WO2017022798A1 - 組合せ玉軸受、及び主軸装置、並びに工作機械 - Google Patents

組合せ玉軸受、及び主軸装置、並びに工作機械 Download PDF

Info

Publication number
WO2017022798A1
WO2017022798A1 PCT/JP2016/072807 JP2016072807W WO2017022798A1 WO 2017022798 A1 WO2017022798 A1 WO 2017022798A1 JP 2016072807 W JP2016072807 W JP 2016072807W WO 2017022798 A1 WO2017022798 A1 WO 2017022798A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
motor
diameter
bearings
angular ball
Prior art date
Application number
PCT/JP2016/072807
Other languages
English (en)
French (fr)
Inventor
美昭 勝野
翔一郎 小栗
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/749,931 priority Critical patent/US10302128B2/en
Priority to CN201680046043.0A priority patent/CN107921547B/zh
Priority to EP16833077.7A priority patent/EP3333436B1/en
Publication of WO2017022798A1 publication Critical patent/WO2017022798A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/20Application independent of particular apparatuses related to type of movement
    • F16C2300/22High-speed rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General buildup of machine tools, e.g. spindles, slides, actuators

Definitions

  • the present invention relates to a combined ball bearing, a spindle device, and a machine tool, and more specifically, a combined ball bearing used in a built-in motor type spindle device for high-speed rotation used in a machine tool or a general industrial machine, and
  • the present invention relates to a spindle device including a combination ball bearing, and a general machine tool or a multi-task machine tool including the spindle device.
  • FIG. 7 shows the structure of a built-in motor type spindle device described in Patent Document 1.
  • the housing of the spindle head 101 is divided into a front housing 102 and a rear housing 103, and both are fastened with bolts 104.
  • the main shaft 105 is supported by the front housing 102 via the front bearings 106 and 107, and is supported by the rear housing 103 via the rear bearings 108 and 109 and the bearing case 110.
  • the main shaft 105 includes a built-in motor rotor 111 and a draw bar 112 for clamping a tool.
  • a stator coil transition portion called an end coil 114 protrudes from both axial ends of the built-in motor stator 113.
  • the front housing 102 into which the front bearings 106 and 107 are fitted is formed on the outer side in the axial direction of the end coil 114, and the span between the front and rear bearings 106, 107, 108, and 109 is large. It has become. For this reason, there has been a problem that the overall length of the main shaft 105 is increased and the overall dimensions are increased.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to provide high-precision machining by increasing spindle rigidity, increase the fatigue life of bearings, improve seizure resistance, and improve impact resistance. It is to provide a combination ball bearing, a spindle device, and a machine tool that can contribute.
  • Each of the angular ball bearings has an equal inner diameter
  • the angular ball bearings having the same contact angle direction have the same outer diameter
  • the angular ball bearings having different contact angles have different outer diameters.
  • the angular ball bearing located on the outer side in the axial direction has a larger ball diameter and contact angle than the angular ball bearing located on the inner side in the axial direction. bearing.
  • each of the angular ball bearings having a large outer diameter at least the angular ball bearing positioned on the outer side in the axial direction is larger in the ball pitch circle diameter than the angular ball bearing positioned on the inner side in the axial direction.
  • the combination ball bearing described in (1) (3)
  • the front bearing is constituted by the combination ball bearing described in (1) or (2), and each angular ball bearing having a small outer diameter is used as a motor side bearing near the built-in motor, and each of the large outer diameters is used.
  • the housing includes an outer cylinder housing to which a stator of the built-in motor is attached, a front bearing housing provided at a front portion of the outer cylinder housing and into which an outer ring of the front bearing is fitted, and the outer cylinder housing.
  • a rear bearing housing that is provided at the rear, and an outer ring of the rear bearing is internally fitted or supported via a bearing sleeve
  • the front bearing housing is formed in a stepped shape having an outer peripheral surface having a large-diameter outer peripheral surface and a small-diameter outer peripheral surface, At least a part of the small-diameter outer peripheral surface of the front bearing housing is arranged inside the end coil of the stator so as to overlap with the end coil of the stator when viewed from the radial direction, At least one of the motor-side bearings is fitted into the front-side bearing housing at a position overlapping the small-diameter outer peripheral surface of the front-side bearing housing when viewed from the radial direction.
  • a fixed position preload is applied to the motor side bearing and the anti-motor side bearing, The spindle device according to (4), wherein an outer ring of the motor side bearing is fitted into the front bearing housing with a fitting clearance.
  • a fixed position preload is applied to the motor side bearing and the anti-motor side bearing, The spindle device according to (4) or (5), wherein an outer ring of the motor side bearing is positioned in an axial direction with respect to the front bearing housing with an axial clearance.
  • the outer ring of the rear bearing is fitted into the bearing sleeve, and the bearing sleeve is fitted into the rear bearing housing, (4) to (6), wherein at least a part of the bearing sleeve is arranged inside the end coil of the stator so as to overlap the end coil of the stator when viewed from the radial direction.
  • the spindle device according to any one of the above.
  • the outer ring of the rear bearing is fitted into the rear bearing housing, At least a part of the rear bearing housing is disposed inside the end coil of the stator so as to overlap the end coil of the stator when viewed from the radial direction (4) to (6)
  • the spindle device according to any one of the above.
  • a machine tool comprising the spindle device according to any one of (3) to (8).
  • each angular ball bearing has an equal inner diameter dimension, and the contact angle direction is the same.
  • the same angular ball bearings have the same outer diameter, while the angular ball bearings having different contact angles have different outer diameters.
  • the angular ball bearing positioned on the outer side in the axial direction has a larger ball diameter and contact angle than the angular ball bearing positioned on the inner side in the axial direction.
  • the combination ball bearing is applied to the spindle device, and each angular ball bearing having a large outer diameter is loaded on the load load side (for example, in the spindle device for machine tools, a cutting load is applied).
  • the load load side for example, in the spindle device for machine tools, a cutting load is applied.
  • it can contribute to high-precision machining by increasing the spindle rigidity (moment rigidity and axial rigidity), increasing the fatigue life of the bearing, and improving seizure resistance.
  • a load is applied to the tip of the main shaft, it is possible to suppress the occurrence of indentations on the axially outer angular ball bearing that bears the most load, and the impact resistance can be improved.
  • FIG. 4 is an enlarged cross-sectional view of a part IV in FIG. 1. It is sectional drawing of the main axis
  • a spindle device M of the present embodiment shown in FIG. 1 is of a built-in motor type, and is used by being assembled in a machine tool having a tilt mechanism and a turning mechanism.
  • the rotary shaft 80 is rotatably supported by the housing H via the front and rear bearings 40 and 60, and the rotary shaft 80 is rotationally driven by the built-in motor 70.
  • the housing H includes an outer cylinder housing 10 fixed to a bracket of a machine tool (not shown), a front bearing housing 20 provided at the front portion of the outer cylinder housing 10, and a rear bearing provided at the rear portion of the outer cylinder housing 10.
  • the housing 30 has a bearing sleeve 36 which is disposed inside the rear bearing housing 30 and is movable relative to the rear bearing housing 30 in the axial direction.
  • the front bearing 40 has four rows of angular ball bearings disposed between the front bearing housing 20 and the front portion of the rotary shaft 80.
  • the front bearing 40 has motor-side bearings 41 and 51 near the built-in motor that are combined in parallel with the same contact angle direction, and the motor-side bearings 41 and 51 that are combined in parallel with the same contact angle direction.
  • the non-motor side bearings 42 and 52 separated from the built-in motor 70 are provided.
  • the motor side bearings 41 and 51 and the non-motor side bearings 42 and 52 include outer rings 41a, 51a, 42a, and 52a that are fitted in the front bearing housing 20, and inner rings 41c, 51c, and 42c that are fitted on the rotary shaft 80, respectively. 52c, and a plurality of balls 41b, 51b, 42b, 52b as rolling elements that roll with contact angles between the outer rings 41a, 51a, 42a, 52a and the inner rings 41c, 51c, 42c, 52c,
  • the outer ring spacer 43 and the inner ring spacer 45 are arranged in the axial direction in combination with the back surface.
  • the motor-side bearings 41 and 51 and the anti-motor-side bearings 42 and 52 are also referred to as angular ball bearings 41, 51, 42, and 52.
  • the outer rings 41a, 51a, 42a, and 52a are described in detail below, but the outer ring spacers 43 and 44 are interposed between the front bearing housing 20 and the outer ring restraining member 47 fixed to the front bearing housing 20. Position in the axial direction. Further, the inner rings 41 c, 51 c, 42 c, and 52 c are inserted through the inner ring spacers 45 and 46 by tightening the bearing fixing nut 86 toward the step 80 d of the rotating shaft 80 in the thread groove 80 a formed in the rotating shaft 80. Thus, a preload is applied to the bearings 41, 51, 42 and 52.
  • the bearing fixing nut 86 is disposed between the rear end portion of the front bearing housing 20 and the front end portion of the rotor 72 (rotor sleeve 81 in this embodiment) inside an end coil 73 of the stator 71 described later.
  • the thread groove 80a into which the bearing fixing nut 86 is screwed is formed on the outer peripheral surface of the rotary shaft 80 into which the front bearing 40 is fitted, and has a larger diameter than the outer peripheral surface into which the rotor sleeve 81 is fitted.
  • the outer peripheral surface of the blade side end portion of the rotary shaft 80 is formed to have a larger diameter than the outer peripheral surface of the rotary shaft 80 with which the front bearing 40 is fitted, and a seal that forms a labyrinth seal structure together with the outer ring spacer 44. Part 80e. Therefore, the rotating shaft 80 is formed such that the outer peripheral surface thereof is reduced in diameter intermittently from the end on the blade side toward the rear.
  • the rear bearing 60 is also disposed between the bearing sleeve 36 and the rear portion of the rotary shaft 80, and has a motor-side bearing 61 near the built-in motor and a built-in function with respect to the motor-side bearing 61.
  • An anti-motor side bearing 62 that is separated from the motor 70.
  • the motor-side bearing 61 and the non-motor-side bearing 62 include outer rings 61a and 62a fitted inside the bearing sleeve 36, inner rings 61c and 62c fitted around the rotary shaft 80, outer rings 61a and 62a, and inner rings 61c and 62c.
  • Angular contact ball bearings having a plurality of balls 61b and 62b as rolling elements that roll with a contact angle between each other, and are combined on the back via an outer ring spacer 63 and an inner ring spacer 64.
  • outer rings 61 a and 62 a are positioned in the axial direction between the bearing sleeve 36 and the outer ring holding member 65 fixed to the bearing sleeve 36 via the outer ring spacer 63. Further, the inner rings 61 c and 62 c are tightened with a bearing fixing nut 87 in a thread groove 80 b formed in the rotating shaft 80 toward the step portion 80 f of the rotating shaft 80, so that the inner ring spacer 66 and the detected portion of the speed sensor 95 are detected. It is fixed in the axial direction via the ring member 67 for use, and thereby preload is applied to the bearings 61 and 62.
  • the built-in motor 70 is disposed in a space between the front bearing 40 and the rear bearing 60, and rotates with a stator 71 fixed to the inner periphery of the outer cylinder housing 10 via the cooling cylinder 11.
  • a rotor 72 shrink-fitted on a rotor sleeve 81 provided on the outer periphery of the shaft 80, and end coils 73 of the stator coil project as substantially annular convex portions at both axial ends of the stator 71.
  • the rotor sleeve 81 is fastened by shrinkage on the outer periphery of the rotary shaft 80.
  • a cooling groove 10 a is formed on the inner peripheral surface of the outer cylinder housing 10, and the cooling cylinder 11 is fitted therein to constitute a cooling path.
  • the cooling oil groove 20a is formed on the outer peripheral surface of the front bearing housing 20 between the inner peripheral surface of the outer cylinder housing 10 and the outer peripheral surface of the front bearing housing 20 that are fitted to each other. A cooling path is configured.
  • a draw bar 93 extending in the axial direction on the inner diameter portion of the rotary shaft 80, a clamping unit 90 provided on the tip side of the draw bar 93 for fixing a tool holder (not shown) to the tapered portion 80 c of the rotary shaft 80, and a draw bar
  • a disc spring 94 is installed between the rotary shaft 80 and the rotary shaft 80 and pulls the clamping unit 90 to the side opposite to the tool.
  • an unclamping unit (not shown) for unclamping the tool holder by compressing the disc spring 94 incorporated in the inner diameter portion of the rotating shaft 80 is attached to the rear side of the rear bearing housing 30.
  • the angular ball bearing 42 positioned on the outer side in the axial direction has a ball diameter, a contact angle, and a ball pitch circle diameter larger than the angular ball bearing 52 positioned on the inner side in the axial direction.
  • Are set large that is, Da42> Da52, ⁇ 42> ⁇ 52, dm42> dm52).
  • each of the angular ball bearings 42, 52 having a large outer diameter is disposed on the blade side where a cutting load (radial load or axial load) is applied, thereby achieving high-precision machining by increasing the spindle rigidity (moment rigidity and axial rigidity).
  • the fatigue life of the bearing can be increased.
  • the motor side bearings 41 and 51 having a small outer diameter since the load of the cutting load is small by being arranged on the side opposite to the blade, there is no concern about the durability and life of the bearing, and there is a problem in rigidity. Absent.
  • the motor side bearings 41 and 51 and the counter motor side bearings 42 and 52 have the same outer diameter dimensions, an increase in processing cost and assembly cost can be suppressed. If the outer diameters of the motor-side bearings 41 and 51 and the non-motor-side bearings 42 and 52 are made different, the number of fitting management sites becomes two or four, which increases the number of processing steps, processing costs, and assembly costs. Leads to an increase in Furthermore, when the outer diameters of the non-motor-side bearings 42 and 52 are made different, it is difficult to position the outer rings 42a and 52a in the axial direction (to secure an appropriate outer ring axial direction press margin).
  • the ball pitch circle diameter is also reduced due to the small outer diameter, and the dmn (dm: ball pitch circle) of the motor-side bearings 41 and 51 that are susceptible to a thermal load due to the heat generated by the rotor 72.
  • the value of the diameter and n: product of the number of rotations (min- 1 )) can be reduced, and seizure of the motor-side bearings 41 and 51 that are likely to occur during high-speed rotation can be prevented.
  • the angular ball bearing 42 positioned on the outer side in the axial direction is set larger in the ball diameter than the angular ball bearing 52 positioned on the inner side in the axial direction (Da42). > Da 52)
  • the limit load of the angular ball bearing 42 on the outer side in the axial direction that bears the most load is It becomes large, generation
  • the heat generation due to the rolling friction is increased to some extent by increasing the ball diameter Da42, but the heat generation due to the rolling friction of the bearing itself can be released to the outside by being positioned on the outer side in the axial direction. It is easy and the possibility of seizure due to heat generated by rolling friction of the bearing is low. Therefore, even if the ball diameter is increased and the heat generation due to the rolling friction of the angular ball bearing 42 located on the outer side in the axial direction is increased to some extent, it can be used without any problem.
  • the angular ball bearing 42 positioned on the outer side in the axial direction is set to have a larger contact angle than the angular ball bearing 52 positioned on the inner side in the axial direction ( ⁇ 42> ⁇ 52), the axial rigidity of the combined ball bearing and the spindle device is increased. Can be increased.
  • the radial rigidity of the main shaft system is influenced by the bending rigidity of the rotating shaft in addition to the rigidity of the bearing, but the axial rigidity is substantially determined by the rigidity of the bearing. In general, when the contact angle is increased, slippage such as spin slip and gyro slip increases and the amount of heat generated by the bearing increases.
  • the axially outer angular ball bearing 42 can tolerate an increase in the amount of heat generation to some extent, but the axially inner angular ball bearing 52 cannot tolerate an increase in the amount of heat generation. For this reason, the contact angle of the axial ball bearing 52 on the inner side in the axial direction is reduced.
  • the angular ball bearing 42 positioned on the outer side in the axial direction is set larger in the ball pitch circle diameter than the angular ball bearing 52 positioned on the inner side in the axial direction (dm42> dm52), the moment length can be increased.
  • the moment rigidity of the combination ball bearing and the spindle device can be increased.
  • the axially outer angular ball bearing 42 can be used without any problem even if the heat generation of the bearing increases, but the axially inner angular ball bearing 52 increases the amount of heat generation. Must be avoided. For this reason, the ball pitch circle diameter dm52 of the axial ball bearing 52 on the inner side in the axial direction is made small.
  • the front bearing housing 20 has a large-diameter outer peripheral surface 21 whose outer peripheral surface is fitted with the inner peripheral surface of the outer cylinder housing 10, and a smaller diameter than the large-diameter outer peripheral surface 21. And a stepped shape having a small-diameter outer peripheral surface 22. Further, at least a part of the small-diameter outer peripheral surface 22 of the front bearing housing 20 is disposed inside the end coil 73 of the stator 71 so as to overlap the end coil 73 of the stator 71 when viewed from the radial direction.
  • the motor-side bearing 41 that is the axially outer side of the combined ball bearing is fitted into the front-side bearing housing 20 at a position that overlaps the small-diameter outer peripheral surface 22 of the front-side bearing housing 20 when viewed from the radial direction. Is done.
  • the inner peripheral surface of the front bearing housing 20 is stepped by a small-diameter inner peripheral surface 23 into which the motor-side bearings 41 and 51 are fitted, and a large-diameter inner peripheral surface 24 into which the non-motor-side bearings 42 and 52 are fitted. It is formed into a shape.
  • the motor side bearing 41 is arrange
  • the fitting clearance L1 between the outer ring outer diameter of the non-motor side bearings 42 and 52 and the inner diameter of the front bearing housing 20 is made smaller than the fitting gap L2 between the outer ring outer diameter of the motor side bearings 41 and 51 and the inner diameter of the front bearing housing 20. (L1 ⁇ L2).
  • the fitting clearance L1 between the outer ring outer diameters of the non-motor side bearings 42 and 52 and the inner diameter of the front bearing housing 20 is about 0 ⁇ m to 20 ⁇ m, more preferably about 0 ⁇ m to 10 ⁇ m, until the diameter clearance.
  • fitting clearance L2 exceeds 5 mm, a shoulder plane for fixing the outer rings 42a and 52a of the non-motor-side bearings 42 and 52 can be secured in the case of a bearing having an inner diameter of ⁇ 100 mm or less (standard spindle size). Disappear.
  • the fitting clearance L2 is smaller than 10 ⁇ m, when the outer rings 41a and 51a expand, the clearance portion disappears and the effect of reducing the preload becomes insufficient.
  • the fitting clearance L2 is preferably about 10 to 200 ⁇ m practically.
  • the outer rings 42a and 52a of the non-motor side bearings 42 and 52 are contact-fixed at one end side to the shoulder portion 25 of the front bearing housing 20 via the outer ring spacer 43 (or directly contact-fixed.
  • the other end side is fixed by the outer ring holding member 47 via the outer ring spacer 44 and is positioned in the axial direction.
  • the outer rings 41 a and 51 a of the motor side bearings 41 and 51 are fixed to the non-motor side bearings 42 and 52 through the outer ring spacer 43 (or directly contacted and fixed to the anti-motor side bearings 42 and 52).
  • the other end may be disposed with an axial clearance ( ⁇ A) between the other shoulder 26 of the front bearing housing 20.
  • the axial clearance ⁇ A is not particularly limited as long as ⁇ A> 0.
  • the outer ring spacer 43 that contacts the shoulder portion 25 of the front bearing housing 20 has different inner diameter dimensions at the notch portions at both ends, and the motor side end portions are in contact with the outer rings 41a and 51a. It has a smaller diameter than the non-motor side end.
  • an axial clearance ( ⁇ A) is provided, that is, ⁇ A> in consideration of machining errors of individual parts of the outer ring single body width of the bearings 41 and 51 and the width of the small-diameter inner peripheral surface 23.
  • the dimensions of the outer ring single body width of the bearings 41 and 51 and the width of the small-diameter inner peripheral surface 23 are set so as to be 0, post-processing and fine adjustment at the time of assembling the spindle are not required.
  • the front bearing 40 is fixed in the axial direction after confirming the dimensional difference between the outer ring single body width of the bearings 42 and 52 and the outer ring spacers 43 and 44 with respect to the width of the large-diameter inner peripheral surface 24, and then the outer ring holding member 47. This is possible only by adjusting the width of the spindle (similar to the spindle assembly work that is carried out on a daily basis).
  • the width of the small-diameter inner peripheral surface 23 with respect to the single outer ring width of the bearings 41 and 51 Adjustment of several ⁇ m level of the distance between the shoulder portions 25 and 26 is necessary, and fine adjustment processing is extremely difficult because the processing site is the back of the hole.
  • the spacers 43 and 45 are arrange
  • the front bearing 40 which is a fixed bearing, is loaded with a fixed position preload in order to ensure rigidity and rotational accuracy. Therefore, the outer rings 41a, 51a of the motor bearings 41, 51 are connected to the outer ring spacer 43 by the preload. Close fitting. Therefore, if the non-motor side bearings 42 and 52 are fixed as shown in FIG. 2, even if the clearances ( ⁇ R and ⁇ A) are present, the outer rings 41a and 51a of the motor side bearings 41 and 51 are rotating while the inner rings 41c are rotating. , 51c. Also in this configuration, the radial load applied to the main shaft during machining is loaded by the non-motor-side bearings 42 and 52 having a large size and a large load capacity, so there is no problem.
  • the front bearing 40 that constitutes the combination ball bearing of the present embodiment has two rows of angular ball bearings 41, 51, 42, 52 having the same contact angle direction combined on the back surface, and each angular ball
  • the bearings 41, 51, 42, 52 have the same inner diameter
  • the angular ball bearings 41, 51, 42, 52 having the same contact angle direction have the same outer diameter, respectively
  • the angular ball bearings 41, 51, 42, and 52 having different directions have different outer diameters.
  • the angular ball bearing 42 positioned on the axially outer side is set to have a larger ball diameter and contact angle than the angular ball bearing 52 positioned on the axially inner side. .
  • the above-mentioned combination ball bearing is applied to the spindle device, and the angular ball bearings 42 and 52 having large outer diameters are arranged on the blade side to which a cutting load (radial load or axial load) is applied, thereby making the spindle rigidity ( This contributes to high-precision machining by increasing moment rigidity and axial rigidity), increasing the fatigue life of bearings, and improving seizure resistance. Further, when a load is applied to the tip of the blade, it is possible to suppress the occurrence of indentation of the angular ball bearing on the outer side in the axial direction that bears the most load, and the impact resistance can be improved.
  • the angular ball bearing 42 positioned on the outer side in the axial direction is set larger in the ball pitch circle diameter than the angular ball bearing 52 positioned on the inner side in the axial direction.
  • the moment rigidity of the combination ball bearing and the spindle device can be increased.
  • the front bearing housing 20 is formed in a stepped shape having an outer peripheral surface having a large-diameter outer peripheral surface 21 and a small-diameter outer peripheral surface 22, and the small-diameter outer peripheral surface of the front bearing housing 20. 22 is disposed inside the end coil 73 of the stator 71 so as to overlap with the end coil 73 of the stator 71 when viewed from the radial direction, and the front bearing 40 is a motor side bearing 41 closer to the built-in motor. , 51, and anti-motor side bearings 42, 52 separated from the built-in motor 70 with respect to the motor side bearings 41, 51.
  • the motor-side bearing 41 on the outer side in the axial direction is fitted into the front-side bearing housing 20 at a position overlapping the small-diameter outer peripheral surface 22 of the front-side bearing housing 20 when viewed from the radial direction.
  • the motor-side bearing 41 having a small outer diameter can be disposed in the end coil 73, the spindle can be shortened, and the overall length of the rotary shaft 80 can be shortened.
  • the axial dimension can be made compact and light.
  • the structure of the tilt mechanism or the turning mechanism can be made compact by reducing the size and weight of the spindle device M.
  • the bearing sleeve 36 includes the cylindrical portion 37 disposed inside the end coil 73 of the stator 71 so as to overlap the end coil 73 of the stator 71 when viewed from the radial direction.
  • the overall length of the shaft 80 can be further shortened.
  • the motor side bearing 61 of the rear side bearing 60 is disposed inside the end coil 73 of the stator 71, the total length of the rotating shaft 80 can be shortened more effectively.
  • the angular ball bearing 42 positioned on the outer side in the axial direction has a ball diameter and contact angle larger than the angular ball bearing 52 positioned on the inner side in the axial direction.
  • the angular ball bearing 42 positioned on the outer side in the axial direction has at least a ball diameter and a contact larger than the angular ball bearing 52 positioned on the inner side in the axial direction. What is necessary is just to set large in a corner.
  • the angular ball bearing 41 positioned on the outer side in the axial direction and the angular ball bearing 51 positioned on the inner side in the axial direction have a ball diameter, a contact angle, and a ball pitch circle diameter.
  • the present invention is not limited to this, but the present invention is not limited to this, and the angular ball bearing 41 positioned on the axially outer side of the combination ball bearing is more ball-shaped than the angular ball bearing 51 positioned on the axially inner side. It may be set large in at least one of the diameter, the contact angle, and the ball pitch circle diameter.
  • a combination angular contact ball bearing is used as the rear bearing 60.
  • a single-row cylindrical roller bearing 68 is used as the rear bearing 60 as shown in FIG. ing.
  • the outer ring 68 a of the cylindrical roller bearing 68 is directly fitted in the rear bearing housing 30 and is fixed in the axial direction by the outer ring restraining member 65 fixed to the rear bearing housing 30. Further, the inner ring 68c of the cylindrical roller bearing 68 is fitted on the rotary shaft 80, and the bearing fixing nut 87 is tightened in the thread groove 80b, whereby the inner ring 68c is axially passed through the inner ring spacer 69 and the detected member ring member 67. Fixed to. A plurality of cylindrical rollers 68b are disposed between the outer ring 68a and the inner ring 68c.
  • the rear bearing housing 30 has a cylindrical portion 31 disposed inside the end coil 73 of the stator 71 so as to overlap the end coil 73 of the stator 71 when viewed from the radial direction. Therefore, by using the single row cylindrical roller bearing 68, it is possible to further reduce the length as compared with the spindle device of the first embodiment. Further, as in the present embodiment, at least a part of the cylindrical roller bearing 68 is overlapped with the end coil 73 when viewed from the radial direction, so that the size can be further reduced. Other configurations and operations are the same as those in the first embodiment.
  • the inner ring spacer and the outer ring spacer are arranged between the angular ball bearings of the four-row rear combination angular ball bearing. You may plan.
  • the outer diameter of the outer ring of the motor-side bearing is larger than the outer diameter of the outer ring of the motor-side bearing. You may make a configuration.
  • the spindle device of the present invention is not limited to this as long as it constitutes the combination ball bearing of the above embodiment.
  • the rear bearing housing 30 is the end of the stator 71 as in the modification shown in FIG.
  • positioned inside the coil 73 may be sufficient.
  • the combination ball bearing of the present invention is not limited to this, but in the axial direction. What is necessary is just to have 4 or more rows of angular ball bearings arranged in a row, and 2 or more rows of angular ball bearings having the same contact angle direction are combined in the back.
  • the combination ball bearing of the present invention is not limited to the shape of the housing of the present embodiment, and can be applied to any built-in motor type spindle device in which the rotation shaft is driven to rotate by a built-in motor. That is, in the spindle device of the present invention using the combination ball bearing, each angular ball bearing having a small outer diameter is used as a motor side bearing near the built-in motor, and each angular ball bearing having a large outer diameter is used as the motor side bearing. On the other hand, any anti-motor side bearing away from the built-in motor may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)
  • Motor Or Generator Frames (AREA)
  • Support Of The Bearing (AREA)

Abstract

主軸装置(M)の前側軸受(40)は、接触角の向きが同じ2列のアンギュラ玉軸受(41,51,42,52)同士が背面組合せされてなる。各アンギュラ玉軸受(41,51,42,52)は、それぞれ等しい内径寸法を有し、接触角の向きが同じ各アンギュラ玉軸受(41,51,42,52)同士は、それぞれ等しい外径寸法を有する一方、接触角の向きが異なる各アンギュラ玉軸受(41,51,42,52)は、それぞれ異なる外径寸法を有する。そして、少なくとも外径寸法が大きい各アンギュラ玉軸受(42,52)において、軸方向外側に位置するアンギュラ玉軸受(42)は軸方向内側に位置するアンギュラ玉軸受(52)よりも玉径及び接触角において大きく設定されている。

Description

組合せ玉軸受、及び主軸装置、並びに工作機械
 本発明は、組合せ玉軸受、及び主軸装置、並びに工作機械に関し、より詳細には、工作機械や一般産業機械に使用されるビルトインモータタイプの高速回転用主軸装置に用いられる組合せ玉軸受、及び該組合せ玉軸受を備えた主軸装置、並びに該主軸装置を備えた一般工作機械又は複合加工工作機械に関する。
 図7は、特許文献1に記載のビルトインモータタイプの主軸装置の構造を示している。図7では、主軸頭101のハウジングを前部ハウジング102と後部ハウジング103とに分割し、両者をボルト104で締結する。主軸105は、前側軸受106、107を介して前部ハウジング102に支持されるとともに、後側軸受108、109及び軸受ケース110を介して、後部ハウジング103に支持される。また、主軸105は、ビルトインモータのロータ111と、工具をクランプするためのドローバー112等を備える。
 また、他の主軸装置として、前側軸受に4つのアンギュラ玉軸受を備えた構造が開示されている(例えば、特許文献2参照。)。
日本国特開2007-1010号公報 日本国特開2004-263816号公報
 ところで、特許文献2に記載の4つのアンギュラ玉軸受は、同一の構成のものが使用されているが、主軸剛性の増加による高精度加工や、軸受の疲れ寿命の増加、耐焼付性の向上が求められており、さらなる改善が必要であった。また、主軸装置では、主軸の衝突により、刃物先端に荷重が負荷されると、刃物側軸受で最も荷重を受けるため、玉と軌道面との接触部で圧痕が形成されやすく、耐衝撃性においても改善が求められていた。
 また、特許文献1に記載の主軸装置では、ビルトインモータのステータ113の軸方向両端部には、エンドコイル114と呼ばれるステータコイルの渡り部が突出している。図7の主軸装置では、前側軸受106、107が内嵌される前部ハウジング102は、エンドコイル114の軸方向外側に形成されており、前後軸受106、107、108、109間のスパンが大きくなっている。そのため、主軸105の全長が長くなって、全体寸法が大きくなるという問題があった。
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、主軸剛性の増加による高精度加工や、軸受の疲れ寿命の増加、耐焼付性の向上、及び耐衝撃性の向上に寄与することができる組合せ玉軸受、及び主軸装置、並びに工作機械を提供することにある。
 本発明の上記目的は、下記の構成により達成される。
(1) 軸方向に配列されてなる4列以上のアンギュラ玉軸受を有し、接触角の向きが同じ2列以上の前記アンギュラ玉軸受同士が背面組合せされてなる組合せ玉軸受であって、
 前記各アンギュラ玉軸受は、それぞれ等しい内径寸法を有し、
 前記接触角の向きが同じ前記各アンギュラ玉軸受同士は、それぞれ等しい外径寸法を有する一方、前記接触角の向きが異なる前記各アンギュラ玉軸受は、それぞれ異なる外径寸法を有し、
 少なくとも外径寸法が大きい前記各アンギュラ玉軸受において、軸方向外側に位置する前記アンギュラ玉軸受は軸方向内側に位置する前記アンギュラ玉軸受よりも玉径及び接触角において大きいことを特徴とする組合せ玉軸受。
(2) 少なくとも前記外径寸法が大きい各アンギュラ玉軸受において、前記軸方向外側に位置するアンギュラ玉軸受は前記軸方向内側に位置するアンギュラ玉軸受よりも玉ピッチ円径において大きいことを特徴とする(1)に記載の組合せ玉軸受。
(3) 回転軸が前側及び後側軸受を介してハウジングに回転自在に支持されるとともに、前記回転軸がビルトインモータによって回転駆動される主軸装置であって、
 前記前側軸受は、(1)または(2)に記載の組合せ玉軸受によって構成され、前記外径寸法が小さい各アンギュラ玉軸受を前記ビルトインモータ寄りのモータ側軸受とし、前記外径寸法が大きい各アンギュラ玉軸受を該モータ側軸受に対して前記ビルトインモータから離れた反モータ側軸受とすることを特徴とする主軸装置。
(4) 前記ハウジングは、前記ビルトインモータのステータが取付けられる外筒ハウジングと、該外筒ハウジングの前部に設けられ、前記前側軸受の外輪が内嵌される前側軸受ハウジングと、前記外筒ハウジングの後部に設けられ、前記後側軸受の外輪が内嵌、又は、軸受スリーブを介して支持される後側軸受ハウジングと、を有し、
 前記前側軸受ハウジングは、外周面が大径外周面と小径外周面とを有する段付き形状に形成され、
 前記前側軸受ハウジングの小径外周面の少なくとも一部は、前記ステータのエンドコイルと半径方向から見てオーバーラップするように、前記ステータのエンドコイルの内側に配置され、
 前記モータ側軸受の少なくとも一つは、前記前側軸受ハウジングの小径外周面と半径方向から見てオーバーラップする位置で、前記前側軸受ハウジングに内嵌されることを特徴とする(3)に記載の主軸装置。
(5) 前記モータ側軸受と前記反モータ側軸受とは、定位置予圧が付与されており、
 前記モータ側軸受の外輪は、嵌め合いすきまを持って、前記前側軸受ハウジングに内嵌されることを特徴とする(4)に記載の主軸装置。
(6) 前記モータ側軸受と前記反モータ側軸受とは、定位置予圧が付与されており、
 前記モータ側軸受の外輪は、軸方向すきまを持って、前記前側軸受ハウジングに対して軸方向に位置決めされることを特徴とする(4)又は(5)に記載の主軸装置。
(7) 前記後側軸受の外輪が前記軸受スリーブに内嵌されるとともに、前記軸受スリーブが前記後側軸受ハウジングに内嵌され、
 前記軸受スリーブの少なくとも一部は、前記ステータのエンドコイルと径方向から見てオーバーラップするように、前記ステータのエンドコイルの内側に配置されることを特徴とする(4)~(6)のいずれかに記載の主軸装置。
(8) 前記後側軸受の外輪は、前記後側軸受ハウジングに内嵌され、
 前記後側軸受ハウジングの少なくとも一部は、前記ステータのエンドコイルと径方向から見てオーバーラップするように、前記ステータのエンドコイルの内側に配置されることを特徴とする(4)~(6)のいずれかに記載の主軸装置。
(9) (3)~(8)のいずれかに記載の主軸装置を備えたことを特徴とする工作機械。
(10) 前記主軸装置がチルト機構又は旋回機構に搭載されていることを特徴とする(9)に記載の工作機械。
 本発明の組合せ玉軸受によれば、接触角の向きが同じ2列以上のアンギュラ玉軸受同士が背面組合せされてなり、各アンギュラ玉軸受は、それぞれ等しい内径寸法を有し、接触角の向きが同じ各アンギュラ玉軸受同士は、それぞれ等しい外径寸法を有する一方、接触角の向きが異なる各アンギュラ玉軸受は、それぞれ異なる外径寸法を有する。また、少なくとも外径寸法が大きい各アンギュラ玉軸受において、軸方向外側に位置するアンギュラ玉軸受は軸方向内側に位置するアンギュラ玉軸受よりも玉径及び接触角において大きい。これにより、上記組合せ玉軸受を主軸装置に適用し、外径寸法が大きい各アンギュラ玉軸受をラジアル荷重やアキシアル荷重を負荷する荷重負荷側(例えば、工作機械用主軸装置において、切削荷重を負荷する刃物側)に配置することで、主軸剛性(モーメント剛性及びアキシアル剛性)の増加による高精度加工や、軸受の疲れ寿命の増加、耐焼付性の向上に寄与することができる。さらに、主軸先端に荷重が負荷された際に、最も荷重を負担する軸方向外側のアンギュラ玉軸受の圧痕の発生を抑制することができ、耐衝撃性を向上することができる。
本発明の第1実施形態に係る主軸装置の断面図である。 図1の前側軸受として適用された組合せ玉軸受を示す断面図である。 図1のIII部拡大断面図である。 図1のIV部拡大断面図である。 本発明の第2実施形態に係る主軸装置の断面図である。 本発明の変形例に係る主軸装置の断面図である。 従来の主軸装置を示す断面図である。
 以下、本発明の各実施形態に係る、組合せ玉軸受及び主軸装置について図面に基づいて詳細に説明する。
(第1実施形態)
 図1に示す、本実施形態の主軸装置Mは、ビルトインモータタイプのものであり、チルト機構や旋回機構を有する工作機械に組み付けて使用される。主軸装置Mは、回転軸80が前側及び後側軸受40、60を介してハウジングHに回転自在に支持されるとともに、回転軸80がビルトインモータ70によって回転駆動される。
 ハウジングHは、図示しない工作機械のブラケットに固定される外筒ハウジング10と、外筒ハウジング10の前部に設けられた前側軸受ハウジング20と、外筒ハウジング10の後部に設けられた後側軸受ハウジング30と、後側軸受ハウジング30の内側に配置され、後側軸受ハウジング30に対して軸方向に相対移動可能な軸受スリーブ36と、を有する。
 図2及び図3にも示すように、前側軸受40は、前側軸受ハウジング20と回転軸80の前部との間に配置される4列のアンギュラ玉軸受を有する。即ち、前側軸受40は、接触角の向きが同じ並列組合せされてなる、ビルトインモータ寄りのモータ側軸受41,51と、接触角の向きが同じ並列組合せされてなる、該モータ側軸受41,51に対してビルトインモータ70から離れた反モータ側軸受42,52と、を備える。モータ側軸受41,51と反モータ側軸受42,52は、前側軸受ハウジング20に内嵌される外輪41a,51a,42a,52aと、回転軸80に外嵌される内輪41c,51c,42c,52cと、外輪41a,51a,42a,52aと内輪41c,51c,42c,52cとの間でそれぞれ接触角を持って転動する転動体として複数の玉41b,51b,42b,52bを有し、外輪間座43,内輪間座45を介して背面組み合わせで軸方向に配列されている。
 なお、モータ側軸受41,51及び反モータ側軸受42,52は、アンギュラ玉軸受41,51,42,52とも呼ぶ。
 また、外輪41a,51a,42a,52aは、以下に詳述するが、前側軸受ハウジング20と、前側軸受ハウジング20に固定される外輪抑え部材47との間で、外輪間座43、44を介して軸方向に位置決めされる。さらに、内輪41c,51c,42c,52cは、回転軸80に形成されたねじ溝80aに軸受固定ナット86を回転軸80の段部80dに向けて締付けることで、内輪間座45、46を介して軸方向に固定され、これにより、軸受41,51,42,52には予圧が付与される。
 なお、軸受固定ナット86は、後述するステータ71のエンドコイル73の内側で、前側軸受ハウジング20の後端部とロータ72(本実施形態では、ロータスリーブ81)の前端部との間に配置される。また、軸受固定ナット86が螺合するねじ溝80aは、前側軸受40が嵌合する回転軸80の外周面に形成され、ロータスリーブ81が嵌合する外周面より大径に形成されている。また、回転軸80の刃物側端部の外周面は、前側軸受40が嵌合する回転軸80の外周面よりも大径に形成され、また、外輪間座44とともにラビリンスシール構造を形成するシール部80eを有する。したがって、回転軸80は、刃物側端部から後方に向かって断続的に外周面が縮径するように形成されている。
 また、図4に示すように、後側軸受60も、軸受スリーブ36と回転軸80の後部との間に配置され、ビルトインモータ寄りのモータ側軸受61と、該モータ側軸受61に対してビルトインモータ70から離れた反モータ側軸受62と、を備える。モータ側軸受61と反モータ側軸受62は、軸受スリーブ36に内嵌される外輪61a,62aと、回転軸80に外嵌される内輪61c,62cと、外輪61a,62aと内輪61c,62cとの間でそれぞれ接触角を持って転動する転動体として複数の玉61b,62bを有するアンギュラ玉軸受であり、外輪間座63,内輪間座64を介して背面組み合わせされている。
 また、外輪61a,62aは、軸受スリーブ36と、軸受スリーブ36に固定される外輪抑え部材65との間で、外輪間座63を介して軸方向に位置決めされる。また、内輪61c,62cは、回転軸80に形成されたねじ溝80bに軸受固定ナット87を回転軸80の段部80fに向けて締付けることで、内輪間座66及び速度センサ95の被検出部用リング部材67を介して軸方向に固定され、これにより、軸受61,62には、予圧が付与される。
 図1に戻って、ビルトインモータ70は、前側軸受40と後側軸受60との間のスペースに配置され、外筒ハウジング10の内周に冷却筒11を介して固定されたステータ71と、回転軸80の外周に設けられたロータスリーブ81に焼き嵌めされたロータ72と、を有し、ステータ71の軸方向両端部には、ステータコイルのエンドコイル73が略環状の凸部として突出している。なお、ロータスリーブ81は、回転軸80の外周上に焼バメ締結されている。
 また、外筒ハウジング10の内周面には、冷却用溝10aが形成され、冷却筒11が内嵌されることで、冷却経路を構成する。さらに、互いに嵌合する外筒ハウジング10の内周面と、前側軸受ハウジング20の外周面との間にも、前側軸受ハウジング20の外周面に冷却油溝20aが形成されることで、他の冷却経路を構成している。
 回転軸80の内径部には、軸方向に延びるドローバー93と、ドローバー93の先端側に設けられ、図示しない工具ホルダを回転軸80のテーパ部80cに固定するためのクランピングユニット90と、ドローバー93と回転軸80との間に設けられ、クランピングユニット90を反工具側に引き込む皿バネ94と、が組み込まれている。また、後側軸受ハウジング30の後方には、回転軸80の内径部に組み込まれた皿バネ94を圧縮して工具ホルダをアンクランプする図示しないアンクランプユニットが取り付けられている。
 ここで、図2に示すように、前側軸受40では、モータ側軸受41,51と反モータ側軸受42,52とは、それぞれ等しい内径寸法(d41=d51=d42=d52)を有する。また、接触角の向きが同じモータ側軸受41,51同士、及び、接触角の向きが同じ反モータ側軸受42,52同士は、それぞれ等しい外径寸法(D41=D51、D42=D52)を有する一方、モータ側軸受41,51と反モータ側軸受42,52とは、それぞれ異なる外径寸法を有し、具体的に、反モータ側軸受42,52は、モータ側軸受41,51より外径寸法が大きい(D42=D52>D41=D51、)。
 また、外径寸法が大きい反モータ側軸受42,52において、軸方向外側に位置するアンギュラ玉軸受42は、軸方向内側に位置するアンギュラ玉軸受52よりも玉径、接触角及び玉ピッチ円径のいずれにおいても大きく設定されている(即ち、Da42>Da52、α42>α52、dm42>dm52)。
 一方、外径寸法が小さいモータ側軸受41,51において、軸方向外側に位置するアンギュラ玉軸受41と軸方向内側に位置するアンギュラ玉軸受51とは、玉径、接触角及び玉ピッチ円径のいずれにおいても互いに等しく設定されている(即ち、Da41=Da52、α41=α51、dm41=dm51)。
 即ち、外径寸法が大きい各アンギュラ玉軸受42,52を切削荷重(ラジアル荷重やアキシアル荷重)を負荷する刃物側に配置することで、主軸剛性(モーメント剛性及びアキシアル剛性)の増加による高精度加工や、軸受の疲れ寿命の増加を行うことができる。
 一方、外径寸法が小さいモータ側軸受41,51では、反刃物側に配置されることで、切削荷重の負荷が小さいので、軸受の耐久性や寿命低下の心配がなく、剛性上の不都合がない。
 また、モータ側軸受41,51同士、及び反モータ側軸受42,52同士が、それぞれ等しい外径寸法を有することで、加工費用や組付費用の増加を抑えることができる。仮に、モータ側軸受41,51や反モータ側軸受42,52の外径寸法を異ならせた場合、はめあいの管理部位が2箇所或いは4箇所となり、加工工数が増加し、加工費用や組付費用の増加につながる。さらに、反モータ側軸受42,52の外径寸法を異ならせた場合、外輪42a,52aの軸方向位置決め(適正な外輪軸方向押え代の確保)が困難となる。
 また、モータ側軸受41,51では、外径寸法が小さいことで玉ピッチ円径も小さくなり、ロータ72の発熱により熱的負荷を受けやすいモータ側軸受41,51のdmn(dm:玉ピッチ円径とn:回転数(min-)との積)値が小さくでき、高速回転時に生
じやすいモータ側軸受41,51の焼付きを防止することができる。
 また、外径寸法が大きい各アンギュラ玉軸受42,52において、軸方向外側に位置するアンギュラ玉軸受42が軸方向内側に位置するアンギュラ玉軸受52よりも玉径において大きく設定されることで(Da42>Da52)、刃物先端に荷重が負荷された際に、最も荷重を負担する軸方向外側のアンギュラ玉軸受42の限界荷重(玉と軌道面との接触部に圧痕が発生する最低の荷重)が大きくなり、圧痕の発生を抑制することができ、耐衝撃性を向上することができる。
 さらに、アンギュラ玉軸受42では、玉径Da42を大きくすることで、転がり摩擦による発熱がある程度増大するが、軸方向外側に位置することで、軸受自身の転がり摩擦による発熱分を外部に逃がすことが容易であり、軸受の転がり摩擦による発熱で焼付く可能性は低い。したがって、玉径を大きくして、軸方向外側に位置するアンギュラ玉軸受42の転がり摩擦による発熱がある程度増大したとしても、問題なく使用することができる。
 また、軸方向外側に位置するアンギュラ玉軸受42は軸方向内側に位置するアンギュラ玉軸受52よりも接触角において大きく設定されているので(α42>α52)、組合せ玉軸受及び主軸装置のアキシアル剛性を高めることができる。
 主軸系のラジアル剛性は、軸受の剛性以外に回転軸の曲げ剛性が影響するが、アキシアル剛性に関しては、軸受の剛性でほぼ決定される。一般に接触角を大きくすると、スピン滑りやジャイロ滑りなど、滑りが大きくなり、軸受の発熱量が増大する。軸方向外側のアンギュラ玉軸受42では、発熱量の増加をある程度許容することができるが、軸方向内側のアンギュラ玉軸受52では、発熱量の増加を許容することができない。このため、軸方向内側のアンギュラ玉軸受52の接触角を小さくしている。
 また、軸方向外側に位置するアンギュラ玉軸受42は、軸方向内側に位置するアンギュラ玉軸受52よりも玉ピッチ円径において大きく設定されているので(dm42>dm52)、モーメント長を長くすることができ、組合せ玉軸受及び主軸装置のモーメント剛性を高めることができる。
 一方、玉ピッチ円径を大きくすることによる弊害として、軸受回転時のdmn値が大きくなり、軸受の転がり摩擦による発熱が大きくなることが挙げられる。しかしながら、上述したように、軸方向外側のアンギュラ玉軸受42では、軸受の発熱が増大したとしても、問題なく使用することができるが、軸方向内側のアンギュラ玉軸受52では、発熱量の増大を避けなければならない。このため、軸方向内側のアンギュラ玉軸受52の玉ピッチ円径dm52を小さくしている。
 なお、本実施形態では、外径寸法が大きい反モータ側軸受42,52と、外径寸法が小さいモータ側軸受41,51との間での玉径、接触角及び玉ピッチ円径の関係は、Da42>Da52>Da41=Da51、α42>α52≧α41=α51、dm42>dm52>dm41=dm51に設定されている。
 また、図3に示すように、本実施形態では、前側軸受ハウジング20は、外周面が外筒ハウジング10の内周面と嵌合する大径外周面21と、該大径外周面21より小径の小径外周面22とを有する段付き形状に形成される。また、前側軸受ハウジング20の小径外周面22の少なくとも一部は、ステータ71のエンドコイル73と半径方向から見てオーバーラップするように、ステータ71のエンドコイル73の内側に配置される。
 また、前側軸受40において、組合せ玉軸受において軸方向外側となるモータ側軸受41は、前側軸受ハウジング20の小径外周面22と半径方向から見てオーバーラップする位置で、前側軸受ハウジング20に内嵌される。前側軸受ハウジング20の内周面は、モータ側軸受41,51が内嵌される小径内周面23と、反モータ側軸受42,52が内嵌される大径内周面24とで段付き形状に形成されている。また、本実施形態では、モータ側軸受41は、ステータ71のエンドコイル73と半径方向から見てオーバーラップするように、ステータ71のエンドコイル73の内側に配置される。
 反モータ側軸受42,52の外輪外径と前側軸受ハウジング20の内径の嵌め合いすきまL1は、モータ側軸受41,51の外輪外径と前側軸受ハウジング20の内径の嵌め合いすきまL2より小さくしている(L1<L2)。
 即ち、反モータ側軸受42,52の外輪外径と前側軸受ハウジング20の内径の嵌め合いすきまL1は、直径すきまで、0μm~20μm程度とし、より好ましくは、0μm~10μm程度としている。
 一方、モータ側軸受41,51の外輪外径と前側軸受ハウジング20の内径の嵌め合いすきまL2は、直径すきまで、10μm~5mm程度のすきま(=ΔR)程度としている。
 モータ側軸受41,51の外輪外径と前側軸受ハウジング20の内径との嵌め合いすきまL2(=ΔR)を大きくすることで、高速回転中に、遠心力や内外輪温度差により発生する内部予圧の増加により、当該すきま部分で外輪41a,51aが膨張する。該外輪41a,51aの膨張作用は予圧が抜ける方向に作用し、前側軸受40全体としての予圧増加を軽減する効果がある。したがって、モータ側軸受41,51のみならず、前側軸受40全体の焼付きを防止することができる。
 なお、嵌め合いすきまL2が5mmを越えると、軸受内径がφ100mm以下(標準的なスピンドルサイズ)の軸受の場合、反モータ側軸受42,52の外輪42a,52aを固定する肩部平面が確保できなくなる。
 一方、嵌め合いすきまL2が10μmより小さいと、外輪41a,51aが膨張した際、該すきま部分がなくなり、予圧軽減効果が不十分となる。なお、嵌め合いすきまL2は、実用的には、10~200μm程度が望ましい。
 また、本実施形態では、反モータ側軸受42,52の外輪42a,52aは、一端側が前側軸受ハウジング20の肩部25に外輪間座43を介して接触固定され(または、直接、接触固定されてよい)、他端側が外輪間座44を介して外輪抑え部材47で固定されて、軸方向に位置決めされている。
 一方、モータ側軸受41,51の外輪41a,51aは、一端部が外輪間座43を介して反モータ側軸受42,52に固定され(または、反モータ側軸受42,52に直接接触固定されてもよい)、他端部が前側軸受ハウジング20の他の肩部26との間に軸方向すきま(ΔA)を設けて、配置されている。軸方向すきまΔAは、ΔA>0であれば、特に数値は問わない。
 この場合、前側軸受ハウジング20の肩部25に接触する外輪間座43は、両端部の切欠き部分の内径寸法を異ならせており、モータ側端部は、外輪41a,51aと当接するように反モータ側端部よりも小径に形成されている。
 特に、精密スピンドルの場合、外輪41a,51a,42a,52aの締め付け時の歪な変形を抑えるため、押し付け代の精度管理は、数μm~十数μmのバラつきに抑える必要が有り、外径寸法が異なる4つの軸受41,51,42,52を、それぞれ肩部25、26に同時に適正な押し付け代で固定するのは非常に困難である。
 一方、本実施形態のように、軸方向すきま(ΔA)を設ける、つまり、軸受41,51の外輪単体幅と小径内周面23の幅の各単体部品の加工誤差を考慮して、ΔA>0となるように軸受41,51の外輪単体幅と小径内周面23の幅の寸法を加工設定しておけば、主軸組立時の後加工や微調整が不要となる。前側軸受40の軸方向の固定は、大径内周面24の幅に対して、軸受42,52の外輪単体幅、外輪間座43、44との寸法差を確認した後、外輪抑え部材47の幅を調整するのみで可能となる(日常、実施されるスピンドル組込作業と同様)。
 仮に、本発明と異なり、軸受41,51も同時に前側軸受40と同一の押え代で締め付けようとした場合、さらに、軸受41,51の外輪単体幅に対して、小径内周面23の幅(肩部25、26間の距離)の数μmレベルの調整が必要となり、加工部位が穴の奥部であることから微調整加工が極めて困難である。なお、本実施形態のように、軸受41,51の間に間座43,45が配置されている場合、外輪間座43を含めた調整が必要であり、さらに煩雑となる。
 なお、通常、固定側軸受となる前側軸受40は剛性及び回転精度確保のため定位置予圧が負荷されているので、モータ側軸受41,51の外輪41a,51aは、予圧により外輪間座43と密着嵌合している。したがって、反モータ側軸受42,52が図2のように固定されていれば、上記すきま(ΔR及びΔA)があっても、モータ側軸受41,51の外輪41a,51aが回転中に内輪41c,51cと共回りすることはない。
 また、本構成としても、加工中に主軸に負荷されるラジアル荷重は、サイズが大きく、負荷容量が大きい、反モータ側軸受42,52によって負荷されるので、支障がない。
 以上のように、本実施形態の組合せ玉軸受を構成する前側軸受40は、接触角の向きが同じ2列のアンギュラ玉軸受41,51,42,52同士が背面組合せされてなり、各アンギュラ玉軸受41,51,42,52は、それぞれ等しい内径寸法を有し、接触角の向きが同じ各アンギュラ玉軸受41,51,42,52同士は、それぞれ等しい外径寸法を有する一方、接触角の向きが異なる各アンギュラ玉軸受41,51,42,52は、それぞれ異なる外径寸法を有する。そして、外径寸法が大きい各アンギュラ玉軸受42,52において、軸方向外側に位置するアンギュラ玉軸受42は軸方向内側に位置するアンギュラ玉軸受52よりも玉径及び接触角において大きく設定されている。これにより、上記組合せ玉軸受を主軸装置に適用し、外径寸法が大きい各アンギュラ玉軸受42,52を切削荷重(ラジアル荷重やアキシアル荷重)を負荷する刃物側に配置することで、主軸剛性(モーメント剛性及びアキシアル剛性)の増加による高精度加工や、軸受の疲れ寿命の増加、耐焼付性の向上に寄与することができる。また、刃物先端に荷重が負荷された際に、最も荷重を負担する軸方向外側のアンギュラ玉軸受の圧痕の発生を抑制することができ、耐衝撃性を向上することができる。
 また、外径寸法が大きい各アンギュラ玉軸受42,52において、軸方向外側に位置するアンギュラ玉軸受42は軸方向内側に位置するアンギュラ玉軸受52よりも玉ピッチ円径において大きく設定されているので、組合せ玉軸受及び主軸装置のモーメント剛性を高めることができる。
 また、本実施形態の構成の主軸装置Mでは、前側軸受ハウジング20は、外周面が大径外周面21と小径外周面22とを有する段付き形状に形成され、前側軸受ハウジング20の小径外周面22の少なくとも一部は、ステータ71のエンドコイル73と半径方向から見てオーバーラップするように、ステータ71のエンドコイル73の内側に配置され、前側軸受40は、ビルトインモータ寄りのモータ側軸受41,51と、該モータ側軸受41,51に対してビルトインモータ70から離れた反モータ側軸受42,52と、を備える。そして、組合せ玉軸受において軸方向外側のモータ側軸受41は、前側軸受ハウジング20の小径外周面22と半径方向から見てオーバーラップする位置で、前側軸受ハウジング20に内嵌される。
 これにより、外径の小さいモータ側軸受41を、エンドコイル73内に配置でき、スピンドルの短寸化が図れ、回転軸80の全長の短縮に貢献することができ、それにより、主軸装置Mの軸方向寸法のコンパクト化と軽量化を図ることができる。
 また、回転軸80の前後軸受40、60間スパンの減少により、回転軸80の固有振動数を高くすることができて、最高回転数をより高速にすることも可能となり、動剛性が高くなることで、振動を小さく抑えることも可能となる。また、回転部のイナーシャ減により、急加速性の向上と電力減による省エネ効果も期待できる。また、チルト機構や旋回機構に搭載する場合は、主軸装置Mのコンパクト化と軽量化により、チルト機構や旋回機構の構造のコンパクト化も図れる。
 また、本実施形態では、軸受スリーブ36は、ステータ71のエンドコイル73と径方向から見てオーバーラップするように、ステータ71のエンドコイル73の内側に配置される円筒部37を有するので、回転軸80の全長をさらに短縮することができる。さらに、後側軸受60のモータ側軸受61がステータ71のエンドコイル73の内側に配置されるので、回転軸80の全長をより効果的に短縮することができる。
 なお、上記実施形態では、外径寸法が大きい反モータ側軸受42,52において、軸方向外側に位置するアンギュラ玉軸受42は、軸方向内側に位置するアンギュラ玉軸受52よりも玉径、接触角及び玉ピッチ円径のいずれにおいても大きく設定されているが、本発明は、軸方向外側に位置するアンギュラ玉軸受42が、軸方向内側に位置するアンギュラ玉軸受52よりも、少なくとも玉径及び接触角において大きく設定されるものであればよい。
 また、外径寸法が小さいモータ側軸受41,51において、軸方向外側に位置するアンギュラ玉軸受41と軸方向内側に位置するアンギュラ玉軸受51とは、玉径、接触角及び玉ピッチ円径のいずれにおいても互いに等しく設定されているが、本発明は、これに限らず、組合せ玉軸受の軸方向外側に位置するアンギュラ玉軸受41が、軸方向内側に位置するアンギュラ玉軸受51よりも、玉径、接触角及び玉ピッチ円径の少なくとも一つにおいても大きく設定されてもよい。
(第2実施形態)
 次に、本発明の第2実施形態に係る主軸装置について図5に基づいて詳細に説明する。なお、第1実施形態と同一または同等部分については、同一符号を付して、説明を省略或いは簡略化する。
 第1実施形態では、後側軸受60として、組合せアンギュラ玉軸受が使用されていたが、本実施形態では、図5に示すように、後側軸受60として、単列円筒ころ軸受68が使用されている。
 このため、円筒ころ軸受68の外輪68aは、後側軸受ハウジング30に直接内嵌されており、後側軸受ハウジング30に固定される外輪抑え部材65によって軸方向に固定される。また、円筒ころ軸受68の内輪68cは、回転軸80に外嵌され、ねじ溝80bに軸受固定ナット87を締め付けることで、内輪間座69、被検出部用リング部材67を介して、軸方向に固定される。外輪68aと内輪68cとの間には、複数の円筒ころ68bが配置される。
 後側軸受ハウジング30は、ステータ71のエンドコイル73と径方向から見てオーバーラップするように、ステータ71のエンドコイル73の内側に配置される円筒部31を有する。したがって、単列円筒ころ軸受68を用いることで、第1実施形態の主軸装置と比べて、さらに短寸化を図ることができる。
 また、本実施形態のように、円筒ころ軸受68の少なくとも一部を、径方向から見て、エンドコイル73とオーバーラップさせることで、さらに、短寸化を図ることができる。 その他の構成及び作用については、第1実施形態のものと同様である。
 尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。
 例えば、本実施形態では、4列背面組合せアンギュラ玉軸受の各アンギュラ玉軸受間に内輪間座及び外輪間座が配置されているが、各内輪間座及び外輪間座をなくして、さらに短寸化を図ってもよい。
 また、後側軸受についても、2列以上の組合せアンギュラ玉軸受を適用する場合、前側軸受と同様に、反モータ側軸受外輪外径>モータ側軸受外輪外径とするなど、前側軸受と同様の構成をしてもよい。
 さらに、上記実施形態では、後側軸受ハウジングや軸受スリーブの少なくとも一部は、ステータのエンドコイルと径方向から見てオーバーラップするように、ステータのエンドコイルの内側に配置されて、短寸化を図っている。しかしながら、本発明の主軸装置は、上記実施形態の組合せ玉軸受を構成するものであればこれに限らず、例えば、図6に示す変形例のように、後側軸受ハウジング30がステータ71のエンドコイル73の内側に配置されていない構成であってもよい。
 また、上記実施形態では、主軸装置の前側軸受として適用される、4列のアンギュラ玉軸受を組合せ玉軸受として説明しているが、本発明の組合せ玉軸受は、これに限らず、軸方向に配列されてなる4列以上のアンギュラ玉軸受を有し、接触角の向きが同じ2列以上のアンギュラ玉軸受同士が背面組合せされてなるものであればよい。
 加えて、本発明の組合せ玉軸受は、本実施形態のハウジングの形状に限定されず、回転軸がビルトインモータによって回転駆動される任意のビルトインモータタイプの主軸装置に適用可能である。即ち、該組合せ玉軸受を用いた本発明の主軸装置は、外径寸法が小さい各アンギュラ玉軸受をビルトインモータ寄りのモータ側軸受とし、外径寸法が大きい各アンギュラ玉軸受を該モータ側軸受に対してビルトインモータから離れた反モータ側軸受とするものであればよい。
 本出願は、2015年8月5日出願の日本特許出願2015-155270に基づくものであり、その内容はここに参照として取り込まれる。
 M 主軸装置
 10 外筒ハウジング
 20 前側軸受ハウジング
 21 大径外周面
 22 小径外周面
 30 後側軸受ハウジング
 36 軸受スリーブ
 40 前側軸受(組合せ玉軸受)
 41,51 モータ側軸受(アンギュラ玉軸受)
 42,52 反モータ側軸受(アンギュラ玉軸受)
 60 後側軸受
 61 モータ側軸受
 62 反モータ側軸受
 70 ビルトインモータ
 71 ステータ
 72 ロータ
 73 エンドコイル
 80 回転軸

Claims (10)

  1.  軸方向に配列されてなる4列以上のアンギュラ玉軸受を有し、接触角の向きが同じ2列以上の前記アンギュラ玉軸受同士が背面組合せされてなる組合せ玉軸受であって、
     前記各アンギュラ玉軸受は、それぞれ等しい内径寸法を有し、
     前記接触角の向きが同じ前記各アンギュラ玉軸受同士は、それぞれ等しい外径寸法を有する一方、前記接触角の向きが異なる前記各アンギュラ玉軸受は、それぞれ異なる外径寸法を有し、
     少なくとも外径寸法が大きい前記各アンギュラ玉軸受において、軸方向外側に位置する前記アンギュラ玉軸受は軸方向内側に位置する前記アンギュラ玉軸受よりも玉径及び接触角において大きいことを特徴とする組合せ玉軸受。
  2.  少なくとも前記外径寸法が大きい各アンギュラ玉軸受において、前記軸方向外側に位置するアンギュラ玉軸受は前記軸方向内側に位置するアンギュラ玉軸受よりも玉ピッチ円径において大きいことを特徴とする請求項1に記載の組合せ玉軸受。
  3.  回転軸が前側及び後側軸受を介してハウジングに回転自在に支持されるとともに、前記回転軸がビルトインモータによって回転駆動される主軸装置であって、
     前記前側軸受は、請求項1または2に記載の組合せ玉軸受によって構成され、前記外径寸法が小さい各アンギュラ玉軸受を前記ビルトインモータ寄りのモータ側軸受とし、前記外径寸法が大きい各アンギュラ玉軸受を該モータ側軸受に対して前記ビルトインモータから離れた反モータ側軸受とすることを特徴とする主軸装置。
  4.  前記ハウジングは、前記ビルトインモータのステータが取付けられる外筒ハウジングと、該外筒ハウジングの前部に設けられ、前記前側軸受の外輪が内嵌される前側軸受ハウジングと、前記外筒ハウジングの後部に設けられ、前記後側軸受の外輪が内嵌、又は、軸受スリーブを介して支持される後側軸受ハウジングと、を有し、
     前記前側軸受ハウジングは、外周面が大径外周面と小径外周面とを有する段付き形状に形成され、
     前記前側軸受ハウジングの小径外周面の少なくとも一部は、前記ステータのエンドコイルと半径方向から見てオーバーラップするように、前記ステータのエンドコイルの内側に配置され、
     前記モータ側軸受の少なくとも一つは、前記前側軸受ハウジングの小径外周面と半径方向から見てオーバーラップする位置で、前記前側軸受ハウジングに内嵌されることを特徴とする請求項3に記載の主軸装置。
  5.  前記モータ側軸受と前記反モータ側軸受とは、定位置予圧が付与されており、
     前記モータ側軸受の外輪は、嵌め合いすきまを持って、前記前側軸受ハウジングに内嵌されることを特徴とする請求項4に記載の主軸装置。
  6.  前記モータ側軸受と前記反モータ側軸受とは、定位置予圧が付与されており、
     前記モータ側軸受の外輪は、軸方向すきまを持って、前記前側軸受ハウジングに対して軸方向に位置決めされることを特徴とする請求項4又は5に記載の主軸装置。
  7.  前記後側軸受の外輪が前記軸受スリーブに内嵌されるとともに、前記軸受スリーブが前記後側軸受ハウジングに内嵌され、
     前記軸受スリーブの少なくとも一部は、前記ステータのエンドコイルと径方向から見てオーバーラップするように、前記ステータのエンドコイルの内側に配置されることを特徴とする請求項4~6のいずれか1項に記載の主軸装置。
  8.  前記後側軸受の外輪は、前記後側軸受ハウジングに内嵌され、
     前記後側軸受ハウジングの少なくとも一部は、前記ステータのエンドコイルと径方向から見てオーバーラップするように、前記ステータのエンドコイルの内側に配置されることを特徴とする請求項4~6のいずれか1項に記載の主軸装置。
  9.  請求項3~8のいずれか1項に記載の主軸装置を備えたことを特徴とする工作機械。
  10.  前記主軸装置がチルト機構又は旋回機構に搭載されていることを特徴とする請求項9に記載の工作機械。
     
PCT/JP2016/072807 2015-08-05 2016-08-03 組合せ玉軸受、及び主軸装置、並びに工作機械 WO2017022798A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/749,931 US10302128B2 (en) 2015-08-05 2016-08-03 Combined ball bearing, main spindle device, and machine tool
CN201680046043.0A CN107921547B (zh) 2015-08-05 2016-08-03 组合滚珠轴承和主轴装置、以及机床
EP16833077.7A EP3333436B1 (en) 2015-08-05 2016-08-03 Combined ball bearing, main spindle device, and machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015155270A JP6565454B2 (ja) 2015-08-05 2015-08-05 組合せ玉軸受、及び主軸装置、並びに工作機械
JP2015-155270 2015-08-05

Publications (1)

Publication Number Publication Date
WO2017022798A1 true WO2017022798A1 (ja) 2017-02-09

Family

ID=57943095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072807 WO2017022798A1 (ja) 2015-08-05 2016-08-03 組合せ玉軸受、及び主軸装置、並びに工作機械

Country Status (6)

Country Link
US (1) US10302128B2 (ja)
EP (1) EP3333436B1 (ja)
JP (1) JP6565454B2 (ja)
CN (1) CN107921547B (ja)
TW (1) TWI612229B (ja)
WO (1) WO2017022798A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109356940B (zh) * 2018-10-15 2023-10-20 北京环境特性研究所 一种角接触轴承锁紧结构
JP2022112822A (ja) 2021-01-22 2022-08-03 日本精工株式会社 軸受装置及び工作機械用主軸装置
TWI776439B (zh) * 2021-03-24 2022-09-01 朝程工業股份有限公司 電動載具傳動機構及電動載具
IT202100029615A1 (it) * 2021-11-24 2023-05-24 Skf Ab Unita’ cuscinetto con anello interno sensorizzato

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307912A (ja) * 2005-04-27 2006-11-09 Ntn Corp 転がり軸受
JP2006322496A (ja) * 2005-05-18 2006-11-30 Ntn Corp 多列アンギュラ玉軸受
JP2008133887A (ja) * 2006-11-28 2008-06-12 Ntn Corp 工作機械主軸用軸受装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938615A (en) * 1989-10-26 1990-07-03 The Timken Company Roll neck bearing
US5086851A (en) * 1990-10-26 1992-02-11 Dailey Petroleum Service Corp. Combination thrust and radial bearing for use in down-hole drilling tools
US5248204A (en) * 1992-02-14 1993-09-28 Canadian Downhole Drill Systems, Inc. Short stack bearing assembly
JP2001153144A (ja) * 1999-09-13 2001-06-08 Nsk Ltd アンギュラ型玉軸受
JP2004263816A (ja) 2003-03-04 2004-09-24 Ntn Corp 転がり軸受のエアオイル潤滑構造
DE202004001454U1 (de) * 2004-01-31 2004-04-01 Ab Skf Zweireihiges Wälzlager
JP2005299761A (ja) * 2004-04-09 2005-10-27 Nsk Ltd 多列玉軸受
KR20070097037A (ko) * 2004-12-14 2007-10-02 가부시키가이샤 제이텍트 롤링 베어링장치
CA2498748C (en) * 2005-02-28 2010-02-02 Qa Bearing Technologies Ltd. Bearing with pass or fail wear gauge
TW200712349A (en) * 2005-04-27 2007-04-01 Ntn Toyo Bearing Co Ltd Bearing assembly
JP4459207B2 (ja) 2006-10-06 2010-04-28 株式会社牧野フライス製作所 工作機械の主軸装置及び主軸の交換方法
CA2603390A1 (en) * 2007-09-26 2009-01-12 Mark Zlipko Non-diametrical multi-contact bearing
DE102007049982A1 (de) 2007-10-18 2009-04-23 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Wälzlager, insbesondere zur Lagerung eines Nutzfahrzeugrades
CN201105324Y (zh) * 2007-11-27 2008-08-27 张锐 一种电主轴
TW201109544A (en) * 2009-09-14 2011-03-16 Prec Machinery Res Dev Ct Bearing and main shaft mechanism of tool machine using the bearing
CN101670623A (zh) * 2009-09-29 2010-03-17 中国电子科技集团公司第四十五研究所 线轮主轴
CN201723447U (zh) * 2010-03-15 2011-01-26 宁波鲍斯压缩机有限公司 一种回转式螺杆压缩机主轴支承装置
EP3100805B1 (en) * 2011-07-20 2018-09-26 NSK Ltd. Spindle device
TWM436741U (en) * 2012-01-13 2012-09-01 Jian Xue Qin Precision positioning lock-nut of shaft & bearing and ball screw/spindle assembly for lock-nut assembling
EP2808551B1 (en) * 2013-05-30 2020-01-08 Nuovo Pignone S.r.l. Rotating machine with at least one active magnetic bearing and auxiliary rolling bearings
US9455530B2 (en) * 2014-07-01 2016-09-27 Tyco Electronics Corporation Electrical connector with ground bus
CN107076203B (zh) * 2014-10-23 2019-12-31 日本精工株式会社 组合滚珠轴承和机床用主轴装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307912A (ja) * 2005-04-27 2006-11-09 Ntn Corp 転がり軸受
JP2006322496A (ja) * 2005-05-18 2006-11-30 Ntn Corp 多列アンギュラ玉軸受
JP2008133887A (ja) * 2006-11-28 2008-06-12 Ntn Corp 工作機械主軸用軸受装置

Also Published As

Publication number Publication date
US10302128B2 (en) 2019-05-28
US20180238384A1 (en) 2018-08-23
JP2017030122A (ja) 2017-02-09
EP3333436B1 (en) 2018-11-21
TWI612229B (zh) 2018-01-21
EP3333436A4 (en) 2018-06-13
CN107921547B (zh) 2019-10-15
TW201708725A (zh) 2017-03-01
EP3333436A1 (en) 2018-06-13
JP6565454B2 (ja) 2019-08-28
CN107921547A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017022798A1 (ja) 組合せ玉軸受、及び主軸装置、並びに工作機械
WO2018034240A1 (ja) 玉軸受、主軸装置及び工作機械
WO2016063691A1 (ja) 組合せ玉軸受及び工作機械用主軸装置
JP5493167B2 (ja) 主軸装置及びそれを備えた工作機械
JP2006326695A (ja) 工作機械主軸用軸受装置
JP5581885B2 (ja) 主軸装置及びそれを備えた工作機械
TWI680029B (zh) 主軸裝置
US5820272A (en) Bearing structure for a rotating shaft
JP5585297B2 (ja) 工作機械用主軸装置
JP2008019943A (ja) 組合せ軸受
JP6210124B2 (ja) モータビルトイン方式の主軸装置
JP6417779B2 (ja) 主軸装置及びそれを備えた工作機械
JP2008110426A (ja) スピンドル装置
JP2014050958A (ja) 主軸装置及びそれを備えた工作機械
JP5569605B2 (ja) 主軸装置及びそれを備えた工作機械
JP5233517B2 (ja) 主軸装置及びそれを備えた工作機械
JP2009008211A (ja) ころ軸受・軸受箱組立体
JP6210123B2 (ja) モータビルトイン方式の主軸装置
JP2020069603A (ja) モータビルトイン方式のスピンドル装置
KR100600022B1 (ko) 동적강성이 향상된 공작기계 주축의 스핀들장치
JP5943116B2 (ja) モータビルトイン方式の主軸装置
JP2013022675A (ja) 主軸装置
JP2019173917A (ja) 複合形軸受
JP5267206B2 (ja) 軸受固定用ナットの締結構造、及びそれを用いた工作機械用主軸装置
WO2022158245A1 (ja) 軸受装置及び工作機械用主軸装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15749931

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016833077

Country of ref document: EP