WO2017022828A1 - アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法 - Google Patents

アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法 Download PDF

Info

Publication number
WO2017022828A1
WO2017022828A1 PCT/JP2016/072956 JP2016072956W WO2017022828A1 WO 2017022828 A1 WO2017022828 A1 WO 2017022828A1 JP 2016072956 W JP2016072956 W JP 2016072956W WO 2017022828 A1 WO2017022828 A1 WO 2017022828A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
catalyst
supported catalyst
combustion
selectivity
Prior art date
Application number
PCT/JP2016/072956
Other languages
English (en)
French (fr)
Inventor
聡士 日隈
町田 正人
Original Assignee
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人熊本大学 filed Critical 国立大学法人熊本大学
Priority to EP16833107.2A priority Critical patent/EP3332870A4/en
Priority to JP2017533123A priority patent/JP6760607B2/ja
Priority to US15/749,954 priority patent/US10478805B2/en
Publication of WO2017022828A1 publication Critical patent/WO2017022828A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/305Boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/31Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a supported catalyst, a production method thereof, an ammonia combustion method, and a hydrogen production method.
  • This application claims priority based on Japanese Patent Application No. 2015-156425 for which it applied to Japan on August 6, 2015, and uses the content here.
  • NH 3 is attracting attention as an alternative fuel such as petroleum because it is carbon-free. Since NH 3 has a high octane number and a high compression ratio, it can be applied to an essentially compact and fuel-efficient combustor.
  • the reaction formula regarding NH 3 combustion is shown below.
  • NH 3 is a flammable gas and may be widely used in internal combustion / external combustion engines such as automobiles, aircraft, thermal power plants, and steelworks as alternative fuels such as gasoline or light oil.
  • internal combustion / external combustion engines such as automobiles, aircraft, thermal power plants, and steelworks as alternative fuels such as gasoline or light oil.
  • nitrogen (N 2 ) is generated and in addition, NO x is generated.
  • Patent Document 1 proposes an ammonia selective oxidative decomposition catalyst in which an oxide of a first group metal and an oxide of a second group metal are supported on the surface of a ceramic catalyst support.
  • Patent Document 2 discloses that at least one metal selected from manganese-cerium oxide as a catalyst A component and a non-noble metal element belonging to Groups 8 to 11 of the periodic table as a catalyst B component. Those containing elements have been proposed.
  • NH 3 as a liquid carrier is decomposed into H 2 and N 2 .
  • the reaction formula regarding the decomposition (endothermic reaction) of NH 3 is shown below.
  • the decomposition of NH 3 into H 2 and N 2 is an endothermic reaction. That is, in order to obtain and H 2 from NH 3, it is necessary to supply thermal energy necessary for the NH 3 decomposition externally.
  • the present invention has been made in view of the above circumstances, and has a high catalytic activity in ammonia combustion, suppresses the generation of NO x , and exhibits a high N 2 selectivity, and a method for burning ammonia using the same
  • an object is to provide a hydrogen production method for producing hydrogen from ammonia.
  • the present inventors adopted a supported catalyst in which a copper oxide is supported on a support made of a specific material, so that when fuel was burned from NH 3 as a fuel, fuel NO x As a result, the inventors have found that the production of can be remarkably suppressed and, in addition, the selectivity of N 2 is improved, and the present invention has been completed.
  • the supported catalyst of the present invention comprises a support in which a catalyst composition is supported on a carrier, the catalyst composition contains a copper oxide, and the carrier is ⁇ Al 2 O 3 .beta.B 2 O 3. ( ⁇ and ⁇ are each a positive number).
  • the catalyst composition preferably further contains a metal other than copper.
  • the metal other than copper is preferably at least one selected from the group consisting of silver, gold, iridium, platinum, palladium, rhodium and ruthenium.
  • the ammonia combustion method of the present invention is characterized in that ammonia and oxygen are reacted in the presence of the supported catalyst of the present invention.
  • the hydrogen production method of the present invention is a hydrogen production method for producing hydrogen from ammonia, the ammonia combustion step of reacting ammonia and oxygen in the presence of the supported catalyst of the present invention, and the ammonia and An ammonia decomposing step of decomposing ammonia into hydrogen and nitrogen using heat generated by the reaction with oxygen.
  • FIG. 3 is a graph showing changes in ammonia conversion rate, N 2 selectivity, N 2 O selectivity, and NO selectivity with respect to temperature when ammonia is burned in the presence of CuO / ⁇ -Al 2 O 3 (1). is there.
  • FIG. 6 is a graph showing changes in ammonia conversion rate, N 2 selectivity, N 2 O selectivity, and NO selectivity with respect to temperature when ammonia is burned in the presence of Pt / ⁇ -Al 2 O 3 (1). is there.
  • Test Example 11 (CuO / 10Al 2 O 3 ⁇ 2B 2 O 3) when reacted with ammonia and NO and oxygen in the presence of a supported catalyst (the as-the prepared and aged), the ammonia concentration with respect to the temperature ratio, N 2 concentration ratio, N 2 O concentration ratio is a graph showing respective changes in the NO concentration ratio.
  • the supported catalyst of the present invention comprises a support having a catalyst composition supported on a support.
  • the catalyst composition in the present invention contains a copper oxide.
  • the copper oxide include CuO, Cu 2 O, CuAlO 2 , and CuAl 2 O 4 .
  • CuO is preferable in that the catalyst activity (low temperature activity) at a lower temperature is high.
  • Cu 2 O is preferable because the production of NO is more easily suppressed.
  • the copper oxide contained in the catalyst composition may be one kind or two or more kinds.
  • the content ratio of the copper oxide is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, based on the total mass (100% by mass) of the catalyst composition. More preferably, it is 90 mass% or more, and may be 100 mass%.
  • the catalyst composition preferably further contains a metal other than copper.
  • a metal other than copper is preferably at least one selected from the group consisting of silver, gold, iridium, platinum, palladium, rhodium and ruthenium, and silver is particularly preferable among them.
  • the metal other than copper contained in the catalyst composition may be one kind alone or two or more kinds.
  • the content ratio of the metal other than copper in the catalyst composition is preferably 20% by mass or less, more preferably relative to the total mass (100% by mass) of the catalyst composition. Is 0.5 to 10% by mass.
  • the ratio of copper to a metal other than copper is a mass ratio expressed by a metal other than copper / copper (hereinafter referred to as “other than copper / copper”).
  • other than copper / copper 0.1 to 4 is preferable, and 1 to 3 is more preferable. If other than copper / copper is within the above preferred range, the catalytic activity is further increased, and in particular, the generation of NO x is more easily suppressed.
  • alpha Al (the ⁇ and ⁇ is a positive number, respectively.) 2 O 3 ⁇ ⁇ B 2 O 3 containing.
  • is a positive number, preferably 2 to 20, more preferably 2 to 10, and particularly preferably 10.
  • is a positive number, preferably 1 to 5, more preferably 1 or 2, and particularly preferably 2.
  • ⁇ Al 2 O 3 ⁇ ⁇ B 2 O 3 contained in the support may be one kind alone or two or more kinds.
  • the proportion of ⁇ Al 2 O 3 ⁇ ⁇ B 2 O 3 in the carrier is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, based on the total mass (100% by mass) of the carrier. More preferably, it is 90 mass% or more, and may be 100 mass%.
  • supports those containing 10Al 2 O 3 ⁇ 2B 2 O 3 are more preferred, and those consisting only of 10Al 2 O 3 ⁇ 2B 2 O 3 are most preferred.
  • the carrier may contain components (arbitrary components) other than ⁇ Al 2 O 3 ⁇ ⁇ B 2 O 3 .
  • the optional component include zeolite (NaY type), Al 2 O 3 , SiO 2 , TiO 2 (anatase type), ZrO 2 , and CeO 2 .
  • carrier may be single 1 type, and 2 or more types may be sufficient as it.
  • the content of the optional component in the carrier is preferably 50% by mass or less, more preferably more than 0% by mass and 20% by mass with respect to the total mass (100% by mass) of the carrier. % Or less.
  • the ratio of the catalyst composition to the supported catalyst is preferably 1 to 24% by mass, more preferably 2 to 12% by mass with respect to the total mass (100% by mass) of the supported catalyst.
  • the ratio of the catalyst composition is equal to or more than the preferable lower limit value, the effects of suppressing the generation of NO x and improving the N 2 selectivity are easily obtained.
  • the preferable upper limit is exceeded, each of the above effects tends to reach a peak.
  • the supported catalyst of the present invention can be produced by a conventionally known production method in which a catalyst composition is supported on a carrier.
  • Examples of the method for producing such a supported catalyst include a wet impregnation method, an ion exchange method, a solid phase method, a coprecipitation method, a reverse coprecipitation method, a sol-gel method, an alkoxide method, and a chemical vapor deposition method.
  • the wet impregnation method is preferable because of low temperature activity and better N 2 selectivity.
  • the support is impregnated with a liquid raw material that supplies a predetermined amount of the catalyst composition.
  • the catalyst composition is CuO, for example, Cu (NO 3 ) 2 is used as the liquid raw material, and this is impregnated into the support.
  • the desired supported catalyst is obtained by calcination preferably at 300 to 700 ° C. for 1 to 10 hours.
  • Whether or not the catalyst composition is supported on a support is determined by X-ray diffraction (XRD) method, X-ray fluorescence elemental analysis (XRF) method, X-ray photoelectron spectroscopy (XPS) method, X-ray absorption fine structure (XAFS) This method can be confirmed by a method using a method, visible / ultraviolet spectroscopy (UV-vis), Raman spectroscopy, or a transmission electron microscope (TEM-EDX).
  • XRD X-ray diffraction
  • XRF X-ray fluorescence elemental analysis
  • XPS X-ray photoelectron spectroscopy
  • XAFS X-ray absorption fine structure
  • Examples of the shape of the supported catalyst of the present invention include pellets, granules, and honeycombs.
  • the specific surface area of the supported catalyst of the present invention is, for example, about 40 to 200 m 2 ⁇ g ⁇ 1 , preferably 50 to 100 m 2 ⁇ g ⁇ 1 .
  • the specific surface area of the supported catalyst is measured by the N 2 adsorption (BET) method.
  • the combustion activity (T 10 ) when ammonia is burned in the presence of such a supported catalyst is, for example, about 100 to 400 ° C.
  • the combustion activity (T 10 ) here refers to the reaction temperature at which the ammonia conversion rate reaches 10%.
  • Ammonia combustion conditions: oxygen excess rate ⁇ 2.
  • the oxygen excess ratio ⁇ means ⁇ the actual air-fuel ratio (a mixture of ammonia and oxygen) ⁇ / ⁇ theoretical air-fuel ratio ⁇ .
  • the N 2 selectivity when ammonia is burned in the presence of such a supported catalyst is, for example, 85% or more, and preferably 90% or more.
  • the NO selectivity is, for example, 15% or less, preferably 10% or less, more preferably 6% or less.
  • N 2 O selectivity is, for example, 5% or less, preferably 2% or less, more preferably less than 1%.
  • the N 2 selectivity, the NO selectivity, and the N 2 O selectivity referred to here indicate product selectivity at a temperature of 600 ° C. at which ammonia combustion is almost completed.
  • the supported catalyst of the present invention a catalyst composition containing oxides of copper, is made of a carrier which is supported on a carrier containing ⁇ Al 2 O 3 ⁇ ⁇ B 2 O 3.
  • a supported catalyst generally used for example, a support in which Pt is supported on Al 2 O 3
  • the supported catalyst of the present invention is useful as an ammonia combustion catalyst.
  • the start temperature of ammonia combustion can be lowered.
  • the supported catalyst of the present invention is also excellent in terms of heat resistance and water resistance.
  • such a supported catalyst does not require the use of a noble metal and can be prepared at a low cost. Further, such a supported catalyst can be easily prepared by using, for example, a wet impregnation method which is general as a catalyst preparation method.
  • ammonia combustion method of the present invention is a method of reacting ammonia and oxygen in the presence of the above-described supported catalyst of the present invention.
  • Such an ammonia combustion method is performed, for example, by flowing a supply gas containing ammonia and oxygen into a reactor filled with the supported catalyst of the present invention so as to contact the supported catalyst.
  • the amount of the supported catalyst used is preferably 1 mg or more and 1 g or less, more preferably 10 to 100 mg with respect to a supply gas containing 1.0% ammonia at a flow rate of 100 mL ⁇ min ⁇ 1 .
  • FIG. 1 is a graph showing the enthalpy change ( ⁇ H °) with respect to the oxygen excess rate ⁇ when ammonia is burned.
  • the ratio of ammonia to oxygen in the feed gas is preferably 0.1 to 24, more preferably 0.5 to 7, more preferably 1 to 6, particularly preferably 2 to 6, in terms of the oxygen excess ratio ⁇ . is there.
  • the supply gas may contain a gas other than ammonia and oxygen, and may contain a gas inert to ammonia combustion, such as a rare gas such as nitrogen or argon, or carbon dioxide.
  • the reaction temperature (temperature in the reactor) is preferably adjusted to 200 to 900 ° C., for example.
  • the flow rate of the supply gas flowing through the reactor may be set in consideration of the reaction scale and the like, for example, preferably 1 mL ⁇ min ⁇ 1 or more and 100 L ⁇ min ⁇ 1 or less, more preferably 10 mL ⁇ min ⁇ 1. It is 10 L ⁇ min ⁇ 1 or less.
  • the production of fuel NO x or thermal NO x is remarkably suppressed by burning ammonia in the presence of the supported catalyst of the present invention, and nitrogen and water are generated.
  • the According to this ammonia combustion method the NO generation and N 2 O generation suppression effects and N 2 selectivity are remarkable, and zero emission can be realized in ammonia combustion.
  • the hydrogen production method of the present invention is a method for producing hydrogen from ammonia.
  • a hydrogen production method uses an ammonia combustion process in which ammonia and oxygen are reacted in the presence of the above-described supported catalyst of the present invention, and heat generated by the reaction between the ammonia and oxygen to convert ammonia into hydrogen. And an ammonia decomposition step that decomposes into nitrogen.
  • Examples of the hydrogen production method of the present invention include the following first embodiment and second embodiment. Hereinafter, each embodiment will be described with reference to the drawings.
  • FIG. 2 shows an embodiment of a hydrogen production apparatus, a so-called external combustion type apparatus.
  • a hydrogen production apparatus 100 shown in FIG. 2 includes a cylindrical reactor 110, an ammonia combustion unit 120 that is disposed in the reactor 110 and includes a cylindrical reactor, and a flow path 140 through which ammonia flows. Outlined. Between the reactor 110 and the ammonia combustion part 120, a support part 130 provided along the inner peripheral surface of the reactor 110 is interposed, and the ammonia combustion part 120 is fixed in the reactor 110.
  • a supported catalyst 125 having a honeycomb structure is installed inside the ammonia burning unit 120.
  • the supported catalyst of the present invention described above as an ammonia combustion catalyst is applied to the supported catalyst 125.
  • the flow path 140 is provided along the outer periphery of the reactor 110.
  • ammonia combustion process (1) The operation of the ammonia combustion step (1) may be performed using the above-described ammonia combustion method of the present invention.
  • ammonia and air are supplied into the reactor 110 from one opening 112 toward the other opening 114.
  • the supply gas containing ammonia and air flows through the ammonia burning part 120 while contacting the supported catalyst 125.
  • ammonia and oxygen in the air in excess of ammonia react (combust) to generate nitrogen and water, and the generated nitrogen and water and unreacted oxygen are in the other side. It flows out from the opening 114.
  • This reaction between ammonia and oxygen, that is, ammonia combustion is an exothermic reaction, and the temperature on the opening 114 side of the reactor 110 rises to, for example, about 900 ° C. with the generation of heat.
  • Ammonia decomposition step (1) In the operation of the ammonia decomposition step (1), when the temperature in the flow path 140 is increased by the operation of the ammonia combustion process (1), the flow in the flow path 140 is opposite to the supply gas in the reactor 110, that is, the reaction. Ammonia is supplied from the opening 114 side of the vessel 110 toward the opening 112 side. As a result, the ammonia flowing through the flow path 140 is heated by the heat generated by the ammonia combustion, decomposes into hydrogen and nitrogen, and hydrogen is produced from the ammonia. Here, heat is generated by ammonia combustion, and ammonia is decomposed even under non-catalytic conditions. Therefore, hydrogen can be produced by reducing the external heat supply (autothermal state).
  • FIG. 3 shows another embodiment of the hydrogen production apparatus, a so-called internal combustion apparatus.
  • a hydrogen production apparatus 200 shown in FIG. 3 includes a substantially cylindrical flow path 240 through which ammonia flows, a cylindrical reactor 210 disposed in the flow path 240, and a cylindrical structure disposed in the reactor 210. And an ammonia combustion section 220 composed of the reactor.
  • the channel 240 is narrowed toward one opening 242 (circular shape).
  • a support part 230 provided along the inner peripheral surface of the reactor 210 is interposed to fix the ammonia combustion part 220 in the reactor 210.
  • a supported catalyst 225 having a honeycomb structure is installed inside the ammonia combustion section 220.
  • the supported catalyst of the present invention described above as an ammonia combustion catalyst is applied to the supported catalyst 225.
  • ammonia combustion process (2) What is necessary is just to perform operation of an ammonia combustion process (2) similarly to operation of the ammonia combustion process (1) mentioned above.
  • ammonia and air are supplied from the ammonia supply port 212 and air supply port 214 into the reactor 210.
  • the oxygen supply amount in the air is set to a stoichiometric amount in ammonia combustion (3/4 mol of oxygen with respect to 1 mol of ammonia).
  • the supply gas containing ammonia and air flows through the ammonia burning part 220 while contacting the supported catalyst 225.
  • ammonia and oxygen in the air react (combust) to generate nitrogen and water, and the generated nitrogen and water flow out to the opening 242 side of the flow path 240.
  • This ammonia combustion is an exothermic reaction, and with the generation of heat, the temperature on the opening 242 side of the flow path 240 rises to about 900 ° C., for example.
  • ammonia decomposition step (2) The operation of the ammonia decomposition step (2) is performed, for example, as follows.
  • the temperature on the opening 242 side of the flow path 240 is increased by the operation of the ammonia combustion process (2), the same direction as the supply gas in the reactor 210, that is, the ammonia supply port 212 of the reactor 210 is formed in the flow path 240.
  • ammonia heated in advance is supplied toward the opening 242 side of the flow path 240.
  • the ammonia that has flowed through the flow path 240 and has reached the opening 242 side is further heated by the heat generated by the ammonia combustion, and is decomposed into hydrogen and nitrogen, whereby hydrogen is produced from the ammonia.
  • nitrogen and water generated in the ammonia combustion process (2) and hydrogen and nitrogen generated in the ammonia decomposition process (2) flow out from the opening 242 of the flow path 240.
  • the hydrogen production method of the present invention described above has an ammonia combustion step and an ammonia decomposition step, and heat supply from the outside is achieved by combining two reactions of ammonia combustion and ammonia decomposition.
  • ammonia combustion in the presence of the supported catalyst of the present invention produces, for example, a production amount of fuel NO x of several ppm and an exotherm of about 900 ° C., and the heat is used to produce ammonia.
  • the hydrogen production method is not limited to these, and can be implemented in other embodiments.
  • the ammonia combustion unit 120 is disposed in the reactor 110.
  • the present invention is not limited to this, and the ammonia combustion unit 120 is disposed in the flow path 140 and includes ammonia and air.
  • the embodiment may be such that gas is passed through the flow path 140 to burn ammonia, and ammonia is supplied into the reactor 110 to decompose the ammonia.
  • the ammonia combustion unit 220 is disposed in the reactor 210.
  • the present invention is not limited to this, and the ammonia combustion unit 220 is disposed in the flow path 240 so that ammonia and air are mixed.
  • the embodiment may be such that ammonia is combusted by flowing the supplied supply gas through the flow path 240 and ammonia is decomposed by supplying ammonia into the reactor 210.
  • Mullite (mullite) type crystal structure based 10Al 2 O 3 ⁇ 2B 2 O 3 ( another title: Al 5 to give BO 9 or Al 20 B 4 a O 36).
  • a supported catalyst of each example and the like was manufactured as follows by a wet impregnation method. Each support was impregnated with Cu (NO 3 ) 2 so that CuO was 6.0% by mass with respect to the total mass (100% by mass) of the supported catalyst and the like to obtain an impregnated body. Then, the obtained impregnated body was calcined in air adjusted to 600 ° C. for 3 hours to obtain a supported catalyst and the like. For characterization of the obtained supported catalyst or the like, methods based on the XRD method, the XRF method, and the XPS method were used. The specific surface area of the supported catalyst or the like was measured by the N 2 adsorption (BET) method.
  • BET N 2 adsorption
  • the supported catalyst of each example is shown below. None of the catalysts of Test Examples 1 to 4 has a carrier.
  • the supported catalysts of Test Example 11 and Test Example 12 apply the present invention and are the supported catalysts of Example 1 and Example 2.
  • Test Example 19 a general supported catalyst Pt / ⁇ -Al 2 O 3 (1) was used. The proportion of Pt in the supported catalyst is 1.0% by mass with respect to the total mass (100% by mass) of the supported catalyst.
  • Test Example 1 Cu 2 O Test Example 2: CuO Test Example 3: CuAlO 2 Test Example 4: CuAl 2 O 4
  • Test Example 5 CuO / zeolite (NaY type) Test Example 6: CuO / MgO Test Example 7: CuO / ⁇ -Al 2 O 3 (1) Test Example 8: CuO / ⁇ -Al 2 O 3 (2) Test Example 9: CuO / ⁇ -Al 2 O 3 (1) Test Example 10: CuO / ⁇ -Al 2 O 3 (2) Test Example 11: CuO / 10Al 2 O 3 .2B 2 O 3 Test Example 12: CuO / 2Al 2 O 3 .B 2 O 3 Test Example 13: CuO / AlPO 4 Test Example 14: CuO / SiO 2 Test Example 15: CuO / TiO 2 (anatase type) Test Example 16: CuO / ZrO 2 Test Example 17: CuO / La 2 O 3 Test Example 18: CuO / CeO 2 Test Example 19: Pt / ⁇ -Al 2 O 3 (1)
  • Ammonia combustion (1) and ammonia combustion (2) were performed while raising the temperature in the reactor from room temperature (25 ° C.) to 900 ° C. at a rate of 10 ° C./min.
  • the flow rate of the feed gas flowing through the reactor was set to 100 mL ⁇ min ⁇ 1 .
  • ammonia conversion The ammonia conversion rate was measured by a non-dispersive infrared absorption method using an infrared gas analyzer EIA-51d manufactured by Horiba, Ltd.
  • the NO 2 selectivity was measured using a chemiluminescent nitrogen oxide concentration meter NOA-7000 manufactured by Shimadzu Corporation.
  • the NO selectivity was measured by a non-dispersive infrared absorption method using an infrared gas analyzer VA-3011 manufactured by Horiba, Ltd.
  • the N 2 O selectivity was measured by the non-dispersive infrared absorption method using the VA-3011 manufactured by Horiba, Ltd.
  • the N 2 selectivity was measured using a gas chromatography GC-8A manufactured by Shimadzu Corporation.
  • Table 1 shows the combustion activity (T 10 ), N 2 selectivity, N 2 O selectivity and NO selectivity for the catalysts of Test Examples 1 to 4.
  • Table 2 shows the specific surface area, combustion activity (T 10 ), N 2 selectivity, N 2 O selectivity and NO selectivity for the supported catalysts of Test Examples 5 to 19.
  • Test Example 7 (CuO / ⁇ -Al 2 O 3 (1)), Test Example 8 (CuO / ⁇ -Al 2 O 3 (2)), Test Example 9 (CuO / ⁇ -Al 2 O 3 (1)), Test Example 11 (CuO / 10Al 2 O 3 .2B 2 O 3 ), Test Example 12 (CuO / 2Al 2 O 3 .B 2 O 3 ), Test Example 16 ( For the supported catalysts of CuO / ZrO 2 ), Test Example 17 (CuO / La 2 O 3 ), Test Example 18 (CuO / CeO 2 ), it can be confirmed that the T 10 value is smaller and the low-temperature activity is high.
  • Test Example 11 CuO / 10Al 2 O 3 .2B 2 O 3
  • Test Example 12 CuO / 2Al 2 O 3 .B 2 O 3
  • Test Example 13 It can be confirmed that the N 2 selectivity exceeds 90% for the supported catalyst of (CuO / AlPO 4 ) and Test Example 14 (CuO / SiO 2 ).
  • the supported catalyst test example of applying the present invention 11 (CuO / 10Al 2 O 3 ⁇ 2B 2 O 3) and Test Example 12 (CuO / 2Al 2 O 3 ⁇ B 2 O 3) , the catalyst activity It can be confirmed that N 2 and N 2 selectivity are both high. Among them, in particular, it can be confirmed that the supported catalyst of Test Example 11 has both high catalytic activity and N 2 selectivity.
  • the horizontal axis shows the supported catalyst to the total weight of (CuO / 10Al 2 O 3 ⁇ 2B 2 O 3) (100 mass%), the proportion of CuO which is supported on a carrier (CuO supported amount / wt%) . From FIG. 4, it can be confirmed that when the amount of CuO supported is about 4% by mass or more, the catalytic activity is high in ammonia combustion, and the production of NO x is easily suppressed.
  • FIGS. 5 to 7 are graphs showing changes in ammonia conversion rate, N 2 selectivity, N 2 O selectivity, and NO selectivity with respect to temperature when ammonia is burned in the presence of a supported catalyst or the like.
  • Graph of Figure 5 using the supported catalyst of the above test example was produced by the (1) of the supported catalyst such as 11 (CuO / 10Al 2 O 3 ⁇ 2B 2 O 3), ammonia combusting (1) The behavior when performed is shown.
  • the graph of FIG. 6 shows that the combustion of ammonia (1) was performed using the catalyst of Test Example 7 (CuO / ⁇ -Al 2 O 3 (1)) obtained by the production (1) of the supported catalyst described above. Shows the behavior when The graph of FIG. 7 shows the behavior of ammonia combustion (1) using the supported catalyst of Test Example 19 (Pt / ⁇ -Al 2 O 3 (1)).
  • Tables 3 to 4 show the ammonia conversion rate and product selectivity with respect to each reaction temperature.
  • Tables 5 to 6 show the ammonia conversion rate and product selectivity for each reaction temperature when ammonia combustion (1) was performed using the catalysts of Test Examples 7 and 11 after heating.
  • ⁇ Reaction of ammonia, NO and oxygen> 8 to 9 show changes in ammonia concentration ratio, N 2 concentration ratio, N 2 O concentration ratio, and NO concentration ratio with respect to temperature when ammonia, NO, and oxygen are reacted in the presence of a supported catalyst. It is a graph.
  • test example was produced by the (1) such as the supported catalyst 11 (CuO / 10Al 2 O 3 ⁇ 2B 2 O 3) supported catalysts (the as-the prepared) and supported catalyst (aged) Shows the behavior when the following reaction of ammonia, NO and oxygen is carried out.
  • the supported catalyst (aged) in Test Example 11 a catalyst that was deteriorated by subjecting the supported catalyst (as-prepared) of Test Example 11 to heat treatment at 900 ° C. in air for 100 hours was used.
  • the graph of FIG. 9 uses the catalyst (as-prepared) and the catalyst (aged) of Test Example 7 (CuO / ⁇ -Al 2 O 3 (1)) obtained by the production (1) of the above supported catalyst and the like. The following behavior is shown when ammonia, NO, and oxygen are reacted.
  • the catalyst (aged) in Test Example 7 the catalyst (as-prepared) of Test Example 7 that was deteriorated by heating at 900 ° C. for 100 hours in air was used.
  • the reaction of ammonia, NO, and oxygen was performed while raising the temperature in the reactor from room temperature (25 ° C.) to 900 ° C. at a rate of 10 ° C./min.
  • the flow rate of the feed gas flowing through the reactor was set to 5.0 ⁇ 10 ⁇ 4 g ⁇ min ⁇ cm ⁇ 3 .
  • Supported catalyst in Test Example 11 CuO / 10Al 2 O 3 ⁇ 2B 2 O 3 (CuO 6.0% by weight based on the total weight of the supported catalyst (100 mass%))
  • Supported catalyst of Test Example 20 (CuO / Ag) / 10Al 2 O 3 .2B 2 O 3 (6.0% by mass of CuO and 10.0% by mass of Ag with respect to the total mass (100% by mass) of the supported catalyst) %)
  • the supported catalyst of Test Example 20 was produced as follows. 10Al to 2 O 3 ⁇ 2B 2 O 3 carrier, CuO 6.0% by weight based on the total weight of the supported catalyst (100 mass%), as Ag is 10.0 wt%, Cu (NO 3) 2 and AgNO 3 were impregnated to obtain an impregnated body. Thereafter, the obtained impregnated body was calcined in air adjusted to 600 ° C. for 3 hours to obtain a supported catalyst of Test Example 20.
  • Table 7 shows the combustion activity (T 10 ), N 2 selectivity, N 2 O selectivity, and NO selectivity for each supported catalyst of Test Example 11 and Test Example 20.
  • the values of N 2 selectivity, N 2 O selectivity, and NO selectivity indicate selectivity at the temperature (T 90 ) when the ammonia conversion rate reaches 90%.
  • Catalyst molded bodies of Test Examples 21 to 22 10Al 2 O 3 ⁇ 2B 2 O 3 carrier, and Al in 2 O 3 carrier, respectively, as CuO, based on the total weight of the supported catalyst (100 mass%) is 6.0 wt% Cu (NO 3) 2 was impregnated to obtain an impregnated body (a slurry-like supported catalyst). Next, the obtained impregnated body was fired in air adjusted to 600 ° C. for 3 hours to obtain a pellet-shaped formed body (as-prepared). Thereafter, the obtained pellet-shaped molded body (as-prepared) is subjected to a heat treatment at 900 ° C. for 100 hours in an atmosphere through which air flows, whereby the target catalyst molded body (aged) of Test Example 21 is obtained. ) And a molded catalyst body (aged) of Test Example 22 was obtained.
  • Catalyst molded bodies of Test Examples 23 to 24 From a 600 cpsi cordierite honeycomb (1 cell size: 0.96 mm ⁇ 0.96 mm), honeycomb pieces having a size of 3 cells ⁇ 4 cells ⁇ 15 mm were cut out. The honeycomb piece is dipped in the slurry-like supported catalyst obtained above, and the honeycomb piece is taken out from the slurry-like supported catalyst so that the amount of the supported catalyst attached becomes 0.05 g, and is adjusted to 600 ° C. in air. Firing was performed for 3 hours to obtain a honeycomb-shaped formed body (as-prepared). Thereafter, the obtained honeycomb molded body (as-prepared) was subjected to a heat treatment at 900 ° C. for 100 hours in an atmosphere through which air flows, whereby the catalyst molded body (aged) of the intended Test Example 23 was obtained. ), And a catalyst molded body (aged) of Test Example 24 was obtained.
  • a feed gas containing 8% ammonia and 92% air (oxygen 18.6%) in a reactor filled with a catalyst molded body (aged) of each example using a flow reactor equipped with a reactor. (Oxygen excess rate ⁇ 3.1) was passed in contact with the catalyst molded body (aged) to perform ammonia combustion (3).
  • the amount of the supported catalyst used was 50 mg of the pellet-shaped formed body for Test Examples 21 to 22, and 50 mg of the supported catalyst adhered to the honeycomb pieces for Test Examples 23 to 24.
  • Ammonia combustion (3) was performed while increasing the temperature in the reactor from room temperature (25 ° C.) to 600 ° C. at a rate of 10 ° C./min.
  • the flow rate of the feed gas flowing through the reactor was set to 5.0 ⁇ 10 ⁇ 4 g ⁇ min ⁇ cm ⁇ 3 .
  • Table 8 shows the N 2 O selectivity and the NO selectivity for each of the catalyst molded bodies (aged) of Test Examples 21 to 24.
  • the values of N 2 O selectivity and NO selectivity indicate the selectivity at the temperature (T 90 ) when the ammonia conversion rate reaches 90%.
  • the catalyst molded body (aged) of Test Example 23 having a honeycomb structure has either N 2 O selectivity or NO selectivity. It can also be confirmed that it is the lowest.
  • Ammonia is a combustible gas with heat generation, and may be widely used as an alternative fuel such as gasoline or light oil in internal combustion / external combustion engines such as automobiles, aircraft, thermal power plants, and steelworks. And when burning such ammonia, it is useful to apply this invention. Further, it is assumed that ammonia is transported in water, and the ammonia combustion in this case is a combustion reaction containing water vapor. And it is useful to apply this invention with respect to the combustion reaction containing such water vapor
  • the present invention can be used in, for example, fuel cells, gasoline vehicles, diesel vehicles, thermal power generation, chemical product manufacturing, exhaust gas treatment, and the like.
  • Fuel cell Ammonia is decomposed into hydrogen using the supported catalyst of the present invention, and electric power is taken out using the obtained hydrogen as a fuel.
  • Gasoline automobile Ammonia is burned using the supported catalyst of the present invention, and the heat generated at this time is used for the combustor.
  • Diesel vehicle Can be used as NO x purification catalyst (NH 3 -SCR) in diesel vehicles.
  • Thermal power generation Ammonia is combusted using the supported catalyst of the present invention, and a turbine (mainly a steam turbine) is driven by heat generated at this time.
  • the supported catalyst of the present invention can also be applied to preheating or premixing or heating of a gas turbine.
  • Chemical product manufacture Combustion of ammonia using the supported catalyst of the present invention, and the heat generated at this time is manufactured in the range of room temperature to about 900 ° C (from ethylene production, petroleum refining, natural gas production) Used for hydrogen production, heavy oil desulfurization, etc.)
  • Exhaust gas treatment Can be used as a detoxifying catalyst for a very small amount of NH 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

触媒組成物が担体に担持された担持体からなり、触媒組成物は、銅の酸化物を含有し、担体は、αAl・βB(α及びβはそれぞれ正の数である。)を含有する、担持触媒。前記担持触媒の存在下でアンモニアと酸素とを反応させるアンモニア燃焼工程、及び、アンモニアと酸素との反応により発生する熱を利用して、アンモニアを水素と窒素とに分解するアンモニア分解工程を有する、アンモニアから水素を製造する水素製造方法。

Description

アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法
本発明は、担持触媒及びその製造方法、並びに、アンモニアの燃焼方法及び水素製造方法に関する。
本願は、2015年8月6日に日本に出願された特願2015-156425号に基づき優先権を主張し、その内容をここに援用する。
現在、再生可能エネルギー社会への移行は、先進諸国に共通する重要な課題である。この課題に対し、水素(H)をエネルギー源とする技術基盤の構築が求められている。
水素は、クリーンな二次エネルギーの第一候補とされる。しかし、水素自体の液化が困難であるため、水素を生成し得る貯蔵・輸送し易い液体キャリアが望まれる。
その中で、アンモニア(NH)は、水素密度が高い上、液化が容易であること(液化条件:1MPa未満、室温)から、前記の液体キャリアとして有望視されている。
NHは、カーボンフリーなことから、石油等の代替燃料としても注目されている。NHは、オクタン価が高く、圧縮比を高められることから、本質的にコンパクトで低燃費な燃焼器への適用が可能である。
以下に、NH燃焼(発熱反応)に関する反応式を示す。
NH + 3/4O → 1/2N+ 3/2HO ΔH°=-317kJ/mol
上式に示すように、NHは、可燃性ガスであり、ガソリン又は軽油などの代替燃料として自動車、航空機、火力発電所、製鉄所などの内燃・外燃機関で広く利用できる可能性がある。一方、NH燃焼においては、窒素(N)が生成し、加えてNOの生成を伴うという問題があった。
かかる問題に対し、例えば、特許文献1には、セラミック触媒担体表面に、第1群金属の酸化物と第2群金属の酸化物とを担持してなるアンモニア選択酸化分解用触媒が提案されている。
また、アンモニア燃焼用触媒として、特許文献2には、触媒A成分としてマンガン-セリウム酸化物及び触媒B成分として周期表8~11族に属する非貴金属元素の中から選ばれる少なくとも1種以上の金属元素を含有するものが提案されている。
特開2000-140640号公報 特開2010-240645号公報
ところで、再生可能エネルギー社会への移行に際し、ゼロ・エミッションの実現も望まれる。
かかる実現に向けて、特許文献1、2等で提案されている従来の触媒を用いたNH燃焼においては、更なるNO生成の抑制、及び、N選択性の向上が必要である。
また、液体キャリアとしてのNHは、HとNとに分解する。以下に、NHの分解(吸熱反応)に関する反応式を示す。
NH → 1/2N + 3/2H ΔH°=46kJ/mol
上式に示すように、NHからHとNとへの分解は吸熱反応である。すなわち、NHからHを得るには、外部からNH分解に要する熱エネルギーを供給する必要がある。
本発明は、上記事情に鑑みてなされたものであり、アンモニア燃焼において触媒活性が高く、NOの生成が抑制され、高いN選択性を示す担持触媒、及びこれを用いたアンモニアの燃焼方法、並びに、アンモニアから水素を製造する水素製造方法を提供することを課題とする。
本発明者は検討の中で、銅の酸化物を特定の材料からなる担体に担持させた担持触媒を採用することにより、燃料としてのNHを低温から燃焼させていった際、フューエルNOの生成が著しく抑えられること、加えて、Nの選択性が高められることを見出し、本発明を完成するに至った。
すなわち、本発明の担持触媒は、触媒組成物が担体に担持された担持体からなり、前記触媒組成物は、銅の酸化物を含有し、前記担体は、αAl・βB(α及びβはそれぞれ正の数である。)を含有することを特徴とする。
前記触媒組成物は、さらに、銅以外の金属を含有することが好ましい。
前記の銅以外の金属が、銀、金、イリジウム、白金、パラジウム、ロジウム及びルテニウムからなる群より選択される少なくとも1種であることが好ましい。
また、本発明のアンモニアの燃焼方法は、前記本発明の担持触媒の存在下でアンモニアと酸素とを反応させることを特徴とする。
また、本発明の水素製造方法は、アンモニアから水素を製造する水素製造方法であって、前記本発明の担持触媒の存在下でアンモニアと酸素とを反応させるアンモニア燃焼工程、及び、前記のアンモニアと酸素との反応により発生する熱を利用して、アンモニアを水素と窒素とに分解するアンモニア分解工程、を有することを特徴とする。
本発明によれば、アンモニア燃焼において触媒活性が高く、NOの生成が抑制され、高いN選択性を示す担持触媒、及びこれを用いたアンモニアの燃焼方法、並びに、アンモニアから水素を製造する水素製造方法を提供できる。
アンモニアを燃焼させた際の、酸素過剰率λに対するエンタルピー変化(△H°)を示すグラフである。 水素製造装置の一実施形態を示す模式図である。 水素製造装置の他の実施形態を示す模式図である。 CuO/10Al・2Bにおける、触媒活性及び生成物選択率に対するCuO量の依存性を示すグラフである。 CuO/10Al・2Bの存在下でアンモニアを燃焼させた際の、温度に対するアンモニア転化率、N選択率、NO選択率、NO選択率の各変化を示すグラフである。 CuO/γ-Al(1)の存在下でアンモニアを燃焼させた際の、温度に対するアンモニア転化率、N選択率、NO選択率、NO選択率の各変化を示すグラフである。 Pt/γ-Al(1)の存在下でアンモニアを燃焼させた際の、温度に対するアンモニア転化率、N選択率、NO選択率、NO選択率の各変化を示すグラフである。 試験例11(CuO/10Al・2B)の担持触媒(as-prepared及びaged)の存在下でアンモニアとNOと酸素とを反応させた際の、温度に対するアンモニア濃度比、N濃度比、NO濃度比、NO濃度比の各変化を示すグラフである。 試験例7(CuO/γ-Al(1))の担持触媒(as-prepared及びaged)の存在下でアンモニアとNOと酸素とを反応させた際の、温度に対するアンモニア濃度比、N濃度比、NO濃度比、NO濃度比の各変化を示すグラフである。
(担持触媒)
本発明の担持触媒は、触媒組成物が担体に担持された担持体からなるものである。
<触媒組成物>
本発明における触媒組成物は、銅の酸化物を含有する。
銅の酸化物としては、CuO、CuO、CuAlO、CuAl等が挙げられる。より低い温度での触媒活性(低温活性)が高い点で、CuOが好ましい。また、特にNOの生成がより抑えられやすい点から、CuOが好ましい。
触媒組成物に含まれる銅の酸化物は、1種単独でもよいし2種以上でもよい。
触媒組成物中、銅の酸化物の含有割合は、触媒組成物の総質量(100質量%)に対して50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%でもよい。
前記触媒組成物は、さらに、銅以外の金属を含有することが好ましい。銅に加えて銅以外の金属を含有することで、触媒活性がより高められ、特にNOの生成がより抑えられやすくなる。
前記の銅以外の金属としては、銀、金、イリジウム、白金、パラジウム、ロジウム及びルテニウムからなる群より選択される少なくとも1種が好ましく、その中でも銀が特に好ましい。
触媒組成物に含まれる銅以外の金属は、1種単独でもよいし2種以上でもよい。
触媒組成物が銅以外の金属を含有する場合、触媒組成物中、銅以外の金属の含有割合は、触媒組成物の総質量(100質量%)に対して20質量%以下が好ましく、より好ましくは0.5~10質量%である。
触媒組成物が銅と銅以外の金属とを含有する場合、銅と銅以外の金属との比率は、銅以外の金属/銅で表される質量比(以下「銅以外/銅」と表す)で、銅以外/銅=0.1~4が好ましく、より好ましくは1~3である。
銅以外/銅が前記の好ましい範囲内であれば、触媒活性がより高められ、特にNOの生成がより抑えられやすくなる。
好適な触媒組成物の具体例を以下に挙げる。各成分の割合は、触媒組成物に占める割合を示す。
(c1)CuO 100質量%
(c2)CuO 100質量%
(c3)CuOを25質量%と、Agを75質量%との組合せ
(c4)CuOを25質量%と、Agを75質量%との組合せ
<担体>
本発明における担体は、αAl・βB(α及びβはそれぞれ正の数である。)を含有する。αAl・βBを含有する担体を採用したことで、低温活性及びN選択性が共に高められる。
αは、正の数であり、2~20が好ましく、より好ましくは2~10、特に好ましくは10である。
βは、正の数であり、1~5が好ましく、より好ましくは1又は2、特に好ましくは2である。
担体に含まれるαAl・βBは、1種単独でもよいし2種以上でもよい。
担体に占めるαAl・βBの割合は、担体の総質量(100質量%)に対して50質量%以上であり、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上であり、100質量%でもよい。
担体の中でも、10Al・2Bを含有するものがより好ましく、10Al・2Bのみからなるものが最も好ましい。
前記担体は、αAl・βB以外の成分(任意成分)を含有していてもよい。前記任意成分としては、例えば、ゼオライト(NaY型)、Al、SiO、TiO(アナターゼ型)、ZrO、CeO等が挙げられる。
担体に含まれる前記任意成分は、1種単独でもよいし2種以上でもよい。
担体が前記任意成分を含有する場合、担体中、前記任意成分の含有割合は、担体の総質量(100質量%)に対して50質量%以下が好ましく、より好ましくは0質量%超、20質量%以下である。
好適な担体の具体例を以下に挙げる。
(s1)10Al・2B 100質量%
(s2)2Al・B 100質量%
(s3)10Al・2Bを94質量%と、CuOを6質量%との組合せ
(s4)10Al・2Bを84質量%と、CuOを6質量%と、Agを10質量%との組合せ
担持触媒に占める触媒組成物の割合は、担持触媒の総質量(100質量%)に対して1~24質量%が好ましく、より好ましくは2~12質量%である。
触媒組成物の割合が、前記の好ましい下限値以上であると、NOの生成の抑制、及びN選択性の向上の各効果が充分に得られやすくなる。一方、前記の好ましい上限値を超えても、前記の各効果は頭打ちの傾向にある。
[担持触媒の製造方法]
本発明の担持触媒は、担体に触媒組成物を担持させる従来公知の製造方法によって製造できる。かかる担持触媒の製造方法としては、例えば、湿式含浸法、イオン交換法、固相法、共沈法、逆共沈法、ゾル-ゲル法、アルコキシド法、化学気相成長法などが挙げられ、これらの中でも、低温活性及びN選択性がより良好なことから、湿式含浸法が好ましい。
例えば湿式含浸法を用いて担持触媒を製造する場合、担体に、所定量の触媒組成物を供給する液体原料を含浸させる。例えば触媒組成物がCuOである場合には、例えば液体原料としてCu(NOを用い、これを担体に含浸させる。かかる含浸の後、好ましくは300~700℃、1~10時間で焼成することにより、目的とする担持触媒が得られる。
触媒組成物が担体に担持されているか否かについては、X線回折(XRD)法、蛍光X線元素分析(XRF)法、X線光電子分光(XPS)法、X線吸収微細構造(XAFS)法、可視・紫外分光法(UV-vis)、ラマン分光法又は透過型電子顕微鏡(TEM-EDX)による方法を用いて確認できる。
本発明の担持触媒の形状としては、例えばペレット状、顆粒状、ハニカム状等が挙げられる。
本発明の担持触媒について、その比表面積は、例えば40~200m・g-1程度であり、好ましくは50~100m・g-1である。担持触媒の比表面積は、N吸着(BET)法により測定される。
かかる担持触媒の存在下でアンモニアを燃焼させた際の、燃焼活性(T10)は、例えば100~400℃程度である。
ここでいう燃焼活性(T10)とは、アンモニアの転化率が10%に達する反応温度をいう。アンモニアの燃焼条件:酸素過剰率λ=2。
酸素過剰率λとは、{実際の混合気(アンモニアと酸素との混合気)の空燃比}/{理論空燃比}を意味する。
かかる担持触媒の存在下でアンモニアを燃焼させた際の、N選択率は、例えば85%以上であり、好ましくは90%以上である。
かかる担持触媒の存在下でアンモニアを燃焼させた際の、NO選択率は、例えば15%以下であり、好ましくは10%以下、より好ましくは6%以下である。
かかる担持触媒の存在下でアンモニアを燃焼させた際の、NO選択率は、例えば5%以下であり、好ましくは2%以下、より好ましくは1%未満である。
ここでいうN選択率、NO選択率、NO選択率とは、アンモニアの燃焼がほぼ完結している温度600℃における生成物選択率を示す。
以上説明したように、本発明の担持触媒は、銅の酸化物を含有する触媒組成物が、αAl・βBを含有する担体に担持された担持体からなるものである。
本発明の担持触媒を用いることで、特に低酸素過剰率の条件下でのアンモニア燃焼において、一般的に用いられている担持触媒(例えば、PtがAlに担持された担持体)に比べて、NOの生成がより抑制され、高いN選択性が示される。このように、本発明の担持触媒は、アンモニア燃焼触媒として有用なものである。
また、本発明の担持触媒によれば、アンモニア燃焼の開始温度の低下が図れる。
また、本発明の担持触媒は、耐熱性、耐水性の点でも優れる。
加えて、かかる担持触媒は、貴金属を用いる必要がなく安価での調製が可能である。さらに、かかる担持触媒は、触媒調製方法として汎用な例えば湿式含浸法を用いて簡易に調製できる。
(アンモニアの燃焼方法)
本発明のアンモニアの燃焼方法は、上述した本発明の担持触媒の存在下でアンモニアと酸素とを反応させる方法である。
かかるアンモニアの燃焼方法は、例えば、本発明の担持触媒が充填された反応器に、アンモニアと酸素とを含む供給ガスを、前記担持触媒に接触するように通流することにより行われる。
担持触媒の使用量は、流速100mL・min-1のアンモニア1.0%を含む供給ガスに対して1mg以上、1g以下が好ましく、より好ましくは10~100mgである。
図1は、アンモニアを燃焼させた際の、酸素過剰率λに対するエンタルピー変化(△H°)を示すグラフである。
NH燃焼においては、酸素過剰率λが約0.1以上になると、反応前後のエンタルピー変化(△H°)が負の値となる。酸素過剰率λが約0.1以上であれば、燃焼熱が得られる。
供給ガス中のアンモニアと酸素との比率は、上記の酸素過剰率λで0.1~24が好ましく、より好ましくは0.5~7、さらに好ましくは1~6、特に好ましくは2~6である。
供給ガスは、アンモニア及び酸素以外のガスを含んでいてもよく、例えば窒素、アルゴン等の希ガス、二酸化炭素などの、アンモニア燃焼に対して不活性なガスを含んでいてもよい。
反応温度(反応器内の温度)は、例えば200~900℃に調整することが好ましい。
反応器内を通流する供給ガスの流速は、反応スケール等を勘案して設定すればよく、例えば1mL・min-1以上、100L・min-1以下が好ましく、より好ましくは10mL・min-1以上、10L・min-1以下である。
以上説明した本発明のアンモニアの燃焼方法においては、本発明の担持触媒の存在下でアンモニアを燃焼させることにより、フューエルNO又はサーマルNOの生成が著しく抑えられ、窒素と水とが生成される。かかるアンモニアの燃焼方法によれば、NO生成及びNO生成の抑制効果並びにN選択性が顕著であり、アンモニア燃焼においてゼロ・エミッションを実現し得る。
(水素製造方法)
本発明の水素製造方法は、アンモニアから水素を製造する方法である。
かかる水素製造方法は、上述した本発明の担持触媒の存在下でアンモニアと酸素とを反応させるアンモニア燃焼工程、及び、前記のアンモニアと酸素との反応により発生する熱を利用して、アンモニアを水素と窒素とに分解するアンモニア分解工程、を有する。
本発明の水素製造方法としては、例えば、以下に示す第1の実施形態、及び第2の実施形態が挙げられる。
以下、図面を参照しながら各実施形態について説明する。
<第1の実施形態>
図2は、水素製造装置の一実施形態、いわゆる外燃型装置を示している。
図2に示す水素製造装置100は、円筒状の反応器110と、反応器110内に配置され、円筒状の反応器からなるアンモニア燃焼部120と、アンモニアが通流する流路140と、から概略構成される。
反応器110とアンモニア燃焼部120との間には、反応器110内周面に沿って設けられた支持部130が介在し、アンモニア燃焼部120を反応器110内に固定している。図2において、アンモニア燃焼部120の内部には、ハニカム構造化した担持触媒125が設置されている。担持触媒125には、アンモニア燃焼触媒として上述した本発明の担持触媒が適用されている。
流路140は、反応器110外周に沿って設けられている。
[アンモニア燃焼工程(1)]
アンモニア燃焼工程(1)の操作は、上述した本発明のアンモニアの燃焼方法を用いて行えばよい。
例えば、水素製造装置100においては、反応器110内に、一方の開口部112から他方の開口部114に向かって、アンモニアと空気とを供給する。これにより、アンモニア燃焼部120内を、アンモニアと空気とを含む供給ガスが担持触媒125に接触しながら通流する。この際、アンモニアと、アンモニアに対して過剰量の空気中の酸素と、が反応(燃焼)して、窒素と水とが生成し、この生成した窒素及び水と未反応の酸素とが他方の開口部114から流出する。このアンモニアと酸素との反応、すなわちアンモニア燃焼は発熱反応であり、熱の発生を伴い、反応器110の開口部114側の温度が例えば900℃程度まで上昇する。
[アンモニア分解工程(1)]
アンモニア分解工程(1)の操作は、アンモニア燃焼工程(1)の操作によって流路140内の温度が上昇したところで、流路140内に、反応器110内の供給ガスとは逆方向、すなわち反応器110の開口部114側から開口部112側に向かって、アンモニアを供給する。これにより、流路140内を通流するアンモニアは、前記のアンモニア燃焼により発生する熱によって加熱され、水素と窒素とに分解し、アンモニアから水素が製造される。ここでは、アンモニア燃焼により発生する熱を利用し、無触媒条件でもアンモニアが分解することから、外部からの熱供給を低減して水素製造が可能である(オートサーマル状態)。
<第2の実施形態>
図3は、水素製造装置の他の実施形態、いわゆる内燃型装置を示している。
図3に示す水素製造装置200は、アンモニアが通流する略円筒状の流路240と、流路240内に配置された円筒状の反応器210と、反応器210内に配置され、円筒状の反応器からなるアンモニア燃焼部220と、から概略構成される。
流路240は、一方の開口部242(円形状)に向かって狭くされている。
反応器210とアンモニア燃焼部220との間には、反応器210内周面に沿って設けられた支持部230が介在し、アンモニア燃焼部220を反応器210内に固定している。図3において、アンモニア燃焼部220の内部には、ハニカム構造化した担持触媒225が設置されている。担持触媒225には、アンモニア燃焼触媒として上述した本発明の担持触媒が適用されている。
[アンモニア燃焼工程(2)]
アンモニア燃焼工程(2)の操作は、上述したアンモニア燃焼工程(1)の操作と同様にして行えばよい。
例えば、水素製造装置200においては、反応器210内に、アンモニア供給口212からアンモニアと、空気供給口214から空気とが供給される。この際、好ましくは、空気中の酸素供給量を、アンモニア燃焼における化学量論量(アンモニア1モルに対して酸素3/4モル)とする。これにより、アンモニア燃焼部220内を、アンモニアと空気とを含む供給ガスが担持触媒225に接触しながら通流する。この際、アンモニアと空気中の酸素とが反応(燃焼)して、窒素と水とが生成し、この生成した窒素及び水とが流路240の開口部242側へ流出する。このアンモニア燃焼は発熱反応であり、熱の発生を伴い、流路240の開口部242側の温度が例えば900℃程度まで上昇する。
[アンモニア分解工程(2)]
アンモニア分解工程(2)の操作は、例えば以下のようにして行われる。
アンモニア燃焼工程(2)の操作によって流路240の開口部242側の温度が上昇したところで、流路240内に、反応器210内の供給ガスと同じ方向、すなわち反応器210のアンモニア供給口212側から、流路240の開口部242側に向かって、予め加熱されたアンモニアが供給される。これにより、流路240内を通流して開口部242側に達したアンモニアは、前記のアンモニア燃焼により発生する熱によってさらに加熱され、水素と窒素とに分解し、アンモニアから水素が製造される。
そして、アンモニア燃焼工程(2)で生成した窒素及び水と、アンモニア分解工程(2)で生成した水素及び窒素と、が流路240の開口部242から流出する。
以上説明した本発明の水素製造方法は、アンモニア燃焼工程、及び、アンモニア分解工程、を有しており、アンモニア燃焼とアンモニア分解との2つの反応が組み合わされていることで、外部からの熱供給を低減して水素を製造できる(オートサーマル状態)。
かかる水素製造方法においては、本発明の担持触媒の存在下でのアンモニア燃焼によって、例えばフューエルNOの生成量が数ppmで、かつ、900℃程度の発熱が得られ、その熱の利用によりアンモニアを分解して水素を製造することが可能である。酸素過剰率λ=1であれば、下流側の酸素濃度がゼロになるため、既存のNO分解触媒等を用いるNO分解システムを導入できる。
加えて、前記のアンモニア分解を無触媒条件とすれば、かかる水素製造方法は、気相分解反応によるものであることから、三次元の反応空間で、短時間に、大量の水素を容易に製造し得る。
本発明の水素製造方法について、第1の実施形態、及び第2の実施形態を説明したが、かかる水素製造方法は、これらに限定されず、その他実施形態で実施することも可能である。
上述した第1の実施形態では、アンモニア燃焼部120が反応器110内に配置されていたが、これに限定されず、流路140にアンモニア燃焼部120を配置し、アンモニアと空気とを含む供給ガスを流路140に通流してアンモニアを燃焼させ、アンモニアを反応器110内に供給してアンモニアを分解させるような実施形態でもよい。
また、上述した第2の実施形態では、アンモニア燃焼部220が反応器210内に配置されていたが、これに限定されず、流路240にアンモニア燃焼部220を配置し、アンモニアと空気とを含む供給ガスを流路240に通流してアンモニアを燃焼させ、アンモニアを反応器210内に供給してアンモニアを分解させるような実施形態でもよい。
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
<αAl・βB担体の製造>
10Al・2Bを、逆共沈法によって合成した。
Al(NO・9HOと、HBOとを、モル比が前者:後者=10:2となるように量り採って、これらをイオン交換水に溶解させた。この溶液を、炭酸アンモニウム水溶液に少しずつ滴下して共沈させ、エバポレーターを用いて減圧乾燥させた。次いで、110℃で一晩乾燥した後、500℃で3時間、1000℃で5時間焼成して、Mullite(ムライト)型結晶構造系の10Al・2B(別標記:AlBO又はAl2036)を得た。
2Al・Bを、固相法によって合成した。
Alと、Bとを、モル比が前者:後者=2:1となるように量り採って、これらをメノウ乳鉢で混合した。この混合物を900℃で24時間焼成して、Mullite(ムライト)型結晶構造系の2Al・B(別標記:Al)を得た。
尚、上記2種のαAl・βB(10Al・2B、2Al・B)は、逆共沈法及び固相法のいずれでも合成できる。
<担持触媒等の製造(1)>
触媒組成物としてCuOと、各種の担体と、を用いて、湿式含浸法により、以下のようにして各例の担持触媒等を製造した。
それぞれの担体に、担持触媒等の総質量(100質量%)に対してCuOが6.0質量%となるようにCu(NOを含浸させて、含浸体を得た。その後、得られた含浸体を、600℃に調整した空気中で3時間焼成して担持触媒等を得た。
得られた担持触媒等に対するキャラクタリゼーションには、XRD法、XRF法及びXPS法による方法を用いた。
担持触媒等の比表面積は、N吸着(BET)法により測定した。
各例の担持触媒等を以下に示す。
試験例1~4の触媒はいずれも担体を有していないものである。試験例11及び試験例12の担持触媒は、本発明を適用したものであって実施例1及び実施例2の担持触媒である。
尚、試験例19として、一般的な担持触媒であるPt/γ-Al(1)を用いた。担持触媒に占めるPtの割合は、担持触媒の総質量(100質量%)に対して1.0質量%である。
試験例1:Cu
試験例2:CuO
試験例3:CuAlO
試験例4:CuAl
試験例5:CuO/ゼオライト(NaY型)
試験例6:CuO/MgO
試験例7:CuO/γ-Al(1)
試験例8:CuO/γ-Al(2)
試験例9:CuO/α-Al(1)
試験例10:CuO/α-Al(2)
試験例11:CuO/10Al・2B
試験例12:CuO/2Al・B
試験例13:CuO/AlPO
試験例14:CuO/SiO
試験例15:CuO/TiO(アナターゼ型)
試験例16:CuO/ZrO
試験例17:CuO/La
試験例18:CuO/CeO
試験例19:Pt/γ-Al(1)
XRD法によるキャラクタリゼーションの結果、10Al・2B担体、2Al・B担体、AlPO担体、SiO担体、TiO(アナターゼ型)担体、ZrO担体を有する試験例11~16のものにおいては、CuOに帰属される回折線が出現し、CuOが担体に担持されていることが確認された。
その他試験例のものにおいては、Cuに起因するピークが認められなかった。
Cuを含む二元系酸化物の相図より、Cuは、MgO、CeO又はγ-Alもしくはα-Alの共存下では単独酸化物として存在し、Laの共存下ではこれと複合酸化物を形成していると推定される。ゼオライト(NaY型)については、3回の繰り返し反応試験で、担体構造の崩壊に伴う性能劣化が確認された。
<担持触媒等の製造(2)>
触媒組成物としてCuOと、担体として10Al・2Bと、を用い、10Al・2B担体に、担持触媒等の総質量(100質量%)に対するCuO量が異なるようにCu(NOを含浸させた以外は、上記の担持触媒等の製造(1)と同様にして、担持触媒CuO/10Al・2Bを得た。
<アンモニアの燃焼(1)>
反応器を備えた流通型反応装置を用い、各例の担持触媒等がそれぞれ充填された反応器内に、アンモニア1.0%と酸素1.5%とを含む供給ガス(酸素過剰率λ=2)を、担持触媒等に接触するように通流して、アンモニアの燃焼を行った。担持触媒等の使用量を50mgとした。
酸素過剰率λを変更する際には、アンモニアを1.0%に固定して以下の酸素濃度の供給ガスを反応器内に供給した。
λ=1のとき、酸素0.75%
λ=2のとき、酸素1.5%
λ=3のとき、酸素2.25%
λ=4のとき、酸素3.0%
λ=5のとき、酸素3.75%
<アンモニアの燃焼(2)>
酸素過剰率λを、λ=3、λ=4、λ=5へそれぞれ変更した以外は、上記のアンモニアの燃焼(1)と同様にして、アンモニアの燃焼を行った。
アンモニアの燃焼(1)及びアンモニアの燃焼(2)は、反応器内の温度を、室温(25℃)から900℃まで、10℃/minで昇温させながら行った。反応器内を通流する供給ガスの流速を100mL・min-1とした。
アンモニアを燃焼させた際に、アンモニア転化率、燃焼活性(T10)、生成物選択率(NO選択率、NO選択率、NO選択率、N選択率)をそれぞれ求めた。
[アンモニア転化率]
アンモニア転化率は、株式会社堀場製作所製の赤外線ガス分析計EIA-51dを用いて、非分散型赤外線吸収法により測定した。
[燃焼活性(T10)]
上記のアンモニア転化率が10%に達した時の反応器内の温度を測定した。
[生成物選択率(NO選択率、NO選択率、NO選択率、N選択率)]
NO選択率は、株式会社島津製作所製の化学発光式窒素酸化物濃度計NOA-7000を用いて測定した。
NO選択率は、株式会社堀場製作所製の赤外線ガス分析計VA-3011を用いて、非分散型赤外線吸収法により測定した。
O選択率は、株式会社堀場製作所製の前記VA-3011を用いて、非分散型赤外線吸収法により測定した。
選択率は、株式会社島津製作所製のガスクロマトグラフィーGC-8Aを用いて測定した。
試験例1~4の触媒についての燃焼活性(T10)、N選択率、NO選択率及びNO選択率を表1に示した。
Figure JPOXMLDOC01-appb-T000001
試験例5~19の担持触媒等についての比表面積、燃焼活性(T10)、N選択率、NO選択率及びNO選択率を表2に示した。
Figure JPOXMLDOC01-appb-T000002
・触媒活性について
表2に示す結果から、試験例7(CuO/γ-Al(1))、試験例8(CuO/γ-Al(2))、試験例9(CuO/α-Al(1))、試験例11(CuO/10Al・2B)、試験例12(CuO/2Al・B)、試験例16(CuO/ZrO)、試験例17(CuO/La)、試験例18(CuO/CeO)の担持触媒等について、T10値がより小さく、低温活性の高いことが確認できる。
・生成物選択率について
表2に示す結果から、試験例11(CuO/10Al・2B)、試験例12(CuO/2Al・B)、試験例13(CuO/AlPO)、試験例14(CuO/SiO)の担持触媒等について、N選択率が90%を超えていることが確認できる。
上記の中でも、本発明を適用した試験例11(CuO/10Al・2B)及び試験例12(CuO/2Al・B)の担持触媒については、触媒活性とN選択性とがいずれも高いことが確認できる。その中でも、特に、試験例11の担持触媒が、触媒活性とN選択性とがいずれも高いことが確認できる。
図4は、本発明を適用した担持触媒CuO/10Al・2Bにおける、触媒活性及び生成物選択率に対するCuO量の依存性を示すグラフである。
図4のグラフは、上記の担持触媒等の製造(2)により得られた、CuO量が異なる担持触媒CuO/10Al・2Bをそれぞれ用いて、アンモニアの燃焼(1)を行った際に求めた、燃焼活性(T10)、NO選択率、NO選択率の結果を示す。
横軸は、担持触媒(CuO/10Al・2B)の総質量(100質量%)に対する、担体に担持されているCuOの割合(CuO担持量/質量%)を示している。
図4より、かかるCuO担持量が約4質量%以上であると、アンモニア燃焼において触媒活性が高く、かつ、NOの生成が抑制されやすくなることが確認できる。
図5~7は、担持触媒等の存在下でアンモニアを燃焼させた際の、温度に対するアンモニア転化率、N選択率、NO選択率、NO選択率の各変化を示すグラフである。
図5のグラフは、上記の担持触媒等の製造(1)により得られた試験例11(CuO/10Al・2B)の担持触媒を用いて、アンモニアの燃焼(1)を行った際の挙動を示す。
図6のグラフは、上記の担持触媒等の製造(1)により得られた試験例7(CuO/γ-Al(1))の触媒を用いて、アンモニアの燃焼(1)を行った際の挙動を示す。
図7のグラフは、試験例19(Pt/γ-Al(1))の担持触媒を用いて、アンモニアの燃焼(1)を行った際の挙動を示す。
図5及び図6より、アンモニア燃焼において、試験例7及び試験例11の触媒を用いた場合、いずれも同様のNH転化率曲線を示している。また、いずれの場合も、アンモニアの燃焼がほぼ完結する温度(約600℃)付近から、NOの生成が認められる。
O選択率については、両者で顕著な差が認められる。試験例7の触媒を用いた場合、NO選択率は最大で約6%を示したのに対し、試験例11の担持触媒を用いた場合、NO選択率は約1%(70ppm)まで低減した。これは、試験例11の担持触媒を用いることで、副生するNOとアンモニアとの反応が促進し、NO生成が抑制されるため、N選択性が向上すると推定される。
図7より、アンモニア燃焼において、試験例19の担持触媒を用いた場合、試験例7又は試験例11の触媒を用いた場合に比べて、NO選択率及びNO選択率が高く、N選択率が低いことが確認できる。
アンモニアの燃焼(2)、すなわち、試験例7及び試験例11の触媒をそれぞれ用い、酸素過剰率λをλ=2、λ=3、λ=4、λ=5へ変更してアンモニアの燃焼を行った際における、各反応温度に対するアンモニア転化率、生成物選択率を表3~4に示した。
表3には、酸素過剰率λ=2、λ=3の場合における、各反応温度に対するアンモニア転化率、NO選択率、NO選択率を示している。
表4には、酸素過剰率λ=4、λ=5の場合における、各反応温度に対するアンモニア転化率、NO選択率、NO選択率、NO選択率を示している。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
表3~4に示す結果から、酸素過剰率がλ=2、λ=3、λ=4及びλ=5のアンモニア燃焼において、例えば反応温度600℃の場合、いずれのλ条件も、試験例11の担持触媒を用いた場合の方が、試験例7の触媒を用いた場合に比べて、NO選択率が低く、NOxの生成がより抑制されていることが確認できる。
また、試験例11の担持触媒を用いた場合、λ=2のアンモニア燃焼での反応温度400~600℃におけるNO選択率及びNO選択率が最も低いこと、が確認できる。
<耐熱性>
上記の担持触媒等の製造(1)により得られた試験例7及び試験例11の触媒を、900℃に調整した空気中に500時間保管しつつ加熱した。
この加熱後の試験例7及び試験例11の触媒を用いて、アンモニアの燃焼(1)を行った際における、各反応温度に対するアンモニア転化率、生成物選択率を表5~6に示した。
表5には、酸素過剰率λ=2、λ=3の場合における、各反応温度に対するアンモニア転化率、NO選択率、NO選択率を示している。
表6には、酸素過剰率λ=4、λ=5の場合における、各反応温度に対するアンモニア転化率、NO選択率、NO選択率、NO選択率を示している。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
表5~6に示す結果から、アンモニア燃焼において、試験例11の担持触媒を用いた場合、加熱前と同程度に、NO選択率及びNO選択率が低いことが確認できる。すなわち、試験例11の担持触媒は耐熱性にも優れている。
<アンモニアとNOと酸素との反応>
図8~9は、担持触媒の存在下でアンモニアとNOと酸素とを反応させた際の、温度に対するアンモニア濃度比、N濃度比、NO濃度比、NO濃度比の各変化を示すグラフである。
図8のグラフは、上記の担持触媒等の製造(1)により得られた試験例11(CuO/10Al・2B)の担持触媒(as-prepared)及び担持触媒(aged)を用いて、下記のアンモニアとNOと酸素との反応を行った際の挙動を示す。
試験例11における担持触媒(aged)には、試験例11の担持触媒(as-prepared)に対し、空気中、900℃で100時間の加熱処理を施すことにより劣化させたものを用いた。
図9のグラフは、上記の担持触媒等の製造(1)により得られた試験例7(CuO/γ-Al(1))の触媒(as-prepared)及び触媒(aged)を用いて、下記のアンモニアとNOと酸素との反応を行った際の挙動を示す。
試験例7における触媒(aged)には、試験例7の触媒(as-prepared)に対し、空気中、900℃で100時間の加熱処理を施すことにより劣化させたものを用いた。
反応器を備えた流通型反応装置を用い、各例の担持触媒がそれぞれ充填された反応器内に、アンモニア0.8%と一酸化窒素0.2%と酸素1.4%とヘリウム残部とを含む供給ガス(酸素過剰率λ=2)を、担持触媒に接触するように通流して、アンモニアとNOと酸素との反応を行った。担持触媒の使用量を50mgとした。
アンモニアとNOと酸素との反応は、反応器内の温度を、室温(25℃)から900℃まで、10℃/minで昇温させながら行った。反応器内を通流する供給ガスの流速を5.0×10-4g・min・cm-3とした。
図8及び図9より、アンモニアとNOと酸素との反応において、試験例11の担持触媒を用いた場合、試験例7の触媒を用いた場合に比べて、アンモニアとNOとの反応性が高く、N選択性が高いことが確認できる。
<触媒組成物への銀の添加による効果>
担持触媒として、下記試験例11の担持触媒と、下記試験例20の担持触媒と、を用いた。
試験例11の担持触媒:CuO/10Al・2B(担持触媒の総質量(100質量%)に対してCuOが6.0質量%)
試験例20の担持触媒:(CuO/Ag)/10Al・2B(担持触媒の総質量(100質量%)に対してCuOが6.0質量%、Agが10.0質量%)
試験例20の担持触媒は以下のようにして製造した。
10Al・2B担体に、担持触媒の総質量(100質量%)に対してCuOが6.0質量%、Agが10.0質量%となるように、Cu(NOと、AgNOと、を含浸させて、含浸体を得た。その後、得られた含浸体を、600℃に調整した空気中で3時間焼成して、試験例20の担持触媒を得た。
試験例11及び試験例20の各担持触媒についての燃焼活性(T10)、N選択率、NO選択率及びNO選択率を表7に示した。
表7中、N選択率、NO選択率及びNO選択率の値は、アンモニア転化率が90%に達した時点の温度(T90)での選択率を示す。
Figure JPOXMLDOC01-appb-T000007
表7に示す結果から、銀が添加された試験例20の担持触媒は、試験例11の担持触媒に比べて、T10値がより小さく、低温活性の高いことが確認できる。
<ハニカム構造化による効果>
試験例21~24の触媒成形体を、以下のようにして製造した。
試験例21~22の触媒成形体:
10Al・2B担体、及びAl担体に、それぞれ、担持触媒の総質量(100質量%)に対してCuOが6.0質量%となるようにCu(NOを含浸させて、含浸体(スラリー状の担持触媒)を得た。次いで、得られた含浸体を、600℃に調整した空気中で3時間焼成して、ペレット状成形体(as-prepared)を得た。
その後、得られたペレット状成形体(as-prepared)に対し、空気が通流する雰囲気下、900℃で100時間の加熱処理を施すことにより、目的とする試験例21の触媒成形体(aged)、及び試験例22の触媒成形体(aged)をそれぞれ得た。
試験例23~24の触媒成形体:
600cpsiのコーディエライトハニカム(1cellサイズ:0.96mm×0.96mm)から、3cell×4cell×15mmの大きさのハニカム片を切り出した。
前記で得られたスラリー状の担持触媒にハニカム片を浸漬し、担持触媒の付着量が0.05gとなるように、ハニカム片をスラリー状の担持触媒から取り出し、600℃に調整した空気中で3時間焼成して、ハニカム状成形体(as-prepared)を得た。
その後、得られたハニカム状成形体(as-prepared)に対し、空気が通流する雰囲気下、900℃で100時間の加熱処理を施すことにより、目的とする試験例23の触媒成形体(aged)、及び試験例24の触媒成形体(aged)をそれぞれ得た。
反応器を備えた流通型反応装置を用い、各例の触媒成形体(aged)がそれぞれ充填された反応器内に、アンモニア8%と空気92%(酸素18.6%)とを含む供給ガス(酸素過剰率λ=3.1)を、触媒成形体(aged)に接触するように通流して、アンモニアの燃焼(3)を行った。担持触媒の使用量を、試験例21~22については、ペレット状成形体50mgとし、試験例23~24については、ハニカム片に付着した担持触媒50mgとした。
アンモニアの燃焼(3)は、反応器内の温度を、室温(25℃)から600℃まで、10℃/minで昇温させながら行った。反応器内を通流する供給ガスの流速を5.0×10-4g・min・cm-3とした。
試験例21~24の各触媒成形体(aged)についての、NO選択率及びNO選択率を表8に示した。
表8中、NO選択率及びNO選択率の値は、アンモニア転化率が90%に達した時点の温度(T90)での選択率を示す。
Figure JPOXMLDOC01-appb-T000008
表8に示す結果から、試験例21~24の触媒成形体(aged)の中で、ハニカム構造化した試験例23の触媒成形体(aged)が、NO選択率及びNO選択率のいずれについても最も低いことが確認できる。
アンモニアは、発熱を伴う可燃性ガスであり、ガソリン又は軽油などの代替燃料として自動車、航空機、火力発電所、製鉄所などの内燃・外燃機関で広く利用できる可能性がある。そして、このようなアンモニアを燃焼させる際に、本発明を適用することが有用である。
また、アンモニアの輸送形態として、水に溶解させる場合も想定され、この場合におけるアンモニアの燃焼は、水蒸気を含んだ燃焼反応となる。そして、このような水蒸気を含んだ燃焼反応に対し、本発明を適用することが有用である。
本発明は、例えば燃料電池、ガソリン自動車、ディーゼル自動車、火力発電、化成品製造、排ガス処理等での利用が可能である。
燃料電池:本発明の担持触媒を用いてアンモニアを水素へと分解し、得られた水素を燃料として利用して電力を取り出す。
ガソリン自動車:本発明の担持触媒を用いてアンモニアを燃焼し、この際に発生する熱を燃焼器へ利用する。
ディーゼル自動車:ディーゼル自動車におけるNO浄化触媒(NH-SCR)として用い得る。
火力発電:本発明の担持触媒を用いてアンモニアを燃焼し、この際に発生する熱によってタービン(主にスチームタービン)を駆動する。また、ガスタービンの予加熱もしくは予混合又は暖房にも、本発明の担持触媒を応用できる。
化成品製造:本発明の担持触媒を用いてアンモニアを燃焼し、この際に発生する熱を、常温から900℃程度の範囲で製造される化成品製造(エチレン製造、石油精製、天然ガスからの水素製造、重油脱硫など)へ利用する。
排ガス処理:微少量NHの無害化触媒として用い得る。
100 水素製造装置、110 反応器、120 アンモニア燃焼部、125 担持触媒、130 支持部、140 流路、200 水素製造装置、210 反応器、220 アンモニア燃焼部、225 担持触媒、230 支持部、240 流路。

Claims (5)

  1. 触媒組成物が担体に担持された担持体からなり、
    前記触媒組成物は、銅の酸化物を含有し、
    前記担体は、αAl・βB(α及びβはそれぞれ正の数である。)を含有する、担持触媒。
  2. 前記触媒組成物は、さらに、銅以外の金属を含有する、請求項1に記載の担持触媒。
  3. 前記の銅以外の金属が、銀、金、イリジウム、白金、パラジウム、ロジウム及びルテニウムからなる群より選択される少なくとも1種である、請求項2に記載の担持触媒。
  4. 請求項1~3の担持触媒の存在下でアンモニアと酸素とを反応させる、アンモニアの燃焼方法。
  5. アンモニアから水素を製造する水素製造方法であって、
    請求項1~3の担持触媒の存在下でアンモニアと酸素とを反応させるアンモニア燃焼工程、及び、
    前記のアンモニアと酸素との反応により発生する熱を利用して、アンモニアを水素と窒素とに分解するアンモニア分解工程、
    を有する、水素製造方法。
PCT/JP2016/072956 2015-08-06 2016-08-04 アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法 WO2017022828A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16833107.2A EP3332870A4 (en) 2015-08-06 2016-08-04 METHOD FOR PRODUCING AMMONIA COMBUSTION CATALYST, AND METHOD FOR USING AMMONIA CATALYST COMBUSTION COMBUSTION HEAT
JP2017533123A JP6760607B2 (ja) 2015-08-06 2016-08-04 アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法
US15/749,954 US10478805B2 (en) 2015-08-06 2016-08-04 Method for producing ammonia combustion catalyst and method for utilizing heat generated by ammonia catalyst combustion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-156425 2015-08-06
JP2015156425 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022828A1 true WO2017022828A1 (ja) 2017-02-09

Family

ID=57943172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072956 WO2017022828A1 (ja) 2015-08-06 2016-08-04 アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法

Country Status (4)

Country Link
US (1) US10478805B2 (ja)
EP (1) EP3332870A4 (ja)
JP (1) JP6760607B2 (ja)
WO (1) WO2017022828A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051859A1 (ja) * 2016-09-13 2018-03-22 国立大学法人熊本大学 アンモニア燃焼触媒、及びアンモニア触媒燃焼によって生成する熱の利用方法
JP2019025389A (ja) * 2017-07-26 2019-02-21 国立大学法人 熊本大学 アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法
US10478805B2 (en) 2015-08-06 2019-11-19 National University Corporation Kumamoto University Method for producing ammonia combustion catalyst and method for utilizing heat generated by ammonia catalyst combustion
JP2020008183A (ja) * 2018-07-03 2020-01-16 国立大学法人 熊本大学 アンモニアの燃焼方法及び水素製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11607673B2 (en) * 2019-02-01 2023-03-21 Total Se Copper-iron-based catalytic composition comprising zeolites, method for producing such catalytic composition and process using such catalytic composition for the conversion of syngas to higher alcohols
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
KR20240020274A (ko) 2021-06-11 2024-02-14 아모지 인크. 암모니아의 가공처리를 위한 시스템 및 방법
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242913A (ja) * 1985-03-11 1986-10-29 アモコ・コ−ポレイシヨン 硼酸アルミニウム銅
JP2000140640A (ja) * 1998-08-31 2000-05-23 Kansai Shingijutsu Kenkyusho:Kk アンモニア選択酸化分解用触媒
JP2013075286A (ja) * 2011-09-14 2013-04-25 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
WO2014175349A1 (ja) * 2013-04-26 2014-10-30 三井金属鉱業株式会社 排気ガス浄化触媒用担体、排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
WO2015064385A1 (ja) * 2013-10-31 2015-05-07 三井金属鉱業株式会社 排ガス浄化触媒用担体及び排ガス浄化触媒

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226340A (en) * 1960-05-04 1965-12-28 Ethyl Corp Catalyst compositions comprising alumina with an inner lamina of metal oxide and an outermost lamina of copper oxide
US3374183A (en) * 1961-03-30 1968-03-19 Ethyl Corp Copper oxide-alumina catalyst composition
US3224981A (en) * 1961-12-29 1965-12-21 Ethyl Corp Supported copper oxide and palladium catalyst composition
US3271324A (en) * 1962-06-01 1966-09-06 Ethyl Corp Catalyst composition consisting of copper oxide-iron oxide on alumina
US3447893A (en) * 1966-02-04 1969-06-03 Ethyl Corp Oxidation catalysts
US3856702A (en) * 1972-07-07 1974-12-24 Union Oil Co Aluminum borate catalyst compositions
US4590324A (en) 1985-03-11 1986-05-20 Amoco Corporation Dehydrogenation of alkylaromatics
JPH07256099A (ja) 1994-03-24 1995-10-09 Sumitomo Metal Mining Co Ltd 有機塩素化合物処理用触媒
JP2010240645A (ja) 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd アンモニア燃焼用触媒、その製造方法およびこの触媒を用いたアンモニア燃焼方法
JP2015156425A (ja) 2014-02-20 2015-08-27 スタンレー電気株式会社 半導体発光装置
JP6760607B2 (ja) 2015-08-06 2020-09-23 国立大学法人 熊本大学 アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242913A (ja) * 1985-03-11 1986-10-29 アモコ・コ−ポレイシヨン 硼酸アルミニウム銅
JP2000140640A (ja) * 1998-08-31 2000-05-23 Kansai Shingijutsu Kenkyusho:Kk アンモニア選択酸化分解用触媒
JP2013075286A (ja) * 2011-09-14 2013-04-25 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
WO2014175349A1 (ja) * 2013-04-26 2014-10-30 三井金属鉱業株式会社 排気ガス浄化触媒用担体、排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
WO2015064385A1 (ja) * 2013-10-31 2015-05-07 三井金属鉱業株式会社 排ガス浄化触媒用担体及び排ガス浄化触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3332870A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10478805B2 (en) 2015-08-06 2019-11-19 National University Corporation Kumamoto University Method for producing ammonia combustion catalyst and method for utilizing heat generated by ammonia catalyst combustion
WO2018051859A1 (ja) * 2016-09-13 2018-03-22 国立大学法人熊本大学 アンモニア燃焼触媒、及びアンモニア触媒燃焼によって生成する熱の利用方法
JP2019025389A (ja) * 2017-07-26 2019-02-21 国立大学法人 熊本大学 アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法
JP2020008183A (ja) * 2018-07-03 2020-01-16 国立大学法人 熊本大学 アンモニアの燃焼方法及び水素製造方法

Also Published As

Publication number Publication date
JP6760607B2 (ja) 2020-09-23
EP3332870A4 (en) 2019-05-22
EP3332870A1 (en) 2018-06-13
JPWO2017022828A1 (ja) 2018-06-28
US10478805B2 (en) 2019-11-19
US20180221858A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017022828A1 (ja) アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法
KR102546185B1 (ko) 페로브스카이트 촉매 및 이의 용도
KR101011830B1 (ko) 질소산화물 분해용 혼합금속산화물 촉매
US4001371A (en) Catalytic process
EP2780102B2 (en) Method for treating and exhaust gas with a supported noble metal catalyst
WO2015052569A1 (en) Catalytic converter
US5670444A (en) Exhaust gas cleaner and method for cleaning same
CN101712461A (zh) 氢气提纯装置和燃料电池发电系统
Hinokuma et al. Local structures and catalytic ammonia combustion properties of copper oxides and silver supported on aluminum oxides
Ishihara et al. Effects of Additives on the Activity of Palladium Catalysts for Methane Combustion.
Yashnik et al. Development of monolithic catalysts with low noble metal content for diesel vehicle emission control
WO2018051859A1 (ja) アンモニア燃焼触媒、及びアンモニア触媒燃焼によって生成する熱の利用方法
CN100560204C (zh) 含硫富氧尾气中氮氧化物净化催化剂
JP6928327B2 (ja) アンモニア燃焼触媒の製造方法、及びアンモニア触媒燃焼によって生成する熱の利用方法
JP2013059721A (ja) 排気浄化用触媒、排気浄化用触媒の使用方法及び排気浄化用触媒の製造方法
US20090099010A1 (en) Exhaust gas-purifying catalyst and method of manufacturing the same
JPH0211303B2 (ja)
JP2020008183A (ja) アンモニアの燃焼方法及び水素製造方法
WO2003002236A1 (en) Doped alumina catalysts
JP5428774B2 (ja) 排気ガス浄化用触媒
JPH08150336A (ja) 排ガス浄化材及び排ガス浄化方法
KR102554158B1 (ko) 코발트가 이온교환된 제올라이트 촉매 및 이를 이용한 저농도 메탄 연소를 위한 촉매반응시스템
KR102572408B1 (ko) 은이 이온 교환된 제올라이트 촉매 및 이를 이용한 저농도 메탄 연소를 위한 촉매반응시스템
KR101438885B1 (ko) 질소산화물의 암모니아 전환용 촉매 및 이의 제조방법
US11298674B2 (en) Nitrogen oxide storage material and exhaust gas purification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833107

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017533123

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15749954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE