WO2017033405A1 - 芯金レスクローラ及び芯金レスクローラ装置 - Google Patents

芯金レスクローラ及び芯金レスクローラ装置 Download PDF

Info

Publication number
WO2017033405A1
WO2017033405A1 PCT/JP2016/003560 JP2016003560W WO2017033405A1 WO 2017033405 A1 WO2017033405 A1 WO 2017033405A1 JP 2016003560 W JP2016003560 W JP 2016003560W WO 2017033405 A1 WO2017033405 A1 WO 2017033405A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler
plate
main body
coreless
present
Prior art date
Application number
PCT/JP2016/003560
Other languages
English (en)
French (fr)
Inventor
立石 健二
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2017033405A1 publication Critical patent/WO2017033405A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • B62D55/253Tracks of continuously flexible type, e.g. rubber belts having elements interconnected by one or more cables or like elements

Definitions

  • the present invention relates to a mandrel-less crawler and a mandrel-less crawler device.
  • Rubber crawlers that do not have a metal core are less rigid than rubber crawlers that have a metal core (crawlers with a metal core), so metal cords (steel cords)
  • a reinforcing layer (fiber belt reinforcing material) is embedded (for example, Patent Document 1).
  • the cored barless crawler has a phenomenon called skewing in which the cored bar crawler is shifted to either the outer side or the inner side when the machine is mounted.
  • the following three factors can be considered as the cause of the skew.
  • the first factor is that conventional coreless crawlers are low in rigidity, and thus are easily affected by driving wheels, wheels, and the like when mounted and driven by an actual machine.
  • the second factor when the actual machine is mounted and tension is applied to the coreless crawler, the torsion of the steel cord and the deformation of the reinforcing layer (for example, deformation in the bias layer due to the change in the cord inclination angle) The moment force due to is generated.
  • the tension balance cannot be achieved when the coreless crawler is mounted due to the influence. In addition, it may be offset to either the outside or the inside of the fuselage.
  • skewing wears the guide protrusions (drive protrusions) of the cored barless crawler and affects the straightness of the aircraft. For this reason, a cored bar-less crawler and a cored bar-less crawler device that do not exhibit such characteristics (hereinafter also referred to as “skew characteristics”) and are excellent in rigidity in the width direction are desired.
  • An object of the present invention is to provide a mandrel-less crawler and a mandrel-less crawler device in which the skew phenomenon is suppressed.
  • a cored barless crawler includes an endless belt-like main body having elasticity, a metal cord embedded in the main body and extending in the circumferential direction of the main body, and embedded in the main body at intervals in the circumferential direction of the main body.
  • a plurality of plate-like bodies made of a rigid material, wherein the plate-like bodies are arranged on the outer peripheral side of the main body with respect to the metal cord.
  • the main body has a plurality of protrusions arranged on the inner peripheral surface of the main body at intervals in the circumferential direction of the main body, It is preferable that the circumferential edge of the plate-like body is located at a position overlapping the projection portion as viewed in the thickness direction of the main body. In this case, it is possible to prevent bending starting from the plate-like body, which can occur when the machine body is wound.
  • the cored barless crawler according to the present invention preferably has a plurality of reinforcing cords embedded in the main body so as to be inclined with respect to the circumferential direction of the main body. In this case, it becomes a cored bar-less crawler in which the skew feeding phenomenon caused by the reinforcing cord is suppressed.
  • a cored barless crawler device includes any one of the above-described cored bar crawlers, and a driving wheel, a driven wheel, and a wheel on which the cored bar crawler is wound. According to the cored bar-less crawler device according to the present invention, the cored bar-less crawler device in which the skew feeding phenomenon is suppressed is obtained.
  • FIG. 2 is a sectional view taken along line XX in FIG.
  • FIG. 6 is a cross-sectional view corresponding to the XX cross section of FIG. 1 of a cored bar crawler according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view corresponding to the XX cross section of FIG. 1 of a cored bar crawler according to a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view corresponding to a cross section taken along line XX of FIG. 1 of a cored bar crawler according to a fourth embodiment of the present invention.
  • reference numeral 1 ⁇ / b> A denotes a cored bar-less crawler according to the first embodiment of the present invention.
  • the cored bar-less crawler 1A has an endless belt-like crawler main body (main body) 2 having elasticity.
  • the crawler body 2 is made of a rubber material.
  • W is the width direction of the crawler main body 2 (the width direction of the main body) (hereinafter also simply referred to as “width direction”).
  • Reference numeral L denotes a circumferential direction of the crawler body 2 (a circumferential direction of the body) (hereinafter also simply referred to as “circumferential direction”).
  • the symbol D is the thickness direction of the crawler main body (the thickness direction of the main body) (hereinafter also simply referred to as “thickness direction”).
  • the thickness direction is the direction of the perpendicular when the crawler body 2 is extended horizontally.
  • the cored bar-less crawler 1 ⁇ / b> A has a plurality of lugs 3.
  • the lugs 3 are arranged on the outer peripheral side of the crawler main body 2 at intervals in the circumferential direction.
  • the lug 3 is made of a rubber material.
  • the lug 3 can be vulcanized and bonded to the outer peripheral surface of the crawler body 2, or can be formed integrally with the crawler body 2.
  • the main cord layer 4 has a plurality of metal cords (steel cords) 4 a that are embedded in the crawler body 2 and extend in the circumferential direction of the crawler body 2.
  • the main cord layer 4 is a 0 ° ply in which a plurality of metal cords 4a are wound in parallel to the circumferential direction.
  • the main cord layer 4 is a single layer, but may be a plurality of layers spaced in the width direction.
  • the metal cord 4a is formed by twisting a plurality of steel filaments, it can also be configured by only a single steel filament.
  • the reinforcing cord layer 5 includes a plurality of reinforcing cords 5a that are embedded in the crawler main body 2 so as to be inclined with respect to the circumferential direction in a plan view of FIG. 1 (viewed in the thickness direction of the main body).
  • the reinforcing cord layer 5 is a bias ply in which a plurality of reinforcing cords 5a are inclined with respect to the circumferential direction.
  • the reinforcing cord layer 5 is disposed on each of the inner peripheral side and the outer peripheral side of the crawler body 2 so as to sandwich the main cord layer 4, but the reinforcing cord layer 5 is limited to this. For example, it can be disposed only on the inner peripheral side of the crawler body 2 relative to the main cord layer 4 or only on the outer peripheral side of the crawler body 2 relative to the main cord layer 4.
  • the reinforcing cord layer 5 may be at least one layer.
  • the crawler main body 2 has guide protrusions (protrusions) 7 on the inner peripheral surface 2f of the crawler main body 2.
  • the guide protrusions 7 are arranged at a plurality of locations on the inner peripheral surface 2 f of the crawler body 2 at intervals in the circumferential direction of the crawler body 2.
  • the guide protrusion 7 is made of a rubber material.
  • the guide protrusion 7 can be vulcanized and bonded to the inner peripheral surface 2 f of the crawler body 2, or can be formed integrally with the crawler body 2.
  • the guide protrusion 7 is shaped like a truncated cone having a flat top surface 7a, as shown in FIG.
  • Numeral 6 is a plate-like body embedded in the crawler body 2.
  • the plate-like body 6 is made of a rigid material having higher rigidity than the crawler body 2.
  • the plate-like body 6 is a metal plate.
  • the metal as the rigid material include iron, carbon steel, stainless steel, and an aluminum alloy.
  • the plate-like body 6 can be made of a rigid material such as a fiber reinforced plastic, a carbon fiber reinforced carbon composite material, ceramics, or a hard plastic (for example, high-rigidity polypropylene (PP)) depending on the application.
  • PP high-rigidity polypropylene
  • the plate-like bodies 6 are arranged at intervals in the circumferential direction of the crawler body 2.
  • the outer circumferential edges 6 e L of the plate-like body 6 extend in parallel to each other along the width direction of the crawler body 2.
  • each of the widthwise outer edges 6e W of the plate-like body 6 passes through the center of the plate-like body 6 in the width direction and extends in parallel with the circumferential direction of the crawler body 2. From the line O 2L , they extend to the outer side in the width direction toward the outer edge 2e in the width direction of the crawler main body 2 (on the side of the outer end 2e in the width direction of the crawler main body 2) with the same length.
  • the circumferential outer edge 6 e L and the width direction outer edge e W of the plate-like body 6 are exemplarily shown in only one plate-like body 1.
  • each of the plate-like bodies 6 is disposed on the outer peripheral side of the crawler body 2 with respect to the main cord layer 4.
  • the reinforcing cord layer 5 is disposed on the outer peripheral side with respect to the main cord layer 4, and the plate-like body 6 is further disposed on the outer peripheral side with respect to the reinforcing cord layer 5. That is, the plate-like body 6 is embedded in the crawler body 2 on the outer peripheral side of the main cord layer 4 and the reinforcing cord layer 5, and the metal cord layer 4 a and the reinforcing cord embedded in the crawler body 2. 5a is restrained from the outer peripheral side.
  • the coreless crawler 1A by embedding a plurality of plate-like bodies 6 made of a rigid material at least on the outer peripheral side of the crawler body 2 with respect to the metal cord 4a, The rigidity of the crawler body 2 is increased, and at the same time, at least the metal cord 4a embedded in the crawler body 2 is constrained from the outer peripheral side of the crawler body 2, thereby deforming the metal cord 4a (for example, the metal cord Since the occurrence of deformation (for example, deformation around the center line of the metal cord 4a due to torsion) of 4a and disorder (for example, disorder of the arrangement of the metal cord 4a during manufacturing) can be reduced, at least the metal cord 4a is a factor. As a result, the skew phenomenon is suppressed, and as a result, the coreless crawler is excellent in durability, straightness of the machine body, and the like.
  • a plurality of plate-like bodies 6 are embedded in the crawler body 2.
  • the reinforcement cord 5a is deformed (for example, deformation associated with a change in the inclination angle of the reinforcement cord 5a that occurs during manufacturing or driving) or disordered (for example, the reinforcement cord 5a that occurs during manufacturing). Therefore, the skew phenomenon caused by the reinforcing cord 5a can be suppressed, and the coreless crawler excellent in durability, straightness of the machine body, and the like can be obtained.
  • the plate-like body 6 is located at a position where the circumferential outer edge 6e L of the plate-like body 6 overlaps with the guide protrusion 7 in the plan view of FIG. Specifically, the circumferential outer edge 6e L of the plate-like body 6 is different from the circumferential outer edge 7e L of the guide protrusion 7 so that the plate-like body 6 includes the top surface 7a of the guide protrusion 7 in the plan view of FIG. It is located between the outer circumferential edge 7a L of the top surface 7a.
  • the crawler body 2 has a high bending rigidity in the circumferential direction and hardly bends when wound around the machine body. Bending with the plate-like body 6 as a starting point, which can occur during winding around the machine body, can be prevented, and the durability of the plate-like body 6 and, in turn, the durability of the core metal-less crawler 1A are improved.
  • the plate-like body 6 is originally embedded in a portion that has a high bending rigidity and is difficult to bend, an increase in the bending rigidity in the circumferential direction of the crawler body 2 that can be caused by the embedding of the plate-like body 6 is suppressed. be able to.
  • FIG. 3 shows a cored bar-less crawler 1B according to the second embodiment of the present invention.
  • the mandrel-less crawler usually tends to be deformed such as torsion at the outer side in the width direction, particularly in the vicinity of the outer end 2e in the width direction of the crawler body 2 during manufacturing or driving. This is because the rigidity of the crawler main body 2 decreases as it goes toward the outer end 2e in the width direction of the crawler main body 2, so that deformation such as twisting is likely to occur near the outer edge 2e in the width direction of the crawler main body 2.
  • the portion of the guide projection 7 has high rigidity in the thickness direction of the crawler body 2 and is less likely to cause twisting or misalignment of the metal cord 4a and the reinforcing cord 5a during driving.
  • the plate-like body 6 is not embedded in the portion overlapping the portion of the guide protrusion 7 in the thickness direction.
  • two plate-like bodies 6 (shown only on one side cross section in the drawing) are used, and these plate-like bodies 6 are respectively located at positions where guide protrusions 7 are arranged in the circumferential direction of the crawler body 2.
  • the guide protrusions 7 are arranged at intervals in the width direction so as to exclude portions overlapping the thickness direction.
  • the weight can be reduced because the plate-like body 6 does not exist in the portion overlapping the guide protrusion 7 in the thickness direction, and the cost can be reduced because the material used for the plate-like body 6 is reduced. be able to. Further, in this case, since the rigidity of the crawler main body 2 is enhanced except for a portion overlapping the guide protrusion 7 in the thickness direction, it is possible to suppress the skew phenomenon.
  • FIG. 4 shows a core bar-less crawler 1C according to the third embodiment of the present invention.
  • the present embodiment is a modification of the cored bar less crawler 1B of FIG. 3 and further increases the interval in the width direction of the two plate-like bodies 6.
  • the weight of the crawler body 2 that is likely to be deformed is increased in rigidity in the width direction outer edge 2e side, and the portion where the plate-like body 6 does not exist is further enlarged to further reduce the weight and cost. Can do.
  • FIG. 5 shows a cored bar-less crawler 1D according to the fourth embodiment of the present invention.
  • This embodiment is a modification of the cored bar-less crawler 1A of FIG. 1, and the thickness direction distance of the plate-like body 6 (thickness of the plate-like body 6) is increased toward the width direction outer end 2e side of the crawler body 2. It is made to become thicker. In this case, the rigidity of the crawler body 2 on the side of the outer edge 2e in the width direction that is likely to be deformed can be intensively increased.
  • the cross-sectional contour shape of the plate-like body 6 is such that the inner and outer peripheral surfaces of the plate-like body 6 are directed in the thickness direction of the crawler main body 2 toward the outer end 2e in the width direction of the crawler main body 2, respectively.
  • the distance between the horizontal lines extending in the thickness direction of the crawler body 2 is increased by moving only one of the inner and outer peripheral surfaces of the plate-like body 6 away from the horizontal line. It can also be formed.
  • FIG. 6 shows a cored bar-less crawler 1E according to the fifth embodiment of the present invention.
  • This embodiment is a modification of the cored bar-less crawler 1A of FIG. 1, and the thickness direction distance (thickness) of the plate-like body 6 is made thinner toward the width direction outer end 2e of the crawler body 2. Is.
  • the strength of the plate-like body 6 is ensured in the portion overlapping the guide projection 7 in the thickness direction, that is, the portion where the bending stress is generated most, and as a result, the plate-like body 6 is thin.
  • the weight can be reduced, and the cost can be reduced by reducing the amount of material used for the plate-like body 6.
  • the cross-sectional contour shape of the plate-like body 6 is such that the inner peripheral surface of the plate-like body 6 is directed to the horizontal line extending in the thickness direction of the crawler body 2 as it goes toward the outer end 2e in the width direction of the crawler body 2. It is formed by making it approach from the inner peripheral side.
  • FIG. 7 shows a core bar-less crawler 1F according to the sixth embodiment of the present invention.
  • the core metal-less crawler 1F is a modification of FIG. 6, and the thickness of the plate-like body 6 becomes thinner toward the outer peripheral side of the crawler body 2 as it goes outward in the width direction.
  • the cross-sectional contour shape of the plate-like body 6 is such that the outer peripheral surface of the plate-like body 6 has an outer periphery with respect to a horizontal line extending in the thickness direction of the crawler body 2 as it goes toward the outer end 2e in the width direction of the crawler body 2. It is formed by making it approach from the side.
  • FIG. 8 shows a core bar-less crawler 1G according to the seventh embodiment of the present invention.
  • the present embodiment is a modification of the cored bar rescue crawler 1A of FIG. 1, and the plate-like body 6 is arranged at a position overlapping the portion of the guide protrusion 7 in plan view of FIG.
  • the circumferential outer edge 6e L of the plate-like body 6 is a position equal to the circumferential outer edge 7a L of the top surface 7a of the guide projection 7 in a plan view of FIG. It is in.
  • the plate-like body 6 is embedded in the portion of the crawler main body 2 having the highest bending rigidity, the durability of the plate-like body 6 and the durability of the core metal-less crawler 1A are most improved. In this case, the increase in bending rigidity in the circumferential direction of the crawler body 2 that can be caused by embedding the plate-like body 6 can be suppressed most.
  • FIG. 9 shows a cored bar-less crawler 1H according to the eighth embodiment of the present invention.
  • This embodiment is a modification of the cored bar-less crawler 1G in FIG. 8, and the width in the circumferential direction (circumferential length) of the plate-like body 6 is increased toward the width direction outer edge 2e side of the crawler body 2 ( Long).
  • the contour shape of the plate-like body 6 is the plan view of FIG.
  • the width-direction center line O 6w of the plate-like body 6 is a line that extends in parallel with the width direction of the crawler body 2 through the center of the plate-like body 6 in the circumferential direction.
  • FIG. 10 shows a core bar-less crawler 1I according to the ninth embodiment of the present invention.
  • This embodiment is a modification of the cored bar-less crawler 1G of FIG. 8, and the circumferential width of the plate-like body 6 is made narrower (shorter) as it goes toward the widthwise outer edge 2e side of the crawler body 2. Is.
  • the rigidity of the crawler body 2 that is likely to be deformed is secured to the width direction outer edge 2e side at the minimum, and the circumferential direction of the plate-like body 6
  • the weight can be reduced by reducing the width, and the cost can be reduced by the amount of material used for the plate-like body 6 being reduced.
  • the outline shape of the plate-like body 6 is the same as that in the plan view of FIG. 10 except for the circumferential outer edge 6e L1 of the plate-like body 6 that overlaps the top surface 7a of the guide protrusion 7 in the thickness direction.
  • Each of the circumferential outer edges 6e L2 of the plate-like body 6 connected to both sides of the circumferential outer edge 6e L1 in the width direction is a width-direction center line O 6w of the plate-like body 6 (in FIG. 10, only one plate-like body 6 is exemplified. To the same distance).
  • the elastic crawler device includes the cored bar-less crawler according to the present invention.
  • an elastic crawler device includes any one of the core metal-less crawlers 1A to 1I.
  • the rotating body 10 is used as a friction drive type driving wheel, and the rotating body 10 is rolled on the inner peripheral surface 2 f of the crawler body 2, thereby transmitting the driving force to the crawler body 2.
  • the rotating body 10 has two rollers 11 connected via a connecting shaft 12.
  • the rotating body 10 is a driving wheel, a driven wheel, and a rolling wheel.
  • the driving wheel and the driven wheel on the driving side have a plurality of pin members (engaging portions) arranged around the rotation axis of the sprocket.
  • the rotating body 10 is a wheel.
  • the elastic crawler device by embedding a plurality of plate-like bodies 6 made of a rigid material at least on the outer peripheral side of the crawler main body 2 with respect to the metal cord 4a, the width direction of the crawler main body 2 is achieved.
  • the metal cord 4a embedded in the crawler main body 2 from the outer peripheral side of the crawler main body 2, it is possible to reduce the occurrence of deformation and disturbance of the metal cord 4a, etc.
  • the skew phenomenon caused by the metal cord 4a is suppressed, and as a result, the coreless crawler device is excellent in durability, straightness of the machine body, and the like.
  • the present invention relates to an endless belt-like main body having elasticity and a metal cord wound around the main body in a circumferential direction and embedded in the main body, and a core metal-less crawler using the same It can be applied to a crawler device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Storage Of Web-Like Or Filamentary Materials (AREA)

Abstract

斜行現象が抑制された、芯金レスクローラ及び芯金レスクローラ装置を提供する。 芯金レスクローラ(1A)は、弾性を有する無端帯状の本体(2)と、本体(2)に埋設されて周方向に延びる金属コード(4a)と、本体(2)に周方向に間隔を置いて埋設される、剛性材料からなる、複数の板状体(6)と、を備え、板状体(6)を金属コード(4a)よりも本体(2)の外周側に配置した。芯金レスクローラ装置は、芯金レスクローラ(1A)を備える。

Description

芯金レスクローラ及び芯金レスクローラ装置
 本発明は、芯金レスクローラ及び芯金レスクローラ装置に関する。
 芯金を有しないゴムクローラ(芯金レスクローラ)は、芯金を有するゴムクローラ(芯金入りクローラ)と比べると剛性が低いため、寸法安定性等を目的に、金属コード(スチールコード)や補強層(繊維ベルト強化材)を埋設している(例えば、特許文献1)。
特開2001-206990号公報
 また、芯金レスクローラには、機体装着後の走行時に、芯金レスクローラが機体外側又は内側のどちらか一方に片寄りする、斜行と呼ばれる現象が存在する。斜行の発生要因には、例えば、以下の3つが考えられる。
 まず第1の要因として、従来の芯金レスクローラは、剛性が低いことで、実機装着して駆動させるときに駆動輪や転輪等の影響を受けやすいことが挙げられる。次いで、第2の要因として、実機装着して芯金レスクローラに張力がかかったとき、スチールコードの捻れ(トーション)や補強層の変形(例えば、バイアス層ではコード傾斜角の変化に伴う変形)によるモーメント力が発生することが挙げられる。さらに、第3の要因として、製造過程で補強層等を埋設する場合、当該補強層等が均一に埋設されないと、その影響で、芯金レスクローラを実機装着したときに、張力バランスが取れずに、機体の外側又は内側のどちらか一方の側に片寄ってしまうことが挙げられる。
 斜行は、例えば、芯金レスクローラのガイド突起(駆動突起)を摩耗させたり、機体の直進性に影響を与える。このため、こうした特性(以下、「斜行特性」ともいう)を極力示さない、幅方向の剛性に優れた芯金レスクローラ及び芯金レスクローラ装置が望まれている。
 本発明の目的は、斜行現象が抑制された、芯金レスクローラ及び芯金レスクローラ装置を提供することである。
 本発明に係る芯金レスクローラは、弾性を有する無端帯状の本体と、前記本体に埋設されて当該本体の周方向に延びる金属コードと、前記本体に当該本体の周方向に間隔を置いて埋設される、剛性材料からなる、複数の板状体と、を備え、前記板状体を前記金属コードよりも前記本体の外周側に配置したことを特徴とする。本発明に係る芯金レスクローラによれば、金属コードを要因とする、斜行現象が抑制された、芯金レスクローラとなる。
 本発明に係る芯金レスクローラでは、前記本体は、当該本体の内周面に、当該本体の周方向に間隔を置いて配置される、複数の突起を有し、前記板状体は、前記本体の厚み方向視で、当該板状体の周方向縁が前記突起の部分と重複する位置にあることが好ましい。この場合、機体への巻き掛けの際に生じ得る、板状体を起点とした屈曲を防止することができる。
 本発明に係る芯金レスクローラでは、前記本体に当該本体の周方向に対して傾斜して埋設される、複数の補強コードを有することが好ましい。この場合、補強コードを要因とする、斜行現象が抑制された、芯金レスクローラとなる。
 本発明に係る芯金レスクローラ装置は、上記のいずれかの芯金レスクローラと、前記芯金レスクローラが巻き掛けられる、駆動輪、従動輪および転輪と、を備えることを特徴とする。本発明に係る芯金レスクローラ装置によれば、斜行現象が抑制された、芯金レスクローラ装置となる。
 本発明によれば、斜行現象が抑制された、芯金レスクローラ及び芯金レスクローラ装置を提供することができる。
本発明の第1の実施形態に係る芯金レスクローラを内周面側から視た平面図である。 図1のX-X断面図である。 本発明の第2の実施形態に係る芯金レスクローラの、図1のX-X断面に相当する断面図である。 本発明の第3の実施形態に係る芯金レスクローラの、図1のX-X断面に相当する断面図である。 本発明の第4の実施形態に係る芯金レスクローラの、図1のX-X断面に相当する断面図である。 本発明の第5の実施形態に係る芯金レスクローラの、図1のX-X断面に相当する断面図である。 本発明の第6の実施形態に係る芯金レスクローラの、図1のX-X断面に相当する断面図である。 本発明の第7の実施形態に係る芯金レスクローラを内周面側から視た平面図である。 本発明の第8の実施形態に係る芯金レスクローラを内周面側から視た平面図である。 本発明の第9の実施形態に係る芯金レスクローラを内周面側から視た平面図である。
 以下、図面を参照して、本発明の様々な実施形態に係る芯金レスクローラ及び芯金レスクローラ装置を説明する。なお、以下の説明において、実質的に同一の部分は同一の符号をもって、その説明を省略する。
 図1及び図2中、符号1Aは、本発明の第1の実施形態に係る芯金レスクローラである。芯金レスクローラ1Aは、弾性を有する無端帯状のクローラ本体(本体)2を有する。本実施形態では、クローラ本体2は、ゴム材料で構成されている。以下の説明では、符号Wは、クローラ本体2の幅方向(本体の幅方向)(以下、単に「幅方向」ともいう)である。また、符号Lは、クローラ本体2の周方向(本体の周方向)(以下、単に「周方向」ともいう)である。さらに、符号Dは、クローラ本体の厚み方向(本体の厚み方向)(以下、単に「厚み方向」ともいう)である。なお、ここで、厚み方向とは、クローラ本体2を水平に伸ばしたときの垂線の方向とする。
 図2に示すように、芯金レスクローラ1Aは、複数のラグ3を有している。ラグ3は、クローラ本体2の外周側に周方向に間隔を置いて配置されている。本実施形態では、ラグ3は、ゴム材料で構成されている。ラグ3は、例えば、クローラ本体2の外周面に加硫接着することができ、また、クローラ本体2と一体に成形することもできる。
 符号4は、メインコード層である。メインコード層4は、クローラ本体2に埋設されるとともにクローラ本体2の周方向に延びる、複数の金属コード(スチールコード)4aを有する。本実施形態では、メインコード層4は、複数の金属コード4aを周方向に対して平行に巻き掛けた0°プライである。本実施形態では、メインコード層4は、1層であるが、幅方向に間隔を置いた複数の層とすることもできる。また、本実施形態では、金属コード4aは、複数のスチールフィラメントを撚って構成したものであるが、単一のスチールフィラメントのみで構成することもできる。
 符号5は、補強コード層である。補強コード層5は、図1の平面視(本体の厚み方向視)で、クローラ本体2に周方向に対して傾斜して埋設される、複数の補強コード5aを有する。本実施形態では、補強コード層5は、複数の補強コード5aを周方向に対して傾斜させたバイアスプライである。本実施形態では、補強コード層5は、メインコード層4を挟み込むように、クローラ本体2の内周側及び外周側のそれぞれに配置されているが、補強コード層5は、これに限定されるものではなく、例えば、メインコード層4よりもクローラ本体2の内周側にのみ、又は、メインコード層4よりもクローラ本体2の外周側にのみに配置することができる。また、補強コード層5は、少なくとも1層以上であればよい。
 本実施形態では、クローラ本体2は、クローラ本体2の内周面2fにガイド突起(突起)7を有している。ガイド突起7は、図1に示すように、クローラ本体2の周方向に間隔を置いて、クローラ本体2の内周面2fの複数の個所に配置されている。本実施形態では、ガイド突起7は、ゴム材料で構成されている。ガイド突起7は、例えば、クローラ本体2の内周面2fに加硫接着することができ、また、クローラ本体2と一体に成形することもできる。また、本実施形態では、ガイド突起7は、図2に示すように、平坦な頂面7aを有した円錐台形状に形作られている。
 符号6は、クローラ本体2に埋設された、板状体である。板状体6は、クローラ本体2よりも高い剛性を有する、剛性材料からなる。本実施形態では、板状体6は、金属製のプレートである。剛性材料としての金属には、例えば、鉄、炭素鋼、ステンレス鋼、又は、アルミニウム合金等が挙げられる。また板状体6は、用途に応じて、繊維強化プラスチック、炭素繊維強化炭素複合材料、セラミックス、硬質プラスチック(例えば、高剛性ポリプロピレン(PP))等の剛性材料を使用することができる。
 板状体6は、図1に示すように、クローラ本体2の周方向に間隔を置いて配置されている。本実施形態では、板状体6の周方向外縁6eはそれぞれ、クローラ本体2の幅方向に沿って、互いに平行に延在している。詳細には、板状体6の幅方向外縁6eはそれぞれ、板状体6の幅方向中心を通って、クローラ本体2の周方向と平行に延在する、板状体6の幅方向中心線O2Lから、クローラ本体2の幅方向外縁2eに向かって幅方向外側(クローラ本体2の幅方向外端2e側)に、互いに等しい長さで延在している。なお、図1では、板状体6の周方向外縁6eおよび幅方向外縁eはそれぞれ、例示的に、1つの板状体1のみに示されている。
 また、図2に示すように、板状体6はそれぞれ、メインコード層4よりもクローラ本体2の外周側に配置されている。本実施形態では、補強コード層5がメインコード層4よりも外周側に配置されており、板状体6はさらに、補強コード層5よりも外周側に配置されている。すなわち、板状体6は、クローラ本体2の内部のうち、メインコード層4及び補強コード層5よりも外周側に埋設され、併せて、クローラ本体2に埋設された金属コード層4a及び補強コード5aを外周側から拘束する。
 このように、本実施形態に係る芯金レスクローラ1Aによれば、剛性材料からなる、複数の板状体6を、少なくとも、金属コード4aよりもクローラ本体2の外周側に埋設することで、クローラ本体2の幅方向の剛性を高め、併せて、少なくとも、クローラ本体2に埋設された金属コード4aを、クローラ本体2の外周側から拘束することで、金属コード4aの変形(例えば、金属コード4aの捻れ(トーション)に伴う金属コード4aの中心線周りの変形)や乱れ(例えば、製造時に生じる金属コード4aの配列乱れ)等の発生を軽減できることから、少なくとも、金属コード4aを要因とする、斜行現象が抑制され、ひいては、耐久性や機体の直進性等に優れた、芯金レスクローラとなる。
 特に、本実施形態に係る芯金レスクローラ1Aのように、周方向に対して傾斜した、複数の補強コード5aを併せて埋設した場合、複数の板状体6がクローラ本体2に埋設された補強コード5aを併せて外周側から拘束することで、補強コード5aの変形(例えば、製造時や駆動時に生じる補強コード5aの傾斜角変化に伴う変形)や乱れ(例えば、製造時に生じる補強コード5aの配列乱れ)等の発生を軽減できることから、補強コード5aを要因とする、斜行現象が抑制され、ひいては、耐久性や機体の直進性等により優れた、芯金レスクローラとなる。
 さらに、本実施形態では、板状体6は、図1の平面視(本体の厚み方向視)で、板状体6の周方向外縁6eがガイド突起7の部分と重複する位置にある。詳細には、板状体6の周方向外縁6eは、図1の平面視で、板状体6がガイド突起7の頂面7aを含むように、ガイド突起7の周方向外縁7eと頂面7aの周方向外縁7aとの間に位置している。このように、クローラ本体2の周方向での曲げ剛性が高く、機体への巻き掛け時に曲げを生じ難い、ガイド突起7の部分と厚み方向で重複する位置に板状体6を配置すれば、機体への巻き掛けの際に生じ得る、板状体6を起点とした屈曲を防止することができ、板状体6の耐久性、ひいては芯金レスクローラ1Aの耐久性が向上する。また、この場合、元々曲げ剛性が高く、曲げ難い部分に板状体6を埋設したことから、板状体6の埋設によって生じ得る、クローラ本体2の周方向での曲げ剛性の増大を抑制することができる。
 図3は、本発明の第2の実施形態に係る芯金レスクローラ1Bである。芯金レスクローラは通常、製造時や駆動時において、その幅方向外側、特に、クローラ本体2の幅方向外端2eの付近で、捻れ等の変形を生じ易い。これは、クローラ本体2の剛性がクローラ本体2の幅方向外端2eに向かうに従って低下するため、クローラ本体2の幅方向外縁2eの付近では捻れ等の変形が生じ易くなると考えられる。一方、ガイド突起7の部分は、クローラ本体2の厚み方向の剛性が高く、駆動時において、金属コード4aや補強コード5aの捻れや配列乱れを生じ難い。
 そこで、本実施形態に係る芯金レスクローラ1Bでは、図示のように、ガイド突起7の部分と厚み方向で重複する部分には、板状体6を埋設していない。本実施形態では、2つの板状体6(図面では、片側断面のみに表示する)を用い、これらの板状体6をそれぞれ、クローラ本体2の周方向の、ガイド突起7を配置した位置で、ガイド突起7の部分と厚み方向で重複する部分を除くように、幅方向に間隔を置いて配置している。この場合、ガイド突起7と厚み方向で重複する部分に板状体6が存在しない分、軽量化を図ることができるとともに、板状体6の使用材料が削減される分、低コスト化を図ることができる。また、この場合、クローラ本体2の剛性は、ガイド突起7と厚み方向で重複する部分を除いて高められているため、斜行現象の抑制も図れる。
 図4は、本発明の第3の実施形態に係る芯金レスクローラ1Cである。本実施形態は、図3の芯金レスクローラ1Bの変形例であり、2つの板状体6の幅方向間隔をさらに広げたものである。この場合、変形を生じ易いクローラ本体2の幅方向外縁2e側の剛性を重点的に高めつつ、板状体6が存在しない分をさらに拡大することで、より軽量化および低コスト化を図ることができる。
 図5は、本発明の第4の実施形態に係る芯金レスクローラ1Dである。本実施形態は、図1の芯金レスクローラ1Aの変形例であり、板状体6の厚み方向距離(板状体6の厚み)を、クローラ本体2の幅方向外端2e側に向かうに従って、厚くなるようにしたものである。この場合、変形を生じ易いクローラ本体2の幅方向外縁2e側の剛性を重点的に高めることができる。なお、本実施形態では、板状体6の断面輪郭形状は、板状体6の内周面及び外周面をそれぞれ、クローラ本体2の幅方向外端2eに向かうに従って、クローラ本体2の厚み方向に延びる水平線に対して等しい距離ずつ遠ざけることで形成されているが、板状体6の内周面及び外周面のいずれか一方の面のみをクローラ本体2の厚み方向に延びる水平線から遠ざけることで形成することもできる。
 図6は、本発明の第5の実施形態に係る芯金レスクローラ1Eである。本実施形態は、図1の芯金レスクローラ1Aの変形例であり、板状体6の厚み方向距離(厚み)を、クローラ本体2の幅方向外端2eに向かうに従って、薄くなるようにしたものである。この場合、板状体6の強度が、ガイド突起7の部分と厚み方向で重複する部分、すなわち、最も曲げ応力が発生する部分において、強度が確保され、さらに結果として、板状体6が薄くなることで軽量化を図れるとともに、板状体6の使用材料が削減される分、低コスト化を図れる。本実施形態では、板状体6の断面輪郭形状は、板状体6の内周面を、クローラ本体2の幅方向外端2eに向かうに従って、クローラ本体2の厚み方向に延びる水平線に対して内周側から接近させることで形成されている。
 図7は、本発明の第6の実施形態に係る芯金レスクローラ1Fである。芯金レスクローラ1Fは、図6の変形例であり、板状体6の厚さは、幅方向外側に向かうに従って、クローラ本体2の外周側に向かって薄くなっている。本実施形態では、板状体6の断面輪郭形状は、板状体6の外周面を、クローラ本体2の幅方向外端2eに向かうに従って、クローラ本体2の厚み方向に延びる水平線に対して外周側から接近させることで形成されている。
 図8は、本発明の第7の実施形態に係る芯金レスクローラ1Gである。本実施形態は、図1の芯金レスクローラ1Aの変形例であり、板状体6は、図8の平面視で、ガイド突起7の部分と重複する位置に配置されている。詳細には、図1の芯金レスクローラ1Aと異なり、板状体6の周方向外縁6eは、図8の平面視で、ガイド突起7の頂面7aの周方向外縁7aと等しい位置にある。この場合、板状体6は、クローラ本体2のうちで最も曲げ剛性の高い部分に埋設されるため、板状体6の耐久性、ひいては芯金レスクローラ1Aの耐久性が最も向上する。また、この場合、板状体6の埋設によって生じ得る、クローラ本体2の周方向での曲げ剛性の増大を最も抑制することができる。
 図9は、本発明の第8の実施形態に係る芯金レスクローラ1Hである。本実施形態は、図8の芯金レスクローラ1Gの変形例であり、板状体6の周方向幅(周方向長さ)を、クローラ本体2の幅方向外縁2e側に向かうに従って、広く(長く)なるようにしたものである。この場合、板状体6の周方向幅を幅方向外側で広くすることで、変形を生じ易いクローラ本体2の幅方向外端2e側の剛性をより重点的に高めることができる。本実施形態では、板状体6の輪郭形状は、図9の平面視で、ガイド突起7の頂面7aと厚み方向で重複する部分の板状体6の周方向外縁6eL1を除いて、この周方向外縁6eL1の幅方向両側に繋がる、板状体6の周方向外縁6eL2がそれぞれ、クローラ本体2の幅方向外縁2eに向かうに従って、板状体6の幅方向中心線O6w(図9では例示的に1つの板状体6のみに表示する)に対して等しい距離ずつ遠ざかることで形成されている。なお、本実施形態では、板状体6の幅方向中心線O6wは、板状体6の周方向中心を通って、クローラ本体2の幅方向と平行に延在する線である。
 図10は、本発明の第9の実施形態に係る芯金レスクローラ1Iである。本実施形態は、図8の芯金レスクローラ1Gの変形例であり、板状体6の周方向幅を、クローラ本体2の幅方向外縁2e側に向かうに従って、狭く(短く)なるようにしたものである。この場合、板状体6の周方向幅を幅方向外側で狭くすることで、変形を生じ易いクローラ本体2の幅方向外縁2e側の剛性を最低限確保しつつ、板状体6の周方向幅が短くなることで軽量化を図れるとともに、板状体6の使用材料が削減される分、低コスト化を図れる。本実施形態では、板状体6の輪郭形状は、図10の平面視で、ガイド突起7の頂面7aと厚み方向で重複する、板状体6の周方向外縁6eL1を除いて、この周方向外縁6eL1の幅方向両側に繋がる、板状体6の周方向外縁6eL2がそれぞれ、板状体6の幅方向中心線O6w(図10では例示的に1つの板状体6のみに表示する)に対して等しい距離ずつ接近することで形成されている。
 次に、本発明に係る弾性クローラ装置は、本発明に係る芯金レスクローラを備える。 例えば、本発明の一実施形態に係る弾性クローラ装置は、上記芯金レスクローラ1A~1Iのいずれかを備えている。具体例としては、図2に示すように、少なくとも、芯金レスクローラ1Aと、回転体10とを有している。例えば、本実施形態では、回転体10を摩擦駆動方式の駆動輪として、回転体10をクローラ本体2の内周面2f上で転動させることで、クローラ本体2に駆動力を伝達する。本実施形態では、回転体10は、2つのローラ11が連結軸12を介して連結されている。本実施形態では、回転体10は、駆動輪、従動輪及び転輪であるが、駆動側の駆動輪及び従動輪がスプロケットの回転軸周りに複数のピン部材(係合部)を配置したスプロケットの場合には、回転体10は転輪である。
 本実施形態に係る弾性クローラ装置によれば、剛性材料からなる、複数の板状体6を、少なくとも、金属コード4aよりもクローラ本体2の外周側に埋設することで、クローラ本体2の幅方向の剛性を高め、併せて、少なくとも、クローラ本体2に埋設された金属コード4aをクローラ本体2の外周側から拘束することで、金属コード4a等の変形や乱れ等の発生を軽減できることから、少なくとも、金属コード4aを要因とする、斜行現象が抑制され、ひいては、耐久性や機体の直進性等に優れた、芯金レスクローラ装置となる。
 このように、本発明によれば、斜行現象が抑制された、芯金レスクローラ及び芯金レスクローラ装置を提供することができる。
 上述したところは、本発明のいくつかの実施形態を開示したにすぎず、特許請求の範囲に従えば、様々な変更が可能となる。例えば、メインコード層及び補強コード層の個数及び配置は、芯金レスクローラの用途等に応じて、適宜変更することができる。上述の実施形態それぞれに採用された各構成は、それぞれ適宜組み合わせて使用することができる。
 本発明は、弾性を有する無端帯状の本体と、前記本体の周方向に巻き掛けられて当該本体に埋設された金属コードと、を有する、芯金レスクローラ、及び、これを用いた芯金レスクローラ装置に適用することができる。
 1A~1I;芯金レスクローラ(第1~第9の実施形態), 2;クローラ本体(本体), 2e;クローラ本体の幅方向外端, 2f;クローラ本体の内周面, 3;ラグ, 4;メインコード層, 4a;金属コード, 5;補強コード層, 5a;補強コード, 6;板状体, 7;ガイド突起(突起), 7a:頂面, 10;回転体, 11;ローラ, 12;連結軸, O2L;クローラ本体の周方向中心線, O6w;板状体6の幅方向中心線, D;クローラ本体の厚み方向(本体の厚み方向), L;クローラ本体の周方向(本体の周方向), W;クローラ本体の幅方向(本体の幅方向)

Claims (4)

  1.  弾性を有する無端帯状の本体と、
     前記本体に埋設されて当該本体の周方向に延びる金属コードと、
     前記本体に当該本体の周方向に間隔を置いて埋設される、剛性材料からなる、複数の板状体と、を備え、
     前記板状体を前記金属コードよりも前記本体の外周側に配置したことを特徴とする、芯金レスクローラ。
  2.  請求項1において、前記本体は、当該本体の内周面に、当該本体の周方向に間隔を置いて配置される、複数の突起を有し、前記板状体は、前記本体の厚み方向視で、当該板状体の周方向縁が前記突起の部分と重複する位置にある、芯金レスクローラ。
  3.  請求項1又は2において、前記本体に当該本体の周方向に対して傾斜して埋設される、複数の補強コードを有する、芯金レスクローラ。
  4.  請求項1乃至3のいずれか1項に記載の芯金レスクローラと、前記芯金レスクローラが巻き掛けられる、駆動輪、従動輪および転輪と、を備えることを特徴とする、芯金レスクローラ装置。
PCT/JP2016/003560 2015-08-27 2016-08-02 芯金レスクローラ及び芯金レスクローラ装置 WO2017033405A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-167884 2015-08-27
JP2015167884A JP6574116B2 (ja) 2015-08-27 2015-08-27 芯金レスクローラ及び芯金レスクローラ装置

Publications (1)

Publication Number Publication Date
WO2017033405A1 true WO2017033405A1 (ja) 2017-03-02

Family

ID=58100114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003560 WO2017033405A1 (ja) 2015-08-27 2016-08-02 芯金レスクローラ及び芯金レスクローラ装置

Country Status (2)

Country Link
JP (1) JP6574116B2 (ja)
WO (1) WO2017033405A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343240A (ja) * 2004-06-01 2005-12-15 Sumitomo Rubber Ind Ltd 弾性クローラ
US20100283317A1 (en) * 2004-03-03 2010-11-11 Gilles Soucy Elastomeric Track With Guide Lug Reinforcements
JP2012166714A (ja) * 2011-02-15 2012-09-06 Bridgestone Corp ゴムクローラ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042858B2 (ja) * 2004-03-09 2008-02-06 住友ゴム工業株式会社 弾性クローラ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283317A1 (en) * 2004-03-03 2010-11-11 Gilles Soucy Elastomeric Track With Guide Lug Reinforcements
JP2005343240A (ja) * 2004-06-01 2005-12-15 Sumitomo Rubber Ind Ltd 弾性クローラ
JP2012166714A (ja) * 2011-02-15 2012-09-06 Bridgestone Corp ゴムクローラ

Also Published As

Publication number Publication date
JP6574116B2 (ja) 2019-09-11
JP2017043240A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
US8191976B2 (en) Coreless rubber crawler track
WO2014010378A1 (ja) ゴムクローラ
WO2013176035A1 (ja) ゴムクローラ
JP5851344B2 (ja) ゴムクローラ
WO2016194904A1 (ja) クローラ
JP6574116B2 (ja) 芯金レスクローラ及び芯金レスクローラ装置
JP5213377B2 (ja) ゴムクローラ
JP5869170B1 (ja) クローラ
JP5985261B2 (ja) 弾性クローラ
US10053169B2 (en) Crawler
JP5788662B2 (ja) 弾性クローラ
JP6664289B2 (ja) 弾性クローラ
WO2018186145A1 (ja) 弾性クローラ
JP6958299B2 (ja) ゴムクローラ及びクローラ走行体
JP7314617B2 (ja) 弾性クローラ
JP7314763B2 (ja) 弾性クローラ及び弾性クローラ用の芯材
JP7310375B2 (ja) 弾性クローラ
US20170057575A1 (en) Crawler
JP7102927B2 (ja) 弾性クローラ及びクローラ式走行体
JP5602268B2 (ja) 弾性クローラ
JP2017001657A (ja) クローラ
WO2015159632A1 (ja) クローラ
JP2011046359A (ja) 芯金レスゴムクローラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838757

Country of ref document: EP

Kind code of ref document: A1