WO2017024902A1 - Procédé de préparation de matériau d'électrode négative à base de titanate de lithium modifié pour batterie lithium-ion - Google Patents

Procédé de préparation de matériau d'électrode négative à base de titanate de lithium modifié pour batterie lithium-ion Download PDF

Info

Publication number
WO2017024902A1
WO2017024902A1 PCT/CN2016/087180 CN2016087180W WO2017024902A1 WO 2017024902 A1 WO2017024902 A1 WO 2017024902A1 CN 2016087180 W CN2016087180 W CN 2016087180W WO 2017024902 A1 WO2017024902 A1 WO 2017024902A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
powder
negative electrode
electrode material
lithium titanate
Prior art date
Application number
PCT/CN2016/087180
Other languages
English (en)
Chinese (zh)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017024902A1 publication Critical patent/WO2017024902A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a lithium ion battery anode material, in particular to a preparation method of a modified lithium battery lithium titanate anode material.
  • Lithium-ion batteries which have been widely used in electronic products such as mobile phones and notebook computers, have large specific energy, high specific power, low self-discharge, good cycle characteristics, fast charging and high efficiency, wide operating temperature range, and no environmental pollution.
  • the lithium-ion batteries currently used in the market basically use carbon materials as the negative electrode, but the carbon material is the negative electrode in the practical application, there are some insurmountable weaknesses, for example, reacting with the electrolyte during the first discharge to form a surface.
  • the passivation film causes the electrolyte to be consumed and the first coulombic efficiency is low; the potential of the carbon electrode is very close to the potential of the metal lithium.
  • lithium titanate Compared with carbon negative electrode materials, lithium titanate has many advantages. Among them, the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. The problem is poor. At the same time, the theoretical specific capacity of lithium titanate material is 175mAh/g, the actual specific capacity is more than 160mAh/g, and it has the disadvantages of low gram capacity. Therefore, it is necessary to modify lithium titanate.
  • Tin is one of the most promising anode materials for carbon materials because tin has a high specific gravity capacity of up to 994 mAh/g.
  • extensive research has been carried out on such materials and some progress has been made.
  • the volume expansion of metallic tin is remarkable, resulting in poor cycle performance and rapid decay of capacity, so it is difficult to meet the requirements of large-scale production.
  • a non-metallic element such as carbon
  • the metal tin is stabilized by alloying or compounding, and the volume expansion of tin is slowed down.
  • Carbon can prevent direct contact between tin particles, inhibit the agglomeration and growth of tin particles, and act as a buffer layer.
  • tin or its alloys have a great improvement in both capacity and cycle performance.
  • the particles of the alloy material reach the nanometer level, the volume expansion during charging and discharging is greatly reduced, and the performance is also greatly reduced. It will be improved, but the nanomaterials have a large surface energy and are prone to agglomeration, which in turn will reduce the charge and discharge efficiency and accelerate the attenuation of the capacity, thereby offsetting the advantages of the nanoparticles.
  • Another research trend to improve the performance of tin anodes is to prepare composites or alloys of tin and other materials. Among them, tin/carbon composites prepared by combining the stability of carbon materials with the high specific capacity of tin have shown great application. prospect.
  • the technical problem to be solved by the present invention is to provide a method for preparing a lithium metal titanate negative electrode material of a modified lithium battery to solve the problems raised in the above background art.
  • the temperature is raised to 700-850 ° C at a rate of 5 to 10 ° C / min, and then kept for 4 to 6 h, and then naturally cooled to room temperature to obtain a lithium titanate negative electrode material;
  • Lithium titanate, phenolic resin, and nano tin powder are in a ratio of 100:5 to 20:5 to 10 and a solid content of 20% to 40%.
  • a certain amount of nano tin powder is weighed into an alcohol solvent.
  • step (3) then mixing the homogeneous slurry of step (2) by spray drying to obtain a lithium titanate powder having a surface coated with a mixture of nano tin and a phenolic resin;
  • the powder obtained in the step (3) and the asphalt powder are uniformly mixed in a ratio of 100:5 to 20, and then the powder is heated at a rate of 1 to 5 ° C/min under the protection of an inert gas to 800 ⁇ 1000 ° C, and then keep warm for 1 ⁇ 5h, naturally cool, after cooling, sieve to obtain high-capacity modified lithium titanate anode material.
  • the lithium salt described in the step (1) is one of lithium acetate, lithium sulfate, lithium oxalate, lithium carbonate, and lithium hydroxide.
  • the titanium oxide described in the step (1) is one of anatase type titanium dioxide or a gold stone type titanium dioxide.
  • the particle size of the nano tin powder described in the step (2) is not more than 100 nm.
  • the inlet temperature of the spray-dried hot air in the step (3) is 150 ° C to 200 ° C, and the outlet temperature is 40 ° C to 70 ° C.
  • the asphalt powder according to the step (4) includes one or more of a condensed polycyclic polynuclear hydrocarbon obtained by upgrading coal tar pitch, petroleum pitch, modified pitch, mesophase pitch, and pitch.
  • the powder prepared by the mixture has a softening point of 100 to 280 ° C and an average particle diameter of 2 to 5 ⁇ m.
  • lithium titanate negative electrode material 800 ° C, and then kept at 4 h, and then naturally cooled to room temperature to obtain a lithium titanate negative electrode material; the above lithium titanate powder was weighed 2000 g, according to lithium titanate, phenolic resin, nano tin powder according to 100:10:5 , the solid content is 30%, weigh 100g of nano tin powder into 5366g of alcohol solvent, and ultrasonically disperse, then add 200g of phenolic resin and lithium titanate, respectively, while adding 3% of the resin 6g of tetraamine, continuously stirred, mixed into a uniform slurry; then spray-drying the slurry to obtain lithium titanate powder coated with a mixture of nano tin and phenolic resin, and then powder and asphalt powder according to 100: After the ratio of 5 is evenly mixed, under the protection of inert gas, the temperature is raised to 1000 ° C at a rate of 5 ° C / min, and then kept for 3 h, and the temperature is naturally lowered. After cooling, the modified
  • lithium titanate negative electrode material 800 ° C, and then kept at 4 h, and then naturally cooled to room temperature to obtain a lithium titanate negative electrode material;
  • the above lithium titanate powder was weighed 2000 g, according to lithium titanate, phenolic resin, nano tin powder according to 100:10:5 , the solid content is 30%, weigh 100g of nano tin powder into 5366g of alcohol solvent, and ultrasonically disperse, then add 200g of phenolic resin and lithium titanate, respectively, while adding 3% of the resin 6g of tetraamine, continuously stirred, mixed into a uniform slurry; then spray-drying the slurry to obtain lithium titanate powder coated with a mixture of nano tin and phenolic resin, and then powder and asphalt powder according to 100: After the ratio of 5 is evenly mixed, under the protection of inert gas, the temperature is raised to 850 ° C at a rate of 3 ° C / min, and then kept for 4 h, and the temperature is naturally lowered. After cooling
  • lithium titanate negative electrode material 800 ° C, and then kept at 4 h, and then naturally cooled to room temperature to obtain a lithium titanate negative electrode material; the above lithium titanate powder was weighed 2000 g, according to lithium titanate, phenolic resin, nano tin powder according to 100:15:5 , the solid content is 30%, weigh 100g of nano tin powder into 5600g of alcohol solvent, and ultrasonically dispersed, then add 300g of phenolic resin and lithium titanate, respectively, while adding 3% of the resin 6g of tetraamine, continuously stirred, mixed into a uniform slurry; then spray-drying the slurry to obtain lithium titanate powder coated with a mixture of nano tin and phenolic resin, and then powder and asphalt powder according to 100: After the ratio of 5 is evenly mixed, under the protection of inert gas, the temperature is raised to 900 ° C at a rate of 5 ° C / min, and then kept for 3 h, and the temperature is naturally lowered. After cooling, the
  • the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
  • the battery performance can be tested. The test results are shown in Table 1.
  • Table 1 compares the performance of negative electrode materials in different examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de préparation d'un matériau d'électrode négative à base de titanate de lithium modifié. Le procédé de préparation du matériau d'électrode négative à base de titanate de lithium modifié, selon lequel des matières premières sont réparties en parties en poids, comprend les étapes de traitement suivantes : (1) préparation de titanate de lithium ; (2) le titanate de lithium, une résine époxy et de la poudre de nano-silice sont mélangés pour former une suspension uniforme ; (3) la poudre de titanate de lithium est produite par séchage par pulvérisation ; (4) la poudre produite à l'étape (3) est mélangée uniformément avec de la poudre d'asphalte ; et (5) sous la protection d'un gaz noble, la poudre produite à l'étape (4) est soumise à un traitement à haute température pour produire le matériau d'électrode négative à base de titanate de lithium modifié. La présente invention permet la préparation de titanate de lithium par le biais d'un procédé en phase solide, et présente les avantages suivants: un processus simple, de faibles coûts de fabrication et un cycle de production court.
PCT/CN2016/087180 2015-08-07 2016-06-25 Procédé de préparation de matériau d'électrode négative à base de titanate de lithium modifié pour batterie lithium-ion WO2017024902A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510481032.2 2015-08-07
CN201510481032.2A CN105129844A (zh) 2015-08-07 2015-08-07 一种改性锂电池钛酸锂负极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2017024902A1 true WO2017024902A1 (fr) 2017-02-16

Family

ID=54715507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087180 WO2017024902A1 (fr) 2015-08-07 2016-06-25 Procédé de préparation de matériau d'électrode négative à base de titanate de lithium modifié pour batterie lithium-ion

Country Status (2)

Country Link
CN (1) CN105129844A (fr)
WO (1) WO2017024902A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129844A (zh) * 2015-08-07 2015-12-09 田东 一种改性锂电池钛酸锂负极材料的制备方法
CN105140481A (zh) * 2015-08-07 2015-12-09 田东 一种高容量锂离子电池负极材料的制备方法
CN105514391B (zh) * 2016-01-22 2017-06-16 山东大学 一种硅酸锂改性钛酸锂负极材料及制备方法、应用
CN107086301A (zh) * 2017-03-17 2017-08-22 厦门理工学院 改性Li4Ti5O12负极材料及制备方法、应用
CN106935822A (zh) * 2017-03-17 2017-07-07 厦门理工学院 锂离子电池及实现锂离子电池快速充电的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894939A (zh) * 2010-07-02 2010-11-24 重庆大学 锂离子电池含纳米硅或锡复合负极材料及其制备方法
CN103296257A (zh) * 2013-06-05 2013-09-11 深圳市斯诺实业发展有限公司永丰县分公司 一种改性锂离子电池钛酸锂负极材料的制备方法
CN105129844A (zh) * 2015-08-07 2015-12-09 田东 一种改性锂电池钛酸锂负极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232094A (zh) * 2008-02-02 2008-07-30 广州市鹏辉电池有限公司 锂离子电池负极活性物质及其电池
KR101313156B1 (ko) * 2009-12-04 2013-09-30 주식회사 아모그린텍 다성분계 나노 복합산화물 분말과 그 제조방법, 이를 이용한 전극의 제조방법과 이를 이용한 박막 전지 및 그 제조방법
CN103456939B (zh) * 2013-07-24 2015-12-23 湖南大学 利用偏钛酸制备锂离子电池负极材料碳包覆钛酸锂的方法
CN104733720A (zh) * 2015-04-15 2015-06-24 田东 一种改性钛酸锂负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894939A (zh) * 2010-07-02 2010-11-24 重庆大学 锂离子电池含纳米硅或锡复合负极材料及其制备方法
CN103296257A (zh) * 2013-06-05 2013-09-11 深圳市斯诺实业发展有限公司永丰县分公司 一种改性锂离子电池钛酸锂负极材料的制备方法
CN105129844A (zh) * 2015-08-07 2015-12-09 田东 一种改性锂电池钛酸锂负极材料的制备方法

Also Published As

Publication number Publication date
CN105129844A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017024719A1 (fr) Procédé de préparation de matériau d'électrode négative de batterie au lithium-ion à haute capacité
CN103296257B (zh) 一种改性锂离子电池钛酸锂负极材料的制备方法
WO2018103332A1 (fr) Batterie au lithium-ion et son matériau d'électrode négative
CN104966828A (zh) 一种高容量锂电池负极材料的制备方法
CN106711461A (zh) 一种球形多孔硅碳复合材料及其制备方法与用途
WO2017024896A1 (fr) Procédé de préparation de matériau composite d'électrode négative au lithium titanate dopé au métal
WO2020062046A1 (fr) Additif d'électrode positive et son procédé de préparation, électrode positive et son procédé de préparation, et batterie au lithium-ion
WO2017024902A1 (fr) Procédé de préparation de matériau d'électrode négative à base de titanate de lithium modifié pour batterie lithium-ion
WO2017024897A1 (fr) Procédé de préparation de matière d'électrode négative de batterie au lithium-ion modifiée
CN103326009B (zh) 一种高容量钛酸锂负极材料的制备方法
WO2014048098A1 (fr) Matériau d'électrode négative composite pour batterie lithium-ion, son procédé de préparation et batterie lithium-ion
WO2016202162A1 (fr) Procédé pour synthétiser un matériau d'électrode négative au lithium-ion li4ti5o12/c
WO2017206299A1 (fr) Procédé de préparation de matériau de cathode au graphite modifié destiné à des batteries lithium-ion
WO2016202167A1 (fr) Suspension d'électrode négative de titanate de lithium pour batteries au lithium-ion et son procédé de préparation
WO2016192542A1 (fr) Procédé de préparation d'un matériau de cathode en graphite modifié
CN103311514A (zh) 一种改性锂离子电池石墨负极材料的制备方法
WO2016202164A1 (fr) Procédé de préparation pour préparer un matériau d'électrode négative de carbone/graphite/étain composite
CN103326010A (zh) 一种纳米硅掺杂复合钛酸锂负极材料的制备方法
WO2016201982A1 (fr) Pâte d'anode au graphite de pile lithium-ion et son procédé de préparation
CN102881883B (zh) 一种锂电池三元复合负极材料及其制备方法
WO2017024891A1 (fr) Procédé de préparation pour un matériau d'électrode négative de batterie de puissance au lithium-ion
WO2016165262A1 (fr) Procédé de préparation de matériau d'électrode négative au titanate de lithium dopé
CN110550635B (zh) 一种新型的碳包覆硅氧负极材料的制备方法
CN104425826B (zh) 一种改性锂离子电池负极材料及其制备方法
WO2016165390A1 (fr) Procédé de préparation de matériau d'électrode négative à base de titanate de lithium modifié

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16834526

Country of ref document: EP

Kind code of ref document: A1