WO2017024896A1 - Procédé de préparation de matériau composite d'électrode négative au lithium titanate dopé au métal - Google Patents
Procédé de préparation de matériau composite d'électrode négative au lithium titanate dopé au métal Download PDFInfo
- Publication number
- WO2017024896A1 WO2017024896A1 PCT/CN2016/086700 CN2016086700W WO2017024896A1 WO 2017024896 A1 WO2017024896 A1 WO 2017024896A1 CN 2016086700 W CN2016086700 W CN 2016086700W WO 2017024896 A1 WO2017024896 A1 WO 2017024896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- lithium titanate
- electrode material
- titanate negative
- doped composite
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a preparation method of a lithium ion battery anode material, in particular to a preparation method of a metal tin doped composite lithium titanate anode material.
- Lithium-ion batteries which have been widely used in electronic products such as mobile phones and notebook computers, have large specific energy, high specific power, low self-discharge, good cycle characteristics, fast charging and high efficiency, wide operating temperature range, and no environmental pollution.
- the lithium-ion batteries currently used in the market basically use carbon materials as the negative electrode, but the carbon material is the negative electrode in the practical application, there are some insurmountable weaknesses, for example, reacting with the electrolyte during the first discharge to form a surface.
- the passivation film causes the electrolyte to be consumed and the first coulombic efficiency is low; the potential of the carbon electrode is very close to the potential of the metal lithium.
- lithium titanate Compared with carbon negative electrode materials, lithium titanate has many advantages. Among them, the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. The problem is poor.
- the theoretical specific capacity of lithium titanate material is 175mAh/g
- the actual specific capacity is more than 160mAh/g
- it has the disadvantages of low gram capacity. Therefore, it is necessary to modify lithium titanate.
- Metal tin has the advantages of high lithium storage capacity (994 mAh/g) and low lithium ion deintercalation platform voltage, and is a non-carbon negative electrode material with great development potential. In recent years, extensive research has been carried out on such materials and some progress has been made. However, in the process of reversible lithium storage, the volume expansion of metallic tin is remarkable, resulting in poor cycle performance and rapid decay of capacity, so it is difficult to meet the requirements of large-scale production.
- the metal tin is stabilized by alloying or compounding, and the volume expansion of tin is slowed down.
- Carbon can prevent direct contact between tin particles, inhibit the agglomeration and growth of tin particles, and act as a buffer layer.
- the technical problem to be solved by the present invention is to provide a method for preparing a metal tin doped composite lithium titanate negative electrode material to solve the problems raised in the above background art.
- a method for preparing a metal tin doped composite lithium titanate negative electrode material, the raw materials according to the proportion by weight, comprising the following process steps:
- the precursor slurry prepared in the step (1) is subjected to atomization, drying and granulation, and then subjected to powder classification to obtain an average particle diameter of 5 to 15 ⁇ m.
- the powder obtained in the step (2) is heated to a temperature of 800 to 1000 ° C at a rate of 1 to 5 ° C / min under the protection of an inert gas, and then kept for 1 to 5 hours, naturally cooled, and after cooling.
- the composite lithium titanate negative electrode material of the present invention is obtained by pulverization and sieving.
- the titanium oxide described in the step (1) is one of anatase type titanium dioxide or a gold stone type titanium dioxide.
- the nano tin powder described in the step (1) has a particle diameter of not more than 100 nm.
- the conductive agent in the step (1) is one or a mixture of one of acetylene black, Super-P, ketjen black, graphite conductive agent, carbon fiber, carbon nanotube, and graphene.
- the inlet temperature of the spray-dried hot air described in the step (2) is from 150 ° C to 200 ° C, and the outlet temperature is from 40 ° C to 70 ° C.
- the inert gas in the step (3) is one of nitrogen gas, argon gas and helium gas.
- the invention adopts the nano tin powder, avoids the volume effect of the tin powder due to the large particle size, and ensures the stability of the material during the charging and discharging process, and simultaneously performs the composite treatment with the lithium titanate to solve the problem.
- the short capacity of the single lithium titanate anode material is low; and by adding a conductive agent to the composite system, a conductive network is formed inside the material system to increase the electrical conductivity of the composite material.
- the ratio of titanium dioxide: lithium carbonate: nano tin: conductive agent 100:38:3:10, weigh 1000g of dioxide, 380g of lithium carbonate, 30g of nano tin, 50g of acetylene black, according to the ratio of solid content of 30%, weigh 3406 g of ethanol solvent, stirring constantly, mixing into a uniform slurry; then spraying, drying, and classifying the slurry to obtain a powder having an average particle diameter of 10 ⁇ m, and then the powder is protected by an inert gas to 5
- the temperature of °C/min is raised to 1000 °C, and then kept for 3 hours, and the temperature is naturally lowered. After cooling, the composite lithium titanate anode material is obtained by sieving.
- the ratio of titanium dioxide: lithium carbonate: nano tin: conductive agent 100:40:3:10, weigh 1000g of dioxide, 400g of lithium carbonate, 30g of nano tin, 50g of Super-P, according to the ratio of solid content of 30%, weigh Take 3453g of ethanol solvent, stir constantly, mix into a uniform slurry; then spray, dry and classify the slurry to obtain a powder with an average particle size of 10 ⁇ m, and then the powder under the protection of inert gas, 3 The temperature of °C/min is raised to 900 °C, and then kept for 2 hours, and the temperature is naturally lowered. After cooling, the composite lithium titanate negative electrode material is obtained.
- the ratio is weighed into 3500g of ethanol solvent, continuously stirred and mixed into a uniform slurry; then the slurry is sprayed, dried and classified to obtain a powder with an average particle diameter of 10 ⁇ m, and then the powder is protected by an inert gas.
- the temperature is raised to 950 ° C at a rate of 4 ° C / min, and then kept for 3.5 h, and the temperature is naturally lowered. After cooling, the composite lithium titanate negative electrode material is obtained by sieving.
- the ratio of titanium dioxide: lithium carbonate 100:40, weigh 1000g of dioxide, 400g of lithium carbonate, weigh 3366g of ethanol solvent according to the ratio of solid content of 30%, stir constantly, mix into a uniform slurry; The slurry is sprayed, dried, and classified to obtain a powder having an average particle diameter of 6 ⁇ m, and then the powder is in an inert state. Under the protection of the gas, the temperature is raised to 1000 ° C at a rate of 5 ° C / min, and then kept for 3 h, and the temperature is naturally lowered. After cooling, the lithium titanate negative electrode material is obtained by sieving.
- the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
- the battery performance can be tested. The test results are shown in Table 1.
- Table 1 compares the performance of negative electrode materials in different examples and comparative examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
L'invention concerne un procédé de préparation de matériau composite d'électrode négative au lithium titanate dopé au métal, la matière première se présentant en parties en poids, comprenant les étapes suivantes : (1) préparation d'une suspension de précurseur ; (2) atomisation, séchage, granulation et classification ; et (3) traitement thermique. Le procédé, en sélectionnant de la nanopoudre d'étain, permet d'éviter l'effet de volume produit par la poudre d'étain en raison de la taille élevée des particules lors de la charge/décharge, assure la stabilité du matériau au cours du processus de charge et de décharge, et permet en même temps, au moyen du traitement composite de lithium titanate, de résoudre l'inconvénient que constitue la faible capacité d'un simple matériau d'électrode négative au lithium titanate, et ensuite, par l'introduction d'un agent électroconducteur dans un système de matériau composite, permet la formation d'un réseau électroconducteur dans le système de matériau, augmentant ainsi la conductivité électrique du matériau composite.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510480857.2A CN105006555A (zh) | 2015-08-07 | 2015-08-07 | 一种金属锡掺杂复合钛酸锂负极材料的制备方法 |
CN201510480857.2 | 2015-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017024896A1 true WO2017024896A1 (fr) | 2017-02-16 |
Family
ID=54379147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/086700 WO2017024896A1 (fr) | 2015-08-07 | 2016-06-22 | Procédé de préparation de matériau composite d'électrode négative au lithium titanate dopé au métal |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105006555A (fr) |
WO (1) | WO2017024896A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105006555A (zh) * | 2015-08-07 | 2015-10-28 | 田东 | 一种金属锡掺杂复合钛酸锂负极材料的制备方法 |
CN105489860A (zh) * | 2015-12-15 | 2016-04-13 | 昆明仁旺科技有限公司 | 一种锂离子电池负极材料及其制备方法 |
CN106129394B (zh) * | 2016-08-26 | 2019-08-23 | 深圳博磊达新能源科技有限公司 | 一种钛酸锂负极材料及钛酸锂电池 |
CN109713254B (zh) * | 2018-12-05 | 2021-03-02 | 郑州中科新兴产业技术研究院 | 一种金属氧化物导电粉复合钛酸锂材料的制备方法 |
CN109879309B (zh) * | 2019-03-14 | 2021-07-02 | 上海电气集团股份有限公司 | 一种高振实密度钛酸锂材料的制备方法 |
CN110212185B (zh) * | 2019-06-04 | 2021-01-05 | 中国地质大学(北京) | 一种Sn-P-CNT复合材料及其制备锂离子电池负极材料的用途 |
CN110459761B (zh) * | 2019-08-21 | 2022-05-17 | 江西优灿新能源科技有限公司 | 一种共掺杂钛酸锂负极材料及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101000960A (zh) * | 2006-12-29 | 2007-07-18 | 深圳市贝特瑞电子材料有限公司 | 复合钛酸锂电极材料及其制备方法 |
CN101373829A (zh) * | 2008-10-07 | 2009-02-25 | 深圳市贝特瑞新能源材料股份有限公司 | 钛系负极活性物质及其制备方法、钛系锂离子动力电池 |
CN101630732A (zh) * | 2009-07-27 | 2010-01-20 | 深圳市德方纳米科技有限公司 | 纳米钛酸锂复合物及其制备方法 |
CN102664252A (zh) * | 2012-05-19 | 2012-09-12 | 哈尔滨工业大学 | 锂离子电池负极复合材料Li4Ti5O12/AB/CNT的制备方法 |
CN103326010A (zh) * | 2013-06-05 | 2013-09-25 | 深圳市斯诺实业发展有限公司永丰县分公司 | 一种纳米硅掺杂复合钛酸锂负极材料的制备方法 |
CN104009218A (zh) * | 2014-05-07 | 2014-08-27 | 上海应用技术学院 | 锂离子电池负极材料锡/钛酸锂复合电极材料的制备方法 |
WO2014170656A1 (fr) * | 2013-04-15 | 2014-10-23 | Johnson Matthey Public Limited Company | Procédés pour la préparation de titanate de lithium |
CN105006555A (zh) * | 2015-08-07 | 2015-10-28 | 田东 | 一种金属锡掺杂复合钛酸锂负极材料的制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101894939B (zh) * | 2010-07-02 | 2014-04-16 | 重庆大学 | 锂离子电池含纳米硅或锡复合负极材料及其制备方法 |
CN102569771B (zh) * | 2012-03-12 | 2014-02-12 | 深圳华粤宝电池有限公司 | 一种SnO2-Li4Ti5O12复合电极材料及其制备方法 |
-
2015
- 2015-08-07 CN CN201510480857.2A patent/CN105006555A/zh active Pending
-
2016
- 2016-06-22 WO PCT/CN2016/086700 patent/WO2017024896A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101000960A (zh) * | 2006-12-29 | 2007-07-18 | 深圳市贝特瑞电子材料有限公司 | 复合钛酸锂电极材料及其制备方法 |
CN101373829A (zh) * | 2008-10-07 | 2009-02-25 | 深圳市贝特瑞新能源材料股份有限公司 | 钛系负极活性物质及其制备方法、钛系锂离子动力电池 |
CN101630732A (zh) * | 2009-07-27 | 2010-01-20 | 深圳市德方纳米科技有限公司 | 纳米钛酸锂复合物及其制备方法 |
CN102664252A (zh) * | 2012-05-19 | 2012-09-12 | 哈尔滨工业大学 | 锂离子电池负极复合材料Li4Ti5O12/AB/CNT的制备方法 |
WO2014170656A1 (fr) * | 2013-04-15 | 2014-10-23 | Johnson Matthey Public Limited Company | Procédés pour la préparation de titanate de lithium |
CN103326010A (zh) * | 2013-06-05 | 2013-09-25 | 深圳市斯诺实业发展有限公司永丰县分公司 | 一种纳米硅掺杂复合钛酸锂负极材料的制备方法 |
CN104009218A (zh) * | 2014-05-07 | 2014-08-27 | 上海应用技术学院 | 锂离子电池负极材料锡/钛酸锂复合电极材料的制备方法 |
CN105006555A (zh) * | 2015-08-07 | 2015-10-28 | 田东 | 一种金属锡掺杂复合钛酸锂负极材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105006555A (zh) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102699307B1 (ko) | 양극 첨가제 및 그 제조방법, 양극 및 그 제조방법과 리튬이온전지 | |
WO2021088168A1 (fr) | Matériau de supplément au lithium et électrode positive le comprenant | |
WO2017024719A1 (fr) | Procédé de préparation de matériau d'électrode négative de batterie au lithium-ion à haute capacité | |
WO2017024896A1 (fr) | Procédé de préparation de matériau composite d'électrode négative au lithium titanate dopé au métal | |
WO2018103332A1 (fr) | Batterie au lithium-ion et son matériau d'électrode négative | |
CN103296257B (zh) | 一种改性锂离子电池钛酸锂负极材料的制备方法 | |
CN104966828A (zh) | 一种高容量锂电池负极材料的制备方法 | |
Zhang et al. | Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries | |
CN103326009B (zh) | 一种高容量钛酸锂负极材料的制备方法 | |
WO2016202162A1 (fr) | Procédé pour synthétiser un matériau d'électrode négative au lithium-ion li4ti5o12/c | |
CN103326010A (zh) | 一种纳米硅掺杂复合钛酸锂负极材料的制备方法 | |
CN108199011B (zh) | 一种钛酸锂负极材料的制备方法 | |
WO2017024897A1 (fr) | Procédé de préparation de matière d'électrode négative de batterie au lithium-ion modifiée | |
WO2016165262A1 (fr) | Procédé de préparation de matériau d'électrode négative au titanate de lithium dopé | |
US20220344639A1 (en) | Silicon-based negative electrode material and method for preparing same, battery, and terminal | |
WO2017024902A1 (fr) | Procédé de préparation de matériau d'électrode négative à base de titanate de lithium modifié pour batterie lithium-ion | |
CN102881883B (zh) | 一种锂电池三元复合负极材料及其制备方法 | |
WO2016192542A1 (fr) | Procédé de préparation d'un matériau de cathode en graphite modifié | |
KR102176590B1 (ko) | 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지 | |
CN111029552A (zh) | 一种高电压高倍率钴酸锂正极材料及其制备方法 | |
WO2023087209A1 (fr) | Dispositif électrochimique et dispositif électronique | |
CN104009215A (zh) | 一种二氧化钒-石墨烯复合物及其用作锂离子电池正极材料的用途 | |
Vahdatkhah et al. | On the functionality of the polypyrrole nanostructures for surface modification of Co-free Li-rich layered oxide cathode applied in lithium-ion batteries | |
WO2016165390A1 (fr) | Procédé de préparation de matériau d'électrode négative à base de titanate de lithium modifié | |
WO2021189317A1 (fr) | Matériau d'électrode négative, dispositif électrochimique et dispositif électronique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16834520 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16834520 Country of ref document: EP Kind code of ref document: A1 |