WO2017033536A1 - ガス拡散電極 - Google Patents

ガス拡散電極 Download PDF

Info

Publication number
WO2017033536A1
WO2017033536A1 PCT/JP2016/067680 JP2016067680W WO2017033536A1 WO 2017033536 A1 WO2017033536 A1 WO 2017033536A1 JP 2016067680 W JP2016067680 W JP 2016067680W WO 2017033536 A1 WO2017033536 A1 WO 2017033536A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous layer
gas diffusion
diffusion electrode
layer
conductive
Prior art date
Application number
PCT/JP2016/067680
Other languages
English (en)
French (fr)
Inventor
橋本勝
若田部道生
谷村寧昭
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016541448A priority Critical patent/JP6834486B2/ja
Priority to EP16838883.3A priority patent/EP3343680B1/en
Priority to US15/747,284 priority patent/US20180219228A1/en
Priority to KR1020187004014A priority patent/KR102597863B1/ko
Priority to CN201680043668.1A priority patent/CN107851805A/zh
Priority to CA2988934A priority patent/CA2988934C/en
Publication of WO2017033536A1 publication Critical patent/WO2017033536A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a fuel cell is a mechanism that electrically extracts the energy generated when water is produced by reacting hydrogen and oxygen. It is highly energy efficient and has only water, so it is expected to spread as clean energy. Has been.
  • the present invention relates to a gas diffusion electrode used for a fuel cell, and more particularly to a gas diffusion electrode used for a polymer electrolyte fuel cell used as a power source for a fuel cell vehicle among fuel cells.
  • An electrode used in a polymer electrolyte fuel cell is sandwiched between two separators in a polymer electrolyte fuel cell, and is disposed between the two separators. On both surfaces of the polymer electrolyte membrane, the electrode is on the surface of the polymer electrolyte membrane. It has a structure comprising a formed catalyst layer and a gas diffusion layer formed outside the catalyst layer. A gas diffusion electrode is distributed as an individual member for forming a gas diffusion layer on the electrode.
  • the performance required for the gas diffusion electrode includes, for example, gas diffusivity, conductivity for collecting electricity generated in the catalyst layer, and drainage for efficiently removing moisture generated on the surface of the catalyst layer. can give.
  • a conductive porous substrate having gas diffusion ability and conductivity is used.
  • the conductive porous substrate carbon felt made of carbon fiber, carbon paper, carbon cloth, and the like are used, and among these, carbon paper is most preferable from the viewpoint of mechanical strength.
  • a fuel cell is a system that electrically extracts energy generated when hydrogen and oxygen react to produce water
  • the electrical load increases, that is, when the current taken out of the cell increases, a large amount of water
  • the amount of gas (oxygen or hydrogen) supplied to the catalyst layer decreases, and finally When all the pores are blocked, power generation stops (this phenomenon is called flooding).
  • the gas diffusion electrode is required to be drainable.
  • the water repellency is usually enhanced by using a gas diffusion electrode obtained by subjecting a conductive porous substrate to a water repellency treatment.
  • a layer called a microporous layer is formed by applying a coating liquid in which conductive fine particles such as carbon black are dispersed on a conductive porous substrate that has been subjected to a water repellent treatment, followed by drying and sintering. (Also referred to as a layer).
  • the role of the microporous layer is to prevent the catalyst layer from penetrating into the conductive porous substrate, reduce the contact resistance with the catalyst layer, and the roughness of the conductive porous substrate to the electrolyte membrane. There is prevention of physical damage to the electrolyte membrane due to being transferred.
  • the microporous layer is required to have a smooth surface and no cracks.
  • Patent Document 1 proposes a gas diffusion electrode in which the surface roughness of the microporous layer is reduced by using two microporous layers.
  • a microporous layer is formed by blade coating and press molding.
  • reduction of surface roughness by blade coating of only one layer is insufficient, and surface roughness is not achieved by press molding.
  • it can be reduced, voids in the microporous layer are crushed and gas diffusion performance is reduced.
  • the surface roughness can be reduced by applying two microporous layers, since the carbon powder is used to form the microporous layer, there are cracks in the microporous layer. appear.
  • the present invention employs the following means in order to solve the above problems.
  • a gas diffusion electrode having a microporous layer on at least one surface of a conductive porous substrate,
  • the microporous layer has at least a first microporous layer in contact with the conductive porous substrate, and a second microporous layer,
  • the gas diffusion electrode, wherein the second microporous layer includes a conductive material having a linear portion.
  • the gas diffusion electrode of the present invention By using the gas diffusion electrode of the present invention, it becomes a microporous layer with small surface roughness and few cracks while ensuring high gas diffusibility and high conductivity, and it is possible to achieve both performance and durability.
  • Schematic which shows the structure of the gas diffusion electrode of this invention.
  • the schematic arrangement figure showing the example of the desirable mode of the manufacture device of the gas diffusion electrode of the present invention.
  • positioning figure which shows another preferable aspect example of the manufacturing apparatus of the gas diffusion electrode of this invention.
  • the gas diffusion electrode of the present invention has a microporous layer on at least one surface of the conductive porous substrate.
  • the microporous layer has at least a first microporous layer in contact with the conductive porous substrate and a second microporous layer.
  • the conductive porous substrate will be described first.
  • the gas diffusion electrode has a high gas diffusibility for diffusing the gas supplied from the separator to the catalyst, and a high drainage for discharging water generated by the electrochemical reaction to the separator.
  • a conductive porous base material which is a base material made of a porous body having conductivity and usually having a pore diameter in a region of 10 ⁇ m to 100 ⁇ m, is used for the gas diffusion electrode.
  • the conductive porous substrate include, for example, a porous substrate containing carbon fibers such as carbon fiber woven fabric, carbon fiber papermaking body, carbon fiber nonwoven fabric, carbon felt, carbon paper, and carbon cloth, It is preferable to use a porous metal substrate such as a bonded metal, a metal mesh, or an expanded metal. Among them, it is preferable to use a conductive porous base material such as carbon felt containing carbon fiber, carbon paper, or carbon cloth because it has excellent corrosion resistance, and further absorbs dimensional changes in the thickness direction of the electrolyte membrane. From the viewpoint of excellent properties, that is, “spring property”, it is preferable to use a base material obtained by binding a carbon fiber papermaking body with a carbide, that is, carbon paper.
  • the conductive porous base material is unwound in a long state and wound up. It is preferable to form a microporous layer continuously between the two.
  • a conductive porous substrate that has been subjected to a water repellent treatment by applying a fluororesin is preferably used. Since the fluororesin acts as a water repellent resin, the conductive porous substrate used in the present invention preferably contains a water repellent resin such as a fluororesin.
  • the water-repellent resin contained in the conductive porous substrate that is, the fluororesin contained in the conductive porous substrate
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene
  • PFA perfluoroalkoxy fluoride resin
  • ETFA ethylene tetrafluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • the amount of the water-repellent resin is not particularly limited, but is preferably about 0.1% by mass or more and 20% by mass or less based on 100% by mass of the entire conductive porous substrate. If the amount is less than 0.1% by mass, the water repellency may not be sufficiently exhibited. If the amount exceeds 20% by mass, pores serving as gas diffusion paths or drainage paths may be blocked, or the electrical resistance may increase. .
  • the method of water-repellent treatment of the conductive porous base material is conducted by die coating, spray coating, etc. in addition to the treatment technique of immersing the conductive porous base material in a dispersion containing a generally known water-repellent resin.
  • An application technique for applying a water-repellent resin to a porous porous substrate is also applicable.
  • processing by a dry process such as sputtering of a fluororesin can also be applied.
  • the conductive porous substrate has a microporous layer on at least one side.
  • the microporous layer includes at least the first microporous layer and the second microporous layer in contact with the conductive porous substrate.
  • the microporous layer is not particularly limited as long as it is at least two layers, but more preferably, the second microporous layer is an outermost layer of the microporous layer, and particularly preferably a conductive porous substrate.
  • the first microporous layer is a layer in contact with the conductive porous substrate and is a layer having a plurality of pores.
  • the first microporous layer preferably contains conductive fine particles.
  • the particle diameter is not particularly limited as long as it contains conductive fine particles, but the conductive fine particles in the first microporous layer preferably have a particle diameter of 3 nm or more and 500 nm or less. When the particle diameter is less than 3 nm, the porosity of the first microporous layer is lowered, and the gas diffusibility may be lowered. On the other hand, when the particle diameter is larger than 500 nm, the conductive path in the first microporous layer is decreased, and the electrical resistance may be increased.
  • the conductive fine particles in the first microporous layer preferably have a particle size of 20 nm or more and 200 nm or less.
  • the particle diameter of the conductive fine particles refers to the particle diameter determined by a transmission electron microscope. Observation is performed with a transmission electron microscope at a magnification of 500,000, the outer diameter of 100 particle diameters present on the screen is measured, and the average value is taken as the particle diameter of the conductive fine particles.
  • the outer diameter refers to the maximum diameter of the particles (that is, the long diameter of the particles, indicating the longest diameter in the particles).
  • JEM-4000EX manufactured by JEOL Ltd. or an equivalent thereof can be used as the transmission electron microscope.
  • the conductive fine particles include carbon black which is “granular conductive material”, carbon nanotube which is “conductive material having a linear portion”, carbon nanofiber, chopped fiber of carbon fiber, “scale-like shape” Graphene, graphite, etc., which are “conductive materials”.
  • the conductive fine particles contained in the first microporous layer “granular conductive material” is preferable, and carbon black is particularly preferable from the viewpoint of low cost and safety and stability of product quality.
  • the first microporous layer preferably contains carbon black.
  • the carbon black acetylene black is preferably used because it has few impurities and hardly reduces the activity of the catalyst.
  • ash is mentioned as a standard of the impurity content of carbon black, but it is preferable to use carbon black having an ash content of 0.1% by mass or less.
  • the ash content in the carbon black is preferably as small as possible, and carbon black having an ash content of 0% by mass, that is, carbon black containing no ash is particularly preferable.
  • the second microporous layer is a layer that includes a conductive material having a linear portion and has a plurality of pores.
  • the second microporous layer is present outside the first microporous layer when viewed from the conductive porous substrate side in the gas diffusion electrode.
  • the second microporous layer is particularly preferably the outermost layer of the microporous layer.
  • linear refers to an elongated shape like a line, specifically a shape having an aspect ratio of 10 or more. Therefore, having a linear portion means having a portion having an aspect ratio of 10 or more.
  • the conductive material having a linear portion in the second microporous layer it is desirable to use a conductive material having a linear portion having an aspect ratio of 30 to 5000.
  • the aspect ratio of the linear portion is less than 30, the entanglement of the conductive material in the second microporous layer is reduced, and cracks may be formed in the second microporous layer.
  • the aspect ratio of the linear portion is larger than 5000, the entanglement of the conductive material in the second microporous layer becomes excessive, and the solid content is aggregated in the second microporous layer, and the second microporous layer is aggregated. There may be a problem that the surface of the porous layer becomes rough.
  • the conductive material having a linear portion in the second microporous layer preferably has an aspect ratio of the linear portion of 35 or more and 3000 or less, and more preferably 40 or more and 1000 or less. preferable.
  • the aspect ratio of the linear portion of the conductive material is obtained as follows.
  • the aspect ratio means average length ( ⁇ m) / average diameter ( ⁇ m).
  • the average length is taken with a microscope such as a scanning electron microscope or a transmission electron microscope.
  • the photograph is taken at a magnification of 1000 times or more, 10 different linear parts are selected at random, and the length is measured.
  • the average diameter was obtained by using a scanning electron microscope, a transmission electron microscope, and other microscopes, and 10 linear portions randomly selected to obtain the average length were respectively obtained.
  • the photograph was taken at a magnification of 10,000 times or more, the diameters of the ten linear portions were measured, and the average value was obtained.
  • As the scanning electron microscope SU8010 manufactured by Hitachi, Ltd. or an equivalent thereof can be used.
  • examples of the conductive material having a linear portion include linear carbon, titanium oxide, and zinc oxide.
  • linear carbon is preferable.
  • linear carbon vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanohorn, carbon nanocoil, cup-stacked carbon nanotube, bamboo shape Examples thereof include carbon nanotubes, graphite nanofibers, and chopped fibers of carbon fibers.
  • VGCF is preferably used as the conductive material having a linear portion because the aspect ratio of the linear portion can be increased and the conductivity and mechanical properties are excellent. That is, in the present invention, the second microporous layer preferably contains VGCF.
  • the first microporous layer and the second microporous layer have characteristics such as conductivity, gas diffusibility, water drainage, moisture retention, and thermal conductivity, and further on the anode side inside the fuel cell. Since strong acid resistance and oxidation resistance on the cathode side are required, the first microporous layer and the second microporous layer are made of a fluororesin in addition to a conductive material having conductive fine particles and linear portions. It is preferable that the water-repellent resin is included.
  • PTFE, FEP, PFA, ETFA, and the like are used similarly to the fluororesin suitably used for water repelling the conductive porous substrate. Raised. PTFE or FEP is preferred because of its particularly high water repellency.
  • a coating liquid for forming the microporous layer on the conductive porous substrate that is, a coating liquid for forming a microporous layer (hereinafter referred to as a microporous layer coating liquid).
  • the microporous layer coating liquid usually contains the above-described conductive material having conductive fine particles and linear portions and a dispersion medium such as water and alcohol, and disperses the conductive material having conductive fine particles and linear portions.
  • a dispersing agent a surfactant or the like is often blended.
  • the water repellent resin is included in the microporous layer, it is preferable that the water repellent resin is included in advance in the microporous layer coating liquid.
  • the concentration of the conductive fine particles and the conductive material having linear portions in the microporous layer coating solution is preferably 5% by mass or more, more preferably 10% by mass or more from the viewpoint of productivity.
  • concentration if the viscosity, the dispersion stability of the conductive material having conductive particles and linear portions, the coating property of the coating solution, etc. are suitable. The suitability of may be impaired.
  • the upper limit is about 25% by mass in the case of an aqueous coating liquid in the study by the present inventors.
  • the concentration exceeds this, the acetylene blacks reaggregate. In other words, so-called percolation occurs, and the applicability of the coating liquid is impaired due to a sudden increase in viscosity.
  • the role of the microporous layer is as follows: (1) effect of preventing condensation of water vapor generated at the cathode, (2) prevention of penetration of the catalyst layer into the coarse conductive porous substrate, and (3) contact with the catalyst layer. For example, resistance reduction, and (4) the effect of preventing physical damage to the electrolyte membrane due to the roughness of the conductive porous substrate being transferred to the electrolyte membrane. Further, even if the roughness of the conductive porous substrate is relaxed by the microporous layer, physical damage to the electrolyte membrane is inevitable if the surface of the microporous layer is rough or cracks are present on the surface. Therefore, the microporous layer is required to have a smooth surface and no cracks.
  • the microporous layer coating liquid is prepared by dispersing the conductive material having conductive fine particles or linear portions using a dispersant.
  • the dispersant is 0 with respect to 100% by mass of the total content of the conductive material having conductive fine particles or linear portions and the dispersant. It is preferable to disperse using 1 to 5% by mass.
  • it is effective to increase the amount of the dispersant added.
  • the viscosity of the microporous layer coating liquid should be kept at least 1000 mPa ⁇ s or more. preferable. On the contrary, if the viscosity is too high, the applicability deteriorates, so the upper limit is about 25 Pa ⁇ s.
  • a preferable viscosity range is 3000 mPa ⁇ s or more and 20 Pa ⁇ s or less, and more preferably 5000 mPa ⁇ s or more and 15 Pa ⁇ s or less.
  • the second microporous layer is then applied to form the second microporous layer.
  • the second microporous layer is applied.
  • the viscosity of the liquid is even lower and is desirably 10 Pa ⁇ s or less.
  • the thickener used here may be a generally well-known one.
  • methyl cellulose, polyethylene glycol, polyvinyl alcohol and the like are preferably used.
  • dispersants and thickeners may have two functions for the same substance, and materials suitable for each function may be selected. However, when the thickener and the dispersant are selected separately, it is preferable to select one that does not break the dispersion of conductive fine particles and the dispersion of a fluororesin that is a water-repellent resin.
  • the dispersant and the thickener are collectively referred to as a surfactant.
  • the total amount of the surfactant is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, further preferably 200 parts by mass or more of the addition mass of the conductive material having conductive fine particles or linear portions. is there.
  • the upper limit of the addition amount of the surfactant is usually 500 parts by mass or less of the addition mass of the conductive material having conductive fine particles or linear portions, and if it exceeds this, a large amount of vapor is added in the subsequent sintering step. And decomposition gas may be generated, which may reduce safety and productivity.
  • microporous layer coating liquid to the conductive porous substrate can be performed using various commercially available coating apparatuses.
  • the coating method screen printing, rotary screen printing, spray spraying, intaglio printing, gravure printing, die coater coating, bar coating, blade coating, comma coater coating, etc. can be used, but the surface roughness of the conductive porous substrate Regardless of this, since the amount of coating can be quantified, die coating is preferred.
  • a blade coater or a comma coater is preferably used in order to obtain smoothness of the coated surface in order to improve adhesion with the catalyst layer.
  • the coating methods exemplified above are only for illustrative purposes and are not necessarily limited to these.
  • the dispersion medium of the microporous layer coating liquid (water in the case of an aqueous system) is removed by drying.
  • the drying temperature after coating is preferably from room temperature (around 20 ° C.) to 150 ° C. or less, more preferably from 60 ° C. to 120 ° C.
  • the dispersion medium (for example, water) may be dried all at once in the subsequent sintering step.
  • the purpose is to remove the surfactant used in the microporous layer coating solution, and once the water-repellent resin is dissolved, the conductive material having conductive fine particles and linear portions is bound. For the purpose, sintering is generally performed.
  • the sintering temperature depends on the boiling point or decomposition temperature of the added surfactant, but is preferably 250 ° C or higher and 400 ° C or lower. If the sintering temperature is less than 250 ° C., the removal of the surfactant cannot be sufficiently achieved, or it takes an enormous time to completely remove the surfactant, and if it exceeds 400 ° C., the water-repellent resin may be decomposed. is there.
  • the sintering time is as short as possible from the viewpoint of productivity, preferably within 20 minutes, more preferably within 10 minutes, and even more preferably within 5 minutes. Steam and degradable organisms are generated abruptly, and there is a danger of ignition if performed in the atmosphere.
  • the optimum temperature and time are selected in view of the melting point or decomposition temperature of the water-repellent resin and the decomposition temperature of the surfactant.
  • the drying and sintering may be performed after the application of the first microporous layer coating liquid or after the application of the second microporous layer coating liquid, but as described later, the first microporous layer coating liquid is used. It is preferable to carry out all at once after the application of the layer coating solution and the application of the second microporous layer coating solution.
  • At least two layers of the microporous layer provided on the conductive porous substrate are laminated on at least one surface of the conductive porous substrate.
  • the microporous layer in contact with the conductive porous substrate is the first microporous layer, and the microporous layer laminated outside the first microporous layer when viewed from the conductive porous substrate side is the second microporous layer. This is called a layer.
  • microporous layer will be described in more detail with reference to FIG.
  • the first microporous layer 101 of the present invention is obtained by directly applying a coating liquid for forming the first microporous layer (hereinafter referred to as the first microporous layer coating liquid) to the conductive porous substrate. Provided. *
  • the thickness 103 of the first microporous layer of the present invention in order to express the effect of preventing physical damage to the electrolyte membrane due to the roughness of the conductive porous substrate being transferred to the electrolyte membrane,
  • the total thickness of the layers is preferably 10 ⁇ m or more, but more preferably, the thickness of the first microporous layer alone is 9.9 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the thickness of the first microporous layer is preferably less than 50 ⁇ m because of the need to ensure gas diffusibility.
  • the second microporous layer 100 of the present invention is a coating liquid for forming a second microporous layer (hereinafter referred to as a second microporous layer) on the outside of the first microporous layer as viewed from the conductive porous substrate side.
  • a second microporous layer a coating liquid for forming a second microporous layer (hereinafter referred to as a second microporous layer) on the outside of the first microporous layer as viewed from the conductive porous substrate side.
  • a microporous layer coating solution is applied to the surface of the first microporous layer.
  • the role of the second microporous layer is to prevent the catalyst layer from penetrating into the coarse conductive porous substrate and to reduce the contact resistance with the catalyst layer.
  • the second microporous layer of the present invention has a length of 100 ⁇ m or more and a width of 10 ⁇ m or more.
  • the number of cracks is preferably 10 or less per 1 cm 2 of the surface of the second microporous layer. Particularly preferred is zero embodiment without such cracks.
  • the surface roughness of the microporous layer be 0.1 ⁇ m or more and 4 ⁇ m or less.
  • the surface roughness of the microporous layer means the surface roughness of the outermost layer of the microporous layer.
  • non-contact type measuring instrument Although various surface roughness meters can be used for measuring the surface roughness, it is preferable to use a non-contact type measuring instrument because the microporous layer is relatively fragile.
  • An example of a non-contact type measuring instrument is a laser microscope VX-100 manufactured by Keyence Corporation.
  • the thickness 102 of the second microporous layer is 0.1 ⁇ m or more and less than 10 ⁇ m. Is preferred. If the thickness of the second microporous layer is less than 0.1 ⁇ m, the surface of the first microporous layer cannot be completely covered with the second microporous layer. In some cases, it cannot be hidden and the surface of the second microporous layer cannot be smoothed. Moreover, when this is 10 micrometers or more, gas diffusibility may fall.
  • the thickness of the second microporous layer is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the thickness of the gas diffusion electrode or the conductive porous substrate can be measured using a micrometer or the like while applying a load of 0.15 MPa to the substrate.
  • the thickness of the microporous layer can be determined by subtracting the thickness of the conductive porous substrate from the thickness of the gas diffusion electrode.
  • the second microporous layer is formed on the conductive porous substrate coated with the first microporous layer as shown in FIG.
  • the difference between the portion where the second microporous layer is applied and the portion where the second microporous layer is not applied is taken as the thickness of the second microporous layer. Can do.
  • the thickness of each layer is adjusted when the first microporous layer and the second microporous layer are formed on the substrate by coating, the measurement method using the micrometer is used.
  • the gas diffusion electrode is cut in the thickness direction, and a method of calculating the surface straight section (cross section in the thickness direction) from an SEM image observed with a scanning electron microscope (SEM) can be employed.
  • the gas diffusion electrode of the present invention preferably has a gas diffusibility in the thickness direction of 30% or more, and more preferably 32% or more, in order to ensure power generation performance.
  • the upper limit is 40% on the premise that the structure can be maintained when the pressure is applied to the inside of the cell because the pore volume is too large when incorporated in the fuel cell. It is thought to be about.
  • the gas diffusion electrode of the present invention preferably has an electric resistance in the thickness direction of 4.0 m ⁇ cm 2 or less when pressurized to 2.4 MPa in order to ensure power generation performance.
  • the lower limit is about 0.5 m ⁇ cm 2 when 2.4 MPa is pressed.
  • the first microporous layer coating liquid is applied to the surface of the conductive porous substrate, and the second microporous layer coating liquid is applied thereon, and the thickness of the second microporous layer is less than 10 ⁇ m. It is preferable to apply so that it becomes. In order to apply such a thin film uniformly, after the first microporous layer coating solution is applied on the conductive porous substrate, the second microporous layer coating solution is continuously applied without drying. It is also effective to apply Wet on Wet layering technology.
  • the surface of the conductive porous substrate is generally rough, and the unevenness may be as close as 10 ⁇ m.
  • the second microporous layer is preferably a thin film having a thickness of less than 10 ⁇ m, it is preferable that the viscosity of the second microporous layer coating solution is lowered to some extent.
  • the liquid tends to accumulate in the concave and convex portions (that is, thick), and the liquid is deposited on the convex portions. In the extreme case, the thin film of the second microporous layer cannot be formed without riding.
  • the surface of the first microporous layer is obtained by stacking the first microporous layer coating liquid and the second microporous layer coating liquid before drying, and then drying them together at a later time.
  • a thin film of the second microporous layer can be formed uniformly.
  • the first microporous layer coating solution is applied by a die coater
  • the second microporous layer coating solution is also applied by a die coater.
  • a method of performing coating with various roll coaters and a second microporous layer coating solution with a die coater, a first microporous layer coating solution with a comma coater, and a second microporous layer coating solution Using a die coater, applying a first microporous layer coating solution with a lip coater, applying a second microporous layer coating solution with a die coater, and using a slide die coater, A method of stacking the first microporous layer coating liquid and the second microporous layer coating liquid before applying to the material can be applied.
  • the application method of the above-mentioned die coater and comma coater is described in many existing documents such as “All about Converting” (edited by Processing Technology Research Group).
  • the die coater is a type in which a pre-weighed coating liquid is applied onto a substrate via a die for uniformly distributing in the width direction.
  • the comma coater is a coating method that smoothens the coating surface regardless of the unevenness of the substrate by scraping off the thick coating liquid with a roll knife set at a certain height in the same way as the knife coater It is.
  • a surface layer such as the second microporous layer is formed as uniformly as possible on a thin film of 0.1 ⁇ m or more and less than 10 ⁇ m. It is desirable to increase the adhesion between the applied electrolyte membrane and the gas diffusion electrode (the contact area between the catalyst layer surface and the microporous layer surface of the gas diffusion electrode) as much as possible. For this purpose, it is desirable to make the surface of the microporous layer of the gas diffusion electrode as smooth as possible.
  • GDE method a method of applying the catalyst ink to the gas diffusion electrode side is also generally known (GDE method). In this case, too, in order to apply the catalyst ink uniformly, the microporous layer of the gas diffusion electrode is formed.
  • the first microporous layer coating solution is applied with a comma coater or the like, and after the surface of the substrate is once roughened, the second microporous layer is used with a die coater.
  • a layer coating solution is applied, higher smoothness is obtained.
  • the surface roughness Ra is used.
  • the second microporous layer is the outermost layer of the microporous layer, and the surface roughness Ra of the second microporous layer. Is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less. If Ra is larger than 4 ⁇ m, the adhesion to the catalyst layer is poor, and considering the case where the catalyst ink is applied to the surface of the microporous layer, the lower limit of the surface roughness Ra is considered to be about 0.1 ⁇ m. It is done.
  • the substrate roughness is generally as large as 10 ⁇ m or more, so even if the first and second microporous layers are provided thereon, the outermost layer The value of the surface roughness Ra of the second microporous layer is difficult to be less than 2 ⁇ m.
  • the production apparatus suitable for producing the gas diffusion electrode of the present invention includes an unwinding machine for unwinding a long conductive porous substrate wound in a roll shape, and an electrically conductive porous material unwound by an unwinding machine.
  • the long conductive porous substrate 1 is unwound from the unwinder 2 and conveyed while being appropriately supported by the guide roll 3, and is the first coating machine.
  • the die coater 4 applies the first microporous layer coating solution to one side of the conductive porous substrate.
  • the first microporous layer coating liquid is usually supplied from the coating liquid tank 12 to the die coater by the liquid feeding pump 13.
  • the filter 14 is used for filtration.
  • the second die coater 5 which is a second coating machine installed on the same substrate surface side as the first die coater 4, the second microporous layer coating liquid is changed to the first microporous layer coating liquid.
  • the second microporous layer coating liquid is also usually supplied from the coating liquid tank 12 to the die coater by the liquid feed pump 13.
  • the filter 14 is used for filtration.
  • the back roll 6 may be used when the microporous layer coating liquid is applied by the die coater, and the interleaf paper 10 unwound from the interleaf unwinding machine 11 is used for protecting the coated surface during winding. May be wound together with the product.
  • a comma coater 40 is installed instead of the first die coater 4 in FIG.
  • the substrate is transported while supplying the coating material to the liquid dam 42, and the coating material is scraped off with the knife roll 41 so that a desired coating amount is obtained.
  • the drying of the plurality of layers can be simplified, and the dryer can be simplified. Since the process up to the removal can be shortened, the productivity is high and the loss can be reduced even when the substrate is broken.
  • the gas diffusion electrode of the present invention is a fuel cell in which a single cell is assembled by assembling a member such as a separator by pressure bonding so that the catalyst layer and the gas diffusion electrode are in contact with both sides of an electrolyte membrane provided with catalyst layers on both sides.
  • the fuel cell of the present invention includes the above-described gas diffusion electrode of the present invention.
  • the second microporous layer may be assembled so as to be in contact with the catalyst layer.
  • polyacrylonitrile carbon fiber “Torayca” (registered trademark) T300-6K (average single fiber diameter: 7 ⁇ m, number of single fibers: 6,000 fibers) was cut into a length of 6 mm and hardwood made by Arabara River Along with bleached kraft pulp (LBKP) kraft market pulp (hardwood), water is continuously made as a paper making medium, and further immersed in a 10% by weight aqueous solution of polyvinyl alcohol and dried, and then wound into a roll. Thus, a long carbon fiber paper having a basis weight of carbon short fibers of 15 g / m 2 was obtained.
  • the amount of added pulp corresponds to 40 parts by mass
  • the amount of polyvinyl alcohol attached corresponds to 20 parts by mass with respect to 100 parts by mass of carbon fiber paper.
  • Scaled graphite BF-5A (average particle size: 5 ⁇ m, aspect ratio: 15), phenol resin and methanol (manufactured by Nacalai Tesque), mixed at a mass ratio of 2: 3: 25, manufactured by Chuetsu Graphite Industries Co., Ltd.
  • a prepared dispersion was prepared.
  • the carbon fiber paper is continuously impregnated with the dispersion so that the resin impregnation amount is 78 parts by mass of phenol resin with respect to 100 parts by mass of carbon short fibers, and dried at a temperature of 90 ° C. for 3 minutes. After passing through the resin impregnation step, it was wound into a roll to obtain a resin-impregnated carbon fiber paper.
  • the compressed carbon fiber paper is used as a precursor fiber sheet, introduced into a heating furnace having a maximum temperature of 2400 ° C. maintained in a nitrogen gas atmosphere, and continuously running in the heating furnace at about 500 ° C./min. After passing through a carbonization step of firing at a heating rate of 400 ° C./min up to 650 ° C. and 550 ° C./min at a temperature exceeding 650 ° C., a carbon paper was obtained by winding in a roll. The obtained carbon paper had a density of 0.25 g / cm 3 and a porosity of 85%.
  • the thickness is 180 ⁇ m and the porosity is the same as the carbon paper having a thickness of 150 ⁇ m and a porosity of 85%, except that the weight of the carbon fiber and the thickness of the spacer during the compression treatment are adjusted so that the thickness after carbonization is 180 ⁇ m. 85% carbon paper was obtained.
  • ⁇ Measurement of the number of cracks in the second microporous layer The surface of the second microporous layer of the gas diffusion electrode to be measured is observed 20 times magnified with a SU8010 scanning electron microscope (SEM) manufactured by Hitachi, Ltd., and the length is 100 ⁇ m or more and the width is 10 ⁇ m or more. The number of cracks was visually counted, and the number per 10 cm 2 was defined as the number of cracks in the second microporous layer.
  • SEM scanning electron microscope
  • MVDP-200C water vapor permeation evaluation apparatus manufactured by Seika Sangyo Co., Ltd.
  • the differential pressure between the primary side and the secondary side is controlled in the vicinity of 0 Pa (0 ⁇ 3 Pa) (that is, there is almost no gas flow due to the pressure difference, and the gas movement phenomenon occurs only by molecular diffusion).
  • the gas concentration when the equilibrium was reached was measured with this gas concentration meter, and this value (%) was used as an index of gas diffusivity in the thickness direction.
  • a gas diffusion electrode is cut to a size of 40 mm ⁇ 40 mm, and sandwiched between gold-plated smooth metal rigid electrodes on top and bottom, and an average pressure of 2.4 MPa is applied.
  • the electrical resistance per unit area was calculated by measuring the voltage of the upper and lower electrodes when a current of 1 A was passed through the upper and lower electrodes, and this value was used as an index of electrical resistance.
  • Example 1 A water repellent resin dispersed in water so that the concentration of fluororesin is 2% by mass while transporting carbon paper having a thickness of 150 ⁇ m and a porosity of 85%, which is wound in a roll shape, using a wind-up type transport device.
  • a water-repellent treatment was performed by dipping in a dipping tank filled with the dispersion, drying with a dryer 7 set at 100 ° C. and winding with a winder to obtain a water-repellent conductive porous substrate. .
  • As the water-repellent resin dispersion PTFE dispersion D-210C diluted with water to a PTFE concentration of 2 mass% was used.
  • two die coaters (4, 5) are provided in a conveying device including an unwinding machine 2, a guide roll 3, a back roll 6, an interleaf unwinding machine 11, and a winding machine 9. ), And a winding type continuous coater equipped with a dryer 7 and a sintering machine 8 was prepared.
  • a raw material obtained by winding carbon paper having a thickness of 150 ⁇ m, a porosity of 85%, and a width of about 400 mm into a 400 m roll was set in the unwinding machine 2.
  • the raw material was conveyed by driving rolls installed in the unwinding unit, the winding unit, and the coater unit.
  • Moisture was dried with hot air at 100 ° C., and further sintered in a sintering machine 8 set at 350 ° C., and then wound up with a winder 9.
  • the microporous layer coating solution was prepared as follows.
  • First microporous layer coating solution A planetary mixer containing 7.1 parts by mass of acetylene black (referred to as AB in the table) (particle size 35 nm), 2.4 parts by mass of PTFE dispersion, 14.2 parts by mass of surfactant, and 76.3 parts by mass of purified water. Were kneaded to prepare a coating solution. The coating liquid viscosity at this time was 7.5 Pa ⁇ s.
  • Second microporous layer coating solution Vapor growth carbon fiber “VGCF” (aspect ratio 50) 5.0 parts by mass, PTFE dispersion 0.6 parts by mass, surfactant 10.0 parts by mass, purified water 84.4 parts by kneading with a planetary mixer Then, a coating solution was prepared. The kneading time in the planetary mixer was twice as long as that of the first microporous layer coating liquid, and the degree of dispersion of the coating liquid was increased. The coating liquid viscosity at this time was 1.1 Pa ⁇ s.
  • the basis weight of the microporous layer after sintering was adjusted to 16 g / m 2 .
  • the thickness of the first microporous layer was 25 ⁇ m.
  • the thickness of the second microporous layer was adjusted to 3 ⁇ m.
  • Example 2 A gas diffusion electrode was obtained in the same manner as in Example 1 except that the conductive fine particles used in the first microporous layer in Example 1 were changed to thermal black (referred to as SB in the table) (particle diameter 85 nm). Got.
  • Example 3 In Example 1, a gas diffusion electrode was obtained in the same manner as in Example 1 except that the conductive fine particles used in the first microporous layer were changed to vapor grown carbon fiber “VGCF” (particle diameter 150 nm). It was.
  • VGCF vapor grown carbon fiber
  • Example 4 In Example 1, a gas diffusion electrode was obtained in the same manner as in Example 1 except that the conductive fine particles used in the first microporous layer were changed to carbon nanotubes (particle diameter: 2 nm).
  • Example 5 a gas diffusion electrode was obtained in the same manner as Example 1 except that the conductive fine particles used in the first microporous layer were changed to graphite (particle diameter 8000 nm).
  • Example 6 In Example 1, a gas diffusion electrode was obtained in the same manner as in Example 1 except that the conductive material used for the second microporous layer was changed to carbon nanotubes (aspect ratio 6000).
  • Example 1 A gas diffusion electrode was obtained in the same manner as in Example 1 except that the microporous layer was changed to only the first microporous layer in Example 1. In this example, the surface roughness of the microporous layer was high, and the number of cracks in the microporous layer was large.
  • Example 2 In Example 1, the microporous layer was changed to only the first microporous layer, and the conductive fine particles used for the first microporous layer were changed to vapor grown carbon fiber “VGCF” (particle diameter 150 nm). All obtained gas diffusion electrodes in the same manner as in Example 1. In this example, the surface roughness of the microporous layer was high.
  • VGCF vapor grown carbon fiber
  • Example 3 a gas diffusion electrode was obtained in the same manner as Example 1 except that the conductive material used for the second microporous layer was changed to acetylene black (aspect ratio 1). In this example, the number of cracks in the microporous layer was large.
  • Example 4 In Example 1, the conductive fine particles used in the first microporous layer were changed to vapor grown carbon fiber “VGCF” (particle diameter 150 nm), and the conductive material used in the second microporous layer was acetylene black. A gas diffusion electrode was obtained in the same manner as in Example 1 except that the aspect ratio was changed to 1. In this example, the number of cracks in the microporous layer was large.
  • VGCF vapor grown carbon fiber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本発明は、性能と耐久性を両立させた燃料電池ガス拡散層を提供する。本発明は、導電性多孔質基材の少なくとも片面に、微多孔層を有する、ガス拡散電極であって、前記微多孔層は、導電性多孔質基材に接する第1の微多孔層、及び第2の微多孔層を少なくとも有し、前記第2の微多孔層は、微多孔層の最表層にあり、前記第2の微多孔層が、線状部分を有する導電性材料を含むことを特徴とする、ガス拡散電極である。

Description

ガス拡散電極
 燃料電池は、水素と酸素を反応させて水が生成する際に生起するエネルギーを電気的に取り出す機構であり、エネルギー効率が高く、排出物が水しかないことから、クリーンエネルギーとしてその普及が期待されている。本発明は、燃料電池に用いられるガス拡散電極に関し、特に、燃料電池の中でも燃料電池車などの電源として使用される高分子電解質型燃料電池に用いるガス拡散電極に関する。
 高分子電解質型燃料電池に使用される電極は、高分子電解質型燃料電池において2つのセパレータで挟まれてその間に配置されるもので、高分子電解質膜の両面において、高分子電解質膜の表面に形成される触媒層と、この触媒層の外側に形成されるガス拡散層とからなる構造を有する。電極でのガス拡散層を形成するための個別の部材として、ガス拡散電極が流通している。そして、このガス拡散電極に求められる性能としては、例えばガス拡散性、触媒層で発生した電気を集電するための導電性、および触媒層表面に発生した水分を効率よく除去する排水性などがあげられる。このようなガス拡散電極を得るため、一般的に、ガス拡散能および導電性を兼ね備えた導電性多孔質基材が用いられる。
 導電性多孔質基材としては、具体的には、炭素繊維からなるカーボンフェルト、カーボンペーパーおよびカーボンクロスなどが用いられ、中でも機械的強度などの点からカーボンペーパーが最も好ましいとされる。
 また、燃料電池は水素と酸素が反応し水が生成する際に生じるエネルギーを電気的に取り出すシステムであるため、電気的な負荷が大きくなると、即ち電池外部へ取り出す電流を大きくすると多量の水(水蒸気)が発生し、この水蒸気が低温では凝縮して水滴になり、ガス拡散電極の細孔を塞いでしまうと、ガス(酸素あるいは水素)の触媒層への供給量が低下し、最終的に全ての細孔が塞がれてしまうと、発電が停止することになる(この現象をフラッディングという)。
 このフラッディングを可能な限り発生させないように、ガス拡散電極には排水性が求められる。この排水性を高める手段として、通常、導電性多孔質基材に撥水処理を施したガス拡散電極を用いて撥水性を高めている。
 また、上記のような撥水処理された導電性多孔質基材をそのままガス拡散電極として用いると、その繊維の目が粗いため、水蒸気が凝縮すると大きな水滴が発生し、フラッディングを起こしやすい。このため、撥水処理を施した導電性多孔質基材の上に、カーボンブラックなどの導電性微粒子を分散した塗液を塗布し乾燥焼結することにより、微多孔層と呼ばれる層(マイクロポーラスレイヤーともいう)を設ける場合がある。微多孔層の役割としては、上記の他、触媒層の目の粗い導電性多孔質基材への貫入防止、触媒層との接触抵抗低減、導電性多孔質基材の粗さが電解質膜に転写されることによる電解質膜の物理的損傷防止がある。
 導電性多孔質基材の粗さを微多孔層により緩和したとしても、微多孔層の表面が粗い、または表面にクラックがあると、電解質膜の物理的損傷は不可避である。したがって、微多孔層には表面平滑であると共にクラックがないことが求められる。
 電解質膜の物理的損傷を防ぐために、たとえば特許文献1では、触媒層がカソード側より薄いために、よりガス拡散電極が電解質膜に与える影響の大きい、アノード側の微多孔層の表面粗さを低減したガス拡散電極が提案されている。また、特許文献2では、微多孔層を2層とすることにより微多孔層の表面粗さを低減したガス拡散電極が提案されている。
特開2015-79639号公報 特開2014-239028号公報
 特許文献1で開示される技術では、ブレード塗布およびプレス成形による微多孔層を形成するとしているが、1層のみのブレード塗布による表面粗さの低減では不十分で、またプレス成形では表面粗さは低減できるものの微多孔層の空隙がつぶれてガス拡散性能が低下する。特許文献2で開示される技術では、微多孔層を2層塗布することにより表面粗さは低減できるものの、微多孔層を形成するものとしてカーボン粉を用いているため、微多孔層にクラックが発生する。
 本発明は上記の課題を解決するため、次のような手段を採用するものである。
 導電性多孔質基材の少なくとも片面に、微多孔層を有する、ガス拡散電極であって、
 前記微多孔層は、導電性多孔質基材に接する第1の微多孔層、及び第2の微多孔層を少なくとも有し、
 前記第2の微多孔層が、線状部分を有する導電性材料を含むことを特徴とする、ガス拡散電極。
 本発明のガス拡散電極を用いることにより、高ガス拡散性、高導電性を確保しつつ、表面粗さが小さくクラックの少ない微多孔層となり、性能と耐久性を両立させることができる。
本発明のガス拡散電極の構成を示す概略図。 本発明のガス拡散電極の製造装置の好ましい態様例を示す概略配置図。 本発明のガス拡散電極の製造装置のもう一つの好ましい態様例を示す概略配置図。
 本発明のガス拡散電極は、導電性多孔質基材の少なくとも片面に微多孔層を有する。そして微多孔層は、導電性多孔質基材に接する第1の微多孔層、及び第2の微多孔層を少なくとも有する。
 このような本発明のガス拡散電極に関し、初めに導電性多孔質基材について説明する。
 固体高分子形燃料電池において、ガス拡散電極は、セパレータから供給されるガスを触媒へと拡散するための高いガス拡散性、電気化学反応に伴って生成する水をセパレータへ排出するための高い排水性、発生した電流を取り出すため、高い導電性が要求される。このためガス拡散電極には、導電性を有し、通常10μm以上100μm以下の領域に細孔径を有する多孔体からなる基材である導電性多孔質基材を用いる。
 導電性多孔質基材としては、具体的には、例えば、炭素繊維織物、炭素繊維抄紙体、炭素繊維不織布、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも、耐腐食性が優れることから、炭素繊維を含むカーボンフェルト、カーボンペーパー、カーボンクロスなどの導電性多孔質基材を用いることが好ましく、さらには、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着してなる基材、すなわちカーボンペーパーを用いることが好適である。
 このような導電性多孔質基材を用いてガス拡散電極を効率よく製造するためには、このような導電性多孔質基材を長尺に巻いた状態のものを巻き出して、巻き取るまでの間に連続的に微多孔層を形成することが好ましい。 
 本発明において、導電性多孔質基材は、フッ素樹脂を付与することで撥水処理が施されたものが好適に用いられる。フッ素樹脂は撥水性樹脂として作用するので、本発明において用いる導電性多孔質基材は、フッ素樹脂などの撥水性樹脂を含むことが好ましい。導電性多孔質基材が含む撥水性樹脂、つまり導電性多孔質基材が含むフッ素樹脂としては、PTFE(ポリテトラフルオロエチレン)(たとえば“テフロン”(登録商標))、FEP(四フッ化エチレン六フッ化プロピレン共重合体)、PFA(ペルフルオロアルコキシフッ化樹脂)、ETFA(エチレン四フッ化エチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PVF(ポリフッ化ビニル)等が挙げられるが、強い撥水性を発現するPTFE、あるいはFEPが好ましい。
 撥水性樹脂の量は特に限定されないが、導電性多孔質基材の全体100質量%中に0.1質量%以上20質量%以下程度が好ましい。0.1質量%より少ないと撥水性が十分に発揮されないことがあり、20質量%を越えるとガスの拡散経路あるいは排水経路となる細孔を塞いでしまったり、電気抵抗が上がる可能性がある。
 導電性多孔質基材を撥水処理する方法は、一般的に知られている撥水性樹脂を含むディスパージョンに導電性多孔質基材を浸漬する処理技術のほか、ダイコート、スプレーコートなどによって導電性多孔質基材に撥水性樹脂を塗布する塗布技術も適用可能である。また、フッ素樹脂のスパッタリングなどのドライプロセスによる加工も適用できる。なお、撥水処理の後、必要に応じて乾燥工程、さらには焼結工程を加えても良い。
 
 次いで、微多孔層について説明する。本発明では、導電性多孔質基材の少なくとも片面に微多孔層を有するが、微多孔層は、導電性多孔質基材に接する第1の微多孔層、及び第2の微多孔層を少なくとも有する。なお、微多孔層は、少なくとも2層以上であれば特に限定されないが、より好ましくは第2の微多孔層が微多孔層の最表層にある態様であり、特に好ましくは導電性多孔質基材に接する第1の微多孔層、及び、第1の微多孔層に接して最表層にある第2の微多孔層の2層構成の態様である。
 まず、第1の微多孔層について説明する。第1の微多孔層は、導電性多孔質基材に接する層であり、複数の孔を有する層である。
 そして第1の微多孔層は、導電性微粒子を含むことが好ましい。導電性微粒子を含みさえすればその粒子径は特に限定されないが、第1の微多孔層中の導電性微粒子は、その粒子径が3nm以上500nm以下であることが好ましい。粒子径が3nm未満だと、第1の微多孔層の気孔率が低くなり、ガス拡散性が低くなることがある。一方、粒子径が500nmより大きいと、第1の微多孔層中の導電パスが少なくなり、電気抵抗が高くなることがある。本発明において、第1の微多孔層中の導電性微粒子は、その粒子径が20nm以上200nm以下であることがより好ましい。
 ここで、導電性微粒子の粒子径は、透過型電子顕微鏡により求めた粒子径を言う。測定倍率は50万倍で透過型電子顕微鏡による観察を行い、その画面に存在する100個の粒子径の外径を測定してその平均値を導電性微粒子の粒子径とする。ここで外径とは、粒子の最大の径(つまり粒子の長径であり、粒子中の最も長い径を示す)を指す。透過型電子顕微鏡としては、日本電子(株)製JEM-4000EX、あるいはその同等品を用いることができる。
 本発明において、導電性微粒子としては、「粒状の導電性材料」であるカーボンブラック、「線状部分を有する導電性材料」であるカーボンナノチューブ、カーボンナノファイバー、炭素繊維のチョップドファイバー、「鱗片状の導電性材料」であるグラフェン、黒鉛などが挙げられる。第1の微多孔層が含む導電性微粒子としては、これらの中でも「粒状の導電性材料」が好ましく、コストが低く、安全性や製品の品質の安定性の点から、カーボンブラックが特に好適に用いられる。つまり本発明においては、第1の微多孔層はカーボンブラックを含むことが好ましい。カーボンブラックとしては、不純物が少なく触媒の活性を低下させにくいという点でアセチレンブラックが好適に用いられる。またカーボンブラックの不純物の含有量の目安として灰分が挙げられるが、灰分が0.1質量%以下のカーボンブラックを用いることが好ましい。なお、カーボンブラック中の灰分は少ないほど好ましく、灰分が0質量%のカーボンブラック、つまり、灰分を含まないカーボンブラックが特に好ましい。
 
 次に、第2の微多孔層について説明する。第2の微多孔層は、線状部分を有する導電性材料を含み、複数の孔を有する層である。そして第2の微多孔層は、ガス拡散電極中において導電性多孔質基材側から見て第1の微多孔層の外側に存在する。そして第2の微多孔層は、微多孔層の最表層にあることが特に好ましい。
 ここで線状とは、線のような細長い形で、具体的にはアスペクト比が10以上の形状のものを言う。そのため線状部分を有するとは、アスペクト比が10以上の形状の部分を有することを意味する。
 第2の微多孔層中の線状部分を有する導電性材料は、アスペクト比が30以上5000以下の線状部分を有する導電性材料を用いることが望ましい。線状部分のアスペクト比が30未満であると、第2の微多孔層中の導電性材料の絡まりあいが少なくなり、第2の微多孔層中にクラックが形成されることがある。一方、線状部分のアスペクト比が5000より大きいと、第2の微多孔層中の導電性材料の絡まりあいが過剰となり、第2の微多孔層中で固形分が凝集し、第2の微多孔層の表面が粗くなるという問題が発生することがある。本発明において、第2の微多孔層中の線状部分を有する導電性材料は、その線状部分のアスペクト比が35以上3000以下であることがより好ましく、40以上1000以下であることがさらに好ましい。
 ここで、導電性材料の線状部分のアスペクト比は次のように求める。アスペクト比は、平均長さ(μm)/平均直径(μm)を意味する。平均長さは、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡で、1000倍以上に拡大して写真撮影を行い、無作為に異なる10箇所の線状部分を選び、その長さを計測し、平均値を求めたものであり、平均直径は、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡で、前記平均長さを求めるために無作為に選んだ10箇所の線状部分を、それぞれ10000倍以上に拡大して写真撮影を行い、前記10箇所の線状部分の直径を計測し、平均値を求めたものである。走査型電子顕微鏡としては、(株)日立製作所製SU8010、あるいはその同等品を用いることができる。
 本発明において、線状部分を有する導電性材料としては、線状カーボン、酸化チタン、酸化亜鉛などが挙げられる。そして線状部分を有する導電性材料としては線状カーボンが好ましく、線状カーボンとしては、気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、カップ積層型カーボンナノチューブ、竹状カーボンナノチューブ、グラファイトナノファイバー、炭素繊維のチョップドファイバーなどが挙げられる。中でも、線状部分のアスペクト比を大きくでき、導電性、機械特性が優れることから、線状部分を有する導電性材料としてはVGCFが好適に用いられる。つまり本発明においては、第2の微多孔層はVGCFを含むことが好ましい。
 また、第1の微多孔層および第2の微多孔層には、導電性、ガス拡散性、水の排水性、あるいは保湿性、熱伝導性といった特性、さらには燃料電池内部のアノード側での耐強酸性、カソード側での耐酸化性が求められるため、第1の微多孔層および第2の微多孔層は、導電性微粒子および線状部分を有する導電性材料に加えて、フッ素樹脂をはじめとする撥水性樹脂を含むことが好ましい。第1の微多孔層および第2の微多孔層が含むフッ素樹脂としては、導電性多孔質基材を撥水する際に好適に用いられるフッ素樹脂と同様、PTFE、FEP、PFA、ETFA等が上げられる。撥水性が特に高いという点でPTFE、あるいはFEPが好ましい。
 
 ガス拡散電極が微多孔層を有するためには、導電性多孔質基材に、微多孔層を形成するための塗液、すなわち微多孔層形成用塗液(以下、微多孔層塗液という)を塗布することが一般的である。微多孔層塗液は通常、前記した導電性微粒子や線状部分を有する導電性材料と水やアルコールなどの分散媒を含んでなり、導電性微粒子や線状部分を有する導電性材料を分散するための分散剤として、界面活性剤などが配合されることが多い。また、微多孔層に撥水性樹脂を含ませる場合には、微多孔層塗液には予め撥水性樹脂を含ませておくことが好ましい。
 微多孔層塗液における導電性微粒子および線状部分を有する導電性材料の濃度は、生産性の点から、好ましくは5質量%以上、より好ましくは10質量%以上である。粘度、導電性粒子および線状部分を有する導電性材料の分散安定性、塗液の塗布性などが好適であれば濃度に上限はないが、実際的には50質量%を越えると塗液としての適性が損なわれることがある。特に導電性微粒子としてアセチレンブラックを用いた場合には、本発明者らの検討では水系塗液の場合、25質量%程度が上限であり、これを越える濃度になると、アセチレンブラック同士が再凝集し、いわゆるパーコレーションが発生し、急激な粘度増加で塗液の塗布性が損なわれる。
 微多孔層の役割としては、(1)カソードで発生する水蒸気を凝縮防止の効果、(2)触媒層の目の粗い導電性多孔質基材への貫入防止、(3)触媒層との接触抵抗低減、(4)導電性多孔質基材の粗さが電解質膜に転写されることによる電解質膜の物理的損傷防止の効果などである。また、導電性多孔質基材の粗さを微多孔層により緩和したとしても、微多孔層の表面が粗い、または表面にクラックがあると、電解質膜の物理的損傷は不可避である。したがって、微多孔層には表面平滑であると共にクラックがないことが求められる。
 微多孔層塗液は、前記したように導電性微粒子又は線状部分を有する導電性材料を、分散剤を用いて分散して調製する。導電性微粒子又は線状部分を有する導電性材料を分散させるためには、導電性微粒子又は線状部分を有する導電性材料と分散剤の合計の含有量100質量%に対して、分散剤を0.1質量%以上5質量%以下用いて分散させることが好ましい。しかし、この分散を長時間安定させて塗液粘度の上昇を防ぎ、液が分離したりしないようにするために、分散剤の添加量を増量することが有効である。
 また、微多孔層塗液が導電性多孔質基材の細孔に流入して裏抜けを起こしてしまうことを防ぐためには、微多孔層塗液の粘度を少なくとも1000mPa・s以上に保つことが好ましい。逆に、あまり高粘度になると塗布性が悪くなるため、上限は25Pa・s程度である。好ましい粘度の範囲としては、3000mPa・s以上、20Pa・s以下、より好ましくは5000mPa・s以上、15Pa・s以下である。本発明において、第1の微多孔層を形成した後、次いで、第2の微多孔層塗液を塗布して第2の微多孔層を形成するが、その際、第2の微多孔層塗液の粘度は、さらに低く、10Pa・s以下であることが望ましい。
 上記のように微多孔層塗液の粘度を高粘度に保つためには、増粘剤を添加することが有効である。ここで用いる増粘剤は、一般的に良く知られたもので良い。例えば、メチルセルロース系、ポリエチレングリコール系、ポリビニルアルコール系などが好適に用いられる。
 これらの分散剤や増粘剤は、同じ物質に二つの機能を持たせても良く、またそれぞれの機能に適した素材を選んでも良い。ただし、増粘剤と分散剤を別個に選定する場合には、導電性微粒子の分散系および撥水性樹脂であるフッ素樹脂の分散系を壊さないものを選ぶことが好ましい。上記分散剤と増粘剤は、ここでは界面活性剤と総称する。本発明は、界面活性剤の総量が、導電性微粒子又は線状部分を有する導電性材料の添加質量の50質量部以上が好ましく、より好ましくは100質量部以上、さらに好ましくは200質量部以上である。界面活性剤の添加量の上限としては、通常導電性微粒子又は線状部分を有する導電性材料の添加質量の500質量部以下であり、これを越えるようだと後の焼結工程において多量の蒸気や分解ガスが発生し、安全性、生産性を低下させる可能性がある。
 微多孔層塗液の導電性多孔質基材への塗布は、市販されている各種の塗布装置を用いて行うことができる。塗布方式としては、スクリーン印刷、ロータリースクリーン印刷、スプレー噴霧、凹版印刷、グラビア印刷、ダイコーター塗布、バー塗布、ブレード塗布、コンマコーター塗布などが使用できるが、導電性多孔質基材の表面粗さによらず塗布量の定量化を図ることができるため、ダイコーター塗布が好ましい。また、燃料電池にガス拡散電極を組み込んだ場合に触媒層との密着を高めるため塗布面の平滑性を求める場合にはブレードコーター、コンマコーターが好適に用いられる。以上例示した塗布方法はあくまでも例示のためであり、必ずしもこれらに限定されるものではない。
 微多孔層塗液を塗布した後、必要に応じ、微多孔層塗液の分散媒(水系の場合は水)を乾燥除去する。塗布後の乾燥の温度は、分散媒が水の場合、室温(20℃前後)から150℃以下が望ましく、さらに好ましくは60℃以上120℃以下が好ましい。この分散媒(たとえば水)の乾燥は後の焼結工程において一括して行なっても良い。
 微多孔層塗液を塗布した後、微多孔層塗液に用いた界面活性剤を除去する目的および撥水性樹脂を一度溶解して導電性微粒子および線状部分を有する導電性材料を結着させる目的で、焼結を行なうことが一般的である。
 焼結の温度は、添加されている界面活性剤の沸点あるいは分解温度にもよるが、250℃以上、400℃以下で行なうことが好ましい。焼結の温度が250℃未満では界面活性剤の除去が十分に達成し得ないかあるいは完全に除去するために膨大な時間がかかり、400℃を越えると撥水性樹脂の分解が起こる可能性がある。
 焼結時間は生産性の点からできるかぎり短時間、好ましくは20分以内、より好ましくは10分以内、さらに好ましくは5分以内であるが、あまり短時間に焼結を行なうと界面活性剤の蒸気や分解性生物が急激に発生し、大気中で行なう場合には発火の危険性が生じる。
 焼結の温度と時間は、撥水性樹脂の融点あるいは分解温度と界面活性剤の分解温度に鑑みて最適な温度、時間を選択する。なお、乾燥や焼結は、第1の微多孔層塗液の塗布後や第2の微多孔層塗液の塗布後のそれぞれに行ってもよいが、後述するように、第1の微多孔層塗液の塗布および第2の微多孔層塗液の塗布後に、一括して行うのが好ましい。
 
 本発明においては、上記の導電性多孔質基材の上に設けられる微多孔層を、導電性多孔質基材の少なくとも片面に、少なくとも2層以上積層する。導電性多孔質基材に接する微多孔層を第1の微多孔層、導電性多孔質基材側から見て第1の微多孔層の外側に積層される微多孔層を第2の微多孔層と称する。
 微多孔層に関して図1を用いてより詳細に説明する。
 本発明の第1の微多孔層101は、第1の微多孔層を形成するための塗液(以下、第1の微多孔層塗液)を、導電性多孔質基材に直接塗布して設けられる。 
 本発明の第1の微多孔層の厚み103については、導電性多孔質基材の粗さが電解質膜に転写されることによる電解質膜の物理的損傷防止の効果を発現させるために、微多孔層の合計の厚みが10μm以上であることが好ましいが、より好ましくは第1の微多孔層の厚みだけで9.9μm以上、より好ましくは10μm以上である。ただし、第2の微多孔層が上に積層されても、ガス拡散性を確保する必要性から、第1の微多孔層の厚みは50μm未満であることが好ましい。
 本発明の第2の微多孔層100は、導電性多孔質基材側から見て第1の微多孔層の外側に、第2の微多孔層を形成するための塗液(以下、第2の微多孔層塗液)を塗布することにより形成される。微多孔層が第1の微多孔層と第2の微多孔層の2層のみからなる場合には、第2の微多孔層塗液が第1の微多孔層の表面に塗布される。第2の微多孔層の役割は、触媒層の目の粗い導電性多孔質基材への貫入防止と、触媒層との接触抵抗低減である。
 第2の微多孔層が、触媒層の貫入防止と触媒層との接触抵抗低減の効果を有するためには、本発明の第2の微多孔層は、長さが100μm以上かつ幅が10μm以上のクラックの数が、第2の微多孔層の表面1cmあたり10個以下であることが好ましい。特に好ましくは、このようなクラックがない、0個の態様である。
 さらに第2の微多孔層が、触媒層の貫入防止と触媒層との接触抵抗低減の効果を有するためには、微多孔層の表面粗さを0.1μm以上4μm以下とすることも好ましい。ここで微多孔層の表面粗さは、微多孔層の最表層における表面粗さを意味する。
 表面粗さの測定には各種の表面粗さ計が適用できるが、微多孔層は比較的脆弱であるので、非接触タイプの計測器を用いるのが好ましい。非接触タイプの測定器の例としてはキーエンス社のレーザー顕微鏡VX-100などがある。
 さらに第2の微多孔層が、触媒層の貫入防止と触媒層との接触抵抗低減の効果を有するためには、第2の微多孔層の厚み102が0.1μm以上、10μm未満であることが好ましい。第2の微多孔層の厚みが、0.1μm未満では、第1の微多孔層の表面を第2の微多孔層が完全に覆うことができないため第1の微多孔層に存在するクラックを隠すことができず、第2の微多孔層の表面を平滑にすることができない場合がある。またこれが10μm以上だと、ガス拡散性が低下してしまうことがある。第2の微多孔層の厚みは、好ましくは、7μm以下、より好ましくは5μm以下である。
 ガス拡散電極または導電性多孔質基材の厚みについては、マイクロメーターなどを用い、基材に0.15MPaの荷重を加えながら測定を行なうことができる。また、微多孔層の厚みについては、ガス拡散電極の厚みから導電性多孔質基材の厚みを差し引いて求めることができる。さらに、微多孔層が2層構成の場合の第2の微多孔層の厚みについては、図1に示すように、第1の微多孔層を塗布した導電性多孔質基材の上に第2の微多孔層を塗布する際に、第2の微多孔層が塗布されている部分と第2の微多孔層が塗布されていない部分との差を第2の微多孔層の厚みとすることができる。基材に第1の微多孔層、第2の微多孔層を塗布により形成する際、各層の厚みを調整する場合には、上記マイクロメーターによる測定法を用いる。
 なお、導電性多孔質基材、第1の微多孔層、及び第2の微多孔層を有するガス拡散電極の状態で、各層の厚みを求める場合には、(株)日立ハイテクノロジーズ製IM4000などのイオンミリング装置を用いて、ガス拡散電極を厚み方向にカットし、その面直断面(厚み方向の断面)を走査型電子顕微鏡(SEM)で観察したSEM像から算出する方法が採用できる。
 
 本発明のガス拡散電極は、発電性能を確保するために、厚み方向のガス拡散性は30%以上であることが好まく、さらに好ましくは32%以上である。厚み方向のガス拡散性は高いほど良いが、燃料電池に組み込んだ際に、細孔容積が大きすぎて、電池内部に圧力がかかったときにその構造を維持できる前提での上限値は40%程度と考えられる。
 本発明のガス拡散電極は、発電性能を確保するために、厚み方向の電気抵抗が2.4MPa加圧時に4.0mΩcm以下であることが好ましい。厚み方向の電気抵抗は小さいほど好ましいが、現実的には2.4MPa加圧時に0.5mΩcm未満とすることは容易でないので、下限は2.4MPa加圧時に0.5mΩcm程度である。
 本発明においては、導電性多孔質基材の表面に第1の微多孔層塗液を塗布し、その上に第2の微多孔層塗液を、第2の微多孔層の厚みが10μm未満となるように塗布することが好ましい。このような薄膜を均一に塗布するためには、第1の微多孔層塗液を導電性多孔質基材上に塗布した後、乾燥させずに連続して第2の微多孔層塗液を塗布するWet on Wetの重層技術を適用することも有効である。導電性多孔質基材の表面は一般的に粗く、凹凸の差が10μm近くにもなる場合がある。このように凹凸の大きい表面に第1の微多孔層塗液を塗布しても、乾燥後は完全にはその凹凸を解消しきれない。第2の微多孔層は10μm未満という薄膜が好適なため、第2の微多孔層塗液の粘度はある程度低くすることが好ましい。そのような低粘度の塗液で上記のような凹凸のある面の上に薄膜を形成しようとすると、凹凸の凹部には液が溜まりやすく(即ち厚膜になる)、凸部には液が乗らずに、極端な場合には第2の微多孔層の薄膜が形成できない。これを防ぐために、乾燥する前に、第1の微多孔層塗液と第2の微多孔層塗液を重ねてしまい、後から一括して乾燥させることにより、第1の微多孔層の表面に均一に第2の微多孔層の薄膜を形成することができる。
 このように、多層塗布の際に各層の塗布後に乾燥せず、多層塗布完了後に一括して乾燥することは、乾燥機が一つで済み、塗布工程も短くなるので、設備コストや生産スペースの節約にもなる。また、工程が短くなることで、工程における、一般的に高価な導電性多孔質基材のロスを低減することも可能となる。
 上記の多層塗布においては、第1の微多孔層塗液の塗布をダイコーターで行い、さらに第2の微多孔層塗液の塗布もダイコーターで行う方法、第1の微多孔層塗液の塗布を各種のロールコーターで行い、第2の微多孔層塗液の塗布をダイコーターで行なう方法、第1の微多孔層塗液の塗布をコンマコーターで行い、第2の微多孔層塗液の塗布をダイコーターで行なう方法、第1の微多孔層塗液の塗布をリップコーターで行い、第2の微多孔層塗液の塗布をダイコーターで行なう方法、スライドダイコーターを用いて、基材に塗布する前に第1の微多孔層塗液と第2の微多孔層塗液を重ねてしまう方法などが適用できる。特に、高粘度の塗液を均一に塗布するためには、第1の微多孔層塗液の塗布をダイコーターまたはコンマコーターで行なうことが好ましい。
 上記ダイコーター、コンマコーターの塗布方法については、「コンバーティングのすべて」((株)加工技術研究会編)など、既存の多数の文献に記載されている。ダイコーターとはあらかじめ計量された塗液を幅方向に均一に分配するためのダイを経由して基材上に塗布する形式である。また、コンマコーターとは、ナイフコーターと同じようにあらかじめ厚く盛っておいた塗液を一定の高さに設定したロールナイフで削ぎ落して基材の凹凸に関わらず塗布面を平滑にする塗布方式である。
 本発明の好適な態様は、まず第1に、第2の微多孔層のような表層を、0.1μm以上10μm未満という薄膜に可能な限り均一に形成することであるが、触媒が両面に塗布された電解質膜とガス拡散電極の密着性(触媒層表面とガス拡散電極の微多孔層表面との接触面積)を出来る限り大きくすることが望ましい。そのためには、できるかぎり、ガス拡散電極の微多孔層表面を平滑にすることが望ましい。また、ガス拡散電極側に触媒インクを塗布する方法も一般的に知られている(GDE法)が、この場合にも、触媒インクを均一に塗布するために、ガス拡散電極の微多孔層の表面は、できるかぎり平滑にしておくことが望ましい。このように、平滑性が求められる場合には、コンマコーターなどで第1の微多孔層塗液を塗布して、一旦基材の粗さをならした上で、ダイコーターで第2の微多孔層塗液を塗布すると、より高い平滑性が得られる。
 平滑性の指標としては、表面粗さRaが用いられ、本発明のガス拡散電極は、第2の微多孔層が微多孔層の最表層にあり、第2の微多孔層の表面粗さRaが4μm以下であることが望ましく、より好ましくは3μm以下である。Raが4μmより大きいと触媒層との密着性が悪く、また、触媒インクを微多孔層表面に塗布する場合などを考慮すると、表面粗さRaの下限としては、0.1μm程度が限界と考えられる。また、導電性多孔質基材としてカーボンペーパーを用いる場合には、基材粗さが一般的に10μm以上と大きいため、その上に第1、第2の微多孔層を設けても、最表層にある第2の微多孔層の表面粗さRaの値は2μm未満とすることは困難である。
 
 本発明のガス拡散電極を製造するに好適な製造装置は、ロール状に巻いた長尺の導電性多孔質基材を巻き出すための巻き出し機、巻き出し機により巻き出された導電性多孔質基材に第1の微多孔層塗液を塗布するための第1の塗布機、第1の微多孔層塗液が塗布され、実質的に乾燥されていない導電性多孔質基材に第2の微多孔層塗液を塗布するための、第1の塗布機が配置された基材面側と同じ面側に配置された第2の塗布機、第1の微多孔層塗液および第2の微多孔層塗液が塗布された導電性多孔質基材を乾燥するための乾燥機、および、得られたガス拡散電極を巻き取る巻き取り機から構成される。
 図2および3には、本発明のガス拡散電極を製造するに際しての、特に好ましい製造装置が例示してある。
 図2に示す製造装置においては、巻き出し機2から長尺の導電性多孔質基材1が巻き出され、ガイドロール3で適宜支持されながら搬送され、第1の塗布機である第1のダイコーター4により、導電性多孔質基材の片面に第1の微多孔層塗液が塗布される。このとき第1の微多孔層塗液は通常、塗液タンク12から送液ポンプ13によりダイコーターに供給される。好ましくはフィルター14によりろ過する。第1のダイコーター4と同じ基材面側に設置された、第2の塗布機である第2のダイコーター5により、第2の微多孔層塗液が第1の微多孔層塗液の塗布面上に塗布された後、一括して乾燥機7で乾燥が行われ、ガス拡散電極は巻き取り機9で巻き取られる。なお、第2の微多孔層塗液も通常、塗液タンク12から送液ポンプ13によりダイコーターに供給される。好ましくはフィルター14によりろ過する。また、図2で示すように、乾燥機7の後に焼結機8を設置してインラインで焼結することが好ましい。また、ダイコーターによる微多孔層塗液の塗布に際しては、バックロール6を用いてもよいし、巻き取りに際しては塗布面保護のため、合い紙の巻き出し機11から巻き出された合い紙10を製品と共巻きにしてもよい。
 図3に示す製造装置においては、図2における第1のダイコーター4の替わりにコンマコーター40を設置してある。コンマコーターで塗布する場合には、液ダム42に塗材を供給しながら基材を搬送させ、ナイフロール41にて所望の塗布量になるように塗材を掻き取る。
 図2あるいは3に示すように、複数の層を基材の上に設ける際にそれらの複数の層の乾燥を一括して行なってしまうことで、乾燥機を簡略化でき、また巻き出しから巻き取りまでの工程を短くできるため、生産性が高く、基材が破断した際にもロスが少なくてすむ。
 本発明のガス拡散電極は、触媒層を両面に設けた電解質膜の両側に触媒層とガス拡散電極が接するように圧着し、さらに、セパレータなどの部材を組みこんで単電池を組み立てて燃料電池として使用される。つまり本発明の燃料電池は、前述の本発明のガス拡散電極を含むものである。なお本発明の燃料電池を製造する際には、第2の微多孔層が、触媒層と接するように組み立てるとよい。
 以下、実施例によって本発明を具体的に説明する。実施例で用いた材料、導電性多孔質基材の作製方法、燃料電池の電池性能評価方法を次に示した。
 <材 料>
 A:導電性多孔質基材
 ・厚み150μm、空隙率85%のカーボンペーパー:
 以下のように調製して得た。
 東レ(株)製ポリアクリロニトリル系炭素繊維“トレカ”(登録商標)T300-6K(平均単繊維径:7μm、単繊維数:6,000本)を6mmの長さにカットし、アラバラリバー社製広葉樹晒クラフトパルプ(LBKP)クラフトマーケットパルプ(ハードウッド)と共に、水を抄造媒体として連続的に抄造し、さらにポリビニルアルコールの10質量%水溶液に浸漬し、乾燥する抄紙工程を経て、ロール状に巻き取って、炭素短繊維の目付けが15g/mの長尺の炭素繊維紙を得た。炭素繊維紙100質量部に対して、添加したパルプの量は40質量部、ポリビニルアルコールの付着量は20質量部に相当する。
 (株)中越黒鉛工業所製鱗片状黒鉛BF-5A(平均粒子径:5μm、アスペクト比:15)、フェノール樹脂およびメタノール(ナカライテスク(株)製)を2:3:25の質量比で混合した分散液を用意した。上記炭素繊維紙に、炭素短繊維100質量部に対してフェノール樹脂が78質量部である樹脂含浸量になるように、上記分散液を連続的に含浸し、90℃の温度で3分間乾燥する樹脂含浸工程を経た後、ロール状に巻き取って樹脂含浸炭素繊維紙を得た。フェノール樹脂には、荒川化学工業(株)製レゾール型フェノール樹脂KP-743Kと荒川化学工業(株)製ノボラック型フェノール樹脂“タマノル”(登録商標)759とを1:1の質量比で混合したものを用いた。このフェノール樹脂(レゾール型フェノール樹脂とノボラック型フェノール樹脂の混合物)の炭化収率は43%であった。
 (株)カワジリ製100tプレスに熱板が互いに平行になるようにセットし、下熱板上にスペーサーを配置して、熱板温度170℃、面圧0.8MPaでプレスの開閉を繰り返しながら上下から離型紙で挟み込んだ樹脂含浸炭素繊維紙を間欠的に搬送しつつ、同じ箇所がのべ6分間加熱加圧されるよう圧縮処理した。また、熱板の有効加圧長LPは1200mmで、間欠的に搬送する際の前駆体繊維シートの送り量LFを100mmとし、LF/LPを0.08とした。すなわち、30秒の加熱加圧、型開き、炭素繊維の送り(100mm)、を繰り返すことによって圧縮処理を行い、ロール状に巻き取った。
 圧縮処理をした炭素繊維紙を前駆体繊維シートとして、窒素ガス雰囲気に保たれた、最高温度が2400℃の加熱炉に導入し、加熱炉内を連続的に走行させながら、約500℃/分(650℃までは400℃/分、650℃を越える温度では550℃/分)の昇温速度で焼成する炭化工程を経た後、ロール状に巻き取ってカーボンペーパーを得た。得られたカーボンペーパーは、密度0.25g/cm、空隙率85%であった。
 ・厚み180μm、空隙率85%のカーボンペーパー:
炭化後の厚みが180μmとなるように炭素繊維の目付け量、圧縮処理の際のスペーサーの厚みを調整した以外は、厚み150μm、空隙率85%のカーボンペーパーと同様にして、厚み180μm、空隙率85%のカーボンペーパーを得た。
 B:撥水性樹脂
 ・“ポリフロン”(登録商標)PTFEディスパージョンD-210C(ダイキン工業(株)製)
 C:界面活性剤
 ・“TRITON”(登録商標)X-114(ナカライテスク(株)製)
 
 <表面粗さ測定>
 測定すべきガス拡散電極の微多孔層表面について、(株)キーエンス製レーザー顕微鏡VK-X100を用い、対物レンズ10倍、カットオフなしで粗さ測定を行うことで算術平均粗さRaを求め、これを10視野について行って、その平均値を表面粗さの値とした。
 <第2の微多孔層中のクラック数測定>
測定すべきガス拡散電極の第2の微多孔層表面を、(株)日立製作所製SU8010走査型電子顕微鏡(SEM)で20倍に拡大して観察し、長さが100μm以上かつ幅が10μm以上のクラック数を目視でカウントし、10cmあたりの数を第2の微多孔層中のクラック数として定義した。
 <厚み方向のガス拡散性>
 西華産業製水蒸気ガス水蒸気透過拡散評価装置(MVDP-200C)を用い、ガス拡散電極の一方の面側(1次側)に拡散性を測定したいガスを流し、他方の面側(2次側)に窒素ガスを流す。1次側と2次側の差圧を0Pa近傍(0±3Pa)に制御しておき(即ち圧力差によるガスの流れはほとんどなく、分子拡散によってのみガスの移動現象が起こる)、2次側のガス濃度計により、平衡に達したときのガス濃度を測定し、この値(%)を厚み方向のガス拡散性の指標とした。
 <厚み方向の電気抵抗>
 40mm×40mmのサイズにガス拡散電極を切り取り、上下を金メッキされた平滑な金属の剛体電極で挟み、2.4MPaの平均圧力をかける。この状態で上下の電極に1Aの電流を流した時の、上下の電極の電圧を測定することにより、単位面積当たりの電気抵抗を算出し、この値を電気抵抗の指標とした。
 
 (実施例1)
ロール状に巻き取られた厚み150μm、空隙率85%のカーボンペーパーを巻き取り式の搬送装置を用いて、搬送しながら、フッ素樹脂濃度を2質量%になるように水に分散した撥水性樹脂ディスパージョンを満たした浸漬槽に浸漬して撥水処理を行い、100℃に設定した乾燥機7で乾燥して巻き取り機で巻き取って、撥水処理した導電性多孔質基材を得た。撥水性樹脂ディスパージョンとして、PTFEディスパージョン D-210Cを水でPTFEが2質量%濃度になるように薄めたものを用いた。
 次に、図2に概略を示すように、巻き出し機2、ガイドロール3、バックロール6、合い紙巻き出し機11、巻き取り機9を備えた搬送装置に2基のダイコーター(4,5)、乾燥機7および焼結機8を備えた巻き取り式の連続コーターを用意した。
 前記撥水処理した導電性多孔質基材として、厚み150μm、空隙率85%、幅約400mmのカーボンペーパーを400mロール状に巻いた原反を巻き出し機2にセットした。
 巻き出し部、巻き取り部、コーター部に設置された駆動ロールにより原反を搬送した。まず、第1のダイコーター4を用いて第1の微多孔層塗液を塗布した後、連続して第2のダイコーター5により第2の微多孔層塗液を塗布し、乾燥機7において100℃の熱風により水分を乾燥、さらに温度を350℃に設定した焼結機8において、焼結を行なった後、巻き取り機9にて巻き取った。
 なお、微多孔層塗液は以下のように調製した。
 第1の微多孔層塗液:
アセチレンブラック(表においてはABと記す)(粒子径35nm)7.1質量部、PTFEディスパージョン2.4質量部、界面活性剤14.2質量部、精製水76.3質量部をプラネタリーミキサーで混練し、塗液を調製した。この時の塗液粘度は、7.5Pa・sであった。
 第2の微多孔層塗液:
気相成長炭素繊維“VGCF”(アスペクト比50)5.0質量部、PTFEディスパージョン0.6質量部、界面活性剤10.0質量部、精製水 84.4質量部をプラネタリーミキサーで混練し、塗液を調製した。プラネタリーミキサーでの混練時間は第1の微多孔層塗液の場合の2倍の時間をかけ、塗液の分散度を上げた。この時の塗液粘度は、1.1Pa・sであった。
 第1の微多孔層塗液の塗布にあたっては、焼結後の微多孔層の目付け量が16g/mとなるように調整した。このとき、第1の微多孔層の厚みは25μmであった。さらに、第2の微多孔層塗液の塗布にあたっては、第2の微多孔層の厚みが3μmとなるよう調製した。
 このようにして、調製したガス拡散電極の微多孔層の表面粗さ、クラック数、厚み方向ガス拡散性、電気抵抗を測定した結果を表1に示す。
 (実施例2)
実施例1において、第1の微多孔層に用いた導電性微粒子をサーマルブラック(表においてはSBと記す)(粒子径85nm)に変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。
 (実施例3)
実施例1において、第1の微多孔層に用いた導電性微粒子を気相成長炭素繊維“VGCF”(粒子径150nm)に変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。
 (実施例4)
実施例1において、第1の微多孔層に用いた導電性微粒子をカーボンナノチューブ(粒子径2nm)に変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。
 (実施例5)
実施例1において、第1の微多孔層に用いた導電性微粒子を黒鉛(粒子径8000nm)に変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。
 (実施例6)
実施例1において、第2の微多孔層に用いた導電性材料をカーボンナノチューブ(アスペクト比6000)に変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。
 (比較例1)
実施例1において、微多孔層を第1の微多孔層のみに変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。この例においては、微多孔層の表面粗さが高く、微多孔層のクラック数が多いという結果になった。
 (比較例2)
実施例1において、微多孔層を第1の微多孔層のみに変更し、第1の微多孔層に用いた導電性微粒子を気相成長炭素繊維“VGCF”(粒子径150nm)に変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。この例においては、微多孔層の表面粗さが高いという結果になった。
 (比較例3)
実施例1において、第2の微多孔層に用いた導電性材料をアセチレンブラック(アスペクト比1)に変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。この例においては、微多孔層のクラック数が多いという結果になった。
 (比較例4)
実施例1において、第1の微多孔層に用いた導電性微粒子を気相成長炭素繊維“VGCF”(粒子径150nm)に変更し、第2の微多孔層に用いた導電性材料をアセチレンブラック(アスペクト比1)に変更した以外は全て、実施例1と同様にしてガス拡散電極を得た。この例においては、微多孔層のクラック数が多いという結果になった。
Figure JPOXMLDOC01-appb-T000001
1 導電性多孔質基材
2 巻き出し機
3 ガイドロール(非駆動)
4 第1のダイコーター
5 第2のダイコーター
6 バックロール
7 乾燥機
8 焼結機
9 巻き取り機(駆動)
10 合い紙
11 巻き出し機(合い紙用)
12 塗液タンク
13 送液ポンプ
14 フィルター
40 コンマコーター
41 ナイフロール
42 液ダム
100 第2の微多孔層
101 第1の微多孔層
102 第2の微多孔層の厚み
103 第1の微多孔層の厚み

Claims (11)

  1.  導電性多孔質基材の少なくとも片面に、微多孔層を有する、ガス拡散電極であって、
     前記微多孔層は、導電性多孔質基材に接する第1の微多孔層、及び第2の微多孔層を少なくとも有し、
     前記第2の微多孔層が、線状部分を有する導電性材料を含むことを特徴とする、ガス拡散電極。
  2.  前記線状部分を有する導電性材料は、アスペクト比が30以上5000以下の線状部分を有する、請求項1に記載のガス拡散電極。
  3.  前記線状部分を有する導電性材料は、線状カーボンである、請求項1または2に記載のガス拡散電極。
  4.  前記第1の微多孔層が、導電性微粒子を含む、請求項1~3のいずれかに記載のガス拡散電極。
  5.  前記導電性微粒子は、粒子径が3nm以上500nm以下である、請求項4に記載のガス拡散電極。
  6.  前記第2の微多孔層は、微多孔層の最表層にある、請求項1~5のいずれかに記載のガス拡散電極。
  7.  微多孔層の表面粗さが0.1μm以上4μm以下である、請求項1~6のいずれかに記載のガス拡散電極。
  8.  第2の微多孔層中の、長さが100μm以上かつ幅が10μm以上のクラックの数が、第2の微多孔層の表面1cmあたり10個以下である、請求項1~7のいずれかに記載のガス拡散電極。
  9.  厚み方向のガス拡散性が30%以上である、請求項1~8のいずれかに記載のガス拡散電極。
  10.  厚み方向の電気抵抗が、2.4MPa加圧時に4.0mΩcm以下である、請求項1~9のいずれかに記載のガス拡散電極。
  11.  請求項1~10のいずれかに記載のガス拡散電極を含む、燃料電池。
PCT/JP2016/067680 2015-08-27 2016-06-14 ガス拡散電極 WO2017033536A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016541448A JP6834486B2 (ja) 2015-08-27 2016-06-14 ガス拡散電極
EP16838883.3A EP3343680B1 (en) 2015-08-27 2016-06-14 Gas diffusion electrode
US15/747,284 US20180219228A1 (en) 2015-08-27 2016-06-14 Gas diffusion electrode
KR1020187004014A KR102597863B1 (ko) 2015-08-27 2016-06-14 가스 확산 전극
CN201680043668.1A CN107851805A (zh) 2015-08-27 2016-06-14 气体扩散电极
CA2988934A CA2988934C (en) 2015-08-27 2016-06-14 Gas diffusion electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015167424 2015-08-27
JP2015-167424 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017033536A1 true WO2017033536A1 (ja) 2017-03-02

Family

ID=58099818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067680 WO2017033536A1 (ja) 2015-08-27 2016-06-14 ガス拡散電極

Country Status (8)

Country Link
US (1) US20180219228A1 (ja)
EP (1) EP3343680B1 (ja)
JP (1) JP6834486B2 (ja)
KR (1) KR102597863B1 (ja)
CN (1) CN107851805A (ja)
CA (1) CA2988934C (ja)
TW (1) TWI692144B (ja)
WO (1) WO2017033536A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403939A (zh) * 2017-09-12 2017-11-28 福建福安闽东亚南电机有限公司 一种燃料电池膜电极扩散层的制备方法
CN107658473A (zh) * 2017-09-19 2018-02-02 福建福安闽东亚南电机有限公司 燃料电池膜电极的制备方法
JP2021128829A (ja) * 2020-02-11 2021-09-02 株式会社豊田中央研究所 燃料電池用ガス拡散層
WO2023127790A1 (ja) 2021-12-27 2023-07-06 東レ株式会社 ガス拡散電極基材とその製造方法および燃料電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550648B1 (en) * 2016-12-05 2024-09-18 Toray Industries, Inc. Gas diffusion electrode and production method therefor
JP2020042941A (ja) * 2018-09-07 2020-03-19 SAIKO Innovation株式会社 電池用電極の製造方法、及び電池用電極
CN111146450B (zh) * 2019-12-26 2020-12-22 一汽解放汽车有限公司 一种连续制备燃料电池气体扩散层的装置及方法
JP7431054B2 (ja) * 2020-02-21 2024-02-14 株式会社Soken 燃料電池用ガス拡散層
CN114551920A (zh) * 2022-02-21 2022-05-27 一汽解放汽车有限公司 一种气体扩散层浆液及其制备方法与应用
CN115000446B (zh) * 2022-07-22 2024-05-31 上海电气集团股份有限公司 一种气体扩散层及其制备方法、膜电极、电池和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214173A (ja) * 2002-12-18 2004-07-29 Honda Motor Co Ltd 膜−電極構造体の製造方法
JP2006134648A (ja) * 2004-11-04 2006-05-25 Honda Motor Co Ltd 固体高分子型燃料電池の電極構造体
JP2012054111A (ja) * 2010-09-01 2012-03-15 Dainippon Printing Co Ltd 導電性多孔質層が形成された固体高分子形燃料電池用ガス拡散層及びそれを用いた固体高分子形燃料電池
JP2013201139A (ja) * 2013-05-31 2013-10-03 Dainippon Printing Co Ltd 電池用導電性多孔質層及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182625A (ja) * 1998-12-11 2000-06-30 Toyota Motor Corp 燃料電池用電極及びその製造方法
US7306876B2 (en) * 2002-11-29 2007-12-11 Honda Motor Co., Ltd. Method for producing membrane-electrode structure and polymer electrolyte fuel cell
JP4691914B2 (ja) * 2004-06-21 2011-06-01 日産自動車株式会社 ガス拡散電極及び固体高分子電解質型燃料電池
KR100761524B1 (ko) * 2006-02-02 2007-10-04 주식회사 협진아이엔씨 연료전지용 기체확산층의 제조 방법
US7785752B2 (en) * 2007-03-07 2010-08-31 Panasonic Corporation Fuel cell electrode and method for producing the same
CN103975470B (zh) * 2011-12-26 2017-08-25 东丽株式会社 燃料电池用气体扩散电极基材、膜电极接合体和燃料电池
JP6115467B2 (ja) * 2012-05-14 2017-04-19 東レ株式会社 燃料電池用ガス拡散電極基材
EP2680352B1 (en) * 2012-06-29 2015-06-03 JNTC Co., Ltd. Carbon Substrate for Gas Diffusion Layer, Gas Diffusion Layer using the same, and Electrode for Fuel Cell comprising the Gas Diffusion Layer
CA2878948C (en) * 2012-07-20 2017-10-24 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, membrane-electrode assembly, and solid polymer fuel cell
JP6206186B2 (ja) * 2012-08-24 2017-10-04 東レ株式会社 燃料電池用ガス拡散電極基材
JP6265028B2 (ja) 2013-05-08 2018-01-24 三菱ケミカル株式会社 多孔質炭素電極
JP2015079639A (ja) 2013-10-17 2015-04-23 本田技研工業株式会社 電解質膜・電極構造体
KR20160139002A (ko) * 2014-03-27 2016-12-06 니혼바이린 가부시기가이샤 도전성 다공체, 고체 고분자형 연료 전지, 및 도전성 다공체의 제조 방법
JP6056817B2 (ja) * 2014-08-19 2017-01-11 大日本印刷株式会社 導電性多孔質層が形成された固体高分子形燃料電池用ガス拡散層、導電性多孔質層形成用ペースト組成物及びそれらの製造方法、並びに固体高分子形燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214173A (ja) * 2002-12-18 2004-07-29 Honda Motor Co Ltd 膜−電極構造体の製造方法
JP2006134648A (ja) * 2004-11-04 2006-05-25 Honda Motor Co Ltd 固体高分子型燃料電池の電極構造体
JP2012054111A (ja) * 2010-09-01 2012-03-15 Dainippon Printing Co Ltd 導電性多孔質層が形成された固体高分子形燃料電池用ガス拡散層及びそれを用いた固体高分子形燃料電池
JP2013201139A (ja) * 2013-05-31 2013-10-03 Dainippon Printing Co Ltd 電池用導電性多孔質層及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403939A (zh) * 2017-09-12 2017-11-28 福建福安闽东亚南电机有限公司 一种燃料电池膜电极扩散层的制备方法
CN107658473A (zh) * 2017-09-19 2018-02-02 福建福安闽东亚南电机有限公司 燃料电池膜电极的制备方法
JP2021128829A (ja) * 2020-02-11 2021-09-02 株式会社豊田中央研究所 燃料電池用ガス拡散層
JP7370673B2 (ja) 2020-02-11 2023-10-30 株式会社豊田中央研究所 燃料電池用ガス拡散層
WO2023127790A1 (ja) 2021-12-27 2023-07-06 東レ株式会社 ガス拡散電極基材とその製造方法および燃料電池
KR20240121712A (ko) 2021-12-27 2024-08-09 도레이 카부시키가이샤 가스 확산 전극 기재와 그 제조 방법 및 연료 전지

Also Published As

Publication number Publication date
KR20180048608A (ko) 2018-05-10
EP3343680B1 (en) 2024-09-11
EP3343680A4 (en) 2019-03-20
TW201712934A (zh) 2017-04-01
JPWO2017033536A1 (ja) 2018-06-07
CN107851805A (zh) 2018-03-27
US20180219228A1 (en) 2018-08-02
KR102597863B1 (ko) 2023-11-03
CA2988934A1 (en) 2017-03-02
TWI692144B (zh) 2020-04-21
JP6834486B2 (ja) 2021-02-24
EP3343680A1 (en) 2018-07-04
CA2988934C (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2017033536A1 (ja) ガス拡散電極
JP6394748B2 (ja) ガス拡散電極
JP6357923B2 (ja) ガス拡散電極、その製造方法および製造装置
KR102679856B1 (ko) 가스 확산 전극 및 연료 전지
WO2018061833A1 (ja) ガス拡散電極および燃料電池
WO2018105301A1 (ja) ガス拡散電極とその製造方法
WO2017047515A1 (ja) ガス拡散電極とその製造方法
JP6969547B2 (ja) ガス拡散電極、および、燃料電池
JP6862831B2 (ja) ガス拡散電極および燃料電池
JP7114858B2 (ja) ガス拡散電極、および、燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016541448

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2988934

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15747284

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187004014

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016838883

Country of ref document: EP