WO2017032154A1 - Procédé de préparation d'une suspension de graphite de cathode pour accumulateur au lithium - Google Patents

Procédé de préparation d'une suspension de graphite de cathode pour accumulateur au lithium Download PDF

Info

Publication number
WO2017032154A1
WO2017032154A1 PCT/CN2016/086291 CN2016086291W WO2017032154A1 WO 2017032154 A1 WO2017032154 A1 WO 2017032154A1 CN 2016086291 W CN2016086291 W CN 2016086291W WO 2017032154 A1 WO2017032154 A1 WO 2017032154A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
viscosity
minutes
graphite
stirring
Prior art date
Application number
PCT/CN2016/086291
Other languages
English (en)
Chinese (zh)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017032154A1 publication Critical patent/WO2017032154A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the patent relates to the field of lithium ion batteries, in particular to a preparation process and method for a graphite anode material slurry.
  • Lithium-ion batteries have the advantages of high energy density, small self-discharge, no memory effect, wide operating voltage range, long service life and no environmental pollution. They are the main power source for new energy vehicles.
  • a lithium ion battery generally includes a positive electrode sheet, a negative electrode sheet, and a separator interposed between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode tab includes a positive electrode current collector and a positive electrode film coated on the positive electrode current collector
  • the negative electrode plate includes a negative electrode current collector and a negative electrode film coated on the negative electrode current collector.
  • an active material such as lithium cobaltate, graphite, etc.
  • a conductive agent such as acetylene black, carbon nanotubes, carbon fiber, etc.
  • a binder such as polyvinylidene fluoride, polyvinylpyrrolidone, Carboxymethylcellulose sodium, styrene-butadiene rubber emulsion, etc.
  • a solvent such as N-methylpyrrolidone, water, etc.
  • the performance of the electrode paste has an important influence on the performance of the lithium ion battery.
  • the effect of the active substance can be exerted during charging and discharging, and the average gram capacity is exerted. Will be improved to improve the performance of the full battery.
  • the conventional graphite anode slurry preparation method is to carry out the high-speed double-planetary dispersion of the conductive agent with the thickener solution, and then add the negative electrode active material, stir for a certain period of time, and then add the binder.
  • the final graphite negative electrode slurry was obtained by stirring for a short time.
  • This method firstly requires a long time treatment for the dispersion of the conductive agent, which takes a long time and is not ideal in the dispersion state, especially for the preparation of a slurry using a carbon nanotube (CNT), graphene or the like as a conductive agent; the second conventional process needs to be During the preparation of the slurry, the stirring system is kept under vacuum, which causes the internal temperature of the slurry system to rise easily, and at the same time, externally added circulating water for cooling, so the requirements and wear of the equipment are high.
  • the above results in low slurry preparation efficiency, poor stability, and unsatisfactory effect, which will affect the preparation of the subsequent pole piece and the performance of the lithium battery.
  • the object of the present invention is to provide a method for preparing a graphite negative electrode slurry for a lithium battery, in order to achieve uniform dispersion of the components of the slurry in a short time, and the prepared slurry is prepared. It has good uniformity and excellent stability, and at the same time, the prepared battery sheet adhesion is improved, and thus the consistency of the battery and the electrochemical performance of the battery are improved.
  • disperse the powder the graphite and the conductive agent are added to the mixing tank in proportion and stirred for 30 to 40 minutes, and at the end of the time 1/2 and at the end, the powder on the paddle and the barrel is scraped;
  • High-viscosity stirring adding 55% to 60% of the total amount of the thickener solution to the stirred powder, stirring and dispersing for 60 to 70 minutes, and at the time of 1/3, 2/3 and end When the slurry is scraped on the paddle and the barrel, the temperature of the slurry is controlled between 25 and 35 ° C;
  • Low-viscosity stirring add 35 to 30% of the total amount of the thickener solution to the above-mentioned high-viscosity stirred slurry, stir and disperse for 60 to 70 minutes, and at time 1/3, 2/3 and At the end, the slurry on the paddle and the barrel is scraped, and the temperature of the slurry is controlled between 25 and 35 ° C;
  • Viscosity test the viscosity of the slurry with low viscosity stirring in the above steps is tested for viscosity, such as in the normal range of 2000-5000 Mpa ⁇ S, directly into the next step; if it exceeds the above range, 5% of the total amount of thickener solution is added. ⁇ 10%, stir and disperse for a period of 30 to 40 minutes, and at time 1/2 and at the end, scrape the slurry on the paddle and the barrel, and then test the viscosity of the slurry to reach the viscosity range.
  • Next step the viscosity of the slurry with low viscosity stirring in the above steps is tested for viscosity, such as in the normal range of 2000-5000 Mpa ⁇ S, directly into the next step; if it exceeds the above range, 5% of the total amount of thickener solution is added. ⁇ 10%, stir and disperse for a period of 30 to 40 minutes, and at time 1/2 and at the end, scrape the
  • Adding binder adding binder SBR, stirring and dispersing, the time is 10 to 30 minutes;
  • Vacuum defoaming Under low-speed stirring, the barrel is evacuated, the degree of vacuum is -0.09 to -0.1 MPa, and the time is 15 to 30 minutes, that is, the graphite negative electrode slurry prepared by the method of the invention is obtained.
  • the graphite in the above step 2 is one or a mixture of artificial graphite, natural graphite, hard carbon, mesophase carbon microsphere material.
  • the conductive agent in the above step 2 is one or a mixture of conductive carbon black, conductive graphite, carbon nanotubes, carbon fibers, and graphene.
  • the mass ratios of the components of graphite, conductive agent, thickener and binder are (90-97): (1-4): (1-5): (1-3)
  • the solvent is 80% to 120% of the total amount of each of the above components.
  • the agitation device is a dual planetary vacuum agitator, and the slurry temperature is controlled by a method of introducing a constant temperature circulating water to the planetary agitating barrel at a corresponding temperature.
  • the present invention has the following advantages:
  • the preparation time of the graphite negative electrode slurry of the invention is about 265 to 380 minutes, and in the subsequent preparation process, the accumulation of several practical experiences can omit the viscosity test step and directly enter the final vacuum defoaming process. Thus, it can save 30 to 40 minutes. If there are multiple devices, the thickener solution is prepared first, and the saving can be 60 to 100 minutes, compared with the conventional stone.
  • the preparation process of the ink negative electrode slurry takes about 7 to 9 hours, which greatly improves the production efficiency;
  • equipment wear is small: the invention only needs to vacuum the barrel in the final vacuum defoaming process, compared with the traditional process in the slurry preparation process, the stirring system has been kept vacuuming, resulting in the stirring process The heat is difficult to dissipate, the temperature of the slurry is easy to rise, and the effect is substantially improved.
  • the short-time vacuum treatment reduces the burden on the equipment and reduces equipment wear;
  • the solid content of the graphite negative electrode slurry prepared by the invention is about 45-55%, which has the characteristics of high solid content and low viscosity compared with the conventional preparation process, so the proportion of water used is correspondingly Reduced, reduced energy consumption required for evaporation of water during subsequent coating;
  • the invention firstly stirs and disperses the negative electrode active material and the conductive agent to avoid agglomeration of the conductive agent in the slurry, and adopts high-viscosity stirring and dispersion in the early stage, and the mechanical force of the stirring paddle on the slurry (extrusion) , collision, friction) large, can play a good dispersion effect, and then use low viscosity mixing, so that the components are completely dispersed.
  • the lithium battery prepared by using the lithium battery graphite negative electrode slurry provided by the invention has low internal resistance, is not easy to generate heat, has high energy density, good cycle performance and long service life.
  • the negative electrode active material and the conductive agent are added to the stirring tank to be stirred and dispersed for 30 minutes, and the powder on the paddle and the barrel is scraped at the time of 15 minutes and 30 minutes;
  • the test result is 5332 Mpa ⁇ S, the value of the normal range is 5%, the total amount of the solvent is added, and the dispersion is stirred for 30 minutes, and the time is 15 minutes. And 30 minutes, scrape the slurry on the paddle and the barrel, and then test the viscosity of the slurry.
  • the test result is 4215Mpa ⁇ S, which meets the viscosity range requirement;
  • the graphite negative electrode slurry prepared by the method of the present invention takes about 265 minutes.
  • the graphite anode slurry is coated, dried, rolled, and cut into negative electrode sheets, and then assembled with lithium iron phosphate positive electrode sheets, separators, electrolytes, and battery casings, and charged and discharged. After activation, a 18650 type cylindrical lithium iron phosphate battery with an initial design capacity of 1350 mA was obtained.
  • the preparation takes about 7 hours, and according to the conventional production process of the lithium battery, a cylindrical lithium iron phosphate battery of 18650 type with an initial design capacity of 1350 mA is obtained.
  • Example 1 The electrical properties of the 18650-type cylindrical lithium iron phosphate battery prepared in Example 1 and Comparative Example 1 were tested and charged and discharged at 1 C, and the cycle capacity retention rate was 1000 times.
  • Example 1 was 97.92%, and Comparative Example 1 was The results of 95.23%, energy density and internal resistance test are shown in Table 1.
  • the preparation steps are as follows:
  • the negative electrode active material and the conductive agent are added to the stirring tank to be stirred and dispersed for 40 minutes, and the powder on the paddle and the barrel is scraped at the time of 20 minutes and 40 minutes;
  • the barrel is evacuated, the degree of vacuum is -0.09 ⁇ -0.1 MPa, and the time is 30 minutes, that is, the graphite negative electrode slurry prepared by the method of the invention is obtained, and the total consumption time is about 360 minutes.
  • the graphite negative electrode slurry is coated, dried, rolled, and cut into negative electrode sheets, and then assembled with lithium cobaltate positive electrode sheets, separators, electrolytes and battery cases, and charged and discharged. After activation, a 18650 type cylindrical battery with an initial design capacity of 2000 mA was obtained.
  • the preparation takes about 7.5 hours, and according to the conventional production process of the lithium battery, a cylindrical battery of 18650 type with an initial design capacity of 2000 mA is obtained.
  • Example 1 The 18650 type cylindrical battery prepared in Example 1 and Comparative Example 1 was subjected to electrical property test, which was charged and discharged at 1 C, and the cycle capacity retention rate was 1000 times, and Example 2 was 97.23%, and Comparative Example 2 was 93.23%.
  • the energy density and internal resistance test comparison results are shown in Table 1.
  • the lithium battery prepared by the graphite anode slurry prepared by the method of the invention has higher energy density than the lithium battery produced by the conventional graphite anode slurry production process, and has an internal resistance. It is lower than the lithium battery produced by the conventional graphite negative electrode slurry production process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de préparation d'une suspension de graphite de cathode pour un accumulateur au lithium. Les composants de la suspension sont dispersés uniformément pendant une courte période de temps par la mise en oeuvre des étapes consistant à : préparer une solution d'épaississant, disperser une poudre, agiter sous haute viscosité, agiter sous faible viscosité, tester la viscosité, démousser sous vide et analogue. La suspension préparée présente de bonnes caractéristiques d'uniformité et de stabilité. L'adhérence des plaques polaires préparées de l'accumulateur est par ailleurs améliorée, ce qui permet d'améliorer la consistance et les performances électrochimiques de l'accumulateur. Ce procédé présente les avantages d'un temps de préparation court, d'une faible abrasion d'équipement, d'une faible consommation d'énergie à la production et d'un bon effet de dispersion. L'accumulateur au lithium préparé à partir de la suspension de graphite de cathode d'un accumulateur au lithium selon la présente invention présente une faible résistance interne, une densité d'énergie élevée, une bonne performance de cycle et une longue durée de vie, et ne génère pas facilement de la chaleur.
PCT/CN2016/086291 2015-08-25 2016-06-17 Procédé de préparation d'une suspension de graphite de cathode pour accumulateur au lithium WO2017032154A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510529092.7 2015-08-25
CN201510529092.7A CN105070915A (zh) 2015-08-25 2015-08-25 一种锂电池石墨负极浆料的制备方法

Publications (1)

Publication Number Publication Date
WO2017032154A1 true WO2017032154A1 (fr) 2017-03-02

Family

ID=54500233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086291 WO2017032154A1 (fr) 2015-08-25 2016-06-17 Procédé de préparation d'une suspension de graphite de cathode pour accumulateur au lithium

Country Status (2)

Country Link
CN (1) CN105070915A (fr)
WO (1) WO2017032154A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467082A (zh) * 2020-11-20 2021-03-09 汕尾天贸新能源科技有限公司 一种锂离子电池负极石墨浆料生产搅拌工艺
CN113823762A (zh) * 2021-09-16 2021-12-21 湖北亿纬动力有限公司 一种负极浆料的混合方法、电池制备方法以及用途
CN115041071A (zh) * 2022-06-24 2022-09-13 郑州比克电池有限公司 一种改善负极堵筛网的匀浆工艺
US11735713B2 (en) * 2017-04-06 2023-08-22 Lg Energy Solution, Ltd. Negative electrode for secondary battery, and method for producing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070915A (zh) * 2015-08-25 2015-11-18 田东 一种锂电池石墨负极浆料的制备方法
CN105514435B (zh) * 2016-01-28 2018-06-29 江苏金坛长荡湖新能源科技有限公司 一种锂离子电池负极浆料及其制备方法
CN107546364A (zh) * 2016-06-29 2018-01-05 万向二三股份公司 一种锂离子动力电池负极片及其制备方法
CN106159266B (zh) * 2016-08-31 2018-11-30 合肥国轩高科动力能源有限公司 一种降低锂离子电池膨胀的负极浆料制备方法
CN106784609A (zh) * 2017-03-10 2017-05-31 江西佳沃新能源有限公司 一种锂电池负极浆料制备工艺
CN108899543B (zh) * 2018-06-11 2020-10-13 合肥国轩高科动力能源有限公司 一种锂离子电池复合石墨负极的合浆工艺
CN109817984B (zh) * 2019-01-22 2022-06-28 湖南摩根海容新材料有限责任公司 高功率石墨负极浆料制备方法
CN109950485A (zh) * 2019-03-08 2019-06-28 安徽泰能新能源科技有限公司 一种锂离子电池硅氧负极浆料及其制备方法、电池负极与锂离子电池
CN110212163A (zh) * 2019-06-11 2019-09-06 颍上北方动力新能源有限公司 一种提升负极配料效果方法
CN110265648A (zh) * 2019-06-27 2019-09-20 郑州比克电池有限公司 一种软包聚合物锂电池的负极浆料及制备方法
CN112531202A (zh) * 2020-12-04 2021-03-19 上海普澜特夫精细化工有限公司 一种含多孔材料的电极浆料的制备方法
CN112687835A (zh) * 2020-12-25 2021-04-20 惠州亿纬创能电池有限公司 一种负极浆料的制备方法
CN113471407B (zh) * 2021-07-02 2022-11-15 黑龙江普莱德新材料科技有限公司 一种油性体系负极浆料的制备方法及锂电池负极片
CN113745451A (zh) * 2021-08-30 2021-12-03 湖北亿纬动力有限公司 一种负极片、负极片的制备方法及锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694872A (zh) * 2009-10-21 2010-04-14 保定风帆新能源有限公司 一种锂离子电池浆料混合制备方法
CN102044661A (zh) * 2009-10-23 2011-05-04 比克国际(天津)有限公司 一种锂离子电池浆料制备方法
CN102856556A (zh) * 2012-08-23 2013-01-02 青岛瀚博电子科技有限公司 水系钛酸锂动力型电池负极浆料的制备方法
CN102891283A (zh) * 2011-07-22 2013-01-23 湖北骆驼特种电源有限公司 锂离子动力电池负极干混配料工艺
CN104766949A (zh) * 2014-01-08 2015-07-08 中山天贸电池有限公司 一种锂离子电池负极浆料的加工方法
CN105070915A (zh) * 2015-08-25 2015-11-18 田东 一种锂电池石墨负极浆料的制备方法
CN105140521A (zh) * 2015-08-24 2015-12-09 深圳市斯诺实业发展有限公司 一种锂电池负极浆料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694872A (zh) * 2009-10-21 2010-04-14 保定风帆新能源有限公司 一种锂离子电池浆料混合制备方法
CN102044661A (zh) * 2009-10-23 2011-05-04 比克国际(天津)有限公司 一种锂离子电池浆料制备方法
CN102891283A (zh) * 2011-07-22 2013-01-23 湖北骆驼特种电源有限公司 锂离子动力电池负极干混配料工艺
CN102856556A (zh) * 2012-08-23 2013-01-02 青岛瀚博电子科技有限公司 水系钛酸锂动力型电池负极浆料的制备方法
CN104766949A (zh) * 2014-01-08 2015-07-08 中山天贸电池有限公司 一种锂离子电池负极浆料的加工方法
CN105140521A (zh) * 2015-08-24 2015-12-09 深圳市斯诺实业发展有限公司 一种锂电池负极浆料的制备方法
CN105070915A (zh) * 2015-08-25 2015-11-18 田东 一种锂电池石墨负极浆料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735713B2 (en) * 2017-04-06 2023-08-22 Lg Energy Solution, Ltd. Negative electrode for secondary battery, and method for producing same
CN112467082A (zh) * 2020-11-20 2021-03-09 汕尾天贸新能源科技有限公司 一种锂离子电池负极石墨浆料生产搅拌工艺
CN113823762A (zh) * 2021-09-16 2021-12-21 湖北亿纬动力有限公司 一种负极浆料的混合方法、电池制备方法以及用途
CN115041071A (zh) * 2022-06-24 2022-09-13 郑州比克电池有限公司 一种改善负极堵筛网的匀浆工艺

Also Published As

Publication number Publication date
CN105070915A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2017032154A1 (fr) Procédé de préparation d'une suspension de graphite de cathode pour accumulateur au lithium
WO2017031885A1 (fr) Procédé de préparation de boue d'électrode négative de batterie au lithium
WO2017031884A1 (fr) Procédé de préparation de boue d'électrode positive de batterie au lithium
WO2017032144A1 (fr) Procédé de préparation de suspension de cathode de phosphate de lithium-fer
WO2017032167A1 (fr) Procédé de préparation de suspension d'électrode positive d'oxyde de lithium et de cobalt
WO2017031943A1 (fr) Procédé de préparation de pâte d'électrode négative pour pile au lithium dopée à la poudre de silice de haute capacité
CN106207129B (zh) 一种高倍率锂离子电池正极浆料的制备方法
WO2017032155A1 (fr) Procédé de préparation de suspension d'électrode négative de titanate de lithium de batterie au lithium
WO2017032165A1 (fr) Procédé de préparation de suspension épaisse d'électrode positive à base de manganate de lithium
WO2017032166A1 (fr) Procédé de préparation de suspension épaisse d'électrode négative de pile au lithium dopée avec de la poudre d'étain
CN101752548B (zh) 导电剂分散液和电极浆料和电极与电池及其制备方法
CN107204446B (zh) 锂离子电池正极材料及其制备方法
WO2016201940A1 (fr) Procédé de préparation de matériau d'anode composite à base de carbone/graphite
CN103199258A (zh) 锂离子电池正极材料、正极制备方法及锂离子电池
WO2016169289A1 (fr) Procédé permettant de préparer une suspension épaisse d'électrode négative de batterie au lithium-ion
CN107316992B (zh) 钛酸锂负极材料及其制备方法
CN104795541A (zh) 一种锂离子电池负极浆料制备方法
CN112186140B (zh) 应用于硅碳负极的硅基活性复合导电浆料及负极合浆方法
CN112271285A (zh) 一种锂离子电池正极浆料的制备工艺
CN110970619B (zh) 一种物理剥离法制备石墨烯纳米片的方法、锂离子电池负极用水性导电浆料及其制备方法
CN112838261A (zh) 一种负极浆料及其匀浆方法和用途
CN109817984B (zh) 高功率石墨负极浆料制备方法
CN112713265A (zh) 适用于硅基负极的复合导电粘结剂、制备方法和应用
Chang et al. Effects of chemical dispersant and wet mechanical milling methods on conductive carbon dispersion and rate capabilities of LiFePO4 batteries
CN109524623B (zh) 一种锂电池抗弯折负极片的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16838414

Country of ref document: EP

Kind code of ref document: A1