WO2017028717A1 - 检测混凝土表面吸水过程的方法 - Google Patents

检测混凝土表面吸水过程的方法 Download PDF

Info

Publication number
WO2017028717A1
WO2017028717A1 PCT/CN2016/094220 CN2016094220W WO2017028717A1 WO 2017028717 A1 WO2017028717 A1 WO 2017028717A1 CN 2016094220 W CN2016094220 W CN 2016094220W WO 2017028717 A1 WO2017028717 A1 WO 2017028717A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
image
concrete
water absorption
brightness
Prior art date
Application number
PCT/CN2016/094220
Other languages
English (en)
French (fr)
Inventor
安雪晖
姚国友
Original Assignee
北京佳固士防水科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佳固士防水科技有限公司 filed Critical 北京佳固士防水科技有限公司
Publication of WO2017028717A1 publication Critical patent/WO2017028717A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/04Investigating osmotic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Definitions

  • This invention relates to concrete and, more particularly, to a method of detecting the process of water absorption on a concrete surface.
  • the permeability of surface concrete has a great influence on the durability of reinforced concrete structures, and the durability of concrete has received more and more attention in recent years. Therefore, how to carry out non-destructive testing on the infiltration performance of existing concrete structures on site is of great significance.
  • the water spray test is a non-destructive concrete surface permeability test method that can be carried out on site.
  • the principle is to spray water onto the concrete surface, and measure the water absorption process of the concrete surface according to the color or brightness change of the concrete surface after water spray, and then evaluate Permeability of concrete surfaces.
  • the current technology is to directly measure the intensity of the reflected light on the concrete surface during the water spray test using an illuminometer to measure the degree of water absorption on the concrete surface; or to take a photo of the water spray test process with a digital camera, using the color of the concrete surface in the photograph or The change in brightness is a measure of how fast the concrete surface absorbs water.
  • the degree of change in the intensity of the reflected light before and after the water spray is calculated.
  • the degree of change in the intensity of the reflected light of the surface after n times of water spray is less than a certain standard, the surface quality of the concrete is evaluated by using this n as an index. .
  • the greater the value of n the stronger the resistance to chloride ion permeation.
  • a watering can is used to spray water onto the concrete surface once, and the color or brightness of the surface of the concrete surface is continuously photographed by a digital camera.
  • the color or brightness of the concrete surface after spraying was calculated by image processing.
  • the time corresponding to the change of the color or brightness of the concrete surface to a certain extent was used as an index to measure the water absorption speed of the concrete surface. And this index is related to the compressive strength of concrete. The results show that the slower the water absorption, the greater the compressive strength.
  • the existing methods can be used to measure the degree of water absorption of the concrete surface in the water spray test, there are two types of problems in the existing methods: First, the equipment used in the water spray test in the existing method sprays water onto the concrete surface. The range and quantity of water are not guaranteed to be accurate and consistent each time. However, the existing method defaults to the amount of water sprayed per unit area on the concrete surface in each test. This makes the detection error and cannot accurately reflect the water absorption of the concrete surface after each water spray. The speed of the two methods is that the existing methods are processed after the test data is obtained, and the degree of water absorption of the concrete cannot be obtained in real time on the spot.
  • the method can accurately and quickly detect the water absorption process of the concrete surface in the water spray test based on the actual amount of water per unit area.
  • a method for detecting a water absorbing process on a concrete surface comprising the steps of: spraying water on a surface of the concrete to be tested; recording a change in color or brightness of an image of the surface of the concrete to be inspected during the water absorption process;
  • the index value of the water absorption process is calculated by changing the color or brightness of the recorded image over time.
  • spraying water on the surface of the concrete to be tested may include spraying water one or more times.
  • spraying water on the surface of the concrete to be tested may include spraying a predetermined amount of water onto the surface of the concrete to be inspected using a water spray tool that can fix the amount of water sprayed and spray evenly.
  • the water spray tool that can fix the amount of water sprayed and spray evenly can include a combination of a continuous syringe and an atomizing nozzle.
  • recording the change in color or brightness of the image of the surface of the concrete to be inspected during the water absorption process may include: performing image capture multiple times with the image of the concrete surface to be detected by the camera and capturing by the processor The image is recorded in the memory.
  • Calculating the index value characterizing the water absorption process according to a change in color or brightness of the recorded image over time may include: using the processor, calculating a characteristic water absorption process according to a change in color or brightness of an image recorded in the memory over time Index value.
  • the processor, the camera, and the memory may be integrated in the same smart device or connected by wired or wireless communication.
  • the smart device may be a smartphone or a tablet or the like.
  • an identification map for identification may be placed in a plane in which the surface of the concrete to be inspected is located; when the color or brightness of the image of the surface of the concrete to be detected is changed over time during recording of the water absorption, the identification map is simultaneously recorded.
  • the image of the concrete surface to be inspected the image recognition technology is used to identify the image of the image in the captured image, and the image is coordinate-transformed according to the actual size of the image to transform the image of the concrete surface to be detected to a right angle defined by the logo. Within the coordinate system, it is convenient for subsequent dimension measurement and calculation based on the image.
  • the actual area of the water spray area is calculated, and in combination with the water spray amount, the amount of water per unit area of the concrete surface during the water spray process is calculated.
  • the invention adopts the smart phone shooting and calculation processing capability to perform real-time processing on the water spray test of the concrete surface quality detection; the use of the logo image and the image processing technology can accurately calculate the actual water spray range of each water spray, which The calculation of the important indicator of the water volume per unit area is possible; the water spray tool that can fix the water spray amount and spray evenly ensures the certainty of the water spray quantity and ensures the accuracy of the test.
  • FIG. 1 is a schematic view showing the implementation of a water absorbing process of a concrete surface in a water spray test using a mobile phone according to the present invention
  • FIG. 2 is a main flow diagram of a method in accordance with an embodiment of the present invention.
  • Figure 3 is an illustration of an identification map for identification
  • Figure 6 is an illustration of a water spray tool that can be used to determine the amount of water sprayed using a continuous syringe and an atomizing nozzle;
  • Figure 8 is a schematic view showing changes in color or brightness in a water spray area with time in a water spray test
  • Figure 9 is a schematic illustration of the change in color or brightness recovery over time during a water spray-water absorption process
  • Figure 10 illustrates the relationship between apparent water absorption time and water per unit area
  • Figure 11 illustrates a flow chart of a method of detecting the water absorption process of a concrete surface in accordance with the present invention.
  • FIG. 1 is a schematic view showing the implementation of a process for detecting the water absorption of a concrete surface in a water spray test using a mobile phone according to the present invention.
  • a logo 1002 for identification is placed on the concrete surface 1001 to be tested.
  • a smart phone (or a smart mobile device with a camera such as a tablet) 1004 is fixed in front of the surface of the concrete to be inspected, so that the camera of the smartphone 1004 can capture the concrete area to be sprayed and the map 1002.
  • the water spray tool 1003 which can quantitatively and uniformly spray water, is sprayed onto the concrete surface 1001 to be inspected, and the image of the surface of the 1001 during the water spray test is captured and recorded by the camera of the smartphone 1004. Utilizing the computing processing capabilities of the smartphone 1004 itself (eg, the processor of the smartphone 1004) to analyze the color or brightness changes of the captured water-water absorption process image, utilizing changes in color or brightness of the concrete surface during the water spray process (or Combined with the amount of water sprayed per unit area, an index characterizing the water absorption speed of the concrete surface to be tested is calculated.
  • Embodiments of the inventive method include the following steps:
  • Step 1 First, a marker for identification is placed in the plane in which the surface of the concrete to be inspected is located.
  • FIG. 3 is an example of an identification map for identification. Then, the smart phone is used to capture the logo and the concrete surface to be inspected, and the image recognition technology is used to identify the logo image in the image.
  • FIG. 4 is an example of an image identifying a logo image using a mobile phone camera. As shown in Figure 4, the logo in the screen of the phone is identified and framed in thick lines.
  • the coordinate transformation is performed on the image according to the actual size of the identification image, and the surface of the concrete to be inspected is transformed into a rectangular coordinate system defined by the identification image, so that the subsequent dimension measurement and calculation according to the image is facilitated.
  • FIG. 5 is an example of transforming an original image according to an image of a logo.
  • Step 2 Use the smartphone to record the image of the test process and the time corresponding to each image.
  • Step 3 Use a water spray tool to spray a certain amount of water onto the surface of the concrete to be tested.
  • FIG. 6 is an example of a water spray tool that can be used to determine the amount of water sprayed using a 0-0.5 mL continuous syringe 601 and an atomizing nozzle 602.
  • Step 4 Use the image processing method to obtain the range of water spray.
  • FIG. 7 is an example of capturing a water spray area using image processing. As shown in Figure 7, the water spray range is indicated on the screen of the mobile phone by a solid line. Further, the amount of water sprayed per unit area can be calculated.
  • Step 5 Calculate the color or brightness of the image of the water spray area as a function of time.
  • Figure 8 is a graph showing changes in color or brightness over time in a water spray zone in a water spray test. As shown in Fig. 8, an example in which the color or brightness of an image obtained by spraying water to the surface of one concrete to be inspected 6 times is illustrated is shown.
  • Step 6 Using the results of the color or brightness of the image obtained in step 5, the index used in various methods can be calculated to evaluate the degree of water absorption of the concrete surface to be tested; The actual unit area water amount calculated in the fourth step is used to evaluate the water absorption speed of the concrete surface to be tested. For example, the following method is used to calculate the "apparent water absorption process" of the concrete water spray test:
  • Fig. 10 is a graph showing the relationship between the apparent water absorption time and the amount of water per unit area.
  • Step 7 If it is necessary to continue the next water spray, repeat steps 2 to 6, otherwise the test is terminated and the water absorption process of the concrete to be tested is evaluated.
  • the invention utilizes the camera and computing processing capability of the smart phone to perform real-time processing on the water spray test of the concrete surface quality inspection.
  • the advantage of using a smart phone is that the indicator for evaluating the water absorption speed of the concrete surface (including the existing various types of indicators) can be calculated immediately after the water spray test is completed without subsequent additional processing.
  • the use of the smart phone makes the water spray test data acquisition and processing integrated, and the evaluation results can be obtained after the test, without additional post-processing work.
  • the actual water spray range of each spray can be accurately calculated, which makes the calculation of the important index of the water volume per unit area possible, so that the water spray test absorbs water on the concrete surface. It is possible to make comparisons on the premise that the amount is accurately quantified.
  • the existing methods are not available. Result gauge obtained by the present invention The law is obvious, the degree of discrimination is large, and it is more accurate than the existing methods.
  • the present invention uses a water spray tool that can fix the water spray amount and spray evenly compared with the prior art, thereby ensuring the certainty of the water spray amount and ensuring the test. The accuracy.
  • Figure 11 illustrates a flow chart of a method of detecting a water absorption process on a concrete surface in accordance with the present invention.
  • the method of Figure 11 begins in step 1101 by spraying water onto the surface of the concrete to be tested.
  • water is sprayed one or more times on the surface of the concrete to be tested.
  • a water spray tool can be used to spray a predetermined amount of water onto the surface of the concrete to be inspected.
  • the water spray tool that can fix the amount of water sprayed and spray evenly can be a combination of a continuous syringe and an atomizing nozzle, as shown in FIG.
  • an identification map for identification can be placed in the plane in which the surface of the concrete to be inspected is located.
  • the color or brightness of the image of the surface of the concrete to be inspected during the water absorption is recorded as a function of time.
  • the logo image In the case where the logo image is placed, when the color or brightness of the image of the concrete surface to be detected changes with time during the water absorption process, the logo image and the image of the concrete surface to be inspected are simultaneously recorded, and the image recognition technology is used to recognize the photographed image.
  • the image of the logo image in the image is coordinate-transformed according to the actual size of the logo image to transform the image of the concrete surface to be detected into the Cartesian coordinate system defined by the logo, so as to facilitate subsequent dimension measurement and calculation according to the image.
  • Step 1103 can further include: obtaining a change in the degree of color or brightness recovery over time within the range of water spray effects.
  • an index value characterizing the water absorption process is calculated based on a change in color or brightness of the recorded image over time. For example, as described above, in the case where an index of the change in the degree of color or brightness recovery with time is employed, the water absorption time is estimated from the change in the degree of color or brightness recovery with time. The water absorption process on the concrete surface is estimated based on the cumulative estimated water absorption time and the cumulative amount of water per unit area.
  • the image of the concrete surface to be detected by the camera may be image-captured multiple times in time and the captured image is recorded in the memory by the processor.
  • the processor may be used to calculate an index value indicative of the water absorption process based on a change in color or brightness of the image recorded in the memory over time.
  • the processor, the camera, and the memory may be integrated in the same smart device or connected by wired or wireless communication.
  • the smart device is a smartphone or tablet or the like.
  • indicators such as water absorption time, water absorption rate (speed) or apparent water absorption time-unit area water amount relationship are used as index values for characterizing the water absorption process, but Other indicators can also be used to characterize the water absorption process. Although not all of the indicators are possible in the present invention, those skilled in the art should understand that these indicators are within the spirit and scope of the present invention.

Abstract

一种检测混凝土表面(1001)吸水过程的方法,在待测混凝土表面(1001)上喷水(1101);记录吸水过程中待测混凝土表面(1001)的图像的颜色或亮度随时间的变化(1103);根据记录的图像的颜色或亮度随时间的变化,计算表征吸水过程的指标值(1105)。采用智能手机(1004)的拍摄和计算处理能力来对混凝土表面(1001)进行实时处理;加入标识图像(1002)及图像处理技术的利用,准确计算出每次喷水的实际喷水范围,使得单位面积水量的计算成为可能;采用了固定喷水量并且喷撒均匀的喷水工具(1003),确保了每次喷水量的确定性,保证了试验的精确性。

Description

检测混凝土表面吸水过程的方法 技术领域
本发明涉及混凝土,更具体地说,涉及检测混凝土表面吸水过程的方法。
背景技术
表层混凝土的渗透性能对于钢筋混凝土结构物的耐久性有极大的影响,混凝土的耐久性在近年来越来越多地受到重视。因此,如何在现场对既有混凝土结构的渗透性能方便易行地进行无损检测具有重要意义。
喷水试验是一种可以在现场实施的无损的混凝土表面渗透性能检测方法,其原理是向混凝土表面喷水,根据喷水后混凝土表面的颜色或亮度变化来衡量混凝土表面的吸水过程,进而评估混凝土表面的渗透性能。
目前已有的技术是使用照度计直接测量喷水试验过程中混凝土表面反射光强度变化来衡量混凝土表面吸水快慢程度;或是用数码相机拍摄喷水试验过程的照片,利用照片中混凝土表面颜色或亮度变化来衡量混凝土表面吸水快慢程度。
例如,在一种现有技术中,计算喷水前后反射光强度的变化的程度,当经过n次喷水后表面反射光强度变化程度小于某个标准时,以这个n为指标来评价混凝土表面质量。最终得出n值越大抗氯离子渗透性能越强的结论。
在另一种现有技术中,使用喷壶向混凝土表面喷撒水1次,并以数码相机持续拍摄混凝土表面喷水后表面的颜色或亮度变化情况。试验结束后以图像处理的办法计算喷水后混凝土表面颜色或亮度变化情况,以混凝土表面颜色或亮度变化到某一程度所对应的时间作为衡量混凝土表面吸水快慢的指标。并将这一指标与混凝土的抗压强度建立关系。结果表明吸水越慢,抗压强度越大。
虽然目前已有的办法可以用来衡量喷水试验中混凝土表面吸水的快慢程度,但是现有办法存在两类问题:一是现有方法中进行喷水试验时使用的设备向混凝土表面喷撒水的范围和水量并不能保证每次精确一致,而现有方法默认每次试验中混凝土表面上单位面积内喷撒水量固定,这就使得检测存在误差,不能准确反映每次喷水后混凝土表面吸水的快慢程度;二是现有的方法均是在取得试验数据之后再进行数据处理,无法在现场实时得到混凝土吸水快慢程度。
因此,目前迫切需要一种在现场准确快速地检测喷水试验中混凝土表面吸水过程的方法。
发明内容
为了克服现有技术的不足和缺陷,本发明的目的在于提供一种混凝土表面吸水过程的检测方法。在优选实施例中,该方法可以在现场根据实际的单位面积水量准确快速地检测喷水试验中混凝土表面的吸水过程。
根据本发明,提供了一种检测混凝土表面吸水过程的方法,包括如下步骤:在待测的混凝土表面上喷水;记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化;根据记录的图像的颜色或亮度随时间的变化,计算表征吸水过程的指标值。
根据本发明的实施例,在待测的混凝土表面上喷水可以包括喷水一次或多次。
根据本发明的实施例,在待测的混凝土表面上喷水可以包括使用可以固定喷水量并且喷撒均匀的喷水工具向待检测混凝土表面喷撒定量的水。
优选地,所述的可以固定喷水量并且喷撒均匀的喷水工具可以包括连续注射器与雾化喷嘴的组合。
根据本发明的实施例,记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化可以包括:用摄像头对待检测混凝土表面的图像按时间进行多次图像捕捉且通过处理器将捕捉的图像记录在存储器中。根据记录的图像的颜色或亮度随时间的变化,计算表征吸水过程的指标值可以包括:使用所述处理器,根据记录在存储器中的图像的颜色或亮度随时间的变化而计算表征吸水过程的指标值。其中,所述处理器、所述摄像头和所述存储器可以集成在同一个智能设备中或者通过有线或无线的通信方式连接在一起。
在具体实施例中,优选地,所述智能设备可以是智能手机或平板电脑等。
根据本发明的实施例,可以在待检测混凝土表面所在的平面内放置用于识别的标识图;在记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化时,同时记录标识图和待检测混凝土表面的图像,利用图像识别技术识别拍摄得到的图像中的标识图图像,根据标识图的实际尺寸对图像进行坐标变换,以将待检测混凝土表面的图像变换到标识图定义的直角坐标系内,便于后续根据图像进行尺寸测量与计算。
根据本发明的实施例,优选地,根据所述的坐标变换,计算喷水区域的实际面积,再结合喷水量,计算出喷水过程中混凝土表面单位面积上的水量。
本发明采用了智能手机拍摄和计算处理能力来对混凝土表面质量检测的喷水试验进行实时处理;加入标识图像及图像处理技术的利用,可以准确计算出每次喷水的实际喷水范围,这使得单位面积水量这一重要指标的计算成为可能;采用了可以固定喷水量并且喷撒均匀的喷水工具,确保了每次喷水量的确定性,保证了试验的精确性。
附图说明
下面参考附图结合实施例说明本发明。在附图中:
图1是根据本发明利用手机检测喷水试验中混凝土表面吸水过程的实施示意图;
图2是根据本发明的实施例的方法的主流程图;
图3是用于识别的标识图的示例;
图4是利用手机摄像头识别标识图的图像的示例;
图5是根据标识图的图像对原始图像进行变换的示例;
图6是利用连续注射器与雾化喷嘴制作的可以确定喷水量的喷水工具的示例;
图7是利用图像处理来捕捉喷水区域的示例;
图8是喷水试验中喷水区域内颜色或亮度随时间的变化的示意图;
图9是一次喷水-吸水过程中颜色或亮度恢复程度随时间的变化的示意图;
图10图示说明了表观吸水时间与单位面积水量之间的关系;
图11图示说明了根据本发明的检测混凝土表面吸水过程的方法的流程图。
具体实施方式
下面将详细描述本发明的具体实施例。
图1是根据本发明利用手机检测喷水试验中混凝土表面吸水过程的实施示意图。如图1所示,在待测混凝土表面1001上放置用于识别的标识图1002。将智能手机(或平板等带有摄像头的智能移动设备)1004固定在待检测混凝土表面前,使智能手机1004的摄像头可以捕捉到待喷水的混凝土区域和标识图1002。使用可以定量且均匀喷撒水的喷水工具1003向待检测混凝土表面1001上喷水,利用智能手机1004的摄像头捕捉并记录喷水试验过程中1001表面的图像。利用智能手机1004本身的计算处理能力(例如智能手机1004的处理器)对捕捉到的喷水-吸水过程图像的颜色或亮度变化进行分析,利用喷水过程中混凝土表面的颜色或亮度变化(或结合单位面积上的喷水量)计算得到表征待检测混凝土表面吸水速度快慢的指标。
图2是根据本发明的实施例的方法的主流程图。本发明方法的实施例包括下列步骤:
步骤一:首先在待检测混凝土表面所在的平面内放置用于识别的标识图。
图3是用于识别的标识图的示例。然后,使用智能手机拍摄标识与待检测的混凝土表面,利用图像识别技术识别图像中的标识图像。
图4是利用手机摄像头识别标识图的图像的示例。如图4中所示,手机屏幕中的标识图被识别出并以粗实线框出。
根据标识图像的实际尺寸对图像进行坐标变换,将待检测混凝土表面变换到标识图像定义的直角坐标系内,便于后续根据图像进行尺寸测量与计算。
图5是根据标识图的图像对原始图像进行变换的示例。
步骤二:利用智能手机记录下试验过程的图像及每幅图像对应的时间。
步骤三:利用喷水工具向待检测混凝土表面喷撒定量的水。
图6是利用0-0.5mL连续注射器601与雾化喷嘴602制作的可以确定喷水量的喷水工具的示例。
步骤四:利用图像处理方法得到喷水的范围。图7是利用图像处理来捕捉喷水区域的示例。如图7所示,喷水范围在手机屏幕上以实线标明。进一步可计算单位面积喷水量。
步骤五:计算喷水区域图像的颜色或亮度随时间的变化。
图8是喷水试验中喷水区域内颜色或亮度随时间的变化的示意图。如图8所示,图示说明了向1个待检测混凝土表面喷水6次得到的图像颜色或亮度随时间变化的例子。
步骤六:利用步骤五得到的图像颜色或亮度随时间变化结果,可以计算现有各类方法使用的指标来评价待测混凝土表面吸水的快慢程度;也可以结 合步骤四中计算得到的实际单位面积水量评价待测混凝土表面吸水快慢,例如使用如下的方法计算混凝土喷水试验的“表观吸水过程”:
(1)对每次喷水试验,在图9中所示的颜色或亮度恢复程度随时间的变化曲线上找到曲线的主要转折点。这个主要转折点对应的时间认为是本次喷水-吸水过程的“表观吸水时间”。
(2)以多次喷水过程得到的累积表观吸水时间开平方(s1/2)为横轴,累积单位面积水量为纵轴,可以得到表观吸水时间-单位面积水量关系图。图10是这样得到的表观吸水时间与单位面积水量之间的关系。
(3)对图10中各组表观吸水时间-单位面积水量结果进行直线拟合,以拟合直线的斜率作为“表观吸水速率”评价吸水快慢。图10显示了2组抗渗性能不同的砂浆试件的结果,可以看到,抗渗性能越强,表观吸水速率越慢,反之越强。
步骤七:如果还需要继续下一次喷水,重复步骤二到六,否则结束试验,评价待检测混凝土表面吸水过程。
本发明的方法所具备的一些优势如下所述。
本发明利用了智能手机的摄像头和计算处理能力来对混凝土表面质量检测的喷水试验进行实时处理。利用智能手机的优势在于:在喷水试验结束后能立即计算出评价混凝土表面吸水快慢的指标(包括现有的各类指标)而不需要后续的追加处理。换句话说,智能手机的使用使得喷水试验数据采集和处理合为一体,试验结束后即可得到评价结果,无需额外进行后处理工作。
另外,由于加入了标识图像及图像处理技术的利用,可以准确计算出每次喷水的实际喷水范围,这使得单位面积水量这一重要指标的计算成为可能,使得喷水试验在混凝土表面吸水量精确定量的前提下进行比较成为可能。对于单位面积水量的计算,现有方法是无法得到的。利用本发明得到的结果规 律明显,区分度大,比现有方法更加精确。
即使不考虑智能手机与标识图像的作用,本发明与原有技术相比,采用了可以固定喷水量并且喷撒均匀的喷水工具,确保了每次喷水量的确定性,保证了试验的精确性。
本发明提出的“表观吸水过程”所代表的物理意义为后续推算喷水-吸水的真实过程提供了参考,而现有的方法仅是对图像颜色或亮度的考察,不具备相应的优势。
为进一步阐述本发明的方法,图11图示说明了根据本发明的检测混凝土表面吸水过程的方法的流程图。
图11的方法开始于步骤1101,在待测的混凝土表面上喷水。
根据本发明的具体实施例,在待测的混凝土表面上喷水一次或多次。
在步骤1101中,可以使用喷水工具向待检测混凝土表面喷撒定量的水。例如,所述的可以固定喷水量并且喷撒均匀的喷水工具可以是连续注射器与雾化喷嘴的组合,如图6中所示。
此外,可以在待检测混凝土表面所在的平面内放置用于识别的标识图。
在步骤1103,记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化。
在放置了标识图的情况下,在记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化时,同时记录标识图和待检测混凝土表面的图像,利用图像识别技术识别拍摄得到的图像中的标识图图像,根据标识图的实际尺寸对图像进行坐标变换,以将待检测混凝土表面的图像变换到标识图定义的直角坐标系内,便于后续根据图像进行尺寸测量与计算。
例如,在一个优选实施例中,根据所述的坐标变换,计算喷水区域的实际面积,再结合固定喷水量,计算出喷水过程中混凝土表面单位面积上的水量。步骤1103可以进一步包括:获得在喷水影响的范围内的颜色或亮度恢复程度随时间的变化。
在步骤1105,根据记录的图像的颜色或亮度随时间的变化,计算表征吸水过程的指标值。例如,如上所述,在采用了颜色或亮度恢复程度随时间的变化的指标的情况下,根据颜色或亮度恢复程度随时间的变化来估计吸水时间。根据累积的估计吸水时间与累积的单位面积水量的关系,估计混凝土表面的吸水过程。
之后,方法结束。
在上述的步骤1103中,可以用摄像头对待检测混凝土表面的图像按时间进行多次图像捕捉且通过处理器将捕捉的图像记录在存储器中。在步骤1105中,可以使用所述处理器,根据记录在存储器中的图像的颜色或亮度随时间的变化而计算表征吸水过程的指标值。在本发明中,所述处理器、所述摄像头和所述存储器可以集成在同一个智能设备中或者通过有线或无线的通信方式连接在一起。在本发明的优选实施例中,所述智能设备是智能手机或平板电脑等。
此外,本领域技术人员应理解,尽量在具体实施例中,使用了吸水时间、吸水速率(速度快慢)或者表观吸水时间-单位面积水量关系图等指标来作为表征吸水过程的指标值,但也可以使用其他的指标来表征吸水过程。虽然在本发明中没有穷举可能的所有指标,但本领域技术人员应该理解,这些指标都在本发明的精神和范围之内。
上面已经描述了本发明的具体实施例及其具体应用和优选实施方式。但是本发明的精神和范围不限于这里所公开的具体内容。本领域技术人员将能够根据本发明的教导而做出更多的实施方式和应用,这些实施方式和应用都 在本发明的精神和范围内。本发明的精神和范围不由具体实施例来限定,而由权利要求来限定。

Claims (8)

  1. 一种检测混凝土表面吸水过程的方法,包括如下步骤:
    在待测的混凝土表面上喷水;
    记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化;
    根据记录的图像的颜色或亮度随时间的变化,计算表征吸水过程的指标值。
  2. 根据权利要求1所述的方法,其中,在待测的混凝土表面上喷水包括喷水一次或多次。
  3. 根据权利要求1所述的方法,其中,在待测的混凝土表面上喷水包括使用可以固定喷水量并且喷撒均匀的喷水工具向待检测混凝土表面喷撒定量的水。
  4. 根据权利要求3所述的方法,其中,所述的可以固定喷水量并且喷撒均匀的喷水工具包括连续注射器与雾化喷嘴的组合。
  5. 根据权利要求1所述的方法,其中:
    记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化包括:用摄像头对待检测混凝土表面的图像按时间进行多次图像捕捉且通过处理器将捕捉的图像记录在存储器中,
    根据记录的图像的颜色或亮度随时间的变化,计算表征吸水过程的指标值包括:使用所述处理器,根据记录在存储器中的图像的颜色或亮度随时间的变化而计算表征吸水过程的指标值,
    所述处理器、所述摄像头和所述存储器集成在同一个智能设备中或者通过有线或无线的通信方式连接在一起。
  6. 根据权利要求5所述的方法,其中,所述智能设备是智能手机或平板电脑等。
  7. 根据权利要求1所述的方法,进一步包括:
    在待检测混凝土表面所在的平面内放置用于识别的标识图;
    在记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化时,同时记录标识图和待检测混凝土表面的图像,利用图像识别技术识别拍摄得到的图像中的标识图图像,根据标识图的实际尺寸对图像进行坐标变换,以将待检测混凝土表面的图像变换到标识图定义的直角坐标系内,便于后续根据图像进行尺寸测量与计算。
  8. 根据权利要求7所述的方法,进一步包括:
    根据所述的坐标变换,计算喷水区域的实际面积,再结合固定喷水量,计算出喷水过程中混凝土表面单位面积上的水量,
    记录吸水过程中待检测混凝土表面的图像的颜色或亮度随时间的变化进一步包括:获得在喷水影响的范围内的颜色或亮度恢复程度随时间的变化,
    根据记录的图像的颜色或亮度随时间的变化,计算表征吸水过程的指标值进一步包括:根据颜色或亮度恢复程度随时间的变化来估计吸水时间;根据累积的估计吸水时间与累积的单位面积水量的关系,估计混凝土表面的吸水过程。
PCT/CN2016/094220 2015-08-14 2016-08-09 检测混凝土表面吸水过程的方法 WO2017028717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510500421.5 2015-08-14
CN201510500421.5A CN105115861B (zh) 2015-08-14 2015-08-14 检测混凝土表面吸水过程的方法

Publications (1)

Publication Number Publication Date
WO2017028717A1 true WO2017028717A1 (zh) 2017-02-23

Family

ID=54663901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094220 WO2017028717A1 (zh) 2015-08-14 2016-08-09 检测混凝土表面吸水过程的方法

Country Status (2)

Country Link
CN (1) CN105115861B (zh)
WO (1) WO2017028717A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044795A (zh) * 2019-05-14 2019-07-23 福建工程学院 分层土层渗流特性的精细化试验装置及试验方法
CN113029891A (zh) * 2019-12-24 2021-06-25 山西大地华基建材科技有限公司 一种反应透水砖透水性能的演示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115861B (zh) * 2015-08-14 2018-02-09 北京佳固士防水科技有限公司 检测混凝土表面吸水过程的方法
CN106771101B (zh) * 2017-01-16 2019-12-27 哈尔滨工业大学 一种混凝土类材料吸水系数的测试装置及方法
CN109300103B (zh) * 2017-07-24 2020-12-08 清华大学 一种混凝土表面裂缝宽度检测方法
CN110631976A (zh) * 2019-09-17 2019-12-31 广东东方混凝土有限公司 混凝土渗透性无损检测方法
CN111638165B (zh) * 2020-05-26 2023-03-21 浙江兴红建设工程检测有限公司 外墙节能保温构造耐久性检测方法
CN114922451A (zh) * 2022-05-27 2022-08-19 深圳市海清视讯科技有限公司 混凝土墙面喷水控制方法、装置、设备、系统及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009722A (ja) * 1998-06-25 2000-01-14 Asao Ishimaru 生コンクリート製造プラントに取り付ける砂の表面水率自動連続測定装置
CN101806700A (zh) * 2010-04-06 2010-08-18 中国农业大学 土壤入渗性能的测量方法及测量系统
JP2012026883A (ja) * 2010-07-23 2012-02-09 Railway Technical Research Institute 多孔質材料の緻密さ評価方法および多孔質材料の緻密さ評価システム
JP2014044173A (ja) * 2012-08-28 2014-03-13 Railway Technical Research Institute 多孔質材料の品質評価方法および品質評価装置
CN104089580A (zh) * 2014-06-26 2014-10-08 华南理工大学 基于智能手机实现的混凝土表面裂缝宽度测量仪及方法
JP2015014557A (ja) * 2013-07-08 2015-01-22 公益財団法人鉄道総合技術研究所 多孔質材料の品質評価方法および装置
CN105115861A (zh) * 2015-08-14 2015-12-02 北京佳固士防水科技有限公司 检测混凝土表面吸水过程的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095674A (zh) * 2011-01-24 2011-06-15 浙江工业大学 一种透水性铺装材料渗透性测试方法及其专用测试仪
JP5880981B2 (ja) * 2011-03-31 2016-03-09 国立大学法人横浜国立大学 コンクリート表面の吸水試験方法及び吸水試験装置
CN202442942U (zh) * 2012-02-16 2012-09-19 中国石油化工股份有限公司 用于测量多孔介质渗吸的装置
CN103063143B (zh) * 2012-12-03 2016-05-11 苏州佳世达电通有限公司 基于图像识别的测量方法及其系统
CN203366113U (zh) * 2013-08-01 2013-12-25 国家电网公司 基于无线控制技术的rtv涂层憎水性检测无线遥控装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009722A (ja) * 1998-06-25 2000-01-14 Asao Ishimaru 生コンクリート製造プラントに取り付ける砂の表面水率自動連続測定装置
CN101806700A (zh) * 2010-04-06 2010-08-18 中国农业大学 土壤入渗性能的测量方法及测量系统
JP2012026883A (ja) * 2010-07-23 2012-02-09 Railway Technical Research Institute 多孔質材料の緻密さ評価方法および多孔質材料の緻密さ評価システム
JP2014044173A (ja) * 2012-08-28 2014-03-13 Railway Technical Research Institute 多孔質材料の品質評価方法および品質評価装置
JP2015014557A (ja) * 2013-07-08 2015-01-22 公益財団法人鉄道総合技術研究所 多孔質材料の品質評価方法および装置
CN104089580A (zh) * 2014-06-26 2014-10-08 华南理工大学 基于智能手机实现的混凝土表面裂缝宽度测量仪及方法
CN105115861A (zh) * 2015-08-14 2015-12-02 北京佳固士防水科技有限公司 检测混凝土表面吸水过程的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044795A (zh) * 2019-05-14 2019-07-23 福建工程学院 分层土层渗流特性的精细化试验装置及试验方法
CN110044795B (zh) * 2019-05-14 2021-10-08 福建工程学院 分层土层渗流特性的精细化试验装置及试验方法
CN113029891A (zh) * 2019-12-24 2021-06-25 山西大地华基建材科技有限公司 一种反应透水砖透水性能的演示装置

Also Published As

Publication number Publication date
CN105115861B (zh) 2018-02-09
CN105115861A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2017028717A1 (zh) 检测混凝土表面吸水过程的方法
WO2017028716A1 (zh) 混凝土抗渗性的无损检测方法
Lins et al. Automatic crack detection and measurement based on image analysis
CN101957178B (zh) 一种隧道衬砌裂缝测量方法及其测量装置
CN105784710B (zh) 一种基于数字图像处理的混凝土桥梁裂缝检测装置
CN106778737B (zh) 一种车牌矫正方法、装置和一种视频采集装置
CN109544533A (zh) 一种基于深度学习的金属板缺陷检测和度量方法
CN109900711A (zh) 基于机器视觉的工件缺陷检测方法
WO2019051961A1 (zh) 一种管道检测方法、装置以及存储介质
CN102346013A (zh) 一种隧道衬砌裂缝宽度的测量方法及装置
CN103591894A (zh) 通过摄像头测量物体长度的方法与装置
CN106225702A (zh) 裂缝宽度检测装置和方法
CN110276752B (zh) 基于android系统的混凝土表面裂缝特征的APP检测方法
CN113884011A (zh) 一种非接触式混凝土表观裂缝测量设备和方法
CN107092905B (zh) 一种电力巡检机器人的待识别仪器定位方法
WO2018120168A1 (zh) 一种视觉检测方法及系统
CN105405134B (zh) 一种相机检校标志中心坐标提取方法
CN111369484B (zh) 钢轨廓形检测方法及装置
Dong et al. Corrosion detection and evaluation for steel wires based on a multi-vision scanning system
CN113446932A (zh) 非接触式裂纹测量方法及其系统
CN111289087A (zh) 一种远距离机器视觉振动测量方法及装置
CN109102499B (zh) 一种动车车顶的检测方法及系统
CN115683046A (zh) 测距方法、装置、传感器及计算机可读存储介质
CN109444150A (zh) 非接触式裂纹测量方法及其装置
CN109443221A (zh) 一种视频辅助的激光位移检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836581

Country of ref document: EP

Kind code of ref document: A1