WO2017028716A1 - 混凝土抗渗性的无损检测方法 - Google Patents

混凝土抗渗性的无损检测方法 Download PDF

Info

Publication number
WO2017028716A1
WO2017028716A1 PCT/CN2016/094216 CN2016094216W WO2017028716A1 WO 2017028716 A1 WO2017028716 A1 WO 2017028716A1 CN 2016094216 W CN2016094216 W CN 2016094216W WO 2017028716 A1 WO2017028716 A1 WO 2017028716A1
Authority
WO
WIPO (PCT)
Prior art keywords
water absorption
concrete
water
absorption process
time
Prior art date
Application number
PCT/CN2016/094216
Other languages
English (en)
French (fr)
Inventor
安雪晖
姚国友
李书阳
刘祖光
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2017028716A1 publication Critical patent/WO2017028716A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/04Investigating osmotic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Definitions

  • the present invention relates to the field of concrete, and more particularly to a non-destructive testing method for concrete impermeability.
  • the durability of concrete is the performance of concrete structures against various destructive factors during use.
  • concrete durability includes impermeability, freeze-thaw resistance, erosion resistance, carbonation resistance, and the like.
  • the impermeability of concrete refers to the difficulty of directional migration, diffusion and penetration of various fluids or molecules, ions and the like in concrete due to pressure, chemical potential and electric field, and is the most important index for evaluating the durability of concrete.
  • the methods for detecting the structural impermeability basically require the production or on-site drilling core sampling to obtain the impermeability test block.
  • the test block is sent to the laboratory and tested according to the impermeability labeling method specified in GBJ82-85 or the concrete seepage height test method specified in DL/T5150-2001.
  • This method is time consuming and labor inefficient.
  • whether it is a test block reserved during pouring or a test block placed in the laboratory according to the corresponding mixing ratio the test block and the actual concrete structure still have a large size due to different curing conditions and different volume of pouring into blocks. difference.
  • the method of sampling the core not only destroys the existing concrete structure, but also causes cracks in the test block, which affects the results of the impermeability test. Therefore, there is a need for a low cost method for assessing the impermeability of concrete on site in a rapid and non-destructive manner.
  • Vacuum negative pressure method In this method, a sealed container is placed on the surface of the concrete, and the air in the container is extracted by the air pump. After a certain period of time or when the air pressure in the container reaches a certain standard, the air pump is stopped and the air pressure in the container gradually rises. The gas pressure in the concrete is measured by measuring the rise of the gas pressure in the container at the time of stopping the pumping.
  • An improved method based on the vacuum single chamber method.
  • the method is further provided with a vacuum chamber in addition to the vacuum chamber for measuring the gas permeability of the concrete, and the external vacuum chamber is used for extracting the outside to protect through the concrete.
  • the layer enters the air.
  • the ISAT method The method first seals the container on the surface of the concrete, then applies a certain amount of water pressure, keeps the water pressure constant, closes the pressure valve after a certain time, observes and records the process of the water pressure decreasing with time. This is used to measure the impermeability of concrete.
  • the water spray experiment is to spray a certain amount of water on the surface of the concrete, and the process of absorbing concrete surface water by electronic equipment, optical instruments, etc., to measure the speed of water absorption of the concrete, and to evaluate some characteristics of the concrete.
  • the strength of concrete is related to many factors, but when the concrete is damaged by compression, the aggregate of the fracture surface is intact, and the damaged structural surface is mainly the contact surface of aggregate and cement.
  • Existing research shows that the compressive strength of general concrete is mainly related to the pore structure of concrete.
  • the concrete water absorption process is also related to the pore structure. Therefore, some scholars have conducted some research and hope to establish a relationship between concrete water spray experiments and compressive strength.
  • a watering can is used to spray water onto the concrete surface once, and the color or brightness of the surface of the concrete surface is continuously photographed by a digital camera. After the test, the color or brightness of the concrete surface after spraying was calculated by image processing. The time corresponding to the change of the color or brightness of the concrete surface to a certain extent was used as an index to measure the water absorption speed of the concrete surface. Finally, the conclusion is that the slower the water absorption, the greater the compressive strength.
  • Vacuum negative pressure method There are many problems with this method, the most critical of which is that the air flow is unpredictable, and it cannot be determined whether the gas of the concrete core is sucked into the container or the outside air enters the container through the protective layer of concrete. It has been proved by scholars that the results of this test method are obviously affected by the gas permeability of the concrete protective layer in the area where the vacuum chamber is located.
  • the ISAT method The disadvantages of this method are also very obvious: First, as in the vacuum single-chamber method for detecting concrete gas permeability, the amount of water infiltrated into the concrete at the edge of the container may be outside the detection range due to diffusion and permeation, therefore, the method It is greatly affected by the impermeability of the concrete protective layer. Second, the detection equipment is complicated and expensive, requires a container that is closely attached to the concrete surface, a water pump that maintains a constant water pressure, and an instrument that detects the recorded pressure value. Third, the installation is more difficult. The concrete to be tested in the actual project is often a load-bearing wall. Therefore, the instrument often needs to be installed on the side of the structure, and the sealing between the surface of the concrete structure and the container must be ensured during the measurement. .
  • the water spray test disclosed at present has the following defects: First, the test establishes the relationship between the concrete water absorption process and the compressive strength and chloride ion permeability.
  • the compressive strength does not reflect the durability of the concrete, although the chloride ion permeability can To some extent, it reflects the durability of concrete, but the operation of chloride ion penetration test is complicated.
  • Our country mainly uses impermeability to reflect the durability of concrete. Impermeability is not directly related to compressive strength and chloride ion permeability. Therefore, According to the existing results, it is not easy to think about the relationship between the water spray test and the impermeability.
  • the existing results have relatively large defects: the current experimental results show that the correlation between the water spray test index and the concrete compressive strength is poor, and the R 2 value using the fitting formula is only 0.5038; Only two groups of concrete with different chloride ion permeability were selected: the chloride ion permeability of the two groups of concrete differed by 17 times, and the water spray experiment results only differed by 6-7 times. The water spray experiment puts the chloride ion permeability into the concrete. Sensitivity is poor.
  • the existing results do not take into account the initial water content of the concrete. The amount of initial moisture directly affects the speed of water absorption. In the actual concrete structure, there will be a certain amount of water in the concrete, so the original water content of the concrete itself cannot be used, and it cannot be applied to the actual project.
  • the object of the present invention is to provide a method for non-destructive testing of concrete impermeability on site, which is convenient in operation, simple in equipment and accurate in measurement. And consider the initial moisture content of the concrete.
  • a non-destructive testing method for the impermeability of concrete comprises: spraying water on the surface of the concrete to be tested; recording the water absorption process; calculating an index value indicative of the water absorption process according to the recorded water absorption process; and indicating an index value of the water absorption process on the concrete surface Correlation with the impermeability of concrete gives the impermeability of the concrete.
  • the concrete impermeability is weaker; when the index value characterizing the water absorption process indicates that the water absorption speed is slower, the concrete impermeability is stronger.
  • recording the water absorption process comprises recording a change in color or brightness on the surface of the concrete to be tested during the water absorption process over time.
  • an index value indicative of the water absorption process is calculated, including: calculating an index value indicative of the water absorption process according to a change in color or brightness on the surface of the concrete to be measured during the water absorption process.
  • the index value characterizing the water absorption process is calculated according to the change of color or brightness on the surface of the concrete to be tested during the water absorption process, and further includes: according to the color or brightness recovery degree of the concrete surface to be tested during the water absorption process The change in time is used to estimate the water absorption time; the water absorption process on the concrete surface is estimated based on the cumulative estimated water absorption time and the cumulative amount of water per unit area.
  • estimating the water absorption time according to the change of the color or brightness recovery degree on the concrete surface to be tested in the water absorption process over time further comprises: finding a main turning point of the color or brightness recovery degree with time, the time corresponding to the main turning point As the apparent water absorption time, the apparent water absorption time was taken as the estimated water absorption time.
  • the water absorption process of the concrete surface further includes: the square of the cumulative apparent water spray time obtained by the multiple water spray-water absorption process is taken as the horizontal axis, and the cumulative unit area is accumulated.
  • the water amount is obtained as the relationship between the apparent water absorption time and the water volume per unit area; the apparent water absorption time-water relationship diagram per unit area is fitted by a straight line, and the slope of the fitted straight line is the apparent water absorption process, and the apparent water absorption process is used as the apparent water absorption process.
  • the invention utilizes the technical principle of the water absorption process of the concrete surface and its own porosity, establishes the relationship between the water absorption process index of the concrete surface and the concrete impermeability, and pushes out the impermeability of the concrete through the index of the on-site water absorption process.
  • the technical solution proposed by the present invention proposes an on-site non-destructive testing
  • the method of concrete impermeability is convenient to operate, simple in equipment and accurate in measurement. And considering the initial moisture content of concrete, it can match the actual application conditions on site.
  • FIG. 1 is a schematic view showing the implementation of a water absorbing process of a concrete surface in a water spray test using a mobile phone according to the present invention
  • FIG. 2 is a main flow diagram of a method in accordance with a particular embodiment of the present invention.
  • Figure 3 is an illustration of an identification map for identification
  • Figure 6 is an illustration of a water spray tool that can be used to determine the amount of water sprayed using a continuous syringe and an atomizing nozzle;
  • Figure 8 is a schematic view showing changes in color or brightness in a water spray area with time in a water spray test
  • Figure 9 is a schematic illustration of the change in color or brightness recovery over time during a water spray-water absorption process
  • Figure 10 illustrates the relationship between apparent water absorption time and water per unit area
  • Figure 11 illustrates the relationship between the apparent water absorption process and the impermeability pressure
  • Figure 12 is a flow chart illustrating a non-destructive testing method for concrete impermeability in accordance with the present invention.
  • the principle of the water spray experiment comes from: after the surface of the concrete is sprayed with water, the color of the object will change deeply due to the change of the reflection condition of the light. When the moisture is absorbed or evaporated by the concrete, the surface of the concrete will return to the previous color. . Moreover, in a very short time and under normal room temperature conditions, the evaporation of water on the concrete surface is a small amount relative to the water absorption of the concrete. Therefore, it can be considered that the water is completely absorbed by the concrete during the shooting for a few minutes. According to this phenomenon on the concrete surface, we can measure the speed of water absorption of concrete by measuring the color change of the concrete surface. At the same time, existing research shows that the pore structure of concrete will affect the impermeability of concrete. It also affects the water absorption properties of concrete. Therefore, we can estimate the impermeability of concrete by the water absorption properties of concrete.
  • Concrete specimens with different pore structure and pore distribution can be produced by changing the concrete mix ratio, curing age, curing conditions, and spraying surface modification materials.
  • FIG. 1 is a schematic view showing the implementation of a process for detecting the water absorption of a concrete surface in a water spray test using a mobile phone according to the present invention.
  • a logo 1002 for identification is placed on the concrete surface 1001 to be tested.
  • a smart phone (or a smart mobile device with a camera such as a tablet) 1004 is fixed in front of the surface of the concrete to be inspected, so that the camera of the smartphone 1004 can capture the concrete area to be sprayed and the map 1002.
  • the water spray tool 1003 which can quantitatively and uniformly spray water, is sprayed onto the concrete surface 1001 to be inspected, and the image of the surface of the 1001 during the water spray test is captured and recorded by the camera of the smartphone 1004. Utilizing the computing processing capabilities of the smartphone 1004 itself (eg, the processor of the smartphone 1004) to analyze the color or brightness changes of the captured water-water absorption process image, utilizing changes in color or brightness of the concrete surface during the water spray process (or The index indicating the water absorption process of the concrete surface to be tested is calculated by combining the water spray amount per unit area.
  • Embodiments of the inventive method include the following steps:
  • Step 1 First, a marker for identification is placed in the plane in which the surface of the concrete to be inspected is located.
  • FIG. 3 is an example of an identification map for identification.
  • the size of the logo shown in Fig. 3 is 10 cm * 10 cm.
  • the smart phone is used to capture the logo and the concrete surface to be inspected, and the image recognition technology is used to identify the logo image in the image.
  • FIG. 4 is an example of an image identifying a logo image using a mobile phone camera. As shown in Figure 4, the logo in the screen of the phone is identified and framed in thick lines.
  • the coordinate transformation is performed on the image according to the actual size of the identification image, and the surface of the concrete to be inspected is transformed into a rectangular coordinate system defined by the identification image, so that the subsequent dimension measurement and calculation according to the image is facilitated.
  • FIG. 5 is an example of transforming an original image according to an image of a logo.
  • Step 2 Use the smartphone to record the image of the test process and the time corresponding to each image.
  • Step 3 Spray a certain amount of water onto the surface of the concrete to be tested by using a water spray tool that can fix the spray amount and spray evenly.
  • Fig. 6 is an example of a water spray tool which can be used to determine the amount of water sprayed by using a 0-0.5 ml continuous syringe 601 and an atomizing nozzle 602.
  • Step 4 Using image processing methods, such as adaptive threshold segmentation, to obtain the range of water spray.
  • FIG. 7 is an example of capturing a water spray area using image processing. As shown in Figure 7, the water spray range is indicated on the screen of the mobile phone by a solid line. Since the image has been converted according to the actual size of the mark in step 1, the actual area of the water spray area can be calculated. Combined with the amount of water spray set in step three, the amount of water sprayed per unit area of the concrete surface during the water spray can be calculated.
  • Step 5 If several water sprays have been performed before the water spray, all the spray areas are superimposed and intersected to obtain the range of multiple spray effects, that is, the overlap area A i .
  • Step 6 Calculate the change of the color or brightness of the image with time in the overlapping area A i obtained in the fifth step.
  • Figure 8 is a graph showing changes in color or brightness over time in a water spray zone in a water spray test. As shown in Fig. 8, an example in which the color or brightness of an image obtained by spraying water to the surface of one concrete to be inspected 6 times is illustrated is shown.
  • Step 7 Using the results of the color or brightness of the image obtained in step 6 as a function of time, the indicators used in the various methods can be calculated to evaluate the degree of water absorption of the concrete surface to be tested; or the actual unit area calculated in step 4 can be combined. Water quantity evaluation The speed of water absorption of the concrete surface to be tested, for example, the following method is used to calculate the "apparent water absorption process" of the concrete water spray test:
  • sumdiff n calculates the sum of the image of the nth frame in the overlapping area A i and the color difference or brightness difference of the image before the water jet in the color or brightness change in step 5
  • sumdiff 2 is the image of the second frame in the overlapping area A i and The sum of the pixel color or brightness difference of the image before the water spray.
  • the I r thus calculated represents the degree of color or brightness recovery after water spray.
  • Figure 9 is a graphical representation of the change in color or brightness recovery over time during a water spray-water absorption process.
  • Fig. 10 is a graph showing the relationship between the apparent water absorption time and the amount of water per unit area.
  • Step 8 If it is necessary to continue the next water spray, repeat steps 2 to 7, otherwise the test is terminated and the water absorption process of the concrete to be tested is evaluated.
  • the invention utilizes the technical principle of the water absorption process of the concrete surface and its own porosity, establishes the relationship between the water absorption process index of the concrete surface and the concrete impermeability, and pushes out the impermeability of the concrete through the index of the on-site water absorption process.
  • the technical solution proposed by the invention proposes a method capable of non-destructive testing of concrete impermeability on site, which is convenient in operation, simple in equipment and accurate in measurement. And considering the initial moisture content of concrete, it can match the actual application conditions on site.
  • the physical meaning represented by the "apparent water absorption process" proposed by the present invention is the subsequent calculation of water spray-suction
  • the real process of water provides a reference, and the existing method is only an examination of the color or brightness of the image, and does not have the corresponding advantages.
  • Figure 12 illustrates a flow chart of a non-destructive testing method for concrete impermeability in accordance with the present invention.
  • the method of Figure 12 begins in step 1201 by spraying water onto the surface of the concrete to be tested.
  • a metered amount of water is sprayed onto the surface of the concrete to be inspected using a water spray tool which can fix the amount of water spray and spray evenly.
  • the water spray tool capable of fixing the spray amount and spraying evenly includes a combination of a continuous syringe and an atomizing nozzle.
  • the water spray can be one or more times.
  • an identification map for identification may be placed in the plane in which the surface of the concrete to be inspected is located.
  • the water absorption process is recorded.
  • Recording the water absorption process includes recording the change in color or brightness over the surface of the concrete to be tested during the water absorption process.
  • the image of the surface of the concrete to be inspected during the water absorption process and the time corresponding to each image are captured and recorded multiple times.
  • the identification map and the image of the concrete surface to be inspected may be simultaneously photographed, and the image of the logo image in the captured image is recognized by the image recognition technology, and the coordinates of the image are determined according to the actual size of the logo image. Transforming to transform the image of the concrete surface to be inspected into the Cartesian coordinate system defined by the logo, so as to facilitate subsequent dimension measurement and calculation according to the image.
  • an index value characterizing the water absorption process is calculated based on the recorded water absorption process.
  • the water spray area is obtained using an image processing method. If the logo is set, coordinate transformation can be performed on the image in step 1203 to calculate the actual area of the water spray area. Combined with the fixed amount of water sprayed in step 1201, the amount of water sprayed per unit area of the concrete surface during the water spray can be calculated.
  • the water spray area obtained after each water spray is superimposed and intersected to obtain the range of multiple water spray effects.
  • an index value characterizing the water absorption process is calculated based on a change in color or brightness on the surface of the concrete to be tested during the water absorption process over time.
  • the color or brightness of the image of the surface of the concrete to be inspected at each water spray can be calculated over time within the range of the multiple spray effects obtained. Specifically, the degree of color or brightness recovery over time within the range of the multiple spray effects during each water spray is obtained as a function of time.
  • the water absorption time is estimated based on the change in the degree of color or brightness recovery on the surface of the concrete to be tested during the water absorption. Then, based on the cumulative estimated water absorption time and the cumulative amount of water per unit area, the water absorption process of the concrete surface is estimated.
  • the color or brightness recovery degree I r of the image of the nth frame after water spray is defined as
  • sumdiff n is the sum of the image of the nth frame in the water spray area and the color or brightness difference of the image before the water spray
  • sumdiff 2 is the image of the second frame in the water spray area and the color or brightness of the image before the water spray. The sum of the difference.
  • the main turning point of the curve is found on the curve of the degree of color or brightness recovery (for example, Ir as described above) with time, and the time corresponding to the main turning point is taken as the apparent appearance of the water spray-water absorption process.
  • the water absorption time was measured by the apparent water absorption time as the estimated water absorption time.
  • the straight line of the connecting curve is obtained at the beginning and the end, and the point farthest from the straight line on the curve is found as the main turning point of the curve.
  • the cumulative apparent water absorption time squared from the multiple water spray-water absorption process is taken as the horizontal axis, and the cumulative unit area water amount is taken as the vertical axis, and the apparent water absorption time-to-area water amount relationship diagram is obtained.
  • a straight line fit is applied to the apparent water absorption time-unit surface water quantity relationship. The slope of the fitted line is the apparent water absorption process, and the apparent water absorption process is used as the estimated water absorption process of the concrete surface.
  • step 1207 the impermeability of the concrete is obtained based on the correlation between the index value of the water absorbing process on the concrete surface and the impermeability of the concrete.
  • the results of the verification test of the present invention when the index value characterizing the water absorption process characterizes that the water absorption speed is faster, the concrete impermeability is weaker; when the index value characterizing the water absorption process indicates that the water absorption speed is slower, the concrete impermeability is stronger. .
  • the operation of the calculation process may be performed by the processor, the operation of the image capture is performed by the camera, and the captured image is recorded in the memory by the processor.
  • the processor, the camera and the memory may be integrated in the same smart device or otherwise communicatively coupled together.
  • the smart device may be a smartphone or a tablet or the like.
  • the communication connection manner may be wired or wireless.
  • indicators such as water absorption time, water absorption rate (speed) or apparent water absorption time-unit area water amount relationship are used as index values for characterizing the water absorption process, but Other indicators can also be used to characterize the water absorption process. Although not all of the indicators are possible in the present invention, those skilled in the art should understand that these indicators are within the spirit and scope of the present invention.

Abstract

一种混凝土抗渗性的无损检测方法。包括:在待测的混凝土表面(1001)上喷水(1201);记录吸水过程(1203);根据所记录的吸水过程,计算表征吸水过程的指标值(1205);基于表征混凝土表面(1001)吸水过程的指标值与混凝土抗渗性的相关关系,得到该混凝土的抗渗性(1207)。利用混凝土表面(1001)吸水速率与自身孔隙率相关的技术原理,建立了混凝土表面(1001)吸水过程指标与混凝土抗渗性的关系,通过现场吸水过程的指标反推出混凝土的抗渗性。能够现场无损检测混凝土抗渗性,操作便捷,设备简单,量测准确。且考虑了混凝土的初始含水率,能够吻合现场实际应用条件。

Description

混凝土抗渗性的无损检测方法 技术领域
本发明涉及混凝土领域,更具体地,涉及一种混凝土抗渗性的无损检测方法。
背景技术
混凝土的耐久性,是混凝土结构在使用过程中抵抗各种破坏因素作用的性能。一般来说,混凝土耐久性包括了抗渗性、抗冻融性、抗侵蚀性、抗碳化性等。混凝土的抗渗性指的是各种流体或分子、离子等由于受压力、化学势、电场作用在混凝土中定向迁移、扩散、渗透的难易程度,是评价混凝土耐久性最重要的指标。
目前检测结构抗渗性的办法基本都需要制作或现场钻芯取样得到抗渗试块。将试块送至实验室,按照GBJ82-85中所规定的抗渗标号法,或者DL/T5150-2001中所规定的混凝土渗水高度试验法进行检测,这种检测方法耗时费力,效率低下。并且,无论是浇筑时预留的试块,还是按相应配合比在实验室浇筑的试块,由于养护条件不同,浇筑成块的体积不同,该试块与实际的混凝土结构依然存在很大的差别。而钻芯取样的方法,不仅会破坏既有混凝土结构,也可能在试块中造成裂缝,影响抗渗试验的结果。因此,需要一种低成本的能在现场快速且无损地评价混凝土抗渗性的方法。
鉴于实验室检测方法的缺陷,国外一些学者研究并提出了一些现场检验办法。主要有真空负压法及改进的方法以及ISAT法。(1)真空负压法。这种方法是在混凝土表面放置一个密封容器,利用气泵抽取容器中的空气,经过一段时间或容器内气压达到某一标准时,停止用气泵抽气,容器内气压就会逐渐上升。测量容器内气压在停止抽气时的上升过程,由此来衡量混凝土的气渗性。(2)基于真空单室法的改进方法。该方法在测量混凝土气渗性的真空室之外再加装一层真空室,外部的真空室用来抽取外界经由混凝土保护 层进入的空气。(3)ISAT法。该办法首先将容器密封在混凝土的表面,然后施以一定大小的水压,保持该水压不变,在一定时间之后关闭压力阀,观察并记录水压随着时间下降的过程。以此来衡量混凝土抗渗性能的好坏。
近几年日本有一些学者对混凝土吸水性能进行了进一步的研究,在此基础上提出了喷水实验的概念。喷水实验即在混凝土表面喷洒,滴灌一定量的水,通过电子设备,光学仪器等检验混凝土吸收表面水分的过程,衡量混凝土吸水的快慢,对混凝土的一些特性做评估。
混凝土的强度与许多因素相关,但一般混凝土受压破坏时,断裂面的骨料都是完整的,破坏的结构面主要是骨料和水泥的接触面。现有研究表明一般混凝土的抗压强度,最主要是和混凝土孔隙结构相关。而混凝土吸水过程也与孔隙结构相关。所以有学者进行了一些研究,希望建立混凝土喷水实验与抗压强度之间的关系。在一种现有技术中,使用喷壶向混凝土表面喷撒水1次,并以数码相机持续拍摄混凝土表面喷水后表面的颜色或亮度变化情况。试验结束后以图像处理的办法计算喷水后混凝土表面颜色或亮度变化情况,以混凝土表面颜色或亮度变化到某一程度所对应的时间作为衡量混凝土表面吸水快慢的指标。最终得出吸水越慢抗压强度越大的结论。
另外还有学者研究了混凝土喷水实验和混凝土抗氯离子渗透性之间的关系。在一种现有技术中,计算喷水前后反射光强度的变化的程度,当经过n次喷水后表面反射光强度变化程度小于某个标准时,以这个n为指标来评价混凝土表面质量。并将这一指标与混凝土的抗氯离子渗透性建立关系。结果表明n值越大抗氯离子渗透性越好。
现有技术存在如下的问题:
(1)真空负压法。这种方法存在许多的问题,其中最为关键的是:空气流是不可预测的,无法判定是混凝土芯部的气体被抽吸进容器还是外界空气经由混凝土的保护层进入容器。已有学者证明,该检测方法的结果明显受到真空室所在区域混凝土保护层的气渗性影响。
(2)基于真空单室法的改进方法。这种方法仍然存在许多缺陷:首先,它的原件复杂,需要空气泵进行抽气,需要可以检测并记录气压的设备,这 些设备都较为昂贵;其次,使用这种方法进行测量后,需要处理大量繁琐的数据。因此该方法有它独到的优势,但直接运用到工程实践中还存在一定的问题。
(3)ISAT法。这种方法的缺点也非常明显:第一,与真空单室法检测混凝土气渗性的方法一样,在容器的边缘渗入混凝土的水量会由于扩散和渗透作用到检测范围之外,因此,该方法受混凝土保护层的抗渗性影响很大。第二,检测设备复杂昂贵,需要严密附着在混凝土表面的容器,维持恒定水压的水泵,还有检测记录压力数值的仪器。第三,安装较为困难,工程实际中要检测的混凝土往往是承重墙等,所以,仪器常常需要安装在结构的侧面,并且在测量过程中,必须保证混凝土结构的表面和容器之间密封情况良好。
(4)喷水试验。目前披露的喷水试验存在以下缺陷:第一,该试验建立的是混凝土吸水过程与抗压强度和氯离子渗透性之间的关系,抗压强度不能反映混凝土耐久性,氯离子渗透性虽能在一定程度上反映混凝土耐久性,但是氯离子渗透试验操作复杂,我们国家主要使用抗渗性反映混凝土耐久性,抗渗性跟抗压强度和氯离子渗透性并没有直接的相关关系,因此,根据已有成果不容易想到建立喷水试验和抗渗性之间的关系。第二,已有的成果各自存在比较大的缺陷:目前的实验结果显示喷水试验指标与混凝土抗压强度的相关性较差,利用拟合公式的R2值仅有0.5038;另一试验中仅选取了两组氯离子渗透性差异较大的混凝土:两组混凝土的氯离子渗透性相差17倍,而喷水实验结果仅相差6-7倍,喷水实验对混凝土放入氯离子渗透性敏感性较差。第三,已有的成果均没有考虑混凝土的初始含水问题。初始水分的多少会直接影响吸水的快慢。在实际的混凝土结构中,混凝土中会有一定含量的水分,因此,不考虑混凝土自身的初始含水,就无法运用到工程实际中去。
发明内容
因此,本发明的目的就是提出一种能够现场无损检测混凝土抗渗性的方法,操作便捷,设备简单,量测准确。且考虑了混凝土的初始含水率。
根据本发明的一个方面,提供了一种混凝土抗渗性的无损检测方法。该方法包括:在待测的混凝土表面上喷水;记录吸水过程;根据所记录的吸水过程,计算表征吸水过程的指标值;基于表征混凝土表面吸水过程的指标值 与混凝土抗渗性的相关关系,得到该混凝土的抗渗性。
根据本发明的方法,优选地,当表征吸水过程的指标值表征吸水速度越快时,混凝土抗渗性越弱;当表征吸水过程的指标值表征吸水速度越慢时,混凝土抗渗性越强。
根据本发明的方法,优选地,记录吸水过程包括:记录吸水过程中待测的混凝土表面上的颜色或亮度随时间的变化。根据所记录的吸水过程,计算表征吸水过程的指标值,包括:根据吸水过程中待测的混凝土表面上的颜色或亮度随时间的变化来计算表征吸水过程的指标值。
优选地,根据吸水过程中待测的混凝土表面上的颜色或亮度随时间的变化来计算表征吸水过程的指标值,进一步包括:根据吸水过程中待测的混凝土表面上的颜色或亮度恢复程度随时间的变化来估计吸水时间;根据累积的估计吸水时间与累积的单位面积水量的关系,估计混凝土表面的吸水过程。
优选地,根据吸水过程中待测的混凝土表面上的颜色或亮度恢复程度随时间的变化来估计吸水时间进一步包括:找到颜色或亮度恢复程度随时间变化的主要转折点,将该主要转折点对应的时间作为表观吸水时间,以表观吸水时间作为估计的吸水时间。根据累积的估计吸水时间与累积的单位面积水量的关系,估计混凝土表面的吸水过程进一步包括:将多次喷水-吸水过程得到的累积表观喷水时间开平方作为横轴,将累积单位面积水量作为纵轴,得到表观吸水时间-单位面积水量关系图;对表观吸水时间-单位面积水量关系图进行直线拟合,拟合直线的斜率为表观吸水过程,以表观吸水过程作为估计的混凝土表面的吸水过程。
本发明利用混凝土表面吸水过程与自身孔隙率相关的技术原理,建立了混凝土表面吸水过程指标与混凝土抗渗性的关系,通过现场吸水过程的指标反推出混凝土的抗渗性。
与现有技术相比,本发明提出的技术方案中提出一种能够现场无损检测 混凝土抗渗性的方法,操作便捷,设备简单,量测准确。且考虑了混凝土的初始含水率,能够吻合现场实际应用条件。
附图说明
下面参考附图结合实施例说明本发明。在附图中:
图1是根据本发明利用手机检测喷水试验中混凝土表面吸水过程的实施示意图;
图2是根据本发明的具体实施例的方法的主流程图;
图3是用于识别的标识图的示例;
图4是利用手机摄像头识别标识图的图像的示例;
图5是根据标识图的图像对原始图像进行变换的示例;
图6是利用连续注射器与雾化喷嘴制作的可以确定喷水量的喷水工具的示例;
图7是利用图像处理来捕捉喷水区域的示例;
图8是喷水试验中喷水区域内颜色或亮度随时间的变化的示意图;
图9是一次喷水-吸水过程中颜色或亮度恢复程度随时间的变化的示意图;
图10图示说明了表观吸水时间与单位面积水量之间的关系;
图11图示说明了表观吸水过程与抗渗压强之间的关系;
图12图示说明了根据本发明的混凝土抗渗性的无损检测方法的流程图。
具体实施方式
下面将详细描述本发明的具体原理、验证试验与应用实施例。
喷水实验的原理来自于:混凝土表面喷洒上水之后,由于光的反射条件改变,所以物体的颜色会变更深一些,当水分被混凝土吸入或蒸发之后,混凝土的表面又会恢复到以前的颜色。并且,在很短的时间和一般室温的条件下,混凝土表面的水分蒸发相对于混凝土的吸水是很小的量。因此,在拍摄的几分钟过程内可以认为水分全部被混凝土吸收进去了。根据混凝土表面的这个现象,我们可以通过衡量混凝土表面的颜色变化快慢来衡量混凝土吸水的快慢。同时,已有的研究表明:混凝土的孔隙结构会影响混凝土抗渗性能, 也会影响混凝土的吸水性能,因此,我们可以通过混凝土的吸水性能来推定混凝土的抗渗性。
本发明的喷水试验原理验证的实验操作流程如下:
(1)制作得到不同孔隙结构和孔隙分布的混凝土试件,可以通过改变混凝土的配合比、养护龄期、养护条件、喷涂表面改性材料等手段来实现。
(2)调节混凝土试块的初始含水量,并用含水率测试仪得到每组混凝土初始含水量,用雾化喷水器向混凝土试块喷水。
(3)记录吸水过程,利用图像处理技术或其它相关技术得到表征待检测混凝土表面吸水过程的指标。
(4)对每组试件进行抗渗试验,得到每组试件的抗渗性。
(5)建立混凝土表面吸水过程指标与混凝土抗渗性的相关关系。
(6)实际应用时,先用雾化喷水器在待测的混凝土结构上喷水,记录吸水过程,并得到表征吸水过程的指标值,根据步骤(5)中得到的相关关系即可得到该混凝土的抗渗性。
下面将详细描述本发明实际应用时的具体实施例。
图1是根据本发明利用手机检测喷水试验中混凝土表面吸水过程的实施示意图。如图1所示,在待测混凝土表面1001上放置用于识别的标识图1002。将智能手机(或平板等带有摄像头的智能移动设备)1004固定在待检测混凝土表面前,使智能手机1004的摄像头可以捕捉到待喷水的混凝土区域和标识图1002。使用可以定量且均匀喷撒水的喷水工具1003向待检测混凝土表面1001上喷水,利用智能手机1004的摄像头捕捉并记录喷水试验过程中1001表面的图像。利用智能手机1004本身的计算处理能力(例如智能手机1004的处理器)对捕捉到的喷水-吸水过程图像的颜色或亮度变化进行分析,利用喷水过程中混凝土表面的颜色或亮度变化(或结合单位面积上的喷水量)计算得到表征待检测混凝土表面吸水过程的指标。
图2是根据本发明的实施例的方法的主流程图。本发明方法的实施例包括下列步骤:
步骤一:首先在待检测混凝土表面所在的平面内放置用于识别的标识图。
图3是用于识别的标识图的示例。图3中所示的标识图的尺寸为10cm*10cm。然后,使用智能手机拍摄标识与待检测的混凝土表面,利用图像识别技术识别图像中的标识图像。
图4是利用手机摄像头识别标识图的图像的示例。如图4中所示,手机屏幕中的标识图被识别出并以粗实线框出。
根据标识图像的实际尺寸对图像进行坐标变换,将待检测混凝土表面变换到标识图像定义的直角坐标系内,便于后续根据图像进行尺寸测量与计算。
图5是根据标识图的图像对原始图像进行变换的示例。
步骤二:利用智能手机记录下试验过程的图像及每幅图像对应的时间。
步骤三:利用可以固定喷水量并且喷撒均匀的喷水工具向待检测混凝土表面喷撒定量的水。
图6是利用0-0.5ml连续注射器601与雾化喷嘴602制作的可以确定喷水量的喷水工具的示例。
步骤四:利用图像处理方法,如自适应阈值分割,得到喷水的范围。图7是利用图像处理来捕捉喷水区域的示例。如图7所示,喷水范围在手机屏幕上以实线标明。由于在步骤一中已经将图像根据标识的实际尺寸进行了变换,因此可以算出喷水区域的实际面积。再结合步骤三中设定的喷水量,可以计算出本次喷水过程中混凝土表面单位面积上的喷水量。
步骤五:如果在本次喷水前已经进行了若干次喷水,将所有喷水区域叠加求交集得到多次喷水影响的范围,即重叠区域Ai
步骤六:在步骤五得到的重叠区域Ai内计算图像的颜色或亮度随时间的变化。
图8是喷水试验中喷水区域内颜色或亮度随时间的变化的示意图。如图8所示,图示说明了向1个待检测混凝土表面喷水6次得到的图像颜色或亮度随时间变化的例子。
步骤七:利用步骤六得到的图像颜色或亮度随时间变化结果,可以计算现有各类方法使用的指标来评价待测混凝土表面吸水的快慢程度;也可以结合步骤四中计算得到的实际单位面积水量评价待测混凝土表面吸水快慢,例如使用如下的方法计算混凝土喷水试验的“表观吸水过程”:
(1)计算颜色或亮度恢复程度Ir,喷水后第n帧图像的颜色或亮度恢复程度计算方法定义如下:
Figure PCTCN2016094216-appb-000001
其中,sumdiffn为步骤五中颜色或亮度变化计算重叠区域Ai内第n帧图像与本次喷水前图像像素颜色或亮度差之和,sumdiff2为重叠区域Ai内第2帧图像与本次喷水前图像像素颜色或亮度差之和。这样计算出来的Ir代表了喷水之后颜色或亮度恢复的程度。图9是一次喷水-吸水过程中颜色或亮度恢复程度随时间的变化的示意图。
(2)在图9中所示的颜色或亮度恢复程度随时间的变化曲线上找到曲线的主要转折点。可以参考简化曲线的Ramer-Douglas-Peucker算法,连接曲线首尾得到一条直线,找到曲线上距离该直线距离最远的点,如图9中圆圈所示,即为主要转折点。这个主要转折点对应的时间认为是本次喷水-吸水过程的“表观吸水时间”。
(3)以多次喷水-吸水过程得到的累积表观吸水时间开平方(s1/2)为横轴,累积单位面积水量为纵轴,可以得到表观吸水时间-单位面积水量关 系图。图10是这样得到的表观吸水时间与单位面积水量之间的关系。
(4)对图10中各组表观吸水时间-单位面积水量结果进行直线拟合,以拟合直线的斜率作为“表观吸水过程”。图10显示了2组抗渗性能不同的砂浆试件的结果,可以看到,抗渗性能越强,表观吸水过程越慢,反之越强。
对于表观吸水过程与抗渗性能之间的关系,可以参考如下的验证试验:
以水泥∶水∶砂=1∶0.76∶3.97为配合比制作砂浆试件,通过改变养护时间和喷涂防水材料的手段得到不同抗渗性能的砂浆试件,各试件组别详细情况见下表:
Figure PCTCN2016094216-appb-000002
各组均制作3块试块进行喷水试验并用本发明提出的方法计算表观吸水过程,同时对各组进行标准的抗渗试验得到抗渗结果(如上表所示),得到的表观吸水过程与抗渗结果的关系如图11所示。可以看到表观吸水试验与抗渗结果有很好的关联关系。
步骤八:如果还需要继续下一次喷水,重复步骤二到七,否则结束试验,评价待检测混凝土表面吸水过程。
本发明利用混凝土表面吸水过程与自身孔隙率相关的技术原理,建立了混凝土表面吸水过程指标与混凝土抗渗性的关系,通过现场吸水过程的指标反推出混凝土的抗渗性。
与现有技术相比,本发明提出的技术方案中提出一种能够现场无损检测混凝土抗渗性的方法,操作便捷,设备简单,量测准确。且考虑了混凝土的初始含水率,能够吻合现场实际应用条件。
本发明提出的“表观吸水过程”所代表的物理意义为后续推算喷水-吸 水的真实过程提供了参考,而现有的方法仅是对图像颜色或亮度的考察,不具备相应的优势。
为进一步阐述本发明的方法,图12图示说明了根据本发明的混凝土抗渗性的无损检测方法的流程图。
图12的方法开始于步骤1201,在待测的混凝土表面上喷水。在如上所述的优选实施例中,使用可以固定喷水量并且喷撒均匀的喷水工具向待检测混凝土表面喷撒定量的水。其中,所述的可以固定喷水量并且喷撒均匀的喷水工具包括连续注射器与雾化喷嘴的组合。喷水可以是一次或多次。
在步骤1201之前,可选地,可以在待检测混凝土表面所在的平面内放置用于识别的标识图。
在步骤1203,记录吸水过程。记录吸水过程包括:记录吸水过程中待测的混凝土表面上的颜色或亮度随时间的变化。在优选实施例中,多次捕捉并记录吸水过程中待检测混凝土表面的图像以及每幅图像对应的时间。
如果设置了标识图,那么在步骤1203中,可以同时拍摄标识图和待检测混凝土表面的图像,利用图像识别技术识别拍摄得到的图像中的标识图图像,根据标识图的实际尺寸对图像进行坐标变换,以将待检测混凝土表面的图像变换到标识图定义的直角坐标系内,便于后续根据图像进行尺寸测量与计算。
在步骤1205,根据所记录的吸水过程,计算表征吸水过程的指标值。
在优选实施例中,利用图像处理方法得到喷水区域。如果设置了标识图,可以对步骤1203中的图像进行坐标变换,计算喷水区域的实际面积。再结合步骤1201中的固定喷水量,可以计算出本次喷水过程中混凝土表面单位面积上的喷水量。
将多次喷水后每次得到的喷水区域叠加求交集可以得到多次喷水影响的范围。
在一个优选实施例中,在步骤1205,根据吸水过程中待测的混凝土表面上的颜色或亮度随时间的变化来计算表征吸水过程的指标值。可以在得到的多次喷水影响的范围内计算每次喷水时的待检测混凝土表面的图像的颜色或亮度随时间的变化。具体地说,获得每次喷水过程中在所述多次喷水影响的范围内的颜色或亮度恢复程度随时间的变化。
更具体地说,根据吸水过程中待测的混凝土表面上的颜色或亮度恢复程度随时间的变化来估计吸水时间。然后,根据累积的估计吸水时间与累积的单位面积水量的关系,估计混凝土表面的吸水过程。
例如,将喷水后第n帧图像的颜色或亮度恢复程度Ir定义为
Figure PCTCN2016094216-appb-000003
其中,sumdiffn为喷水区域内第n帧图像与本次喷水前图像像素颜色或亮度差之和,sumdiff2为喷水区域内第2帧图像与本次喷水前图像像素颜色或亮度差之和。
本领域技术人员应该理解,尽管在具体实施例中使用了如上所述的颜色或亮度恢复程度Ir定义,但这只是用来评价图像颜色或亮度变化的一种计算方式,本发明可以计算各类评价颜色或亮度变化程序的指标。
更具体地说,在颜色或亮度恢复程度(例如如上所述的Ir)随时间变化的曲线上找到曲线的主要转折点,将该主要转折点对应的时间作为本次喷水-吸水过程的表观吸水时间,以表观吸水时间作为估计的吸水时间。例如,利用简化曲线的Ramer-Douglas-Peucker算法,连接曲线首尾得到直线,找到曲线上距离该直线距离最远的点,作为曲线的主要转折点。将多次喷水-吸水过程得到的累积表观吸水时间开平方作为横轴,将累积单位面积水量作为纵轴,得到表观吸水时间-单位面积水量关系图。对表观吸水时间-单位面 积水量关系图进行直线拟合,拟合直线的斜率为表观吸水过程,以表观吸水过程作为估计的混凝土表面的吸水过程。
在步骤1207,基于表征混凝土表面吸水过程的指标值与混凝土抗渗性的相关关系,得到该混凝土的抗渗性。
表征混凝土表面吸水过程的指标值与混凝土抗渗性的相关关系的得到,可以参见如上记载的验证试验与结果。根据本发明的验证试验的结果,当表征吸水过程的指标值表征吸水速度越快时,混凝土抗渗性越弱;当表征吸水过程的指标值表征吸水速度越慢时,混凝土抗渗性越强。
之后,方法结束。
上述的步骤中,计算处理的操作可以由处理器完成,图像捕捉的操作由摄像头完成,且通过所述处理器将捕捉的图像记录在存储器中。所述处理器、所述摄像头和所述存储器可以集成在同一个智能设备中或者以其他方式通信连接在一起。所述智能设备可以是智能手机或平板电脑等。所述通信连接方式可以是有线或无线的方式。
此外,本领域技术人员应理解,尽量在具体实施例中,使用了吸水时间、吸水速率(速度快慢)或者表观吸水时间-单位面积水量关系图等指标来作为表征吸水过程的指标值,但也可以使用其他的指标来表征吸水过程。虽然在本发明中没有穷举可能的所有指标,但本领域技术人员应该理解,这些指标都在本发明的精神和范围之内。
上面已经描述了本发明的具体实施例及其具体应用和优选实施方式。但是本发明的精神和范围不限于这里所公开的具体内容。本领域技术人员将能够根据本发明的教导而做出更多的实施方式和应用,这些实施方式和应用都在本发明的精神和范围内。本发明的精神和范围不由具体实施例来限定,而由权利要求来限定。

Claims (6)

  1. 一种混凝土抗渗性的无损检测方法,包括:
    在待测的混凝土表面上喷水;
    记录吸水过程;
    根据所记录的吸水过程,计算表征吸水过程的指标值;
    基于表征混凝土表面吸水过程的指标值与混凝土抗渗性的相关关系,得到该混凝土的抗渗性。
  2. 根据权利要求1所述的方法,其中:
    当表征吸水过程的指标值表征吸水速度越快时,混凝土抗渗性越弱;
    当表征吸水过程的指标值表征吸水速度越慢时,混凝土抗渗性越强。
  3. 根据权利要求1所述的方法,其中,记录吸水过程包括:记录吸水过程中待测的混凝土表面上的颜色或亮度随时间的变化。
  4. 根据权利要求3所述的方法,其中,根据所记录的吸水过程,计算表征吸水过程的指标值,包括:
    根据吸水过程中待测的混凝土表面上的颜色或亮度随时间的变化来计算表征吸水过程的指标值。
  5. 根据权利要求4所述的方法,其中,根据吸水过程中待测的混凝土表面上的颜色或亮度随时间的变化来计算表征吸水过程的指标值,进一步包括:
    根据吸水过程中待测的混凝土表面上的颜色或亮度恢复程度随时间的变化来估计吸水时间;
    根据累积的估计吸水时间与累积的单位面积水量的关系,估计混凝土表面的吸水过程。
  6. 根据权利要求5所述的方法,其中:
    根据吸水过程中待测的混凝土表面上的颜色或亮度恢复程度随时间的 变化来估计吸水时间进一步包括:
    找到颜色或亮度恢复程度随时间变化的主要转折点,将该主要转折点对应的时间作为表观吸水时间,以表观吸水时间作为估计的吸水时间,
    根据累积的估计吸水时间与累积的单位面积水量的关系,估计混凝土表面的吸水过程进一步包括:
    将多次喷水-吸水过程得到的累积表观吸水时间开平方作为横轴,将累积单位面积水量作为纵轴,得到表观吸水时间-单位面积水量关系图;
    对表观吸水时间-单位面积水量关系图进行直线拟合,拟合直线的斜率为表观吸水过程,以表观吸水过程作为估计的混凝土表面的吸水过程。
PCT/CN2016/094216 2015-08-14 2016-08-09 混凝土抗渗性的无损检测方法 WO2017028716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510500520.3 2015-08-14
CN201510500520.3A CN105115873B (zh) 2015-08-14 2015-08-14 混凝土抗渗性的无损检测方法

Publications (1)

Publication Number Publication Date
WO2017028716A1 true WO2017028716A1 (zh) 2017-02-23

Family

ID=54663913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094216 WO2017028716A1 (zh) 2015-08-14 2016-08-09 混凝土抗渗性的无损检测方法

Country Status (2)

Country Link
CN (1) CN105115873B (zh)
WO (1) WO2017028716A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896462A (zh) * 2020-05-08 2020-11-06 同济大学 用于评测城市土体抗侵蚀地陷能力的可调压便携式测试装置及方法
CN113109238A (zh) * 2021-04-30 2021-07-13 中国铁路南宁局集团有限公司 一种模拟隧道衬砌裂缝有压渗水的装置及其模拟方法
CN113176189A (zh) * 2021-04-26 2021-07-27 福建建利达工程技术有限公司 一种用于水利工程抗渗性能检测装置及其检测方法
CN114279937A (zh) * 2021-12-29 2022-04-05 山东交通学院 一种混凝土结构抗渗透性能无损检测装置
CN114486678A (zh) * 2022-01-14 2022-05-13 东南大学 一种混凝土表面砂浆微观孔隙特征快速检测装置及方法
CN115144429A (zh) * 2022-09-01 2022-10-04 中国有色金属工业昆明勘察设计研究院有限公司 一种深部饱和松软尾矿原状样冻胀试验系统及方法
CN115931683A (zh) * 2023-03-15 2023-04-07 潍坊高新建设集团有限公司 一种建筑混凝土抗渗性试验装置及方法
CN116754459A (zh) * 2023-08-22 2023-09-15 武汉理工大学 一种既有混凝土抗渗等级的检测方法
CN114486678B (zh) * 2022-01-14 2024-05-03 东南大学 一种混凝土表面砂浆微观孔隙特征快速检测装置及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115873B (zh) * 2015-08-14 2018-04-13 清华大学 混凝土抗渗性的无损检测方法
CN106251753B (zh) * 2016-08-08 2018-09-14 东北石油大学 远程在线无损检测综合实验装置
JP6609284B2 (ja) * 2017-05-26 2019-11-20 北海道ポラコン株式会社 透水構造材の清掃評価方法
CN109298166B (zh) * 2018-11-06 2021-07-02 吴晓东 一种工程施工质量验收混凝土检测装置
CN110631976A (zh) * 2019-09-17 2019-12-31 广东东方混凝土有限公司 混凝土渗透性无损检测方法
CN111638165B (zh) * 2020-05-26 2023-03-21 浙江兴红建设工程检测有限公司 外墙节能保温构造耐久性检测方法
CN113281232B (zh) * 2020-11-25 2022-03-01 水利部交通运输部国家能源局南京水利科学研究院 一种砂浆试件抗渗压强的计算方法
CN117517175B (zh) * 2024-01-02 2024-03-12 中交基础设施养护集团工程有限公司 一种路面渗水性能检测装置及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009722A (ja) * 1998-06-25 2000-01-14 Asao Ishimaru 生コンクリート製造プラントに取り付ける砂の表面水率自動連続測定装置
CN101806700A (zh) * 2010-04-06 2010-08-18 中国农业大学 土壤入渗性能的测量方法及测量系统
JP2014044173A (ja) * 2012-08-28 2014-03-13 Railway Technical Research Institute 多孔質材料の品質評価方法および品質評価装置
CN104089580A (zh) * 2014-06-26 2014-10-08 华南理工大学 基于智能手机实现的混凝土表面裂缝宽度测量仪及方法
JP2015014557A (ja) * 2013-07-08 2015-01-22 公益財団法人鉄道総合技術研究所 多孔質材料の品質評価方法および装置
CN105115873A (zh) * 2015-08-14 2015-12-02 清华大学 混凝土抗渗性的无损检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087194A (zh) * 2010-11-26 2011-06-08 清华大学 基于高频交流电的混凝土抗渗透性测量系统
CN103267719A (zh) * 2013-04-25 2013-08-28 浙江大学 基于非接触式电阻率的水泥基材料渗透性评价方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009722A (ja) * 1998-06-25 2000-01-14 Asao Ishimaru 生コンクリート製造プラントに取り付ける砂の表面水率自動連続測定装置
CN101806700A (zh) * 2010-04-06 2010-08-18 中国农业大学 土壤入渗性能的测量方法及测量系统
JP2014044173A (ja) * 2012-08-28 2014-03-13 Railway Technical Research Institute 多孔質材料の品質評価方法および品質評価装置
JP2015014557A (ja) * 2013-07-08 2015-01-22 公益財団法人鉄道総合技術研究所 多孔質材料の品質評価方法および装置
CN104089580A (zh) * 2014-06-26 2014-10-08 华南理工大学 基于智能手机实现的混凝土表面裂缝宽度测量仪及方法
CN105115873A (zh) * 2015-08-14 2015-12-02 清华大学 混凝土抗渗性的无损检测方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896462A (zh) * 2020-05-08 2020-11-06 同济大学 用于评测城市土体抗侵蚀地陷能力的可调压便携式测试装置及方法
CN111896462B (zh) * 2020-05-08 2023-05-09 同济大学 用于评测城市土体抗侵蚀地陷能力的可调压便携式测试装置及方法
CN113176189A (zh) * 2021-04-26 2021-07-27 福建建利达工程技术有限公司 一种用于水利工程抗渗性能检测装置及其检测方法
CN113109238A (zh) * 2021-04-30 2021-07-13 中国铁路南宁局集团有限公司 一种模拟隧道衬砌裂缝有压渗水的装置及其模拟方法
CN114279937A (zh) * 2021-12-29 2022-04-05 山东交通学院 一种混凝土结构抗渗透性能无损检测装置
CN114486678A (zh) * 2022-01-14 2022-05-13 东南大学 一种混凝土表面砂浆微观孔隙特征快速检测装置及方法
CN114486678B (zh) * 2022-01-14 2024-05-03 东南大学 一种混凝土表面砂浆微观孔隙特征快速检测装置及方法
CN115144429A (zh) * 2022-09-01 2022-10-04 中国有色金属工业昆明勘察设计研究院有限公司 一种深部饱和松软尾矿原状样冻胀试验系统及方法
CN115144429B (zh) * 2022-09-01 2022-11-11 中国有色金属工业昆明勘察设计研究院有限公司 一种深部饱和松软尾矿原状样冻胀试验系统及方法
CN115931683A (zh) * 2023-03-15 2023-04-07 潍坊高新建设集团有限公司 一种建筑混凝土抗渗性试验装置及方法
CN116754459A (zh) * 2023-08-22 2023-09-15 武汉理工大学 一种既有混凝土抗渗等级的检测方法
CN116754459B (zh) * 2023-08-22 2023-11-07 武汉理工大学 一种既有混凝土抗渗等级的检测方法

Also Published As

Publication number Publication date
CN105115873A (zh) 2015-12-02
CN105115873B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2017028716A1 (zh) 混凝土抗渗性的无损检测方法
WO2017028717A1 (zh) 检测混凝土表面吸水过程的方法
JP5880981B2 (ja) コンクリート表面の吸水試験方法及び吸水試験装置
CN103196794B (zh) 一种用于测试混凝土新拌性能的自动测试系统
CN106769771B (zh) 一种基于低场核磁共振技术的非饱和土渗透系数的测量方法
Basheer A brief review of methods for measuring the permeation properties of concrete in situ.
CN106908489A (zh) 一种碾压混凝土含水率的无损测定方法
CN107300521A (zh) 膨胀土开裂含水量的测定方法及测定装置
CN104297280A (zh) 利用核磁共振技术定量评价岩心洗油效果的方法
CN105203743A (zh) 通过直接测量建材样块得到室内环境中氡析出率的方法
CN113884011A (zh) 一种非接触式混凝土表观裂缝测量设备和方法
Zhang et al. Dynamic effect of water penetration on steel corrosion in carbonated mortar: A neutron imaging, electrochemical, and modeling study
CN102692370B (zh) 涂层原位压力渗透测试方法和装置
CN107782703B (zh) 一种测定多孔介质水分特征曲线的方法
CN207066937U (zh) 膨胀土开裂含水量的测定装置
CN109282783A (zh) 一种混凝土碳化深度原位无损测量装置及方法
CN106959308B (zh) 一种混凝土结构火灾影响深度检测方法
Castro et al. Portland cement concrete pavement permeability performance
CN116858748A (zh) 土石堤坝渗漏程度的精细化辨识巡查方法及装置
JP6011919B2 (ja) 多孔質材料の品質評価方法
Rouchier et al. Influence of diffuse damage on the water vapour permeability of fibre-reinforced mortar
CN205449757U (zh) 一种对混凝土的渗水率进行检测的装置
CN206772341U (zh) 一种房屋形变监测系统
Melada et al. Multi-instrumental characterization of porous media: the role of the Spilling Drop Test
TWI502183B (zh) Material interface detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836580

Country of ref document: EP

Kind code of ref document: A1