WO2017028492A1 - 触控基板及其制作方法和驱动方法、触摸显示装置 - Google Patents

触控基板及其制作方法和驱动方法、触摸显示装置 Download PDF

Info

Publication number
WO2017028492A1
WO2017028492A1 PCT/CN2016/071196 CN2016071196W WO2017028492A1 WO 2017028492 A1 WO2017028492 A1 WO 2017028492A1 CN 2016071196 W CN2016071196 W CN 2016071196W WO 2017028492 A1 WO2017028492 A1 WO 2017028492A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
substrate
leads
shielding portion
electrodes
Prior art date
Application number
PCT/CN2016/071196
Other languages
English (en)
French (fr)
Inventor
丁小梁
董学
王海生
陈小川
李付强
樊君
包智颖
刘英明
任涛
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/306,797 priority Critical patent/US20170185201A1/en
Priority to EP16777887.7A priority patent/EP3336668A4/en
Publication of WO2017028492A1 publication Critical patent/WO2017028492A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to the field of display, and in particular, to a touch substrate, a manufacturing method thereof, a driving method, and a touch display device.
  • touch screen is the most simple, convenient and natural way of human-computer interaction. It gives multimedia a new look and is an attractive new multimedia interactive device.
  • the embedded self-capacitive touch screen is mostly based on the array substrate, and because of its large signal amount and less crosstalk, it has become an object of research and development by many manufacturers.
  • the self-capacitance touch screen is provided with a plurality of self-capacitance electrodes arranged in the same layer and insulated from each other. When the human body does not touch the screen, the capacitance of each self-capacitance electrode is a fixed capacitance.
  • the capacitance of the self-capacitance electrode is a fixed capacitance plus a human body capacitance, and the touch detection unit can determine the touch position by detecting a change in the capacitance value of each self-capacitance electrode during the touch time period.
  • each self-capacitance electrode 11 is distributed in an array, and each self-capacitance electrode 11 is connected to the touch detection unit through its corresponding touch lead 12 ( Not shown in the figure). Since the touch lead 12 and the self-capacitance electrode 11 are disposed in the same layer, the footprint of the touch lead 12 is larger and lower, and the smaller the lower self-capacitance electrode 11 is, the inconsistency of the size of the self-capacitance electrode 11 affects the touch detection. Accuracy.
  • the embodiment of the invention provides a touch substrate, a manufacturing method thereof and a driving method thereof, and a touch display device, wherein a plurality of touch electrodes arranged in an array with uniform size and shape are used to improve the accuracy of touch detection. .
  • a touch substrate including: a plurality of touch electrodes having the same size and shape disposed on the substrate; a plurality of touch leads disposed on the substrate, each of the touch electrodes being electrically connected to one of the touch leads; And a shielding portion disposed on the substrate, the shielding portion being disposed at a blank area other than a region where the plurality of touch leads are disposed in a routing area of the plurality of touch leads.
  • each touch electrode is composed of a metal grid, and each metal line of the metal grid is blocked by a black matrix.
  • each touch lead is blocked by a black matrix.
  • the shielding portion is formed by a metal grid, and each of the metal wires of the metal grid is blocked by a black matrix.
  • the grid spacing of the metal grid in a direction perpendicular to the extending direction of the touch leads is uniform.
  • the plurality of touch electrodes, the shielding portion and the plurality of touch leads are disposed in the same layer and are formed by etching the same metal layer.
  • the shielding portion is disposed in different layers from the plurality of touch electrodes and the plurality of touch leads.
  • the touch substrate is a color film substrate or an array substrate.
  • the touch substrate is a color filter substrate, and the metal grid is located below the layer where the black matrix is located and is blocked by the black matrix.
  • the obscuration portion is made of an opaque electrically conductive material.
  • the shielding portions arranged along the extending direction of the touch wire are electrically connected to each other.
  • the touch electrodes are arranged in an array, and the plurality of touch leads are routed along a gap between two adjacent rows or two columns of touch electrodes.
  • the centers of the touch electrodes of the same column/row are located on the same straight line.
  • the shielding portion is driven by the same signal as the plurality of touch electrodes.
  • a method for fabricating a touch substrate includes the steps of: providing a substrate; forming a plurality of touch electrodes having the same size and shape on the substrate and forming a plurality of touch leads and shielding Each of the touch electrodes is electrically connected to one of the touch leads; the blocking portion is disposed in the routing area of the plurality of touch leads except the plurality of touch leads A blank area outside the area.
  • forming a plurality of touch electrodes having the same size and shape on the substrate and forming the plurality of touch leads and the shielding portion comprises: forming a color color resist layer and a black matrix on the substrate; a metal film is formed on the substrate having the color resist layer and the black matrix, and the plurality of touch electrodes, the plurality of touch leads, and the shielding portion formed by the metal grid are formed by a patterning process, wherein Each metal of the metal grid The lines are all blocked by the black matrix.
  • a method for driving the touch substrate comprising the steps of: applying a driving signal of the same frequency and frequency as the signal used by the plurality of touch electrodes to the shielding portion.
  • a touch display device including the aforementioned touch substrate is also provided.
  • the touch electrodes having the same size and shape are used to improve the accuracy of the touch detection, wherein each touch electrode and one touch lead Electrically connected and electrically connected to the corresponding signal pins by touch leads.
  • the present invention has multiple layouts in the trace area of the touch lead.
  • the shielding portion is disposed at a blank area other than the portion of the touch lead.
  • the problem of the transmittance difference caused by the density change of the touch lead trace is solved by the occlusion, and the same signal is used for the occlusion portion and the touch electrode.
  • the drive avoids the difference in display effect due to the difference of the driving signals, so that the uniformity of the picture is better.
  • FIG. 1 is a schematic diagram of a layout of a touch electrode and a touch lead of an in-cell touch panel of the prior art
  • FIG. 2 is a schematic plan view of a touch substrate according to an embodiment of the invention.
  • FIG. 3 is a schematic cross-sectional view of a touch substrate with a color filter substrate as an example according to an embodiment of the invention
  • FIG. 4 is a schematic plan view of a touch substrate with a color filter substrate as an example according to an embodiment of the invention.
  • FIG. 5 is a detailed layout view of a metal grid constituting a touch electrode and a touch lead according to an embodiment of the invention
  • FIG. 6 is a flow chart of a method for fabricating a touch substrate according to an embodiment of the invention.
  • the touch substrate includes: a substrate 20; a plurality of touch electrodes 21 of uniform size and shape disposed on the substrate 20; and a plurality of touch leads 22 disposed on the substrate 20.
  • Each touch electrode 21 is electrically connected to a touch lead 22, and the other end of the touch lead 22 is connected to a corresponding signal pin, and is further connected to a touch detection unit (not shown);
  • the shielding portion 23 on the substrate 20 is disposed at a blank area other than the area where the plurality of touch leads 22 are disposed in the wiring area of the plurality of touch leads 22 .
  • the shielding portion 23 is driven by the same signal as the plurality of touch electrodes 21, that is, the shielding portion 23 and the plurality of touch electrodes 21 are driven by signals of the same frequency and the same amplitude. With such an arrangement, it is possible to eliminate the coupling capacitance that may occur due to the provision of the shielding portion and the plurality of touch electrodes on the same touch substrate.
  • each touch electrode 21 is electrically connected to one touch lead 22, and self-capacitance touch can be realized.
  • the application of the embodiment is not limited to this. This embodiment is suitable for solving the problem that all the touch electrodes 21 and the touch leads 22 are in the same layer, and the size of the touch electrodes 21 is different due to avoiding the trace areas.
  • a plurality of touch electrodes 21 having the same size and shape are used, and then the touch leads 22 connected to the touch electrodes 21 are disposed.
  • the substrate may not be routed because of some places, and some places may be taken.
  • the lines are dense, so that the panel exhibits a difference in transmittance when displayed, which affects the display effect. Therefore, in this embodiment, the shielding portion is disposed in the blank area except the area where the touch lead is disposed in the routing area of the touch lead, and the shielding of the touch lead is solved by using the shielding function of the shielding part.
  • the same signal driving as the touch electrode is applied to the shielding portion, thereby avoiding the difference effect on the display effect due to the difference of the driving signals.
  • the touch leads are made invisible or inconspicuous in the display state, thereby avoiding adverse effects on the display effect, thereby making the picture uniformity better.
  • the shielding portions 23 arranged along the extending direction of the touch leads are electrically connected to each other to facilitate application of a driving signal.
  • the metal grid lines 23a of the shielding portion 23 will be along the touch.
  • the respective shielding portions 23 arranged in the lead extending direction (the direction indicated by the arrow a) are electrically connected to each other.
  • the trace area of the touch lead is an area for arranging the touch lead at the time of design.
  • the touch lead along the adjacent two columns of touch electrodes The gap between the adjacent two rows of touch electrodes of the width d is the routing area of the touch lead of the embodiment, and the shielding portion 23 is disposed in the blank area of the area (ie, not set)
  • the area of the touch lead can solve the display unevenness caused by the unevenness of the longitudinal alignment of the touch lead. It should be noted that, in the embodiment shown in FIG. 2, the gaps of the adjacent two rows of touch electrodes are designed to be smaller as much as possible, so that only the shielding portion is needed to solve the longitudinal gap of the touch electrodes (the trace area of the touch electrodes) In the case of uneven routing problems.
  • the shielding portion 23 may be disposed in the same layer as the touch electrode 21 and the touch lead 22, or may be single A single layer setting.
  • a opaque material is selected to form the above-mentioned shielding portion 23 to provide a shielding function.
  • the shielding portion 23 is made of an opaque conductive material, a signal of the same frequency and the same amplitude as the driving signal of the touch electrode 21 is applied to the shielding portion 23 to avoid different influences on the display effect due to the difference of the driving signals. To make the picture uniformity better.
  • the touch electrodes 21 are arranged in an array to ensure that the touch electrodes are equal in size, and the centers of the touch electrodes 21 in the same row or the same column are in a straight line.
  • the touch leads 22 are routed along the gaps of the adjacent two rows of the touch electrodes.
  • the shielding portion 23 is designed according to the actual situation to serve as a shielding function, so that the touch lead 22 is invisible or inconspicuous in the display state, thereby avoiding different display effects.
  • the touch electrode 21 and the touch lead 22 are both formed of a metal grid (or one of the metal grids), and each metal line of the metal grid is blocked by a black matrix.
  • the shielding portion 23 may also be formed by a metal grid, that is, the shielding portion 23 is formed by a metal grid distributed in a blank area of the touch wiring area except a portion or a position where the plurality of touch leads are disposed. The grid is formed such that the metal line exhibits a uniform distribution over the entire panel, and the display effect is better.
  • the introduction of the metal grid does not affect the transmittance. Produce a large adverse effect.
  • the above metal grid refers to a grid shape formed of a metal material.
  • the grid spacing of the metal grid is uniform in a direction perpendicular to the direction in which the touch leads extend (refer to the direction indicated by arrow a in FIG. 2 or 5).
  • the touch electrode is composed of a continuous film material covering the distribution area of the touch electrode, and the touch lead is formed of a continuous film material covering the design area of the touch lead;
  • the metal grid of the touch electrode distribution area is formed by a metal grid covering the design area of the touch lead, and the shielding part is formed by a metal grid covering a blank space in the routing area of the touch lead.
  • the above design (the design of the touch electrode 21, the touch lead 22, and the shielding portion 23) is applicable not only to the color film substrate but also to the array substrate. In the case of being suitable for a color film substrate or for an array substrate, the same substrate can be shared with the color film substrate or the array substrate.
  • the substrate 30 of the color film substrate having the touch function is provided with a color color resist layer (color film) 31 and a black matrix 32, and a metal grid 33 is disposed under the black matrix 32.
  • a color color resist layer (color film) 31 and a black matrix 32
  • a metal grid 33 is disposed under the black matrix 32.
  • Each of the metal lines 330 of the metal grid 33 is shielded by the black matrix 32, i.e., corresponding to the occlusion area of the black matrix 32, so the introduction of the metal grid 33 does not have a large adverse effect on the transmittance.
  • each pixel includes three sub-pixels.
  • a color block 310 ie, a red/green/blue block
  • the color block 31 allows a thin film transistor to be disposed in a certain area, and the lower right corner region of the sub-pixel in FIG. 4 is the set region 2 of the thin film transistor.
  • the metal lines 330 of the metal grid 33 are distributed in the longitudinal and lateral gaps of the sub-pixels, and each of the metal lines 330 corresponds to the occlusion area of the black matrix 32, that is, is blocked by the black matrix 32.
  • the size and shape of the touch electrodes 21 are uniform, and the arrangement and specific shape thereof are not limited.
  • the specific shape and the distribution area of the touch lead 22 and the shielding portion 23 are not limited, as long as the touch lead 22 can electrically connect the touch electrode 21 and the touch detecting unit, and the shielding effect by the blocking portion can be utilized.
  • the problem of the difference in transmittance caused by the change in the density of the touch lead wires can be solved.
  • FIG. 5 is a schematic view showing the design details of a metal grid 33 constituting a touch electrode and a touch lead according to an embodiment of the present invention, wherein the entire metal grid 33 is divided into a touch area, a touch lead area, and a blocking area, and the touch is performed.
  • the area corresponds to the distribution area of the touch electrode 21, and the touch lead area corresponds to the space occupied by the touch lead 22, and the occlusion area corresponds to the distribution area of the occlusion portion 23.
  • the touch electrodes 21 formed by the metal grids in FIG. 5 have a rectangular outline, and the touch electrodes 21 are arranged in an array, and the centers of the same row or the same column of the touch electrodes 21 are on the same straight line, and constitute a touch.
  • the metal lines of the electrodes 21 are guaranteed to be in electrical communication with each other.
  • the longitudinal gap of the touch electrode 21 is a wiring area of the touch lead 22 for arranging the touch lead 22 . Except for the distribution area of the touch electrode 21 and the wiring area of the touch lead 22, the remaining blank areas are all occlusion areas, and are also covered by a metal grid, which constitutes the shielding portion 23.
  • the metal grids constituting the touch electrode 21, the touch lead 22 and the shielding portion 23 are disconnected from each other at adjacent boundaries, that is, The three are respectively three independent metal grids, but they can be arranged in the same layer and are etched from the same metal layer during preparation.
  • the shielding portion, and/or the touch lead When specifically designing the metal grid that constitutes the touch electrode, the shielding portion, and/or the touch lead, first calculate the size of the lowermost touch electrode of each column except the trace (take a square as an example, here) The size of the side is the length, and based on this, all the touch electrodes are set to such a shape and size.
  • the longitudinal gap of the touch electrodes 21 (the gap between two adjacent columns of touch electrodes) is used to lay the touch leads 22, which is a wiring area. In the case where the wiring area of each column satisfies the space occupied by the wiring and the space occupied by the metal grid in which the shielding portion 23 is disposed, a space is also required to connect the metal grids constituting each of the shielding portions 23.
  • the remaining areas are all filled with a metal grid, and the part of the metal grid constitutes the shielding portion 23.
  • the touch electrodes 21 are, in principle, equal in size, and the centers are in a straight line both in the lateral direction and in the longitudinal direction.
  • the touch electrodes 21 are all taken out from under the color film substrate through the touch leads 22, and then passed through the gold ball guide. Pass to the array substrate, and then access the corresponding pins of the chip.
  • the touch driving signal affects the display effect. If the metal grid constituting the shielding portion 23 is also taken out, the same driving signal as the touch electrode 21 or the same driving signal as the touch electrode 21 is used. The signal of the amplitude is driven to avoid the difference effect on the display effect due to the difference of the driving signals, so that the uniformity of the picture is better.
  • the above specific example provides a novel in-cell self-capacitance design on a color film substrate in which a metal grid design is employed, and the metal lines of the metal grid correspond to the black matrix patterns at the color film ends.
  • the metal grid is a single layer design, in order to ensure that the center of the touch electrode is in a straight line, the entire metal grid is divided into a touch area, a touch lead area and an occlusion area, and the entire design ensures that the touch electrodes are consistent and the occlusion area Consistent. This can effectively remove the difference in the size of the touch electrodes caused by the single layer traces, thereby obtaining better touch performance.
  • the area of the touch electrode is actually reduced, and the touch load is reduced.
  • the embodiment of the invention further provides a touch display device comprising any one of the above touch substrates.
  • the device has low cost, better touch performance and higher display quality.
  • the touch display device may be any product or component having a display function such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the embodiment of the present invention further provides a method for fabricating a touch substrate, the method comprising the steps of: providing a substrate; forming a plurality of touch electrodes having the same size and shape on the substrate and forming a plurality of touch leads and a shielding portion; Each of the touch electrodes is electrically connected to a touch lead; wherein the shielding portion is disposed in a blank portion of the plurality of touch leads in a routing area other than a portion or a position where the plurality of touch leads are disposed The area is used to shield the touch leads and improve the display effect.
  • the touch electrodes having the same size and shape are formed, thereby improving the accuracy of the touch detection; and the shielding portion is formed, thereby eliminating the change caused by the touch line density change. Show the difference.
  • the manufacturing method of the color film substrate with the touch function specifically includes the following steps:
  • a color color resist layer 31 and a black matrix 32 are formed on the substrate 30, and the specific reference is made to the prior art, and will not be described in detail herein.
  • the figure process forms the touch electrode 21, the touch lead 22 and the shielding portion 23 formed by the metal grid 33 as shown in FIG. 5, wherein each metal line 330 of the metal grid 33 is blocked by the black matrix 32, and the shielding portion 23 is distributed.
  • the area other than the touch electrode 21 and the touch lead 22 is mainly a blank area other than the touch lead 22 among the gaps of the adjacent two columns of touch electrodes.
  • the above patterning process includes, but is not limited to, a photolithography process.
  • the metal grid 33 is formed by using the same metal film to form the touch electrode 21, the touch lead 22, and the shielding portion 23. Since the touch electrodes 21 have the same size and shape, the accuracy of the touch detection is improved. Moreover, the shielding lead 22 can be shielded by the shielding portion 23 made of the metal grid and the shielding effect of the black matrix, so that the touch lead 22 is invisible or inconspicuous in the case of display, and the touch is solved. The change in the tightness of the lead wires causes a problem of display difference. In addition, due to the use of the metal grid, the area of the touch electrode is correspondingly reduced, the touch load is reduced, and the metal lines of the metal grid are evenly distributed over the entire panel, and the display uniformity is better.
  • the metal grids constituting the shielding portion 23 are connected to each other in a certain direction (preferably along the extending direction of the touch lead 22), so as to be easily pulled out and driven by the same signal as the touch electrode 21, and the driving signal can be avoided.
  • the difference is in the display effect, which makes the picture uniformity better.
  • the touch substrate manufacturing method provided by the present invention can form a touch electrode with the same size and shape in one patterning process, and the manufacturing cost is low, the touch detection accuracy is higher, and the display effect is better.
  • the present invention further provides a method for driving the touch substrate, comprising the steps of: applying a signal similar to that used by the plurality of touch electrodes to the shielding portion, that is, applying the signal and the plurality of touch electrodes.
  • the signal is in the same frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控基板及其制作方法和驱动方法、触摸显示装置。所述触控基板包括:基板(20);设置于所述基板(20)上的大小、形状一致的多个触控电极(21);设置在所述基板(20)上的多个触控引线(22),每一所述触控电极(21)与一条所述触控引线(22)电连接;和设置在所述基板(20)上的遮挡部(23),所述遮挡部(23)设置于所述多个触控引线(22)的走线区域中的除布置有多个触控引线(22)部位或位置之外的空白区处。

Description

触控基板及其制作方法和驱动方法、触摸显示装置
本申请要求于2015年8月14日递交的、申请号为201510502973.X、发明名称为“触控基板及其制造方法、触摸显示装置”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明涉及显示领域,尤其涉及一种触控基板及其制作方法和驱动方法、触摸显示装置。
背景技术
触摸屏作为一种特殊的计算机外设,是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。
在当前的触摸屏制造过程中,内嵌式自电容触摸屏多基于阵列基板制作,由于其信号量大,串扰少,成为很多厂家争相研发的对象。内嵌式自电容触摸屏中设置有多个同层设置且相互绝缘的自电容电极,当人体未触碰屏幕时,各个自电容电极所承受的电容为固定电容,当人体触碰屏幕时,对应的自电容电极所承受的电容为固定电容加人体电容,触控侦测单元在触控时间段通过检测各个自电容电极的电容值变化就可以判断出触控位置。
参阅图1所示,在目前的一种内嵌式触摸屏中,各个自电容电极11呈阵列分布,并且每个自电容电极11均通过自身对应的触控引线12连接至触控侦测单元(图中未示出)。由于触控引线12与自电容电极11同层设置,触控引线12走线占用空间越靠下越大,导致越靠下自电容电极11越小,自电容电极11大小的不一致影响了触控检测的准确度。
发明内容
本发明的实施例提供一种触控基板及其制作方法和驱动方法以及一种触摸显示装置,其中采用大小、形状一致的呈阵列布置的多个触控电极,提高了触控检测的准确度。
为达到上述目的,根据本发明的一个方面,提供了一种触控基板,包括:基 板;设置在所述基板上的大小、形状一致的多个触控电极;设置在所述基板上的多个触控引线,每一所述触控电极与一条所述触控引线电连接;和设置在所述基板上的遮挡部,所述遮挡部设置于所述多个触控引线的走线区域中的除布置有所述多个触控引线的区域之外的空白区处。
优选地,每个触控电极由金属格栅构成,所述金属格栅的每一条金属线均通过黑矩阵遮挡。
优选地,每个触控引线均通过黑矩阵遮挡。
优选地,所述遮挡部由金属格栅构成,所述金属格栅的每一条金属线均通过黑矩阵遮挡。
优选地,所述金属格栅的在与触控引线的延伸方向相垂直的方向上的格栅间距一致。
优选地,所述多个触控电极、所述遮挡部和所述多个触控引线同层设置,且由同一金属层刻蚀形成。
可选地,所述遮挡部与所述多个触控电极、所述多个触控引线不同层设置。
可选地,所述触控基板为彩膜基板或阵列基板。
可选地,所述触控基板为彩膜基板,所述金属格栅位于所述黑矩阵所在层的下方且被所述黑矩阵遮挡。
优选地,所述遮挡部由不透明的导电材料制成。
优选地,沿所述触控引线延伸方向排列的所述遮挡部相互电连接。
可选地,所述触控电极呈阵列式分布,所述多个触控引线沿相邻两行或两列触控电极的间隙走线。
优选地,同一列/行的触控电极的中心位于同一条直线上。
优选地,所述遮挡部与所述多个触控电极采用相同的信号驱动。
根据本发明的另一方面,还提供一种触控基板的制作方法,包括步骤:提供基板;在所述基板上形成大小、形状一致的多个触控电极并且形成多个触控引线和遮挡部,其中每一所述触控电极与一条所述触控引线电连接;所述遮挡部设置于所述多个触控引线的走线区域中的除布置有所述多个触控引线的区域之外的空白区处。
优选地,在所述基板上形成大小、形状完全一致的多个触控电极并且形成多个触控引线和遮挡部的步骤包括:在所述基板上形成彩色色阻层和黑矩阵;在形成有彩色色阻层和黑矩阵的基板上,形成金属膜,并通过构图工艺形成金属格栅构成的所述多个触控电极、所述多个触控引线和所述遮挡部,其中,所述金属格栅的每一条金属 线均被所述黑矩阵遮挡。
根据本发明的还一方面,提供一种驱动上述触控基板的方法,包括步骤:向所述遮挡部施加与所述多个触控电极采用的信号同频同幅的驱动信号。
根据本发明的再一方面,还提供一种触摸显示装置,包括前述的触控基板。
根据本发明提供的触控基板及其制作方法和驱动方法、触摸显示装置,采用大小、形状一致的触控电极,提高了触控检测的准确度,其中每一触控电极与一条触控引线电连接并且通过触控引线电连接至相应的信号引脚。此外,对于采用大小、形状一致的触控电极设计会导致触控引线的走线区域中越靠下走线越密集的问题,本发明通过在触控引线的走线区域中的除布置有多个触控引线的部位之外的空白区处设置遮挡部,一方面通过遮挡解决触控引线走线疏密变化引起透过率差异的问题,另一方面因遮挡部与触控电极采用相同的信号驱动,避免了因驱动信号的不同对显示效果产生差异性影响,从而使画面均一性更好。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为现有技术的一种内嵌式触摸屏的触控电极及触控引线的布局示意图;
图2为根据本发明实施例的触控基板的平面示意图;
图3为根据本发明实施例的以彩膜基板为例的触控基板的截面示意图;
图4为根据本发明实施例的以彩膜基板为例的触控基板的平面示意图;
图5为根据本发明实施例的构成触控电极和触控引线的金属格栅的细节设计图;
图6为根据本发明实施例的触控基板的制作方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图2所示,根据本发明实施例的触控基板包括:基板20;设置于基板20上的大小、形状一致的多个触控电极21;设置在基板20上的多个触控引线22,每一触控电极21与一条触控引线22电连接,触控引线22另一端连接至相应的信号引脚上,进而连接至触控侦测单元(图中未示出);和设置在基板20上的遮挡部23,遮挡部23设置于多个触控引线22的走线区域中的除布置有多个触控引线22的区域之外的空白区处。
在一个实施例中,遮挡部23与多个触控电极21采用相同的信号驱动,即遮挡部23与多个触控电极21采用同频同幅的信号进行驱动。通过这样的设置,能够消除由于在同一触控基板上设置遮挡部和多个触控电极而可能产生的耦合电容。
在本实施例中,每一触控电极21与一条触控引线22电连接,可以实现自电容触控。然而,本实施例的应用并不限于此。本实施例适用于解决所有触控电极21与触控引线22同层走线,因避让走线区而造成的触控电极21大小存在差异的问题。
具体地,本实施例采用大小、形状一致的多个触控电极21,然后布设与触控电极21相连的触控引线22,这时基板上会因为有的地方不走线,有的地方走线密集,从而面板在显示时出现透过率差异,影响显示效果。由此,本实施例在触控引线的走线区域中除布置有触控引线的区域之外的空白区处设置遮挡部,一方面利用遮挡部的遮挡作用,解决触控引线走线疏密变化而引起的透过率差异的问题,另一方面,将遮挡部上施加与触控电极相同的信号驱动,避免了因驱动信号的不同对显示效果产生差异性影响。结果,使触控引线在显示状态下不可见或不明显,避免对显示效果产生不利影响,从而使画面均一性更好。
在本申请的一些实施例中,将沿触控引线延伸方向排列的遮挡部23相互电连接,便于施加驱动信号,例如,参考附图5,遮挡部23的金属格栅线23a将沿触控引线延伸方向(箭头a所示方向)排列的各个遮挡部23相互电连接。
在本申请的一些实施例中,所述触控引线的走线区域为设计时用于布设触控引线的区域,具体参考图2所示,图中触控引线沿相邻两列触控电极的间隙走线,因此宽度为d的相邻两列触控电极的纵向间隙为本实施例所述触控引线的走线区域,遮挡部23设置于该区域内的空白区(即,未设置触控引线的区域),可解决触控引线纵向走线疏密不均而导致的显示不均匀问题。需要说明的是,同时图2所示实施例中相邻两行触控电极的间隙尽量设计的小些,因此只需设置遮挡部来解决触控电极的纵向间隙(触控电极的走线区域)中的走线不均问题即可。
可选地,上述遮挡部23可以与触控电极21和触控引线22同层设置,也可以单 独一层设置。一股选择不透明材料制成上述遮挡部23,以起到遮挡作用。上述遮挡部23由不透明的导电材料制成时,在遮挡部23上施加与触控电极21的驱动信号同频同幅的信号进行驱动,从而避免因驱动信号的不同而对显示效果产生不同影响,使得画面均一性更好。
在一种可选的实施方式中,上述触控电极21呈阵列式分布,保证触控电极大小相等,且同一行或同一列触控电极21的中心在一条直线上。触控引线22沿相邻两列所述触控电极的间隙走线。遮挡部23根据实际情况进行设计,以起到遮蔽作用,使触控引线22在显示状态下不可见或不明显,从而避免不同显示效果。
在一种实施方式中,上述触控电极21和触控引线22均由金属格栅构成(或其中之一由金属格栅构成),而金属格栅的每一条金属线均被黑矩阵遮挡,可以获得高的触控性能,并且不影响透过率。进一步地,遮挡部23也可以由金属格栅构成,即遮挡部23由分布在触控引线的走线区域中的除布置有多个触控引线的部位或位置之外的空白处的金属格栅构成,这样金属线会在整个面板上呈现均匀性分布,显示效果更佳,同时由于金属格栅的每一条金属线均通过黑矩阵遮挡,因此金属格栅的引入也不会对透过率产生大的不利影响。上述金属格栅指金属材料组建的格栅形状。在一优选实施例中,所述金属格栅的在与触控引线的延伸方向(参考,附图2或5中箭头a所示方向)相垂直的方向上的格栅间距一致。
现有技术中,触控电极由覆盖触控电极分布区域的连续的膜状材料构成,触控引线由覆盖触控引线设计区域的连续的膜状材料构成;而本申请中触控电极由覆盖触控电极分布区域的金属格栅构成,触控引线由覆盖触控引线设计区域的金属格栅构成,遮挡部由覆盖触控引线的走线区域中的空白处的金属格栅构成。
需要说明的是,上述设计(触控电极21、触控引线22和遮挡部23的设计)不仅适用于彩膜基板,也适用于阵列基板。在适用于彩膜基板或适用于阵列基板的情况下,可与彩膜基板或阵列基板共用同一基板。
为便于本领域普通技术人员理解和实现根据本发明实施例的触控基板的结构,下面以适用于彩膜基板的情况为例进行详细介绍。
如图3和图4所示,具有触控功能的彩膜基板的基板30上设置有彩色色阻层(彩膜)31和黑矩阵32,黑矩阵32的下方设置一层金属格栅33,金属格栅33的每一条金属线330均被黑矩阵32遮挡,即,对应在黑矩阵32的遮挡区域,因此金属格栅33的引入不会对透过率产生大的不利影响。
具体如图4所示,基板30上排列有多个像素,每一像素一股包括三个子像素, 每一子像素内对应有一个色阻块310(即红/绿/蓝色阻块),为像素的开口区域。在子像素的一角,色阻块31让出一定区域设置薄膜晶体管,如图4中子像素的右下角区域即为薄膜晶体管的设置区域2。金属格栅33的金属线330分布在子像素的纵向间隙和横向间隙中,且每一金属线330均对应在黑矩阵32的遮挡区域,即被黑矩阵32遮挡。
应该指出的是,在本发明中,触控电极21大小、形状一致,其排列和具体形状不做限定。触控引线22和遮挡部23的具体形状、分布区域也不做限定,只要触控引线22能起到电连通触控电极21与触控侦测单元的作用,以及利用遮挡部的遮挡作用能够解决触控引线走线疏密变化而引起的透过率差异的问题即可。
图5所示为根据本发明实施例的构成触控电极和触控引线的金属格栅33的设计细节示意图,其中整个金属格栅33分成触控区域、触控引线区域和遮挡区域,触控区域即对应触控电极21分布区域,触控引线区域即对应触控引线22所占空间,遮挡区域即对应遮挡部23分布区域。图5中由金属格栅构成的触控电极21其轮廓呈矩形,且触控电极21呈阵列式排布,同一行或同一列触控电极21的中心位于同一条直线上,且构成触控电极21的金属线保证相互电连通。触控电极21的纵向间隙为触控引线22的走线区域,用于设置触控引线22。除去上述触控电极21的分布区域以及触控引线22的走线区域外,其余空白区域全部为遮挡区域,也采用金属格栅覆盖,这部分金属格栅即构成遮挡部23。
需要注意的是,除了触控引线22与对应的触控电极21存在电连接外,构成触控电极21、触控引线22和遮挡部23的金属格栅在相邻边界处相互断开,即三者分别为三片相互独立的金属格栅,但可以同层设置,制备时由同一金属层刻蚀而成。
具体设计构成触控电极、遮挡部和/或触控引线的金属格栅时,先计算出除去走线外,每一列最下方触控电极所能采用的尺寸大小(以正方形为例,此处的尺寸即边长),以此为基础,将所有触控电极均设置为此种形状、大小。触控电极21的纵向间隙(相邻两列触控电极的间隙)用于布设触控引线22,为走线区。每一列的走线区在满足走线所占空间和设置遮挡部23的金属格栅所占空间的情况下,还需留出空隙以便将每一构成遮挡部23的金属格栅连接起来。上述整个图形中除触控电极21以及触控引线22所覆盖的区域,其余区域(主要是走线区域)全部使用金属格栅填充,这部分金属格栅即构成遮挡部23。触控电极21原则上大小相等,并且中心在横向和纵向都处于一条直线上。
上述触控电极21经过触控引线22全部从彩膜基板下方引出,然后通过金球导 通到阵列基板,进而接入芯片的相应引脚。触控驱动信号会对显示效果产生影响,如果构成遮挡部23的金属格栅也分列引出,则使用与触控电极21相同的驱动信号,或者使用与触控电极21的驱动信号同频同幅的信号进行驱动,可避免由于驱动信号的不同对显示效果产生差异性影响,从而使画面均一性更好。
上述具体示例提供了一种新型的位于彩膜基板的内嵌式自电容设计,其中采用一层金属格栅设计,并且金属格栅的金属线与彩膜端的黑矩阵图形相对应。由于金属格栅为单层设计,为了保证触控电极中心在一条直线上,将整个金属格栅分为触控区域、触控引线区域和遮挡区域,整个设计保证触控电极一致,以及遮挡区域一致。这样可以有效去除由于单层走线带来的触控电极大小上的差异,从而得到更好的触控性能。并且,由于金属格栅的设置,实际上减小了触控电极的面积,降低了触控负载。
本发明实施例还提供一种触摸显示装置,其包括上述任意一种触控基板。该装置成本低,触控性能更佳,显示品质更高。所述触摸显示装置可以为:液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明实施例还提供一种触控基板的制作方法,该方法包括步骤:提供基板;在所述基板上形成大小、形状一致的多个触控电极并且形成多个触控引线和遮挡部,其中每一触控电极与一条触控引线电连接;其中遮挡部设置于所述多个触控引线的走线区域中的除布置有所述多个触控引线的部位或位置之外的空白区处,用以遮蔽触控引线,提高显示效果。
在本发明提供的触控基板的制造方法中,形成大小、形状一致的触控电极,提高了触控检测的准确度;同时因形成有遮挡部,消除了因触控引线疏密变化引起的显示差异。
为便于本领域技术人员理解根据本发明实施例的触控基板的制作方法,下面以适用于彩膜基板的情况为例进行详细介绍。
如图6所示,具有触控功能的彩膜基板的制作方法具体包括步骤:
S101、提供基板30;
S102、如图3、图4所示,在基板30上形成彩色色阻层31和黑矩阵32,具体参照现有技术,这里不再详述。
S103、在形成有彩色色阻层31和黑矩阵32的基板上,形成金属膜,并通过构 图工艺形成如图5所示金属格栅33构成的触控电极21、触控引线22和遮挡部23,其中,金属格栅33的每一条金属线330通过黑矩阵32遮挡,遮挡部23分布在除触控电极21和触控引线22之外的区域,主要是相邻两列触控电极的间隙中除触控引线22之外的空白区域。上述构图工艺包括但不限于光刻工艺。
在上述触控基板制作方法中,采用同层金属膜形成金属格栅33,从而构成触控电极21、触控引线22和遮挡部23。由于触控电极21大小、形状一致,提高了触控检测的准确度。并且,利用由金属格栅制成的遮挡部23以及黑矩阵的遮蔽作用,能够对触控引线22进行遮蔽,在显示情况下使得触控引线22不可见或不明显,同时解决了因触控引线走线疏密变化引起显示差异的问题。此外,由于采用金属格栅,使得触控电极的面积相应减小,降低了触控负载,并且金属格栅的金属线在整个面板上均匀性分布,显示均一性更佳。
优选地,上述形成的构成遮挡部23的金属格栅沿某一方向(优选沿触控引线22延伸方向)相互连接,便于引出并采用与触控电极21相同的信号驱动,可以避免因驱动信号的不同,对显示效果产生影响,使得画面均一性更好。
综上所述,本发明提供的触控基板制作方法,只需一次构图工艺即可形成大小、形状一致的触控电极,制作成本低,触控检测的准确度更高,显示效果更佳。
本发明还提供一种驱动上述触控基板的方法,其中包括步骤:向遮挡部施加与多个触控电极采用的信号相同的信号进行驱动,即所施加的信号与多个触控电极采用的信号同频同幅。通过这样的设置,能够消除由于在同一触控基板上设置遮挡部和多个触控电极而可能产生的耦合电容。
本发明实施例只是对一种优选、可选方式的举例说明,本领域技术人员根据本发明公开的内容,想到的显而易见的相似变形或相关扩展均属于本发明的保护范围内。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替 换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种触控基板,包括:
    基板;
    设置在所述基板上的大小、形状一致的多个触控电极;
    设置在所述基板上的多个触控引线,每一所述触控电极与一条所述触控引线电连接;和
    设置在所述基板上的遮挡部,所述遮挡部设置于所述多个触控引线的走线区域中的除布置有所述多个触控引线的区域之外的空白区处。
  2. 根据权利要求1所述的触控基板,其中,
    每个触控电极由金属格栅构成,所述金属格栅的每一条金属线均被黑矩阵遮挡。
  3. 根据权利要求1所述的触控基板,其中,
    每个触控引线均通过黑矩阵遮挡。
  4. 根据权利要求1所述的触控基板,其中,
    所述遮挡部由金属格栅构成,所述金属格栅的每一条金属线均通过黑矩阵遮挡。
  5. 根据权利要求2或4所述的触控基板,其中,所述金属格栅的在与触控引线的延伸方向相垂直的方向上的格栅间距一致。
  6. 根据权利要求1-4任一项所述的触控基板,其中,
    所述多个触控电极、所述遮挡部和所述多个触控引线同层设置,且由同一金属层刻蚀形成。
  7. 根据权利要求1-4任一项所述的触控基板,其中,
    所述遮挡部与所述多个触控电极、所述多个触控引线不同层设置。
  8. 根据权利要求1-4任一项所述的触控基板,其中,
    所述触控基板为彩膜基板或阵列基板。
  9. 根据权利要求8所述的触控基板,其中,所述触控基板为彩膜基板,所述金属格栅位于所述黑矩阵所在层的下方且被所述黑矩阵遮挡。
  10. 根据权利要求1-4任一项所述的触控基板,其中,
    所述遮挡部由不透明的导电材料制成。
  11. 根据权利要求10所述的触控基板,其中,沿所述触控引线延伸方向排列的所述遮挡部相互电连接。
  12. 根据权利要求1-4任一项所述的触控基板,其中,所述多个触控电极呈阵列式分布,所述多个触控引线沿相邻两行或两列触控电极的间隙走线。
  13. 根据权利要求12所述的触控基板,其中,
    同一列/行的触控电极的中心位于同一条直线上。
  14. 根据权利要求1所述的触控基板,其中,所述遮挡部与所述多个触控电极采用同频同幅的信号进行驱动。
  15. 一种触控基板的制作方法,包括步骤:
    提供基板;
    在所述基板上形成大小、形状一致的多个触控电极并且形成多个触控引线和遮挡部,其中每一所述触控电极与一条所述触控引线电连接;
    其中所述遮挡部设置于所述多个触控引线的走线区域中的除布置有所述多个触控引线的区域之外的空白区处。
  16. 根据权利要求15所述的制作方法,其中,在所述基板上形成大小、形状完全一致的多个触控电极并且形成多个触控引线和遮挡部的步骤包括:
    在所述基板上形成彩色色阻层和黑矩阵;
    在形成有彩色色阻层和黑矩阵的基板上,形成金属膜,并通过构图工艺形成金属格栅构成的所述多个触控电极、所述多个触控引线和所述遮挡部,其中,所述金属格栅的每一条金属线均被所述黑矩阵遮挡。
  17. 一种驱动根据权利要求1-13中任一项所述的触控基板的方法,包括步骤:向所述遮挡部施加与所述多个触控电极采用的信号同频同幅的驱动信号。
  18. 一种触摸显示装置,其中,包括权利要求1-14任一项所述的触控基板。
PCT/CN2016/071196 2015-08-14 2016-01-18 触控基板及其制作方法和驱动方法、触摸显示装置 WO2017028492A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/306,797 US20170185201A1 (en) 2015-08-14 2016-01-18 Touch substrate and method of manufacturing the same, method of driving the same, and touch display device
EP16777887.7A EP3336668A4 (en) 2015-08-14 2016-01-18 TOUCH CONTROL SUBSTRATE, MANUFACTURING METHOD, DRIVE METHOD AND TOUCH DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510502973.XA CN105117081B (zh) 2015-08-14 2015-08-14 触控基板及其制造方法、触摸显示装置
CN201510502973.X 2015-08-14

Publications (1)

Publication Number Publication Date
WO2017028492A1 true WO2017028492A1 (zh) 2017-02-23

Family

ID=54665090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071196 WO2017028492A1 (zh) 2015-08-14 2016-01-18 触控基板及其制作方法和驱动方法、触摸显示装置

Country Status (4)

Country Link
US (1) US20170185201A1 (zh)
EP (1) EP3336668A4 (zh)
CN (1) CN105117081B (zh)
WO (1) WO2017028492A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198990A (zh) * 2020-11-12 2021-01-08 武汉华星光电半导体显示技术有限公司 一种触控面板和显示装置
CN113589972A (zh) * 2021-08-19 2021-11-02 业成科技(成都)有限公司 发光二极体屏幕显示器结构及其发光二极体显示单元组
WO2023070733A1 (zh) * 2021-10-25 2023-05-04 武汉华星光电技术有限公司 自容式触控面板
CN113900534B (zh) * 2020-07-06 2024-01-30 敦泰电子股份有限公司 触控显示面板的驱动系统及方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117081B (zh) * 2015-08-14 2019-02-19 京东方科技集团股份有限公司 触控基板及其制造方法、触摸显示装置
CN105487737A (zh) * 2016-01-25 2016-04-13 南京华睿川电子科技有限公司 一种单层电极的多点电容式触摸屏功能片及电容式触摸屏
CN106775066B (zh) * 2016-11-29 2024-04-05 合肥鑫晟光电科技有限公司 触摸屏及其制作方法、触控显示装置
CN107132950B (zh) * 2017-05-10 2020-10-30 昆山龙腾光电股份有限公司 触控面板和显示装置
CN107329617A (zh) * 2017-06-30 2017-11-07 武汉华星光电半导体显示技术有限公司 一种有机发光显示屏的制备方法及显示装置
US20190004640A1 (en) * 2017-06-30 2019-01-03 Wuhan China Star Optoelectronics Semiconductor Dis play Technology Co., Ltd. Manufacturing method for organic light-emitting display and display device
CN107656646A (zh) * 2017-09-27 2018-02-02 上海天马微电子有限公司 触摸传感器及触摸显示面板
CN107622990B (zh) 2017-10-13 2021-04-06 京东方科技集团股份有限公司 一种触控基板及其制作方法、显示装置
WO2019104458A1 (zh) * 2017-11-28 2019-06-06 深圳市柔宇科技有限公司 电容触摸屏
CN108400254A (zh) * 2018-03-01 2018-08-14 京东方科技集团股份有限公司 触摸显示基板及其制备方法、触摸显示基板
CN109343735B (zh) * 2018-09-18 2022-08-09 京东方科技集团股份有限公司 一种触控显示基板及其制备方法、触控显示装置
CN110187791B (zh) * 2019-05-29 2022-07-29 上海中航光电子有限公司 一种显示基板、显示面板及显示装置
CN111427475B (zh) * 2020-03-26 2022-09-02 京东方科技集团股份有限公司 触控模组、触控显示屏及触控显示屏的制造方法
CN112328116B (zh) * 2020-11-16 2024-03-15 京东方科技集团股份有限公司 触控结构及其制作方法、显示装置
CN114003144B (zh) * 2021-10-29 2023-12-22 京东方科技集团股份有限公司 一种触控结构、触控显示装置和制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110261010A1 (en) * 2010-04-22 2011-10-27 Panasonic Liquid Crystal Display Co., Ltd. Touch panel and display device
CN103218095A (zh) * 2013-03-25 2013-07-24 南昌欧菲光科技有限公司 单层多点电容式触摸屏
CN103246420A (zh) * 2013-05-13 2013-08-14 苏州欧菲光科技有限公司 单层多点电容触摸屏
CN104716144A (zh) * 2015-03-06 2015-06-17 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN204515745U (zh) * 2015-02-03 2015-07-29 上海天马微电子有限公司 触控结构、基板、阵列基板及显示装置
CN105117081A (zh) * 2015-08-14 2015-12-02 京东方科技集团股份有限公司 触控基板及其制造方法、触摸显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH698425B1 (de) * 2006-12-01 2009-08-14 Hsr Hochschule Fuer Technik Ra Anordnung zum Messen einer physikalischen Grösse.
US9337833B2 (en) * 2011-11-14 2016-05-10 Atmel Corporation Driven shield for shaping an electric field of a touch sensor
US9081453B2 (en) * 2012-01-12 2015-07-14 Synaptics Incorporated Single layer capacitive imaging sensors
US9478590B2 (en) * 2012-05-22 2016-10-25 Superc-Touch Corporation In-cell OLED touch display panel structure with metal layer for sensing
TWM445719U (zh) * 2012-05-22 2013-01-21 Inv Element Inc 具金屬感應層之內嵌式觸控顯示面板結構
US9244581B2 (en) * 2013-09-30 2016-01-26 Synaptics Incorporated Modulated power supply for reduced parasitic capacitance
TWI510997B (zh) * 2013-10-17 2015-12-01 Chunghwa Picture Tubes Ltd 內嵌式觸控面板與其製造方法
CN204215125U (zh) * 2014-11-24 2015-03-18 昆山龙腾光电有限公司 触控式液晶显示面板及装置
CN104808860B (zh) * 2015-05-08 2018-09-18 厦门天马微电子有限公司 一种触控面板和液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110261010A1 (en) * 2010-04-22 2011-10-27 Panasonic Liquid Crystal Display Co., Ltd. Touch panel and display device
CN103218095A (zh) * 2013-03-25 2013-07-24 南昌欧菲光科技有限公司 单层多点电容式触摸屏
CN103246420A (zh) * 2013-05-13 2013-08-14 苏州欧菲光科技有限公司 单层多点电容触摸屏
CN204515745U (zh) * 2015-02-03 2015-07-29 上海天马微电子有限公司 触控结构、基板、阵列基板及显示装置
CN104716144A (zh) * 2015-03-06 2015-06-17 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN105117081A (zh) * 2015-08-14 2015-12-02 京东方科技集团股份有限公司 触控基板及其制造方法、触摸显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336668A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900534B (zh) * 2020-07-06 2024-01-30 敦泰电子股份有限公司 触控显示面板的驱动系统及方法
CN112198990A (zh) * 2020-11-12 2021-01-08 武汉华星光电半导体显示技术有限公司 一种触控面板和显示装置
CN112198990B (zh) * 2020-11-12 2024-01-30 武汉华星光电半导体显示技术有限公司 一种触控面板和显示装置
CN113589972A (zh) * 2021-08-19 2021-11-02 业成科技(成都)有限公司 发光二极体屏幕显示器结构及其发光二极体显示单元组
CN113589972B (zh) * 2021-08-19 2023-06-23 业成科技(成都)有限公司 发光二极体屏幕显示器结构及其发光二极体显示单元组
WO2023070733A1 (zh) * 2021-10-25 2023-05-04 武汉华星光电技术有限公司 自容式触控面板

Also Published As

Publication number Publication date
EP3336668A1 (en) 2018-06-20
US20170185201A1 (en) 2017-06-29
EP3336668A4 (en) 2019-04-03
CN105117081A (zh) 2015-12-02
CN105117081B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2017028492A1 (zh) 触控基板及其制作方法和驱动方法、触摸显示装置
EP3101516B1 (en) In cell touch panel and display device
US10488980B2 (en) Equalizing parasitic capacitance effects in touch screens
US10409425B2 (en) In-cell touch panel with shielding electrode and display device
US9665222B2 (en) In-cell touch panel and display device with self-capacitance electrodes
US9811227B2 (en) Array substrate and display panel
US10191599B2 (en) In-cell touch panel and display device
EP2755077B1 (en) Colour film substrate and capacitive touch screen
EP3690617B1 (en) Array substrate, manufacturing method therefor, and touch display panel
WO2016119333A1 (zh) 内嵌式触摸屏及其驱动方法以及显示装置
WO2021164359A1 (zh) 一种显示面板和电子设备
CN108549170B (zh) 一种显示面板以及电子设备
KR20100095400A (ko) 용량성 터치 패널
WO2016065782A1 (zh) 触摸屏及其制作方法和显示装置
WO2021016745A1 (zh) 显示基板、显示装置、显示基板的制作方法及驱动方法
WO2015010376A1 (zh) 阵列基板及其制造方法、触摸屏和显示装置
WO2016119375A1 (zh) 触控显示基板、触控显示装置
US9547200B2 (en) Liquid crystal display panel and manufacturing method thereof, and a display device
TWI510997B (zh) 內嵌式觸控面板與其製造方法
TW201638740A (zh) 內嵌式觸控顯示面板
TW201333770A (zh) 整合式觸控面板以及觸控顯示面板

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016777887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15306797

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16777887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016777887

Country of ref document: EP