WO2017029980A1 - 蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラム - Google Patents

蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラム Download PDF

Info

Publication number
WO2017029980A1
WO2017029980A1 PCT/JP2016/072618 JP2016072618W WO2017029980A1 WO 2017029980 A1 WO2017029980 A1 WO 2017029980A1 JP 2016072618 W JP2016072618 W JP 2016072618W WO 2017029980 A1 WO2017029980 A1 WO 2017029980A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
visualization
change
imaging
unit
Prior art date
Application number
PCT/JP2016/072618
Other languages
English (en)
French (fr)
Inventor
孝博 古閑
Original Assignee
荏原実業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原実業株式会社 filed Critical 荏原実業株式会社
Priority to JP2017535321A priority Critical patent/JP6556848B2/ja
Publication of WO2017029980A1 publication Critical patent/WO2017029980A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a fluorescence visualization apparatus, a fluorescence visualization method, and a computer program that perform image processing when an imaging target that moves relative to an imaging unit is visualized.
  • a fluorescence visualization device may be used. This is because small pieces of food that cannot be visually recognized are easier to check if the fluorescence of the portion is used.
  • a conventionally known fluorescence visualization apparatus is used, for example, by the following method.
  • NADH nicotinamide adenine dinucleotide
  • FAD rabin adenine nucleotide
  • NADH nicotinamide adenine dinucleotide
  • FAD rabin adenine nucleotide
  • a fluorescence observation apparatus using an excitation fluorescence phenomenon is often used for in-vivo examinations.
  • the fluorescence observation apparatus is incorporated and used in a device for confirming a lesion of a human or other animal such as an endoscope, a colposcope, or a surgical microscope inserted into a body cavity (for example, Patent Documents 2 to 5).
  • the conventional apparatus can be used without any problem to inspect an object that does not move relative to the imaging unit.
  • the above-described conventional apparatus has a relatively moving object (that is, when the imaging unit is moved and the object is stationary, when the imaging unit is stationary and the object is moving, or When the imaging unit and the object are moving at different speeds), there is a problem that the fluorescence cannot be visualized or the visibility is low even if it can be visualized.
  • the present invention has been made to solve the above-described problems, and provides a fluorescence visualization apparatus, a fluorescence visualization method, and a computer program that can realize good visualization of a measurement object that moves relatively to an imaging unit.
  • the purpose is to provide.
  • a fluorescence visualization apparatus is a fluorescence visualization apparatus that illuminates a visualization target with illumination light, detects fluorescence from the visualization target, and visualizes the illumination target.
  • Illumination means for irradiating light illumination operation control means for controlling the operation of repeatedly turning on and off the illumination means at a predetermined time interval, fluorescence can be detected, and when illumination light is emitted from the illumination means
  • An imaging unit that captures a visualization target at the time of irradiation and acquires a plurality of images, an imaging operation control unit that controls an imaging operation of the imaging unit to enable imaging at predetermined time intervals, and an image acquisition that acquires the captured image And the first image and the third image captured when the illumination light is irradiated among the three images acquired by the image acquisition unit and continuously acquired in time series.
  • the change amount calculating means for calculating the change amount of the visualization target on the three-dimensional orthogonal coordinate system, and the second image picked up when the illumination light is not irradiated among the three images picked up continuously in time series are described above.
  • a change image generating means for generating a change image by changing to at least one of the position and size of the third image based on the change amount of the image, and obtaining a difference image between the third image and the change image
  • a difference image acquisition means a brightness extension means for generating a brightness extension processed image by performing a brightness extension process on the difference image
  • an image acquisition means for acquiring images after the third image by shifting the time series
  • a repetitive execution instructing unit for instructing to execute a trust expansion unit, a change amount calculation unit, a change image generation unit, a difference image acquisition unit, and a brightness expansion unit, an image, a first decompression processing image, and a third decompression processing image
  • Storage means for storing the change image and the difference image, and the visualization target that moves relative to the imaging means is visualized by fluorescence.
  • the change amount calculation unit is further configured to calculate a movement amount of the visualization target on the two-dimensional orthogonal coordinate system, and the change image generation unit is continuously imaged in time series.
  • the pixel in the second image may be moved by a half of the above-described movement amount to generate a changed image.
  • the change amount calculation unit is a unit that calculates a rotation angle of a visualization target around a specific point on a two-dimensional orthogonal coordinate system
  • the change image generation unit is Of the three images continuously captured in the series, the pixel in the second image may be rotated by a half of the above rotation angle to generate a change image.
  • the number of fluorescent pixels that exceed a predetermined threshold exists in the divided area obtained by dividing the image display area into a plurality of areas.
  • a divided region specifying means for specifying the divided region to be performed.
  • a fluorescence visualization method for illuminating a visualization target with illumination light and detecting and visualizing fluorescence from the visualization target, the illumination means
  • the change amount calculation step is further a step of calculating the movement amount of the visualization target on the two-dimensional orthogonal coordinate system
  • the change image generation step is the pixel in the second image described above. It is good also as a step which produces
  • a fluorescence visualization method includes a fourth image acquisition step of acquiring a fourth image obtained by imaging an object to be visualized by an imaging unit at a predetermined time after imaging of the third image and not irradiating illumination light.
  • the change amount calculating step includes a step of calculating a rotation angle of the visualization target moving on a circular orbit including the coordinates of the visualization target on the two-dimensional orthogonal coordinate system of the first image, the third image, and the fifth image.
  • the change image generation step may be a step of generating a change image by rotating the pixels in the second image by one half of the rotation angle.
  • the number of fluorescent pixels exceeding a predetermined threshold exists in the divided area obtained by dividing the image display area. It may further include a divided region specifying step for clearly specifying the divided region to be performed.
  • a computer program is a computer installed and executable in a fluorescence visualization apparatus that irradiates a visualization target with illumination light and detects and visualizes fluorescence from the visualization target.
  • An illumination means for irradiating illumination light to a visualization target, an illumination operation control means for controlling an operation of repeatedly turning on and off the illumination means at a predetermined time interval, and capable of detecting fluorescence, the illumination means
  • Imaging means for capturing a plurality of images by imaging a visualization target at the time of irradiation and non-irradiation of illumination light from, and an imaging operation control means for controlling the imaging operation of the imaging means to enable imaging at predetermined time intervals
  • a fluorescence visualization device comprising storage means, Image acquisition means for acquiring a captured image; Contrast expansion processing is performed on the first image and the third image captured when the illumination light is irradiated, out of the three images captured by the image acquisition means and continuously captured in time series.
  • Contrast expansion means Objects to be visualized on the two-dimensional orthogonal coordinate system or the three-dimensional orthogonal coordinate system in the imaging region between the first and third decompressed images generated from the first and third images by the contrast decompression means, respectively.
  • Change amount calculating means for calculating the change amount of Of the three images continuously captured in time series, the second image captured at the time of non-irradiation of illumination light is changed to at least one of the position and size of the third image based on the above-described change amount.
  • Change image generation means for generating a change image by varying Difference image acquisition means for acquiring a difference image between the third image and the change image;
  • Lightness expansion means for performing lightness expansion processing on the difference image to generate a lightness expansion processed image, and image acquisition means, contrast expansion means, change amount calculation means for acquiring images after the third image by shifting the time series Repetitive execution instructing means for issuing an instruction to execute the change image generating means, the difference image obtaining means, and the brightness expansion means;
  • the visualization target that moves relative to the imaging means is visualized with fluorescence.
  • the change amount calculation means is further used as a means for calculating the movement amount of the visualization target on the two-dimensional orthogonal coordinate system, and the change image generation means is continuously captured in time series.
  • the pixel in the second image may be moved by a half of the above-described movement amount to generate a changed image.
  • the computer program also uses the change amount calculation means as means for calculating a rotation angle of a visualization target centered on a specific point on a two-dimensional orthogonal coordinate system, and changes image generation means as a time series.
  • the pixel in the second image may be rotated by a half of the above rotation angle to generate a changed image.
  • the computer program also causes the fluorescence visualization apparatus to display a fluorescence exceeding a predetermined threshold in a divided area obtained by dividing the image display area into a plurality of areas in the image display area for displaying the brightness extension processed image. You may make it function further as a division area clarification means to specify the division area where the number of pixels exists.
  • a fluorescence visualization apparatus it is possible to provide a fluorescence visualization apparatus, a fluorescence visualization method, and a computer program that can realize good visualization of a measurement object that moves relative to an imaging unit.
  • FIG. 1 shows a front view of a fluorescence visualization apparatus according to an embodiment of the present invention.
  • FIG. 2 shows a schematic configuration of the fluorescence visualization apparatus of FIG.
  • FIG. 3 shows a flowchart (3A) for explaining the operation of the fluorescence visualization apparatus of FIG. 1 and an image processing situation (3B) according to the flowchart.
  • FIG. 4 is a diagram for more specifically explaining the image processing from the change amount calculation step (S6) to the difference image acquisition step (S8) in FIG. 3, in which (4A) shows the whole image and (4B). And (4C) show the outline of vector calculation, respectively.
  • FIG. 5 shows a flowchart for explaining the operation of the fluorescence visualization apparatus in FIG. 1 when the food residue to be visualized rotates in the two-dimensional coordinate system.
  • FIG. 5 shows a flowchart for explaining the operation of the fluorescence visualization apparatus in FIG. 1 when the food residue to be visualized rotates in the two-dimensional coordinate system.
  • FIG. 6 is a conceptual diagram for explaining the change amount calculation step and the change image generation step in the flowchart of FIG.
  • FIG. 7 is a diagram for explaining a modification example of visualization executed by the fluorescence visualization apparatus of FIG. 1, and shows a display form (7A) after switching the visualization and a flow (7B) leading to the display process, respectively. .
  • FIG. 1 shows a front view of a fluorescence visualization apparatus according to an embodiment of the present invention.
  • the fluorescence visualization apparatus 1 shown in FIG. 1 has a thin plate shape and is a size that can be easily carried by a measurer.
  • the fluorescence visualization apparatus 1 includes a monitor 10 and a power switch 11 on the front thereof.
  • “Fluorescence” as used in the present application is not limited to emitted light using an excitation fluorescence phenomenon in which light having a wavelength longer than that of the excitation light is emitted from an object irradiated with excitation light such as ultraviolet light, and illumination light such as ultraviolet light and infrared light is used. It is broadly interpreted to include phosphorescence, scattered light, or diffused light emitted from the object when it is irradiated.
  • the monitor 10 is, for example, a liquid crystal display, but may be a monitor with any other display format.
  • the monitor 10 displays a display unit 12 and menu buttons 13 on the left and right sides thereof.
  • the menu button 13 is preferably a button including a capacitive touch sensor, but may be a contact conduction sensor. Further, the number of menu buttons 13 may be only one or any number of two or more.
  • the display unit 12 displays a frame divided into a plurality of divided regions called spot cursors 14. The display and non-display of the spot cursor 14 can be selected by input from the menu button 13.
  • the spot cursor 14 includes a total of 20 divided regions of 4 rows ⁇ 5 columns in a substantially central region of the display unit 12. However, the number is not limited to 20, and more or less can be formed.
  • FIG. 2 shows a schematic configuration of the fluorescence visualization apparatus of FIG.
  • the fluorescence visualization apparatus 1 is an apparatus that irradiates a visualization target (also referred to as a measurement target) 22 with illumination light, detects fluorescence from the visualization target 22, and visualizes the imaging.
  • the visualization target 22 that moves relative to the unit 21 can be visualized with fluorescence.
  • the fluorescence visualization device 1 preferably includes the display unit 12, the illumination unit 20, the imaging unit 21, the control unit 30, the image storage unit 31, the information storage unit 32, the output unit 33, and the input unit 34.
  • the control unit 30 includes an illumination operation control unit 41, an imaging operation control unit 42, an image acquisition unit 43, a contrast expansion unit 44, a change amount calculation unit 45, a change image generation unit 46, and a difference image acquisition unit 47.
  • a lightness expansion unit 48 a repeat execution instruction unit 49, a visualization target presence / absence determination unit 50, a calculation instruction unit 51, a divided region clarification unit 52, and an input / output unit control unit 53.
  • the illumination unit 20 is an illumination unit that irradiates the visualization target 22 with illumination light.
  • two illumination units 20 are provided.
  • the number is not limited to two, and may be one or three or more.
  • the illumination unit 20 is a component that can irradiate the visualization target 22 with ultraviolet light having a center wavelength of about 365 nm. Visualization of food residues, fungi (including mold), etc. is performed using the fluorescence excitation method using the ultraviolet light.
  • the illumination part 20 is not limited to what irradiates ultraviolet light with a center wavelength of about 365 nm, and may irradiate light with another wavelength.
  • an illumination unit 20 that can irradiate light having a wavelength of 270 to 350 nm or 380 to 410 nm may be used.
  • the imaging unit 21 is a component that can detect fluorescence from the visualization target 22 and can capture the visualization target 22 and acquire a plurality of images during irradiation and non-irradiation of illumination light from the illumination unit 20. .
  • the imaging unit 21 also includes a lens, a fluorescence filter, a fluorescence detector, and the like.
  • the control unit 30 performs various processes of the fluorescence visualization apparatus 1 in cooperation with a central processing unit (CPU) and a computer program for performing various controls.
  • CPU central processing unit
  • FIG. 2 each part from the illumination operation control unit 41 to the input / output unit control unit 53 in the control unit 30 is not a physical configuration but is represented as a function box.
  • the image storage unit 31 is a part that stores various image data, and corresponds to a random access memory (RAM) or a hard disk (HD).
  • the various image data includes “image”, “first decompressed image”, “third decompressed image”, “changed image”, “difference image”, and “lightness decompressed image”, which will be described later. That is, the image storage unit 31 is an example of a storage unit that stores an image, a first decompressed image, a third decompressed image, a change image, and a difference image. Note that the image storage unit 31 may store a brightness expansion processed image.
  • the information storage unit 32 is a part that stores information other than various image data stored in the image storage unit 31 or various image data in an overlapping manner. Similar to the image storage unit 31, the information storage unit 32 corresponds to a random access memory (RAM) or a hard disk (HD).
  • the information stored in the information storage unit 32 includes, for example, information input by the user of the fluorescence visualization apparatus 1, information other than the image detected or acquired by the apparatus 1, pre-stored calculation formulas necessary for calculation, etc. Information.
  • the control unit 30 executes various processes while reading information stored in the information storage unit 32.
  • the information storage unit 32 is an example of a storage unit together with the image storage unit 31.
  • the output unit 33 is a component that outputs signals other than those displayed on the display unit 12. As the output unit 33, for example, in addition to displaying the power consumption level and whether or not the focus is in focus, the output unit 33 also outputs audio data such as an alarm when the fluorescence visualization apparatus 1 is moved at a speed exceeding an allowable range. Do.
  • the output unit 33 may be one type or two or more types of components, and serves as a display unit and / or a voice output unit. Further, the display unit 12 may be included in the output unit 33.
  • the input unit 34 is a component that is connected to the power switch 11 and the menu button 13 in FIG. 1 and accepts various inputs.
  • the input unit 34 may be one type or two or more types of components.
  • the illumination operation control unit 41 is illumination operation control means for performing operation control so as to repeatedly turn on and off the illumination unit 20 at predetermined time intervals.
  • the operation of repeatedly turning on and off at predetermined time intervals is performed by the lighting operation control unit 41 by a desired time input by the user to the input unit 34, a time selected from a plurality of preset options, or an information recording unit
  • the fixed time stored at 32 is read and executed.
  • the predetermined time can be set to 100 msec, 50 msec, or the like.
  • the imaging operation control unit 42 is an imaging operation control unit that controls the imaging operation of the imaging unit 21 and enables imaging at predetermined time intervals.
  • the imaging operation of the imaging unit 21 is performed not only when the illumination unit 20 is illuminated but also when the illumination unit 20 is turned off. For example, when the illumination unit 20 repeats “ON”, “OFF”, “ON”, and “OFF” at intervals of 50 msec, the imaging operation control unit 42 controls the imaging unit 21 to perform imaging at intervals of 50 msec. To do. In this way, it is possible to perform an operation that alternately repeats imaging when the illumination unit 20 is turned on, imaging when the illumination unit 20 is turned off, and imaging when the illumination unit 20 is turned on.
  • the image acquisition unit 43 is an image acquisition unit that acquires an image captured by the imaging unit 21.
  • the acquisition of the image is preferably reading from the image storage unit 31.
  • the image acquisition unit 43 can also acquire an image directly from the imaging unit 21 (regardless of whether or not there is a memory therein).
  • the contrast extension unit 44 includes a first image picked up when illumination light is irradiated among three images (in order, a first image, a second image, and a third image) picked up in time series, and Contrast expansion means for performing a contrast expansion process on the third image.
  • the “three images captured continuously in time series” means the three consecutive images captured at the predetermined time interval described above. For example, when “three images taken consecutively in time series” are picked up at intervals of 50 msec, imaging when the lighting unit 20 is turned on, imaging when the lighting unit 20 is turned off 50 msec after the lighting, It means three images obtained by imaging when the illumination unit 20 is turned on after 50 msec from turning off. Subsequent “three images taken consecutively in time series” are also interpreted in the same meaning. Details of the processing of the contrast extension unit 44 will be described later with reference to FIG.
  • the change amount calculation unit 45 is a two-dimensional orthogonal coordinate system or a third order in the imaging region between the first extension processed image and the third extension processed image respectively generated from the first image and the third image by the contrast extension unit 44. This is a change amount calculation means for calculating the change amount of the visualization target 22 on the original orthogonal coordinate system.
  • the change amount calculation unit 45 is preferably a means for calculating the movement amount of the visualization target 22 on the two-dimensional orthogonal coordinate system.
  • the change amount calculation unit 45 is preferably means for calculating the rotation angle ( ⁇ ) of the visualization target 22 around a specific point (a point serving as the center of rotation) on the two-dimensional orthogonal coordinate system. Details of the processing of the change amount calculation unit 45 will be described later.
  • the change image generation unit 46 determines the position and size of the third image based on the above-described change amount, from among the three images continuously taken in time series, the second image taken when the illumination light is not irradiated.
  • the “change amount” can include not only the movement amount but also various factors other than the movement amount such as a change in the rotation angle or the size.
  • the change image generation unit 46 includes the three images sequentially captured in time series, A change image generation unit that generates a change image by moving a pixel in the second image captured when the illumination light is not irradiated by a half of the above-described movement amount can be provided. In addition, the change image generation unit 46 obtains the pixel in the second image picked up when the illumination light is not irradiated among the three images picked up continuously in time series by the change amount calculation unit 45. A change image generating unit that generates a change image by rotating by a half of the rotation angle ( ⁇ ) may be used. Details of the processing of the change image generation unit 46 will be described later.
  • the difference image acquisition unit 47 is a difference image acquisition unit that acquires a difference image between the third image and the above-described change image. Details of the processing of the difference image acquisition unit 47 will be described later.
  • the lightness expansion unit 48 is lightness expansion means for performing a lightness expansion process on the above-described difference image to generate a lightness expansion processed image. Details of the processing of the lightness expansion unit 48 will be described later.
  • the repetition execution instructing unit 49 determines whether or not to continue the processing (end determination step described later), and shifts the time series to change the image acquisition unit 43, the contrast expansion unit 44, the change amount calculation unit 45, and the change. It is a repeated execution instruction means for issuing an instruction to execute the image generation unit 46, the difference image acquisition unit 47, and the brightness expansion unit 48.
  • the repetitive execution instructing unit 49 uses three images that are successively captured in time series to obtain an image acquisition unit 43, a contrast expansion unit 44, a change amount calculation unit 45, a change image generation unit 46, and a difference image acquisition. This is a component that issues an instruction to perform the same process for the next time series after performing various processes by the unit 47 and the lightness expansion unit 48.
  • shift time series means, for example, that the third image that has been processed first is the first image, and the image processing is performed on three images including the subsequent two consecutive images. It is interpreted to include the time series movement necessary for For example, when the first image (lit), the second image (dark), and the third image (lit) are captured at intervals of 50 msec, the third image is shifted by 100 msec after the first three images are processed. Processing is performed on three consecutive images (lighted), fourth (light off), and fifth (lighted). Details of the processing of the repeat execution instruction unit 49 will also be described later.
  • the visualization target presence / absence determination unit 50 is a visualization target presence / absence determination unit that determines whether or not the visualization target 22 that is the calculation target of the above-described change amount exists in the first decompression processing image and the third decompression processing image. . This is because it is necessary not to perform subsequent image processing when the visualization target 22 does not exist in a time-series continuous image.
  • the visualization target presence / absence determination unit 50 is not an essential configuration and may not be provided in the control unit 30. Details of the processing of the visualization target presence / absence determination unit 50 will also be described later with reference to FIG.
  • the calculation instruction unit 51 is a calculation instruction unit that instructs the change amount calculation unit 45 to perform calculation when the visualization target presence / absence determination unit 50 determines that the visualization target 22 exists.
  • the calculation instruction unit 51 is not an essential configuration and may not be provided in the control unit 30. Details of the processing of the calculation instruction unit 51 will also be described later with reference to FIG.
  • the divided region specifying unit 52 specifies a divided region in which the number of fluorescent pixels exceeding a predetermined threshold is present among divided regions obtained by dividing the image display region into a plurality of divided image display regions in the image display region that displays the brightness expansion processed image. This is a divided area specifying means.
  • the divided region specifying unit 52 is not an essential configuration and may not be provided in the control unit 30. Details of the processing of the divided region specifying unit 52 will be described later.
  • the input / output unit control unit 53 is a component unit that controls input from the input unit 34, display switching of the input unit 34, and output to the output unit 33 and the display unit 12.
  • the fluorescence visualization method executed by the fluorescence visualization apparatus 1 is a method of irradiating the visualization target 22 with illumination light and detecting and visualizing the fluorescence from the visualization target 22.
  • the fluorescence visualization method includes a first image acquisition step of acquiring a first image obtained by imaging the visualization target 22 by the imaging unit 21 when the illumination unit 20 irradiates the visualization target 22 with illumination light; A second image acquisition step of acquiring a second image obtained by imaging the visualization target 22 by the imaging unit 21 when the illumination light is not irradiated after a predetermined time from the imaging of the first image; A third image acquisition step of acquiring a third image obtained by imaging the visualization target 22 by the imaging unit 21 when the illumination unit 20 irradiates the illumination target 22 again with illumination light after the second image is captured.
  • a change image generation step for generating a change image by changing to at least one of position and size, and a difference image between the third image and the change image A difference image acquisition step for acquiring the image, a lightness expansion step for performing a lightness expansion process on the difference image to generate a lightness expansion processed image, and a second image for acquiring images after the third image by shifting the time series
  • the visualization target 22 that moves relative to the imaging unit 21 is visualized with fluorescence.
  • the change amount calculating step is a step of calculating the movement amount of the visualization target 22 on the two-dimensional orthogonal coordinate system
  • the change image generating step is to divide the pixels in the second image into two parts of the above-described movement amount.
  • This step may be a step of generating a change image by moving by one.
  • the fluorescence visualization method includes a fourth image acquisition step of acquiring a fourth image obtained by imaging the visualization target 22 by the imaging unit 21 when the illumination light is not irradiated, after a predetermined time from the imaging of the third image. And a fifth image acquisition step of acquiring a fifth image obtained by imaging the visualization target 22 by the imaging unit 21 when the illumination unit 20 irradiates the illumination light again after the four images are captured.
  • the change amount calculation step includes a rotation angle ( ⁇ ) of the visualization target 22 that moves on a circular orbit including the coordinates of the visualization target 22 on the two-dimensional orthogonal coordinate system of the first image, the third image, and the fifth image. Is preferably the step of calculating. Furthermore, in the change image generation step, the pixel in the second image picked up when the illumination light is not irradiated among the three images picked up continuously in time series is half the rotation angle ( ⁇ ). It is preferable that the change image is generated by rotating the image only.
  • a visualization target presence / absence determination step for instructing to perform a change amount calculation step may be further included.
  • the change amount calculation step is a step of calculating the movement amount of the visualization target 22 on the two-dimensional orthogonal coordinate system
  • the change image generation step is performed by setting the pixels in the second image to half the above-described movement amount.
  • the step of generating a change image by moving by 1 includes a visualization target presence / absence determination step.
  • 3 and 4 is an explanation of image processing in a situation where the visualization target 22 has moved and the imaging unit 21 has stopped. However, the visualization target 22 has stopped and the imaging unit 21 has moved. It may be a situation in which the visualization target 22 and the imaging unit 21 are both moving, and the visualization target 22 seems to be relatively moving due to a difference in movement speed.
  • FIG. 3 shows a flowchart (3A) for explaining the operation of the fluorescence visualization apparatus in FIG. 1 and an image processing situation (3B) according to the flowchart.
  • FIG. 4 is a diagram for more specifically explaining the image processing from the change amount calculation step (S6) to the difference image acquisition step (S8) in FIG. 3, in which (4A) shows the whole image and (4B). And (4C) show the outline of vector calculation, respectively.
  • the first image acquisition step is a step of acquiring a first image 60 imaged by irradiating irradiation light to the visualization target 22.
  • the first image 60 as an example of the visualization target 22, food residues 61 and 62 that emit fluorescence are captured.
  • food residues 61 and 62 that emit fluorescence are captured.
  • the first image acquisition step is executed by the image acquisition unit 43.
  • the second image acquisition step is a step of acquiring the second image 70 captured when the irradiation target 22 is not irradiated with the irradiation light. Since the image is taken when the illumination light is not irradiated, the second image 70 has no fluorescence from the food residues 61 and 62.
  • the second image acquisition step is executed by the image acquisition unit 43.
  • the third image acquisition step is a step of acquiring a third image 80 captured by irradiating the irradiation target 22 with the irradiation light.
  • the third image 80 food residues 81 and 82 that emit fluorescence are captured as an example of the visualization target 22.
  • the food residues 81 and 82 are the same as the food residues 61 and 62, respectively, but the signs are changed because the positions thereof are changed.
  • the third image acquisition step is executed by the image acquisition unit 43.
  • the contrast expansion step is a step of performing processing for clearly adding contrast to the first image 60 and the third image 80. Thereby, both the images 60 and 80 become images in a state where the food residues 61, 62, 81, and 82 in them extend the contrast with respect to each background.
  • the contrast extension step is executed by the contrast extension unit 44.
  • the visualization target presence / absence determination step includes the visualization target 22 (food residue 61) that is the calculation target of the above-described change amount in the first decompression processed image 65 and the third decompression processed image 85 after the processing of the contrast decompression step. , 62, 81, 82) is determined. If the result of this determination is that it does not exist, the subsequent image processing cannot be performed, and the process proceeds to step S11. However, even if some food residues (for example, food residue 62) are not present, the steps after the change amount calculation step can be performed. In this case, the process may proceed to S11.
  • the process proceeds to the next step (S6).
  • the determination process of the visualization target presence / absence determination step is executed by the visualization target presence / absence determination unit 50.
  • an instruction to proceed to the next step is executed by the calculation instruction unit 51. .
  • Change amount calculation step (S6) a movement amount (a, b) on the two-dimensional orthogonal coordinate system in the imaging region 86 between the two decompressed images (first decompressed image 65 and third decompressed image 85) is extracted. It is a step.
  • the movement amount a is the movement amount in the x-axis direction of the vector V2 (see FIG. 4) from the food residues 61 and 62 toward the food residues 81 and 82.
  • the movement amount b is the movement amount in the Y-axis direction of the vector V2.
  • the vector V2 is a vector having the same size and the reverse direction as the vector V1 from a certain point of the third decompressed processed image 85 to a point corresponding to that point in the first decompressed processed image 65.
  • the coordinate axis 83 of the third decompression processed image 85 is moved from the coordinate axis 63 of the first decompression processed image 65 by the magnitude in the direction of the vector V2.
  • the change amount calculation step is executed by the change amount calculation unit 45.
  • Change image generation step (S7) is a step of translating the entire pixels of the second image 70 by (a / 2, b / 2) on the two-dimensional orthogonal coordinate system in the imaging region. This is because if the second image 70 at the intermediate position between the first image 60 and the third image 80 is moved in time series by half of the above-described movement amount (a, b), the third image 80 Based on the idea that it can be used as a background. Specifically, the change image is generated by moving the second image 70 by the length of V3 in the direction of the vector V3 in which the vector V2 is 1 ⁇ 2 in length. As a result, the coordinate axis 73 comes to a position overlapping the coordinate axis 83 (see FIG. 4). The change image generation step is executed by the change image generation unit 46.
  • Difference image acquisition step (S8) The difference image acquisition step is a step of acquiring a difference image 87 between the third image 80 and the image after being moved by the change image generation step. This is because the fluorescence visualization needs to be performed using the difference between the fluorescent portion and the background image. In the case of imaging still food residues 61 and 62, the images captured when the illumination unit 20 is not extinguished and when the illumination unit 20 is extinguished have the same background. What is necessary is just to form a difference image using an image as it is. However, when the food residues 61 and 62 are moving, the second image 70 captured when the light is not extinguished cannot be used as it is as an image that takes a difference from the third image 80.
  • the difference image 87 is formed after the second image 70 is moved and processed so as to be regarded as the background of the third image 80.
  • the difference image acquisition step is executed by the difference image acquisition unit 47.
  • the lightness expansion step is a step of performing a process of expanding the lightness on the difference image 87. This is a process for executing fluorescence visualization.
  • the lightness expansion step is executed by the lightness expansion unit 48.
  • Lightness expanded image display step (S10) In the lightness expanded image display step, the lightness expanded image 88 is displayed on the display unit 12. The lightness expanded image display step is executed by the input / output unit control unit 53.
  • End determination step is a step of determining whether or not to continue the image processing. When the processing is completed for all the images, the series of image processing ends. On the other hand, if there is still an image to be processed, the process proceeds to S12.
  • Repeat execution instruction step (S12) In the repeated execution instruction step, when it is determined that the image processing should be continued as a result of the end determination, the process returns to S ⁇ b> 2, the image when the illumination unit 20 is not turned off (fourth image), and the illumination unit 20. This is a step of shifting to each acquisition step of an image at turn-off (fifth image). The end determination step and the repeated execution instruction step are executed by the repeated execution instruction unit 49.
  • the fluorescence visualization method is a fourth image acquisition for acquiring a fourth image 90a obtained by imaging the visualization target 22 by the imaging unit 21 when the illumination light is not irradiated after a predetermined time from the imaging of the third image 80a.
  • Step and fifth image acquisition for acquiring a fifth image 100a obtained by imaging the visualization target 22 by the imaging unit 21 when the visualization target 22 is irradiated with illumination light again after the fourth image 90a is captured. And further including a step.
  • the change amount calculating step obtains a circular orbit including the point of the visualization target 22 on the two-dimensional orthogonal coordinate system of the first image 60a, the third image 80a, and the fifth image 100a, and specifies the center at the center of the circular orbit.
  • This is a step of calculating the rotation angle ( ⁇ ) of the visualization target 22 around the point (also referred to as the origin O).
  • the change image generation step includes a second image captured at the time of non-irradiation of illumination light among the three images (first image 60a, second image 70a, and third image 80a) continuously captured in time series. In this step, the pixels in 70a are rotated by a half of the rotation angle ( ⁇ ) obtained previously to generate a change image.
  • 5 and 6 is an explanation of image processing in a situation where the visualization target 22 is rotated and the imaging unit 21 is stopped. However, the visualization target 22 is stopped and the imaging unit 21 is rotated. It may be a situation where the visualization target 22 and the imaging unit 21 are both rotated, and the visualization target 22 seems to be relatively rotated due to a difference in rotational speed.
  • FIG. 5 shows a flowchart for explaining the operation of the fluorescence visualization apparatus in FIG. 1 when the food residue to be visualized rotates and moves in the two-dimensional coordinate system.
  • FIG. 6 is a conceptual diagram for explaining the change amount calculation step and the change image generation step in the flowchart of FIG.
  • the first image acquisition step is a step of acquiring a first image 60a captured by irradiating the irradiation light 22 with the irradiation light. For the purpose of simplifying the explanation, it is assumed that only the food residue 61 that emits fluorescence is captured as an example of the visualization target 22 in the first image 60a.
  • the first image acquisition step is executed by the image acquisition unit 43.
  • the second image acquisition step is a step of acquiring the second image 70a captured when the irradiation target 22 is not irradiated with the irradiation light. Since the image is taken when the illumination light is not irradiated, there is no fluorescence from the food residue 61 in the second image 70a.
  • the second image acquisition step is executed by the image acquisition unit 43.
  • the third image acquisition step is a step of acquiring a third image 80a captured by irradiating the visualization target 22 with the irradiation light.
  • the third image 80 a only the food residue 81 that emits fluorescence is captured as an example of the visualization target 22.
  • the food residue 81 is the same as the food residue 61, but the sign is changed because the position is changed.
  • the third image acquisition step is executed by the image acquisition unit 43.
  • the fourth image acquisition step is a step of acquiring a fourth image 90a captured when the irradiation target 22 is not irradiated with the irradiation light. Since the image is taken when the illumination light is not irradiated, the fourth image 90 a has no fluorescence from the food residue 61.
  • the fourth image acquisition step is executed by the image acquisition unit 43.
  • the fifth image acquisition step is a step of acquiring a fifth image 100a captured by irradiating the irradiation target 22 with the irradiation light.
  • the food residue 101 is the same as the food residues 61 and 81, but the sign is changed because the position is changed.
  • the fifth image acquisition step is executed by the image acquisition unit 43.
  • This step is performed in order to specify an arc-shaped trajectory from the food residue 61 to the food residue 81 as in the fourth image acquisition step. This is because if three positions of the food residues 61, 81, 101 are determined, a circle (radius r, see FIG. 6) having them on the trajectory can be specified. If the circle can be specified, the rotation angle ⁇ from the food residue 61 to the food residue 81 (the rotation angle from the food residue 81 to the food residue 101 is the same) is uniquely determined. Once the rotation angle ⁇ is determined, a change image for obtaining a difference from the third image 80a is obtained by rotating the second image 70a by a half thereof. From such a technical idea, the image acquisition unit 43 acquires not only the first image 60a, the second image 70a, and the third image 80a, but also the fourth image 90a and the fifth image 100a.
  • the contrast expansion step is a step of performing processing for clearly adding contrast to the first image 60a and the third image 80a.
  • both images 60a and 80a are images in which the food residues 61 and 81 in them extend the contrast with respect to each background.
  • the contrast extension step is executed by the contrast extension unit 44.
  • the visualization target presence / absence determination step includes the visualization target 22 (food residues 61 and 81) that is the calculation target of the above-described change amount in the first decompression processed image and the third decompression processed image after the processing of the contrast decompression step. ) Exists. If the result of this determination is that it does not exist, the subsequent image processing cannot be performed, and the process proceeds to step S33. On the other hand, when the food residues 61 and 81 exist, it transfers to the following step (S28).
  • the determination process of the visualization target presence / absence determination step is executed by the visualization target presence / absence determination unit 50. As a result of the determination of the visualization target presence / absence determination step, an instruction to proceed to the next step is executed by the calculation instruction unit 51. .
  • the change amount calculating step is a step of calculating a rotation angle ( ⁇ ) on a two-dimensional orthogonal coordinate system in an imaging region between two extension processed images (first extension processed image and third extension processed image). Specifically, a circle including three points of food residues 61, 81, and 101 is obtained, and a rotation angle ( ⁇ ) from the food residue 61 to the food residue 81 is obtained.
  • the change amount calculation step is executed by the change amount calculation unit 45.
  • the change image generation step is a step in which the entire pixels of the second image 70a are rotated by ( ⁇ / 2) on the two-dimensional orthogonal coordinate system in the imaging region. This is because when the second image 70a located at the intermediate position between the first image 60a and the third image 80a in time series is rotated by an angle that is 1 ⁇ 2 of the rotation angle ( ⁇ ), the third image 80a Based on the idea that it can be used as a background.
  • the change image generation step is executed by the change image generation unit 46.
  • Difference image acquisition step is a step of acquiring a difference image between the third image 80a and the change image obtained by the change image generation step.
  • the difference image acquisition step is executed by the difference image acquisition unit 47.
  • 3D coordinate system Three-dimensional image obtained from the first image and the third image obtained by imaging the pixels in the second image captured when the illumination light is not illuminated among the three images continuously photographed in time series.
  • a change image may be generated by correcting a movement amount, enlargement or reduction, or deformation on the coordinate system, and a difference image may be acquired using the deformation image.
  • FIG. 7 is a diagram for explaining a modification example of visualization executed by the fluorescence visualization apparatus of FIG. 1, and shows a display form (7A) after switching the visualization and a flow (7B) leading to the display process, respectively. .
  • the fluorescence visualization apparatus 1 is configured to divide the image display area into a plurality of divided areas (20 areas constituting the spot cursor 14) in the image display area (display unit 12) that displays the brightness expansion processing image.
  • a divided region specifying unit 52 an example of a divided region specifying means
  • the fluorescence visualization method performed by the fluorescence visualization apparatus 1 is the number of fluorescent pixels exceeding a predetermined threshold in the divided area obtained by dividing the image display area into a plurality of areas in the image display area for displaying the brightness expansion processing image.
  • the method further includes a divided region specifying step for clearly specifying a divided region in which.
  • the input / output unit control unit 53 receives the instruction (S41).
  • the divided region specifying unit 52 determines whether the number of fluorescent pixels emitted from the food residue 110 has exceeded a predetermined threshold, and the divided region that has exceeded the predetermined threshold. Is selected (S42). Subsequently, the divided region specifying unit 52 specifies the selected divided region (S43).
  • a method of displaying a filled area 111 in which the divided area is filled with a conspicuous color can be given as an example.
  • the predetermined threshold value can be set arbitrarily, but can be set to two or more pixels, for example.
  • the predetermined threshold data can be stored in the information storage unit 32, for example.
  • the divided area having zero or one fluorescent pixel is not displayed as the filled area 111, and only the divided area having two or more fluorescent pixels is displayed as the filled area 111. Is displayed.
  • the divided region specifying unit 52 includes a configuration unit that determines whether or not the threshold is exceeded (for example, a threshold determination unit), and a configuration unit that explicitly indicates the divided region where the number of fluorescent pixels exceeding the threshold exists (an explicit configuration unit). May be divided.
  • the fluorescence visualization method may be divided into a threshold determination step for determining whether or not the threshold is exceeded and an explicit step for clearly indicating a divided region where the number of fluorescent pixels exceeding the threshold exists.
  • the threshold determination step is executed by the threshold determination unit.
  • the explicit step is executed by the explicit configuration unit.
  • the computer program according to this embodiment is a computer program that can be installed and executed in the fluorescence visualization apparatus 1 that irradiates the visualization target 22 with illumination light and detects and visualizes the fluorescence from the visualization target 22.
  • the computer program stores the fluorescence visualization apparatus 1 including the illumination unit 20, the illumination operation control unit 41, the imaging unit 21, the imaging operation control unit 42, the image storage unit 31, and the information storage unit 32.
  • This is a computer program for visualizing fluorescence of the visualization target 22 that moves relative to the unit 21.
  • the change amount calculation unit 45 is a means for calculating the movement amount of the visualization target 22 on the two-dimensional orthogonal coordinate system, and the change image generation unit 46 is continuously imaged in time series.
  • a means for generating a change image by moving the pixels in the second image 70 captured when the illumination light is not irradiated by a half of the above-described movement amount may be used.
  • the change amount calculation unit 45 is a means for calculating the rotation angle ( ⁇ ) of the visualization target 22 around a specific point on the two-dimensional orthogonal coordinate system
  • the change image generation unit 46 includes: Of the three images that are continuously captured in time series, the change image is generated by rotating the pixel in the second image 70a that is captured when the illumination light is not irradiated by half the rotation angle ( ⁇ ). It may be a means to do.
  • the computer program may further cause the fluorescence visualization apparatus 1 to function as the visualization target presence / absence determination unit 50 and the calculation instruction unit 51. Further, the computer program may cause the fluorescence visualization apparatus 1 to further function as the divided region specifying unit 52.
  • the computer program may be installed in advance in, for example, the information storage unit 32 of the fluorescence visualization apparatus 1, or may be downloaded from an external server and stored in the information storage unit 32. Further, an external memory (such as a flash memory or a disk-type information recording medium) storing a computer program is loaded or connected to a part of the fluorescence visualization apparatus 1 (for example, a part of the input unit 34). A computer program may be installed in the information storage unit 32.
  • an external memory such as a flash memory or a disk-type information recording medium
  • the information recording medium 32 is a non-transitory recording medium that stores a computer program capable of executing the following steps by the processing of the computer processor.
  • the information recording medium 32 in this embodiment is processed through processing of a processor in a computer.
  • the change amount calculation step is further set as a step of calculating the movement amount of the visualization target on the two-dimensional orthogonal coordinate system, and the change image generation step is performed in the second image.
  • This may be a non-transitory recording medium that stores a computer program that is a step of generating a change image by moving the above pixels by a half of the above-described movement amount.
  • the information recording medium 32 is processed through a processor in a computer.
  • the change amount calculating step is a step of calculating the rotation angle of the visualization target that moves on a circular orbit including the coordinates of the visualization target on the two-dimensional orthogonal coordinate system of the first image, the third image, and the fifth image,
  • the information recording medium 32 is processed through a processor in a computer.
  • a divided area specifying step is performed for clearly indicating a divided area in which the number of fluorescent pixels exceeding a predetermined threshold exists among the divided areas obtained by dividing the image display area. It may be a non-transitory recording medium that stores a computer program.
  • the present invention can be used to visualize the presence of biomaterials such as foods, beverages and fungi.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Abstract

【課題】 撮像部と相対的に動きのある測定対象物に対して良好な可視化を実現できる蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラムを提供する。 【解決手段】 本発明は、照明手段20と、照明動作制御手段41と、撮像手段21と、撮像動作制御手段42と、画像取得手段43と、コントラスト伸長手段44と、変化量計算手段45と、変化画像生成手段46と、差分画像取得手段47と、明度伸長手段48と、繰返実行指示手段49と、記憶手段31とを備え、撮像手段21と相対的に動く可視化対象22を蛍光可視化させる蛍光可視化装置1、蛍光可視化方法ならびにコンピュータプログラムに関する。

Description

蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラム クロスリファレンス
 本出願は、2015年8月18日に日本国において出願された特願2015-160806に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。
 本発明は、撮像部に対して相対的に動く撮像対象を可視化する際に画像処理を行う蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラムに関する。
 食品を製造・加工する工場内は、衛生第一の環境下にあるため、食物残渣がベルトコンベアをはじめとする各種機器に付着した状態を放置することは許されない。このため、食品を製造・加工する企業は、例えば、特定の食品の製造終了後、別の種類の食品の製造へと切り替える際には、食品の接触した機器の洗浄、検査を厳格に行い、食物残渣などが無いように常に注意を払っている。
 このような検査は、目視に加えあるいは目視に代えて、蛍光可視化装置が用いられることがある。視認できないほどの小さな食片は、その部分の蛍光を利用した方が確認しやすいからである。従来から公知の蛍光可視化装置は、例えば、次のような方法にて用いられる。動物、植物あるいは菌類を問わず、多くの生物共通に分布する有機化合物に、NADH(ニコチンアミドアデニンジヌクレオチド)とFAD(ラビンアデニンヌクレオチド)が知られている。これらに植物由来のクロロフィルを加えたものは、生物由来の食物残渣の存否や細菌増殖の指標として利用されている。食物残渣に特定の波長域の光(例えば、可視光や紫外線)を照射すると、その励起光より波長の長い蛍光を発する(励起蛍光現象)。このような原理で、食物残渣の量や存在箇所を特定することができる。かかる蛍光可視化装置は、検査試薬を使用せず、かつ非接触、非破壊の検査を可能とすることから、低コストで検査員による差の少ない検査を保証する(例えば、特許文献1を参照)。
 ところで、励起蛍光現象を利用した蛍光観察装置は、生体内検査で利用されることが多い。蛍光観察装置は、例えば、体腔内部に挿入される内視鏡、コルポスコープあるいは手術用顕微鏡といったヒトやそれ以外の動物の病変部を確認するための機器に組み込まれ、利用されている(例えば、特許文献2~5)。
特開2003-210193号公報 特開2008-125934号公報 特開昭62-247232号公報 特開昭63-252134号公報 特開2006-175052号公報
 上記従来の装置は、その撮像部に対して相対的に動きの無い対象物を検査するには何ら問題なく用いることができる。しかし、上記従来の装置は、相対的に動きのある対象物(すなわち、撮像部が移動して対象物が静止している場合、撮像部が静止して対象物が移動している場合、あるいは撮像部と対象物が共に異なる速度で移動している場合)に対しては、蛍光を可視化できない若しくは可視化できても視認性が低いという問題がある。
 本発明は、上記課題を解決するためになされたものであって、撮像部と相対的に動きのある測定対象物に対して良好な可視化を実現できる蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラムを提供することを目的とする。
 上記目的を達成するための一実施形態に係る蛍光可視化装置は、可視化対象に照明光を照射して、その可視化対象からの蛍光を検出して可視化する蛍光可視化装置であって、可視化対象に照明光を照射する照明手段と、所定時間間隔で照明手段の点灯と消灯とを繰り返す動作を制御する照明動作制御手段と、蛍光を検出可能であって、照明手段からの照明光の照射時および非照射時に可視化対象を撮像して複数の画像を取得する撮像手段と、撮像手段の撮像動作を制御して所定時間間隔で撮像可能とする撮像動作制御手段と、撮像された画像を取得する画像取得手段と、画像取得手段により取得された画像であって時系列で連続して撮像された3つの画像の内、照明光を照射した際に撮像した第一画像および第三画像に対してコントラスト伸長処理を施すコントラスト伸長手段と、コントラスト伸長手段により第一画像および第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の可視化対象の変化量を計算する変化量計算手段と、時系列で連続して撮像された3つの画像の内、照明光の非照射時に撮像した第二画像を、上述の変化量に基づき第三画像の位置および大きさの内の少なくとも1つに至るように変化させて変化画像を生成する変化画像生成手段と、第三画像と変化画像との差分画像を取得する差分画像取得手段と、差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長手段と、時系列をずらして、第三画像以降の画像を取得する画像取得手段、コントラスト伸長手段、変化量計算手段、変化画像生成手段、差分画像取得手段および明度伸長手段を実行させるように指示を出す繰返実行指示手段と、画像、第一伸長処理画像、第三伸長処理画像、変化画像および差分画像を記憶する記憶手段とを備え、撮像手段と相対的に動く可視化対象を蛍光可視化させる。
 別の実施形態に係る蛍光可視化装置は、さらに、変化量計算手段を二次元直交座標系上の可視化対象の移動量を計算する手段とし、変化画像生成手段を、時系列で連続して撮像された3つの画像の内、第二画像中の画素を上述の移動量の2分の1だけ移動して変化画像を生成する手段としても良い。
 別の実施形態に係る蛍光可視化装置は、また、変化量計算手段を、二次元直交座標系上における特定点を中心とした可視化対象の回転角度を計算する手段とし、変化画像生成手段を、時系列で連続して撮像された3つの画像の内、第二画像中の画素を上述の回転角度の2分の1だけ回転して変化画像を生成する手段としても良い。
 別の実施形態に係る蛍光可視化装置は、また、明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する分割領域を明示する分割領域明示手段を、さらに備えても良い。
 また、上記目的を達成するための一実施形態に係る蛍光可視化方法は、可視化対象に照明光を照射して、その可視化対象からの蛍光を検出して可視化する蛍光可視化方法であって、照明手段により可視化対象に照明光を照射した際に撮像手段により可視化対象を撮像した第一画像を取得する第一画像取得ステップと、第一画像の撮像から所定時間後であって、照明光の非照射時に撮像手段により可視化対象を撮像した第二画像を取得する第二画像取得ステップと、第二画像の撮像から所定時間後であって、照明手段により可視化対象に再び照明光を照射した際に撮像手段により可視化対象を撮像した第三画像を取得する第三画像取得ステップと、第一画像および第三画像に対してコントラスト伸長処理を施すコントラスト伸長ステップと、コントラスト伸長ステップにより第一画像および第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の可視化対象の変化量を計算する変化量計算ステップと、第二画像を、その変化量に基づいて第三画像の位置および大きさの内の少なくとも1つに至るように変化させて変化画像を生成する変化画像生成ステップと、第三画像と変化画像との差分画像を取得する差分画像取得ステップと、差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長ステップと、時系列をずらして、第三画像以降の画像を取得する第二画像取得ステップと同様のステップ、コントラスト伸長ステップ、変化量計算ステップ、変化画像生成ステップ、差分画像取得ステップおよび明度伸長ステップを実行させるように指示を出す繰返実行指示ステップとを含み、撮像手段と相対的に動く可視化対象を蛍光可視化させる。
 別の実施形態に係る蛍光可視化方法は、さらに、変化量計算ステップを二次元直交座標系上の可視化対象の移動量を計算するステップとし、変化画像生成ステップを、第二画像中の画素を上述の移動量の2分の1だけ移動して変化画像を生成するステップとしても良い。
 別の実施形態に係る蛍光可視化方法は、第三画像の撮像から所定時間後であって、照明光の非照射時に撮像手段により可視化対象を撮像した第四画像を取得する第四画像取得ステップと、第四画像の撮像から所定時間後であって、照明手段により可視化対象に再び照明光を照射した際に撮像手段により可視化対象を撮像した第五画像を取得する第五画像取得ステップと、をさらに含み、変化量計算ステップを、第一画像、第三画像および第五画像の二次元直交座標系上における可視化対象の座標を含む円軌道上を移動する可視化対象の回転角度を計算するステップとし、変化画像生成ステップを、第二画像中の画素を上述の回転角度の2分の1だけ回転して変化画像を生成するステップとしても良い。
 別の実施形態に係る蛍光可視化方法は、また、明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する分割領域を明示する分割領域明示ステップを、さらに含んでも良い。
 また、上記目的を達成するための一実施形態に係るコンピュータプログラムは、可視化対象に照明光を照射して、その可視化対象からの蛍光を検出して可視化する蛍光可視化装置にインストールされ実行可能なコンピュータプログラムであって、可視化対象に照明光を照射する照明手段と、所定時間間隔で照明手段の点灯と消灯とを繰り返す動作を制御する照明動作制御手段と、蛍光を検出可能であって、照明手段からの照明光の照射時および非照射時に可視化対象を撮像して複数の画像を取得する撮像手段と、撮像手段の撮像動作を制御して所定時間間隔で撮像可能とする撮像動作制御手段と、記憶手段と、を備える蛍光可視化装置を、
 撮像された画像を取得する画像取得手段、
 画像取得手段により取得された画像であって時系列で連続して撮像された3つの画像の内、照明光を照射した際に撮像した第一画像および第三画像に対してコントラスト伸長処理を施すコントラスト伸長手段、
 コントラスト伸長手段により第一画像および第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の可視化対象の変化量を計算する変化量計算手段、
 時系列で連続して撮像された3つの画像の内、照明光の非照射時に撮像した第二画像を、上述の変化量に基づいて第三画像の位置および大きさの内の少なくとも1つに至るように変化させて変化画像を生成する変化画像生成手段、
 第三画像と変化画像との差分画像を取得する差分画像取得手段、
 差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長手段、および
 時系列をずらして、第三画像以降の画像を取得する画像取得手段、コントラスト伸長手段、変化量計算手段、変化画像生成手段、差分画像取得手段および明度伸長手段を実行させるように指示を出す繰返実行指示手段、
として機能させ、撮像手段と相対的に動く可視化対象を蛍光可視化させる。
 別の実施形態に係るコンピュータプログラムは、さらに、変化量計算手段を、二次元直交座標系上の可視化対象の移動量を計算する手段とし、変化画像生成手段を、時系列で連続して撮像された3つの画像の内、第二画像中の画素を上述の移動量の2分の1だけ移動して変化画像を生成する手段としても良い。
 別の実施形態に係るコンピュータプログラムは、また、変化量計算手段を、二次元直交座標系上における特定点を中心とした可視化対象の回転角度を計算する手段とし、変化画像生成手段を、時系列で連続して撮像された3つの画像の内、第二画像中の画素を上述の回転角度の2分の1だけ回転して変化画像を生成する手段としても良い。
 別の実施形態に係るコンピュータプログラムは、また、蛍光可視化装置を、明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する分割領域を明示する分割領域明示手段としてさらに機能させるようにしても良い。
 本発明によれば、撮像部と相対的に動きのある測定対象物に対して良好な可視化を実現できる蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラムを提供することができる。
図1は、本発明の実施形態に係る蛍光可視化装置の正面図を示す。 図2は、図1の蛍光可視化装置の概略構成を示す。 図3は、図1の蛍光可視化装置の動作を説明するためのフローチャート(3A)およびそのフローチャートに合わせた画像処理の状況(3B)をそれぞれ示す。 図4は、図3の変化量計算ステップ(S6)から差分画像取得ステップ(S8)の画像処理についてより具体的に説明するための図であって、(4A)は全体像を、(4B)および(4C)はベクトル計算の概要を、それぞれ示す。 図5は、可視化対象である食物残渣が二次元座標系内を回転移動する場合における図1の蛍光可視化装置の動作を説明するためのフローチャートを示す。 図6は、図5のフローチャート中の変化量計算ステップおよび変化画像生成ステップを説明するための概念図を示す。 図7は、図1の蛍光可視化装置により実行される可視化の変形例を説明するための図であり、可視化の切り替え後の表示形態(7A)およびその表示処理に至るフロー(7B)をそれぞれ示す。
1  蛍光可視化装置
12  表示部(画像表示領域)
20  照明部(照明手段の一例)
21  撮像部(撮像手段の一例)
22  可視化対象
31  画像記憶部(記憶手段の一例)
32  情報記憶部(記憶手段の一例)
41  照明動作制御部(照明動作制御手段の一例)
42  撮像動作制御部(撮像動作制御手段の一例)
43  画像取得部(画像取得手段の一例)
44  コントラスト伸長部(コントラスト伸長手段の一例)
45  変化量計算部(変化量計算手段の一例)
46  変化画像生成部(変化画像生成手段の一例)
47  差分画像取得部(差分画像取得手段の一例)
48  明度伸長部(明度伸長手段の一例)
49  繰返実行指示部(繰返実行指示手段の一例)
50  可視化対象有無判別部(可視化対象有無判別手段の一例)
51  計算指示部(計算指示手段の一例)
52  分割領域明示部(分割領域明示手段の一例)
53  入出力部制御部
60,60a  第一画像(画像)
61  食物残渣(可視化対象の一例)
62  食物残渣(可視化対象の一例)
65  第一伸長処理画像
70,70a  第二画像(画像)
80,80a  第三画像(画像)
81  食物残渣(可視化対象の一例)
82  食物残渣(可視化対象の一例)
83  二次元直交座標
85  第三伸長処理画像
86  撮像領域
87  差分画像
88  明度伸長処理画像
90a  第四画像(画像)
100a  第五画像(画像)
101  食物残渣(可視化対象の一例)
110  食物残渣(可視化対象の一例)
 次に、本発明の実施形態について、図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明を限定するものではなく、また、実施形態の中で説明されている諸要素およびその組み合わせの全てが本発明の解決手段に必須であるとは限らない。
(1.蛍光可視化装置)
 図1は、本発明の実施形態に係る蛍光可視化装置の正面図を示す。
 図1に示す蛍光可視化装置1は、薄板状の形態を有し、測定者が容易に携帯できる大きさである。蛍光可視化装置1は、その正面に、モニタ10と、電源スイッチ11とを備える。本願における「蛍光」とは、紫外線等の励起光を照射した対象物からその励起光より波長の長い光を発する励起蛍光現象を利用した出射光に限定されず、紫外線や赤外線などの照明光を対象物に照射したときにその対象物から発せられる燐光、散乱光あるいは拡散光も含むように広義に解釈される。モニタ10は、例えば、液晶ディスプレイであるが、それ以外の表示形式のモニタでも良い。モニタ10には、表示部12と、その左右両側にメニューボタン13とが表示される。メニューボタン13は、この実施形態では、好ましくは、静電容量方式のタッチセンサを備えたボタンであるが、接触導通方式のセンサでも良い。また、メニューボタン13の数は、1つのみでも、2以上の任意の数でも良い。表示部12には、スポットカーソル14と称する複数の分割領域に区分された枠が表示される。スポットカーソル14は、メニューボタン13からの入力によって、その表示および非表示を選択可能である。スポットカーソル14は、表示部12の略中央領域に、縦4行×横5列の合計20個の分割領域を備える。ただし、その数は、20個に限定されず、それより多くあるいは少なく形成することもできる。
 図2は、図1の蛍光可視化装置の概略構成を示す。
 蛍光可視化装置1は、この実施の形態では、可視化対象(測定対象ともいう)22に照明光を照射して、その可視化対象22からの蛍光を検出して可視化する装置であって、後述の撮像部21と相対的に動く可視化対象22を蛍光可視化させることができる。蛍光可視化装置1は、表示部12と、照明部20と、撮像部21と、制御部30と、画像記憶部31と、情報記憶部32と、出力部33と、入力部34とを好適に備える。制御部30は、照明動作制御部41と、撮像動作制御部42と、画像取得部43と、コントラスト伸長部44と、変化量計算部45と、変化画像生成部46と、差分画像取得部47と、明度伸長部48と、繰返実行指示部49と、可視化対象有無判別部50と、計算指示部51と、分割領域明示部52と、入出力部制御部53とを好適に備える。
 照明部20は、可視化対象22に照明光を照射する照明手段であり、この実施形態では2個備えられている。ただし、その個数は2個に限定されず、1個あるいは3個以上でも良い。照明部20は、この実施形態では、約365nmの中心波長を持つ紫外光を可視化対象22に照射可能な構成部である。上記紫外光を用いた蛍光励起方式を利用して、食物残渣、菌(カビも含む)などの可視化を行う。ただし、照明部20は、中心波長約365nmの紫外光を照射するものに限定されず、別の波長の光を照射するものでも良い。例えば、照明部20として、270~350nmあるいは380~410nmの波長を持つ光を照射可能なものを用いても良い。
 撮像部21は、可視化対象22からの蛍光を検出可能であって、照明部20からの照明光の照射時および非照射時に可視化対象22を撮像して複数の画像を取得可能な構成部である。撮像部21は、レンズ、蛍光フィルタ、蛍光検出器などをも含む。
 制御部30は、中央処理装置(CPU)と、各種制御を行うためのコンピュータプログラムとの協働によって蛍光可視化装置1の各種処理を行う。図2中、制御部30内の照明動作制御部41から入出力部制御部53までの各部分は、物理的な構成ではなく、ファンクションボックスとして表されている。
 画像記憶部31は、各種画像データを記憶する部分であり、ランダムアクセスメモリ(RAM)あるいはハードディスク(HD)に相当する。各種画像データは、後述する「画像」、「第一伸長処理画像」、「第三伸長処理画像」、「変化画像」、「差分画像」および「明度伸長処理画像」を含む。すなわち、画像記憶部31は、画像、第一伸長処理画像、第三伸長処理画像、変化画像および差分画像を記憶する記憶手段の一例である。なお、画像記憶部31は、明度伸長処理画像を記憶しても良い。
 情報記憶部32は、画像記憶部31に格納される各種画像データ以外の情報を、あるいは各種画像データをも重複して記憶する部分である。情報記憶部32は、画像記憶部31同様、ランダムアクセスメモリ(RAM)あるいはハードディスク(HD)に相当する。情報記憶部32に格納される情報は、例えば、蛍光可視化装置1の使用者が入力した情報、同装置1が検知若しくは取得した画像以外の情報、計算等に必要な予め記憶されている計算式の情報である。制御部30は、情報記憶部32内に格納される情報を読み出しながら、各種処理を実行する。情報記憶部32は、画像記憶部31と共に、記憶手段の一例である。
 出力部33は、表示部12に表示される以外の信号を出力する構成部である。出力部33としては、例えば、電力消耗レベルの表示、ピントが合っているか否かの表示の他、蛍光可視化装置1を許容範囲以上の速度で動かした際のアラーム等の音声データの出力をも行う。出力部33は、1種あるいは2種以上の構成部でも良く、表示手段および/または音声出力手段となる。また、表示部12を出力部33に含めても良い。
 入力部34は、図1の電源スイッチ11およびメニューボタン13と接続され、各種の入力を受け付ける構成部である。入力部34は、1種あるいは2種以上の構成部でも良い。
 照明動作制御部41は、所定時間間隔で照明部20の点灯と消灯とを繰り返すように動作制御する照明動作制御手段である。所定時間間隔で点灯と消灯とを繰り返す動作は、照明動作制御部41によって、使用者が入力部34に入力した所望の時間、予め設定された複数の選択肢から選択された時間、あるいは情報記録部32にて記憶されている固定の時間等が読み込まれて実行される。所定時間としては、例えば、100msec、50msecなどに設定可能である。
 撮像動作制御部42は、撮像部21の撮像動作を制御して所定時間間隔で撮像可能とする撮像動作制御手段である。撮像部21の撮像動作は、照明部20の照明時のみならず消灯時にも行われる。例えば、照明部20が50msec間隔で、「点灯」、「消灯」、「点灯」、「消灯」と交互に繰り返す場合、撮像動作制御部42は、撮像部21を制御して、50msec間隔で撮像するようにする。こうして、照明部20の点灯時の撮像、照明部20の消灯時の撮像、照明部20の点灯時の撮像、と交互に繰り返す動作が可能である。
 画像取得部43は、撮像部21にて撮像された画像を取得する画像取得手段である。画像の取得は、好適には、画像記憶部31からの読み出しである。ただし、画像取得部43は、撮像部21(この中にメモリがあるか否かを問わない)から画像を直接取得することもできる。
 コントラスト伸長部44は、時系列で連続して撮像された3つの画像(順に、第一画像、第二画像、第三画像という)の内、照明光を照射した際に撮像した第一画像および第三画像に対してコントラスト伸長処理を施すコントラスト伸長手段である。ここで、「時系列で連続して撮像された3つの画像」とは、上述の所定時間間隔で撮像された連続する3つの画像を意味する。例えば、「時系列で連続して撮像された3つの画像」は、50msec間隔で撮像する場合、照明部20の点灯時の撮像、その点灯から50msec後に照明部20が消灯した時の撮像、その消灯から50msec後に照明部20が点灯した時の撮像によって得られた3つの画像を意味する。以後の「時系列で連続して撮像された3つの画像」も同様の意味に解釈される。コントラスト伸長部44の処理の詳細については、図3に基づき後述する。
 変化量計算部45は、コントラスト伸長部44により第一画像および第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の可視化対象22の変化量を計算する変化量計算手段である。変化量計算部45は、好ましくは、二次元直交座標系上の可視化対象22の移動量を計算する手段である。また、変化量計算部45は、好ましくは、二次元直交座標系上における特定点(回転の中心となる点)を中心とした可視化対象22の回転角度(θ)を計算する手段である。変化量計算部45の処理の詳細については後述する。
 変化画像生成部46は、時系列で連続して撮像された3つの画像の内、照明光の非照射時に撮像した第二画像を、上述の変化量に基づき第三画像の位置および大きさの内の少なくとも1つに至るように変化させて変化画像を生成する変化画像生成手段である。「少なくとも」であるから、位置と大きさのいずれか1つ、あるいは両方に合致させるように変化させることができる。ここで、「変化量」は、移動量のみならず、回転角度あるいは大きさの変化などの移動量以外の種々の因子をも含み得る。変化量計算部45が二次元直交座標系上の可視化対象22の移動量を計算する手段として機能する場合、変化画像生成部46は、時系列で連続して撮像された3つの画像の内、照明光の非照射時に撮像した第二画像中の画素を上述の移動量の2分の1だけ移動して変化画像を生成する変化画像生成手段とすることができる。また、変化画像生成部46は、時系列で連続して撮像された3つの画像の内、照明光の非照射時に撮像した第二画像中の画素を、変化量計算部45にて求められた回転角度(θ)の2分の1だけ回転して変化画像を生成する変化画像生成手段とすることもできる。変化画像生成部46の処理の詳細については後述する。
 差分画像取得部47は、第三画像と上述の変化画像との差分画像を取得する差分画像取得手段である。差分画像取得部47の処理の詳細については後述する。
 明度伸長部48は、上述の差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長手段である。明度伸長部48の処理の詳細については後述する。
 繰返実行指示部49は、処理を継続するかどうかを判別した上で(後述の終了判別ステップ)、時系列をずらして、画像取得部43、コントラスト伸長部44、変化量計算部45、変化画像生成部46、差分画像取得部47および明度伸長部48を実行させるように指示を出す繰返実行指示手段である。繰返実行指示部49は、時系列で連続して撮像された3つの画像を利用して、画像取得部43、コントラスト伸長部44、変化量計算部45、変化画像生成部46、差分画像取得部47および明度伸長部48による各種処理を行った後、次の時系列に対して、同様の処理を行うように指示を出す構成部である。ここで、「時系列をずらして」は、例えば、先に処理の対象とした第三画像を第一画像とし、その後の2つの連続する画像を含めた3つの画像に対して画像処理を行うのに必要な時系列の移動を含むように解釈される。例えば、50msec間隔で一番目の画像(点灯)、二番目の画像(消灯)、三番目の画像(点灯)と撮像する場合、最初の3つの画像の処理が終わると、100msecずらして、三番目(点灯)、四番目(消灯)、五番目(点灯)の連続する3つの画像に対して処理が行われる。繰返実行指示部49の処理の詳細についても後述する。
 可視化対象有無判別部50は、第一伸長処理画像中および第三伸長処理画像中に上述の変化量の計算対象となる可視化対象22が存在するか否かを判別する可視化対象有無判別手段である。可視化対象22が時系列的に連続する画像中に存在しない場合に、その後の画像処理を行わないようにする必要からである。ただし、可視化対象有無判別部50は、必須の構成ではなく、制御部30内に設けなくても良い。可視化対象有無判別部50の処理の詳細についても、図3に基づき後述する。
 計算指示部51は、可視化対象有無判別部50によって可視化対象22が存在すると判別された場合に、変化量計算部45に計算を指示する計算指示手段である。ただし、計算指示部51は、必須の構成ではなく、制御部30内に設けなくても良い。計算指示部51の処理の詳細についても、図3に基づき後述する。
 分割領域明示部52は、明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する分割領域を明示する分割領域明示手段である。ただし、分割領域明示部52は、必須の構成ではなく、制御部30内に設けなくても良い。分割領域明示部52の処理の詳細については後述する。
 入出力部制御部53は、入力部34からの入力、入力部34の表示切り替え、出力部33および表示部12への各出力を制御する構成部である。
(2.蛍光可視化方法)
 次に、蛍光可視化方法の好適な実施の形態について説明する。
 蛍光可視化装置1により実行される蛍光可視化方法は、可視化対象22に照明光を照射して、その可視化対象22からの蛍光を検出して可視化する方法である。その蛍光可視化方法は、照明部20により可視化対象22に照明光を照射した際に撮像部21により可視化対象22を撮像した第一画像を取得する第一画像取得ステップと、
 第一画像の撮像から所定時間後であって、照明光の非照射時に撮像部21により可視化対象22を撮像した第二画像を取得する第二画像取得ステップと、
 第二画像の撮像から所定時間後であって、照明部20により可視化対象22に再び照明光を照射した際に撮像部21により可視化対象22を撮像した第三画像を取得する第三画像取得ステップと、第一画像および第三画像に対してコントラスト伸長処理を施すコントラスト伸長ステップと、コントラスト伸長ステップにより第一画像および第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の可視化対象22の変化量を計算する変化量計算ステップと、第二画像を、上述の変化量に基づき第三画像の位置および大きさの内の少なくとも1つに至るように変化させて変化画像を生成する変化画像生成ステップと、第三画像と変化画像との差分画像を取得する差分画像取得ステップと、差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長ステップと、時系列をずらして、第三画像以降の画像を取得する第二画像取得ステップと同様のステップ、コントラスト伸長ステップ、変化量計算ステップ、変化画像生成ステップ、差分画像取得ステップおよび明度伸長ステップを実行させるように指示を出す繰返実行指示ステップと、
を含み、撮像部21と相対的に動く可視化対象22を蛍光可視化させる方法である。
 ここで、変化量計算ステップは、二次元直交座標系上の可視化対象22の移動量を計算するステップであって、変化画像生成ステップは、第二画像中の画素を上述の移動量の2分の1だけ移動して変化画像を生成するステップでも良い。また、蛍光可視化方法は、第三画像の撮像から所定時間後であって、照明光の非照射時に撮像部21により可視化対象22を撮像した第四画像を取得する第四画像取得ステップと、第四画像の撮像から所定時間後であって、照明部20により再び照明光を照射した際に撮像部21により可視化対象22を撮像した第五画像を取得する第五画像取得ステップと、をさらに含んでも良い。かかる場合、変化量計算ステップは、第一画像、第三画像および第五画像の二次元直交座標系上における可視化対象22の座標を含む円軌道上を移動する可視化対象22の回転角度(θ)を計算するステップとするのが好ましい。さらに、変化画像生成ステップは、時系列で連続して撮像された3つの画像の内、照明光の非照射時に撮像した第二画像中の画素を上述の回転角度(θ)の2分の1だけ回転して変化画像を生成するようにすると良い。また、第一伸長処理画像中および第三伸長処理画像中に上述の変化量の計算対象となる可視化対象22が存在するか否かを判別して、可視化対象22が存在すると判別された場合に変化量計算ステップを行うように指示する可視化対象有無判別ステップを、さらに含んでも良い。
-2.1 二次元座標系上の直線的移動時の可視化-
 次に、当該蛍光可視化方法の一例を図3および図4に基づき詳述する。この例は、変化量計算ステップを、二次元直交座標系上の可視化対象22の移動量を計算するステップとし、変化画像生成ステップを、第二画像中の画素を上述の移動量の2分の1だけ移動して変化画像を生成するステップとし、可視化対象有無判別ステップを含む。なお、図3および図4に基づく説明は、可視化対象22が移動し、撮像部21が停止している状況での画像処理の説明であるが、可視化対象22が停止し、撮像部21が移動している状況、あるいは可視化対象22および撮像部21がともに移動していて、その移動速度の差によって相対的に可視化対象22が移動しているように見える状況であっても良い。
 図3は、図1の蛍光可視化装置の動作を説明するためのフローチャート(3A)およびそのフローチャートに合わせた画像処理の状況(3B)をそれぞれ示す。図4は、図3の変化量計算ステップ(S6)から差分画像取得ステップ(S8)の画像処理についてより具体的に説明するための図であって、(4A)は全体像を、(4B)および(4C)はベクトル計算の概要を、それぞれ示す。
(1)第一画像取得ステップ(S1)
 第一画像取得ステップは、照射光を可視化対象22に照射して撮像した第一画像60を取得するステップである。第一画像60には、可視化対象22の一例として、蛍光を発する食物残渣61,62が撮像されている。なお、ここでは、簡略化のため、食物残渣61,62が2つ存在する例で説明するが、可視化対象22の数は1つのみ、あるいは3以上の任意の数でも良い。以後の例でも同様である。第一画像取得ステップは、画像取得部43により実行される。
(2)第二画像取得ステップ(S2)
 第二画像取得ステップは、照射光を可視化対象22に照射していないときに撮像した第二画像70を取得するステップである。照明光の非照射時に撮像しているため、第二画像70には、食物残渣61,62からの蛍光はない。第二画像取得ステップは、画像取得部43により実行される。
(3)第三画像取得ステップ(S3)
 第三画像取得ステップは、照射光を可視化対象22に照射して撮像した第三画像80を取得するステップである。第三画像80には、可視化対象22の一例として、蛍光を発する食物残渣81,82が撮像されている。食物残渣81,82は、食物残渣61,62とそれぞれ同一物であるが、その位置が変わっていることから符号を変えている。第三画像80は、第一画像60の撮像から所定時間(t/2、例えば、t/2=50msec)を2回経て撮像された画像である。このため、第三画像80中の食物残渣81,82は、第一画像60中の食物残渣61,62の位置から移動している。第三画像取得ステップは、画像取得部43により実行される。
(4)コントラスト伸長ステップ(S4)
 コントラスト伸長ステップは、第一画像60と第三画像80に対してコントラストを明確につける処理を行うステップである。これによって、両画像60,80は、それらの中の食物残渣61,62,81,82が各背景に対してコントラストを伸長させた状態の画像となる。コントラスト伸長ステップは、コントラスト伸長部44により実行される。
(5)可視化対象有無判別ステップ(S5)
 可視化対象有無判別ステップは、コンストラスト伸長ステップの処理がなされた後の第一伸長処理画像65中および第三伸長処理画像85中に上述の変化量の計算対象となる可視化対象22(食物残渣61,62,81,82)が存在するか否かを判別する。この判別の結果、存在しない場合には、以後の画像処理を行うことができないので、S11にステップをすすめる。ただし、一部の食物残渣(例えば、食物残渣62)が存在しなくとも、変化量計算ステップ以降のステップを実施できるので、その場合には、S11に進めても良い。一方、食物残渣61,62,81,82が存在する場合には、次のステップ(S6)に移行する。可視化対象有無判別ステップの判別処理は、可視化対象有無判別部50によって実行され、可視化対象有無判別ステップの判別の結果、次のステップに進めるよう指示を出すのは、計算指示部51により実行される。
(6)変化量計算ステップ(S6)
 変化量計算ステップは、2つの伸長処理画像(第一伸長処理画像65および第三伸長処理画像85)間の撮像領域86内における二次元直交座標系上の移動量(a,b)を抽出するステップである。移動量aは、食物残渣61,62から食物残渣81,82に向かうベクトルV2(図4を参照)の×軸方向の移動量である。移動量bは、同ベクトルV2のY軸方向の移動量である。ベクトルV2は、第三伸長処理画像85のある点から第一伸長処理画像65におけるその点に対応する点に至るベクトルV1と同じ大きさで逆方向のベクトルである。第三伸長処理画像85の座標軸83は、第一伸長処理画像65の座標軸63からベクトルV2の方向にその大きさだけ移動している。変化量計算ステップは、変化量計算部45により実行される。
(7)変化画像生成ステップ(S7)
 変化画像生成ステップは、第二画像70の画素全体を、撮像領域内の二次元直交座標系上において、(a/2,b/2)だけ平行移動するステップである。これは、時系列的に第一画像60と第三画像80の中間の位置にある第二画像70を上述の移動量(a,b)の1/2ずつ移動すれば、第三画像80のバックグラウンドとして使用できるという思想に基づく。具体的には、前述のベクトルV2を1/2の長さとするベクトルV3の方向に、第二画像70をV3の長さ分だけ移動して変化画像を生成する。この結果、座標軸73は座標軸83に重なる位置に来る(図4を参照)。変化画像生成ステップは、変化画像生成部46により実行される。
(8)差分画像取得ステップ(S8)
 差分画像取得ステップは、第三画像80と変化画像生成ステップによって移動した後の画像との差分画像87を取得するステップである。これは、蛍光可視化は、蛍光部分とそのバックグラウンド画像との差分を利用して行う必要があるからである。静止している食物残渣61,62を撮像する場合であれば、照明部20の非消灯時と消灯時に撮像される画像は同じバックグラウンドを有することから、蛍光可視化の際に、非消灯時の画像をそのまま利用して差分画像を形成すれば良い。しかし、食物残渣61,62が移動している場合には、非消灯時に撮像された第二画像70を、第三画像80との差分をとる画像としてそのまま利用できない。第三画像80のバックグラウンドと第二画像70は同一画像ではないからである。そこで、この実施形態では、第二画像70を移動して第三画像80のバックグラウンドとみなせるような処理を行ってから、差分画像87を形成している。差分画像取得ステップは、差分画像取得部47により実行される。
(9)明度伸長ステップ(S9)
 明度伸長ステップは、差分画像87に対して明度を伸長する処理を行うステップである。これは、蛍光可視化を実行あらしめるための処理である。明度伸長ステップは、明度伸長部48により実行される。
(10)明度伸長画像表示ステップ(S10)
 明度伸長画像表示ステップは、明度伸長画像88を表示部12に表示させるステップである。明度伸長画像表示ステップは、入出力部制御部53により実行される。
(11)終了判別ステップ(S11)
 終了判別ステップは、画像処理を継続するか否かを判別するステップである。全ての画像に対して処理を終了した場合には、一連の画像処理は終了する。一方、未だ画像処理すべき画像が存在する場合には、S12に移行する。
(12)繰返実行指示ステップ(S12)
 繰返実行指示ステップは、終了判別の結果、未だ画像処理を継続すべきと判断された際に、S2に戻って、照明部20の非消灯時の画像(第四画像)、照明部20の消灯時の画像(第五画像)の各取得ステップへと移行させるステップである。終了判別ステップおよび繰返実行指示ステップは、繰返実行指示部49によって実行される。
-2.2 二次元座標系上の回転移動時の可視化-
 次に、可視化対象22である食物残渣61,62が二次元座標系内を回転移動する場合における蛍光可視化方法の一例を図5および図6に基づき詳述する。この例では、蛍光可視化方法は、第三画像80aの撮像から所定時間後であって、照明光の非照射時に撮像部21により可視化対象22を撮像した第四画像90aを取得する第四画像取得ステップと、第四画像90aの撮像から所定時間後であって、可視化対象22に再び照明光を照射した際に撮像部21により可視化対象22を撮像した第五画像100aを取得する第五画像取得ステップと、をさらに含む。また、変化量計算ステップは、第一画像60a、第三画像80aおよび第五画像100aの二次元直交座標系上における可視化対象22の点を含む円軌道を求め、その円軌道の中心にある特定点(原点Oともいう)を中心とした可視化対象22の回転角度(θ)を計算するステップである。また、変化画像生成ステップは、時系列で連続して撮像された3つの画像(第一画像60a、第二画像70aおよび第三画像80a)の内、照明光の非照射時に撮像した第二画像70a中の画素を先に求めた回転角度(θ)の2分の1だけ回転して変化画像を生成するステップである。なお、図5および図6に基づく説明は、可視化対象22が回転し、撮像部21が停止している状況での画像処理の説明であるが、可視化対象22が停止し、撮像部21が回転している状況、あるいは可視化対象22および撮像部21がともに回転していて、その回転速度の差によって相対的に可視化対象22が回転しているように見える状況であっても良い。
 図5は、可視化対象である食物残渣が二次元座標系内を回転移動する場合における図1の蛍光可視化装置の動作を説明するためのフローチャートを示す。図6は、図5のフローチャート中の変化量計算ステップおよび変化画像生成ステップを説明するための概念図を示す。
(1)第一画像取得ステップ(S21)
 第一画像取得ステップは、照射光を可視化対象22に照射して撮像した第一画像60aを取得するステップである。第一画像60aには、説明の簡易化を目的として、可視化対象22の一例として、蛍光を発する食物残渣61のみが撮像されているものとする。第一画像取得ステップは、画像取得部43により実行される。
(2)第二画像取得ステップ(S22)
 第二画像取得ステップは、照射光を可視化対象22に照射していないときに撮像した第二画像70aを取得するステップである。照明光の非照射時に撮像しているため、第二画像70aには、食物残渣61からの蛍光はない。第二画像取得ステップは、画像取得部43により実行される。
(3)第三画像取得ステップ(S23)
 第三画像取得ステップは、照射光を可視化対象22に照射して撮像した第三画像80aを取得するステップである。第三画像80aには、可視化対象22の一例として、蛍光を発する食物残渣81のみが撮像されている。食物残渣81は、食物残渣61と同一物であるが、その位置が変わっていることから符号を変えている。第三画像80aは、第一画像60aの撮像から所定時間(t/2、例えば、t/2=50msec)を2回経て撮像された画像である。このため、第三画像80a中の食物残渣81は、第一画像60a中の食物残渣61の位置から移動している。第三画像取得ステップは、画像取得部43により実行される。
(4)第四画像取得ステップ(S24)
 第四画像取得ステップは、照射光を可視化対象22に照射していないときに撮像した第四画像90aを取得するステップである。照明光の非照射時に撮像しているため、第四画像90aには、食物残渣61からの蛍光はない。第四画像取得ステップは、画像取得部43により実行される。
(5)第五画像取得ステップ(S25)
 第五画像取得ステップは、照射光を可視化対象22に照射して撮像した第五画像100aを取得するステップである。第五画像100aには、可視化対象22の一例として、蛍光を発する食物残渣101のみが撮像されている。食物残渣101は、食物残渣61,81と同一物であるが、その位置が変わっていることから符号を変えている。第五画像100aは、第三画像80aの撮像から所定時間(t/2、例えば、t/2=50msec)を2回経て撮像された画像である。このため、第五画像100a中の食物残渣101は、第三画像80a中の食物残渣81の位置から移動している。第五画像取得ステップは、画像取得部43により実行される。このステップは、第四画像取得ステップと同様、食物残渣61から食物残渣81までの円弧状の軌道を特定するために行っている。食物残渣61,81,101の3つの位置が決まれば、それらを軌道上に有する円(半径r、図6を参照)が特定できるからである。円が特定できれば、食物残渣61から食物残渣81に至る回転角度θ(食物残渣81から食物残渣101に至る回転角度も同じ)が一義的に求められる。回転角度θが決まれば、第二画像70aをその1/2だけ回転させると、第三画像80aとの差分をとるための変化画像が得られる。このような技術的思想から、画像取得部43は、第一画像60a、第二画像70a、第三画像80aのみならず、第四画像90aと第五画像100aとを取得している。
(6)コントラスト伸長ステップ(S26)
 コントラスト伸長ステップは、第一画像60aと第三画像80aに対してコントラストを明確につける処理を行うステップである。これによって、両画像60a,80aは、それらの中の食物残渣61,81が各背景に対してコントラストを伸長させた状態の画像となる。コントラスト伸長ステップは、コントラスト伸長部44により実行される。
(7)可視化対象有無判別ステップ(S27)
 可視化対象有無判別ステップは、コンストラスト伸長ステップの処理がなされた後の第一伸長処理画像中および第三伸長処理画像中に上述の変化量の計算対象となる可視化対象22(食物残渣61,81)が存在するか否かを判別する。この判別の結果、存在しない場合には、以後の画像処理を行うことができないので、S33にステップをすすめる。一方、食物残渣61,81が存在する場合には、次のステップ(S28)に移行する。可視化対象有無判別ステップの判別処理は、可視化対象有無判別部50によって実行され、可視化対象有無判別ステップの判別の結果、次のステップに進めるよう指示を出すのは、計算指示部51により実行される。
(8)変化量計算ステップ(S28)
 変化量計算ステップは、2つの伸長処理画像(第一伸長処理画像および第三伸長処理画像)間の撮像領域内における二次元直交座標系上の回転角度(θ)を計算するステップである。具体的には、食物残渣61,81,101の3点を含む円を求め、食物残渣61から食物残渣81に至るまでの回転角度(θ)を求める。変化量計算ステップは、変化量計算部45により実行される。
(9)変化画像生成ステップ(S29)
 変化画像生成ステップは、第二画像70aの画素全体を、撮像領域内の二次元直交座標系上において、(θ/2)だけ回転させるステップである。これは、時系列的に第一画像60aと第三画像80aの中間の位置にある第二画像70aを上述の回転角度(θ)の1/2の角度で回転させると、第三画像80aのバックグラウンドとして使用できるという思想に基づく。変化画像生成ステップは、変化画像生成部46により実行される。
(10)差分画像取得ステップ(S30)
 差分画像取得ステップは、第三画像80aと変化画像生成ステップによって得られた変化画像との差分画像を取得するステップである。差分画像取得ステップは、差分画像取得部47により実行される。
(11)明度伸長ステップ(S31)から(14)繰返実行指示ステップ(S34)までの各ステップは、図3に示すそれらと共通するので、重複した説明を省略する。
-2.3 三次元座標系上の可視化-
 時系列で連続して撮影された3つの画像の内、照明光の非照明時に撮像した第二画像中の画素を、照明光の照明時に撮像した第一画像および第三画像から得られる三次元座標系上の移動量、拡大若しくは縮小、または変形を補正して変化画像を生成し、その変形画像を利用して差分画像を取得しても良い。
(3.可視化の変形例)
 次に、本発明の変形例を説明する。
 図7は、図1の蛍光可視化装置により実行される可視化の変形例を説明するための図であり、可視化の切り替え後の表示形態(7A)およびその表示処理に至るフロー(7B)をそれぞれ示す。
 食物残渣110が表示部12に散在している場合、その大きさが小さいと視認困難である。このため、蛍光可視化装置1は、明度伸長処理画像を表示する画像表示領域(表示部12)において、その画像表示領域内を複数に分割した分割領域(スポットカーソル14を構成する20個の領域)の内、所定の閾値を超える蛍光画素数が存在する分割領域を明示する分割領域明示部52(分割領域明示手段の一例)を、さらに備える。これにより、蛍光可視化装置1により行われる蛍光可視化方法は、明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する分割領域を明示する分割領域明示ステップを、さらに含む。具体的な処理の一例の流れは、次のとおりである。
 まず、使用者が入力部34から表示の切替を指示すると、入出力部制御部53はその指示を受け取る(S41)。次に、分割領域明示部52は、入出力部制御部53を通じて上記指示を受け取ると、食物残渣110から発光する蛍光の画素数が所定の閾値を超えたかどうかを判断し、その超えた分割領域を選択する(S42)。続いて、分割領域明示部52は、選択された分割領域を明示する(S43)。明示の方法としては、分割領域を目立つ色にて塗りつぶした塗りつぶし領域111を表示させる方法を一例に挙げることができる。また、所定の閾値は、任意に設定できるが、例えば、2画素以上の設定が可能である。所定の閾値のデータは、例えば、情報記憶部32に格納可能である。この結果、図7(7A)に示すように、蛍光画素数がゼロ若しくは1個の分割領域は、塗りつぶし領域111として表示されず、蛍光画素数が2個以上の分割領域のみが塗りつぶし領域111として表示される。
 分割領域明示部52は、閾値を超えたかどうかを判別する構成部(例えば、閾値判別部)と、閾値を超えた蛍光画素数が存在する分割領域を明示する構成部(明示構成部)とに分けても良い。蛍光可視化方法も同様、閾値を超えたかどうかを判別する閾値判別ステップと、閾値を超えた蛍光画素数が存在する分割領域を明示する明示ステップとに分けても良い。その場合、閾値判別ステップは閾値判別部により実行される。また、明示ステップは明示構成部により実行される。
(4.コンピュータプログラム)
 この実施形態に係るコンピュータプログラムは、可視化対象22に照明光を照射して、その可視化対象22からの蛍光を検出して可視化する蛍光可視化装置1にインストールされ実行可能なコンピュータプログラムである。そのコンピュータプログラムは、上記照明部20と、上記照明動作制御部41と、上記撮像部21と、撮像動作制御部42と、画像記憶部31と、情報記憶部32とを備える蛍光可視化装置1を、上記画像取得部43、上記コントラスト伸長部44、上記変化量計算部45、上記変化画像生成部46、差分画像取得部47、明度伸長部48、および繰返実行指示部49として機能させ、撮像部21と相対的に動く可視化対象22を蛍光可視化させるコンピュータプログラムである。
 また、上記コンピュータプログラムにおいて、変化量計算部45は二次元直交座標系上の可視化対象22の移動量を計算する手段であって、変化画像生成部46は、時系列で連続して撮像された3つの画像の内、照明光の非照射時に撮像した第二画像70中の画素を上述の移動量の2分の1だけ移動して変化画像を生成する手段でも良い。
 また、上記コンピュータプログラムにおいて、変化量計算部45は二次元直交座標系上における特定点を中心とした可視化対象22の回転角度(θ)を計算する手段であって、変化画像生成部46は、時系列で連続して撮像された3つの画像の内、照明光の非照射時に撮像した第二画像70a中の画素を上記回転角度(θ)の2分の1だけ回転して変化画像を生成する手段でも良い。
 また、コンピュータプログラムは、蛍光可視化装置1を、可視化対象有無判別部50、および計算指示部51としてさらに機能させるものでも良い。さらに、コンピュータプログラムは、蛍光可視化装置1を、上記分割領域明示部52としてさらに機能させるものでも良い。
 コンピュータプログラムは、蛍光可視化装置1の例えば情報記憶部32に予めインストールされ、あるいは外部サーバからダウンロードされて情報記憶部32内に格納されても良い。さらには、コンピュータプログラムを格納した外部メモリ(フラッシュメモリ、ディスク形式の情報記録媒体など)を蛍光可視化装置1の一部(例えば、入力部34の一部)に装填若しくは接続し、当該外部メモリから情報記憶部32にコンピュータプログラムをインストールしても良い。
 蛍光可視化装置1をコンピュータとすると、情報記録媒体32は、コンピュータのプロセッサの処理によって下記の各工程を実行可能なコンピュータプログラムを格納する非一過性の記録媒体である。
 例えば、この実施形態における情報記録媒体32は、コンピュータ内のプロセッサの処理を通じて、
 照明手段により可視化対象に照明光を照射した際に撮像手段により可視化対象を撮像した第一画像を取得する第一画像取得ステップと、第一画像の撮像から所定時間後であって、照明光の非照射時に撮像手段により可視化対象を撮像した第二画像を取得する第二画像取得ステップと、
 第二画像の撮像から所定時間後であって、照明手段により可視化対象に再び照明光を照射した際に撮像手段により可視化対象を撮像した第三画像を取得する第三画像取得ステップと、
 第一画像および第三画像に対してコントラスト伸長処理を施すコントラスト伸長ステップと、
 コントラスト伸長ステップにより第一画像および第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の可視化対象の変化量を計算する変化量計算ステップと、
 第二画像を、その変化量に基づいて第三画像の位置および大きさの内の少なくとも1つに至るように変化させて変化画像を生成する変化画像生成ステップと、
 第三画像と変化画像との差分画像を取得する差分画像取得ステップと、
 差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長ステップと、
 時系列をずらして、第三画像以降の画像を取得する第二画像取得ステップと同様のステップ、コントラスト伸長ステップ、変化量計算ステップ、変化画像生成ステップ、差分画像取得ステップおよび明度伸長ステップを実行させるように指示を出す繰返実行指示ステップと、
を実行して、撮像手段と相対的に動く可視化対象を蛍光可視化させることのできるコンピュータプログラムを格納する非一過性の記録媒体である。
 また、別の実施形態における情報記録媒体32は、さらに、上記変化量計算ステップを二次元直交座標系上の可視化対象の移動量を計算するステップとし、上記変化画像生成ステップを、第二画像中の画素を上述の移動量の2分の1だけ移動して変化画像を生成するステップとしたコンピュータプログラムを格納する非一過性の記録媒体であっても良い。
 また、別の実施形態における情報記録媒体32は、コンピュータ内のプロセッサの処理を通じて、
 第三画像の撮像から所定時間後であって、照明光の非照射時に撮像手段により可視化対象を撮像した第四画像を取得する第四画像取得ステップと、
 第四画像の撮像から所定時間後であって、照明手段により可視化対象に再び照明光を照射した際に撮像手段により可視化対象を撮像した第五画像を取得する第五画像取得ステップと、
をさらに実行し、
 変化量計算ステップを、第一画像、第三画像および第五画像の二次元直交座標系上における可視化対象の座標を含む円軌道上を移動する可視化対象の回転角度を計算するステップとし、
 変化画像生成ステップを、第二画像中の画素を上述の回転角度の2分の1だけ回転して変化画像を生成するステップとしたコンピュータプログラムを格納する非一過性の記録媒体であっても良い。
 また、別の実施形態における情報記録媒体32は、コンピュータ内のプロセッサの処理を通じて、
 明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する分割領域を明示する分割領域明示ステップを実行するコンピュータプログラムを格納する非一過性の記録媒体であっても良い。
 本発明は、食品、飲料、菌等の生体材料の存在を可視化するのに利用可能である。

 

Claims (12)

  1.  可視化対象に照明光を照射して、その可視化対象からの蛍光を検出して可視化する蛍光可視化装置であって、
     前記可視化対象に照明光を照射する照明手段と、
     所定時間間隔で前記照明手段の点灯と消灯とを繰り返す動作を制御する照明動作制御手段と、
     前記蛍光を検出可能であって、前記照明手段からの前記照明光の照射時および非照射時に前記可視化対象を撮像して複数の画像を取得する撮像手段と、
     前記撮像手段の撮像動作を制御して所定時間間隔で撮像可能とする撮像動作制御手段と、
     撮像された前記画像を取得する画像取得手段と、
     前記画像取得手段により取得された前記画像であって時系列で連続して撮像された3つの前記画像の内、前記照明光を照射した際に撮像した第一画像および第三画像に対してコントラスト伸長処理を施すコントラスト伸長手段と、
     前記コントラスト伸長手段により前記第一画像および前記第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の前記可視化対象の変化量を計算する変化量計算手段と、
     前記時系列で連続して撮像された3つの前記画像の内、前記照明光の非照射時に撮像した第二画像を、前記変化量に基づき前記第三画像の位置および大きさの内の少なくとも1つに至るように変化させて変化画像を生成する変化画像生成手段と、
     前記第三画像と前記変化画像との差分画像を取得する差分画像取得手段と、
     前記差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長手段と、
     時系列をずらして、前記第三画像以降の前記画像を取得する前記画像取得手段、前記コントラスト伸長手段、前記変化量計算手段、前記変化画像生成手段、前記差分画像取得手段および前記明度伸長手段を実行させるように指示を出す繰返実行指示手段と、
     前記画像、前記第一伸長処理画像、前記第三伸長処理画像、前記変化画像および前記差分画像を記憶する記憶手段と、
    を備え
     前記撮像手段と相対的に動く前記可視化対象を蛍光可視化させる蛍光可視化装置。
  2.  前記変化量計算手段は、前記二次元直交座標系上の前記可視化対象の移動量を計算する手段であって、
     前記変化画像生成手段は、前記時系列で連続して撮像された3つの前記画像の内、前記第二画像中の画素を前記移動量の2分の1だけ移動して前記変化画像を生成する、請求項1に記載の蛍光可視化装置。
  3.  前記変化量計算手段は、前記二次元直交座標系上における特定点を中心とした前記可視化対象の回転角度を計算する手段であって、
     前記変化画像生成手段は、前記時系列で連続して撮像された3つの前記画像の内、前記第二画像中の画素を前記回転角度の2分の1だけ回転して前記変化画像を生成する、請求項1に記載の蛍光可視化装置。
  4.  前記明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する前記分割領域を明示する分割領域明示手段を、さらに備える請求項1から請求項3のいずれか1項に記載の蛍光可視化装置。
  5.  可視化対象に照明光を照射して、その可視化対象からの蛍光を検出して可視化する蛍光可視化方法であって、
     照明手段により前記可視化対象に照明光を照射した際に撮像手段により前記可視化対象を撮像した第一画像を取得する第一画像取得ステップと、
     前記第一画像の撮像から所定時間後であって、前記照明光の非照射時に前記撮像手段により前記可視化対象を撮像した第二画像を取得する第二画像取得ステップと、
     前記第二画像の撮像から前記所定時間後であって、前記照明手段により前記可視化対象に再び前記照明光を照射した際に前記撮像手段により前記可視化対象を撮像した第三画像を取得する第三画像取得ステップと、
     前記第一画像および前記第三画像に対してコントラスト伸長処理を施すコントラスト伸長ステップと、
     前記コントラスト伸長ステップにより前記第一画像および前記第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の前記可視化対象の変化量を計算する変化量計算ステップと、
     前記第二画像を、前記変化量に基づき前記第三画像の位置および大きさの内の少なくとも1つに至るように変化させて変化画像を生成する変化画像生成ステップと、
     前記第三画像と前記変化画像との差分画像を取得する差分画像取得ステップと、
     前記差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長ステップと、
     時系列をずらして、前記第三画像以降の前記画像を取得する前記第二画像取得ステップと同様のステップ、前記コントラスト伸長ステップ、前記変化量計算ステップ、前記変化画像生成ステップ、前記差分画像取得ステップおよび前記明度伸長ステップを実行させるように指示を出す繰返実行指示ステップと、
    を含み、
     前記撮像手段と相対的に動く前記可視化対象を蛍光可視化させる蛍光可視化方法。
  6.  前記変化量計算ステップは、前記二次元直交座標系上の前記可視化対象の移動量を計算するステップであって、
     前記変化画像生成ステップは、前記第二画像中の画素を前記移動量の2分の1だけ移動して前記変化画像を生成する、請求項5に記載の蛍光可視化方法。
  7.  前記第三画像の撮像から所定時間後であって、前記照明光の非照射時に前記撮像手段により前記可視化対象を撮像した第四画像を取得する第四画像取得ステップと、
     前記第四画像の撮像から前記所定時間後であって、前記照明手段により前記可視化対象に再び前記照明光を照射した際に前記撮像手段により前記可視化対象を撮像した第五画像を取得する第五画像取得ステップと、
    をさらに含み、
     前記変化量計算ステップは、前記第一画像、前記第三画像および前記第五画像の前記二次元直交座標系上における前記可視化対象の座標を含む円軌道を求め、その円軌道上を移動する前記可視化対象の回転角度を計算するステップであり、
     前記変化画像生成ステップは、前記第二画像中の画素を前記回転角度の2分の1だけ回転して前記変化画像を生成する、請求項5に記載の蛍光可視化方法。
  8.  前記明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する前記分割領域を明示する分割領域明示ステップを、さらに含む請求項5から請求項7のいずれか1項に記載の蛍光可視化方法。
  9.  可視化対象に照明光を照射して、その可視化対象からの蛍光を検出して可視化する蛍光可視化装置にインストールされ実行可能なコンピュータプログラムであって、
     そのコンピュータプログラムは、
     前記可視化対象に照明光を照射する照明手段と、
     所定時間間隔で前記照明手段の点灯と消灯とを繰り返す動作を制御する照明動作制御手段と、
     前記蛍光を検出可能であって、前記照明手段からの前記照明光の照射時および非照射時に前記可視化対象を撮像して複数の画像を取得する撮像手段と、
     前記撮像手段の撮像動作を制御して所定時間間隔で撮像可能とする撮像動作制御手段と、
     記憶手段と、
    を備える前記蛍光可視化装置を、
     撮像された前記画像を取得する画像取得手段、
     前記画像取得手段により取得された前記画像であって時系列で連続して撮像された3つの前記画像の内、前記照明光を照射した際に撮像した第一画像および第三画像に対してコントラスト伸長処理を施すコントラスト伸長手段、
     前記コントラスト伸長手段により前記第一画像および前記第三画像からそれぞれ生成された第一伸長処理画像および第三伸長処理画像の間の撮像領域内における二次元直交座標系上若しくは三次元直交座標系上の前記可視化対象の変化量を計算する変化量計算手段、
     前記時系列で連続して撮像された3つの前記画像の内、前記照明光の非照射時に撮像した第二画像を、前記変化量に基づき前記第三画像の位置および大きさの内の少なくともいずれか1つに至るように変化させて変化画像を生成する変化画像生成手段、
     前記第三画像と前記変化画像との差分画像を取得する差分画像取得手段、
     前記差分画像に対して明度伸長処理を行って明度伸長処理画像を生成する明度伸長手段、および
     時系列をずらして、前記第三画像以降の前記画像を取得する前記画像取得手段、前記コントラスト伸長手段、前記変化量計算手段、前記変化画像生成手段、前記差分画像取得手段および前記明度伸長手段を実行させるように指示を出す繰返実行指示手段、
    として機能させ、前記撮像手段と相対的に動く前記可視化対象を蛍光可視化させるコンピュータプログラム。
  10.  前記変化量計算手段は、前記二次元直交座標系上の前記可視化対象の移動量を計算する手段であって、
     前記変化画像生成手段は、前記時系列で連続して撮像された3つの前記画像の内、前記第二画像中の画素を前記移動量の2分の1だけ移動して前記変化画像を生成する、請求項9に記載のコンピュータプログラム。
  11.  前記変化量計算手段は、前記二次元直交座標系上における特定点を中心とした前記可視化対象の回転角度を計算する手段であって、
     前記変化画像生成手段は、前記時系列で連続して撮像された3つの前記画像の内、前記第二画像中の画素を前記回転角度の2分の1だけ回転して前記変化画像を生成する、請求項9に記載のコンピュータプログラム。
  12.  前記蛍光可視化装置を、
     前記明度伸長処理画像を表示する画像表示領域において、その画像表示領域内を複数に分割した分割領域の内、所定の閾値を超える蛍光画素数が存在する前記分割領域を明示する分割領域明示手段としてさらに機能させる請求項9から請求項11のいずれか1項に記載のコンピュータプログラム。
PCT/JP2016/072618 2015-08-18 2016-08-02 蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラム WO2017029980A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017535321A JP6556848B2 (ja) 2015-08-18 2016-08-02 蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015160806 2015-08-18
JP2015-160806 2015-08-18

Publications (1)

Publication Number Publication Date
WO2017029980A1 true WO2017029980A1 (ja) 2017-02-23

Family

ID=58052160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072618 WO2017029980A1 (ja) 2015-08-18 2016-08-02 蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラム

Country Status (2)

Country Link
JP (1) JP6556848B2 (ja)
WO (1) WO2017029980A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215206A (ja) * 2018-06-12 2019-12-19 国立大学法人岐阜大学 表面検査装置および表面検査方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821146A (ja) * 1981-07-30 1983-02-07 Kirin Brewery Co Ltd 欠陥検査方法および装置
JP2003210193A (ja) * 2002-01-22 2003-07-29 Microbiosystems Lp 微生物の存在の検出及びその生理学的状態の決定のための方法及び装置
JP2007010647A (ja) * 2005-06-02 2007-01-18 Miyazaki Tlo:Kk 異物検出方法
JP2009115613A (ja) * 2007-11-06 2009-05-28 Hitachi High-Tech Control Systems Corp 異物検査装置
JP2011033612A (ja) * 2009-07-10 2011-02-17 Nireco Corp 農産物検査装置
JP2014009969A (ja) * 2012-06-27 2014-01-20 Sumitomo Metal Mining Co Ltd 画像処理装置、画像処理方法、及び露光パターン検査装置
JP2015102438A (ja) * 2013-11-26 2015-06-04 株式会社 ゼンショーホールディングス 食物検査装置及び食物検査システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563405B2 (ja) * 2010-08-24 2014-07-30 荏原実業株式会社 分光画像取得装置及び方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821146A (ja) * 1981-07-30 1983-02-07 Kirin Brewery Co Ltd 欠陥検査方法および装置
JP2003210193A (ja) * 2002-01-22 2003-07-29 Microbiosystems Lp 微生物の存在の検出及びその生理学的状態の決定のための方法及び装置
JP2007010647A (ja) * 2005-06-02 2007-01-18 Miyazaki Tlo:Kk 異物検出方法
JP2009115613A (ja) * 2007-11-06 2009-05-28 Hitachi High-Tech Control Systems Corp 異物検査装置
JP2011033612A (ja) * 2009-07-10 2011-02-17 Nireco Corp 農産物検査装置
JP2014009969A (ja) * 2012-06-27 2014-01-20 Sumitomo Metal Mining Co Ltd 画像処理装置、画像処理方法、及び露光パターン検査装置
JP2015102438A (ja) * 2013-11-26 2015-06-04 株式会社 ゼンショーホールディングス 食物検査装置及び食物検査システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215206A (ja) * 2018-06-12 2019-12-19 国立大学法人岐阜大学 表面検査装置および表面検査方法
JP7098111B2 (ja) 2018-06-12 2022-07-11 国立大学法人東海国立大学機構 表面検査装置および表面検査方法

Also Published As

Publication number Publication date
JP6556848B2 (ja) 2019-08-07
JPWO2017029980A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
JP2012042348A5 (ja) 撮像装置、撮像システム、情報処理装置、及び撮像装置の制御方法及び情報処理方法
US20170102534A1 (en) Microscope system
US20190387962A1 (en) Endoscope insertion shape observation apparatus and display method for endoscope insertion shape observation apparatus
JP2007244518A (ja) 画像解析装置及び画像解析方法
CN109561810B (zh) 内窥镜设备和用于内窥镜检查的方法
JP2010264232A (ja) 診断支援装置、診断支援プログラムおよび診断支援方法
JP5580758B2 (ja) 蛍光観察装置
JP2018066740A5 (ja)
JP2011027997A (ja) 内視鏡装置、計測方法、およびプログラム
RU2016112386A (ru) Ассистирующее устройство для визуализирующей поддержки хирурга во время хирургического вмешательства
US11426052B2 (en) Endoscopic system
JP7125479B2 (ja) 医療画像処理装置、医療画像処理装置の作動方法及び内視鏡システム
WO2020039968A1 (ja) 医療画像処理システム
JP2018114068A5 (ja)
JP5025146B2 (ja) 超音波診断装置及びそのプログラム
JP2005214653A (ja) 3次元形状測定方法及びその装置
JP2018112479A (ja) 外観検査システム
JP6956853B2 (ja) 診断支援装置、診断支援プログラム、及び、診断支援方法
JP6556848B2 (ja) 蛍光可視化装置、蛍光可視化方法ならびにコンピュータプログラム
JP2018114203A (ja) X線透視撮影装置
US20190195777A1 (en) Captured image evaluation apparatus, captured image evaluation method, and captured image evaluation program
US11348234B2 (en) Medical image processing device, medical observation system, image processing method, and computer readable medium for analyzing blood flow of observation object before and after surgical restoration
JP2020086293A (ja) 拡大観察装置
JP2019015541A (ja) レンズ測定装置
US11050931B2 (en) Control device and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836971

Country of ref document: EP

Kind code of ref document: A1