WO2017033491A1 - 光ファイバ歪み測定装置及び光ファイバ歪み測定方法 - Google Patents

光ファイバ歪み測定装置及び光ファイバ歪み測定方法 Download PDF

Info

Publication number
WO2017033491A1
WO2017033491A1 PCT/JP2016/062438 JP2016062438W WO2017033491A1 WO 2017033491 A1 WO2017033491 A1 WO 2017033491A1 JP 2016062438 W JP2016062438 W JP 2016062438W WO 2017033491 A1 WO2017033491 A1 WO 2017033491A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
frequency
optical path
optical fiber
Prior art date
Application number
PCT/JP2016/062438
Other languages
English (en)
French (fr)
Inventor
健吾 小泉
Original Assignee
沖電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沖電気工業株式会社 filed Critical 沖電気工業株式会社
Publication of WO2017033491A1 publication Critical patent/WO2017033491A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present disclosure relates to an optical fiber strain measurement apparatus and an optical fiber strain measurement method using Brillouin scattered light.
  • a typical example of distributed optical fiber sensing is time domain reflectometry (OTDR) in which a light pulse is incident from one end of an optical fiber and the backscattered light in the optical fiber is measured with respect to time. is there.
  • Backscattering in an optical fiber includes Rayleigh scattering, Brillouin scattering, and Raman scattering.
  • BOTDR Boillouin OTDR
  • BOTDR Boillouin OTDR
  • Brillouin scattering is observed at a position shifted about GHz in the Stokes side and the anti-Stokes side with respect to the center frequency of the optical pulse incident on the optical fiber, and the spectrum is called a Brillouin gain spectrum.
  • the frequency shift amount and the spectral line width of the Brillouin gain spectrum are called the Brillouin shift and the Brillouin line width, respectively, and differ depending on the material of the optical fiber and the wavelength of the optical pulse incident on the optical fiber. For example, it is reported that when a light pulse having a wavelength of 1.55 ⁇ m is incident on a silica-based single mode optical fiber, the Brillouin shift is about 11 GHz and the Brillouin line width is about 30 MHz.
  • the Brillouin shift changes linearly at a rate of about 500 MHz /% with respect to the strain of the optical fiber. When this is converted into tensile strain and temperature, it corresponds to 0.058 MHz / ⁇ and 1.18 MHz / ° C., respectively.
  • BOTDR it is possible to measure strain and temperature distribution in the longitudinal direction of the optical fiber. For this reason, BOTDR attracts attention as a monitoring technique for large buildings such as bridges and tunnels.
  • BOTDR generally performs heterodyne detection with separately prepared reference light in order to measure the spectral waveform of natural Brillouin scattered light generated in an optical fiber.
  • the intensity of natural Brillouin scattered light is 2 to 3 orders of magnitude smaller than the intensity of Rayleigh scattered light. For this reason, heterodyne detection is useful for improving the minimum light receiving sensitivity.
  • FIG. 9 is a schematic block diagram of a conventional optical fiber strain measuring apparatus.
  • the continuous light emitted from the light source 112 is branched into two by the optical coupler 142.
  • One of the two branches is used as reference light, and the other is subjected to a frequency shift corresponding to the Brillouin frequency by the optical frequency shifter 143 and then becomes pulsed probe light by the optical pulse generator 114.
  • This probe light is incident on an optical fiber (measurement optical fiber) 100 to be measured through an optical coupler 120.
  • Back Brillouin scattered light from the optical fiber 100 to be measured is combined with reference light by the optical coupler 150 and then heterodyne detected by a receiver 160 including a balanced photodiode (PD) 162 and an FET amplifier 164.
  • PD photodiode
  • the frequency of the beat signal generated by heterodyne detection becomes low.
  • the frequency of the beat signal is downshifted by the mixer 170 and the electric filter 178, the power and amplitude of an IF (Intermediate Frequency) signal obtained by square detection or envelope detection by the detection circuit 172 are measured. This result is sent to the signal processing device 174.
  • IF Intermediate Frequency
  • FIG. 10 is a schematic diagram for explaining a method for acquiring three-dimensional information of time, amplitude, and frequency in a conventional optical fiber strain measurement apparatus.
  • two-dimensional information of time t and amplitude I is acquired by sweeping the frequency f of the local electric signal source 183.
  • the inventor of the present disclosure measures an optical frequency change as a phase difference of a beat signal given by coherent detection, and uses an optical fiber distortion measurement device and an optical fiber distortion measurement method using natural Brillouin scattered light.
  • a part of the result of the examination was filed as a patent application (Japanese Patent Application No. 2015-072546: hereinafter referred to as “prior application”).
  • the frequency change of light is measured as a phase difference of a beat signal given by coherent detection after passing through a self-delay heterodyne interferometer. That is, since the frequency change is measured only from the two-dimensional information of time and phase, the measurement time is shortened compared to the conventional technique that requires acquisition of the three-dimensional information.
  • the present disclosure has been made in view of the above, and by performing heterodyne detection with separately prepared local light on a signal subjected to heterodyne detection, the signal intensity is increased, thereby shortening the measurement time.
  • An optical fiber strain measuring apparatus and an optical fiber strain measuring method are provided.
  • An optical fiber strain measurement device includes a light source unit, a branching unit, an optical frequency shifter unit, a delay unit, a first optical coupler, a second optical coupler, a coherent detection unit, An electric signal generation unit and a mixer unit are provided.
  • the light source unit generates probe light.
  • the probe light is incident on an optical fiber (measurement optical fiber) to be measured.
  • the branching unit splits the backward Brillouin scattered light generated in the optical fiber to be measured by the probe light into the first optical path and the second optical path.
  • the optical frequency shifter unit is provided in one of the first optical path and the second optical path, and gives a frequency shift of the beat frequency.
  • the delay unit is provided in one of the first optical path and the second optical path, and gives a delay time difference between the light propagating through the first optical path and the second optical path.
  • the first optical coupler combines the light propagating through the first optical path and the second optical path to generate combined light.
  • the second optical coupler combines the combined light and the local light to generate recombined light.
  • the coherent detection unit heterodyne detects the re-combined light and outputs the difference frequency as the first electric signal.
  • the electrical signal generator generates a second electrical signal having the same frequency as the first electrical signal.
  • the mixer unit performs homodyne detection on the first electric signal and the second electric signal, and outputs the difference frequency as a phase difference signal.
  • This first electric signal is a so-called beat signal.
  • the optical fiber strain measurement device of the second aspect includes a first optical frequency shifter unit and a second optical frequency shifter unit instead of the optical frequency shifter unit.
  • the first optical frequency shifter unit is provided in the first optical path and gives a frequency shift of the first frequency.
  • the second optical frequency shifter unit is provided in the second optical path and gives a frequency shift of the second frequency.
  • the second electric signal is generated as a difference frequency between the first frequency and the second frequency, it becomes a so-called beat signal.
  • the optical fiber strain measurement method includes the following steps.
  • probe light is generated.
  • the probe light is incident on the optical fiber to be measured.
  • the backward Brillouin scattered light generated in the optical fiber to be measured by the probe light is branched into the first optical path and the second optical path.
  • a frequency shift of the beat frequency is given to the light propagating through one of the first optical path and the second optical path.
  • a delay time difference is given between the light propagating through the first optical path and the second optical path.
  • the light propagating through the first optical path and the second optical path is combined to generate combined light.
  • the combined light and the local light are combined to generate recombined light.
  • a first electrical signal is generated by heterodyne detection of the recombined light.
  • a second electric signal having the same frequency as the first electric signal is generated.
  • the first electric signal and the second electric signal are subjected to homodyne detection, and the difference frequency is output as a phase difference signal.
  • the optical fiber strain measurement method provides a frequency shift of the first frequency for the light propagating through the first optical path, and the second frequency for the light propagating through the second optical path. Gives a frequency shift of.
  • optical fiber distortion measurement device and the optical fiber distortion measurement method of the present disclosure two-dimensional information of time and phase is acquired by measuring a frequency change of light as a phase difference of a beat signal given by coherent detection. . For this reason, measurement time is shortened compared with the prior art which requires acquisition of three-dimensional information. Furthermore, by performing heterodyne detection with separately prepared local light on the signal subjected to heterodyne detection, the signal intensity is increased, thereby shortening the measurement time.
  • FIG. 1 is a schematic block diagram of this optical fiber strain measuring apparatus.
  • the optical fiber strain measurement device includes a light source unit 10, a circulator 20, an optical amplifier 30, an optical bandpass filter 32, a self-delay heterodyne interferometer 41, and a timing controller 90.
  • the light source unit 10 generates probe light.
  • the light source unit 10 includes a light source 12 that generates continuous light and an optical pulse generator 14 that generates optical pulses from the continuous light.
  • the optical fiber strain measuring device measures the phase difference according to the frequency change.
  • the frequency fluctuation and frequency spectrum line width (hereinafter also simply referred to as line width) of the light source 12 must be sufficiently smaller than the Brillouin shift. Therefore, a frequency stabilized narrow line width light source is used as the light source 12.
  • the frequency fluctuation and the line width of the light source 12 are desirably sufficiently smaller than 4 MHz and several tens of kHz or less.
  • a narrow linewidth laser having a frequency fluctuation and a line width of about 10 kHz or less is generally available as an off-the-shelf product.
  • the optical pulse generator 14 is configured by using any conventionally known acousto-optic (AO) modulator or electro-optic (EO) modulator.
  • the optical pulse generator 14 generates an optical pulse from continuous light according to the electric pulse generated by the timing controller 90.
  • the repetition period of this light pulse is set longer than the time required for the light pulse to reciprocate through the measured optical fiber 100.
  • This light pulse is output from the light source unit 10 as probe light.
  • the probe light output from the light source unit 10 is incident on the measured optical fiber 100 via the circulator 20.
  • An optical coupler may be used instead of the circulator 20.
  • Backscattered light from the measured optical fiber 100 is sent to the optical amplifier 30 through the circulator 20.
  • the backscattered light amplified by the optical amplifier 30 is sent to the optical bandpass filter 32.
  • the optical bandpass filter 32 has a transmission band of about 10 GHz and transmits only natural Brillouin scattered light. This natural Brillouin scattered light is sent to the self-delayed heterodyne interferometer 41.
  • the signal E 0 (t) at time t of the natural Brillouin scattered light emitted from the optical bandpass filter 32 is expressed by the following equation (1).
  • E 0 (t) A 0 exp ⁇ j (2 ⁇ f B (t) t + ⁇ 0 ) ⁇ (1)
  • a 0 represents the amplitude
  • f B (t) represents the optical frequency of the natural Brillouin scattered light
  • ⁇ 0 represents the initial phase.
  • the self-delay heterodyne interferometer 41 includes a branching unit 42, an optical frequency shifter unit 43, a delay unit 48, a multiplexing unit 50, a coherent detection unit 60, an electric signal generation unit 80, and a signal processing device 74.
  • the local electric signal source 83 of the electric signal generator 80 generates an electric signal having a frequency f AOM .
  • the branching unit 42 receives the backward Brillouin scattered light generated in the optical fiber 100 to be measured by the probe light through the optical bandpass filter 32, and splits it into the first optical path and the second optical path.
  • the optical frequency shifter unit 43 is provided in the first optical path.
  • the optical frequency shifter 43 gives a frequency shift of the frequency f AOM to the light propagating through the first optical path using the electric signal of the frequency f AOM generated by the electric signal generator 80.
  • a delay unit 48 is provided in the second optical path.
  • the delay unit 48 gives a delay of time ⁇ to the light propagating through the second optical path.
  • the multiplexing unit 50 combines the light propagating through the first optical path and the second optical path to generate combined light.
  • the optical signal E 1 (t) propagating through the first optical path and the optical signal E 2 (t ⁇ ) propagating through the second optical path incident on the multiplexing unit 50 are respectively expressed by the following equations (2) (3 ).
  • E 1 (t) A 1 exp ⁇ j (2 ⁇ f B (t) t + 2 ⁇ f AOM t + ⁇ 1 ) ⁇ (2)
  • E 2 (t ⁇ ) A 2 exp [j ⁇ 2 ⁇ f B (t) (t ⁇ ) + ⁇ 2 ⁇ ] (3)
  • a 1 and A 2 is the amplitude of each E 1 (t) and E 2 (t- ⁇ )
  • ⁇ 1 and phi 2 are each E 1 (t) and E 2 (t- ⁇ ) Is the initial phase.
  • the coherent detection unit 60 generates a beat signal by heterodyne detection of the combined light.
  • the coherent detection unit 60 includes, for example, a balanced photodiode (PD) 62 and an FET amplifier 64.
  • Beat signal I 12 provided by heterodyne detection is expressed by the following equation (4).
  • the beat signal generated by the coherent detection unit 60 is sent to the signal processing device 74 as a first electric signal.
  • the electrical signal generated by the electrical signal generator 80 is sent to the signal processing device 74 as a second electrical signal.
  • the signal processing device 74 includes a mixer unit 70 and a low-pass filter (LPF) 72.
  • the mixer unit 70 performs homodyne detection on the first electric signal and the second electric signal to generate a homodyne signal.
  • the second electric signal I AOM generated by the local electric signal source 83 is expressed by the following equation (5).
  • I AOM A AOM cos 2 ⁇ (f AOM t + ⁇ AOM ) (5)
  • a AOM and ⁇ AOM are the amplitude and initial phase of the second electrical signal, respectively.
  • the homodyne signal generated by the mixer unit 70 is expressed by the following equation (6) obtained by multiplying equations (4) and (5).
  • I 12 ⁇ I AOM A 1 A 2 A AOM cos ⁇ 2 ⁇ (f AOM t + f B (t) ⁇ ) + ⁇ 1 ⁇ 2 + ⁇ AOM ⁇ + A 1 A 2 A AOM cos ⁇ 2 ⁇ f B (t) ⁇ + ⁇ 1 ⁇ 2 - ⁇ AOM ⁇ (6)
  • a signal that is finally output is represented by the following equation (7).
  • I 12 ⁇ I AOM A 1 A 2 A AOM cos ⁇ 2 ⁇ f B (t) ⁇ + ⁇ 1 ⁇ 2 ⁇ AOM ⁇ (7) Since ⁇ 1 ⁇ 2 ⁇ AOM in Expression (7) and the delay time ⁇ are constant, only the Brillouin frequency change f B (t) is output as the difference in output intensity.
  • the Brillouin frequency f B (t) varies depending on two factors, the fluctuation of the oscillation frequency of the light source and the distortion of the optical fiber 100 to be measured. However, by using the frequency stabilized narrow line width light source 12 as the light source, the influence of the distortion of the optical fiber 100 to be measured becomes dominant.
  • FIG. 2 (1) and (2) in FIG. 2 are schematic diagrams showing Brillouin shifts and beat signal phase changes.
  • the horizontal axis indicates time t
  • the vertical axis indicates frequency.
  • the horizontal axis indicates time t
  • the vertical axis indicates voltage.
  • This time on the horizontal axis shows the location where Brillouin scattering occurred. That is, when backward Brillouin scattered light is incident after time t with respect to the time when the probe light is emitted, assuming that the propagation velocity of light in the measured optical fiber is v, from the incident end of the measured optical fiber. Back Brillouin scattering occurs at the position of vt / 2.
  • FIG. 3 is a schematic block diagram of the first optical fiber strain measuring apparatus. In the following description, descriptions overlapping with the basic configuration of the optical fiber strain measuring apparatus described with reference to FIG. 1 may be omitted.
  • the self-delay heterodyne interferometer 40 includes a first optical coupler 54 that functions as a multiplexing unit and a second optical coupler 56 between the coherent detection unit 60, and serves as a local light source 52.
  • wire width light source for local light emission differs from the basic composition of an optical fiber distortion measuring device.
  • the Brillouin scattered light after the self-heterodyne interference output from the first optical coupler 54 is input to the second optical coupler 56, and the local light that is the output of the local light source 52 After heterodyne detection, the signal is sent to the coherent detection unit 60.
  • the electric field E LO of local light is expressed by the following formula (8).
  • E LO A LO exp ⁇ j (2 ⁇ f LO t + ⁇ LO ) ⁇ (8)
  • a LO and ⁇ LO are the amplitude and initial phase of E LO , respectively
  • f LO is the frequency of local light.
  • the local light emission frequency f LO is set in the vicinity of the Brillouin frequency.
  • FIG. 4 is a schematic diagram showing the intensity of the beat signal.
  • the horizontal axis represents frequency and the vertical axis represents signal intensity.
  • the equation (9) is the beat of the optical signal E 1 (t) propagating through the first optical path and the optical signal E 2 (t ⁇ ) propagating through the second optical path, as in the above equation (4).
  • the first optical coupler 54 and the second optical coupler 56 pass through two 3 dB couplers.
  • the amplitude is 1 ⁇ 2 when compared with the equation (4) indicating the beat signal in the basic configuration of the optical fiber strain measurement device that passes through one 3 dB coupler.
  • Equations (10) and (11) respectively represent the optical signal E 1 (t) propagating through the first optical path, the optical signal E 2 (t ⁇ ) propagating through the second optical path, and the beat signal of the local light. Represents.
  • the I 1LO component and the I 2LO component are respectively extracted by the band pass filter.
  • the two signals of the I 1LO component and the I 2LO component are multiplied.
  • the I 1LO component is multiplied by the I 2LO component, the following equation (12) is obtained.
  • I 1LO ⁇ I 2LO A 1 A 2 A LO 2 cos ⁇ 2 ⁇ (2f B (t) + f AOM ⁇ fLO) t ⁇ 2f B (t) ⁇ + ⁇ 1 + ⁇ 2 ⁇ LO ⁇ + A 1 A 2 A LO 2 cos ⁇ 2 ⁇ (f AOM t + f B (t) ⁇ ) + ⁇ 1 ⁇ 2 ⁇ (12)
  • the sum frequency component and the difference frequency component are obtained by multiplying the I 1LO component and the I 2LO component.
  • Equation (12) is adapted to A LO 2/2-fold of the formula (4).
  • the second term of the equation (12) is extracted by a filter and multiplied again with the electric signal generated by the local electric signal source 83. The result is given by the following equation (13).
  • FIG. 5 is a diagram illustrating a calculation result of the S / N improvement degree by the first optical fiber strain measuring apparatus.
  • the horizontal axis represents the local light emission power P LO (unit: dBm)
  • the vertical axis represents the S / N improvement (unit: dB) from the basic configuration of the optical fiber strain measurement apparatus. ing.
  • P LO 10dBm
  • FIG. 6 is a schematic block diagram of the second optical fiber strain measuring device. In the following description, the description overlapping with the first optical fiber strain measurement device may be omitted.
  • the second optical fiber strain measuring device includes an optical coupler 16 between the light source 12 of the light source unit 10 and the optical pulse generator 14. Further, a local light emission optical frequency shifter 57 is provided between the optical coupler 16 of the light source unit 10 and the second optical coupler 56.
  • the output of the light source 12 is bifurcated by the optical coupler 16, one is sent to the optical pulse generator 14, and the other is sent to the local light emission optical frequency shifter 57.
  • the local light emission optical frequency shifter 57 gives the output of the light source unit 10 a frequency shift of about 10 GHz, which is the same as the Brillouin frequency shift.
  • the frequency-shifted continuous light is sent to the second optical coupler 56 as local light.
  • an SSB modulator is preferably used as the local light emission optical frequency shifter 57.
  • a local electric signal source 58 is provided in order to drive the local light emission optical frequency shifter 57.
  • the first optical fiber strain measurement apparatus includes a frequency stabilized narrow line width light source for local light emission, in addition to the frequency stabilized narrow line width light source included in the light source unit, in order to generate local light emission.
  • a frequency stabilized narrow line width light source for local light emission in addition to the frequency stabilized narrow line width light source included in the light source unit, in order to generate local light emission.
  • local light is generated by frequency-shifting the output of the frequency stabilization narrow line width light source with which the light source part is provided.
  • the configuration other than the generation of local light is the same as that of the first optical fiber strain measuring device.
  • the first optical fiber strain measuring device in order to make the frequency fluctuations of the two frequency-stabilized narrow line width light sources the same, for example, frequency control by PLL is required.
  • the control since one frequency stabilized narrow line width light source is used, the control becomes simple such that the frequency control by a PLL or the like becomes unnecessary.
  • an optical frequency shifter of about 10 GHz and a local electric signal source are required, there is a tendency for an increase in size and cost.
  • FIG. 7 is a schematic block diagram of the third optical fiber strain measuring apparatus. In the following description, descriptions overlapping with the first and second optical fiber strain measurement devices may be omitted.
  • the light source unit 10 includes a two-wavelength frequency stabilized narrow line width light source (hereinafter, two-wavelength light source) 13, and an optical coupler 16 between the two-wavelength light source 13 and the optical pulse generator 14. And a band-pass filter 18. Further, a local light emission band-pass filter 19 is provided between the optical coupler 16 of the light source unit 10 and the second optical coupler 56.
  • the two-wavelength light source 13 outputs continuous light having two wavelengths separated by a frequency interval of about 10 GHz.
  • the output of the two-wavelength light source 13 is branched into two by an optical coupler 16, one is sent to the optical pulse generator 14 through the band-pass filter 18, and the other is sent to the band-pass filter 19 for local light emission.
  • the bandpass filter 18 included in the light source unit 10 extracts one of the two wavelengths output from the two-wavelength light source 13 as reference light, and the bandpass filter 19 for local light emission uses the other of the two wavelengths output from the two-wavelength light source. Extracted into local light.
  • the third optical fiber strain measurement device local light is generated by frequency shifting the output of the frequency stabilized narrow line width light source provided in the light source unit.
  • two wavelengths are generated by the light source, and one is used as the reference light and the other is used as the local light. Therefore, the optical frequency shifter for local light included in the second optical fiber strain measuring device is It becomes unnecessary. For this reason, downsizing and cost reduction can be obtained.
  • a modification of the first optical fiber strain measuring device will be described with reference to FIG.
  • a first optical frequency shifter unit 44 is provided in the first optical path.
  • a second optical frequency shifter unit 46 and a delay unit 48 are provided in the second optical path.
  • the delay unit 48 may be provided on either the first optical path or the second optical path.
  • the electric signal generator 81 of the self-delay heterodyne interferometer 40 a includes a first local electric signal source 82, a second local electric signal source 84, a mixer 86, and a low pass filter (LPF) 88.
  • the first local electrical signal source 82 and the second local electrical signal source 84 may be outside the electrical signal generation unit 81.
  • the first local electric signal source 82 generates an electric signal having the first frequency f 1 .
  • Second station power air source 84 generates a second electrical signal having a frequency f 2.
  • the first optical frequency shifter unit 44 is provided in the first optical path. First optical frequency shifter unit 44, using the first electrical signal of frequency f 1 generated by the first station power air source 82, with respect to light propagating in the first optical path, the first frequency f 1 Give a frequency shift.
  • the second optical frequency shifter unit 46 is provided in the second optical path.
  • the second optical frequency shifter unit 46 using the second electrical signal of frequency f 2 generated by the second station power air source 84, with respect to light propagating in the second optical path, the second frequency f 2 Give a frequency shift.
  • This modification is applicable not only to the first optical fiber strain measurement device but also to the second and third optical fiber strain measurement devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Transform (AREA)

Abstract

本発明の光ファイバ歪み測定装置は、光源部(10)と、分岐部(42)と、光周波数シフタ部(43)と、遅延部(48)と、第1光カプラ(54)と、第2光カプラ(56)と、を備える。光源部(10)は、プローブ光を生成する。プローブ光は、被測定光ファイバ(100)に入射される。分岐部(42)は、プローブ光により被測定光ファイバで発生する後方ブリルアン散乱光を、第1光路及び第2光路に2分岐する。光周波数シフタ部(43)は、第1光路及び第2光路のいずれか一方に設けられていて、ビート周波数の周波数シフトを与える。遅延部(48)は、第1光路及び第2光路のいずれか一方に設けられており、第1光路及び第2光路を伝播する光の間に遅延時間差を与える。第1光カプラ(54)は、第1光路及び第2光路を伝播する光を合波して合波光を生成する。第2光カプラ(56)は、合波光を局発光と合波して再合波光を生成する。この再合波光がヘテロダイン検波される。本発明によると、測定時間の短縮が可能となる。

Description

光ファイバ歪み測定装置及び光ファイバ歪み測定方法
 本願は、2015年8月24日出願の日本国出願、特願2015-165275号の優先権を主張すると共に、その全体が参照により本明細書に取り込まれる。
 本開示は、ブリルアン散乱光を用いた、光ファイバ歪み測定装置及び光ファイバ歪み測定方法に関する。
 光ファイバ通信の発展とともに、光ファイバ自体をセンシング媒体とする分布型光ファイバセンシングが盛んに研究されている。分布型光ファイバセンシングでは、光ファイバの片端から光パルスを入射し、光ファイバ中で後方散乱された光を時間に対して測定する時間領域リフレクトメトリ(OTDR:Optical Time Domain Reflectometry)が代表的である。光ファイバ中の後方散乱には、レイリー散乱、ブリルアン散乱及びラマン散乱がある。この中で自然ブリルアン散乱を測定するものはBOTDR(Brillouin OTDR)と呼ばれる(例えば、T.Kurashima et al.,”Brillouin Optical-fiber time domain reflectometry“,IEICE Trans. Commun., vol.E76-B, no.4, pp.382-390 (1993)参照)。
 ブリルアン散乱は、光ファイバに入射される光パルスの中心周波数に対して、ストークス側及び反ストークス側にGHz程度周波数シフトした位置に観測され、そのスペクトルはブリルアン利得スペクトルと呼ばれる。ブリルアン利得スペクトルの周波数シフト量及びスペクトル線幅は、それぞれブリルアンシフト及びブリルアン線幅と呼ばれ、光ファイバの材質及び光ファイバに入射される光パルスの波長によって異なる。例えば、石英系のシングルモード光ファイバに波長1.55μmの光パルスを入射した場合、ブリルアンシフトが約11GHzとなり、ブリルアン線幅が約30MHzとなることが報告されている。
 ブリルアンシフトは、光ファイバの歪みに対して500MHz/%程度の割合で線形に変化することが知られている。これを引っ張り歪み及び温度に換算すると、それぞれ、0.058MHz/με、1.18MHz/℃に対応する。
 このように、BOTDRでは、光ファイバの長手方向に対する歪みや温度分布を測定することが可能である。このため、BOTDRは、橋梁やトンネルなど大型建造物のモニタリング技術として注目されている。
 BOTDRは、光ファイバ中で発生する自然ブリルアン散乱光のスペクトル波形を測定するため、別途用意した参照光とのヘテロダイン検波を行うのが一般的である。自然ブリルアン散乱光の強度はレイリー散乱光の強度に比べて2~3桁小さい。このため、ヘテロダイン検波は最小受光感度を向上させる上でも有用となる。
 図9を参照して、従来のBOTDRについて説明する(例えば、特開2001-165808号公報参照)。図9は、従来の光ファイバ歪み測定装置の模式的なブロック図である。
 光源112から出射された連続光は、光カプラ142によって、2分岐される。2分岐された一方は、参照光として用いられ、他方は、光周波数シフタ143によってブリルアン周波数に相当する周波数シフトを受けた後、光パルス発生器114により、パルス状のプローブ光となる。
 このプローブ光は、光カプラ120を経て測定対象となる光ファイバ(被測定光ファイバ)100に入射される。被測定光ファイバ100からの後方ブリルアン散乱光は、光カプラ150において参照光と合波された後、バランス型フォトダイオード(PD)162及びFET増幅器164からなるレシーバ160によってヘテロダイン検波される。
 ここで、プローブ光は、光周波数シフタ143によってブリルアン周波数程度の周波数シフトが施されているため、ヘテロダイン検波されて生成されるビート信号の周波数は低くなる。ビート信号をミキサー170、電気フィルタ178により周波数をダウンシフトさせた後、検波回路172により2乗検波もしくは包絡線検波することにより得られるIF(Intermediate Frequecy)信号のパワーや振幅を測定する。この結果は、信号処理装置174に送られる。
 ここで、BOTDRは、光ファイバの長手方向に対する周波数スペクトル分布の情報を扱うため、時間、振幅及び周波数の3次元の情報を取得する必要がある。図10を参照してBOTDRにおいて、時間、振幅及び周波数の3次元の情報の取得方法について説明する。図10は、従来の光ファイバ歪み測定装置における時間、振幅及び周波数の3次元の情報の取得方法を説明するための模式図である。特開2001-165808号公報に開示の技術では、ブリルアン周波数スペクトル全体を測定するには、時間t及び振幅Iの2次元情報を、局発電気信号源183の周波数fを掃引して取得する。
 自然ブリルアン散乱光は非常に微弱なため、ヘテロダイン検波を適用しても十分な信号雑音比(S/N)を確保できない。その結果、S/N改善のための平均化処理が必要となる。この平均化処理と上述の3次元情報の取得のため、従来の光歪み測定装置では、測定時間の短縮が難しい。
 本開示の発明者は、上述に鑑みて、光の周波数変化をコヒーレント検波により与えられるビート信号の位相差として測定する、自然ブリルアン散乱光を用いた、光ファイバ歪み測定装置及び光ファイバ歪み測定方法を検討し、その検討結果の一部を特許出願(特願2015-072546号:以後、「先の出願」という。)している。
 この先の出願の光ファイバ歪み測定装置及び光ファイバ歪み測定方法によれば、光の周波数変化を自己遅延ヘテロダイン干渉計を介した後、コヒーレント検波により与えられるビート信号の位相差として測定する。すなわち、時間及び位相の2次元の情報のみから周波数変化を測定するため、3次元の情報の取得が必要な従来技術に比べて、測定時間が短縮される。
 しかし、非常に微弱なブリルアン散乱光同士を用いてヘテロダイン検波するため、受信後のS/Nが悪くなる可能性もある。その場合、十分な測定確度を保証するために一定数の平均化処理が必要となるので、測定時間の短縮が十分になされないことも考えられる。
 本開示は、上述に鑑みてなされたものであり、ヘテロダイン検波された信号に対して、別途用意した局発光とのヘテロダイン検波を行うことで、信号強度を増大させ、それにより、測定時間の短縮を可能とする、光ファイバ歪み測定装置及び光ファイバ歪み測定方法を提供する。
 本開示の第1の態様の光ファイバ歪み測定装置は、光源部と、分岐部と、光周波数シフタ部と、遅延部と、第1光カプラと、第2光カプラと、コヒーレント検波部と、電気信号生成部と、ミキサー部とを備える。
 光源部は、プローブ光を生成する。プローブ光は、測定対象となる光ファイバ(被測定光ファイバ)に入射される。分岐部は、プローブ光により被測定光ファイバで発生する後方ブリルアン散乱光を、第1光路及び第2光路に2分岐する。光周波数シフタ部は、第1光路及び第2光路のいずれか一方に設けられていて、ビート周波数の周波数シフトを与える。遅延部は、第1光路及び第2光路のいずれか一方に設けられており、第1光路及び第2光路を伝播する光の間に遅延時間差を与える。第1光カプラは、第1光路及び第2光路を伝播する光を合波して合波光を生成する。第2光カプラは、合波光と局発光を合波して再合波光を生成する。コヒーレント検波部は、再合波光をヘテロダイン検波して差周波を第1電気信号として出力する。電気信号生成部は、第1電気信号と同じ周波数を持つ第2電気信号を生成する。ミキサー部は、第1電気信号と第2電気信号を、ホモダイン検波して、差周波を位相差信号として出力する。この第1電気信号は、いわゆるビート信号である。
 また、第2の態様の光ファイバ歪み測定装置は、光周波数シフタ部に換えて、第1光周波数シフタ部と、第2光周波数シフタ部を備える。
 第1光周波数シフタ部は、第1光路に設けられ、第1周波数の周波数シフトを与える。第2光周波数シフタ部は、第2光路に設けられ、第2周波数の周波数シフトを与える。この場合、第2電気信号は、第1周波数と第2周波数の差周波として生成されるので、いわゆるビート信号となる。
 また、第3の態様の光ファイバ歪み測定方法は、以下の過程を備えて構成される。
 先ず、プローブ光を生成する。プローブ光は、被測定光ファイバに入射される。次に、プローブ光により被測定光ファイバで発生する後方ブリルアン散乱光を、第1光路及び第2光路に2分岐する。第1光路及び第2光路のいずれか一方を伝播する光に対して、ビート周波数の周波数シフトを与える。次に、第1光路及び第2光路を伝播する光の間に遅延時間差を与える。次に、第1光路及び第2光路を伝播する光を合波して合波光を生成する。次に、合波光と局発光を合波して再合波光を生成する。次に、再合波光をヘテロダイン検波して第1電気信号を生成する。次に、第1電気信号と同じ周波数を持つ第2電気信号を生成する。次に、第1電気信号と第2電気信号を、ホモダイン検波して、差周波を位相差信号として出力する。
 また、第4の態様の光ファイバ歪み測定方法は、第1光路を伝播する光に対して、第1周波数の周波数シフトを与え、及び、第2光路を伝播する光に対して、第2周波数の周波数シフトを与える。
 本開示の光ファイバ歪み測定装置及び光ファイバ歪み測定方法によれば、光の周波数変化をコヒーレント検波により与えられるビート信号の位相差として測定することにより、時間及び位相の2次元の情報を取得する。このため、3次元の情報の取得が必要な従来技術に比べて、測定時間が短縮される。さらに、ヘテロダイン検波された信号に対して、別途用意した局発光とのヘテロダイン検波を行うことで、信号強度を増大させ、それにより、測定時間の短縮が可能となる。
光ファイバ歪み測定装置の基本構成の模式的なブロック図である。 ブリルアンシフトとビート信号の位相変化を示す模式図である。 第1光ファイバ歪み測定装置の模式的なブロック図である。 ビート信号の強度を示す模式図である。 第1光ファイバ歪み測定装置によるS/N改善度の計算結果を示す図である。 第2光ファイバ歪み測定装置の模式的なブロック図である。 第3光ファイバ歪み測定装置の模式的なブロック図である。 第1光ファイバ歪み測定装置の変形例の模式的なブロック図である。 従来の光ファイバ歪み測定装置の模式的なブロック図である。 従来の光ファイバ歪み測定装置における時間、振幅及び周波数の3次元の情報の取得方法を説明するための模式図である。
 以下、図を参照して、実施の形態について説明するが、各構成要素の形状、大きさ及び配置関係については、本開示が理解できる程度に概略的に示したものに過ぎない。また、以下、本開示の構成例につき説明するが、各構成要素の材質及び数値的条件などは、単なる例にすぎない。従って、本開示は以下の実施の形態に限定されるものではなく、本開示の構成の範囲を逸脱せずに効果を達成できる多くの変更又は変形を行うことができる。また、各構成要素については、以下説明する機能を実現する任意の公知の素子等を用いることができる。
 (基本構成)
 本開示の理解に資するため、図1を参照して、光の周波数変化をコヒーレント検波により与えられるビート信号の位相差として測定する、光ファイバ歪み測定装置の基本構成について説明する。図1は、この光ファイバ歪み測定装置の模式的なブロック図である。
 光ファイバ歪み測定装置は、光源部10、サーキュレータ20、光増幅器30、光バンドパスフィルタ32、自己遅延ヘテロダイン干渉計41及びタイミング制御器90を備えて構成される。
 光源部10は、プローブ光を生成する。光源部10は、連続光を生成する光源12と、連続光から光パルスを生成する光パルス発生器14を備えて構成される。
 ここで、光ファイバ歪み測定装置は、周波数変化に応じた位相差を測定する。このため、光源12の周波数揺らぎ及び周波数スペクトル線幅(以下、単に線幅とも称する。)は、ブリルアンシフトよりも十分に小さくなければならない。そこで、光源12として周波数安定化狭線幅光源が用いられる。例えば、測定対象となる光ファイバ(以下、被測定光ファイバとも称する。)100の歪みを0.008%としたとき、ブリルアンシフトは4MHzに相当する。このため、0.008%程度の歪みを測定するには、光源12の周波数揺らぎ及び線幅は4MHzより十分に小さく、数10kHz以下であることが望ましい。なお、周波数揺らぎ及び線幅が10kHz程度若しくはそれ以下の狭線幅レーザが、既製品として一般に入手可能である。
 光パルス発生器14は、任意の従来周知の、音響光学(AO:Acoust Optical)変調器又は電気光学(EO:Electric Optical)変調器を用いて構成される。光パルス発生器14は、タイミング制御器90で生成された電気パルスに応じて、連続光から光パルスを生成する。この光パルスの繰り返し周期は、被測定光ファイバ100を光パルスが往復するのに要する時間よりも長く設定される。この光パルスが、プローブ光として、光源部10から出力される。
 この光源部10から出力されたプローブ光は、サーキュレータ20を経て、被測定光ファイバ100に入射される。なお、サーキュレータ20に換えて、光カプラを用いても良い。
 被測定光ファイバ100からの後方散乱光は、サーキュレータ20を経て、光増幅器30に送られる。光増幅器30で増幅された後方散乱光は、光バンドパスフィルタ32に送られる。光バンドパスフィルタ32は、10GHz程度の透過帯域を有しており、自然ブリルアン散乱光のみを透過する。この自然ブリルアン散乱光は、自己遅延ヘテロダイン干渉計41に送られる。この光バンドパスフィルタ32から出射される自然ブリルアン散乱光の時刻tにおける信号E(t)は、以下の式(1)で表される。
       E(t)=Aexp{j(2πf(t)t+φ)} (1)
 ここで、Aは振幅、f(t)は自然ブリルアン散乱光の光周波数、φは初期位相を示している。
 自己遅延ヘテロダイン干渉計41は、分岐部42、光周波数シフタ部43、遅延部48、合波部50、コヒーレント検波部60、電気信号生成部80及び信号処理装置74を備えて構成される。
 電気信号生成部80の局発電気信号源83は、周波数fAOMの電気信号を生成する。
 分岐部42は、プローブ光により被測定光ファイバ100で発生する後方ブリルアン散乱光を、光バンドパスフィルタ32を経て受け取り、第1光路及び第2光路に2分岐する。
 光周波数シフタ部43は、第1光路に設けられている。光周波数シフタ部43は、電気信号生成部80で生成された周波数fAOMの電気信号を用いて、第1光路を伝播する光に対して、周波数fAOMの周波数シフトを与える。
 従来の例えば特開2001-165808号公報に開示されている測定装置では、ブリルアンシフトに対応する数十GHz程度の周波数シフトを与える。これに対し、この光ファイバ歪み測定装置では、周波数fAOMは、数十MHz程度である。このため、従来の測定装置に比べて周波数シフタとして小型でかつ安価なものを用いることができる。
 また、この構成例では、第2光路に遅延部48が設けられている。遅延部48は、第2光路を伝播する光に時間τの遅延を与える。
 合波部50は、第1光路及び第2光路を伝播する光を合波して合波光を生成する。合波部50に入射される、第1光路を伝播する光信号E(t)、第2光路を伝播する光信号E(t-τ)は、それぞれ、以下の式(2)(3)で表される。
    E(t)=Aexp{j(2πf(t)t+2πfAOMt+φ1)}   (2)
    E(t-τ)=Aexp[j{2πf(t)(t-τ)+φ2}](3)
 ここで、A及びAは、それぞれE(t)及びE(t-τ)の振幅であり、φ及びφは、それぞれE(t)及びE(t-τ)の初期位相である。
 コヒーレント検波部60は、合波光をヘテロダイン検波してビート信号を生成する。コヒーレント検波部60は、例えば、バランス型フォトダイオード(PD)62とFET増幅器64を備えて構成される。ヘテロダイン検波により与えられるビート信号I12は、以下の式(4)で表される。
       I12=2Acos{2π(fAOMt+f(t)τ)+φ1-φ2} (4)
 コヒーレント検波部60で生成されたビート信号は第1電気信号として信号処理装置74に送られる。また、電気信号生成部80で生成された電気信号は第2電気信号として信号処理装置74に送られる。
 信号処理装置74は、ミキサー部70と、ローパスフィルタ(LPF)72を備える。ミキサー部70は、第1電気信号と、第2電気信号とをホモダイン検波して、ホモダイン信号を生成する。局発電気信号源83で生成された第2電気信号IAOMを以下の式(5)で表す。
 IAOM=AAOMcos2π(fAOMt+φAOM) (5)
 ここで、AAOM及びφAOMは、それぞれ、第2電気信号の振幅及び初期位相である。
 ミキサー部70で生成されたホモダイン信号は、式(4)及び式(5)を乗算して得られる、以下の式(6)で表される。
 I12×IAOM=AAOMcos{2π(fAOMt+f(t)τ)+φ1-φ2+φAOM}+AAOMcos{2πf(t)τ+φ1-φ2-φAOM} (6)
 式(6)中の和周波成分をLPF72で除去すると、最終的に出力される信号は、以下の式(7)となる。
 I12×IAOM=AAOMcos{2πf(t)τ+φ1-φ2-φAOM} (7)
 式(7)のφ1-φ2-φAOMと、遅延時間τは一定であるため、ブリルアン周波数の変化f(t)のみが出力強度の差として出力される。
 ブリルアン周波数f(t)は、光源の発振周波数の揺らぎと被測定光ファイバ100の歪みの2つの要因によって変化する。しかし、光源として周波数安定化狭線幅光源12を用いることで、被測定光ファイバ100の歪みによる影響が支配的となる。
 図2の(1)及び(2)は、ブリルアンシフトとビート信号の位相変化を示す模式図である。図2の(1)は、横軸に時間tを取って示し、縦軸に周波数を取って示している。また、図2の(2)は、横軸に時間tを取って示し、縦軸に、電圧を取って示している。
 この横軸の時間は、ブリルアン散乱が起こった場所を示している。すなわち、プローブ光が出射された時間に対して、時間t経過後に後方ブリルアン散乱光が入射された場合、被測定光ファイバ内の光の伝播速度をvとすると、被測定光ファイバの入射端からvt/2の位置で後方ブリルアン散乱が生じたことになる。
 図2の(1)及び(2)では、時刻tからtまでの時間Tに対応する区間において、周波数シフトが生じた例を示している。このとき、自己遅延ヘテロダイン干渉計で遅延時間τが与えられているため、位相変化はtからt+τまでの間に変化し、時刻tからt+τまでの間に元の状態に戻る。すなわち、光ファイバ歪み測定装置で位相差を測定するには、T≧τの関係を満たす必要があり、測定可能な時間分解能(すなわち、空間分解能)がτによって定まる。さらに測定可能な周波数変化もτの大きさで定まる。すなわち、τが大きくなると、測定可能な周波数範囲が小さくなるが、空間分解能は大きくなる。一方、τが小さくなると、空間分解能は小さくなるが、測定可能な周波数範囲が大きくなる。このように、遅延時間と測定可能な周波数の間にトレードオフの関係がある。
 (第1実施形態)
 図3を参照して、第1実施形態の光ファイバ歪み測定装置(以下、第1光ファイバ歪み測定装置とも称する。)について説明する。図3は、第1光ファイバ歪み測定装置の模式的なブロック図である。なお、以下の説明において、図1を参照して説明した光ファイバ歪み測定装置の基本構成と重複する説明を省略することがある。
 第1光ファイバ歪み測定装置は、自己遅延ヘテロダイン干渉計40が、合波部として機能する第1光カプラ54と、コヒーレント検波部60の間に第2光カプラ56を備え、局発光源52として局発光用周波数安定化狭線幅光源を備える点が、光ファイバ歪み測定装置の基本構成と異なっている。
 第1光ファイバ歪み測定装置では、第1光カプラ54から出力される自己ヘテロダイン干渉後のブリルアン散乱光が、第2光カプラ56に入力され、局発光源52の出力である局発光と、再度ヘテロダイン検波された後、コヒーレント検波部60に送られる。
 局発光の電界ELOは、以下の式(8)で表される。
    ELO=ALOexp{j(2πfLOt+φLO)}   (8)
 ここで、ALO及びφLOは、それぞれELOの振幅及び初期位相であり、fLOは、局発光の周波数である。この局発光の周波数fLOは、ブリルアン周波数近傍に設定される。
 第1光路を伝播する光信号E(t)、第2光路を伝播する光信号E(t-τ)が第1光カプラ54で合波された後、第2光カプラ56で局発光と合波されて、ヘテロダイン検波される。このため、第2光カプラ56の出力には、以下の式(9)~(11)で表される3つの周波数成分によるビート信号が観測される。
       I12=Acos{2π(fAOMt+f(t)τ)+φ12} (9)
       I1LO=2/√2・ALOcos{2π(f(t)+fAOM-fLO)t+φ1LO} (10)
       I2LO=2/√2・Acos{2π(f(t)-fLO)t-2πf(t)τ)+φLO} (11)
 図4は、ビート信号の強度を示す模式図である。図4では、横軸に周波数を取り、縦軸に信号強度を取って示している。
 ここで、式(9)は、上記の式(4)と同じく、第1光路を伝播する光信号E(t)、第2光路を伝播する光信号E(t-τ)とのビート信号である。しかし、第1光ファイバ歪み測定装置では、第1光カプラ54及び第2光カプラ56の2台の3dBカプラを通過する。このため、1台の3dBカプラを通過する光ファイバ歪み測定装置の基本構成でのビート信号を示す式(4)と比較すると、振幅が1/2である。
 式(10)及び式(11)は、それぞれ 第1光路を伝播する光信号E(t)、及び第2光路を伝播する光信号E(t-τ)と局発光とのビート信号を表している。
 信号処理装置74では、I1LO成分と、I2LO成分をバンドパスフィルタでそれぞれ抽出する。このI1LO成分とI2LO成分の2つの信号を乗算する。I1LO成分とI2LO成分を乗算すると、以下の式(12)が得られる。
       I1LO×I2LO=ALO cos{2π(2f(t)+fAOM-fLO)t-2f(t)τ+φ1+φ-φLO}+ALO cos{2π(fAOMt+f(t)τ)+φ1-φ} (12)
 上の式(12)に示されるように、I1LO成分とI2LO成分を乗算すると、和周波成分と差周波成分とが得られる。
 式(12)の第2項は、式(4)のALO /2倍になっている。この式(12)の第2項をフィルタで抽出し、局発電気信号源83で生成された電気信号と再度乗算する。その結果は、以下の式(13)で与えられる。
 1/2・ALO AOMcos{2πf(t)τ+φ1-φ-φAOM} (13)
 この結果、光ファイバ歪み測定装置の基本構成に比べて、ALO /2の高感度化、すなわち、測定時間の短縮が実現されることが分かる。
 図5を参照して、第1光ファイバ歪み測定装置によるS/N改善度を説明する。図5は、第1光ファイバ歪み測定装置によるS/N改善度の計算結果を示す図である。図5では、横軸に、局発光のパワーPLO(単位:dBm)を取り、縦軸に、光ファイバ歪み測定装置の基本構成からのS/N改善度(単位:dB)を取って示している。
 ここでは、ブリルアン散乱光のパワーをP=P=10dB,としている。図5に示されるように、局発光のパワーPLOを増大させると、S/N改善度が増し、PLO=10dBmのとき、7dBのS/N改善度が実現されることがわかる。
 (第2実施形態)
 図6を参照して、第2実施形態の光ファイバ歪み測定装置(以下、第2光ファイバ歪み測定装置とも称する。)について説明する。図6は、第2光ファイバ歪み測定装置の模式的なブロック図である。なお、以下の説明において、第1光ファイバ歪み測定装置と重複する説明を省略することがある。
 第2光ファイバ歪み測定装置は、光源部10の光源12と、光パルス発生器14の間に光カプラ16を備えている。また、光源部10の光カプラ16と、第2光カプラ56の間に局発光用光周波数シフタ部57を備えている。
 光源12の出力は光カプラ16で2分岐され、一方が光パルス発生器14に送られ、他方が局発光用光周波数シフタ部57に送られる。
 局発光用光周波数シフタ部57は、光源部10の出力に対し、ブリルアン周波数シフトと同程度の、約10GHz程度の周波数シフトを与える。この周波数シフトされた連続光は、局発光として第2光カプラ56に送られる。局発光用光周波数シフタ部57として、例えばSSB変調器を用いることが望ましい。また、局発光用光周波数シフタ部57を駆動させるために、局発電気信号源58が設けられる。
 第1光ファイバ歪み測定装置では、局発光を生成するために、光源部が備える周波数安定化狭線幅光源とは別に、局発光用の周波数安定化狭線幅光源を備えている。これに対し、第2光ファイバ歪み測定装置では、局発光を、光源部が備える周波数安定化狭線幅光源の出力を周波数シフトすることで生成している。この局発光の生成以外の構成については、第1光ファイバ歪み測定装置と同様である。
 第1光ファイバ歪み測定装置では、2台の周波数安定化狭線幅光源の周波数揺らぎを同じにするために、例えばPLLによる周波数制御が必要になる。これに対し、第2光ファイバ歪み測定装置では、1台の周波数安定化狭線幅光源を用いるため、PLLなどによる周波数制御が不要となるなど、制御が簡単になる。ただし、10GHz程度の光周波数シフタと局発電気信号源が必要となるため、大型化、高コスト化の傾向がある。
 (第3実施形態)
 図7を参照して、第3実施形態の光ファイバ歪み測定装置(以下、第3光ファイバ歪み測定装置とも称する。)について説明する。図7は、第3光ファイバ歪み測定装置の模式的なブロック図である。なお、以下の説明において、第1及び第2光ファイバ歪み測定装置と重複する説明を省略することがある。
 第3光ファイバ歪み測定装置は、光源部10が2波長周波数安定化狭線幅光源(以下、2波長光源)13を備え、2波長光源13と、光パルス発生器14の間に光カプラ16とバンドパスフィルタ18を備えている。また、光源部10の光カプラ16と、第2光カプラ56の間に局発光用バンドパスフィルタ19を備えている。
 2波長光源13は、周波数間隔が10GHz程度離れた2つの波長の連続光を出力する。2波長光源13の出力は光カプラ16で2分岐され、一方がバンドパスフィルタ18を経て光パルス発生器14に送られ、他方が局発光用バンドパスフィルタ19に送られる。光源部10が備えるバンドパスフィルタ18が、2波長光源13が出力する2波長の一方を抽出して参照光とし、局発光用バンドパスフィルタ19が、2波長光源が出力する2波長の他方を抽出して局発光とする。
 第3光ファイバ歪み測定装置では、局発光を、光源部が備える周波数安定化狭線幅光源の出力を周波数シフトすることで生成している。これに対し、第3光ファイバ歪み測定装置では、光源で2波長を生成し、一方を参照光、他方を局発光として用いるので、第2光ファイバ歪み測定装置が備える局発光用光周波数シフタが不要となる。このため、コンパクト化、低コスト化が得られる。
  (変形例)
 上述した第1~第3光ファイバ歪み測定装置では、第1光路に光周波数シフタ部が設けられ、第2光路に遅延部48が設けられている例を説明したが、実施形態はこれに限定されない。
 図8を参照して、第1光ファイバ歪み測定装置の変形例について説明する。この変形例では、第1光路に第1光周波数シフタ部44が設けられている。また、第2光路に第2光周波数シフタ部46と遅延部48が設けられている。なお、遅延部48は、第1光路及び第2光路のいずれか一方に設ければよい。
 自己遅延ヘテロダイン干渉計40aの電気信号生成部81は第1局発電気信号源82、第2局発電気信号源84、ミキサー部86及びローパスフィルタ(LPF)88を備えて構成される。なお、第1局発電気信号源82、第2局発電気信号源84は電気信号生成部81の外部に在っても良い。第1局発電気信号源82は、第1周波数fの電気信号を生成する。第2局発電気信号源84は、第2周波数fの電気信号を生成する。ミキサー部86は、第1周波数fの電気信号と、第2周波数fの電気信号から、第1周波数f及び第2周波数fの和周波成分と差周波成分を生成する。LPF88はミキサー部86で生成される信号から差周波成分fAOM(=f-f)のビート信号を出力する。
 第1光周波数シフタ部44は、第1光路に設けられている。第1光周波数シフタ部44は、第1局発電気信号源82で生成された第1周波数fの電気信号を用いて、第1光路を伝播する光に対して、第1周波数fの周波数シフトを与える。
 第2光周波数シフタ部46は、第2光路に設けられている。第2光周波数シフタ部46は、第2局発電気信号源84で生成された第2周波数fの電気信号を用いて、第2光路を伝播する光に対して、第2周波数fの周波数シフトを与える。
 なお、この変形例は、第1光ファイバ歪み測定装置だけでなく、第2及び第3光ファイバ歪み測定装置にも適用可能である。

Claims (7)

  1.  プローブ光を生成する光源部と、
     前記プローブ光により測定対象となる光ファイバで発生する後方ブリルアン散乱光を、第1光路及び第2光路に2分岐する分岐部と、
     前記第1光路及び前記第2光路のいずれか一方に設けられた、ビート周波数の周波数シフトを与える光周波数シフタ部と、
     前記第1光路及び前記第2光路のいずれか一方に設けられた遅延部と、
     前記第1光路及び前記第2光路を伝播する光を合波して合波光を生成する第1光カプラと、
     前記合波光を局発光と合波して再合波光を生成する第2光カプラと、
     前記再合波光をヘテロダイン検波して差周波を第1電気信号として出力するコヒーレント検波部と、
     前記第1電気信号と同じ周波数を持つ第2電気信号を生成する電気信号生成部と、
     前記第1電気信号と前記第2電気信号とをホモダイン検波して、差周波を位相差信号として出力するミキサー部と
    を備える光ファイバ歪み測定装置。
  2.  プローブ光を生成する光源部と、
     前記プローブ光により測定対象となる光ファイバで発生する後方ブリルアン散乱光を、第1光路及び第2光路に2分岐する分岐部と、
     前記第1光路に設けられた、第1周波数の周波数シフトを与える第1光周波数シフタ部と、
     前記第2光路に設けられた、第2周波数の周波数シフトを与える第2光周波数シフタ部と、
     前記第1光路及び前記第2光路のいずれか一方に設けられた遅延部と、
     前記第1光路及び前記第2光路を伝播する光を合波して合波光を生成する第1光カプラと、
     前記合波光を局発光と合波して再合波光を生成する第2光カプラと、
     前記再合波光をヘテロダイン検波して差周波を第1電気信号として出力するコヒーレント検波部と、
     前記第1電気信号と同じ周波数を持つ第2電気信号を生成する電気信号生成部と、
     前記第1電気信号と前記第2電気信号とをホモダイン検波して、差周波を位相差信号として出力するミキサー部と
    を備える光ファイバ歪み測定装置。
  3.  前記局発光を生成する周波数安定化狭線幅光源を備える請求項1又は2に記載の光ファイバ歪み測定装置。
  4.  さらに、局発光用光周波数シフタ部を備え、
     前記光源部が、連続光を生成する周波数安定化狭線幅光源と、
     前記連続光を2分岐する光カプラと、
     前記連続光が2分岐された一方を変調して前記プローブ光として用いられる光パルスを生成する光パルス発生器を備え、
     前記局発光用光周波数シフタ部は、前記光カプラで2分岐された他方を周波数シフトして前記局発光を生成する
    請求項1又は2に記載の光ファイバ歪み測定装置。
  5.  さらに、局発光用光バンドパスフィルタ部を備え、
     前記光源部が、2波長の連続光を生成する2波長周波数安定化狭線幅光源と、
     前記連続光を2分岐する光カプラと、
     前記連続光が2分岐された一方に対して、2波長の一方を抽出するバンドパスフィルタと、
     前記抽出された2波長の一方を変調して前記プローブ光として用いられる光パルスを生成する光パルス発生器を備え、
     前記局発光用光バンドパスフィルタは、前記光カプラで2分岐された他方に対して、2波長の他方を抽出する
    請求項1又は2に記載の光ファイバ歪み測定装置。
  6.  プローブ光を生成し、
     前記プローブ光により測定対象となる光ファイバで発生する後方ブリルアン散乱光を、第1光路及び第2光路に2分岐し、
     前記第1光路及び前記第2光路のいずれか一方を伝播する光に、ビート周波数の周波数シフトを与え、
     前記第1光路及び前記第2光路のいずれか一方に遅延を与え、
     前記第1光路及び前記第2光路を伝播する光を合波して合波光を生成し、
     前記合波光を局発光と合波して再合波光を生成し、
     前記再合波光をヘテロダイン検波して差周波を第1電気信号として出力し、
     前記第1電気信号と同じ周波数を持つ第2電気信号を生成し、
     前記第1電気信号と前記第2電気信号とをホモダイン検波して、差周波を位相差信号として出力すること
    を含む光ファイバ歪み測定方法。
  7.  プローブ光を生成し、
     前記プローブ光により測定対象となる光ファイバで発生する後方ブリルアン散乱光を、第1光路及び第2光路に2分岐し、
     前記第1光路を伝播する光に、第1周波数の周波数シフトを与え、
     前記第2光路を伝播する光に、第2周波数の周波数シフトを与え、
     前記第1光路及び前記第2光路のいずれか一方に遅延を与え、
     前記第1光路及び前記第2光路を伝播する光を合波して合波光を生成し、
     前記合波光を局発光と合波して再合波光を生成し、
     前記再合波光をヘテロダイン検波して差周波を第1電気信号として出力し、
     前記第1電気信号と同じ周波数を持つ第2電気信号を生成し、
     前記第1電気信号と前記第2電気信号とをホモダイン検波して、差周波を位相差信号として出力すること
    を含む光ファイバ歪み測定方法。
PCT/JP2016/062438 2015-08-24 2016-04-19 光ファイバ歪み測定装置及び光ファイバ歪み測定方法 WO2017033491A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-165275 2015-08-24
JP2015165275A JP6308183B2 (ja) 2015-08-24 2015-08-24 光ファイバ歪み測定装置及び光ファイバ歪み測定方法

Publications (1)

Publication Number Publication Date
WO2017033491A1 true WO2017033491A1 (ja) 2017-03-02

Family

ID=58099779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062438 WO2017033491A1 (ja) 2015-08-24 2016-04-19 光ファイバ歪み測定装置及び光ファイバ歪み測定方法

Country Status (2)

Country Link
JP (1) JP6308183B2 (ja)
WO (1) WO2017033491A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608761A (zh) * 2019-10-30 2019-12-24 珠海任驰光电科技有限公司 一种能够对伴生调幅进行消除的光纤干涉装置及方法
JP2020134264A (ja) * 2019-02-18 2020-08-31 沖電気工業株式会社 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112129242B (zh) * 2020-08-17 2022-02-08 电子科技大学 基于光电振荡器的光纤扭转角度测量装置和方法
CN112129229B (zh) * 2020-09-04 2022-02-08 电子科技大学 基于光电振荡器的准分布式位移测量装置和方法
CN112833929A (zh) * 2021-01-06 2021-05-25 中国地质大学(武汉) 基于本地光移频的外差型φ-otdr技术的扰动监测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322588A (ja) * 2002-03-01 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> 反射式ブリルアンスペクトル分布測定方法および装置
US20100165327A1 (en) * 2006-08-24 2010-07-01 Schlumberger Technology Corporation Measuring brillouin backscatter from an optical fibre using channelisation
JP2010256288A (ja) * 2009-04-28 2010-11-11 Yokogawa Electric Corp 光ファイバ歪み測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0409865D0 (en) * 2004-05-01 2004-06-09 Sensornet Ltd Direct measurement of brillouin frequency in distributed optical sensing systems
GB2440952B (en) * 2006-08-16 2009-04-08 Schlumberger Holdings Measuring brillouin backscatter from an optical fibre using digitisation
JP5122120B2 (ja) * 2006-12-13 2013-01-16 横河電機株式会社 光ファイバ特性測定装置
JP2011232138A (ja) * 2010-04-27 2011-11-17 Neubrex Co Ltd 分布型光ファイバセンサ
CN102607449A (zh) * 2012-03-12 2012-07-25 南京大学(苏州)高新技术研究院 同时提高botdr空间分辨率与频移测量精度的信号处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322588A (ja) * 2002-03-01 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> 反射式ブリルアンスペクトル分布測定方法および装置
US20100165327A1 (en) * 2006-08-24 2010-07-01 Schlumberger Technology Corporation Measuring brillouin backscatter from an optical fibre using channelisation
JP2010256288A (ja) * 2009-04-28 2010-11-11 Yokogawa Electric Corp 光ファイバ歪み測定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HISASHI IZUMITA ET AL.: "1.55 pm coherent detection Brillouin OTDR using an LN phase modulator", 1998 NEN IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 2, 7 September 1998 (1998-09-07), pages 325, B-10 - 3 *
KENGO KOIZUMI ET AL.: "High-speed distributed strain measurement using BOTDR based-on self- delayed heterodyne detection", 2015 NEN IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 2, pages 283, B-13 - 5, ISSN: 1349-1415 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134264A (ja) * 2019-02-18 2020-08-31 沖電気工業株式会社 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP7286994B2 (ja) 2019-02-18 2023-06-06 沖電気工業株式会社 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
CN110608761A (zh) * 2019-10-30 2019-12-24 珠海任驰光电科技有限公司 一种能够对伴生调幅进行消除的光纤干涉装置及方法
CN110608761B (zh) * 2019-10-30 2024-05-14 珠海任驰光电科技有限公司 一种能够对伴生调幅进行消除的光纤干涉装置及方法

Also Published As

Publication number Publication date
JP6308183B2 (ja) 2018-04-11
JP2017044503A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6308160B2 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
JP6705353B2 (ja) 光ファイバ歪み及び温度測定装置
JP6358277B2 (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP6308184B2 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
JP6552983B2 (ja) ブリルアン散乱測定方法およびブリルアン散乱測定装置
WO2017033491A1 (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
CN109556527B (zh) 光纤应变测定装置和光纤应变测定方法
JP7286994B2 (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP6376261B1 (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP7040386B2 (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP7396382B2 (ja) 光ファイバセンサ及びブリルアン周波数シフト測定方法
WO2020194856A1 (ja) 光コヒーレントセンサ及び光コヒーレントセンシング方法
JP3905780B2 (ja) ブリルアンスペクトル分布測定方法および装置
JP7351365B1 (ja) 光ファイバセンサ及びブリルアン周波数シフト測定方法
JP2019035724A (ja) 光ファイバ歪み測定装置及び光ファイバ歪み測定方法
JP7424250B2 (ja) 光ファイバ歪測定装置及び光ファイバ歪測定方法
JP7003807B2 (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
US20240053172A1 (en) Optical fiber sensor and brillouin frequency shift measurement method
JP5927079B2 (ja) レーザ光特性測定方法及び測定装置
JP2022096792A (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP2022040695A (ja) 光ファイバ歪み測定装置及びブリルアン周波数シフトオフセットの調整方法
JP6259753B2 (ja) 光反射計測装置及び光反射計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838838

Country of ref document: EP

Kind code of ref document: A1