WO2023070733A1 - 自容式触控面板 - Google Patents

自容式触控面板 Download PDF

Info

Publication number
WO2023070733A1
WO2023070733A1 PCT/CN2021/129067 CN2021129067W WO2023070733A1 WO 2023070733 A1 WO2023070733 A1 WO 2023070733A1 CN 2021129067 W CN2021129067 W CN 2021129067W WO 2023070733 A1 WO2023070733 A1 WO 2023070733A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal
electrodes
self
integrated circuit
Prior art date
Application number
PCT/CN2021/129067
Other languages
English (en)
French (fr)
Inventor
方亮
Original Assignee
武汉华星光电技术有限公司
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司, 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2023070733A1 publication Critical patent/WO2023070733A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the embodiments of the present application relate to the field of display technology, and in particular to a self-capacitive touch panel.
  • Projected capacitive touch screens include self-capacitive touch screens and mutual-capacitive touch screens, in which the horizontal and vertical touch electrode arrays are made of ITO (indium tin oxide) transparent conductive materials on the glass surface, if the horizontal touch electrodes and the vertical touch electrodes respectively form capacitance with the ground, which is self-capacitance.
  • ITO indium tin oxide
  • the capacitance of the finger will be superimposed on the self-capacitance, making the self-capacitance larger, so the touch can be determined through the self-capacitance. Control point; if the horizontal touch electrode and the vertical touch electrode intersect, a capacitance will be formed, which is mutual capacitance. When the finger touches the touch screen, the mutual capacitance will decrease.
  • the horizontal touch electrodes When the mutual capacitance is detected, the horizontal touch electrodes will sequentially An excitation signal is sent, and all the touch electrodes in the vertical direction receive the signal at the same time, so that the capacitance value at the intersection of all the horizontal touch electrodes and the vertical touch electrodes can be obtained, so as to determine the touch point.
  • self-capacitive touch screens are much less difficult than mutual-capacitive touch screens in terms of conductive layer planning, wiring or algorithms, so self-capacitive touch screens still have their own advantages.
  • each touch electrode 10 All need to lead out a touch signal line 20, and the touch signal line 20 corresponding to each row or column of touch electrodes 10 is arranged between the column of touch electrodes 10 and the touch electrodes 10 of the adjacent row or column .
  • the touch electrodes 10 in each column input the same driving signal at the same time, the touch electrodes 10 in adjacent columns will not interfere with each other.
  • the touch scanning process generally scans the touch electrodes 10 column by column (or a small number of columns) to determine the touch point, that is, it only needs to input the driving signal to the column of the touch electrodes 10 being scanned column by column and collect the touch signal, In this way, there is a potential difference between a column of touch electrodes 10 being scanned and two adjacent columns of touch electrodes 10 , so two adjacent columns of touch electrodes 10 will affect a column of touch electrodes 10 being scanned and the touch electrodes connected thereto.
  • the interference caused by the signal line 20 leads to inaccurate touch monitoring of a row of touch electrodes 10 being scanned, resulting in poor touch performance of the display panel.
  • the touch signal lines 20 connected to the touch electrodes 10 in the second column input a high-frequency drive signal to the touch electrodes 10 in the second column, and at this time
  • the first row of touch electrodes 10 and the third row of touch electrodes 10 are floating or grounded or connected to other low-frequency drive signals, which will make the touch signal lines 20 connected to the first row of touch electrodes 10 and the second row of touch electrodes
  • There is a potential difference between the electrodes 10 and there is also a potential difference between the touch signal lines 20 connected to the touch electrodes 10 of the third column and the touch electrodes 10 of the second column. Therefore, the touch electrodes 10 of the first column are connected.
  • the control signal lines 20 and the touch electrodes 10 of the third column will interfere with the touch electrodes 10 of the second column and the touch signal lines 20 connected thereto, so that the touch performance of the touch electrodes 10 of the second column is not accurate enough.
  • the present application provides a self-capacitive touch panel
  • the self-capacitive touch panel includes a touch area and a peripheral area surrounding the touch area, and a touch integrated circuit is arranged in the peripheral area , the touch area is provided with touch electrodes arranged in an array, and each touch electrode is connected to a touch integrated circuit through a single touch signal line;
  • the self-capacitive touch panel also includes a plurality of A signal shielding line, the signal shielding line is arranged between a plurality of touch signal lines connected to each column of touch electrodes and two columns of touch electrodes adjacent to the column of touch electrodes.
  • the signal shielding line is connected to the touch integrated circuit, and the touch integrated circuit is used to input the first driving signal to the touch signal line, and input the first driving signal to the signal shielding line.
  • Two driving signals wherein the potential difference between the first driving signal and the second driving signal is smaller than a preset threshold.
  • the signal shielding wires are also arranged in the peripheral area or near the peripheral area in the touch area; a plurality of the signal shielding wires are at one end away from the touch integrated circuit are connected to each other, and the signal shielding lines disposed in the peripheral area or close to the peripheral area in the touch area are connected to the touch integrated circuit.
  • a plurality of the signal shielding lines are connected to each other at one end close to the touch integrated circuit and connected to the touch integrated circuit through a lead located in the peripheral area, wherein the signal shielding The wires are connected at intersections with the touch signal wires by changing wires.
  • the peripheral area further includes a bending area, and the signal shielding line is connected to the touch integrated circuit through the bending area.
  • the signal shielding wires are single-layer shielding wires, and the touch electrodes, the touch signal wires and the signal shielding wires are arranged in the same layer.
  • the signal shielding wire is a multilayer shielding wire, and two adjacent layers of the multilayer shielding wire are connected by via holes.
  • the touch electrodes are arranged on the same layer as the touch signal lines, and one layer of the signal shielding lines is arranged on the same layer as the touch electrodes and the touch signal lines.
  • the touch electrodes and the touch signal lines are arranged in different layers, and one layer of the signal shielding lines is arranged in the same layer as the touch electrodes, and the other layer of the signal shielding lines One layer is set on the same layer as the touch signal line.
  • the material of the signal shielding wire is one or a combination of gold, silver, copper, molybdenum, aluminum and indium tin oxide.
  • the embodiment of the present application also provides a self-capacitive touch panel, which includes a touch area and a peripheral area surrounding the touch area, a touch integrated circuit is arranged in the peripheral area, and the touch There are touch electrodes arranged in an array in the area, and each touch electrode is connected to the touch integrated circuit through a single touch signal line; wherein, a plurality of signal shielding lines are also included, and the signal shielding lines are set Between multiple touch signal lines connected to each column of touch electrodes and two columns of touch electrodes adjacent to the column of touch electrodes; the signal shielding lines are connected to the touch integrated circuit, and the touch integrated circuit The circuit is used to input a first driving signal to the touch signal line and a second driving signal to the signal shielding line, wherein the potential difference between the first driving signal and the second driving signal is less than preset threshold.
  • a plurality of the signal shielding lines are connected to each other at one end close to the touch integrated circuit and connected to the touch integrated circuit through a lead located in the peripheral area, wherein the signal shielding The wires are connected at intersections with the touch signal wires by changing wires.
  • the signal shielding wires are also arranged in the peripheral area or near the peripheral area in the touch area; a plurality of the signal shielding wires are at one end away from the touch integrated circuit are connected to each other, and the signal shielding lines disposed in the peripheral area or close to the peripheral area in the touch area are connected to the touch integrated circuit.
  • the peripheral area further includes a bending area, and the signal shielding line is connected to the touch integrated circuit after being bent in the bending area.
  • the signal shielding wires are single-layer shielding wires, and the touch electrodes, the touch signal wires and the signal shielding wires are arranged in the same layer.
  • the signal shielding wire is a multilayer shielding wire, and two adjacent layers of the multilayer shielding wire are connected by via holes.
  • the touch electrodes are arranged on the same layer as the touch signal lines, and one layer of the signal shielding lines is arranged on the same layer as the touch electrodes and the touch signal lines.
  • the touch electrodes and the touch signal lines are arranged in different layers, and one layer of the signal shielding lines is arranged in the same layer as the touch electrodes, and the other layer of the signal shielding lines One layer is set on the same layer as the touch signal line.
  • the material of the signal shielding wire is one or a combination of gold, silver, copper, molybdenum, aluminum and indium tin oxide.
  • a signal shielding line is provided between a plurality of touch signal lines connected to each column of touch electrodes and two columns of touch electrodes adjacent to the column of touch electrodes.
  • the shielding line reduces the interference of each column of touch electrodes and the touch signal lines connected to them from two adjacent columns of touch electrodes and the touch signal lines connected to them, so as to avoid scanning the touch electrodes column by column, due to the There is a potential difference between the touch electrodes and the two adjacent columns of touch electrodes, which causes the two adjacent columns of touch electrodes and the touch signal lines connected to them to affect the scanning of a column of touch electrodes and the touch signals connected to them.
  • the interference caused by the lines makes the touch monitoring of a row of touch electrodes being scanned inaccurate, thereby affecting the touch performance of the self-capacitive touch panel.
  • FIG. 1 is a schematic structural diagram of a self-capacitive touch panel in the prior art
  • FIG. 2 is a schematic structural diagram of a self-capacitive touch panel provided by an embodiment of the present application
  • FIG. 3 is another schematic diagram of connection between the signal shielding wire of the self-capacitive touch panel and the touch integrated circuit provided by the embodiment of the present application;
  • FIG. 4 is another schematic diagram of connection between the signal shielding wire of the self-capacitive touch panel and the touch integrated circuit provided by the embodiment of the present application;
  • FIG. 5 is another schematic diagram of connection between the signal shielding wire of the self-capacitive touch panel and the touch integrated circuit provided by the embodiment of the present application;
  • FIG. 6( a ) is a schematic structural diagram of a self-capacitive touch panel with a bending area corresponding to FIG. 2 ;
  • FIG. 6( b ) is a schematic structural diagram of a self-capacitive touch panel with a bending area corresponding to FIG. 3 ;
  • FIG. 6(c) is a schematic structural diagram of a self-capacitive touch panel with a bending area corresponding to FIG. 4;
  • FIG. 6( d ) is a schematic structural diagram of a self-capacitive touch panel with a bending area corresponding to FIG. 5 ;
  • FIG. 7 is another structural schematic diagram of the self-capacitive touch panel provided by the embodiment of the present application.
  • FIG. 8( a ) is a first cross-sectional schematic diagram of the self-capacitive touch panel corresponding to FIG. 2 ;
  • FIG. 8(b) is a schematic cross-sectional view of the touch signal line and the signal shielding line respectively connected to the touch integrated circuit in FIG. 8(a);
  • FIG. 9( a ) is a second cross-sectional schematic diagram of the self-capacitive touch panel corresponding to FIG. 3 or FIG. 4 ;
  • FIG. 9( b ) is a schematic cross-sectional view of the touch signal line and the signal shielding line respectively connected to the touch integrated circuit in FIG. 9( a );
  • FIG. 10( a ) is a third cross-sectional schematic diagram of the self-capacitive touch panel corresponding to FIG. 5 ;
  • FIG. 10( b ) is a schematic cross-sectional view of the touch signal line and the signal shielding line respectively connected to the touch integrated circuit in FIG. 10( a ).
  • Fig. 2 is a schematic structural diagram of the self-capacitive touch panel provided by the embodiment of the present application.
  • the self-capacitive touch panel includes a touch area 1 and a peripheral area 2 surrounding the touch area 1, the peripheral area 2 is provided with at least one touch integrated circuit 3, and the touch area 1 is provided with touch electrodes 10 arranged in an array, and each touch electrode 10 is grounded and connected to the touch integrated circuit through a single touch signal line 20. 3 connections.
  • the self-capacitive touch panel also includes a plurality of signal shielding lines 30, and the signal shielding lines 30 are arranged on the two adjacent columns of touch signal lines 20 connected to each column of touch electrodes 10 and the column of touch electrodes 10. Between the control electrodes 10.
  • a signal shielding line 30 is provided between the touch signal line 20 connected to each column of touch electrodes 10 and two adjacent columns of touch electrodes 10, as shown in FIG.
  • Signal shielding lines 30 are provided on the left and/or right sides, so that when the row of touch electrodes 10 is scanned, the signal shielding lines 30 on the left and right sides are used to shield the left and right columns of touch electrodes 10 and the touch controls connected thereto.
  • the signal line 20 has an interference effect on the row of touch electrodes 10 and its touch signal line 20 .
  • a signal shielding line is provided between a plurality of touch signal lines connected to each column of touch electrodes 10 and two columns of touch electrodes 10 adjacent to the column of touch electrodes.
  • Use the signal shielding line to reduce the interference of each column of touch electrodes and the touch signal lines connected to them from two adjacent columns of touch electrodes and the touch signal lines connected to them, so as to avoid scanning the touch electrodes column by column, due to scanning
  • There is a potential difference between a column of touch electrodes and two adjacent columns of touch electrodes which causes the touch electrodes of two adjacent columns and the touch signal lines connected to them to affect the scanning of a column of touch electrodes and their connected touch electrodes.
  • the interference caused by the control signal line makes the touch monitoring of a row of touch electrodes being scanned inaccurate, thereby affecting the touch performance of the self-capacitive touch panel.
  • the signal shielding line 30 is connected to the touch integrated circuit 3, so that the touch integrated circuit 3 is used to input the first driving signal to the touch signal line 20, and input the second driving signal to the signal shielding line 30, Wherein, the potential difference between the first driving signal and the second driving signal is smaller than a preset threshold.
  • the same touch signal can be synchronously input to the column of touch electrodes 10 being scanned and the touch signals of two adjacent columns.
  • the driving signal that is, the potential difference between the first driving signal and the second driving signal is 0, so that a column of touch electrodes 10 being scanned and the touch signal lines 20 connected thereto are affected by touch electrodes 10 and touch electrodes 10 of two adjacent columns.
  • the touch signal line 20 connected thereto has the least interference.
  • the control electrodes 10 cause interference
  • the signal shielding line 30 can prevent the touch electrodes 10 in the third column from causing interference to the charging signal lines 21 connected to the touch electrodes 10 in the second column.
  • other shielding signal lines can also play the same role. , thereby improving the touch accuracy of the entire touch display panel.
  • the signal shielding wire 30 can be connected to the touch integrated circuit 3 in various ways.
  • each signal shielding line 30 extends to connect with the touch integrated circuit 3 respectively.
  • the second connection mode between the signal shielding wire 30 and the touch integrated circuit 3 is: multiple signal shielding wires 30 are connected to each other at one end close to the touch integrated circuit 3 , and the connecting wires and the signal shielding wire 30 in the same layer. Since the signal shielding line 30 will intersect with the touch signal line 20 when it is connected to the touch integrated circuit 3, the intersection of the signal shielding line 30 and the touch signal line 20 at 100 needs to be connected by changing wires, that is, the signal shielding line 30 bypasses the touch signal line 20 through a via hole at the intersection with the touch signal line 20 , thereby preventing the signal shielding line 30 from intersecting with the touch signal line 20 .
  • a plurality of signal shielding lines 30 can also be formed in the peripheral area 2 Lead wires 200 are led out from the connection wires near one end of the touch integrated circuit 3 , and multiple signal shielding wires 30 are connected to the touch integrated circuit 3 through the newly added wires 200 in the peripheral area 2 .
  • the third connection method between the signal shielding line 30 and the touch integrated circuit 3 is: the signal shielding line 30 is also set in the touch area 1 close to the surrounding area 2 ( Figure 4), or the surrounding area within area 2 ( Figure 5).
  • the signal shielding lines 30 are connected to each other at the end away from the touch integrated circuit 3 , and are connected to the touch integrated circuit 3 through the signal shielding lines 30 located at the edge of the touch area 1 or in the peripheral area 2 .
  • a plurality of signal shielding lines 30 are connected to each other at an end far away from the touch integrated circuit 3 , they will not intersect with the touch signal lines 20 .
  • Two outermost signal shielding lines 30 are also arranged on the edge of 2, and can be connected to the touch integrated circuit 3 through the two outermost signal shielding lines 30, so that the touch integrated circuit 3 can pass through the two outermost signal shielding lines 30.
  • the shielded wires 30 input drive signals to each of the touch signal wires 20, so that multiple signal shielded wires 30 can be directly connected to the touch integrated circuit 3 through the outermost two signal shielded wires 30, so that the signal shielded wires 30 can It is convenient and concise to connect with the touch integrated circuit 3 .
  • the self-capacitive touch panel can also include a bending area 4, and the signal shielding 30 is connected to the touch integrated circuit 3 after being bent in the bending area 4 .
  • a flexible printed circuit (FPC, Flexible Printed Circuit) can be arranged in the peripheral area of the display panel, and the touch integrated circuit 3 can be integrated into the flexible printed circuit, so that the touch integrated circuit 3 can be folded into the display panel through the flexible printed circuit.
  • the back side of the glass substrate of the panel, and then the touch signal line 20 and the signal shielding line 30 are connected to the touch integrated circuit 3 located on the back side of the glass substrate of the display panel after being bent in the bending area, that is, the signal line 20 and the signal line
  • the shielding wire 30 is connected to the touch integrated circuit 3 across the bending area 4, so as to reduce the frame width of the display panel.
  • the signal shielded wire 30 may be a single-layer shielded wire or a multi-layer shielded wire.
  • the signal shielding line 30 is a single-layer shielding line
  • the signal shielding line 30 is disposed on the same layer as the touch electrodes 10 and the touch signal lines 20 .
  • the signal shielding wire 30 is a multi-layer shielding wire
  • two adjacent layers of shielding wires in the multi-layer shielding wire are connected by via holes, and one layer of the signal shielding wire 30 is set on the same layer as the touch signal wire 20
  • the multi-layer shielded wire is thicker than the single-layer shielded wire, the shielding effect of the signal shielded wire 30 can be better on the one hand, and the resistance of the signal shielded wire 30 can be made smaller on the other hand, so as to reduce the resistance of the signal shielded wire.
  • the driving signal of 30 is attenuated by the impedance load, thereby further improving the shielding effect of the shielded wire.
  • the part where the signal shielding line 30 and the touch signal line 20 are located on the same layer will not intersect with the touch signal line 20 , that is, a certain column of touch electrodes 10 and one of two adjacent columns of touch electrodes 10
  • the signal shielding lines 30 between the touch electrodes 10 are located between the touch signal lines 20 and the touch electrodes 10 in adjacent columns.
  • the signal shielding wire 30 can be made of a material with good electrical conductivity, for example, one or a combination of gold, silver, copper, molybdenum, aluminum and indium tin oxide can be used.
  • the touch electrodes 10 and the touch signal lines 20 can not only be arranged in the same layer as shown in Figure 1-6(d), but also can be arranged in different layers as shown in Figure 7.
  • the touch signal line 20 may not be arranged between every two adjacent columns of touch electrodes 10, but arranged above the touch electrodes 10, so that the touch signal The line 20 does not need to occupy the area between every two adjacent columns of touch electrodes 10, and can reduce the gap and distance between every two adjacent columns of touch electrodes 10, thereby setting more
  • the touch electrodes 10, or a limited number of touch electrodes 10 are fabricated in a smaller area of the touch area 1.
  • the touch electrodes 10 and the touch signal lines 20 can be arranged in the same layer or in different layers, and the signal shielding line 30 can be a single-layer shielding line or a multi-layer shielding line, so that the signal shielding line 30 is used for
  • the purpose of shielding two adjacent columns of touch electrodes 10 and their connected touch signal lines 20 from interfering with a scanning column of touch electrodes 10 and their connected touch signal lines 20 is that the self-capacitive touch panel can form a
  • the self-capacitive touch panel can form a
  • FIG. 8( a ) shows a schematic cross-sectional view of the AA' section in FIG. 2 where the touch electrode 10 and the touch signal line 20 are arranged on the same layer, and the signal shielding line 30 is a single-layer shielding line.
  • the signal shielding line 30 is used for The touch electrodes 10 of two adjacent columns and the touch signal lines 20 connected thereto are shielded from interference to the touch electrodes 10 of two adjacent columns and the touch signal lines 20 connected thereto.
  • FIG. 8( b ) is a schematic cross-sectional view of the touch signal line 20 and the signal shielding line 30 respectively connected to the touch integrated circuit 3 in the schematic cross-sectional view shown in FIG. 8( a ).
  • FIG. 9( a ) shows a schematic cross-sectional view of the AA' section in FIG.
  • One of the layers 301 and the other layer 302 are connected through a via hole 303, and one of the layers 301 and the other layer 302 are jointly used to shield the touch electrodes 10 of two adjacent columns or the touch signal lines 20 connected to the touch electrodes 10
  • the interference to the row of touch electrodes 10 and the touch signal lines 20 makes the double-layer shielding effect better than the single-layer shielding effect, and also reduces the impedance of the signal shielding lines 30 , further improving the shielding effect of the shielding lines.
  • FIG. 9( b ) is a schematic cross-sectional view of the touch signal line 20 and the signal shielding line 30 respectively connected to the touch integrated circuit 3 in the schematic cross-sectional view shown in FIG. 9( a ).
  • Fig. 10(a) shows the cross-sectional schematic diagram of the BB' section in Fig. 7 in which the touch electrode 10 and the touch signal line 20 are arranged in different layers, and the signal shielding line 30 is a double-layer shielding line.
  • the signal shielding line 30 One of the layers 301 is set on the same layer as the touch electrodes 10, which is mainly used to shield the interference of the touch electrodes 10 in two adjacent columns to the touch electrodes 10; the other layer 302 of the signal shielding line 30 is connected with the touch signal
  • the wires 20 are arranged on the same layer, and are mainly used to shield the touch signal wires 20 connected to the touch electrodes 10 in two adjacent columns from interfering with the touch signal wires 20 connected to the touch electrodes 10 in the same row.
  • FIG. 10( b ) is a schematic cross-sectional view of the touch signal line 20 and the signal shielding line 30 respectively connected to the touch integrated circuit 3 in the schematic cross-sectional view shown in FIG. 10( a ).
  • the touch electrodes 10, the touch signal lines 20 and the signal shielding lines 30 are all arranged on the main body of the automatic touch panel, and the panel main body includes a thin film transistor array 5, an organic light emitting diode 6 and a package from bottom to top.
  • Layer 7 The self-capacitive touch panel can adopt an external touch mode, an on-cell touch mode or an in-cell touch mode for touch display.
  • the working process of the self-capacitive touch panel is: through the touch integrated circuit 3, simultaneously input the first driving signal to the touch signal line 20 connected to the touch electrodes 10 of one row being scanned, and send the first driving signal to the row
  • At least one signal shielding line 30 adjacent to the touch electrode 10 inputs a second drive signal, and collects the touch signal of the column of touch electrodes 10; wherein, the potential difference between the first drive signal and the second drive signal less than the preset threshold.
  • the self-capacitive touch panel arranges at least part of the touch signal line 20 on the same layer between each column of touch electrodes 10 and two adjacent columns of touch electrodes 10 of the column of touch electrodes 10
  • the signal shielding line 30 is used to reduce the interference of each column of touch electrodes 10 and its touch signal lines 20 from two adjacent columns of touch electrodes 10 and their connected touch signal lines 20, so as to avoid scanning the touch electrodes column by column At 10 o'clock, there is a potential difference between a column of touch electrodes 10 being scanned and two adjacent columns of touch electrodes 10, causing the touch electrodes 10 of two adjacent columns and the touch signal lines 20 connected thereto to affect the scanning electrodes 10.
  • a row of touch electrodes 10 and the touch signal lines 20 connected thereto cause interference, resulting in inaccurate touch monitoring of the row of touch electrodes 10 being scanned, thereby improving the touch performance of the self-capacitive touch panel.

Abstract

一种自容式触控面板,在每列触控电极(10)连接的多条触控信号线(20)与该列触控电极相邻的两列触控电极之间设置信号屏蔽线(30),通过信号屏蔽线减少每列触控电极及其连接的触控信号线受到相邻两列触控电极及其连接的触控信号线的干扰,使得正在扫描的一列触控电极的触控监测更加准确。

Description

自容式触控面板 技术领域
本申请实施例涉及显示技术领域,尤其涉及一种自容式触控面板。
背景技术
投射电容触控屏包括自容式触控屏和互容式触控屏,其中,在玻璃表面用ITO(氧化铟锡)透明导电材料制作成横向和纵向触控电极阵列,若横向触控电极和纵向触控电极分别与地构成电容,此为自电容,当手指触摸到触控屏时,手指的电容将会叠加到自电容上,使自电容变大,由此可以通过自电容确定触控点;若横向触控电极和纵向触控电极交叉的地方会形成电容,此为互电容,当手指触摸到触控屏时,互电容减小,检测互电容大小时,横向触控电极依次发出激励信号,纵向的所有触控电极同时接收信号,这样可以得到所有横向触控电极和纵向触控电极交汇点的电容值大小,从而确定触控点。目前,自容式触控屏相比于互容式触控屏无论是在导电层规划、布线或算法方面,难度都要低很多,因此自容式触控屏仍具有自身的优势。
目前为了防止鬼点,以实现多点触控,自容式触控屏多采用触控电极10与触控信号线20一一对应的连接方式,如图1所示,每个触控电极10都需要引出一个触控信号线20,且每行或每列触控电极10对应的触控信号线20设于该列触控电极10与相邻行或相邻列的触控电极10之间。针对这种自容式触控屏,若每列触控电极10同时输入相同的驱动信号,则相邻列触控电极10相互之间不会产生干扰,但是,为了降低功耗和防止误监测,触控扫描过程一般是对触控电极10进行逐列(或少数列)扫描来确定触控点,即仅需逐列对正在扫描的一列触控电极10输入驱动信号并采集触控信号,这样,正在扫描的一列触控电极10与相邻两列触控电极10之间存在电位差,因此相邻两列触控电极10会对正在扫描的一列触控电极10及其连接的触控信号线20造成干扰,导致正在扫描的一列触控电极10的触控监测不够准确,使得显示面板触控性能不佳。如图1所示,若正在扫描第2列触控电极10,则通过第2列触控电极10连接的触控信号线20向第2列触控电极10输入高频驱动信号,而此时第1列触控电极10和第3列触控电极10处于悬空或接地或接入其他低频驱动信号,这会使得第1列触控电极10连接的触控信号线20与第2列触控电极10之间存在电位差,以及第3列触控电极10与第2列触控电极10连接的触控信号线20之间也存在电位差,因此,第1列触控电极10连接的触控信号线20和第3列触控电极10会对第2列触控电极10及其连接的触控信号线20产生干扰,使得第2列触控电极10的触控性能不够准确。
因此,亟需提出一种新的自容式触控面板,以解决逐列(或少数列)扫描触控电极时,由于正在扫描的一列触控电极和相邻两列触控电极的电位不同,而使得相邻两列的触控电极及其连接的触控信号线对正在扫描的一列触控电极及其连接的触控信号线造成干扰,导致正在扫描的一列触控电极的触控监测不够准确的问题。
技术问题
目前的触控面板在逐列(或少数列)扫描触控电极时,由于正在扫描的一列触控电极和相邻两列触控电极的电位不同,而使得相邻两列的触控电极及其连接的触控信号线对正在扫描的一列触控电极及其连接的触控信号线造成干扰,导致正在扫描的一列触控电极的触控监测不够准确的问题。
技术解决方案
为了解决上述问题,本申请提供一种自容式触控面板,该自容式触控面板包括触控区域和围绕所述触控区域的周边区域,所述周边区域内设有触控集成电路,所述触控区域内设有呈阵列排布的触控电极,每个所述触控电极通过单一的触控信号线与触控集成电路连接;该自容式触控面板还包括多条信号屏蔽线,所述信号屏蔽线设于每列触控电极连接的多条触控信号线与该列触控电极相邻的两列触控电极之间。
在一些实施例中,所述信号屏蔽线与所述触控集成电路连接,所述触控集成电路用于向所述触控信号线输入第一驱动信号,以及向所述信号屏蔽线输入第二驱动信号,其中,所述第一驱动信号和所述第二驱动信号之间的电位差小于预设阈值。
在一些实施例中,所述信号屏蔽线还设于所述周边区域内或所述触控区域内靠近所述周边区域处;多条所述信号屏蔽线在远离所述触控集成电路的一端互相连接,且设于所述周边区域中或所述触控区域中的靠近所述周边区域处的所述信号屏蔽线与所述触控集成电路连接。
在一些实施例中,多条所述信号屏蔽线在靠近所述触控集成电路的一端互相连接并通过位于所述周边区域中的引线与所述触控集成电路连接,其中,所述信号屏蔽线在与所述触控信号线的相交处采用换线连接。
在一些实施例中,所述周边区域还包括弯折区,所述信号屏蔽线通过所述弯折区与所述触控集成电路连接。
在一些实施例中,所述信号屏蔽线为单层屏蔽线,且所述触控电极、所述触控信号线和所述信号屏蔽线同层设置。
在一些实施例中,所述信号屏蔽线为多层屏蔽线,所述多层屏蔽线的相邻两层之间采用过孔连接。
在一些实施例中,所述触控电极与所述触控信号线同层设置,且所述信号屏蔽线的其中一层与所述触控电极和所述触控信号线同层设置。
在一些实施例中,所述触控电极与所述触控信号线异层设置,且所述信号屏蔽线的其中一层与所述触控电极同层设置,所述信号屏蔽线的其中另一层与所述触控信号线同层设置。
在一些实施例中,所述信号屏蔽线的材料为金、银、铜、钼、铝和氧化铟锡中的一种或多种的组合。
另外,本申请实施例还提供一种自容式触控面板,其中,包括触控区域和围绕所述触控区域的周边区域,所述周边区域内设有触控集成电路,所述触控区域内设有呈阵列排布的触控电极,每个所述触控电极通过单一的触控信号线与触控集成电路连接;其中,还包括多条信号屏蔽线,所述信号屏蔽线设于每列触控电极连接的多条触控信号线与该列触控电极相邻的两列触控电极之间;所述信号屏蔽线与所述触控集成电路连接,所述触控集成电路用于向所述触控信号线输入第一驱动信号,以及向所述信号屏蔽线输入第二驱动信号,其中,所述第一驱动信号和所述第二驱动信号之间的电位差小于预设阈值。
在一些实施例中,多条所述信号屏蔽线在靠近所述触控集成电路的一端互相连接并通过位于所述周边区域中的引线与所述触控集成电路连接,其中,所述信号屏蔽线在与所述触控信号线的相交处采用换线连接。
在一些实施例中,所述信号屏蔽线还设于所述周边区域内或所述触控区域内靠近所述周边区域处;多条所述信号屏蔽线在远离所述触控集成电路的一端互相连接,且设于所述周边区域中或所述触控区域中的靠近所述周边区域处的所述信号屏蔽线与所述触控集成电路连接。
在一些实施例中,所述周边区域还包括弯折区,所述信号屏蔽线在所述弯折区弯折之后与所述触控集成电路连接。
在一些实施例中,所述信号屏蔽线为单层屏蔽线,且所述触控电极、所述触控信号线和所述信号屏蔽线同层设置。
在一些实施例中,所述信号屏蔽线为多层屏蔽线,所述多层屏蔽线的相邻两层之间采用过孔连接。
在一些实施例中,所述触控电极与所述触控信号线同层设置,且所述信号屏蔽线的其中一层与所述触控电极和所述触控信号线同层设置。
在一些实施例中,所述触控电极与所述触控信号线异层设置,且所述信号屏蔽线的其中一层与所述触控电极同层设置,所述信号屏蔽线的其中另一层与所述触控信号线同层设置。
在一些实施例中,所述信号屏蔽线的材料为金、银、铜、钼、铝和氧化铟锡中的一种或多种的组合。
有益效果
本申请实施例提供的自容式触控面板,在每列触控电极连接的多条触控信号线与该列触控电极相邻的两列触控电极之间设置信号屏蔽线,通过信号屏蔽线减少每列触控电极及其连接的触控信号线受到相邻两列触控电极及其连接的触控信号线的干扰,以避免逐列扫描触控电极时,由于正在扫描的一列触控电极与其相邻两列触控电极之间存在电位差,导致相邻两列的触控电极及其连接的触控信号线会对正在扫描的一列触控电极及其连接的触控信号线造成干扰,使得正在扫描的一列触控电极的触控监测不够准确,从而影响自容式触控面板的触控性能。
附图说明
图1为现有技术的自容式触控面板的结构示意图;
图2为本申请实施例提供的自容式触控面板的结构示意图;
图3为本申请实施例提供的自容式触控面板的信号屏蔽线与触控集成电路的另一种连接示意图;
图4为本申请实施例提供的自容式触控面板的信号屏蔽线与触控集成电路的又一种连接示意图;
图5为本申请实施例提供的自容式触控面板的信号屏蔽线与触控集成电路的再一种连接示意图;
图6(a)为图2对应的存在弯折区的自容式触控面板的结构示意图;
图6(b)为图3对应的存在弯折区的自容式触控面板的结构示意图;
图6(c)为图4对应的存在弯折区的自容式触控面板的结构示意图;
图6(d)为图5对应的存在弯折区的自容式触控面板的结构示意图;
图7为本申请实施例提供的自容式触控面板的另一种结构示意图;
图8(a)为图2对应的自容式触控面板的第一种剖面示意图;
图8(b)为图8 (a)中触控信号线和信号屏蔽线分别与触控集成电路连接的剖面示意图;
图9(a)为图3或图4对应的自容式触控面板的第二种剖面示意图;
图9(b)为图9(a)中触控信号线和信号屏蔽线分别与触控集成电路连接的剖面示意图;
图10(a)为图5对应的自容式触控面板的第三种剖面示意图;
图10(b)为图10(a)中触控信号线和信号屏蔽线分别与触控集成电路连接的剖面示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
图2为本申请实施例提供的自容式触控面板的结构示意图,如图2所示,该自容式触控面板包括触控区域1和围绕触控区域1的周边区域2,周边区域2内设有至少一个触控集成电路3,触控区域1内设有呈阵列排布的触控电极10,每个触控电极10接地且通过单一的触控信号线20与触控集成电路3连接。该自容式触控面板还包括多条信号屏蔽线30,信号屏蔽线30设于每列触控电极10连接的多条触控信号线20与该列触控电极10相邻的两列触控电极10之间。
具体地,为了避免逐列扫描触控电极10时,正在扫描的一列触控电极10与相邻两列触控电极10之间存在电位差,导致相邻两列触控电极10及其连接的触控信号线20会对正在扫描的一列触控电极10及其连接的触控信号线20造成干扰,导致正在扫描的一列触控电极10的触控监测不够准确,本申请实施例提供的自容式触控面板在每列触控电极10连接的触控信号线20与相邻两列触控电极10之间设置信号屏蔽线30,如图2所示,在每列触控电极10的左侧和/或右侧均设置信号屏蔽线30,以实现对该列触控电极10进行扫描时,利用左右两侧的信号屏蔽线30屏蔽左右两列触控电极10及其连接的触控信号线20对该列触控电极10及其触控信号线20产生干扰的效果。
本申请实施例提供的自容式触控面板,在每列触控电极10连接的多条触控信号线与该列触控电极相邻的两列触控电极10之间设置信号屏蔽线,通过信号屏蔽线减少每列触控电极及其连接的触控信号线受到相邻两列触控电极及其连接的触控信号线的干扰,以避免逐列扫描触控电极时,由于正在扫描的一列触控电极与相邻两列触控电极之间存在电位差,导致相邻两列的触控电极及其连接的触控信号线会对正在扫描的一列触控电极及其连接的触控信号线造成干扰,使得正在扫描的一列触控电极的触控监测不够准确,从而影响自容式触控面板的触控性能。
基于上述实施例,信号屏蔽线30与触控集成电路3连接,以使得触控集成电路3用于向触控信号线20输入第一驱动信号,以及向信号屏蔽线30输入第二驱动信号,其中,第一驱动信号和第二驱动信号之间的电位差小于预设阈值。
具体地,根据两个导体之间的感应电荷公式Q=C△U,其中,Q为感应电荷,C为两个导体之间的电容,△U为两个导体之间的电位差,可知若两个导体之间的电位差△U为0,则两个导体之间的感应电荷Q为0,因此,第一驱动信号和第二驱动信号之间的电位差越小,则相邻两列的触控电极10及其连接的触控信号线20会对正在扫描的一列触控电极10及其连接的触控信号线20造成的干扰越小。
理想情况下,为了使正在扫描的一列触控电极10受到相邻两列触控电极10的干扰降至最小,可以向正在扫描的一列触控信号和相邻两列触控信号同步输入相同的驱动信号,即第一驱动信号和第二驱动信号之间的电位差为0,使得正在扫描的一列触控电极10及其连接的触控信号线20受到相邻两列的触控电极10及其连接的触控信号线20的干扰最小。
例如,扫描图2中的第2列触控电极时,向第2列触控电极连接的触控信号线,以及第2列触控电极左右相邻的两条信号屏蔽线输入相同的驱动信号,从而通过第2列触控电极左右相邻的两条信号屏蔽线防止第1列及其连接的触控信号线和第3列触控电极及其连接的触控信号线对第2列触控电极10造成干扰,信号屏蔽线30能防止第3列触控电极10对第2列触控电极10连接的充信号线21造成干扰,同样地,其他屏蔽信号线也能起到同样的作用,由此提升整个触控显示面板的触控准确性。
需要说明的是,信号屏蔽线30可以采用多种方式与触控集成电路3连接。
如图2所示,信号屏蔽线30与触控集成电路3的第一种连接方式为:每条信号屏蔽线30分别延伸至与触控集成电路3连接。
如图3所示,信号屏蔽线30与触控集成电路3的第二种连接方式为:多条信号屏蔽线30在靠近触控集成电路3的一端互相连接,且连接线与信号屏蔽线30处于同一层。由于这样信号屏蔽线30在靠近触控集成电路3互相连接时会与触控信号线20相交,因此信号屏蔽线30在与触控信号线20相交处100需要采用换线连接,即信号屏蔽线30在与触控信号线20的相交处通过过孔绕过触控信号线20,从而防止信号屏蔽线30与触控信号线20交叉。并且,为了使多条信号屏蔽线30在靠近触控集成电路3的一端尽快接收触控集成电路3的驱动信号,从而减少IC loading,还可以在周边区域2内,由多条信号屏蔽线30在靠近触控集成电路3的一端的连接线中引出引线200,将多条信号屏蔽线30通过周边区域2中新增的引线200与触控集成电路3连接。
如图4或图5所示,信号屏蔽线30与触控集成电路3的第三种连接方式为:信号屏蔽线30还设于触控区域1靠近周边区域2处(图4),或周边区域2内(图5)。各条信号屏蔽线30通过在远离触控集成电路3的一端互相连接,并通过位于触控区域1的边缘或周边区域2内的信号屏蔽线30与触控集成电路3连接。
具体地,如图4或图5所示,多条信号屏蔽线30若在远离触控集成电路3的一端互相连接,则不会与触控信号线20相交,在触控区域1或周边区域2的边缘也设置两条最外侧的信号屏蔽线30,可以通过最外侧的两条信号屏蔽线30与触控集成电路3连接,从而使触控集成电路3能通过最外侧的这两条信号屏蔽线30向各条触控信号线20输入驱动信号,由此能直接通过最外侧的两条信号屏蔽线30将多条信号屏蔽线30与触控集成电路3连接,使得信号屏蔽线30能方便、简洁地与触控集成电路3连接。
需要注意的是,如图6(a)、图6(b)、图6(c)和图6(d)所示,该自容式触控面板还可以包括弯折区4,信号屏蔽线30在弯折区4弯折之后与触控集成电路3连接。
具体地,可以在显示面板的外围区设置柔性电路板(FPC,Flexible Printed Circuit),并将触控集成电路3整合到柔性电路板中,从而通过柔性电路板将触控集成电路3折合到显示面板的玻璃基板的背面,再将触控信号线20和信号屏蔽线30在弯折区弯折之后与位于显示面板的玻璃基板背面的触控集成电路3连接,即,使得信号线20和信号屏蔽线30跨过弯折区4与触控集成电路3连接,从而起到减小显示面板的边框宽度的效果。
需要说明的是,信号屏蔽线30可以为单层屏蔽线或者多层屏蔽线。
当信号屏蔽线30为单层屏蔽线时,信号屏蔽线30与触控电极10和触控信号线20设于同一层。
当信号屏蔽线30为多层屏蔽线时,多层屏蔽线中的相邻两层屏蔽线之间采用过孔连接,且信号屏蔽线30的其中一层与触控信号线20同层设置,由于多层屏蔽线较之单层屏蔽线较粗,因此一方面能使得信号屏蔽线30的屏蔽效果较好,另一方面还能使信号屏蔽线30的电阻更小,以减小信号屏蔽线30的驱动信号因阻抗负载导致的信号衰减程度,从而进一步提升屏蔽线的屏蔽效果。
可以理解的是,信号屏蔽线30与触控信号线20位于同层的部分,不会与触控信号线20相交,即某列触控电极10与相邻两列触控电极10的其中一列触控电极10之间的信号屏蔽线30,位于触控信号线20与相邻列触控电极10之间。
需要说明的是,信号屏蔽线30可以采用导电性能较好的材料,例如可以采用金、银、铜、钼、铝和氧化铟锡中的一种或多种的组合。
还需要说明的是,触控电极10与触控信号线20不仅可以如图1-图6(d)所示的同层设置,还可以如图7所示的异层设置,当触控电极10与触控信号线20异层设置时,触控信号线20可以不设置于每相邻两列触控电极10之间,而是设置于触控电极10的上方,从而使,触控信号线20不需要占用每相邻两列触控电极10之间的面积,可以减小每相邻两列触控电极10之间的间隙和距离,从而在有限面积的触控区域1设置更多的触控电极10,或者将有限数量的触控电极10制作在更小面积的触控区域1。
基于上述实施例,根据触控电极10与触控信号线20可以同层设置或异层设置,以及信号屏蔽线30可以为单层屏蔽线或多层屏蔽线,以使得信号屏蔽线30用于屏蔽相邻两列触控电极10及其连接的触控信号线20对正在扫描的一列触控电极10及其连接的触控信号线20的干扰的宗旨,该自容式触控面板可以形成如下三种具体结构:
图8(a)表示触控电极10与触控信号线20同层设置,且信号屏蔽线30为单层屏蔽线的图2中的A-A’截面的剖面示意图,信号屏蔽线30用于屏蔽相邻两列的触控电极10及其连接的触控信号线20对该列触控电极10及其连接的触控信号线20的干扰。图8(b)为图8(a)所示的剖面示意图中的触控信号线20和信号屏蔽线30分别与触控集成电路3连接的剖面示意图。
图9(a)表示触控电极10与触控信号线20同层设置,且信号屏蔽线30为双层屏蔽线的图2中的A-A’截面的剖面示意图,此时信号屏蔽线30的其中一层301和另一层302通过过孔303连接,其中一层301和另一层302共同用于屏蔽相邻两列的触控电极10或触控电极10连接的触控信号线20对该列触控电极10及其触控信号线20的干扰,使得双层屏蔽效果比单层屏蔽效果提升,并且还减少了信号屏蔽线30的阻抗,进一步提升了屏蔽线的屏蔽效果。图9(b)为图9(a)所示的剖面示意图中的触控信号线20和信号屏蔽线30分别与触控集成电路3连接的剖面示意图。
图10(a)表示触控电极10与触控信号线20异层设置,且信号屏蔽线30为双层屏蔽线的图7中的       B-B’截面的剖面示意图,此时信号屏蔽线30的其中一层301与触控电极10同层设置,主要用于屏蔽相邻两列的触控电极10对该列触控电极10的干扰;信号屏蔽线30的另一层302与触控信号线20同层设置,主要用于屏蔽相邻两列的触控电极10连接的触控信号线20对该列触控电极10连接的触控信号线20的干扰,同时,由于其中一层301和另一层302通过过孔303连接,则其中一层301和另一层302能互相加强对方的屏蔽效果,使得双层屏蔽效果比单层屏蔽效果提升,并且还减少了信号屏蔽线30的阻抗,进一步提升了屏蔽线的屏蔽效果。图10(b)为图10(a)所示的剖面示意图中的触控信号线20和信号屏蔽线30分别与触控集成电路3连接的剖面示意图。
需要说明的是,触控电极10、触控信号线20和信号屏蔽线30均设于该自动式触控面板的主体上,面板主体由下至上包括薄膜晶体管阵列5、有机发光二极管6和封装层7。该自容式触控面板可以采用外挂式触控方式、on-cell触控方式或in-cell触控方式进行触控显示。
具体地,该自容式触控面板的工作过程为:通过触控集成电路3同时向正在扫描的其中一列的触控电极10连接的触控信号线20输入第一驱动信号,以及向该列触控电极10相邻的至少一条信号屏蔽线30输入第二驱动信号,并采集该列触控电极10的触控信号;其中,所述第一驱动信号和所述第二驱动信号的电位差小于预设阈值。
经过上述工作过程,该自容式触控面板通过在每列触控电极10与该列触控电极10的相邻两列触控电极10之间设置至少部分与触控信号线20位于同层的信号屏蔽线30,来减少每列触控电极10及其触控信号线20受到相邻两列触控电极10及其连接的触控信号线20的干扰,以避免逐列扫描触控电极10时,正在扫描的一列触控电极10与相邻两列触控电极10之间存在电位差,导致相邻两列的触控电极10及其连接的触控信号线20会对正在扫描的一列触控电极10及其连接的触控信号线20造成干扰,导致正在扫描的一列触控电极10的触控监测不够准确的问题,从而提高自容式触控面板的触控性能。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (19)

  1. 一种自容式触控面板,包括触控区域和围绕所述触控区域的周边区域,所述周边区域内设有触控集成电路,所述触控区域内设有呈阵列排布的触控电极,每个所述触控电极通过单一的触控信号线与触控集成电路连接;其中,还包括多条信号屏蔽线,所述信号屏蔽线设于每列触控电极连接的多条触控信号线与该列触控电极相邻的两列触控电极之间。
  2. 如权利要求1所述的自容式触控面板,其中,所述信号屏蔽线与所述触控集成电路连接,所述触控集成电路用于向所述触控信号线输入第一驱动信号,以及向所述信号屏蔽线输入第二驱动信号,其中,所述第一驱动信号和所述第二驱动信号之间的电位差小于预设阈值。
  3. 如权利要求2所述的自容式触控面板,其中,多条所述信号屏蔽线在靠近所述触控集成电路的一端互相连接并通过位于所述周边区域中的引线与所述触控集成电路连接,其中,所述信号屏蔽线在与所述触控信号线的相交处采用换线连接。
  4. 如权利要求2所述的自容式触控面板,其中,所述信号屏蔽线还设于所述周边区域内或所述触控区域内靠近所述周边区域处;多条所述信号屏蔽线在远离所述触控集成电路的一端互相连接,且设于所述周边区域中或所述触控区域中的靠近所述周边区域处的所述信号屏蔽线与所述触控集成电路连接。
  5. 如权利要求1所述的自容式触控面板,其中,所述周边区域还包括弯折区,所述信号屏蔽线在所述弯折区弯折之后与所述触控集成电路连接。
  6. 如权利要求1所述的自容式触控面板,其中,所述信号屏蔽线为单层屏蔽线,且所述触控电极、所述触控信号线和所述信号屏蔽线同层设置。
  7. 如权利要求1所述的自容式触控面板,其中,所述信号屏蔽线为多层屏蔽线,所述多层屏蔽线的相邻两层之间采用过孔连接。
  8. 如权利要求7所述的自容式触控面板,其中,所述触控电极与所述触控信号线同层设置,且所述信号屏蔽线的其中一层与所述触控电极和所述触控信号线同层设置。
  9. 如权利要求7所述的自容式触控面板,其中,所述触控电极与所述触控信号线异层设置,且所述信号屏蔽线的其中一层与所述触控电极同层设置,所述信号屏蔽线的其中另一层与所述触控信号线同层设置。
  10. 如权利要求1所述的自容式触控面板,其中,所述信号屏蔽线的材料为金、银、铜、钼、铝和氧化铟锡中的一种或多种的组合。
  11. 一种自容式触控面板,其中,包括触控区域和围绕所述触控区域的周边区域,所述周边区域内设有触控集成电路,所述触控区域内设有呈阵列排布的触控电极,每个所述触控电极通过单一的触控信号线与触控集成电路连接;其中,还包括多条信号屏蔽线,所述信号屏蔽线设于每列触控电极连接的多条触控信号线与该列触控电极相邻的两列触控电极之间;
    所述信号屏蔽线与所述触控集成电路连接,所述触控集成电路用于向所述触控信号线输入第一驱动信号,以及向所述信号屏蔽线输入第二驱动信号,其中,所述第一驱动信号和所述第二驱动信号之间的电位差小于预设阈值。
  12. 如权利要求11所述的自容式触控面板,其中,多条所述信号屏蔽线在靠近所述触控集成电路的一端互相连接并通过位于所述周边区域中的引线与所述触控集成电路连接,其中,所述信号屏蔽线在与所述触控信号线的相交处采用换线连接。
  13. 如权利要求11所述的自容式触控面板,其中,所述信号屏蔽线还设于所述周边区域内或所述触控区域内靠近所述周边区域处;多条所述信号屏蔽线在远离所述触控集成电路的一端互相连接,且设于所述周边区域中或所述触控区域中的靠近所述周边区域处的所述信号屏蔽线与所述触控集成电路连接。
  14. 如权利要求11所述的自容式触控面板,其中,所述周边区域还包括弯折区,所述信号屏蔽线在所述弯折区弯折之后与所述触控集成电路连接。
  15. 如权利要求11所述的自容式触控面板,其中,所述信号屏蔽线为单层屏蔽线,且所述触控电极、所述触控信号线和所述信号屏蔽线同层设置。
  16. 如权利要求11所述的自容式触控面板,其中,所述信号屏蔽线为多层屏蔽线,所述多层屏蔽线的相邻两层之间采用过孔连接。
  17. 如权利要求16所述的自容式触控面板,其中,所述触控电极与所述触控信号线同层设置,且所述信号屏蔽线的其中一层与所述触控电极和所述触控信号线同层设置。
  18. 如权利要求16所述的自容式触控面板,其中,所述触控电极与所述触控信号线异层设置,且所述信号屏蔽线的其中一层与所述触控电极同层设置,所述信号屏蔽线的其中另一层与所述触控信号线同层设置。
  19. 如权利要求16所述的自容式触控面板,其中,所述信号屏蔽线的材料为金、银、铜、钼、铝和氧化铟锡中的一种或多种的组合。
PCT/CN2021/129067 2021-10-25 2021-11-05 自容式触控面板 WO2023070733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111238108.0A CN114020165B (zh) 2021-10-25 2021-10-25 自容式触控面板
CN202111238108.0 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023070733A1 true WO2023070733A1 (zh) 2023-05-04

Family

ID=80057303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129067 WO2023070733A1 (zh) 2021-10-25 2021-11-05 自容式触控面板

Country Status (2)

Country Link
CN (1) CN114020165B (zh)
WO (1) WO2023070733A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200866A (zh) * 2010-03-24 2011-09-28 上海天马微电子有限公司 互电容触摸感应装置及其检测方法、触摸显示装置
CN105760026A (zh) * 2014-09-26 2016-07-13 义隆电子股份有限公司 单层电容式触控面板的扫描方法及装置
CN106293206A (zh) * 2016-07-29 2017-01-04 厦门天马微电子有限公司 一种集成触控显示面板及其触控显示设备
WO2017028492A1 (zh) * 2015-08-14 2017-02-23 京东方科技集团股份有限公司 触控基板及其制作方法和驱动方法、触摸显示装置
US20170192614A1 (en) * 2015-12-31 2017-07-06 Superc-Touch Corporation In-cell touch display panel structure with metal shielding layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101222A1 (zh) * 2014-12-25 2016-06-30 华为技术有限公司 触摸控制的装置及终端
KR102531127B1 (ko) * 2015-12-24 2023-05-10 엘지디스플레이 주식회사 터치 일체형 표시패널 및 그를 포함하는 표시장치
TWM586384U (zh) * 2019-08-07 2019-11-11 凌巨科技股份有限公司 內嵌式觸控顯示面板
CN113515207B (zh) * 2020-04-10 2024-03-22 和鑫光电股份有限公司 触控面板及其制作方法
CN213904304U (zh) * 2020-11-30 2021-08-06 合肥鑫晟光电科技有限公司 触控基板、显示装置
CN112596631B (zh) * 2020-12-28 2024-03-29 厦门天马微电子有限公司 触控显示面板及触控显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200866A (zh) * 2010-03-24 2011-09-28 上海天马微电子有限公司 互电容触摸感应装置及其检测方法、触摸显示装置
CN105760026A (zh) * 2014-09-26 2016-07-13 义隆电子股份有限公司 单层电容式触控面板的扫描方法及装置
WO2017028492A1 (zh) * 2015-08-14 2017-02-23 京东方科技集团股份有限公司 触控基板及其制作方法和驱动方法、触摸显示装置
US20170192614A1 (en) * 2015-12-31 2017-07-06 Superc-Touch Corporation In-cell touch display panel structure with metal shielding layer
CN106293206A (zh) * 2016-07-29 2017-01-04 厦门天马微电子有限公司 一种集成触控显示面板及其触控显示设备

Also Published As

Publication number Publication date
CN114020165B (zh) 2023-12-29
CN114020165A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
US11681392B2 (en) Capacitive touch panel
KR101693132B1 (ko) 인-셀 터치 패널 및 디스플레이 디바이스
US10108063B2 (en) In-cell touch liquid crystal panel and array substrate thereof
WO2022000618A1 (zh) 触控电极层及触控显示装置
KR20180063175A (ko) 인-셀 터치 액정 패널 및 그 어레이 기판
US20130062179A1 (en) Touch panel having a shielding structure and method of manufacturing the same
US20230061413A1 (en) Display panel, methods for driving and manufacturing the same, and display apparatus
KR20130081197A (ko) 터치 패널 및 터치 패널의 제조 방법
US11216144B2 (en) Touch structure, touch display panel and driving method
CN105677126A (zh) 一种显示面板和显示装置
TW201928643A (zh) 具有雙層電極結構的互容式觸控面板
WO2023070733A1 (zh) 自容式触控面板
CN213122936U (zh) 触控显示面板及电子设备
CN115113764A (zh) 显示面板及显示装置
CN113448452B (zh) 一种有机发光触控显示面板及显示装置
CN111552414A (zh) 一种触控基板和显示面板
TWM510495U (zh) 電容式觸控裝置
US20140168158A1 (en) Touch Panel Structure of Narrow Border
WO2022257161A1 (zh) 一种触控显示面板
TWI502435B (zh) 觸控顯示系統及其觸控面板之線路佈局結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962080

Country of ref document: EP

Kind code of ref document: A1