍に設けられて、ブローバイガス導入口20bの近傍の温度を検出するように構成されている。
 なお、実施の形態1においては、上記のように、温度センサ14をブローバイガス導入口20bの近傍に設けた例で説明するが、温度センサ14を吸気方向におけるブローバイガス導入口20bの位置より上流側及び/又は下流側にオフセットした位置に配置して、ブローバイガスが導入される前、及び/又は導入された後の吸気温度を検出する構成でもよい。また、実施の形態1の構成においては、ブローバイガス導入口20bの導入方向と温度センサ14の配設方向(ブローバイガス混合継手20への挿入方向:図4における上下方向)が直交する構成で説明するが、この構成についても、ディーゼルエンジン1における部品配置構成に応じて適宜変更される。
 実施の形態1のディーゼルエンジン1においては、図4および図5に示すように、ブローバイガス混合継手20におけるブローバイガス導入口20bの導出部分の近傍に加温手段である加温部21が設けられている。加温部21は、エンジン冷却水の循環路内に設けられており、エンジン冷却水が供給される冷却水導入口21aと、ブローバイガス混合継手20を加温した後に排出される冷却水排水口21bとを備えている。加温部21は、ブローバイガス混合継手20の外周面に密着して設けられており、ブローバイガス混合継手20の吸気通路20aを流れる吸気と、ブローバイガス導入口20bから供給されたブローバイガスとの混合領域を、例えば、約70℃のエンジン冷却水が加温部21の内部に流れて温める加温手段としての機能を有する。加温部21は、耐熱性の樹脂材で形成されており、樹脂材で形成されたブローバイガス混合継手20と一体成形で構成してもよい。
 なお、図5における断面図においては、説明を容易なものとするために、ブローバイガス混合継手20のブローバイガス導入口20b、加温部21の冷却水導入口21a、および加温部21の冷却水排水口21bの配設位置を同じ断面上に描いているが、それぞれの実際上の配置は、当該ディーゼルエンジン1における部品構成に応じて適宜変更される。
 エンジン装置としてのディーゼルエンジン1を動力源として備えた機器が極寒地(例えば、外気温度が-20℃)で用いられている場合、吸気温度(新気温度)は、例えば、-20℃となる。このような吸気温度の吸気に対して、燃焼室から漏れ出るクランクケース内のブローバイガスを単純に混合した場合には、ブローバイガスに含まれる水分が瞬時に凍り、吸気とブローバイガスとの混合領域の管路において着氷が生じて、管路を閉塞させてしまうという大きな問題を有する。
 以下、上記のように構成された実施の形態1のエンジン装置であるディーゼルエンジン1を動力源とした機器が極寒地に用いられた場合について考察する。実施の形態1のディーゼルエンジン1の構成においては、例えば、-20℃の外気がエアークリーナを通して吸気管13に供給されているとき、ブローバイガス混合継手20の吸気通路20aはその外周面に設けられている加温部21により0℃以上となるように温められている。即ち、加温部21に流れているエンジン冷却水(例えば、約70℃)によりブローバイガス混合継手20の吸気通路20aとブローバイガス導入口20bとの接合部分近傍、即ち、吸気とブローバイガスとの混合領域が温められている。このため、ブローバイガス導入口20bからブローバイガスが吸気通路20aに導入されても、ブローバイガスに含まれる水分が吸気通路20aの吸気により急激に冷やされることが防止されており、ブローバイガス導入口20bの近傍の吸気通路20aにおける管壁に着氷することが防止されている。
 上記のように、実施の形態1のディーゼルエンジン1を動力源とした機器を極寒地に用いた場合においても、加温手段である加温部21がブローバイガス混合継手20の外周面に密着して、エンジン冷却水の熱をブローバイガス混合継手20に熱伝導するように設けられている。このため、ブローバイガス混合継手20のブローバイガス導入口20bの近傍、および/または吸気通路20aにおいて、ブローバイガスに含まれる水分が瞬時に凍って管壁に着氷することが防止されており、当該管路を閉塞させることがない構成となる。
 なお、実施の形態1の構成においては、エンジン冷却水が流れる配管の管路上に加温部21を用いた構成で説明したが、本開示においてはEGRクーラー用冷却水配管、またはオイルクーラー用配管を利用して加温部21に冷却水を流すように構成してもよい。さらに、エンジン装置であるディーゼルエンジン1における冷却水の取り出しとしては、冷却水ポンプの出口から導入するように構成してもよい。これらの冷却水の取り出し方法などは、以下において説明するそれぞれの実施の形態の構成においても適用できる。
 上記のように、本開示に係る実施の形態1のディーゼルエンジン1よれば、寒冷地、特に-20℃以下の極寒地の使用においても、燃焼室から漏れ出たブローバイガスによる問題を解消し、クランクケース内部の潤滑油が漏れ出ることのない、信頼性および安全性の高いエンジン装置を提供することができる。本開示に係る実施の形態1のディーゼルエンジン1によれば、寒冷地、特に外気温度が-20℃以下の極寒地においても、燃焼室から漏れ出たブローバイガスの管路、特に、吸気とブローバイガスとが合流部分が氷で塞がれることがなく、信頼性および安全性の高いエンジン装置を提供することができる。
 (実施の形態2)
 次に、本開示に係る実施の形態2のエンジン装置としてのディーゼルエンジンについて、前述の実施の形態1との相違点を中心に説明する。なお、実施の形態2のディーゼルエンジンにおいて、実施の形態1の構成と異なる点はブローバイガス混合継手に設けた加温手段である加温部の構成であり、その他の構成は、実施の形態1と同じである。従って、実施の形態2の説明においては、実施の形態1と同じ機能、構成、作用を有する要素には同じ参照符号を付し、それらの同じ参照符号を付した要素についての詳細な説明は省略する。
 図6は、本開示に係る実施の形態2のディーゼルエンジン1におけるブローバイガス混合継手20Aの吸気方向に沿って切断した断面図である。図6に示すように、実施の形態2においては、加温手段である加温部22がブローバイガス混合継手20Aのブローバイガス導入口20bより上流側の吸気通路20aの外周面に密着して、加温部22の熱を熱伝導するよう設けられている。加温部22には冷却水導入口22aおよび冷却水排水口22bが設けられており、エンジン冷却水の循環路の経路内に配設されている。
 上記のように、実施の形態2の構成においては、加温部22がブローバイガス導入口20bより上流側の吸気通路20aの外周面に設けられている。このため、例えば、極寒地(例えば、外気温度が-20℃)において、実施の形態2のエンジン装置が動力源として用いられた場合においても、ブローバイガス混合継手20Aのブローバイガス導入口20bより上流側の吸気通路20aを流れている吸気(新気)は、加温部22を流れているエンジン冷却水(例えば、約70℃)により0℃以上となるように温められる。その結果、ブローバイガス混合継手20Aのブローバイガス導入口20bから導入されたブローバイガスにおいては、水分が瞬時に凍ることが防止されている。結果として、ブローバイガス導入口20bからのブローバイガスが吸気通路20aに導入される混合領域において、ブローバイガスが流れる管路の管壁に着氷して、当該管路を閉塞させるような事故の発生を防止することができる。
 なお、上記の実施の形態2の構成においては、加温部22がブローバイガス導入口20bより上流側の吸気通路20aの外周面に設けられた例で説明したが、加温手段である加温部22をブローバイガス導入口20bに接続される還元ホース12の外周面に密着して設け、加温部22の熱を還元ホース12に熱伝導するように構成してもよい。
 上記のように、本開示に係る実施の形態2のディーゼルエンジン1によれば、寒冷地、特に外気温度が-20℃以下の極寒地においても、燃焼室から漏れ出たブローバイガスの管路、特に、吸気とブローバイガスとが合流部分が氷で塞がれることがなく、信頼性および安全性の高いエンジン装置を提供することができる。
 (実施の形態3)
 次に、本開示に係る実施の形態3のエンジン装置としてのディーゼルエンジンについて、前述の実施の形態1との相違点を中心に説明する。なお、実施の形態3のディーゼルエンジンにおいて、実施の形態1の構成と異なる点は、ヘッドカバーの上面に突設され排気口からブローバイガス混合継手のブローバイガス導入口までの管路を構成する還元ホースなどに設けた加温手段の構成である。実施の形態3のエンジン装置における、その他の構成は、実施の形態1と同じ構成である。従って、実施の形態3の説明においては、実施の形態1と同じ機能、構成、作用を有する要素には同じ参照符号を付し、それらの同じ参照符号を付した要素についての詳細な説明は省略する。
 図7は、本開示に係る実施の形態3のディーゼルエンジン1におけるヘッドカバー10の排気口11からブローバイガス混合継手20Bのブローバイガス導入口20bまでを繋ぐ還元ホース12を示す断面図である。図7に示すように、還元ホース12の内部には、冷却水管路23が配設されている。冷却水管路23は、エンジン冷却後の冷却水であるエンジン冷却水が流れる配管であり、還元ホース12の略全長に設けられている。なお、還元ホース12の内部に配設される加温手段である冷却水管路23は、少なくともブローバイガス混合継手20Bのブローバイガス導入口20bの近傍まで設けられている。
 なお、実施の形態3の構成における加温手段の冷却水管路23としては、エンジン冷却後の冷却水であるエンジン冷却水が流れる配管に接続された構成で説明するが、本開示においては他の実施の形態の構成と同様に、EGRクーラー用冷却水配管、またはオイルクーラー用配管を利用した冷却水管路23を還元ホース12の内部に設けてもよい。
 また、図7に示した冷却水管路23は還元ホース12の内部に配設した例で説明したが、冷却水管路を還元ホース12の外周面に密着して、例えば、冷却水の流れに沿った直線状、または曲がりくねった形状で構成してもよく、若しくは還元ホースの外周面を螺旋状に巻き付けて配設してもよい。
 上記のように、実施の形態3の構成においては、冷却水が通る冷却水管路23が還元ホース12に設けられている。このため、例えば、極寒地(例えば、外気温度が-20℃)において実施の形態3のエンジン装置が動力源として用いられた場合においても、ディーゼルエンジン1におけるヘッドカバー10の排気口11からブローバイガス混合継手20Bのブローバイガス導入口20bまでの細い還元ホース12の内部を流れるブローバイガスは、冷却水管路23を流れているエンジン冷却水(例えば、約70℃)により0℃以上となるように温められる。その結果、還元ホース12の内部のブローバイガスにおいては、水分が瞬時に凍ることがなく、還元ホース12、ブローバイガス導入口20b、およびブローバイガス導入口20bと吸気通路20aとの混合領域において、それぞれの管路の管壁に着氷して当該管路を閉塞させるような事故の発生が防止されている。
 なお、冷却水が流れる加温手段としての冷却水管路23は、ブローバイガス混合継手20Bにおいて、ブローバイガスが導入される領域より上流側に設けてもよい。このように構成することにより、ブローバイガスが導入される領域より上流側の吸気を温めて、ブローバイガス混合継手20Bに流れる吸気と還元ホース12から導入されるブローバイガスとの混合領域における吸気温度を上昇させることが可能となり、冷却水管路23を還元ホース12に設けた場合の前述の効果と同様の効果を奏する。
 上記のように、本開示に係る実施の形態3のディーゼルエンジン1によれば、寒冷地、特に外気温度が-20℃以下の極寒地においても、燃焼室から漏れ出たブローバイガスの管路、特に、吸気とブローバイガスとが合流部分が氷で塞がれることがなく、信頼性および安全性の高いエンジン装置を提供することができる。
 (実施の形態4)
 次に、本開示に係る実施の形態4のエンジン装置としてのディーゼルエンジンについて、前述の実施の形態1との相違点を中心に説明する。なお、実施の形態4のディーゼルエンジンにおいて、実施の形態1の構成と異なる点は、ブローバイガス混合継手の構成である。実施の形態4のエンジン装置における、その他の構成は、実施の形態1と同じ構成である。従って、実施の形態4の説明においては、実施の形態1と同じ機能、構成、作用を有する要素には同じ参照符号を付し、それらの同じ参照符号を付した要素についての詳細な説明は省略する。
 図8は、本開示に係る実施の形態4のディーゼルエンジン1におけるブローバイガス混合継手20Cを示す斜視図である。図9は、図8に示したブローバイガス混合継手20Cの吸気方向に沿って切断した断面図である。
 実施の形態4のディーゼルエンジン1におけるブローバイガス混合継手20Cは、前述の実施の形態1から実施の形態3の構成と同様に、吸気管13の管路上に設けられて、燃焼室内から漏れたヘッドカバー内のブローバイガスを吸気管13内に導入している。図8および図9に示すように、吸気管13に接続されるブローバイガス混合継手20Cには還元ホース12が接続されるブローバイガス導入パイプ24が設けられている。また、ブローバイガス混合継手20Cには、ブローバイガス導入パイプ24をブローバイガス混合継手20Cに固定するための間座25が設けられている。さらに、エンジン冷却後のエンジン冷却水が流れる冷却水パイプ26がブローバイガス導入パイプ24および間座25に対して接触して固着されている。ブローバイガス導入パイプ24と間座25と冷却水パイプ26は、熱伝導の良い金属、例えば銅、アルミ、真鍮などにより構成されており、溶接などを用いて良好の熱伝導を保持して互いに固着されている。
 実施の形態4の構成においては、ブローバイガス混合継手20Cの吸気通路20aは耐熱性を有する樹脂材で構成されているため、吸気通路20aの管壁に間座25を防液状態で密着させてボルトにより固定されている。吸気通路20aの管壁と間座25との間は熱伝導するように所定の接触面積が確保されている。
 上記のように、実施の形態4の構成においては、エンジンからの冷却水が通る冷却水パイプ26が、還元ホース12が接続されているブローバイガス導入パイプ24と、吸気通路20aの管壁と接触している間座25とに熱伝導するように設けられている。このため、例えば、極寒地(例えば、外気温度が-20℃)において実施の形態4のエンジン装置が動力源として用いられた場合、ブローバイガス混合継手20Cにおける水分を含むブローバイガスと吸気との混合領域は、冷却水パイプ26が流れているエンジン冷却水(例えば、約70℃)により0℃以上となるように温められている。このため、ブローバイガスと吸気との混合領域において、ブローバイガスに含まれる水分が瞬時に凍ることがなく、混合領域における管路の管壁に着氷して、当該管路を閉塞させるような事故の発生が防止されている。
 上記のように、本開示に係る実施の形態4のディーゼルエンジン1によれば、寒冷地、特に外気温度が-20℃以下の極寒地においても、燃焼室から漏れ出たブローバイガスの管路、特に、吸気とブローバイガスとが合流部分が氷で塞がれることがなく、信頼性および安全性の高いエンジン装置を提供することができる。
 (実施の形態5)
 次に、本開示に係る実施の形態5のエンジン装置としてのディーゼルエンジンについて、前述の実施の形態1との相違点を中心に説明する。なお、実施の形態5のディーゼルエンジンにおいて、実施の形態1の構成と異なる点は還元ホースに圧力調整手段としての圧力調整部が設けられている点である。なお、実施の形態1のディーゼルエンジンにおいては、ブローバイガス混合継手に加温手段である加温部21を設けた構成であるが、実施の形態5のディーゼルエンジンにおいては加温手段の代わりに圧力調整手段を設けた構成としてもよい。実施の形態5のディーゼルエンジンにおけるその他の構成は、実施の形態1と同じである。実施の形態5の説明においては、実施の形態1と同じ機能、構成、作用を有する要素には同じ参照符号を付し、それらの同じ参照符号を付した要素についての詳細な説明は省略する。
 本開示に係る実施の形態5のディーゼルエンジン1の全体構成は、前述の図1の斜視図に示した構成である。また、実施の形態5のディーゼルエンジン1におけるシリンダヘッドの上面部分を覆うヘッドカバーに関しては、前述の図2の斜視図で示した構成と同じであり、同じように作用し、同様の効果を奏する。実施の形態5のディーゼルエンジン1においても、前述の実施の形態と同様に連続再生式の排気ガス浄化装置2を備えている。
 図10は、実施の形態5のディーゼルエンジン1におけるヘッドカバー10を含むディーゼルエンジン1の一部を上方から見た平面図である。図10においては、ヘッドカバー10に形成されたブローバイガス膨張室6の排気口11と吸気管13との間を還元ホース12により接続されている状態が示されている。
 図10に示す吸気管13は、前述の図3に示した実施の形態1の構成と同様に、吸気(外部空気:新気)がエアークリーナ(図示なし)を介して過給器(ターボチャージャ)7の方へ流れる吸気管路であり、図10に示す吸気管13においては吸気が上から下へ流れている。吸気管13の管路上には、ヘッドカバー10内のブローバイガス膨張室6からのブローバイガスを吸気管13内に導入するためのブローバイガス混合継手20Dが設けられている。吸気管13に接続されたブローバイガス混合継手20Dとディーゼルエンジン本体の排気口11(弁腕室出口)とを後述する圧力調整部121を介して接続する還元ホース12は、耐熱性および耐寒性を有する可撓性材料、例えばゴム材で形成されている。
 図11は、エンジン本体の排気口11とブローバイガス混合継手20Dとを間を接続する還元ホース12に設けられた圧力調整部121を示す断面図であり、ブローバイガスの流れ方向に沿って切断した断面である。図12は、図11におけるXII-XII線において圧力調整部121を切断した断面図である。
 図11および図12に示すように、圧力調整部121は排気口11(弁腕室出口)から排気されたブローバイガスを還元ホース12に流すための管路であるブローバイガス通路121aを有している。即ち、圧力調整部121が構成するブローバイガス通路121aの一端が排気口11に接続され、当該ブローバイガス通路121aの他端が還元ホース12の一端に設けられた還元ホース接合部12aに接続されている。実施の形態5の構成において、圧力調整部121はエンジン本体の排気口11および還元ホース接合部12aの端部に接合手段124、例えば、バンドによる挟み付け、シール材により封止してネジ止め、接着剤による固着などにより接合されている。
 圧力調整部121のブローバイガス通路121aから還元ホース12に送り込まれたブローバイガスは、ブローバイガス混合継手20Dにおいて吸気管13からの吸気と混合される。ブローバイガス混合継手20Dは、三方継手構造を有しており、吸気管13の管路に繋がる吸気通路にブローバイガス導入口が設けられた構成である。ブローバイガス導入口には還元ホース12の他端が接続されている。ブローバイガス混合継手20Dには温度センサ14が設けられており、ブローバイガス混合継手20Dの吸気通路における吸気温度を検出している。
 上記のように、実施の形態5のディーゼルエンジン1において設けられている圧力調整部121は、エンジン本体からのブローバイガス出口である排気口11から排気されたブローバイガスを還元ホース12に流すためのブローバイガス通路121aには外部と連通可能な圧力調整孔121bが形成されている。図11においては、圧力調整孔121bがブローバイガス通路121aの上方に形成されており、ブローバイガス通路121aの上端が開口している。また、圧力調整部121には、圧力調整孔121bの上端開口を通常状態においては閉塞する圧力調整弁122が設けられている。実施の形態5のディーゼルエンジン1においては、圧力調整弁122として所定の圧力を受けたときに曲がり始める板バネを用いている。実施の形態5における所定の圧力としては、5kPa以上8kPa以下の範囲内、例えば、5kPaに設定されている。
 実施の形態5における圧力調整弁122は、ブローバイガス通路121a内が所定の圧力以下の通常状態においては、圧力調整孔121bの上端開口が板バネである圧力調整弁122により気密状態で塞がれる構成である。なお、実施の形態5においては、圧力調整弁122として板バネを用いて、固定手段123としてネジを用いて構成した例で説明するが、本開示においてはこのような構成に限定されるものではなく、ブローバイガス通路121a内が所定の圧力以上となったときに、ブローバイガス通路121aを開放する構成であればよい。
 以下、上記のように構成された実施の形態5のディーゼルエンジン1における圧力調整部121の動作について説明する。
 前述のように、実施の形態5の構成においては、吸気が流れる吸気管13に接続されたブローバイガス混合継手20Dの下流側には過給器7(図10参照)が設けられている。このため、ブローバイガス混合継手20Dに対して還元ホース12を介して接続された圧力調整部121のブローバイガス通路121aの内部は、負圧の状態である。従って、エンジン本体の排気口11から排出されたブローバイガスは、圧力調整部121のブローバイガス通路121aを通り還元ホース12を介してブローバイガス混合継手20Dに流れる構成である。
 上記のようにブローバイガスが流れる通常状態においては、エンジン本体の排気口11からのブローバイガスが、圧力調整部121および還元ホース12を通り、ブローバイガス混合継手20Dに導入されて、ブローバイガスと吸気が混合され過給器7に吸引される。このような通常状態においては、圧力調整部121においてはブローバイガス通路121aが負圧の状態であり、圧力調整弁122である板バネが動作することはない。
 例えば、極寒地(例えば、外気温度が-20℃)において、実施の形態5のディーゼルエンジン1が動力源として用いられた場合、ブローバイガス混合継手20Dにおいてブローバイガスと吸気が混合されるとき、ブローバイガスに含まれる水分が吸気(たとえば、吸気温度が-20℃)により瞬時に凍り、ブローバイガスと吸気との混合領域近傍の管壁に着氷する現象が生じる。もし、管壁に着氷した氷が管路を閉塞したとき、その閉塞位置より上流側にあるブローバイガスの管路である還元ホース12、圧力調整部121のブローバイガス通路121a、エンジン本体のクランクケース内などの内圧が上昇する。このとき、圧力調整部121のブローバイガス通路121aの内圧が所定の圧力(例えば、5kPa)に達した場合には、圧力調整弁122である板バネが曲がり始め、圧力調整孔121bの上端開口が開放される。この結果、圧力調整部121のブローバイガス通路121aのブローバイガスが外部に放出され、クランクケースの内圧は下降する。従って、クランクケース内の圧力が異常に上昇して、クランクケース内部のエンジンオイルの漏出するような不具合を確実に防止することができる。
 上記のように、例えば、ブローバイガスと吸気との混合領域近傍の管路が氷により閉塞された場合においても、圧力調整部121における圧力調整弁122である板バネが圧力調整するように機能して、閉塞した管路より上流側のブローバイガスの管路内の圧力が上昇することがなく、クランクケース内部の圧力が所定圧力以下に保持される。なお、気温の上昇や凍結部分の加温処理などにより、凍結により閉塞した管路が連通したとき、管路内は所定圧力以下となるため、圧力調整部121の圧力調整弁122である板バネは通常状態に戻り、圧力調整孔121bの上端開口が気密に閉鎖した状態に復帰する。
 実施の形態5の構成においては、圧力調整部121をエンジン本体の排気口11に直接接続するよう構成で説明し、圧力調整部121の圧力調整弁122をエンジン本体の排気口11の近傍に設けている。エンジン本体(弁腕室)からブローバイガス混合継手20Dまでブローバイガスが流れる通路において、圧力調整部121は、ブローバイガスの温度が高く、外気温度が低くてもブローバイガスにおける水分が凍ることのない位置、即ち、エンジン本体の弁腕室に可能な限り近い位置に設けることが好ましい。
 上記のように、本開示に係る実施の形態5のディーゼルエンジン1よれば、寒冷地、特に-20℃以下の極寒地の使用においても、燃焼室から漏れ出たブローバイガスによる問題を解消し、クランクケース内部の潤滑油が漏れ出ることのない、信頼性および安全性の高いエンジン装置を提供することができる。実施の形態5のエンジン装置は、寒冷地、特に-20℃以下の極寒地の使用においても、燃焼室から漏れ出たブローバイガスと吸気(外気)との混合領域の管路において着氷で塞がれたとしても、クランクケース内の圧力が所定の圧力に維持され、クランクケースの内部の潤滑油が漏出することのない、信頼性および安全性の高いエンジン装置となる。
 (実施の形態6)
 次に、本開示に係る実施の形態6のエンジン装置としてのディーゼルエンジンについて、前述の実施の形態1および実施の形態5との相違点を中心に説明する。なお、実施の形態6のディーゼルエンジンにおいて、実施の形態5の構成と異なる点は圧力調整部の構成であり、その他の構成は、実施の形態1および実施の形態5と同じである。従って、実施の形態6の説明においては、実施の形態1および実施の形態5と同じ機能、構成、作用を有する要素には同じ参照符号を付し、それらの同じ参照符号を付した要素についての詳細な説明は省略する。
 図13は、本開示に係る実施の形態6のディーゼルエンジン1における圧力調整部125を示す断面図であり、ブローバイガスの流れ方向に沿って切断した断面である。図14は、図13におけるXIV-XIV線において圧力調整部125を切断した断面図である。
 図13および図14に示すように、圧力調整部125はエンジン本体の排気口11から排気されたブローバイガスを還元ホース12に流すための管路であるブローバイガス通路125aを有している。即ち、実施の形態6における圧力調整部125が構成するブローバイガス通路125aの一端は、エンジン本体の排気口11に接続されており、当該ブローバイガス通路125aの他端は、還元ホース12の一端に設けられた還元ホース接合部12aに接続されている。実施の形態6の構成において、圧力調整部125はエンジン本体の排気口11および還元ホース接合部12aの端部に接合手段124、例えば、バンドによる挟み付け、シール材により封止してネジ止め、接着剤による固着などにより接合されている。
 圧力調整部125のブローバイガス通路125aから還元ホース12に送り込まれたブローバイガスは、ブローバイガス混合継手20D(図10参照)において吸気管13からの吸気と混合される。
 上記のように、実施の形態6のディーゼルエンジン1において設けられている圧力調整部125には、エンジン本体からのブローバイガス出口である排気口11から排気されたブローバイガスを還元ホース12に流すためのブローバイガス通路125aが設けられている。ブローバイガス通路125aの下側には空間としての貯溜部125cが形成されている。貯溜部125cの底面には、外部と連通可能な圧力調整孔125bが形成されている。即ち、圧力調整孔125bは、ブローバイガス通路125aの下方に形成されており、圧力調整孔125bの下端が開口している。また、圧力調整部125には、圧力調整孔125bの下端開口を通常状態においては閉塞する圧力調整弁126が設けられている。実施の形態6のディーゼルエンジン1においては、圧力調整弁126として所定の圧力を受けたときに曲がり始める板バネを用いている。実施の形態6における所定の圧力としては、5kPa以上8kPa以下の範囲内、例えば、5kPaに設定されている。
 実施の形態6における圧力調整弁126は、ブローバイガス通路125a内が所定の圧力以下の通常状態において、圧力調整孔125bの下端開口が板バネである圧力調整弁126により気密状態で塞がれるよう構成されている。なお、実施の形態6においては、圧力調整弁126として板バネを用いて、固定手段127としてネジを用いて固着した構成例で説明するが、本開示においてはこのような構成に限定されるものではなく、ブローバイガス通路125aの内部が所定の圧力以上となったときに、ブローバイガス通路125aを開放する構成であればよい。
 以下、上記のように構成された実施の形態6のディーゼルエンジン1における圧力調整部125の動作について説明する。
 前述の実施の形態5の構成と同様に、実施の形態6における圧力調整部125のブローバイガス通路125aの内部は、負圧の状態である。従って、エンジン本体の排気口11からのブローバイガスは、圧力調整部125のブローバイガス通路125aを通り、還元ホース12を介してブローバイガス混合継手20Dに流れる構成である。
 上記のようにブローバイガスが流れる通常状態においては、エンジン本体の排気口11から排出されたブローバイガスが、圧力調整部125および還元ホース12を通り、ブローバイガス混合継手20Dに導入されて、ブローバイガスと吸気が混合され過給器7(図10参照)に吸引される。このようにブローバイガスが流れる通常状態においては、圧力調整部125においてはブローバイガス通路125aが負圧の状態であり、圧力調整弁126である板バネが動作することはない。
 例えば、極寒地(例えば、外気温度が-20℃)において、実施の形態6のディーゼルエンジン1が動力源として用いられた場合、ブローバイガス混合継手20Dにおいてブローバイガスと吸気が混合されるとき、ブローバイガスに含まれる水分が吸気(例えば、吸気温度が-20℃)により瞬時に凍り、ブローバイガスと吸気との混合領域近傍の管壁に着氷する現象が生じる。もし、管壁に着氷した氷が管路を閉塞したとき、その閉塞位置より上流側にあるブローバイガスの管路である還元ホース12、圧力調整部125のブローバイガス通路125a、エンジン本体のクランクケース内などの内圧が上昇する。このとき、圧力調整部125のブローバイガス通路125aの内圧が所定の圧力(例えば、5kPa)に達した場合には、圧力調整弁126である板バネが曲がり始め、圧力調整孔125bの下端開口が開放される。この結果、圧力調整部125のブローバイガス通路125aのブローバイガスが外部に放出され、クランクケースの内圧は下降する。従って、実施の形態6の構成においては、クランクケース内の圧力が異常に上昇して、クランクケースの内部のエンジンオイルの漏出するような不具合を確実に防止することができる。
 さらに、実施の形態6の構成においては、圧力調整部125がブローバイガス通路125aの下側に貯溜部125cを有する構成である。エンジン本体の排気口11から排出されたブローバイガスには水分が含まれている。エンジン本体の排気口11から排出されたブローバイガスは、特に外気温度が低い場合には、圧力調整部125において急激に冷やされることになる。このため、圧力調整部125においてはブローバイガスの水分が液化して、ブローバイガス通路125aの下側にはある貯溜部125cに溜まる。
 貯溜部125cにおいては、溜まった水の自重により圧力調整弁126である板バネが曲がり、圧力調整孔125bの下端開口が開放されて、貯溜部125c内の水が放出される。このように、実施の形態6の構成においては、例えば、ブローバイガスが流れる管路を氷が閉塞したときには、その閉塞位置より上流側にあるブローバイガスの管路を開放するとともに、吸気と混合されるブローバイガスにおける水分を低減して、ブローバイガスが吸気と混合されるときに形成される氷の形成量および形成速度を低減して、ブローバイガスが吸気と混合される混合領域近傍の管路が氷により閉鎖されることを低減している。
 上記のように、例えば、ブローバイガスと吸気との混合領域近傍の管路が氷により閉塞された場合においても、圧力調整部125における圧力調整弁126である板バネが圧力調整するように機能して閉塞した管路より上流側のブローバイガスの管路内の圧力が上昇することがなく、クランクケースの内部の圧力が所定圧力以下に保持される。なお、気温の上昇や凍結部分の加温処理などにより、凍結により閉塞した管路が連通したとき、当該管路内は所定圧力以下となるため、圧力調整部125の圧力調整弁126である板バネは圧力調整孔125bの下端開口を気密に閉鎖した状態に復帰する。
 実施の形態6の構成においては、圧力調整部125をエンジン本体の排気口11に直接接続する構成で説明しており、圧力調整部125の圧力調整弁126をエンジン本体の排気口11の近傍に設けている。エンジン本体(弁腕室)からブローバイガス混合継手20Dまでブローバイガスが流れる通路において、圧力調整部125は、ブローバイガスの温度が高く、外気温度が低くてもブローバイガスにおける水分が凍ることのない位置、即ち、エンジン本体の弁腕室に可能な限り近い位置に設けることが好ましい。
 上記のように、本開示に係る実施の形態6のエンジン装置は、寒冷地、特に-20℃以下の極寒地の使用においても、燃焼室から漏れ出たブローバイガスと吸気(外気)との混合領域近傍の管路における氷により閉鎖を抑制することができると共に、もし、当該管路が着氷で塞がれたとしても、クランクケース内の圧力が所定の圧力に維持され、クランクケースの内部の潤滑油が漏出することのない、信頼性および安全性の高いエンジン装置となる。
 (実施の形態7)
 次に、本開示に係る実施の形態7のエンジン装置としてのディーゼルエンジンについて、前述の実施の形態1および実施の形態5との相違点を中心に説明する。なお、実施の形態7のディーゼルエンジンにおいて、実施の形態5の構成と異なる点はエンジン本体からブローバイガス混合継手までのブローバイガスが流れる還元ホースの構成であり、その他の構成は、実施の形態1および実施の形態5と同じである。従って、実施の形態7の説明において、実施の形態1および実施の形態5と同じ機能、構成、作用を有する要素には同じ参照符号を付し、それらの同じ参照符号を付した要素についての詳細な説明は省略する。
 図15は、本開示に係る実施の形態7のディーゼルエンジン1におけるエンジン本体の排気口からブローバイガス混合継手までのブローバイガスが流れる還元ホースの概略配置を示す図である。図16は、実施の形態7のディーゼルエンジン1における還元ホースの構成を示す図である。
 図15に示すように、実施の形態7のディーゼルエンジン1における還元ホース130は、エンジン本体の排気口11(図10参照)から下向きに流れるように下方に向かって配設された上流側還元ホース112Aと、還元ホース中間連結部129を介してブローバイガス混合継手20D(図10参照)にブローバイガスを流す下流側還元ホース112Bとを備えている。即ち、還元ホース130において、最下端位置に還元ホース中間連結部129が配置され、その還元ホース中間連結部129から上方に向かって上流側還元ホース112Aと下流側還元ホース112Bが導出するように配設されている。また、還元ホース中間連結部129からオイルパンに向かう排出パイプ132が設けられている。実施の形態7の構成においては、還元ホース中間連結部129が前述の実施の形態5,6における圧力調整部の機能を有する。
 図16に示すように、還元ホース中間連結部129には、略U字状のブローバイガス通路128が形成されており、ブローバイガス通路128のそれぞれの端部に上流側還元ホース112Aおよび下流側還元ホース112Bがそれぞれ接続されている。還元ホース中間連結部129の最下端部分には開口が形成されており、当該開口を塞ぐように圧力調整弁131、例えば、板バネが設けられている。実施の形態7における圧力調整部である圧力調整弁131は、前述の実施の形態における圧力調整部(121,125)の圧力調整弁(122,126)と同じ機能を有しており、エンジン本体からのブローバイガスが流れる還元ホース内において設定された圧力より高い圧力(例えば、5kPa以上の圧力)となったとき、還元ホースの内部空間を外部と連通させる機能を有する。
 また、還元ホース中間連結部129においては、略U字状のブローバイガス通路128にエンジン本体からブローバイガス混合継手20Dに向かうブローバイガスが流れるため、ブローバイガス通路128の下端部分にはブローバイガスに含まれていた水分が溜まるように貯溜部128aが形成されている。従って、貯溜部128aの底面に圧力調整弁131が配設されている。この圧力調整弁131である板バネは、貯溜部128aに溜まった水の自重により曲がり、還元ホース中間連結部129の最下端部分にある開口が開放される。この結果、貯溜部128aに溜まった水は、当該開口に繋がる排出パイプ132からディーゼルエンジン1の下方にあるオイルパンに排出される。
 上記のように、本開示に係る実施の形態7のエンジン装置は、寒冷地、特に-20℃以下の極寒地の使用においても、燃焼室から漏れ出たブローバイガスと吸気(外気)との混合領域近傍の管路における氷により閉鎖を抑制することができると共に、もし、当該管路が着氷で塞がれたとしても、クランクケース内の圧力が所定の圧力に維持され、クランクケースの内部の潤滑油が漏出することのない、信頼性および安全性の高いエンジン装置となる。
 上記のように、本開示のエンジン装置においては、燃焼室から漏れ出るエンジン本体内のブローバイガスを吸気系に還流させるブローバイガス還元機構が設けられており、そのブローバイガス還元機構において吸気とブローバイガスが合流する混合領域近傍の管路に冷却水の循環路を配設して加温している。このように、ブローバイガス還元機構に冷却水の循環路を設けることにより、例えば、寒冷地、又は極寒地において本開示のエンジン装置を動力源として用いた場合においても、ブローバイガス還元機構においてブローバイガスに含まれる水分が管壁に着氷することが抑制され、管路が氷により閉塞されることが予防される構成となる。
 また、本開示のエンジン装置においては、燃焼室から漏れ出るクランクケース内のブローバイガスを吸気系に還流させるブローバイガス還元機構が設けられており、そのブローバイガス還元機構において圧力調整機構を設けている。このように、ブローバイガス還元機構に圧力調整機構を設けることにより、例えば、寒冷地、又は極寒地において本開示のエンジン装置を動力源として用いた場合においてもブローバイガス混合継手においてブローバイガスに含まれる水分が凍って管路を閉塞させたとしても、エンジン本体内の圧力が所定の圧力に維持され、潤滑油が漏出することのない、信頼性および安全性の高いエンジン装置となる。
 なお、上記の実施の形態において説明した構成のうちの任意の構成を適宜組み合わせることにより、それぞれが有する優れた効果を奏することができる。
 本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本開示は、作業車両、農業機械、発電機および冷凍機などの各種動力機器における動力源として搭載されるディーゼルエンジンなどのエンジン装置に用いられ、特に、寒冷地、極寒地において用いられるエンジン装置に有用である。
   1 ディーゼルエンジン(エンジン装置)
  10 ヘッドカバー
  11 ブローバイガス膨張室の排気口
  12 還元ホース
  13 吸気管
  14 温度センサ
  20,20A,20B,20C,20D ブローバイガス混合継手
  20a 吸気通路
  20b ブローバイガス導入口
  20c センサ保持部
  21,22 加温部
  21a,22a 冷却水導入口
  21b,22b 冷却水排水口
  23 冷却水管路
  24 ブローバイガス導入パイプ
  25 間座
  26 冷却水パイプ
 121,125 圧力調整部

Claims (12)

  1.  燃焼室から漏れ出るブローバイガスを吸気が流れる吸気管に還流させるブローバイガス還元機構を有するエンジン装置において、
     前記燃焼室からの前記ブローバイガスが流れる還元ホースと、
     前記吸気管に前記還元ホースに流れる前記ブローバイガスを導入するためのブローバイガス混合継手と、
     前記ブローバイガス混合継手に流れる吸気と前記還元ホースから導入される前記ブローバイガスとの混合領域における温度を上昇させる加温部と、を備え、
     前記加温部における加熱源として当該エンジン装置における冷却水を用いて構成されたエンジン装置。
  2.  前記加温部は、前記ブローバイガス混合継手に流れる吸気と前記還元ホースから導入される前記ブローバイガスとの混合領域における前記ブローバイガス混合継手の外周面に前記冷却水が流れるように構成された請求項1に記載のエンジン装置。
  3.  前記加温部は、前記ブローバイガス混合継手において、前記還元ホースから導入される前記ブローバイガスの導入領域より上流側の外周面に前記冷却水が流れるように構成された請求項1に記載のエンジン装置。
  4.  前記加温部は、前記ブローバイガス混合継手において、前記還元ホースから導入される前記ブローバイガスの導入領域より上流側および下流側の外周面に前記冷却水が流れるように構成された請求項1に記載のエンジン装置。
  5.  前記加温部は、前記還元ホースを流れるブローバイガスを前記冷却水により温めるように配設した冷却水管路で構成された請求項1に記載のエンジン装置。
  6.  前記加温部は、前記ブローバイガス混合継手におけるブローバイガスが導入される領域より上流側に配設された冷却水管路で構成された請求項1に記載のエンジン装置。
  7.  前記加温部は、前記ブローバイガス混合継手における少なくとも一部に設けられた熱伝導性を有する部材で構成されており、
     前記加温部が、前記還元ホースが接続されるブローバイガス導入パイプと、
     前記ブローバイガス導入パイプが熱伝導するように固着され、前記ブローバイガス混合継手の外周面に熱伝導するように密着した間座と、
     前記ブローバイガス導入パイプと前記間座に熱伝導するように密着して配設され、前記冷却水が流れる冷却水パイプと、を備えた請求項1に記載のエンジン装置。
  8.  燃焼室から漏れ出るブローバイガスを吸気が流れる吸気管に還流させるブローバイガス還元機構を有するエンジン装置において、
     前記燃焼室からの前記ブローバイガスが流れるブローバイガス通路を有する圧力調整部と、
     前記ブローバイガス通路に接続された還元ホースと、
     前記吸気管に前記還元ホースに流れる前記ブローバイガスを導入するためのブローバイガス混合継手と、を備え、
     前記圧力調整部は、前記ブローバイガス通路内の圧力が所定の圧力を超えたとき、前記ブローバイガス通路を外部と連通させ圧力調整弁を有して構成されたエンジン装置。
  9.  前記圧力調整部は、前記ブローバイガス通路の下方に貯溜部を有し、前記貯溜部が前記ブローバイガス通路を通るブローバイガスに含まれる液分を溜るように構成された請求項8に記載のエンジン装置。
  10.  前記圧力調整弁は、前記貯溜部に溜まった液体の自重により前記貯溜部の底面の開口を開放するように構成された請求項9に記載のエンジン装置。
  11.  前記還元ホースは、前記ブローバイガス混合継手に対してブローバイガスを下方から導入するように接続された請求項8に記載のエンジン装置。
  12.  前記圧力調整部は、前記燃焼室から前記ブローバイガス混合継手にブローバイガスを流す経路における最下端の位置に配置されており、ブローバイガスに含まれる液分を排出するよう構成された請求項11に記載のエンジン装置。
PCT/JP2016/068414 2015-08-26 2016-06-21 エンジン装置 WO2017033548A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/755,471 US20180171946A1 (en) 2015-08-26 2016-06-21 Engine device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-167117 2015-08-26
JP2015167118A JP2017044144A (ja) 2015-08-26 2015-08-26 エンジン装置
JP2015167117A JP2017044143A (ja) 2015-08-26 2015-08-26 エンジン装置
JP2015-167118 2015-08-26

Publications (1)

Publication Number Publication Date
WO2017033548A1 true WO2017033548A1 (ja) 2017-03-02

Family

ID=58099768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068414 WO2017033548A1 (ja) 2015-08-26 2016-06-21 エンジン装置

Country Status (2)

Country Link
US (1) US20180171946A1 (ja)
WO (1) WO2017033548A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097910A (ja) * 2018-12-18 2020-06-25 株式会社クボタ ブローバイガス還流装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725553B2 (en) * 2016-04-26 2023-08-15 Yanmar Power Technology Co., Ltd. Engine device
EP3450709B1 (en) * 2016-04-26 2022-12-14 Yanmar Power Technology Co., Ltd. Engine device
JP6538006B2 (ja) * 2016-06-28 2019-07-03 株式会社クボタ ブローバイガス還流構造

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145913U (ja) * 1986-03-07 1987-09-14
JPH01113117U (ja) * 1988-01-26 1989-07-31
JPH08512115A (ja) * 1993-06-25 1996-12-17 エー.,ジュニア ウォーカー,ロバート 真空リリーフ弁
JPH11508664A (ja) * 1995-07-13 1999-07-27 フイルテルウエルク マン ウント フンメル ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 加熱装置
JP2008215191A (ja) * 2007-03-05 2008-09-18 Suzuki Motor Corp Pcv通路の凍結防止構造
JP2008215214A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp ブローバイガス還元装置及びそのブローバイガス還元装置を備えた内燃機関
JP2012002192A (ja) * 2010-06-21 2012-01-05 Daihatsu Motor Co Ltd 排気ターボ過給機付き内燃機関におけるブローバイガスの処理装置
JP2014159746A (ja) * 2013-02-19 2014-09-04 Daimler Ag ブローバイガス還元装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145913U (ja) * 1986-03-07 1987-09-14
JPH01113117U (ja) * 1988-01-26 1989-07-31
JPH08512115A (ja) * 1993-06-25 1996-12-17 エー.,ジュニア ウォーカー,ロバート 真空リリーフ弁
JPH11508664A (ja) * 1995-07-13 1999-07-27 フイルテルウエルク マン ウント フンメル ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 加熱装置
JP2008215191A (ja) * 2007-03-05 2008-09-18 Suzuki Motor Corp Pcv通路の凍結防止構造
JP2008215214A (ja) * 2007-03-05 2008-09-18 Toyota Motor Corp ブローバイガス還元装置及びそのブローバイガス還元装置を備えた内燃機関
JP2012002192A (ja) * 2010-06-21 2012-01-05 Daihatsu Motor Co Ltd 排気ターボ過給機付き内燃機関におけるブローバイガスの処理装置
JP2014159746A (ja) * 2013-02-19 2014-09-04 Daimler Ag ブローバイガス還元装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097910A (ja) * 2018-12-18 2020-06-25 株式会社クボタ ブローバイガス還流装置
JP7092652B2 (ja) 2018-12-18 2022-06-28 株式会社クボタ ブローバイガス還流装置

Also Published As

Publication number Publication date
US20180171946A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2017033548A1 (ja) エンジン装置
JP6522410B2 (ja) エンジン装置
JP4748152B2 (ja) 内燃機関の吸気管構造
CN103797239A (zh) Egr装置的冻结防止装置
BRPI0619971A2 (pt) válvula de drenagem
ES2809514T3 (es) Intercambiador de calor para vehículo automóvil
JP2017044143A (ja) エンジン装置
CN102635471A (zh) 一种进气歧管
JP6225885B2 (ja) ブローバイガス還流装置
JP3637708B2 (ja) Egrクーラー付egr装置
JP2012117451A (ja) Pcv構造
CN208885361U (zh) 曲轴箱通风结构及发动机
JP2019011686A (ja) ブローバイガス還流装置
JP2015218654A (ja) 内燃機関
JP6476907B2 (ja) ブローバイガス管の凍結防止構造、内燃機関、及び、ブローバイガス管の凍結防止方法
JP2017044144A (ja) エンジン装置
JP7103928B2 (ja) ブローバイガス還流装置
JP2012127254A (ja) ブローバイガス還流装置
KR101830475B1 (ko) 통합형 서모스탯 밸브 및 과급 공기 쿨러 덮개 조립체
KR20170072286A (ko) 히트 펌프
CN205277533U (zh) 一种汽车曲轴箱通风系统
JP2014020279A (ja) ブローバイガス還流装置
JP2016023630A (ja) エンジンのブローバイガス還流装置
CN209925050U (zh) 一种发动机曲轴箱通气管的加热结构
JP2014231778A (ja) ブローバイガス環流装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755471

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838895

Country of ref document: EP

Kind code of ref document: A1