WO2017022566A1 - 反射防止フィルムの製造方法、及び反射防止フィルム - Google Patents

反射防止フィルムの製造方法、及び反射防止フィルム Download PDF

Info

Publication number
WO2017022566A1
WO2017022566A1 PCT/JP2016/071862 JP2016071862W WO2017022566A1 WO 2017022566 A1 WO2017022566 A1 WO 2017022566A1 JP 2016071862 W JP2016071862 W JP 2016071862W WO 2017022566 A1 WO2017022566 A1 WO 2017022566A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
layer
antireflection film
particles
curable compound
Prior art date
Application number
PCT/JP2016/071862
Other languages
English (en)
French (fr)
Inventor
彩子 松本
大樹 脇阪
伊吹 俊太郎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017532516A priority Critical patent/JP6464271B2/ja
Priority to KR1020187002923A priority patent/KR102013246B1/ko
Priority to CN201680045143.1A priority patent/CN107923996B/zh
Publication of WO2017022566A1 publication Critical patent/WO2017022566A1/ja
Priority to US15/883,594 priority patent/US10718887B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/068Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/22Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0209Multistage baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Definitions

  • the present invention relates to a method for producing an antireflection film and an antireflection film.
  • An antireflection film may be provided in order to prevent a decrease in contrast and reflection of an image due to reflection of external light on the display surface. Further, there are cases where an antireflection function is imparted by an antireflection film other than an image display device such as a glass surface of a showroom.
  • an antireflection film As an antireflection film, an antireflection film having a fine unevenness with a period of not more than the wavelength of visible light on the surface of the substrate, that is, an antireflection film having a so-called moth eye structure is known. With the moth-eye structure, it is possible to create a refractive index gradient layer in which the refractive index continuously changes from air to the bulk material inside the substrate, thereby preventing light reflection.
  • Patent Document 1 discloses that a coating liquid containing a transparent resin monomer and fine particles is applied on a transparent substrate and cured to form a transparent resin in which the fine particles are dispersed.
  • An anti-reflection film having a moth-eye structure manufactured by etching a resin is described.
  • Patent Document 1 it is necessary to etch the transparent resin, and the manufacturing process of the antireflection film may be complicated.
  • an antireflection film that is excellent in blackening even in a bright environment is demanded.
  • An object of the present invention is to provide a method for easily producing an antireflection film having good antireflection performance, excellent scratch resistance, little cloudiness, and excellent black tightening even in a bright environment. It is to provide an antireflection film.
  • the present inventors have studied to form a concavo-convex shape having a moth-eye structure by applying a composition containing particles, a curable compound, and a solvent.
  • the particles are exposed to the air interface during the period from application to curing, the particles are likely to aggregate and sometimes become cloudy. Therefore, the present inventors have further studied, and after setting the film thickness of the part where the particles of the applied layer are not present within a specific range and further curing a part of the curable compound so that the particles do not move,
  • the present inventors have found a method of forming a favorable uneven shape by particles by infiltrating a part of the curing into a substrate or volatilizing and removing it. That is, it has been found that the above problems can be solved by the following means.
  • a composition containing a curable compound (a1), particles (a2) having an average primary particle size of 150 nm to 250 nm and a solvent is applied, the solvent is volatilized, and the particles (a2) are not present.
  • Conditions for curing a part of the curable compound (a1) in the step (2) are: [1] or [1] or [2], which is a condition that when a composition obtained by removing the particles (a2) from the composition is applied on a substrate with a thickness of 2 ⁇ m and cured, the curing rate is 2 to 20%.
  • the manufacturing method of the antireflection film in any one of.
  • the compound (b1) is a silicone-based oil component, a hydrocarbon-based oil component, an ester-based oil component, a natural animal or vegetable oil or fat, a semi-synthetic oil or fat, a higher fatty acid, a higher alcohol, or a fluorine-based oil component [9] Or the manufacturing method of the antireflection film as described in [10]. [12] The antireflection film according to any one of [1] to [11], wherein the base material is a base material having a hard coat layer, and the composition in the step (1) is applied onto the hard coat layer. Manufacturing method.
  • a substrate An antireflection film having an antireflection layer having an uneven shape on the surface,
  • the antireflection layer contains a resin that forms the concave and convex portions of the concavo-convex shape, and particles having an average primary particle size that forms the convex portions of 150 nm or more and 250 nm or less,
  • the uneven surface of the antireflection layer has an average surface roughness Ra measured using an atomic force microscope of 15 nm or more, In the cross section in the film thickness direction of the antireflection film, An angle ⁇ formed by a straight line perpendicular to the base material passing through the point P where the particles, the resin, and the air interface intersect, and a tangent line of the curve formed by the resin and the air interface at the point P is 5 ° or more,
  • the antireflection film is an antireflection film in which a difference between an integrated reflectance and a specular reflectance in a wavelength region of 450 nm to 650 nm is 0.
  • a method capable of easily producing an antireflection film having good antireflection performance, excellent scratch resistance, little cloudiness, and excellent black tightening even in a bright environment can be provided.
  • FIG. 1 It is a schematic diagram which shows an example of the manufacturing method of the antireflection film of this invention. It is a schematic diagram for demonstrating (theta), (a) is a schematic diagram which shows the cross section of the film thickness direction of an example of the antireflection film of this invention, (b) is an example of the antireflection film manufactured by the etching It is a schematic diagram which shows the cross section of the film thickness direction. It is a cross-sectional schematic diagram which shows an example of the antireflection film of this invention.
  • (meth) acrylate represents at least one of acrylate and methacrylate
  • (meth) acryl represents at least one of acryl and methacryl
  • (meth) acryloyl represents at least one of acryloyl and methacryloyl.
  • the production method of the antireflection film of the present invention is as follows: A composition containing a curable compound (a1), particles (a2) having an average primary particle size of 150 nm or more and 250 nm or less, and a solvent is applied onto a substrate, the solvent is volatilized, and the particles (a2) A step (1) of providing a layer (a) in which the thickness of the portion where no is present is 0.8 times or more the average primary particle size of the particles (a2); A step (2) of obtaining a cured compound (a1c) by curing a part of the curable compound (a1) in the layer (a); A part of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (a) is allowed to penetrate or volatilize the base material by heating.
  • the method further comprises a step (4) of curing a compound selected from the group consisting of the curable compound (a1) and the compound (a1c) remaining in the layer (a) in this order. is there.
  • FIG. 1 A schematic diagram showing an example of a method for producing the antireflection film of the present invention is shown in FIG.
  • step (1) a curable compound (a1), particles (a2) having an average primary particle size of 150 nm to 250 nm (reference numeral 3 in FIG. 1), a solvent, and a solvent are formed on a substrate (reference numeral 1 in FIG. 1).
  • a layer (a) in which the solvent is volatilized and the thickness of the portion where the particles (a2) are not present is 0.8 times or more the average primary particle size of the particles (a2) (a ) (Reference numeral 4 in FIG. 1).
  • the substrate is not particularly limited as long as it is a translucent substrate generally used as a substrate for an antireflection film, but a plastic substrate or a glass substrate is preferable.
  • plastic substrates can be used, such as cellulose resin; cellulose acylate (triacetate cellulose, diacetyl cellulose, acetate butyrate cellulose), polyester resin; polyethylene terephthalate, (meth) acrylic resin, polyurethane, etc.
  • Base materials containing polycarbonate resins, polycarbonates, polystyrenes, olefin resins, etc. preferably cellulose acylates, polyethylene terephthalates, or substrates containing (meth) acrylic resins, and substrates containing cellulose acylates Is more preferable, and a cellulose acylate film is particularly preferable.
  • the cellulose acylate the base material described in JP 2012-093723 A can be preferably used.
  • the thickness of the substrate is usually about 10 ⁇ m to 1000 ⁇ m, but is preferably 20 ⁇ m to 200 ⁇ m, more preferably 25 ⁇ m to 100 ⁇ m from the viewpoints of good handleability, high translucency, and sufficient strength. preferable.
  • the translucency of the base material a material having a visible light transmittance (preferably an average transmittance of 400 nm or more and 750 nm or less) of 90% or more is preferable.
  • a functional layer may be provided on the substrate before the step (1).
  • the functional layer is provided on the base material, the laminate of the functional layer and the base material is referred to as “base material”.
  • the functional layer is provided on the surface on which the layer (a) of the base material is to be provided, the layer (a) is provided on the functional layer in the step (1), and the subsequent steps are performed.
  • the functional layer is preferably a hard coat layer.
  • the substrate is a substrate having a hard coat layer (also referred to as “substrate with a hard coat layer”), and the composition in the step (1) is preferably applied onto the hard coat layer. .
  • Antireflection layer forming composition As a coating method of a composition (also referred to as “antireflection layer forming composition”) containing a curable compound (a1), particles (a2) having an average primary particle size of 150 nm to 250 nm and a solvent, It is not limited and a well-known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.
  • the curable compound (a1) is preferably a compound having a radical reactive group.
  • radical reactive groups addition-polymerizable unsaturated bonds (eg (meth) acryloyl group, (meth) acrylamide group, (meth) acrylonitrile group, allyl group, vinyl group, styrene structure, vinyl ether structure, acetylene structure, etc.) ), -SH, -PH, SiH, -GeH, disulfide structure and the like.
  • Examples of the curable compound (a1) include compounds having a polymerizable functional group (polymerizable carbon-carbon unsaturated double bond) such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group.
  • a compound having a (meth) acryloyl group and —C (O) OCH ⁇ CH 2 is preferable, a compound having a (meth) acryloyl group is more preferable, and a compound having two or more (meth) acryloyl groups in one molecule.
  • the curable compound (a1) one type of compound may be used alone, or two or more types of compounds may be used in combination.
  • curable compound (a1) when a substrate with a hard coat layer is used as the substrate, at least two curable compounds are used as the curable compound (a1), and at least one of them penetrates the substrate in the step (3). It is preferably a compound that does not have a radical reactive group and has a reactive group other than a radical reactive group.
  • the compound having a polymerizable functional group examples include (meth) acrylic diesters of alkylene glycol, (meth) acrylic diesters of polyoxyalkylene glycol, (meth) acrylic diesters of polyhydric alcohol, ethylene oxide Alternatively, propylene oxide adduct (meth) acrylic acid diesters, epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, and the like can be given.
  • curable compound (a1) examples include the following curable compounds (a1-1) to (a1-3). Of these, it is preferable to use two or more of them together, and it is more preferable to use all three of them together. preferable.
  • Curable compound (a1-1) Compound having a molecular weight of 400 or more and having a radical reactive group
  • Curable compound (a1-3) A compound having a molecular weight of less than 400, having no radical reactive group and having a reactive group other than a radical reactive group, or a compound having a molecular weight of less than 400 and volatilizing when heated
  • the molecular weight of the curable compound is uniquely determined from the structural formula of the curable compound, it is determined from the structural formula.
  • the molecular weight is not uniquely determined from the structural formula such as having a distribution like a polymer compound, The weight average molecular weight is determined using gel permeation chromatography.
  • the weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) under the following conditions.
  • Sample concentration 0.1% by mass
  • Flow rate 0.35 ml / min
  • TSK standard polystyrene manufactured by TOSOH Weight average molecular weight (Mw) A calibration curve with 7 samples from 2800000 to 1050 was used.
  • the curable compound (a1-1) is a compound having a molecular weight of 400 or more and having a radical reactive group.
  • the curable compound (a1-1) is preferably a compound that does not easily penetrate into the substrate.
  • the molecular weight of the curable compound (a1-1) is preferably from 400 to 100,000, more preferably from 1,000 to 50,000.
  • the curable compound (a1-1) has a functional group equivalent represented by (molecular weight / radical reactive group amount) of preferably 1000 or less, more preferably 500 or less, and 200 or less. Is more preferable.
  • curable compound (a1-1) examples include KAYARAD DPHA, DPHA-2C, PET-30, TMPTA, TPA-320, TPA-330, RP-1040, T-1420, D-310, DPCA-20, DPCA-30, DPCA-60, GPO-303 (manufactured by Nippon Kayaku Co., Ltd.), NK ester A-TMPT, A-TMMT, A-TMM3, A- TMM3L, A-9550 (manufactured by Shin-Nakamura Chemical Co., Ltd.), V # 3PA, V # 400, V # 36095D, V # 1000, V # 1080, Biscote # 802 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), etc.
  • Dendrimer type polyfunctional acrylics such as esterified product of polyol and (meth) acrylic acid, Sirius-501, SUBARU-501 (Osaka Organic Chemical Co., Ltd.) You can list rates. Purple light UV-1400B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7630B, UV-7640B UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3310EA, UV-3310EA, UV-3310B, UV-3500BA UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA, UV-2250EA (manufactured by Nippon Synthetic Chemical Co., Ltd.), UL-503LN (manufactured by Kyoeisha Chemical Co., Ltd
  • the curable compound (a1-2) is a silane coupling agent having a radical reactive group.
  • the molecular weight of the curable compound (a1-2) is preferably 100 to 5000, more preferably 200 to 2000.
  • the curable compound (a1-2) is preferably a compound that does not easily penetrate into the substrate.
  • the functional group equivalent represented by (molecular weight / radical reactive group amount) is preferably 1000 or less, more preferably 800 or less, and 400 or less. Is more preferable.
  • curable compound (a1-2) examples include 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyldimethylmethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 2- (meth) acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltriethoxysilane, 4 -(Meth) acryloxybutyltrimethoxysilane, 4- (meth) acryloxybutyltriethoxysilane and the like can be mentioned.
  • KBM-503, KBM-5103 manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling agents X-12-1048, X-12-1049, X-12- 1050 manufactured by Shin-Etsu Chemical Co., Ltd. or the like can be used.
  • the curable compound (a1-3) is preferably a compound having a molecular weight of less than 400, having no radical reactive group, and having a reactive group other than the radical reactive group when permeated.
  • the curable compound (a1-3) is preferably a compound that hardly penetrates into the substrate at 25 ° C. and easily penetrates into the substrate during heating.
  • Examples of the reactive group other than the radical reactive group possessed by the curable compound (a1-3) include a group that reacts with a compound constituting the base material (in the case where the base material has a functional layer such as a hard coat layer).
  • the molecular weight of the curable compound (a1-3) is preferably 100 or more and less than 400, and more preferably 200 or more and 300 or less.
  • the curable compound (a1-3) preferably has two or more reactive groups other than radical reactive groups.
  • curable compound (a1-3) examples include Celoxide 2021P, Celoxide 2081, Epolide GT-301, Epolide GT-401, EHPE3150CE (manufactured by Daicel Chemical Industries, Ltd.), OXT-121, OXT-221, OX-SQ, PNOX-1009 (above, manufactured by Toagosei Co., Ltd.), KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-4803 (above, Shin-Etsu Chemical) Kogyo Co., Ltd.).
  • the curable compound (a1-3) may be a compound that volatilizes when heated.
  • the molecular weight is preferably less than 400, more preferably less than 300, more preferably less than 50 and less than 300 from the viewpoint of being less volatile at room temperature and volatilizing during heating, more preferably less than 100 and less than 200.
  • the curable compound (a1-3) may or may not have a reactive group if it is a compound that volatilizes when heated.
  • Specific examples of such a curable compound (a1-3) include Blemmer GMR (manufactured by NOF Corporation), Blemmer GML (manufactured by NOF Corporation), and 2-hydroxyethyl methacrylate (HEMA).
  • the content of the curable compound (a1) in the layer (a) in the step (1) is preferably 0.1 g / m 2 to 0.8 g / m 2 , and 0.1 mg / m 2 to 0.6 mg / m 2. 2 is more preferable, and 0.1 g / m 2 to 0.4 mg / m 2 is most preferable.
  • particles (a2) having an average primary particle size of 150 nm to 250 nm> The particles (a2) having an average primary particle size of 150 nm or more and 250 nm or less are also referred to as “particles (a2)”.
  • the particles (a2) include metal oxide particles, resin particles, organic-inorganic hybrid particles having a metal oxide particle core and a resin shell, and metal oxide particles are preferable from the viewpoint of excellent film strength.
  • the metal oxide particles include silica particles, titania particles, zirconia particles, and antimony pentoxide particles. From the viewpoint that a moth-eye structure is easily formed because haze is not easily generated because the refractive index is close to that of many resins. Silica particles are preferred.
  • the resin particles include polymethyl methacrylate particles, polystyrene particles, and melamine particles.
  • the average primary particle diameter of the particles (a2) is 150 nm or more and 250 nm or less, and preferably 170 nm or more and 220 nm or less from the viewpoint that the particles can be aligned to form a moth-eye structure. Only 1 type may be used as particle
  • the average primary particle size of the particles refers to the 50% particle size that is the cumulative volume average particle size. More specifically, particles are added to ethanol so that the content becomes 35% by mass, and dispersed by ultrasonic waves for 10 minutes or more to prepare a particle dispersion, and this dispersion is measured by an electron micrograph. I can do it. Drop the dispersion to shoot a SEM (Scanning Electron Microscope) image, measure the diameter of each of the 100 primary particles, calculate the volume, and use the cumulative 50% particle size as the average primary particle size. Can do. When the particle is not a spherical diameter, the average value of the major axis and the minor axis is regarded as the diameter of the primary particle.
  • the shape of the particle is most preferably spherical, but there is no problem even if it is other than a spherical shape such as an indefinite shape.
  • the particles may be either crystalline or amorphous.
  • the particles it is preferable to use inorganic fine particles which have been surface-treated for improving dispersibility in a coating solution, improving film strength, and preventing aggregation.
  • Specific examples of the surface treatment method and preferred examples thereof are the same as those described in [0119] to [0147] of JP-A-2007-298974.
  • the surface of the particle is modified with a compound having an unsaturated double bond and a functional group reactive with the particle surface, so that the surface of the particle is not damaged. It is preferable to provide a saturated double bond.
  • particles having an average primary particle size of 150 nm or more and 250 nm or less include Seahoster KE-P10 (average primary particle size: 150 nm, amorphous silica manufactured by Nippon Shokubai Co., Ltd.), Eposter S (average primary particle size: 200 nm, Japan Catalyst (Melamine / formaldehyde condensate), Epstar MA-MX100W (average primary particle size 175 nm, Nippon Shokubai Co., Ltd. polymethyl methacrylate (PMMA) cross-linked product) can be preferably used.
  • Seahoster KE-P10 average primary particle size: 150 nm, amorphous silica manufactured by Nippon Shokubai Co., Ltd.
  • Eposter S average primary particle size: 200 nm, Japan Catalyst (Melamine / formaldehyde condensate)
  • Epstar MA-MX100W average primary particle size 175 nm, Nippon Sho
  • the particle (a2) is particularly preferably a calcined silica particle because the surface has a moderately large amount of hydroxyl groups and is a hard particle.
  • the calcined silica particles are manufactured by a known technique in which silica particles are obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water and a catalyst, and then the silica particles are calcined.
  • Japanese Patent Application Laid-Open Nos. 2003-176121 and 2008-137854 can be referred to.
  • Chlorosilanes such as tetrachlorosilane, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, methylvinyldichlorosilane, trimethylchlorosilane, methyldiphenylchlorosilane Compound: Tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, trimethoxyvinylsilane, triethoxyvinylsilane, 3-glycidoxypropyltrimethoxysilane, 3-chloro Propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane
  • the alkoxysilane compound is particularly preferred because it is more easily available and the resulting fired silica particles do not contain halogen atoms as impurities.
  • the halogen atom content is substantially 0% and no halogen atoms are detected.
  • the firing temperature is not particularly limited, but is preferably 800 to 1300 ° C, and more preferably 1000 to 1200 ° C.
  • the content of the particles in the layer (a) in step (1) is preferably 0.10 ⁇ 0.30g / m 2, more preferably 0.14 ⁇ 0.24g / m 2, 0.16 ⁇ 0. More preferably, it is 20 g / m 2 . If it is 0.10 g / m 2 or more, a lot of convex parts of the moth-eye structure can be formed, so that the antireflection property is easily improved. If it is 0.30 g / m 2 or less, aggregation in the liquid hardly occurs, and the moth eye Easy to form structure.
  • the solvent it is preferable from the viewpoint of improving dispersibility to select a solvent having a polarity close to that of the particles (a2).
  • an alcohol solvent is preferable, and examples thereof include methanol, ethanol, 2-propanol, 1-propanol, and butanol.
  • a solvent such as ketone, ester, carbonate, alkane, or aromatic is preferable, such as methyl ethyl ketone (MEK), dimethyl carbonate. , Methyl acetate, acetone, methylene chloride, cyclohexanone and the like.
  • MEK methyl ethyl ketone
  • the composition for forming an antireflection layer may contain components other than the curable compound (a1), the particles (a2), and the solvent.
  • a polymerization initiator, a dispersant for the particles (a2), a leveling agent, An antifouling agent or the like may be contained.
  • the dispersant for the particles (a2) can facilitate the uniform arrangement of the particles (a2) by reducing the cohesive force between the particles.
  • the dispersant is not particularly limited, but anionic compounds such as sulfates and phosphates, cationic compounds such as aliphatic amine salts and quaternary ammonium salts, nonionic compounds, and polymer compounds are preferred, and adsorbing groups And a steric repulsion group are more preferred because they have a high degree of freedom in selection.
  • a commercial item can also be used as a dispersing agent.
  • BYK Japan made of (stock) DISPERBYK160, DISPERBYK161, DISPERBYK162, DISPERBYK163, DISPERBYK164, DISPERBYK166, DISPERBYK167, DISPERBYK171, DISPERBYK180, DISPERBYK182, DISPERBYK2000, DISPERBYK2001, DISPERBYK2164, Bykumen, BYK-2009, BYK-P104, BYK-P104S, BYK-220S, Anti-Terra 203, Anti-Terra 204, Anti-Terra 205 (trade name) and the like.
  • the leveling agent can reduce the surface tension of the composition for forming an antireflection layer, thereby stabilizing the liquid after coating and facilitating the uniform disposition of the curable compound (a1) and the particles (a2).
  • the compounds described in JP-A-2004-331812 and JP-A-2004-163610 can be used.
  • the antifouling agent can suppress adhesion of dirt and fingerprints by imparting water and oil repellency to the moth-eye structure.
  • compounds described in JP 2012-88699 A can be used.
  • the composition for forming an antireflection layer preferably contains a polymerization initiator, and more preferably contains a photopolymerization initiator.
  • photopolymerization initiators acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds.
  • Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
  • the content of the polymerization initiator is set to a value that is sufficiently high to polymerize the polymerizable compound contained in the composition for forming an antireflection layer and that it is set to a value that is small enough so that the starting point does not increase excessively.
  • the content is preferably 0.5 to 8% by mass, more preferably 1 to 5% by mass, based on the total solid content in the layer forming composition.
  • the layer (a) is a layer formed by volatilizing the solvent from the composition for forming an antireflective layer applied on the substrate, and the curable compound (a1) and the average primary particle size are 150 nm or more and 250 nm or less. Particles (a2).
  • the layer (a) is a layer serving as an antireflection layer in the antireflection film produced by the production method of the present invention (also referred to as “finished antireflection film”).
  • the curable compound (a1) contained in the layer (a) becomes a resin by being cured. This resin forms concave and convex portions of the antireflection layer.
  • the layer (a) is partially cured in the step (2), and therefore the components contained before and after curing are different. I will do it.
  • the layer (a) is also referred to before and after the steps (3) and (4).
  • a plurality of particles (a2) are not present in a direction perpendicular to the surface of the substrate in the applied layer (a).
  • the fact that a plurality of particles (a2) do not exist in the direction orthogonal to the surface of the substrate means that the surface of the substrate is observed when three fields of 10 ⁇ m ⁇ 10 ⁇ m in the surface of the substrate are observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the ratio of the number of particles (a2) that are not overlapped in the direction perpendicular to the number is 80% or more, and preferably 95% or more.
  • the thickness of the layer (a) where the particles (a2) are not present is 0.8 times or more, preferably 0.8 times or more, 2 times the average primary particle size of the particles (a2). 0.0 times or less, more preferably 0.9 times or more and 1.5 times or less, and particularly preferably 1.0 times or more and 1.2 times or less. Thereby, it becomes difficult for the particles (a2) to aggregate and a preferable uneven shape is easily obtained.
  • Step (B1) and Step (B2) In the present invention, between step (1) and step (2), between step (2) and step (3), or between step (3) and step (4), A step (B1) of providing a layer (b) containing a compound (b1) incompatible with the curable compound (a1) on the surface opposite to the interface on the substrate side of the layer (a), It is preferable to have the process (B2) which removes a layer (b) after a process (B1). It is preferable to have a process (B1) between a process (1) to a process (3), and it is more preferable to have between a process (2) and a process (3). It is preferable to have a process (B2) after a process (4).
  • the layer (b) contains a compound (b1) (also referred to as “compound (b1)”) that is incompatible with the curable compound (a1).
  • the layer (b) is preferably provided in order to prevent the particles (a2) of the layer (a) from agglomerating, and is preferably removed finally.
  • the fact that the compound (b1) is incompatible with the curable compound (a1) means that an insoluble matter remains when the compound (b1) is mixed at 5% by mass with respect to the curable compound (a1) at 25 ° C. and stirred. It is.
  • the compound (b1) is preferably a compound that is not cured by heat.
  • the compound (b1) is a compound that is not cured by heat, because a moth-eye structure is easily formed by the particles (a2) even if a heating process is included before the removal of the compound (b1) in the production method of the present invention. .
  • the layer (b) is preferably a liquid oily component at 50 ° C., and it is a silicone oily component, hydrocarbon oily component, ester oily component, natural animal and vegetable fats and oils More preferably, they are semi-synthetic fats and oils, higher fatty acids, higher alcohols, or fluorine-based oil components.
  • the silicone oil component may be solid, semi-solid, or liquid.
  • silicone-based oil component for example, silicone oil, silicone-based surfactant, silicone resin, silicone wax, and silicone-based gelling agent can be used.
  • silicone oil examples include dimethylpolysiloxane (for example, KF96 series manufactured by Shin-Etsu Chemical Co., Ltd.), tristrimethylsiloxymethylsilane, caprylylmethicone, phenyltrimethicone, tetrakistrimethylsiloxysilane, methylphenylpolysiloxane, methylhexylpolysiloxane, Low or high viscosity linear or branched organopolysiloxanes such as methylhydrogenpolysiloxane, dimethylsiloxane / methylphenylsiloxane copolymer, etc .; octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane , Cyclic organopolysiloxanes such as tetramethyltetrahydrogencyclotetrasiloxane and t
  • silicone surfactants include linear or branched polyoxyethylene-modified organopolysiloxanes, linear or branched polyoxyethylene polyoxypropylene-modified organopolysiloxanes, linear or branched polyoxyethylene / alkyl copolymers.
  • Modified organopolysiloxane linear or branched polyoxyethylene polyoxypropylene / alkyl co-modified organopolysiloxane, linear or branched polyglycerin-modified organopolysiloxane, linear or branched polyglycerin / alkyl co-modified organopolysiloxane (Specific examples include Shin-Etsu Chemical silicone emulsifiers: KF-6011, 6043, 6028, 6038, 6100, 6104, 6105, etc.).
  • polyoxyethylene-modified partially cross-linked organopolysiloxane, polyglycerin-modified partially cross-linked porganopolysiloxane and the like coexist with other oil components (for example, Shin-Etsu Chemical Co., Ltd .: KSG series; KSG-210, 710). 310, 320, 330, 340, 320Z, 350Z, 810, 820, 830, 840, 820Z, 850Z, etc.).
  • silicone resin examples include acrylic silicone resins composed of acrylic / silicone graft copolymers, acrylic / silicone block copolymers, and the like (specific examples include: Shin-Etsu Chemical Co., Ltd .: acrylic / silicone graft copolymers). Cyclic organopolysiloxane solution: KP-545 and the like).
  • An acrylic silicone resin containing in the molecule at least one selected from a pyrrolidone moiety, a long-chain alkyl moiety, a polyoxyalkylene moiety and a fluoroalkyl moiety, and an anion moiety such as carboxylic acid can also be used.
  • this silicone resin includes a resin composed of R 8 3 SiO 0.5 units and SiO 2 units, a resin composed of R 8 3 SiO 0.5 units, R 8 2 SiO units and SiO 2 units, R 8 3 SiO Resin composed of 0.5 unit and R 8 SiO 1.5 unit, Resin composed of R 8 3 SiO 0.5 unit, R 8 2 SiO unit and R 8 SiO 1.5 unit, and R 8 3 SiO 0.5 unit, R A silicone network compound composed of at least one resin composed of 8 2 SiO units, R 8 SiO 1.5 units and SiO 2 units is preferred.
  • R 8 in the formula is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 30 carbon atoms.
  • the silicone network compound which contains in a molecule
  • silicone wax examples include an acrylic silicone wax made of an acrylic / silicone graft copolymer, an acrylic / silicone block copolymer, and the like (specific examples include: Shin-Etsu Chemical Co., Ltd .: acrylic / silicone graft copolymer). Cyclic organopolysiloxane solutions: KP-561P, 562P, etc.).
  • an acrylic silicone wax containing in the molecule at least one selected from a pyrrolidone moiety, a long-chain alkyl moiety, a polyoxyalkylene moiety and a fluoroalkyl moiety, and an anionic moiety such as a carboxylic acid can also be used.
  • the silicone wax is preferably a polylactone-modified polysiloxane bonded with a polylactone that is a ring-opening polymer of a lactone compound having a 5-membered ring or more. Further, this silicone wax is obtained by addition reaction of an olefin wax having an unsaturated group consisting of an ⁇ -olefin and a diene and an organohydrogenpolysiloxane having one or more SiH bonds in one molecule. Olefin wax.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 2 to 12 carbon atoms such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl 1-pentene, and the diene is butadiene, isoprene, 1, 4 -Hexadiene, vinyl norbornene, ethylidene norbornene, dicyclopentadiene and the like are preferred.
  • the organohydrogenpolysiloxane having a SiH bond a linear structure, a siloxane branched structure, or the like can be used.
  • silicone-based gelling agent examples include non-modified or modified parts such as non-modified partially cross-linked organopolysiloxane, alkyl-modified partially cross-linked origano polysiloxane, and silicone branched alkyl-modified partially cross-linked origano polysiloxane.
  • examples thereof include gel mixtures containing gelling components such as crosslinked origanopolysiloxane and various oil components such as cyclopentasiloxane, dimethicone, mineral oil, isododecane, trioctanoin, and squalane.
  • the gel mixture contains the gelling component and the oil component in a coexisting state.
  • examples of the gel mixture include KSG series (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., and in particular, KSG-15, 16, 41, 42, 43, 44, 042Z, and 045Z (all trade names).
  • Hydrocarbon oil components include liquid paraffin, light liquid isoparaffin, heavy liquid isoparaffin, petrolatum, n-paraffin, isoparaffin, isododecane, isohexadecane, polyisobutylene, hydrogenated polyisobutylene, polybutene, ozokerite, ceresin, microcrystalline wax , Paraffin wax, polyethylene wax, polyethylene / polypropylene wax, squalane, squalene, pristane, polyisoprene, wax and the like.
  • Ester oil components include hexyldecyl octoate, cetyl octanoate, isopropyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, myristyl myristate, oleyl oleate, decyl oleate, octyldodecyl myristate, dimethyl Hexyldecyl octoate, cetyl lactate, myristyl lactate, diethyl phthalate, dibutyl phthalate, lanolin acetate, ethylene glycol monostearate, propylene glycol monostearate, propylene glycol dioleate, glyceryl monostearate, glyceryl monooleate, tri Glyceryl 2-ethylhexanoate, trimethylolpropane tri-2-ethylhexanoate, ditrimethylol
  • Natural animal and vegetable oils and semi-synthetic oils include avocado oil, linseed oil, almond oil, ibotarou, eno oil, olive oil, cacao oil, kapok wax, kayak oil, carnauba wax, liver oil, candelilla wax, beef fat, cow leg fat, cow Bone fat, hydrogenated beef tallow, kyounin oil, whale wax, hydrogenated oil, wheat germ oil, sesame oil, rice germ oil, rice bran oil, sugarcane wax, sasanqua oil, safflower oil, shea butter, cinnamon oil, cinnamon oil, jojoballow, Olive squalane, shellac wax, turtle oil, soybean oil, tea seed oil, camellia oil, evening primrose oil, corn oil, pork fat, rapeseed oil, Japanese kiri oil, nukarou, germ oil, horse fat, persic oil, palm oil, palm kernel Oil, castor oil, hydrogenated castor oil, castor oil fatty acid methyl ester, sunflower oil, grape oil, bayberry
  • higher fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, undecylenic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), Examples include isostearic acid and 12-hydroxystearic acid.
  • Examples of the higher alcohol include lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol, behenyl alcohol, hexadecyl alcohol, oleyl alcohol, isostearyl alcohol, hexyl decanol, octyldodecanol, cetostearyl alcohol, 2-decyltetradecyl Nord, cholesterol, sitosterol, phytosterol, lanosterol, POE cholesterol ether, monostearyl glycerin ether (batyl alcohol), monooleyl glyceryl ether (ceralkyl alcohol) and the like.
  • fluorinated oily component examples include perfluoropolyether, perfluorodecalin, perfluorooctane and the like.
  • the compound (b1) is preferably liquid at 50 ° C., and more preferably liquid at 25 ° C. Moreover, it is preferable that at least 1 type of a compound (b1) has a boiling point of 110 degreeC or more. If the boiling point is 110 ° C. or higher, it is difficult to volatilize at room temperature, and it can exist as the layer (b) until the curing of the layer (a) is completed, which is preferable.
  • kinematic viscosity at 25 ° C. of compounds having a boiling point of 110 ° C. or higher from the viewpoint (b1) is a 0.1mm 2 / s ⁇ 100000mm 2 / s, 0.1mm 2 / s ⁇ 10000mm 2 / s is more preferable, and most preferably 0.1 mm 2 / s to 100 mm 2 / s.
  • Compound (b1) may be used alone or in combination of two or more.
  • the content of the compound (b1) in the layer (b) is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and still more preferably 90 to 100% by mass with respect to the total mass of the layer (b).
  • the method for removing the layer (b) is not particularly limited, but the substrate is not dissolved, the compound (b1) is washed with a solvent to be dissolved, and the temperature is higher than the boiling point of the compound (b1). A method of heating and volatilizing the compound (b1) is preferable.
  • the method for removing the layer (b) is not particularly limited, but the method of using a solvent that dissolves the compound (b1) without dissolving the substrate and the cured layer (a) (for example, a method of washing with the above solvent), A method of volatilizing the compound (b1) by heating at a temperature higher than the boiling point of the compound (b1), a method of dissolving the compound (b1) with an alkaline solution, and the like are preferable.
  • the substrate and the cured layer (a) are not dissolved, and the compound (b1) is not particularly limited as a solvent for dissolving, but when the substrate is triacetylcellulose, methanol, ethanol, 2-propanol, 1 -Alcohol solvents such as propanol, n-butanol, isobutanol, diacetone alcohol, methoxypropanol, ketone solvents such as methyl isobutyl ketone and methyl butyl ketone, aromatic solvents such as toluene and xylene, cyclohexane, propylene glycol monomethyl Ether acetate and the like are preferable. A plurality of these solvents may be mixed and used.
  • the heating temperature for volatilizing the compound (b1) is preferably a temperature lower than the glass transition temperature of the base material and higher than the boiling point of the compound (b1), specifically 60 to 180 ° C. It is preferably 80 to 130 ° C.
  • an aqueous solution of sodium hydroxide or potassium hydroxide As the solution in the case of dissolving with an alkaline solution, it is preferable to use an aqueous solution of sodium hydroxide or potassium hydroxide.
  • Step (2) is a step of obtaining a cured compound (a1c) by curing a part of the curable compound (a1) in the layer (a) of the step (1).
  • the particles (a2) can be made difficult to move and aggregation of the particles (a2) can be suppressed.
  • Curing a part of the curable compound (a1) means that only a part of the curable compound (a1) is cured, not the whole.
  • the uncured curable compound (a1) is permeated into the substrate by heating in step (3) or volatilized and removed. By doing so, the thickness of the part of the layer (a) where the particles (a2) are not present can be reduced, and the particles (a2) can be projected to form a favorable concavo-convex shape (moth eye structure).
  • the curable compound (a1) is a photocurable compound, and it is preferable to cure a part of the curable compound (a1) by irradiating light (preferably ultraviolet rays) in the step (2).
  • the condition for curing a part of the curable compound (a1) in the step (2) is that a composition obtained by removing the particles (a2) from the antireflection layer-forming composition is applied on the substrate with a thickness of 2 ⁇ m, When cured, the curing rate is preferably 2 to 20%, more preferably the curing rate is 3 to 15%, and the curing rate is 5 to 10%. More preferably it is.
  • the cure rate is (1-number of remaining polymerizable functional groups after curing / number of polymerizable functional groups before curing) ⁇ 100% And is measured by the following method.
  • the polymerizable functional group is a group having a polymerizable carbon-carbon unsaturated double bond. More specifically, the curable compound itself before curing is measured by KBr-IR using NICOLET 6700 FT-IR of Thermo electron corporation, and the peak (1660-1800 cm ⁇ 1 ) area of the carbonyl group and the polymerizable carbon-carbon are measured.
  • step (2) it is preferable to irradiate ultraviolet rays at a dose of 1 to 90 mJ / cm 2 , more preferably at a dose of 1.2 to 40 mJ / cm 2 , and more preferably 1.5 to 10 mJ / cm 2. It is more preferable to irradiate with a dose of 2 .
  • step (2) it is preferable to cure a part of the curable compound (a1) by irradiating ultraviolet rays from the side opposite to the side having the base layer (a).
  • a part of the curable compound (a1) by irradiating ultraviolet rays from the side opposite to the side having the base layer (a).
  • the step (2) is preferably performed in an environment with an oxygen concentration of 0.1 to 5.0% by volume, and the step (2) is more preferably performed in an environment with an oxygen concentration of 0.5 to 1.0% by volume. .
  • oxygen concentration By making oxygen concentration into the said range, the area
  • the compound (a1c) is a cured product of the curable compound (a1).
  • the molecular weight of the compound (a1c) is not particularly limited.
  • the compound (a1c) may have an unreacted polymerizable functional group.
  • Step (3) a part of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (a) is permeated into the substrate by heating or volatilized. This is a step of forming an uneven shape on the surface of (a).
  • the curable compound (a1) to be infiltrated into the substrate by heating or volatilized is the curable compound (a1) that has not been cured in the step (2).
  • the step of allowing a part of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) to penetrate into the base material It is preferable to heat the laminated body which has a base material and a layer (a).
  • the temperature in the heating is preferably lower than the glass transition temperature of the substrate, specifically 60 to 150 ° C., more preferably 80 to 120 ° C.
  • the heating time is preferably 1 to 15 minutes.
  • the curable compound (a1) has a boiling point at 1 atm.
  • Those having a molecular weight of not more than 300 are preferred. Specifically, Bremer GMR is preferred. 1 atm is 101325 Pa.
  • step (3) a part of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (a) is permeated into the substrate by heating or volatilized. An uneven shape is formed on the surface of (a).
  • the concave and convex portions are the particles (a2), and the concave portions are compounds selected from the group consisting of the curable compound (a1) and the compound (a1c) remaining in the layer (a).
  • Step (4) is a step of curing a compound selected from the group consisting of the curable compound (a1) and the compound (a1c) remaining in the layer (a).
  • the curing in the step (4) is preferably photocuring, and more preferably by ultraviolet irradiation.
  • the amount of ultraviolet irradiation is preferably 300 mJ / cm 2 or more, and it is preferably cured in an environment having an oxygen concentration of 0.01% by volume or less.
  • a compound selected from the group consisting of the curable compound (a1) and the compound (a1c) remaining in the layer (a) is cured to form a resin, and the resin protrudes from the recess and the resin.
  • an antireflection layer having a moth-eye structure having a concavo-convex shape with the formed particles (a2) as convex portions is formed.
  • the average surface roughness Ra is preferably 15 nm or more, more preferably 30 nm or more, and most preferably 40 nm or more.
  • the laminated body which consists of a base material and another layer is called a base material.
  • Examples of other layers include various functional layers, and a hard coat layer is particularly preferable.
  • the hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of a curable compound.
  • the hard coat layer is formed by applying a composition for forming a hard coat layer containing a polyfunctional monomer or polyfunctional oligomer on a substrate, and causing the polyfunctional monomer or polyfunctional oligomer to undergo a crosslinking reaction or a polymerization reaction. It is preferable to create it.
  • the functional group (polymerizable group) of the polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a light (preferably ultraviolet) polymerizable functional group is preferable.
  • Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
  • JP-A No. 2014-240956 the description in [0021] to [0027] of JP-A No. 2014-240956 can also be referred to in the present invention.
  • the film thickness of the hard coat layer is usually about 0.6 ⁇ m to 50 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m, from the viewpoint of imparting sufficient durability and impact resistance to the film.
  • the strength of the hard coat layer is preferably H or more, more preferably 2H or more, in a pencil hardness test. Furthermore, in the Taber test according to JIS K 5600-5-4 (1999), the smaller the amount of wear of the test piece before and after the test, the better.
  • the hard coat layer contains a curable compound
  • the curable compound of the hard coat layer is not cured.
  • the curable compound contained in the hard coat layer forming composition and the antireflection layer forming composition is a photocurable compound.
  • a part of the curable compound (a1) of the layer (a) is allowed to penetrate into the hard coat layer by heating.
  • the hard coat layer is formed by curing a composition for a hard coat layer containing a curable compound, and the amount of increase in the curing rate due to curing in the step (2) is preferably less than 5%, more preferably less than 3%. And less than 1.5% is most preferred.
  • a hard coat layer is formed on the substrate.
  • a forming composition is applied, ultraviolet rays are irradiated with a relatively weak exposure amount, a part of the radical photopolymerization initiator A is cleaved to generate radicals, and a part is not cleaved. At this time, a part of the curable compound of the hard coat layer is cured.
  • the antireflection layer-forming composition is applied onto the hard coat layer, and a part of the curable compound (a1) is cured in the step (2). Thereafter, a part of the uncured curable compound (a1) is allowed to penetrate into the hard coat layer in the step (3), and the ultraviolet ray is irradiated in the step (4), whereby the curable compound and the uncured curable property of the hard coat layer are irradiated.
  • the compound (a1) is cured.
  • the composition for forming a hard coat layer contains a photo radical polymerization initiator A and a heat radical polymerization initiator for generating radicals by heat, and the composition for forming an antireflection layer contains a photo radical polymerization initiator A
  • the hard coat layer-forming composition is applied onto a substrate, irradiated with ultraviolet rays at a relatively strong exposure amount, and radicals are generated by cleaving almost all of the radical photopolymerization initiator A.
  • a part of the curable compound of the hard coat layer is cured.
  • the antireflection layer-forming composition is applied onto the hard coat layer, and a part of the curable compound (a1) is cured in the step (2).
  • the thermal polymerization initiator in a hard-coat layer is cleaved, a radical is generated, and a curable compound is hardened.
  • the temperature for generating radicals from the thermal radical polymerization initiator is preferably higher than the penetration temperature in step (3), for example, preferably 100 to 180 ° C.
  • the thermal radical polymerization initiator VF-096, VAm-11 (above, manufactured by Wako Pure Chemical Industries, Ltd.) or the like can be preferably used.
  • the composition for forming a hard coat layer contains a radical photopolymerization initiator A that generates radicals by irradiating ultraviolet rays using a lamp A, and the composition for forming an antireflection layer contains a radical photopolymerization initiator A.
  • a composition for forming a hard coat layer is applied on a substrate, and the lamp A is used. Ultraviolet rays are irradiated with a relatively weak exposure amount, and a part of the photo radical polymerization initiator A is consumed and a part is left. At this time, a part of the curable compound of the hard coat layer is cured.
  • a composition for forming an antireflection layer is applied onto the hard coat layer, and a part of the curable compound (a1) is cured by irradiating with ultraviolet rays using the lamp B in the step (2). Thereafter, a part of the uncured curable compound (a1) is penetrated into the hard coat layer in the step (3), the lamp A is irradiated with ultraviolet rays in the step (4), and the hard coat layer curable compound and The uncured curable compound (a1) is cured.
  • Examples of the combination of the lamp A and the radical photopolymerization initiator A include a high-pressure mercury lamp having a specific wavelength spectrum, Irgacure 907, and Irgacure 369.
  • Examples of the combination of the lamp B and the radical photopolymerization initiator B include a metal halide lamp having a relatively broad wavelength spectrum, Irgacure 127, Irgacure 184, and the like. It is also preferable to shift the cleavage wavelength of the initiator using UV-LED light having a relatively long wavelength.
  • the composition for forming a hard coat layer is applied on the top, and a little heat is applied to consume a part of the thermal radical polymerization initiator and leave a part.
  • a part of the curable compound of the hard coat layer is cured.
  • a composition for forming an antireflection layer is applied onto the hard coat layer, and ultraviolet rays are irradiated in step (2) to cure a part of the curable compound (a1).
  • a part of the uncured curable compound (a1) is penetrated into the hard coat layer in the step (3), and ultraviolet rays are irradiated in the step (4) to cure the uncured curable compound (a1). And after that, it heats, a radical is generated with the thermal radical polymerization initiator in a hard-coat layer, and a curable compound is hardened.
  • the temperature for generating radicals from the thermal radical polymerization initiator is preferably higher than the penetration temperature in step (3), for example, preferably 100 to 180 ° C.
  • the antireflection film of the present invention is A substrate; An antireflection film having an antireflection layer having an uneven shape on the surface, The antireflection layer contains a resin that forms the concave and convex portions of the concavo-convex shape, and particles having an average primary particle size that forms the convex portions of 150 nm or more and 250 nm or less, The average surface roughness Ra of the uneven shape of the antireflection layer measured using an atomic force microscope is 15 nm or more, In the cross section in the film thickness direction of the antireflection film, An angle ⁇ formed by a straight line perpendicular to the base material passing through the point P where the particles, the resin, and the air interface intersect, and a tangent line of the curve formed by the resin and the air interface at the point P is 5 ° or more, The antireflection film is an antireflection film in which a difference between an integrated reflectance and a specular reflectance in a wavelength region of
  • the antireflection film of the present invention can be obtained by the above-described method for producing an antireflection film of the present invention, but is not limited thereto.
  • the substrate is the same as described above.
  • the resin forming the concave and convex portions of the antireflection layer is preferably a cured product of a compound selected from the group consisting of the curable compound (a1) and the compound (a1c) described above.
  • the preferred range of the particles forming the uneven convex portion of the antireflection layer is the same as that of the above-mentioned particle (a2).
  • the uneven shape on the surface of the antireflection layer of the antireflection film of the present invention preferably has a moth-eye structure.
  • the moth-eye structure refers to a processed surface of a substance (material) for suppressing light reflection, and a structure having a periodic fine structure pattern.
  • a structure having a fine structure pattern with a period of less than 780 nm.
  • the period of the fine structure pattern is less than 380 nm, the color of the reflected light is preferably reduced.
  • the period of the concavo-convex shape of the moth-eye structure is 100 nm or more because light having a wavelength of 380 nm can recognize a fine structure pattern and has excellent antireflection properties.
  • the presence or absence of the moth-eye structure can be confirmed by observing the surface shape with a scanning electron microscope (SEM), an atomic force microscope (AFM), or the like, and examining whether the fine structure pattern is formed.
  • SEM scanning electron microscope
  • AFM atomic force microscope
  • the average surface roughness Ra of the irregular shape of the antireflection layer measured with an atomic force microscope is preferably 15 nm or more and 150 nm or less. If it is smaller than 15 nm, the surface irregularity shape is not formed, and the reflectance cannot be reduced. If it is larger than 150 nm, the period of the irregularities formed from the particles becomes large, and the reflectance in the visible light region cannot be reduced.
  • the average surface roughness Ra is more preferably from 30 nm to 100 nm, and most preferably from 40 nm to 80 nm.
  • the average surface roughness Ra is measured in an AFM measurement mode using an atomic force microscope (AFM: Atomic Force Microscope, SPI3800N, manufactured by Seiko Instruments Inc.) in a field of 5 ⁇ m ⁇ 5 ⁇ m at 256 ⁇ 256 measurement points.
  • the surface roughness analysis was performed by measuring and performing primary inclination correction and secondary inclination correction, and the average surface roughness Ra was calculated.
  • an angle ⁇ formed by a straight line perpendicular to the base material passing through the point P where the particle, resin, and air interface intersect with a tangent of a curve formed by the resin and the air interface at the point P is 5 ° or more ( (See FIG. 2 (a)).
  • resin can hold
  • is more preferably 10 ° or more, and most preferably 30 ° or more.
  • the difference between the integrated reflectance and the specular reflectance in the wavelength region of 450 nm to 650 nm of the antireflection film of the present invention is preferably 0.6% or less.
  • an antireflection film with less cloudiness can be obtained.
  • the integral reflectance and specular reflectance are measured by the following methods. The back surface (base material side) of the antireflection film was roughened with sandpaper and then treated with black ink to prepare a film sample in which the back surface reflection was eliminated.
  • the unit IRV-471 was attached to a spectrophotometer V-550 (manufactured by JASCO Corporation), the reflectance was measured in the wavelength region of 450 to 650 nm, and the averaged value was taken as the integrated reflectance.
  • the integrated reflectance of the antireflection film is particularly preferably 1.2% or less.
  • a spectrophotometer V-550 (manufactured by JASCO Corporation) is equipped with the unit ARM-500 ⁇ , and the reflectivity at an incident angle of 5 ° is measured in the wavelength region of 450 to 650 nm, and the averaged specular reflectivity is measured. It was. Integral reflectance—Specular reflectance was defined as the difference between the integral reflectance and the specular reflectance.
  • the average surface roughness Ra, ⁇ , and half of the antireflection layer is a specific method for setting the difference between the integrated reflectance and the specular reflectance of the antireflection film within the above range. It is to manufacture by a manufacturing method.
  • the antireflection film 10 in FIG. 3 has a base material 1 and an antireflection layer 2.
  • the antireflection layer 2 has a moth-eye structure having a concavo-convex shape formed by particles 3 having an average primary particle size of 150 nm or more and 250 nm or less on the surface opposite to the substrate 1.
  • the antireflection layer 2 includes particles 3 having an average primary particle size of 150 nm to 250 nm and a resin 4.
  • it may have another layer between the base material and the antireflection layer, and preferably has a hard coat layer.
  • the materials for the base material, the antireflection layer, and the hard coat layer in the antireflection film are the same as those described in the production method of the antireflection film of the present invention.
  • the concave / convex shape of the antireflection layer of the antireflection film is such that B / A, which is the ratio of the distance A between the apexes of adjacent convex portions and the distance B between the centers of the adjacent convex portions and the concave portions, is 0. It is preferably 5 or more, more preferably 0.6 or more, and even more preferably 0.7 or more.
  • B / A is 0.5 or more, the depth of the concave portion increases with respect to the distance between the convex portions, and a refractive index gradient layer in which the refractive index changes more gradually from the air to the inside of the antireflection layer is formed. Therefore, the reflectance can be further reduced.
  • the volume ratio of the resin to the particles in the antireflection layer after curing can be controlled by the volume ratio of the resin to the particles in the antireflection layer after curing. Therefore, it is important to appropriately design the compounding ratio of the resin and particles.
  • the volume ratio of the resin and the particles in the antireflection layer is different from the blending ratio in the composition for forming the antireflection layer because the resin penetrates into the base material or volatilizes in the process of producing the moth-eye structure. In some cases, it is also important to set the matching with the base material appropriately.
  • the particles forming the convex portions are uniformly spread with an appropriate filling rate. From the above viewpoint, it is preferable that the content of the inorganic particles forming the convex portion is adjusted so as to be uniform throughout the antireflection layer.
  • the filling factor can be measured as the area occupancy (particle occupancy) of the inorganic particles located on the most surface side when observing the inorganic particles forming convex portions from the surface by SEM or the like, and is 25% to 64%. Preferably, it is 25 to 50%, more preferably 30 to 45%.
  • the antireflection film produced by the production method of the present invention can be suitably used as a polarizing plate protective film.
  • a polarizing plate protective film using the antireflection film produced by the production method of the present invention can be bonded to a polarizer to form a polarizing plate, and can be suitably used for a liquid crystal display device or the like.
  • the acetyl substitution degree of cellulose acylate was measured by the following method. The degree of acetyl substitution was measured according to ASTM D-817-91.
  • Composition of cellulose ester solution for air layer ⁇ Cellulose ester (acetyl substitution degree 2.86) 100 parts by mass -3 parts by mass of sugar ester compound of formula (I) -1 mass part of sugar ester compound of formula (II) Silica particle dispersion (average particle size 16 nm) “AEROSIL R972”, manufactured by Nippon Aerosil Co., Ltd. 0.026 parts by mass Methylene chloride 377 parts by mass ⁇ Methanol 61 parts by mass ⁇ 2.6 parts by weight of butanol
  • Composition of cellulose ester solution for drum layer ⁇ Cellulose ester (acetyl substitution degree 2.86) 100 parts by mass -3 parts by mass of sugar ester compound of formula (I) -1 mass part of sugar ester compound of formula (II) Silica particle dispersion (average particle size 16 nm) “AEROSIL R972”, manufactured by Nippon Aerosil Co., Ltd. 0.091 parts by mass ⁇ Methylene chloride 339 parts by mass ⁇ 74 parts by mass of methanol ⁇ 3 parts by weight of butanol
  • Composition of cellulose ester solution for core layer ⁇ Cellulose ester (acetyl substitution degree 2.86) 100 parts by mass -Sugar ester compound of formula (I) 8.3 parts by mass -2.8 mass parts of sugar ester compound of formula (II) ⁇ Methylene chloride 266 parts by mass ⁇ Methanol 58 parts by mass ⁇ 2.6 parts by weight of butanol
  • the cellulose ester web held by the pin tenter was conveyed to the drying zone.
  • a drying air of 45 ° C. was blown and then dried at 110 ° C. for 5 minutes.
  • the cellulose ester web was conveyed while stretching in the width direction at a magnification of 10%.
  • the portion held by the pin tenter was continuously cut out, and unevenness with a width of 15 mm and a height of 10 ⁇ m was made at both ends in the width direction of the web.
  • the width of the web at this time was 1610 mm.
  • the film was dried at 140 ° C. for 10 minutes while applying a tension of 130 N in the conveying direction.
  • the width direction edge part was continuously cut out so that a web might become a desired width
  • FUJITAC TG60UL is a cellulose acylate film manufactured by FUJIFILM Corporation.
  • a coating solution for forming a hard coat layer C having the following composition was applied and cured by heating at 150 ° C. for 90 seconds to form a hard coat layer having a thickness of 8 ⁇ m.
  • composition of coating liquid for forming hard coat layer A A-TMMT 44.58 parts by weight Irgacure 127 1.86 parts by weight Methyl ethyl ketone 35.71 parts by weight Methyl isobutyl ketone 8.93 parts by weight Methyl acetate 8.93 parts by weight
  • composition of coating liquid for forming hard coat layer B A-TMMT 33.60 parts by weight Irgacure 127 1.40 parts by weight Methyl ethyl ketone 35.75 parts by weight Methyl acetate 29.25 parts by weight
  • composition of coating liquid for forming hard coat layer C A-TMMT 33.60 parts by weight VF-096 1.40 parts by weight Methyl ethyl ketone 35.75 parts by weight Methyl acetate 29.25 parts by weight
  • composition of coating liquid for forming hard coat layer D A-TMMT 33.39 parts by weight VF-096 1.40 parts by weight Irgacure 127 0.21 parts by weight Methyl ethyl ketone 35.75 parts by weight Methyl acetate 29.25 parts by weight
  • composition of coating liquid for forming hard coat layer E PET-30 33.39 parts by weight VF-096 1.40 parts by weight Irgacure 127 0.21 parts by weight Methyl ethyl ketone 35.75 parts by weight Methyl acetate 29.25 parts by weight
  • composition of coating liquid for forming hard coat layer F PET-30 33.39 parts by weight Irgacure 127 1.40 parts by weight Methyl ethyl ketone 35.75 parts by weight Methyl acetate 29.25 parts by weight
  • A-TMMT Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) PET-30: A mixture of 60% pentaerythritol triacrylate and 40% pentaerythritol tetraacrylate (KAYARAD PET30 (manufactured by Nippon Kayaku Co., Ltd.))
  • Irgacure 127 Photopolymerization initiator (manufactured by BASF)
  • VF-096 2,2′-azobis [N- (2-propenyl) -2-methylpropionamide]: thermal polymerization initiator
  • Each component is put into a mixing tank so as to have the composition shown in Table 2 below, stirred for 60 minutes, dispersed by an ultrasonic disperser for 30 minutes, and filtered through a polypropylene filter having a pore size of 5 ⁇ m to form a coating solution for forming an antireflection layer. It was.
  • composition of coating solution for forming antireflection layer A Compound A 0.97 parts by mass Compound B 8.73 parts by mass Ethanol 15.26 parts by mass Methyl ethyl ketone 33.45 parts by mass Acetone 15.26 parts by mass Irgacure 127 0.40 parts by mass Silica particle dispersion ⁇ 25.88 parts by mass Compound C 0.04 parts by mass
  • composition of coating solution for forming antireflection layer B DPHA 0.97 parts by weight Bremer GMR 8.73 parts by weight Ethanol 15.26 parts by weight Methyl ethyl ketone 33.45 parts by weight Acetone 15.26 parts by weight Irgacure 127 0.40 parts by weight Silica particle dispersion ⁇ 25.88 parts by weight Compound C 0.04 parts by mass
  • composition of coating solution for forming antireflection layer C Compound A 0.95 parts by mass Compound B 8.55 parts by mass Ethanol 15.26 parts by mass Methyl ethyl ketone 33.45 parts by mass Acetone 15.26 parts by mass Irgacure 907 0.40 parts by mass Irgacure 184 0.20 parts by mass Silica particle dispersion ⁇ 25.88 parts by mass Compound C 0.04 parts by mass
  • composition of coating solution for forming antireflection layer D Sirius-501 2.52 parts by weight Compound B 1.07 parts by weight KBM-4803 7.37 parts by weight Ethanol 15.26 parts by weight Methyl ethyl ketone 32.19 parts by weight Acetone 15.26 parts by weight Irgacure 127 0.40 parts by weight Silica particles Dispersion ⁇ 25.88 parts by mass Compound C 0.04 parts by mass
  • composition of coating solution for forming antireflection layer E Sirius-501 2.47 parts by weight Compound B 1.05 parts by weight KBM-4803 7.22 parts by weight Ethanol 15.26 parts by weight Methyl ethyl ketone 32.22 parts by weight Acetone 15.26 parts by weight Irgacure 907 0.40 parts by mass Irgacure 184 0.20 parts by mass Silica particle dispersion ⁇ 25.88 parts by mass Compound C 0.04 parts by mass
  • composition of coating solution for forming antireflection layer F Sirius-501 2.52 parts by weight Compound B 3.88 parts by weight KBM-4803 4.56 parts by weight Ethanol 15.26 parts by weight Methyl ethyl ketone 32.19 parts by weight Acetone 15.26 parts by weight Irgacure 127 0.40 parts by weight Silica particles Dispersion ⁇ 25.88 parts by mass Compound C 0.04 parts by mass
  • composition of coating solution for forming antireflection layer G Sirius-501 2.47 parts by weight Compound B 3.80 parts by weight KBM-4803 4.47 parts by weight Ethanol 15.26 parts by weight Methyl ethyl ketone 32.22 parts by weight Acetone 15.26 parts by weight Irgacure 907 0.40 parts by mass Irgacure 184 0.20 parts by mass Silica particle dispersion ⁇ 25.88 parts by mass Compound C 0.04 parts by mass
  • composition of coating solution for forming antireflection layer H Compound A 0.97 parts by mass Compound B 8.73 parts by mass Ethanol 15.26 parts by mass Methyl ethyl ketone 33.45 parts by mass Acetone 15.26 parts by mass Irgacure 127 0.40 parts by mass Silica particle dispersion ⁇ 25.88 parts by mass Compound C 0.04 parts by mass
  • composition of coating solution for forming antireflection layer I Compound A 0.97 parts by mass Compound B 8.73 parts by mass Ethanol 15.26 parts by mass Methyl ethyl ketone 33.45 parts by mass Acetone 15.26 parts by mass Irgacure 127 0.40 parts by mass Silica particle dispersion ⁇ 25.88 parts by mass Compound C 0.04 parts by mass
  • Compound A U-15HA
  • Compound B X-12-1048
  • Compound C MEK solution of polymer having the following structure (weight average molecular weight 19000) having a solid concentration of 40% by mass
  • Silica particle dispersions ⁇ , ⁇ , and ⁇ were prepared by the following methods.
  • KE-P20 was fired at 1050 ° C. for 1 hour using an electric furnace, cooled, and then pulverized using a pulverizer. 5 kg of the calcined KE-P20 was charged into a 20 L Henschel mixer (FM20J type, manufactured by Mitsui Mining Co., Ltd.) equipped with a heating jacket. While the calcined KE-P20 was being stirred, a solution prepared by dissolving 45 g of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in 90 g of methyl alcohol was added dropwise and mixed.
  • KBM5103 3-acryloxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • silica particle dispersion ⁇ 80 parts by mass of MEK and 20 parts by mass of the above silica particles are put into a mixing tank, and after stirring for 10 minutes, ultrasonic dispersion is performed for 30 minutes while continuing stirring to prepare a silica particle dispersion ⁇ having a solid content concentration of 20% by mass. did.
  • the average primary particle diameter of the silica particles contained in the silica particle dispersion ⁇ is 180 nm.
  • KE-P30 was fired at 1050 ° C. for 1 hour using an electric furnace, cooled, and then pulverized using a pulverizer. 5 kg of the calcined KE-P30 was charged into a 20 L Henschel mixer (FM20J type, manufactured by Mitsui Mining Co., Ltd.) equipped with a heating jacket. While the calcined KE-P30 was being stirred, a solution prepared by dissolving 30 g of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in 90 g of methyl alcohol was added dropwise and mixed.
  • KBM5103 3-acryloxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • the average primary particle size of the silica particles contained in the silica particle dispersion ⁇ is 290 nm.
  • PL-7 (manufactured by Fuso Chemical) was baked at 1050 ° C. for 1 hour using an electric furnace, cooled, and then pulverized using a pulverizer.
  • the calcined PL-7 (5 kg) was charged into a 20 L Henschel mixer (FM20J model manufactured by Mitsui Mining Co., Ltd.) equipped with a heating jacket. While the calcined PL-7 was being stirred, a solution prepared by dissolving 65 g of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in 90 g of methyl alcohol was added dropwise and mixed.
  • KBM5103 3-acryloxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • the average primary particle size of the silica particles contained in the silica particle dispersion ⁇ is 100 nm.
  • Irgacure 184 Photopolymerization initiator (manufactured by BASF)
  • Irgacure 907 Photopolymerization initiator (BASF) Sirius-501: Dendrimer type polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • KBM-4803 Glycidoxyoctyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • DPHA KAYARD DPHA (Nippon Kayaku Co., Ltd.)
  • KE-P20 Seahoster KE-P20 (average primary particle size 200 nm, amorphous silica manufactured by Nippon Shokubai Co., Ltd.)
  • KE-P30 Seahoster KE-P30 (average primary particle size 300 nm, amorphous silica manufactured
  • Step (1) Application of coating solution for forming antireflection layer
  • an antireflection layer-forming coating solution was applied at 2.8 ml / m 2 using a gravure coater, and dried at room temperature for 90 seconds.
  • a part of the sample was cut out, cured by irradiation with 600 mJ / cm 2 with an air-cooled metal halide lamp, then cut with a microtome to obtain a cross section, and SEM observation was performed at a magnification of 5000 times to measure the thickness of the resin relative to the particles.
  • Step (2) Ultraviolet rays were irradiated in the irradiation direction, lamp type, irradiation amount, and oxygen concentration (volume%) described in Step (2) of Table 3 to obtain the curing rates described in Table 3.
  • M04-L41 manufactured by Eye Graphics Co., Ltd.
  • As a high-pressure mercury lamp Dr. Model No. 33351N manufactured by Honle AG was used.
  • the amount of irradiation was measured by attaching a HEAD SENSER PD-365 to an eye ultraviolet integrated illuminometer UV METER UVPF-A1 manufactured by Eye Graphic Co., Ltd. and measuring range 0.0.
  • step (2) was not performed.
  • the surface of the resin layer obtained in the step (4) described later is subjected to plasma treatment using a high-frequency plasma apparatus at a condition of 13.56 MHz, the resin is etched, and an uneven shape is formed on the surface. It was revealed.
  • oil liquid having the following composition (both silicone oils manufactured by Shin-Etsu Chemical Co., Ltd.) is formed on the antireflection layer to a thickness of 600 nm using a die coater. It applied so that it might become.
  • Composition of oil liquid KF96-10cs 30.0 parts by mass KF96-0.65cs 70.0 parts by mass
  • Step (3) It processed at 120 degreeC or 150 degreeC for 5 minutes, and one part of the sclerosing
  • a part of the curable compound was volatilized.
  • a part of the curable compound was infiltrated into the substrate.
  • Step (4) While purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less, the above air-cooled metal halide lamp was irradiated with ultraviolet rays of 600 mJ / cm 2 to cure the curable compound of the antireflection layer, did.
  • a part of the prepared antireflection film sample was cut out, cut by a microtome, a cross section was taken out, SEM observation was performed at a magnification of 5000 times, and the thickness of the resin (part where no particle was present) with respect to the particle was measured.
  • a part of the curable compound permeates or volatilizes in the step (3) in which the resin thickness is reduced by 0.4 times or more of the particle diameter. It was judged.
  • Step wool resistance A rubbing test was performed on the surface of the antireflection layer of the antireflection film using a rubbing tester to obtain an index of scratch resistance. Evaluation environmental conditions: 25 ° C., relative humidity 60% Rubbing material: Steel wool (Nippon Steel Wool Co., Ltd., gelled No. 0000) Wrap around the tip (1 cm x 1 cm) of the tester that comes into contact with the sample.
  • a spectrophotometer V-550 (manufactured by JASCO Corporation) is equipped with the unit ARM-500 ⁇ , and the reflectivity at an incident angle of 5 ° is measured in the wavelength region of 450 to 650 nm, and the averaged specular reflectivity is measured. It was. Integral reflectance—Specular reflectance was defined as the difference between the integral reflectance and the specular reflectance.
  • the average surface roughness Ra is measured in an AFM measurement mode using an atomic force microscope (AFM: Atomic Force Microscope, SPI3800N, manufactured by Seiko Instruments Inc.) in a field of 5 ⁇ m ⁇ 5 ⁇ m at 256 ⁇ 256 measurement points.
  • the surface roughness analysis was performed by measuring and performing primary inclination correction and secondary inclination correction, and the average surface roughness Ra was calculated.
  • the curing rate is a curing rate when a composition obtained by removing particles from the composition for forming an antireflection layer is applied to a substrate with a thickness of 2 ⁇ m and cured, and is irradiated in step (2).
  • This is the curing rate when the same substrate is used and irradiated with the same irradiation direction, lamp type, irradiation amount and oxygen concentration, and is defined by the following formula. (1-number of remaining polymerizable functional groups after curing) / number of polymerizable functional groups before curing ⁇ 100%
  • the polymerizable functional group is a group having a polymerizable carbon-carbon unsaturated double bond.
  • the curable compound itself before curing is measured by KBr-IR using NICOLET 6700 FT-IR of Thermo electron corporation, and the peak (1660-1800 cm ⁇ 1 ) area of the carbonyl group and the polymerizable carbon-carbon are measured.
  • the curing rate was calculated by comparing before and after UV irradiation. When calculating hardening rate where normalized measurement depth at 808cm -1 821nm, a depth of 1660-1800Cm -1 as 384 nm.
  • the curing rate of the hard coat layer is defined by the curing rate after irradiation of the hard coat layer ⁇ the curing rate before irradiation.
  • the curing rate before irradiation is the curing rate in the state before step (1), and the curing rate after curing is the same irradiation direction as in the case of irradiating in step (2) without providing layer (a).
  • [ ⁇ ] Metal deposition is performed on the surface of the antireflection film (sample), the sample surface is embedded using an epoxy-based adhesive, and then the sample is thinned using a cryoion slicer (Ar ion beam cutting, cooling) (thickness: And observed with a transmission electron microscope (acceleration voltage 100 kV) to obtain a cross-sectional image in the film thickness direction. From the obtained image, 5 points are determined for the angle formed by the tangent of the curve formed by the resin and the air interface at the point P with respect to the straight line perpendicular to the base material passing through the point P where the particle, resin, and air interface intersect. The average was taken as ⁇ .
  • a method capable of easily producing an antireflection film having good antireflection performance, excellent scratch resistance, little cloudiness, and excellent black tightening even in a bright environment can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本発明によれば、基材上に、硬化性化合物(a1)と粒子(a2)と溶剤とを含む組成物を塗布し、溶剤を揮発させ、厚みが粒子(a2)が埋没する厚さの層(a)を設ける工程(1)、化合物(a1)の一部を硬化させる工程(2)、化合物(a1)の一部を基材に浸透させる、又は揮発させることにより凹凸形状を形成する工程(3)、化合物(a1)を硬化させる工程(4)をこの順に有する反射防止フィルムの製造方法、及び、基材と粒子及び樹脂を含む反射防止層とを有し、反射防止層の平均面粗さRaは15nm以上であり、膜厚方向の断面において、粒子、樹脂、及び空気界面が交わる点Pを通る基材に垂直な直線と点Pにおける樹脂と空気界面がなす曲線の接線とがなす角度θが5°以上であり、積分反射率と鏡面反射率との差が0.6%以下である反射防止フィルムが提供される。

Description

反射防止フィルムの製造方法、及び反射防止フィルム
 本発明は、反射防止フィルムの製造方法、及び反射防止フィルムに関する。
 陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示ディスプレイ(VFD)、フィールドエミッションディスプレイ(FED)、及び液晶表示装置(LCD)のような画像表示装置では、表示面での外光の反射によるコントラスト低下や像の映り込みを防止するために反射防止フィルムを設けることがある。また、ショールームのガラス表面など、画像表示装置以外でも反射防止フィルムにより反射防止機能を付与する場合がある。
 反射防止フィルムとして、基材表面に周期が可視光の波長以下の微細な凹凸形状を有する反射防止フィルム、いわゆるモスアイ(moth eye)構造を有する反射防止フィルムが知られている。モスアイ構造により、擬似的に空気から基材の内部のバルク材料に向かって屈折率が連続的に変化する屈折率傾斜層を作り出し、光の反射を防止することができる。
 モスアイ構造を有する反射防止フィルムとして、特許文献1には、透明樹脂モノマーと微粒子を含有する塗布液を透明基材上に塗布し、硬化して微粒子が分散した透明樹脂を形成し、その後、透明樹脂をエッチングすることにより製造されたモスアイ構造を有する反射防止フィルムが記載されている。
日本国特開2009-139796号公報
 しかしながら、特許文献1の技術では、透明樹脂をエッチングする必要があり、反射防止フィルムの製造工程が複雑になることがある。
 また、特に、スマートフォンやタブレットPC(personal computer)など屋外で使用される画像表示装置への適用を考え、明るい環境下においても黒締りに優れる反射防止フィルムが求められている。
 本発明の課題は、良好な反射防止性能を有し、耐擦傷性に優れ、白濁感が少なく、明るい環境下においても黒締りに優れる反射防止フィルムを簡便に製造することができる方法、及びこの反射防止フィルムを提供することにある。
 本発明者らは、上記課題を解決するために、粒子と硬化性化合物と溶剤とを含有する組成物を塗布することにより、モスアイ構造である凹凸形状を形成することを検討した。しかしながら、塗布から硬化までの間に粒子が空気界面に露出すると凝集しやすく、白濁が発生する場合が生じた。そこで、本発明者らは更に検討し、塗布した層の粒子が存在しない部分の膜厚を特定の範囲とし、更に硬化性化合物の一部を硬化させ、粒子が動かないようにしてから、未硬化の一部を基材へ浸透させたり、揮発させて除去したりすることで、粒子による良好な凹凸形状を形成する方法を見出した。
 すなわち、下記手段により上記課題を解決できることを見出した。
[1]
 基材上に、
 硬化性化合物(a1)と、平均一次粒径が150nm以上250nm以下の粒子(a2)と、溶剤とを含む組成物を塗布し、上記溶剤を揮発させ、上記粒子(a2)が存在しない部分の厚みが上記粒子(a2)の平均一次粒径の0.8倍以上の厚さとなる層(a)を設ける工程(1)、
 上記層(a)中の上記硬化性化合物(a1)の一部を硬化させ、硬化された化合物(a1c)を得る工程(2)、
 上記層(a)中の上記硬化性化合物(a1)及び上記化合物(a1c)からなる群より選択される化合物の一部を、加熱により上記基材に浸透させる、又は揮発させることにより上記層(a)の表面に凹凸形状を形成する工程(3)、
 上記層(a)中に残存する、上記硬化性化合物(a1)及び上記化合物(a1c)からなる群より選択される化合物を硬化させる工程(4)をこの順に有する、反射防止フィルムの製造方法。
[2]
 上記工程(4)の後において、上記基材の表面に直交する方向には上記粒子(a2)が複数存在しない、[1]に記載の反射防止フィルムの製造方法。
[3]
 上記工程(2)の上記硬化性化合物(a1)の一部を硬化させる条件が、
 上記組成物から上記粒子(a2)を除いたものを基材上に2μmの厚さで塗布し、硬化させた場合に、硬化率が2~20%となる条件である、[1]又は[2]に記載の反射防止フィルムの製造方法。
[4]
 上記工程(2)において、上記基材の上記層(a)を有する側とは反対側から紫外線を照射して上記硬化性化合物(a1)の一部を硬化させる、[1]~[3]のいずれかに記載の反射防止フィルムの製造方法。
[5]
 上記硬化性化合物(a1)が、1分子中に(メタ)アクリロイル基を2個以上有する化合物である、[1]~[4]のいずれかに記載の反射防止フィルムの製造方法。
[6]
 上記粒子(a2)が、金属酸化物粒子である、[1]~[5]のいずれかに記載の反射防止フィルムの製造方法。
[7]
 上記工程(3)の加熱により浸透させる際の加熱温度が、60~150℃である、[1]~[6]のいずれかに記載の反射防止フィルムの製造方法。
[8]
 上記加熱における加熱時間が、1~15分である、[7]に記載の反射防止フィルムの製造方法。
[9]
 上記工程(1)と上記工程(2)の間、上記工程(2)と上記工程(3)の間、又は上記工程(3)と上記工程(4)の間に、
 上記硬化性化合物(a1)と相溶しない化合物(b1)を含む層(b)を、上記層(a)の上記基材側の面とは反対の面上に設ける工程(B1)を有し、
 上記工程(B1)の後に、上記層(b)を除去する工程(B2)を有する、[1]~[8]のいずれかに記載の反射防止フィルムの製造方法。
[10]
 上記化合物(b1)が、50℃において液状の油性成分である、[9]に記載の反射防止フィルムの製造方法。
[11]
 上記化合物(b1)が、シリコーン系油性成分、炭化水素系油性成分、エステル系油性成分、天然動植物油脂類、半合成油脂類、高級脂肪酸、高級アルコール、又はフッ素系油性成分である、[9]又は[10]に記載の反射防止フィルムの製造方法。
[12]
 上記基材は、ハードコート層を有する基材であり、上記ハードコート層上に上記工程(1)における組成物が塗布される、[1]~[11]のいずれかに記載の反射防止フィルムの製造方法。
[13]
 上記ハードコート層が硬化性化合物を含有するハードコート層用組成物を硬化してなり、上記工程(2)の硬化による硬化率の上昇量が5%未満である、[12]に記載の反射防止フィルムの製造方法。
[14]
 上記硬化性化合物(a1)として、少なくとも2種の硬化性化合物を用い、そのうち少なくとも1種が、上記工程(3)で基材に浸透する化合物であり、ラジカル反応性基を有さず、かつラジカル反応性基以外の反応性基を有する、[13]に記載の反射防止フィルムの製造方法。
[15]
 [1]~[14]のいずれかに記載の反射防止フィルムの製造方法により製造された反射防止フィルム。
[16]
 基材と、
 表面に凹凸形状を有する反射防止層と
を有する反射防止フィルムであって、
 上記反射防止層は、上記凹凸形状の凹部を形成する樹脂と、凸部を形成する平均一次粒径が150nm以上250nm以下の粒子を含有し、
 上記反射防止層の凹凸形状の、原子間力顕微鏡を用いて測定した平均面粗さRaは15nm以上であり、
 上記反射防止フィルムの膜厚方向の断面において、
 上記粒子、上記樹脂、及び空気界面が交わる点Pを通る上記基材に垂直な直線と、上記点Pにおける上記樹脂と空気界面がなす曲線の接線とがなす角度θが5°以上であり、
 上記反射防止フィルムは、450nm以上650nm以下の波長領域における積分反射率と鏡面反射率との差が0.6%以下である、反射防止フィルム。
 本発明によれば、良好な反射防止性能を有し、耐擦傷性に優れ、白濁感が少なく、明るい環境下においても黒締りに優れる反射防止フィルムを簡便に製造することができる方法、及びこの反射防止フィルムを提供することができる。
本発明の反射防止フィルムの製造方法の一例を示す模式図である。 θを説明するための模式図であり、(a)は本発明の反射防止フィルムの一例の膜厚方向の断面を示す模式図であり、(b)はエッチングにより製造された反射防止フィルムの一例の膜厚方向の断面を示す模式図である。 本発明の反射防止フィルムの一例を示す断面模式図である。
 以下、本発明に係る好ましい実施の形態について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 また、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を表し、「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一種を表し、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの少なくとも一種を表す。
[反射防止フィルムの製造方法]
 本発明の反射防止フィルムの製造方法は、
 基材上に、硬化性化合物(a1)と、平均一次粒径が150nm以上250nm以下の粒子(a2)と、溶剤とを含む組成物を塗布し、上記溶剤を揮発させ、上記粒子(a2)が存在しない部分の厚みが上記粒子(a2)の平均一次粒径の0.8倍以上の厚さとなる層(a)を設ける工程(1)、
 上記層(a)中の上記硬化性化合物(a1)の一部を硬化させ、硬化された化合物(a1c)を得る工程(2)、
 上記層(a)中の上記硬化性化合物(a1)及び上記化合物(a1c)からなる群より選択される化合物の一部を、加熱により上記基材に浸透させる、又は揮発させることにより上記層(a)の表面に凹凸形状を形成する工程(3)、
 上記層(a)中に残存する、上記硬化性化合物(a1)及び上記化合物(a1c)からなる群より選択される化合物を硬化させる工程(4)をこの順に有する、反射防止フィルムの製造方法である。
 本発明の反射防止フィルムの製造方法の一例を示す模式図を図1に示す。
[工程(1)]
 工程(1)は、基材(図1の符号1)上に、硬化性化合物(a1)と、平均一次粒径が150nm以上250nm以下の粒子(a2)(図1の符号3)と、溶剤とを含む組成物を塗布し、上記溶剤を揮発させ、上記粒子(a2)が存在しない部分の厚みが上記粒子(a2)の平均一次粒径の0.8倍以上の厚さとなる層(a)(図1の符号4)を設ける工程である。
(基材)
 基材は、反射防止フィルムの基材として一般的に使用される透光性を有する基材であれは特に制限はないが、プラスチック基材やガラス基材が好ましい。
 プラスチック基材としては、種々用いることができ、例えば、セルロース系樹脂;セルロースアシレート(トリアセテートセルロース、ジアセチルセルロース、アセテートブチレートセルロース)等、ポリエステル樹脂;ポリエチレンテレフタレート等、(メタ)アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート、ポリスチレン、オレフィン系樹脂等を含有する基材が挙げられ、セルロースアシレート、ポリエチレンテレフタレート、又は(メタ)アクリル系樹脂を含有する基材が好ましく、セルロースアシレートを含有する基材がより好ましく、セルロースアシレートフィルムであることが特に好ましい。セルロースアシレートとしては、特開2012-093723号公報に記載の基材等を好ましく用いることが出来る。
 基材の厚さは、通常、10μm~1000μm程度であるが、取り扱い性が良好で、透光性が高く、かつ十分な強度が得られるという観点から20μm~200μmが好ましく、25μm~100μmがより好ましい。
 基材の透光性としては、可視光の透過率(好ましくは400nm以上750nm以下の平均透過率)が90%以上のものが好ましい。
 本発明においては、工程(1)の前に、基材上に機能層を設けてもよい。基材上に機能層を有する場合は、その機能層と基材との積層体を「基材」と呼ぶ。基材の層(a)を設けようとする面上に機能層を設けた場合には、工程(1)においては機能層上に層(a)を設け、以降の工程を行うものとする。機能層としてはハードコート層が好ましい。
 本発明では、基材は、ハードコート層を有する基材(「ハードコート層付き基材」ともいう)であり、ハードコート層上に上記工程(1)における組成物が塗布されることが好ましい。
(反射防止層形成用組成物)
 硬化性化合物(a1)と、平均一次粒径が150nm以上250nm以下の粒子(a2)と、溶剤とを含む組成物(「反射防止層形成用組成物」ともいう)の塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。
<硬化性化合物(a1)>
 硬化性化合物(a1)としては、ラジカル反応性基を有する化合物であることが好ましい。ラジカル反応性基としては、付加重合可能な不飽和結合(例えば(メタ)アクリロイル基、(メタ)アクリルアミド基、(メタ)アクリロニトリル基、アリル基、ビニル基、スチレン構造、ビニルエーテル構造や、アセチレン構造等)、-SH、-PH、SiH、-GeH、ジスルフィド構造等が挙げられる。
 硬化性化合物(a1)としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性官能基(重合性の炭素-炭素不飽和二重結合)を有する化合物が挙げられ、中でも、(メタ)アクリロイル基及び-C(O)OCH=CHを有する化合物が好ましく、(メタ)アクリロイル基を有する化合物がより好ましく、1分子中に(メタ)アクリロイル基を2個以上有する化合物が更に好ましい。
 硬化性化合物(a1)は1種の化合物を単独で用いてもよいし、2種以上の化合物を併用してもよい。
 特に、基材としてハードコート層付き基材を用いる場合は、硬化性化合物(a1)として、少なくとも2種の硬化性化合物を用い、そのうち少なくとも1種が、工程(3)で基材に浸透する化合物であり、ラジカル反応性基を有さず、かつラジカル反応性基以外の反応性基を有することが好ましい。
 重合性官能基を有する化合物の具体例としては、アルキレングリコールの(メタ)アクリル酸ジエステル類、ポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類、多価アルコールの(メタ)アクリル酸ジエステル類、エチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類、エポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類等を挙げることができる。
 硬化性化合物(a1)としては、下記硬化性化合物(a1-1)~(a1-3)が挙げられ、これらのうち2種以上を併用することが好ましく、3種すべてを併用することがより好ましい。
 硬化性化合物(a1-1):分子量が400以上であり、ラジカル反応性基を有する化合物
 硬化性化合物(a1-2):ラジカル反応性基を有するシランカップリング剤
 硬化性化合物(a1-3):分子量が400未満であり、ラジカル反応性基を有さず、かつラジカル反応性基以外の反応性基を有する化合物、又は、分子量が400未満であり、加熱時に揮発する化合物
 硬化性化合物分子量は、硬化性化合物の構造式から一義的に求められる場合は構造式から求めたものであり、高分子化合物のように分布を有するなど構造式から一義的に求められない場合はゲル浸透クロマトグラフィーを用いて測定した重量平均分子量とする。
 本発明における重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により下記の条件で測定された値である。
[溶媒] テトラヒドロフラン
[装置名] TOSOH HLC-8220GPC
[カラム] TOSOH TSKgel Super HZM-H
    (4.6mm×15cm)を3本接続して使用。
[カラム温度] 25℃
[試料濃度] 0.1質量%
[流速] 0.35ml/min
[校正曲線] TOSOH製TSK標準ポリスチレン 重量平均分子量(Mw)=2800000~1050までの7サンプルによる校正曲線を使用。
 硬化性化合物(a1-1)は、分子量が400以上であり、ラジカル反応性基を有する化合物である。
 硬化性化合物(a1-1)は基材に浸透しにくい化合物であることが好ましい。
 硬化性化合物(a1-1)の分子量は400~100000が好ましく、1000~50000がより好ましい。
 硬化性化合物(a1-1)は、(分子量/ラジカル反応性基量)で表される官能基当量が、1000以下であることが好ましく、500以下であることがより好ましく、200以下であることが更に好ましい。
 硬化性化合物(a1-1)の具体例としては、KAYARAD DPHA、同DPHA-2C、同PET-30、同TMPTA、同TPA-320、同TPA-330、同RP-1040、同T-1420、同D-310、同DPCA-20、同DPCA-30、同DPCA-60、同GPO-303(日本化薬(株)製)、NKエステルA-TMPT、A-TMMT、A-TMM3、A-TMM3L、A-9550(新中村化学工業(株)製)、V#3PA、V#400、V#36095D、V#1000、V#1080、ビスコート#802(大阪有機化学工業(株)製)等のポリオールと(メタ)アクリル酸のエステル化物、Sirius-501、SUBARU-501(大阪有機化学工業(株)製)等のデンドリマー型多官能アクリレートを挙げることができる。また紫光UV-1400B、同UV-1700B、同UV-6300B、同UV-7550B、同UV-7600B、同UV-7605B、同UV-7610B、同UV-7620EA、同UV-7630B、同UV-7640B、同UV-6630B、同UV-7000B、同UV-7510B、同UV-7461TE、同UV-3000B、同UV-3200B、同UV-3210EA、同UV-3310EA、同UV-3310B、同UV-3500BA、同UV-3520TL、同UV-3700B、同UV-6100B、同UV-6640B、同UV-2000B、同UV-2010B、同UV-2250EA、同UV-2750B(日本合成化学(株)製)、UL-503LN(共栄社化学(株)製)、ユニディック17-806、同17-813、同V-4030、同V-4000BA(大日本インキ化学工業(株)製)、EB-1290K、EB-220、EB-5129、EB-1830,EB-4858(ダイセルUCB(株)製)、ハイコープAU-2010、同AU-2020((株)トクシキ製)、アロニックスM-1960(東亜合成(株)製)、アートレジンUN-3320HA,UN-3320HC,UN-3320HS、UN-904(根上工業(株)製)、NKオリゴU-4HA、U-15HA(新中村化学工業(株)製)などの3官能以上のウレタンアクリレート化合物、アロニックスM-8100,M-8030,M-9050(東亞合成(株)製、KRM-8307(ダイセルサイテック(株)製)などの3官能以上のポリエステル化合物なども好適に使用することができる。
 硬化性化合物(a1-2)は、ラジカル反応性基を有するシランカップリング剤である。
 硬化性化合物(a1-2)の分子量は100~5000が好ましく、200~2000がより好ましい。
 硬化性化合物(a1-2)は、基材に浸透しにくい化合物であることが好ましい。
 硬化性化合物(a1-2)は、(分子量/ラジカル反応性基量)で表される官能基当量が、1000以下であることが好ましく、800以下であることがより好ましく、400以下であることが更に好ましい。
 硬化性化合物(a1-2)の具体例としては、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルジメチルメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、4-(メタ)アクリロキシブチルトリメトキシシラン、4-(メタ)アクリロキシブチルトリエトキシシラン等を挙げることが出来る。具体的には、KBM-503、KBM-5103(信越化学工業(株)製)や、特開2014-123091記載のシランカップリング剤X-12-1048、X-12-1049、X-12-1050(信越化学工業(株)製)等を用いることが出来る。
 硬化性化合物(a1-3)は、浸透させる場合は、分子量が400未満であり、ラジカル反応性基を有さず、かつラジカル反応性基以外の反応性基を有する化合物であることが好ましい。
 硬化性化合物(a1-3)は、25℃では基材に浸透しにくく、加熱時に基材に浸透しやすい化合物であることが好ましい。
 硬化性化合物(a1-3)が有するラジカル反応性基以外の反応性基としては、基材(基材がハードコート層等の機能層を有する場合は機能層)を構成する化合物と反応する基であることが好ましく、エポキシ基、アミノ基、ボロン酸基、ボロン酸エステル基、オキシラニル基、オキセタニル基、水酸基、カルボキシル基、イソシアネート基等が挙げられる。
 硬化性化合物(a1-3)の分子量は100以上400未満が好ましく、200以上300以下がより好ましい。
 硬化性化合物(a1-3)はラジカル反応性基以外の反応性基を2個以上有することが好ましい。
 このような硬化性化合物(a1-3)の具体例としては、セロキサイド2021P、セロキサイド2081、エポリードGT-301、エポリードGT-401、EHPE3150CE(以上、ダイセル化学工業(株)製)、OXT-121、OXT-221、OX-SQ、PNOX-1009(以上、東亞合成(株)製)、KBM-303、KBM-402、KBM-403、KBE-402、KBE-403、KBM-4803(以上、信越化学工業(株)製)が挙げられる。
 硬化性化合物(a1-3)は、加熱時に揮発する化合物であっても良い。この場合、分子量400未満であることが好ましく、300未満であることがより好ましく、室温で揮発しにくく加熱時に揮発するという観点から、50以上300未満であることが更に好ましく、100以上200未満が特に好ましい。硬化性化合物(a1-3)は、加熱時に揮発する化合物である場合は反応性基を有していても有していなくてもよい。
 このような硬化性化合物(a1-3)の具体例としては、ブレンマーGMR(日油株式会社製)、ブレンマーGML(日油株式会社製)、メタクリル酸2-ヒドロキシエチル(HEMA)が挙げられる。
 工程(1)での層(a)における硬化性化合物(a1)の含有率は、0.1g/m~0.8g/mが好ましく、0.1mg/m~0.6mg/mが更に好ましく、0.1g/m~0.4mg/mが最も好ましい。
<平均一次粒径が150nm以上250nm以下の粒子(a2)>
 平均一次粒径が150nm以上250nm以下の粒子(a2)を、「粒子(a2)」ともいう。
 粒子(a2)としては、金属酸化物粒子、樹脂粒子、金属酸化物粒子のコアと樹脂のシェルを有する有機無機ハイブリッド粒子などが挙げられるが、膜強度に優れる観点から金属酸化物粒子が好ましい。
 金属酸化物粒子としては、シリカ粒子、チタニア粒子、ジルコニア粒子、五酸化アンチモン粒子などが挙げられるが、多くの樹脂と屈折率が近いためヘイズを発生しにくく、かつモスアイ構造が形成し易い観点からシリカ粒子が好ましい。
 樹脂粒子としては、ポリメタクリル酸メチル粒子、ポリスチレン粒子、メラミン粒子などが挙げられる。
 粒子(a2)の平均一次粒子径は、粒子が並んでモスアイ構造を形成できる観点から150nm以上250nm以下であり、170nm以上220nm以下であることが好ましい。
 粒子(a2)として、1種のみ使用してもよいし、平均一次粒子径の異なる2種以上の粒子を用いてもよい。
 粒子の平均一次粒子径は、体積平均粒径の累積の50%粒子径を指す。
 より具体的には、エタノール中に含有量が35質量%となるように粒子を添加し、超音波で10分以上分散して粒子の分散液を調製し、この分散液について電子顕微鏡写真により測定することが出来る。分散液を滴下してSEM(Scanning Electron Microscope)像を撮影し、一次粒子100個のそれぞれの直径を測長してその体積を算出し、累積の50%粒子径を平均一次粒子径とすることができる。粒子が球径でない場合には、長径と短径の平均値をその一次粒子の直径とみなす。
 粒子の形状は、球形が最も好ましいが、不定形等の球形以外であっても問題無い。また、粒子は結晶質でも、アモルファスのいずれでもよい。
 粒子は塗布液中での分散性向上、膜強度向上、凝集防止のために表面処理された無機微粒子を使用することが好ましい。表面処理方法の具体例及びその好ましい例は、特開2007-298974号公報の[0119]~[0147]に記載のものと同様である。
 特に、樹脂との結着性を付与し、膜強度を向上させる観点から、粒子表面を不飽和二重結合及び粒子表面と反応性を有する官能基を有する化合物で表面修飾し、粒子表面に不飽和二重結合を付与することが好ましい。
 平均一次粒子径が150nm以上250nm以下の粒子の具体的な例としては、シーホスターKE-P10(平均一次粒子径150nm、日本触媒(株)製アモルファスシリカ)、エポスターS(平均一次粒子径200nm、日本触媒(株)製メラミン・ホルムアルデヒド縮合物)、エポスターMA―MX100W(平均一次粒子径175nm、日本触媒(株)製ポリメタクリル酸メチル(PMMA)系架橋物などを好ましく用いることができる。
 粒子(a2)としては、表面のヒドロキシル基量が適度に多く、かつ硬い粒子であるという理由から、焼成シリカ粒子であることが特に好ましい。
 焼成シリカ粒子は、加水分解が可能なシリコン化合物を水と触媒とを含む有機溶媒中で加水分解、縮合させることによってシリカ粒子を得た後、シリカ粒子を焼成するという公知の技術により製造することができ、たとえば特開2003-176121号公報、特開2008-137854号公報などを参照することができる。
 焼成シリカ粒子を製造する原料のシリコン化合物としては特に限定されないが、テトラクロロシラン、メチルトリクロロシラン、フェニルトリクロロシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルビニルジクロロシラン、トリメチルクロロシラン、メチルジフェニルクロロシラン等のクロロシラン化合物;テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、3-グリシドキシプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-クロロプロピルメチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジメトキシジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のアルコキシシラン化合物;テトラアセトキシシラン、メチルトリアセトキシシラン、フェニルトリアセトキシシラン、ジメチルジアセトキシシラン、ジフェニルジアセトキシシラン、トリメチルアセトキシシラン等のアシロキシシラン化合物;ジメチルシランジオール、ジフェニルシランジオール、トリメチルシラノール等のシラノール化合物;等が挙げられる。上記例示のシラン化合物のうち、アルコキシシラン化合物が、より入手し易く、かつ、得られる焼成シリカ粒子に不純物としてハロゲン原子が含まれることが無いので特に好ましい。本発明にかかる焼成シリカ粒子の好ましい形態としては、ハロゲン原子の含有量が実質的に0%であり、ハロゲン原子が検出されないことが好ましい。
 焼成温度は特に限定されないが、800~1300℃が好ましく、1000℃~1200℃がより好ましい。
 工程(1)での層(a)における粒子の含有率は、0.10~0.30g/mが好ましく、0.14~0.24g/mがより好ましく、0.16~0.20g/mであることが更に好ましい。0.10g/m以上であればモスアイ構造の凸部が数多く形成できるため反射防止性がより向上しやすく、0.30g/m以下であると、液中での凝集が生じにくく、モスアイ構造をうまく形成しやすい。
<溶剤>
 溶剤としては、粒子(a2)と極性が近い物を選ぶのが分散性を向上させる観点で好ましい。具体的には、例えば粒子(a2)が金属酸化物粒子の場合にはアルコール系の溶剤が好ましく、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノールなどが挙げられる。また、例えば粒子(a2)が疎水化表面修飾がされた金属樹脂粒子の場合には、ケトン系、エステル系、カーボネート系、アルカン、芳香族系等の溶剤が好ましく、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチル、アセトン、メチレンクロライド、シクロヘキサノンなどが挙げられる。これらの溶剤は、分散性を著しく悪化させない範囲で複数種混ぜて用いてもかまわない。
 反射防止層形成用組成物は、硬化性化合物(a1)、粒子(a2)、溶剤以外の成分を含有していてもよく、たとえば、重合開始剤、粒子(a2)の分散剤、レベリング剤、防汚剤等を含有していてもよい。
<粒子(a2)の分散剤>
 粒子(a2)の分散剤は、粒子同士の凝集力を低下させることにより、粒子(a2)を均一に配置させ易くすることができる。分散剤としては、特に限定されないが、硫酸塩、リン酸塩などのアニオン性化合物、脂肪族アミン塩、四級アンモニウム塩などのカチオン性化合物、非イオン性化合物、高分子化合物が好ましく、吸着基と立体反発基それぞれの選択の自由度が高いため高分子化合物がより好ましい。分散剤としては市販品を用いることもできる。例えば、ビックケミー・ジャパン(株)製のDISPERBYK160、DISPERBYK161、DISPERBYK162、DISPERBYK163、DISPERBYK164、DISPERBYK166、DISPERBYK167、DISPERBYK171、DISPERBYK180、DISPERBYK182、DISPERBYK2000、DISPERBYK2001、DISPERBYK2164、Bykumen、BYK-2009、BYK-P104、BYK-P104S、BYK-220S、Anti-Terra203、Anti-Terra204、Anti-Terra205(以上商品名)などが挙げられる。
<レベリング剤>
 レベリング剤は、反射防止層形成用組成物の表面張力を低下させることにより、塗布後の液を安定させ硬化性化合物(a1)及び粒子(a2)を均一に配置させ易くすることができる。例えば、特開2004-331812号公報、特開2004-163610号公報に記載の化合物等を用いることができる。
<防汚剤>
 防汚剤は、モスアイ構造に撥水撥油性を付与することにより、汚れや指紋の付着を抑制することができる。例えば、特開2012-88699号公報に記載の化合物等を用いることができる。
<重合開始剤>
 反射防止層形成用組成物は、重合開始剤を含むことが好ましく、光重合開始剤を含むことがより好ましい。
 光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009-098658号公報の段落[0133]~[0151]に記載されており、本発明においても同様に好適に用いることができる。
 「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65~148にも種々の例が記載されており本発明に有用である。
 重合開始剤の含有量は、反射防止層形成用組成物に含まれる重合可能な化合物を重合させるのに十分多く、かつ開始点が増えすぎないよう十分少ない量に設定するという理由から、反射防止層形成用組成物中の全固形分に対して、0.5~8質量%が好ましく、1~5質量%がより好ましい。
(層(a))
 層(a)は、基材上に塗布された反射防止層形成用組成物から溶剤を揮発させてできた層であり、硬化性化合物(a1)と、平均一次粒径が150nm以上250nm以下の粒子(a2)とを含む。
 層(a)は本発明の製造方法によって製造された反射防止フィルム(「出来上がりの反射防止フィルム」ともいう)において、反射防止層となる層である。
 層(a)に含まれる硬化性化合物(a1)は、硬化されることで、樹脂となるものである。この樹脂は反射防止層の凹凸形状の凹部を形成するものである。
 層(a)に含まれる平均一次粒径が150nm以上250nm以下の粒子(a2)は、出来上がりの反射防止フィルムにおいて、樹脂からなる膜の表面から突出し、凹凸形状の凸部を形成する。
 なお、層(a)は工程(2)で一部が硬化されるため、硬化前と硬化後で含有する成分が異なるが、本発明では便宜的にいずれの段階においても層(a)と呼ぶこととする。工程(3)及び(4)の前後においても同様に層(a)と呼ぶ。
 工程(1)において、塗布された層(a)中、基材の表面に直交する方向には粒子(a2)が複数存在しないことが好ましい。ここで、基材の表面に直交する方向には粒子(a2)が複数存在しないとは、基材の面内の10μm×10μmを走査型電子顕微鏡(SEM)で3視野観察した際に、表面に直交する方向に複数重なって存在しない粒子(a2)の個数の割合が、80%以上であることを表し、好ましくは95%以上である。
 工程(1)において、層(a)の粒子(a2)が存在しない部分の膜厚は、粒子(a2)の平均一次粒径の0.8倍以上であり、好ましくは0.8倍以上2.0倍以下であり、0.9倍以上1.5倍以下が更に好ましく、1.0倍以上1.2倍以下が特に好ましい。これにより、粒子(a2)が凝集しにくくなり、好ましい凹凸形状が得られやすい。
[工程(B1)及び工程(B2)]
 本発明においては、工程(1)と工程(2)の間、工程(2)と工程(3)の間、又は工程(3)と工程(4)の間に、
 硬化性化合物(a1)と相溶しない化合物(b1)を含む層(b)を、層(a)の基材側の界面とは反対の面に設ける工程(B1)を有し、
 工程(B1)の後に、層(b)を除去する工程(B2)を有することが好ましい。
 工程(B1)は、工程(1)から工程(3)の間に有することが好ましく、工程(2)と工程(3)の間に有することがより好ましい。
 工程(B2)は、工程(4)の後に有することが好ましい。
(層(b))
 層(b)は、硬化性化合物(a1)と相溶しない化合物(b1)(「化合物(b1)」ともいう)を含む。
 層(b)は、層(a)の粒子(a2)が凝集しないようにするために設けられることが好ましく、最終的には除去されることが好ましい。
 化合物(b1)が硬化性化合物(a1)と相溶しないとは、25℃において化合物(b1)を硬化性化合物(a1)に対して5質量%混合、撹拌した際に不溶解物が残る事である。
 また、化合物(b1)は熱により硬化しない化合物であることが好ましい。化合物(b1)を熱により硬化しない化合物とすることで、本発明の製造方法において化合物(b1)の除去前に加熱プロセスを含んでいても、粒子(a2)によるモスアイ構造を形成しやすいため好ましい。
 化合物(b1)として、塗布によって層(b)を設ける場合は、50℃において液状の油性成分であることが好ましく、シリコーン系油性成分、炭化水素系油性成分、エステル系油性成分、天然動植物油脂類、半合成油脂類、高級脂肪酸、高級アルコール、又はフッ素系油性成分であることがより好ましい。
[シリコーン系油性成分]
 シリコーン系油性成分は、固体状、半固体状及び液状のいずれであってもよい。シリコーン系油性成分としては、例えば、シリコーン油、シリコーン系界面活性剤、シリコーン樹脂、シリコーンワックス、及び、シリコーン系ゲル化剤を使用することができる。
 シリコーン油としては、例えば、ジメチルポリシロキサン(例えば、信越化学工業製KF96シリーズ)、トリストリメチルシロキシメチルシラン、カプリリルメチコン、フェニルトリメチコン、テトラキストリメチルシロキシシラン、メチルフェニルポリシロキサン,メチルヘキシルポリシロキサン、メチルハイドロジェンポリシロキサン、ジメチルシロキサン・メチルフェニルシロキサン共重合体等の低粘度から高粘度の直鎖又は分岐状のオルガノポリシロキサン;オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン,テトラメチルテトラハイドロジェンシクロテトラシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン等の環状オルガノポリシロキサン;アミノ変性オルガノポリシロキサン;ピロリドン変性オルガノポリシロキサン;ピロリドンカルボン酸変性オルガノポリシロキサン;高重合度のガム状ジメチルポリシロキサン、ガム状アミノ変性オルガノポリシロキサン、ガム状のジメチルシロキサン・メチルフェニルシロキサン共重合体等のシリコーンゴム;及びシリコーンガム又はゴムの環状オルガノポリシロキサン溶液;トリメチルシロキシケイ酸、トリメチルシロキシケイ酸の環状シロキサン溶液(例えば、信越化学工業製:KF-7312J等);ステアロキシリコーン等の高級アルコキシ変性シリコーン;高級脂肪酸変性シリコーン;アルキル変性シリコーン;長鎖アルキル変性シリコーン;アミノ酸変性シリコーン;フッ素変性シリコーン;シリコーン樹脂の溶解物等が挙げられる。
 シリコーン系界面活性剤としては、例えば、直鎖又は分岐状ポリオキシエチレン変性オルガノポリシロキサン、直鎖又は分岐状ポリオキシエチレンポリオキシプロピレン変性オルガノポリシロキサン、直鎖又は分岐状ポリオキシエチレン・アルキル共変性オルガノポリシロキサン、直鎖又は分岐状ポリオキシエチレンポリオキシプロピレン・アルキル共変性オルガノポリシロキサン、直鎖又は分岐状ポリグリセリン変性オルガノポリシロキサン、直鎖又は分岐状ポリグリセリン・アルキル共変性オルガノポリシロキサンが挙げられる(具体例としては、信越化学工業性シリコーン系乳化剤:KF-6011、6043、6028、6038、6100,6104、6105等が挙げられる)。また、ポリオキシエチレン変性部分架橋型オルガノポリシロキサン、ポリグリセリン変性部分架橋型ポルガノポリシロキサン等を他の油性成分と共存させた状態(例えば、信越化学工業製:KSGシリーズ;KSG-210、710、310、320、330、340、320Z、350Z、810、820、830、840、820Z、850Z等)で用いてもよい。
 シリコーン樹脂としては、例えば、アクリル/シリコーングラフト共重合体、アクリル/シリコーンブロック共重合体等からなるアクリルシリコーン樹脂が挙げられる(具体例としては、信越化学工業製:アクリル/シリコーングラフト共重合体の環状オルガノポリシロキサン溶液:KP-545等が挙げられる)。また、ピロリドン部分、長鎖アルキル部分、ポリオキシアルキレン部分及びフルオロアルキル部分、カルボン酸等のアニオン部分の中から選択される少なくとも1種を分子中に含有するアクリルシリコーン樹脂を使用することもできる。更にこのシリコーン樹脂は、R8 3SiO0.5単位とSiO2単位とから構成される樹脂、R8 3SiO0.5単位とR8 2SiO単位とSiO2単位とから構成される樹脂、R8 3SiO0.5単位とR8SiO1.5単位とから構成される樹脂、R8 3SiO0.5単位とR8 2SiO単位とR8SiO1.5単位とから構成される樹脂、並びに、R8 3SiO0.5単位、R8 2SiO単位、R8SiO1.5単位及びSiO2単位から構成される樹脂の少なくとも1種からなるシリコーン網状化合物であることが好ましい。式中のR8は、置換又は非置換の炭素原子数1~30の1価炭化水素基である。また、ピロリドン部分、長鎖アルキル部分、ポリオキシアルキレン部分、ポリグリセリン部分、フルオロアルキル部分、アミノ部分の中から選択される少なくとも1種を分子中に含有するシリコーン網状化合物を使用することもできる。
 シリコーンワックスとしては、例えば、アクリル/シリコーングラフト共重合体、アクリル/シリコーンブロック共重合体等からなるアクリルシリコーンワックスが挙げられる(具体例としては、信越化学工業製:アクリル/シリコーングラフト共重合体の環状オルガノポリシロキサン溶液:KP-561P、562P等が挙げられる)。また、ピロリドン部分、長鎖アルキル部分、ポリオキシアルキレン部分及びフルオロアルキル部分、カルボン酸等のアニオン部分の中から選択される少なくとも1種を分子中に含有するアクリルシリコーンワックスを使用することもできる。また、このシリコーンワックスは、5員環以上のラクトン化合物の開環重合物であるポリラクトンを結合させたポリラクトン変性ポリシロキサンであることが好ましい。更に、このシリコーンワックスは、α-オレフィンとジエンとからなる不飽和基を有するオレフィンワックスと1分子中1個以上のSiH結合を有するオルガノハイドロジェンポリシロキサンとを付加反応させることによって得られるシリコーン変性オレフィンワックスである。上記α―オレフィンとしてはエチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル1-ペンテン等の炭素原子数2~12のα―オレフィンが好ましく、上記ジエンとしてはブタジエン、イソプレン、1,4-ヘキサジエン、ビニルノルボルネン、エチリデンノルボルネン、ジシクロペンタジエン等が好ましい。SiH結合を有するオルガノハイドロジェンポリシロキサンとしては直鎖状構造のもの、シロキサン分岐型構造のもの等が使用できる。
 シリコーン系ゲル化剤としては、例えば、非変性の部分架橋型オルガノポリシロキサン、アルキル変性部分架橋型オリガノポリシロキサン、シリコーン分岐型アルキル変性部分架橋型オリガノポリシロキサン等の非変性又は変性の部分架橋型オリガノポリシロキサン等のゲル化成分と、シクロペンタシロキサン、ジメチコン、ミネラルオイル、イソドデカン、トリオクタノイン、スクワラン等の種々のオイル成分とを含むゲル混合物等が挙げられる。上記ゲル混合物には、上記ゲル化成分と上記オイル成分とが共存した状態で含まれる。上記ゲル混合物としては、例えば、信越化学工業製のKSGシリーズ(商品名)、特に、KSG-15、16、41、42、43、44、042Z、045Z(いずれも商品名)等が挙げられる。
 炭化水素系油性成分としては、流動パラフィン,軽質流動イソパラフィン、重質流動イソパラフィン,ワセリン,n-パラフィン,イソパラフィン,イソドデカン、イソヘキサデカン、ポリイソブチレン、水素化ポリイソブチレン、ポリブテン,オゾケライト,セレシン,マイクロクリスタリンワックス,パラフィンワックス、ポリエチレンワックス、ポリエチレン・ポリピロピレンワックス、スクワラン,スクワレン、プリスタン,ポリイソプレン、ロウ等が例示される。
 エステル系油性成分としては、オクタン酸ヘキシルデシル、オクタン酸セチル,ミリスチン酸イソプロピル,パルミチン酸イソプロピル,ステアリン酸ブチル,ラウリン酸ヘキシル,ミリスチン酸ミリスチル,オレイン酸オレイル,オレイン酸デシル,ミリスチン酸オクチルドデシル,ジメチルオクタン酸ヘキシルデシル,乳酸セチル,乳酸ミリスチル,フタル酸ジエチル,フタル酸ジブチル,酢酸ラノリン,モノステアリン酸エチレングリコール,モノステアリン酸プロピレングリコール,ジオイレイン酸プロピレングリコール,モノステアリン酸グリセリル,モノオレイン酸グリセリル,トリ2-エチルヘキサン酸グリセリル,トリ2-エチルヘキサン酸トリメチロールプロパン、トリエチルヘキサン酸ジトリメチロールプロパン、(イソステアリン酸/セバシン酸)ジトリメチロールプロパン、トリオクタン酸トリメチロールプロパン、トリイソステアリン酸トリメチロールプロパン、アジピン酸ジイソプロピル、アジピン酸ジイソブチル、アジピン酸2-ヘキシルデシル、アジピン酸ジ-2-ヘプチルウンデシル、リンゴ酸ジイソステアリル、モノイソステアリン酸水添ヒマシ油、モノイソステアリン酸N-アルキルグリコール、イソステアリン酸オクチルドデシル、イソステアリン酸イソプロピル、イソステアリン酸イソセチル、ジ-2-エチルヘキサン酸エチレングリコール、2-エチルヘキサン酸セチル、テトラ-2-エチルヘキサン酸ペンタエリスリトール、オクチルドデシルガムエステル、オレイン酸エチル、オレイン酸オクチルドデシル、ジカプリン酸ネオペンチルグリコール、クエン酸トリエチル、コハク酸2-エチルヘキシル、コハク酸ジオクチル、ステアリン酸イソセチル、セバシン酸ジイソプロピル、セバシン酸ジ-2-エチルヘキシル、セバシン酸ジエチル、セバシン酸ジオクチル、セバシン酸ジブチルオクチル、パリミチン酸セチル、パルミチン酸オクチルドデシル、パルミチン酸オクチル、パルミチン酸2-エチルヘキシル、パルミチン酸2-ヘキシルデシル、パルミチン酸2-ヘプチルウンデシル、12-ヒドロキシステアリル酸コレステリル、ジペンタエリスリトール脂肪酸エステル、ミリスチン酸2-ヘキシルデシル、ラウリン酸エチル、N-ラウロイル-L-グルタミン酸-2-オクチルドデシルエステル、N-ラウロイル-L-グルタミン酸ジ(コレステリル/ベヘニル/オクチルドデシル)、N-ラウロイル-L-グルタミン酸ジ(コレステリル/オクチルドデシル)、N-ラウロイル-L-グルタミン酸ジ(フィトステリル/ベヘニル/オクチルドデシル)、N-ラウロイル-L-グルタミン酸ジ(フィトステリル/オクチルドデシル)、N-ラウロイルサルコシンイソプロピル、リンゴ酸ジイソステアリル、ジオクタン酸ネオペンチルグリコール、ネオペンタン酸イソデシル、ネオペンタン酸イソトリデシル、ネオペンタン酸イソステアリル、イソノナン酸イソノニル、イソノナン酸イソトリデシル、イソノナン酸オクチル、イソノナン酸イソトリデシル、ジネオペンタン酸ジエチルペンタンジオール、ジネオペンタン酸メチルペンタンジオール、ネオデカン酸オクチルドデシル、ジオクタン酸2-ブチル-2-エチル-1,3-プロパンジオール、テトラオクタン酸ペンタエリスリチル、水素添加ロジンペンタエリスリチル、トリエチルヘキサン酸ペンタエリスリチル、(ヒドロキシステアリン酸/ステアリン酸/ロジン酸)ジペンタエリスリチル、テトライソステアリン酸ポリグリセリル、ノナイソステアリン酸ポリグリセリル-10、デカ(エルカ酸/イソステアリン酸/リシノレイン酸)ポリグリセリル-8、(ヘキシルデカン酸/セバシン酸)ジグリセリルオリゴエステル、ジステアリン酸グリコール(ジステアリン酸エチレングリコール)、ダイマージリノール酸ジイソプロピル、ダイマージリノール酸ジイソステアリル、ダイマージリール酸ジ(イソステアリル/フィトステリル)、ダイマージリノール酸(フィトステリル/ベヘニル)、ダイマージリノール酸(フィトステリル/イソステアリル/セチル/ステアリル/ベヘニル)、ダイマージリノール酸ダイマージリノレイル、ジイソステアリン酸ダイマージリノレイル、ダイマージリノレイル水添ロジン縮合物、ダイマージリノール酸硬化ヒマシ油、ヒドロキシアルキルダイマージリノレイルエーテル、トリイソオクタン酸グリセリル、トリイソステアリン酸グリセリル、トリミリスチン酸グリセリル、トリイソパルミチン酸グリセリル、トリオクタン酸グリセリル、トリオレイン酸グリセリル、ジイソステアリン酸グリセリル、トリ(カプリル酸/カプリン酸)グリセリル、トリ(カプリル酸/カプリン酸/ミリスチン酸/ステアリン酸)グリセリル、水添ロジントリグリセリド(水素添加エステルガム)、ロジントリグリセリド(エステルガム)、ベヘン酸エイコサン二酸グリセリル、ジ-2-ヘプチルウンデカン酸グリセリル、ミリスチン酸イソステアリン酸ジグリセリル、酢酸コレステリル、ノナン酸コレステリル、ステアリン酸コレステリル、イソステアリン酸コレステリル、オレイン酸コレステリル、12-ヒドロキシステアリン酸コレステリル、マカデミアナッツ油脂肪酸コレステリル、マカデミアナッツ油脂肪酸フィトステリル、イソステアリン酸フィトステリル、軟質ラノリン脂肪酸コレステリル、硬質ラノリン脂肪酸コレステリル、長鎖分岐脂肪酸コレステリル、長鎖α-ヒドロキシ脂肪酸コレステリル、リシノレイン酸オクチルドデシル、ラノリン脂肪酸オクチルドデシル、エルカ酸オクチルドデシル、イソステアリン酸硬化ヒマシ油、アボカド油脂肪酸エチル、ラノリン脂肪酸イソプロピル等が例示される。
 天然動植物油脂類及び半合成油脂類として、アボガド油、アマニ油、アーモンド油、イボタロウ、エノ油、オリーブ油、カカオ脂、カポックロウ、カヤ油、カルナウバロウ、肝油、キャンデリラロウ、牛脂、牛脚脂、牛骨脂、硬化牛脂、キョウニン油、鯨ロウ、硬化油、小麦胚芽油、ゴマ油、コメ胚芽油、コメヌカ油、サトウキビロウ、サザンカ油、サフラワー油、シアバター、シナギリ油、シナモン油、ジョジョバロウ、オリーブスクワラン、セラックロウ、タートル油、大豆油、茶実油、ツバキ油、月見草油、トウモロコシ油、豚脂、ナタネ油、日本キリ油、ヌカロウ、胚芽油、馬脂、パーシック油、パーム油、パーム核油、ヒマシ油、硬化ヒマシ油、ヒマシ油脂肪酸メチルエステル、ヒマワリ油、ブドウ油、ベイベリーロウ、ホホバ油、水添ホホバエステル、マカデミアナッツ油、ミツロウ、ミンク油、綿実油、綿ロウ、モクロウ、モクロウ核油、モンタンロウ、ヤシ油、硬化ヤシ油、トリヤシ油脂肪酸グリセライド、羊脂、落花生油、ラノリン、液状ラノリン、還元ラノリン、ラノリンアルコール、硬質ラノリン、酢酸ラノリン、ラノリン脂肪酸イソプロピル、POE(ポリオキシエチレン)ラノリンアルコールエーテル、POEラノリンアルコールアセテート、ラノリン脂肪酸ポリエチレングリコール、POE水素添加ラノリンアルコールエーテル、卵黄油等が挙げられる。
 高級脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、ウンデシレン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)、イソステアリン酸、12-ヒドロキシステアリン酸等が挙げられる。
 高級アルコールとしては、例えば、ラウリルアルコール、ミリスチルアルコール、パルミチルアルコール、ステアリルアルコール、ベヘニルアルコール、ヘキサデシルアルコール、オレイルアルコール、イソステアリルアルコール、ヘキシルドデカノール、オクチルドデカノール、セトステアリルアルコール、2-デシルテトラデシノール、コレステロール、シトステロール、フィトステロール、ラノステロール、POEコレステロールエーテル、モノステアリルグリセリンエーテル(バチルアルコール)、モノオレイルグリセリルエーテル(セラキルアルコール)等が挙げられる。
 フッ素系油性成分としては、パーフルオロポリエーテル、パーフルオロデカリン、パーフルオロオクタン等が挙げられる。
 モスアイ構造を形成する粒子の凝集を抑制し、反射防止フィルムの白濁感を小さくする観点から、化合物(b1)は50℃において液体である事が好ましく、25℃において液体である事が更に好ましい。また、化合物(b1)の少なくとも1種は沸点が110℃以上であることが好ましい。沸点が110℃以上であれば、常温で揮散しにくくなり、層(a)の硬化が完了するまで層(b)として存在していることができ、好ましい。
 また、上記観点から沸点が110℃以上である化合物(b1)の25℃における動粘度は0.1mm/s~100000mm/sであることが好ましく、0.1mm/s~10000mm/sがより好ましく、0.1mm/s~100mm/sである事が最も好ましい。
 化合物(b1)は1種単独で用いてもよいし、2種以上を併用してもよい。
 層(b)における化合物(b1)の含有量は、層(b)の総質量に対して50~100質量%が好ましく、70~100質量%がより好ましく、90~100質量%が更に好ましい。
 工程(B2)において、層(b)の除去方法は特に限定されないが、基材は溶解せずに、化合物(b1)は溶解する溶剤で洗浄する方法、化合物(b1)の沸点より高い温度で加熱して化合物(b1)を揮発させる方法などが好ましい。
 層(b)の除去方法は特に限定されないが、基材及び硬化後の層(a)は溶解せずに、化合物(b1)は溶解する溶剤を用いる方法(たとえば上記溶剤で洗浄する方法)、化合物(b1)の沸点より高い温度で加熱して化合物(b1)を揮発させる方法、アルカリ溶液で化合物(b1)を溶解させる方法などが好ましい。
 基材及び硬化後の層(a)は溶解せずに、化合物(b1)は溶解する溶剤としては特に限定されないが、基材がトリアセチルセルロースである場合、メタノール、エタノール、2-プロパノール、1-プロパノール、n-ブタノール、イソブタノール、ジアセトンアルコール、メトキシプロパノールなどのアルコール系溶剤やメチルイソブチルケトン、メチルブチルケトン等のケトン系溶剤、トルエン、キシレン等の芳香族系溶剤、シクロヘキサン、プロピレングリコールモノメチルエーテルアセテート等が好ましい。これらの溶剤は複数種混ぜて用いてもよい。
 化合物(b1)を揮発させる場合の加熱温度としては、基材のガラス転移温度よりも低くかつ化合物(b1)の沸点より高い温度であることが好ましく、具体的には、60~180℃であることが好ましく、80~130℃であることがより好ましい。
 アルカリ溶液で溶解させる場合の溶液としては、水酸化ナトリウム、あるいは水酸化カリウムの水溶液を用いることが好ましい。
[工程(2)]
 工程(2)は、工程(1)の層(a)中の硬化性化合物(a1)の一部を硬化させ、硬化された化合物(a1c)を得る工程である。
 工程(2)で硬化性化合物(a1)の一部を硬化させることにより、粒子(a2)を動きにくくして、粒子(a2)が凝集することを抑制することができる。
 硬化性化合物(a1)の一部を硬化させるとは、硬化性化合物(a1)のすべてではなく、一部のみを硬化させることを表す。工程(2)で硬化性化合物(a1)の一部のみを硬化させることで、未硬化の硬化性化合物(a1)を工程(3)で加熱により基材へ浸透させるか、又は揮発させて除去することにより、層(a)の粒子(a2)が存在しない部分の厚みを小さくし、粒子(a2)を突出させて、良好な凹凸形状(モスアイ構造)を形成することができる。
 硬化性化合物(a1)が光硬化性の化合物であって、工程(2)において光(好ましくは紫外線)を照射することにより、硬化性化合物(a1)の一部を硬化させることが好ましい。
 工程(2)の硬化性化合物(a1)の一部を硬化させる条件が、反射防止層形成用組成物から粒子(a2)を除いた組成物を基材上に2μmの厚さで塗布し、硬化させた場合に、硬化率が2~20%となる条件であることが好ましく、硬化率が3~15%となる条件であることがより好ましく、硬化率が5~10%となる条件であることが更に好ましい。
 硬化率は、
 (1-硬化後の残存重合性官能基数/硬化前の重合性官能基数)×100%
であり、以下の方法で測定される。
 なお、重合性官能基は、重合性の炭素-炭素不飽和二重結合を有する基である。
 より具体的には、Thermo electron corporationのNICOLET6700 FT-IRを使用して硬化前の硬化性化合物そのものをKBr-IR測定しカルボニル基のピーク(1660-1800cm-1)面積と重合性の炭素-炭素不飽和二重結合のピーク高さ(808cm-1)を求め、硬化後の一回反射のIR測定から同様にカルボニル基ピーク面積に対する重合性の炭素-炭素不飽和二重結合のピークを求め、紫外線照射前後で比較することにより硬化率を算出した。ここで硬化率の計算に際し、808cm-1における測定深度を821nm、1660-1800cm-1における深度を384nmとして規格化している。
 工程(2)において、紫外線を1~90mJ/cmの照射量で照射することが好ましく、1.2~40mJ/cmの照射量で照射することがより好ましく、1.5~10mJ/cmの照射量で照射することが更に好ましい。
 工程(2)において、基材の層(a)を有する側とは反対側から紫外線を照射して硬化性化合物(a1)の一部を硬化させることが好ましい。これにより、特に層(a)の基材側の領域を硬化させることができ、粒子(a2)を動かないようしたまま、その後の工程で粒子(a2)による凸部を形成しやすい。
 酸素濃度0.1~5.0体積%の環境下で工程(2)を行うことが好ましく、酸素濃度0.5~1.0体積%の環境下で工程(2)を行うことがより好ましい。酸素濃度を上記範囲とすることで、特に層(a)の基材側の領域を硬化させることができる。
 化合物(a1c)は、硬化性化合物(a1)の硬化物である。
 化合物(a1c)の分子量は特に限定されない。また、化合物(a1c)は、未反応の重合性官能基を有していてもよい。
[工程(3)]
 工程(3)は、層(a)中の硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部を、加熱により基材に浸透させる、又は揮発させることにより層(a)の表面に凹凸形状を形成する工程である。ここで、加熱により基材に浸透させる、又は揮発させる硬化性化合物(a1)は、工程(2)で硬化されなかった硬化性化合物(a1)であることが好ましい。
 硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部を、基材(基材が機能層を有する場合は機能層であってもよい)に浸透させる工程において、基材及び層(a)を有する積層体を加熱することが好ましい。加熱することによって、効果的に硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部を基材に浸透させることができる。加熱における温度は、基材のガラス転移温度より小さいことが好ましく、具体的には、60~150℃であることが好ましく、80~120℃であることがより好ましい。加熱における時間は1~15分であることが好ましい。
 前述の層(b)を有する場合は、層(b)の化合物(b1)の沸点は、上記加熱における温度以上であることが好ましい。
 工程(3)が、硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部を揮発させる工程である場合には、硬化性化合物(a1)は、1atmにおける沸点が150℃以下のものが好ましく、分子量が300以下のものが好ましい。具体的には、ブレンマーGMRが好ましい。
 1atmは101325Paである。
 工程(3)では、層(a)中の硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部を、加熱により基材に浸透させる、又は揮発させることにより層(a)の表面に凹凸形状が形成される。この凹凸形状の凸部は粒子(a2)であり、凹部は層(a)中に残存する硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物である。
[工程(4)]
 工程(4)は、層(a)中に残存する、硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物を硬化させる工程である。
 工程(4)における硬化は光硬化であることが好ましく、紫外線照射による硬化であることがより好ましい。紫外線の照射量は300mJ/cm以上が好ましく、酸素濃度0.01体積%以下の環境下で硬化させることが好ましい。
 工程(4)では、層(a)中に残存する、硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物を硬化させることで樹脂とし、この樹脂を凹部、樹脂から突出した粒子(a2)を凸部とする凹凸形状からなるモスアイ構造を有する反射防止層が形成される。
 工程(4)の後において、基材の表面に直交する方向には粒子(a2)が複数存在しないことが好ましい。
 工程(4)の後において、平均面粗さRaは、15nm以上が好ましく、30nm以上が更に好ましく、40nm以上が最も好ましい。
<その他の層>
 前述のように、基材と層(a)の間にその他の層を有していてもよい。この場合、基材とその他の層からなる積層体を基材と呼ぶ。その他の層としては、種々の機能層が挙げられるが、特にハードコート層が好ましい。
[ハードコート層]
 ハードコート層は、硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。例えば、ハードコート層は、多官能モノマーや多官能オリゴマーを含むハードコート層形成用組成物を基材上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することで作成することが好ましい。
 多官能モノマーや多官能オリゴマーの官能基(重合性基)としては、光、電子線、放射線重合性のものが好ましく、中でも光(好ましくは紫外線)重合性官能基が好ましい。
 光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
 ハードコート層における硬化性化合物については、特開2014-240956号公報の[0021]~[0027]の記載を本発明においても参照することができる。
 ハードコート層の膜厚は、フィルムに充分な耐久性、耐衝撃性を付与する観点から、通常0.6μm~50μm程度であり、好ましくは5μm~20μmである。
 また、ハードコート層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることが更に好ましい。更に、JIS K 5600-5-4(1999)に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
 ハードコート層を設けることにより、例えば鉛筆硬度試験を実施した際に、プラスチック基材(セルロースアシレートや、アクリル基材)の傷つきをより防止することができる。
 ハードコート層が硬化性化合物を含有してなり、工程(2)において、ハードコート層の硬化性化合物が硬化しないことが好ましい。これにより、工程(3)で層(a)中の硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部をハードコート層に浸透させやすくなる。
 ハードコート層の硬化性化合物が、工程(2)において硬化されないようにするためには、以下の態様が挙げられる。なお、以下の態様においてはハードコート層形成用組成物と反射防止層形成用組成物に含まれる硬化性化合物は光硬化性化合物である。また、工程(3)においては、層(a)の硬化性化合物(a1)の一部を加熱によりハードコート層に浸透させるものとする。
 ハードコート層が硬化性化合物を含有するハードコート層用組成物を硬化してなり、工程(2)の硬化による硬化率の上昇量が5%未満であることが好ましく、3%未満が更に好ましく、1.5%未満が最も好ましい。
 態様1:ハードコート層形成用組成物に光ラジカル重合開始剤Aを含有し、反射防止層形成用組成物に光ラジカル重合開始剤Aを含有する態様
 この態様では、基材上にハードコート層形成用組成物を塗布し、紫外線を比較的弱い露光量で照射し、光ラジカル重合開始剤Aの一部を開裂させてラジカルを発生させ、一部は開裂させない。このとき、ハードコート層の硬化性化合物の一部が硬化される。その後、ハードコート層上に反射防止層形成用組成物を塗布し、工程(2)で硬化性化合物(a1)の一部を硬化させる。その後、工程(3)で未硬化の硬化性化合物(a1)の一部をハードコート層に浸透させ、工程(4)で紫外線を照射し、ハードコート層の硬化性化合物と未硬化の硬化性化合物(a1)を硬化させる。
 態様2:ハードコート層形成用組成物に光ラジカル重合開始剤Aと、熱によりラジカルを発生する熱ラジカル重合開始剤を含有し、反射防止層形成用組成物に光ラジカル重合開始剤Aを含有する態様
 この態様では、基材上にハードコート層形成用組成物を塗布し、比較的強い露光量で紫外線を照射し、光ラジカル重合開始剤Aをほぼすべて開裂させてラジカルを発生させる。このとき、ハードコート層の硬化性化合物の一部が硬化される。その後、ハードコート層上に反射防止層形成用組成物を塗布し、工程(2)で硬化性化合物(a1)の一部を硬化させる。その後、工程(3)で未硬化の硬化性化合物(a1)の一部をハードコート層に浸透させ、工程(4)で紫外線を照射し、未硬化の硬化性化合物(a1)を硬化させる。そして、その後、加熱して、ハードコート層中の熱重合開始剤を開裂させてラジカルを発生させて硬化性化合物を硬化させる。なお、熱ラジカル重合開始剤からラジカルを発生させるための温度は、工程(3)の浸透の温度よりも高いことが好ましく、たとえば100~180℃であることが好ましい。熱ラジカル重合開始剤は、VF-096、VAm-11(以上、和光純薬工業(株)製)などを好適に用いることができる。
 態様3:ハードコート層形成用組成物にランプAを用いて紫外線を照射させることでラジカルを発生する光ラジカル重合開始剤Aを含有し、反射防止層形成用組成物に光ラジカル重合開始剤Aと、ランプBを用いて紫外線を照射させてラジカルを発生する光ラジカル重合開始剤Bを含有する態様
 この態様では、基材上にハードコート層形成用組成物を塗布し、ランプAを用いて紫外線を比較的弱い露光量で照射し、光ラジカル重合開始剤Aの一部を消費し、一部を残す。このとき、ハードコート層の硬化性化合物の一部が硬化される。その後、ハードコート層上に反射防止層形成用組成物を塗布し、工程(2)でランプBを用いて紫外線を照射して硬化性化合物(a1)の一部を硬化させる。その後、工程(3)で未硬化の硬化性化合物(a1)の一部をハードコート層に浸透させ、工程(4)でランプAを用いて紫外線を照射し、ハードコート層の硬化性化合物と未硬化の硬化性化合物(a1)を硬化させる。ランプAと光ラジカル重合開始剤Aの組み合わせとしては、例えば、特定の波長スペクトルが強い高圧水銀灯とイルガキュア907、イルガキュア369が挙げられる。また、ランプBと光ラジカル重合開始剤Bの組み合わせとしては、例えば、比較的ブロードな波長スペクトルを持つメタルハライドランプとイルガキュア127、イルガキュア184等が挙げられる。また、比較的波長の長いUV-LED光を用いて、開始剤の開裂波長をずらすことも好ましい。
 態様4:ハードコート層形成用組成物に熱によりラジカルを発生する熱ラジカル重合開始剤を含有し、反射防止層形成用組成物に光ラジカル重合開始剤Aを含有する態様
 この態様では、基材上にハードコート層形成用組成物を塗布し、少し熱をかけて熱ラジカル重合開始剤の一部を消費し、一部を残す。このとき、ハードコート層の硬化性化合物の一部が硬化される。その後、ハードコート層上に反射防止層形成用組成物を塗布し、工程(2)で紫外線を照射して硬化性化合物(a1)の一部を硬化させる。その後、工程(3)で未硬化の硬化性化合物(a1)の一部をハードコート層に浸透させ、工程(4)で紫外線を照射し、未硬化の硬化性化合物(a1)を硬化させる。そして、その後、加熱して、ハードコート層中の熱ラジカル重合開始剤によりラジカルを発生させて硬化性化合物を硬化させる。なお、熱ラジカル重合開始剤からラジカルを発生させるための温度は、工程(3)の浸透の温度よりも高いことが好ましく、たとえば100~180℃であることが好ましい。
[反射防止フィルム]
 本発明の反射防止フィルムは、
 基材と、
 表面に凹凸形状を有する反射防止層と
を有する反射防止フィルムであって、
 上記反射防止層は、上記凹凸形状の凹部を形成する樹脂と、凸部を形成する平均一次粒径が150nm以上250nm以下の粒子を含有し、
 上記反射防止層の凹凸形状の、原子間力顕微鏡を用いて測定した平均面粗さRaは、15nm以上であり、
 上記反射防止フィルムの膜厚方向の断面において、
 上記粒子、上記樹脂、及び空気界面が交わる点Pを通る上記基材に垂直な直線と、上記点Pにおける上記樹脂と空気界面がなす曲線の接線とがなす角度θが5°以上であり、
 上記反射防止フィルムは、450nm以上650nm以下の波長領域における積分反射率と鏡面反射率との差が0.6%以下である、反射防止フィルムである。
 本発明の反射防止フィルムは、前述の本発明の反射防止フィルムの製造方法により得ることができるが、これに限らない。
 基材は前述したものと同様である。
 反射防止層の凹凸形状の凹部を形成する樹脂は、前述の硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の硬化物であることが好ましい。
 反射防止層の凹凸形状の凸部を形成する粒子の好ましい範囲は、前述の粒子(a2)と同様である。
 本発明の反射防止フィルムの反射防止層の表面に有する凹凸形状はモスアイ構造であることが好ましい。
(モスアイ構造)
 モスアイ構造とは、光の反射を抑制するための物質(材料)の加工された表面であって、周期的な微細構造パターンをもった構造のことを指す。特に、可視光の反射を抑制する目的の場合には、780nm未満の周期の微細構造パターンをもった構造のことを指す。微細構造パターンの周期が380nm未満であると、反射光の色味が小さくなり好ましい。また、モスアイ構造の凹凸形状の周期が100nm以上であると波長380nmの光が微細構造パターンを認識でき、反射防止性に優れるため好ましい。モスアイ構造の有無は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)等により表面形状を観察し、上記微細構造パターンが出来ているかどうか調べることによって確認することができる。
 反射防止層の凹凸形状の、原子間力顕微鏡を用いて測定した平均面粗さRaは15nm以上150nm以下が好ましい。15nmより小さいと、表面凹凸位形状が形成されておらず、反射率が低減できない。150nmより大きいと、粒子から形成される凹凸の周期が大きくなり、可視光領域の反射率を低減させることができない。平均面粗さRaは30nm以上100nm以下が更に好ましく、40nm以上80nm以下が最も好ましい。
 平均面粗さRaの測定方法は、原子間力顕微鏡(AFM:Atomic Force Microscope、SPI3800N、セイコーインスツルメンツ(株)製)にてAFM測定モードで、5μm×5μmの視野を256×256の測定点で測定し、1次傾き補正、2次傾き補正を行い表面粗さ解析を行い、平均面粗さRaを算出した。
 反射防止フィルムにおいて、粒子、樹脂、及び空気界面が交わる点Pを通る基材に垂直な直線と、点Pにおける樹脂と空気界面がなす曲線の接線とがなす角度θが5°以上である(図2(a)参照)。これにより、樹脂が粒子を保持することができ、耐擦性を確保することができる。θは10°以上が更に好ましく、30°以上が最も好ましい。一方、従来のエッチングにより製造された反射防止フィルムについては、θは0°程度になる(図2(b)参照)。
 本発明の反射防止フィルムの450nm以上650nm以下の波長領域における積分反射率と鏡面反射率との差は0.6%以下であることが好ましい。
 450nm以上650nm以下の波長領域における積分反射率と鏡面反射率との差を上記範囲とすることで、白濁感の少ない反射防止フィルムとすることができる。
 積分反射率と鏡面反射率は下記方法で測定する。
 反射防止フィルムの裏面(基材側)をサンドペーパーで粗面化した後に黒色インクで処理し、裏面反射をなくしたフィルム試料を作製した。
(積分反射率)
 分光光度計V-550(日本分光(株)製)にユニットIRV-471を装着して、450~650nmの波長領域において反射率を測定し、平均したものを積分反射率とした。
 反射防止フィルムの積分反射率は1.2%以下であることが特に好ましい。
(鏡面反射率)
 分光光度計V-550(日本分光(株)製)にユニットARM-500∨を装着して、450~650nmの波長領域において入射角5°における反射率を測定し、平均したものを鏡面反射率とした。
 積分反射率-鏡面反射率を積分反射率と鏡面反射率との差とした。
 反射防止層の平均面粗さRa、θ、及び半は防止フィルムの積分反射率と鏡面反射率との差を上記範囲とするための具体的な方法は、前述の本発明の反射防止フィルムの製造方法で製造することである。
 本発明の反射防止フィルムの好ましい実施形態の一例を図3に示す。
 図3の反射防止フィルム10は、基材1と反射防止層2とを有する。反射防止層2は、基材1と反対側の表面に平均一次粒径が150nm以上250nm以下の粒子3により形成された凹凸形状からなるモスアイ構造を有する。
 反射防止層2は、平均一次粒径が150nm以上250nm以下の粒子3と、樹脂4とを含んでなる。
 また、図3には記載されていないが、基材と反射防止層の間にその他の層を有していてもよく、ハードコート層を有することが好ましい。
 反射防止フィルムにおける基材、反射防止層、ハードコート層の材料については本発明の反射防止フィルムの製造方法において説明したものと同じである。
 反射防止フィルムの反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとの比であるB/Aが0.5以上であることが好ましく、0.6以上がより好ましく、0.7以上が更に好ましい。B/Aが0.5以上であると、凸部同士の距離に対して凹部の深さが大きくなり、空気から反射防止層内部にかけてより緩やかに屈折率が変化する屈折率傾斜層を作ることができるため、反射率をより低減できる。
 B/Aは、硬化後の反射防止層における樹脂と粒子の体積比により制御することができる。そのため、樹脂と粒子の配合比を適切に設計することが重要である。また、樹脂がモスアイ構造を作製する工程の中で基材に浸透したり、揮発したりすることにより反射防止層における樹脂と粒子の体積比が反射防止層形成用組成物中の配合比と異なる場合もあるため、基材とのマッチングを適切に設定することも重要である。
 凸部を形成する粒子は均一に、適度な充填率で敷き詰められていることが好ましい。上記観点から、凸部を形成する無機粒子の含有量は、反射防止層全体で均一になるように調整されるのが好ましい。充填率は、SEMなどにより表面から凸部を形成する無機粒子を観察したときの最も表面側に位置した無機粒子の面積占有率(粒子占有率)として測定することができ、25%~64%であることが好ましく、25~50%であることがより好ましく、30~45%であることが更に好ましい。
 本発明の製造方法で製造された反射防止フィルムは、偏光板保護フィルムとして好適に用いることができる。
 本発明の製造方法で製造された反射防止フィルムを用いた偏光板保護フィルムは、偏光子と貼り合せて偏光板とすることができ、液晶表示装置などに好適に用いることができる。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
(基材1の作製)
(アセチル置換度)
 セルロースアシレートのアセチル置換度については以下の方法で測定した。
 アセチル置換度は、ASTM D-817-91に準じて測定した。
(エア層用セルロースエステル溶液の調製)
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、エア層用セルロースエステル溶液を調製した。
エア層用セルロースエステル溶液の組成 
・セルロースエステル(アセチル置換度2.86)  100質量部 
・式(I)の糖エステル化合物             3質量部 
・式(II)の糖エステル化合物            1質量部 
・シリカ粒子分散液(平均粒径16nm) “AEROSIL R972”、日本アエロジル(株)製           0.026質量部
・メチレンクロライド               377質量部 
・メタノール                    61質量部 
・ブタノール                   2.6質量部
式(I)
Figure JPOXMLDOC01-appb-C000001
式(II)
Figure JPOXMLDOC01-appb-C000002
(ドラム層用セルロースエステル溶液の調製) 
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、ドラム層用セルロースエステル溶液を調製した。
ドラム層用セルロースエステル溶液の組成 
・セルロースエステル(アセチル置換度2.86)  100質量部 
・式(I)の糖エステル化合物             3質量部 
・式(II)の糖エステル化合物            1質量部 
・シリカ粒子分散液(平均粒径16nm) “AEROSIL R972”、日本アエロジル(株)製           0.091質量部 
・メチレンクロライド               339質量部 
・メタノール                    74質量部 
・ブタノール                     3質量部
(コア層用セルロースエステル溶液の調製) 
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、コア層用セルロースエステル溶液を調製した。
コア層用セルロースエステル溶液の組成 
・セルロースエステル(アセチル置換度2.86)  100質量部 
・式(I)の糖エステル化合物           8.3質量部 
・式(II)の糖エステル化合物          2.8質量部 
・メチレンクロライド               266質量部 
・メタノール                    58質量部 
・ブタノール                   2.6質量部
(共流延による製膜)
 流延ダイとして、共流延用に調整したフィードブロックを装備して、3層構造のフィルムを成形できるようにした装置を用いた。上記エア層用セルロースエステル溶液、コア層用セルロースエステル溶液、及びドラム層用セルロースエステル溶液を流延口から-7℃に冷却したドラム上に共流延した。このとき、厚みの比がエア層/コア層/ドラム層=7/90/3となるように各ドープの流量を調整した。
 直径3mのドラムである鏡面ステンレス支持体上に流延した。ドラム上で34℃の乾燥風を300m/分で当てた。
 そして、流延部の終点部から50cm手前で、流延して回転してきたセルロースエステルフィルムをドラムから剥ぎ取った後、両端をピンテンターで把持した。剥離の際、搬送方向(長手方向)に8%の延伸を行った。
 ピンテンターで保持されたセルロースエステルウェブを乾燥ゾーンに搬送した。初めの乾燥では45℃の乾燥風を送風し、次に110℃で5分乾燥した。このとき、セルロースエステルウェブを幅手方向に倍率を10%で延伸しながら搬送した。
 ピンテンターからウェブを離脱させたあと、ピンテンターで保持されていた部分を連続的に切り取り、ウェブの幅方向両端部に15mmの幅で10μmの高さの凹凸をつけた。このときのウェブの幅は1610mmであった。搬送方向に130Nのテンションをかけながら140℃で10分乾燥した。更に、ウェブが所望の幅になるように幅方向端部を連続的に切り取り、膜厚60μmの基材1を作製した。このとき、140℃乾燥後に切り取られる幅方向端部とウェブ中央部の膜厚は同じであった。
 フジタック TG60ULは、富士フイルム株式会社製のセルロースアシレートフィルムである。
(ハードコート層付き基材の作製)
<ハードコート層A、ハードコート層B、ハードコート層D、ハードコート層E、ハードコート層Fの形成>
 表1に示す基材上に、下記組成のハードコート層A、B、D、E、又はF形成用塗布液を塗布し、窒素パージにより酸素濃度1.0体積%となるよう調整しながら、空冷メタルハライドランプで表1に示す照射量の紫外線を照射して硬化し、膜厚8μmのハードコート層を形成した。
<ハードコート層Cの形成>
 基材上に、下記組成のハードコート層C形成用塗布液を塗布し、150℃で90秒加熱して硬化し、膜厚8μmのハードコート層を形成した。
(ハードコート層A形成用塗布液の組成)
 A-TMMT         44.58質量部
 イルガキュア127       1.86質量部
 メチルエチルケトン      35.71質量部
 メチルイソブチルケトン     8.93質量部
 酢酸メチル           8.93質量部
(ハードコート層B形成用塗布液の組成)
 A-TMMT         33.60質量部
 イルガキュア127       1.40質量部
 メチルエチルケトン      35.75質量部
 酢酸メチル          29.25質量部
(ハードコート層C形成用塗布液の組成)
 A-TMMT         33.60質量部
 VF-096          1.40質量部
 メチルエチルケトン      35.75質量部
 酢酸メチル          29.25質量部
(ハードコート層D形成用塗布液の組成)
 A-TMMT         33.39質量部
 VF-096          1.40質量部
 イルガキュア127       0.21質量部
 メチルエチルケトン      35.75質量部
 酢酸メチル          29.25質量部
(ハードコート層E形成用塗布液の組成)
 PET-30         33.39質量部
 VF-096          1.40質量部
 イルガキュア127       0.21質量部
 メチルエチルケトン      35.75質量部
 酢酸メチル          29.25質量部
(ハードコート層F形成用塗布液の組成)
 PET-30         33.39質量部
 イルガキュア127       1.40質量部
 メチルエチルケトン      35.75質量部
 酢酸メチル          29.25質量部
 A-TMMT:ペンタエリスリトールテトラアクリレート(新中村化学工業(株)製)
 PET-30:ペンタエリストールトリアクリレート60%とペンタエリストールテトラアクリレート40%の混合物(KAYARAD PET30(日本化薬(株)社製))
 イルガキュア127:光重合開始剤(BASF製)
 VF-096:2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]:熱重合開始剤
(反射防止層形成用塗布液の調製)
 下記表2の組成となるように各成分をミキシングタンクに投入し、60分間攪拌し、30分間超音波分散機により分散し、孔径5μmのポリプロピレン製フィルターで濾過して反射防止層形成用塗布液とした。
(反射防止層A形成用塗布液の組成)
 化合物A            0.97質量部
 化合物B            8.73質量部
 エタノール          15.26質量部
 メチルエチルケトン      33.45質量部
 アセトン           15.26質量部
 イルガキュア127       0.40質量部
 シリカ粒子分散液α      25.88質量部
 化合物C            0.04質量部
(反射防止層B形成用塗布液の組成)
 DPHA            0.97質量部
 ブレンマーGMR        8.73質量部
 エタノール          15.26質量部
 メチルエチルケトン      33.45質量部
 アセトン           15.26質量部
 イルガキュア127       0.40質量部
 シリカ粒子分散液α      25.88質量部
 化合物C            0.04質量部
(反射防止層C形成用塗布液の組成)
 化合物A            0.95質量部
 化合物B            8.55質量部
 エタノール          15.26質量部
 メチルエチルケトン      33.45質量部
 アセトン           15.26質量部
 イルガキュア907       0.40質量部
 イルガキュア184       0.20質量部
 シリカ粒子分散液α      25.88質量部
 化合物C            0.04質量部
(反射防止層D形成用塗布液の組成)
 Sirius-501      2.52質量部
 化合物B            1.07質量部
 KBM-4803        7.37質量部
 エタノール          15.26質量部
 メチルエチルケトン      32.19質量部
 アセトン           15.26質量部
 イルガキュア127       0.40質量部
 シリカ粒子分散液α      25.88質量部
 化合物C            0.04質量部
(反射防止層E形成用塗布液の組成)
 Sirius-501      2.47質量部
 化合物B            1.05質量部
 KBM-4803        7.22質量部
 エタノール          15.26質量部
 メチルエチルケトン      32.22質量部
 アセトン           15.26質量部
 イルガキュア907       0.40質量部
 イルガキュア184       0.20質量部
 シリカ粒子分散液α      25.88質量部
 化合物C            0.04質量部
(反射防止層F形成用塗布液の組成)
 Sirius-501      2.52質量部
 化合物B            3.88質量部
 KBM-4803        4.56質量部
 エタノール          15.26質量部
 メチルエチルケトン      32.19質量部
 アセトン           15.26質量部
 イルガキュア127       0.40質量部
 シリカ粒子分散液α      25.88質量部
 化合物C            0.04質量部
(反射防止層G形成用塗布液の組成)
 Sirius-501      2.47質量部
 化合物B            3.80質量部
 KBM-4803        4.47質量部
 エタノール          15.26質量部
 メチルエチルケトン      32.22質量部
 アセトン           15.26質量部
 イルガキュア907       0.40質量部
 イルガキュア184       0.20質量部
 シリカ粒子分散液α      25.88質量部
 化合物C            0.04質量部
(反射防止層H形成用塗布液の組成)
 化合物A            0.97質量部
 化合物B            8.73質量部
 エタノール          15.26質量部
 メチルエチルケトン      33.45質量部
 アセトン           15.26質量部
 イルガキュア127       0.40質量部
 シリカ粒子分散液β      25.88質量部
 化合物C            0.04質量部
(反射防止層I形成用塗布液の組成)
 化合物A            0.97質量部
 化合物B            8.73質量部
 エタノール          15.26質量部
 メチルエチルケトン      33.45質量部
 アセトン           15.26質量部
 イルガキュア127       0.40質量部
 シリカ粒子分散液γ      25.88質量部
 化合物C            0.04質量部
 化合物A:U-15HA
 化合物B:X-12-1048
 化合物C:下記構造のポリマー(重量平均分子量19000)の固形分濃度40質量%のMEK溶液
Figure JPOXMLDOC01-appb-C000003
 シリカ粒子分散液α、β、γはそれぞれ以下の方法で調製した。
(シリカ粒子分散液αの調製)
 KE-P20を電気炉を用いて1050℃で1時間焼成した後、冷却して、次いで粉砕機を用いて粉砕した。焼成したKE-P20 5kgを、加熱ジャケットを備えた容量20Lのヘンシェルミキサ(三井鉱山株式会社製FM20J型)に仕込んだ。焼成したKE-P20を撹拌しているところに、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)45gを、メチルアルコール90gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら150℃まで約1時間かけて昇温し、150℃で12時間保持して加熱処理を行った。加熱処理では、掻き落とし装置を撹拌羽根とは逆方向に常時回転させながら、壁面付着物の掻き落としを行った。また、適宜、へらを用いて壁面付着物を掻き落とすことも行った。加熱後、冷却し、ジェット粉砕分級機を用いて解砕及び分級を行い、シランカップリング剤で表面処理された粒子を得た。この粒子の表面にはアクリロイル基が付与されている。
 MEK80質量部、上記シリカ粒子20質量部をミキシングタンクに投入し、10分間攪拌後、攪拌を継続しながら30分間超音波分散することにより、固形分濃度20質量%のシリカ粒子分散液αを調製した。
 シリカ粒子分散液αに含まれるシリカ粒子の平均一次粒径は180nmである。
(シリカ粒子分散液βの調製)
 KE-P30を電気炉を用いて1050℃で1時間焼成した後、冷却して、次いで粉砕機を用いて粉砕した。焼成したKE-P30 5kgを、加熱ジャケットを備えた容量20Lのヘンシェルミキサ(三井鉱山株式会社製FM20J型)に仕込んだ。焼成したKE-P30を撹拌しているところに、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)30gを、メチルアルコール90gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら150℃まで約1時間かけて昇温し、150℃で12時間保持して加熱処理を行った。加熱処理では、掻き落とし装置を撹拌羽根とは逆方向に常時回転させながら、壁面付着物の掻き落としを行った。また、適宜、へらを用いて壁面付着物を掻き落とすことも行った。加熱後、冷却し、ジェット粉砕分級機を用いて解砕及び分級を行い、シランカップリング剤で表面処理された粒子を得た。この粒子の表面にはアクリロイル基が付与されている。
 MEK80質量部、上記シリカ粒子20質量部をミキシングタンクに投入し、10分間攪拌後、攪拌を継続しながら30分間超音波分散することにより、固形分濃度20質量%のシリカ粒子分散液βを調製した。
 シリカ粒子分散液βに含まれるシリカ粒子の平均一次粒径は290nmである。
(シリカ粒子分散液γの調製)
 PL-7(扶桑化学製)を電気炉を用いて1050℃で1時間焼成した後、冷却して、次いで粉砕機を用いて粉砕した。焼成したPL-7 5kgを、加熱ジャケットを備えた容量20Lのヘンシェルミキサ(三井鉱山株式会社製FM20J型)に仕込んだ。焼成したPL-7を撹拌しているところに、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)65gを、メチルアルコール90gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら150℃まで約1時間かけて昇温し、150℃で12時間保持して加熱処理を行った。加熱処理では、掻き落とし装置を撹拌羽根とは逆方向に常時回転させながら、壁面付着物の掻き落としを行った。また、適宜、へらを用いて壁面付着物を掻き落とすことも行った。加熱後、冷却し、ジェット粉砕分級機を用いて解砕及び分級を行い、シランカップリング剤で表面処理された粒子を得た。この粒子の表面にはアクリロイル基が付与されている。
 MEK80質量部、上記シリカ粒子20質量部をミキシングタンクに投入し、10分間攪拌後、攪拌を継続しながら30分間超音波分散することにより、固形分濃度20質量%のシリカ粒子分散液γを調製した。
 シリカ粒子分散液γに含まれるシリカ粒子の平均一次粒径は100nmである。
 イルガキュア184:光重合開始剤(BASF製)
 イルガキュア907:光重合開始剤(BASF製)
 Sirius-501:デンドリマー型多官能アクリレート(大阪有機化学工業(株)製)
 KBM-4803:グリシドキシオクチルトリメトキシシラン(信越化学工業(株)製)
 DPHA:KAYARD DPHA(日本化薬(株)製)ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールヘプタアクリレートの混合物
 KE-P20:シーホスターKE-P20(平均一次粒径200nm、日本触媒(株)製アモルファスシリカ)
 KE-P30:シーホスターKE-P30(平均一次粒径300nm、日本触媒(株)製アモルファスシリカ)
 PL-7:クォートロンPL-7超高純度コロイダルシリカ(平均一次粒径100nm、扶桑化学工業(株)製)
 ブレンマーGMR:グリセリンジメタクリレート(日油株式会社製)
[工程(1) 反射防止層形成用塗布液の塗布]
 ハードコート層付き基材のハードコート層上に、反射防止層形成塗布液をグラビアコーターを用いて2.8ml/m塗布し、室温で90秒乾燥させた。
 サンプルの一部を切り出し、空冷メタルハライドランプで600mJ/cm照射して硬化させた後、ミクロトームで切削して断面を出し、5000倍でSEM観察を行い、粒子に対する樹脂の厚みを測定した。
[工程(2)]
 表3の工程(2)に記載の照射方向、ランプ種、照射量、酸素濃度(体積%)で紫外線照射し、表3に記載の硬化率とした。
 空冷メタルハライドランプとしては、アイグラフィックス(株)製のM04-L41を用いた。
 高圧水銀ランプとしては、Dr.honle AG社製の型式:33351N 部品番号:LAMP-HOZ 200 D24 U 450 Eを用いた。
 照射量の測定は、アイグラフィック社製 アイ紫外線積算照度計 UV METER UVPF-A1にHEAD SENSER PD-365を取り付け、測定レンジ0.0にて測定した。
 表3において、「反射防止層側から」とは、反射防止層側から光照射したことを表し、「基材側から」とは、基材の反射防止層側の界面とは反対側から光照射したことを表す。
 なお、比較例1及び比較例2では工程(2)は行わなかった。
 比較例2では、後述する工程(4)で得られた樹脂層の表面に対して、高周波プラズマ装置を用いて13.56MHzの条件でプラズマ処理して、樹脂をエッチングし、表面に凹凸形状を顕在化させた。プラズマ処理は、酸素:アルゴン=1:1(体積比)の組成のガスを導入しながら、圧力2.7Paの条件下において50Wの高周波を30秒間印加して行った。
(オイル塗布)
 下記表3において、「オイル塗布 有り」の例については、下記組成のオイル液(いずれも信越化学工業製のシリコーンオイル)を、反射防止層の上に、ダイコーターを用いて600nmの厚さになるように塗布した。
 オイル液の組成
  KF96-10cs    30.0質量部
  KF96-0.65cs  70.0質量部
[工程(3)]
 120℃又は150℃で5分処理し、硬化性化合物の一部を基材へ浸透又は、揮発させた。
 なお、硬化性化合物としてブレンマーGMRを使用した実施例1及び6は硬化性化合物の一部を揮発させた。それ以外の実施例では硬化性化合物の一部を基材に浸透させた。
[工程(4)]
 酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら、前述の空冷メタルハライドランプで600mJ/cmの紫外線を照射して、反射防止層の硬化性化合物を硬化させて樹脂とした。
 作製した反射防止フィルム試料の一部を切り出し、ミクロトームで切削して断面を出し、5000倍でSEM観察を行い、粒子に対する樹脂(粒子が存在しない部分)の厚みを測定した。工程(1)後のSEM観察像と比較して、樹脂の厚みが粒子径の0.4倍以上減膜しているものを工程(3)で硬化性化合物の一部が浸透又は揮発したと判断した。
(オイル除去) 
 オイル塗布を行った例については、メチルイソブチルケトンに浸漬後、メチルイソブチルケトンを掛け流して、オイルを除去した。
(加熱処理) 
 ハードコート層形成用組成物に熱重合開始剤を含有する例については、工程(4)の後、150℃で5分間熱処理し、ハードコート層を硬化させた。
Figure JPOXMLDOC01-appb-T000004

 
 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 
 
[黒締り]
 Apple社製iPad(登録商標)の表面に粘着剤を介して反射防止フィルムを貼り電源オフの状態で黒締りを評価した。太陽光下でディスプレイの表面に対して垂直の方向を0°とし、45°方向から行った。 
 A : 黒味が強く、画面が強くしまって見える。   
 B : 全体的に薄い白濁感が感じられる。
 C : 強い白濁感がある。
[スチールウール耐性]
 反射防止フィルムの反射防止層表面をラビングテスターを用いて、以下の条件でこすりテストを行うことで、耐擦傷性の指標とした。
 評価環境条件:25℃、相対湿度60%
 こすり材:スチールウール(日本スチールウール(株)製、ゲレードNo.0000)
 試料と接触するテスターのこすり先端部(1cm×1cm)に巻いて、バンド固定
 移動距離(片道):13cm、
 こすり速度:13cm/秒、
 荷重:200g/cm
 先端部接触面積:1cm×1cm、
 こすり回数:5往復
 こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を評価した。
  A :傷の本数が5本以内である
  B :傷の本数が6本以上15本以内である
  C :傷の本数が16本以上である
[積分反射率、鏡面反射率]
 反射防止フィルムの裏面(基材側)をサンドペーパーで粗面化した後に黒色インクで処理し、裏面反射をなくしたフィルム試料を作製した。
(積分反射率)
 分光光度計V-550(日本分光(株)製)にユニットIRV-471を装着して、450~650nmの波長領域において反射率を測定し、平均したものを積分反射率とした。
(鏡面反射率)
 分光光度計V-550(日本分光(株)製)にユニットARM-500∨を装着して、450~650nmの波長領域において入射角5°における反射率を測定し、平均したものを鏡面反射率とした。
 積分反射率-鏡面反射率を積分反射率と鏡面反射率との差とした。
[平均面粗さRa]
 平均面粗さRaの測定方法は、原子間力顕微鏡(AFM:Atomic Force Microscope、SPI3800N、セイコーインスツルメンツ(株)製)にてAFM測定モードで、5μm×5μmの視野を256×256の測定点で測定し、1次傾き補正、2次傾き補正を行い表面粗さ解析を行い、平均面粗さRaを算出した。
[層(a)の硬化率]
 硬化率は、反射防止層形成用組成物から粒子を除いた組成物を基材上に2μmの厚さで塗布し、硬化させた場合の硬化率であり、工程(2)で照射させる場合と同じ基材を用い、同一の照射方向、ランプ種、照射量、酸素濃度で照射した際の硬化率であり、下記式で定義される。
 (1-硬化後の残存重合性官能基数)/硬化前の重合性官官能基数×100%
 なお、重合性官能基は、重合性の炭素-炭素不飽和二重結合を有する基である。
 より具体的には、Thermo electron corporationのNICOLET6700 FT-IRを使用して硬化前の硬化性化合物そのものをKBr-IR測定しカルボニル基のピーク(1660-1800cm-1)面積と重合性の炭素-炭素不飽和二重結合のピーク高さ(808cm-1)を求め、硬化後の一回反射のIR測定から同様にカルボニル基ピーク面積に対する重合性の炭素-炭素不飽和二重結合のピークを求め、紫外線照射前後で比較することにより硬化率を算出した。ここで硬化率の計算に際し、808cm-1における測定深度を821nm、1660-1800cm-1における深度を384nmとして規格化した。
[ハードコート層の硬化率の上昇量]
 ハードコート層の硬化率は、ハードコート層の照射後の硬化率-照射前の硬化率で定義される。照射前の硬化率は、工程(1)の前の状態での硬化率であり、硬化後の硬化率とは、層(a)を設けず工程(2)で照射させる場合と同一の照射方向、ランプ種、照射量、酸素濃度で照射した際の硬化率である。硬化率は上述の方法で測定した。
[θ]
 反射防止フィルム(試料)表面に金属蒸着を行い、エポキシ系接着剤を用いて、試料表面を包埋後、クライオイオンスライサ(Arイオンビーム切削、冷却)を用いて、試料を薄片化(厚み:100nm以下)し、透過型電子顕微鏡(加速電圧100kV)を用いて観察を行い膜厚方向の断面の画像を得た。得られた画像から、粒子、樹脂、及び空気界面が交わる点Pを通る基材に垂直な直線に対して、点Pにおける樹脂と空気界面がなす曲線の接線とがなす角度を5点求めその平均をθとした。
[基材の表面に直交する方向に粒子が複数存在しているかの確認]
 反射防止フィルム表面をSEMで5000倍の倍率で400μmを観察し、基材の表面に直交する方向に粒子が重なっているかを確認した。重なっている粒子のうち、基材から遠い側の粒子の個数をカウントした。この個数が5個以内の場合、基材の表面に直交する方向に粒子が複数存在しないとした。評価結果は、全ての実施例及び比較例で0個であった。
Figure JPOXMLDOC01-appb-T000008

 
 本発明によれば、良好な反射防止性能を有し、耐擦傷性に優れ、白濁感が少なく、明るい環境下においても黒締りに優れる反射防止フィルムを簡便に製造することができる方法、及びこの反射防止フィルムを提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年7月31日出願の日本特許出願(特願2015-152580)に基づくものであり、その内容はここに参照として取り込まれる。
1 基材
2 反射防止層
3 粒子
4 層(a)、樹脂
10 反射防止フィルム
A 隣り合う凸部の頂点間の距離
B 隣り合う凸部の頂点間の中心と凹部との距離

Claims (16)

  1.  基材上に、
     硬化性化合物(a1)と、平均一次粒径が150nm以上250nm以下の粒子(a2)と、溶剤とを含む組成物を塗布し、前記溶剤を揮発させ、前記粒子(a2)が存在しない部分の厚みが前記粒子(a2)の平均一次粒径の0.8倍以上の厚さとなる層(a)を設ける工程(1)、
     前記層(a)中の前記硬化性化合物(a1)の一部を硬化させ、硬化された化合物(a1c)を得る工程(2)、
     前記層(a)中の前記硬化性化合物(a1)及び前記化合物(a1c)からなる群より選択される化合物の一部を、加熱により前記基材に浸透させる、又は揮発させることにより前記層(a)の表面に凹凸形状を形成する工程(3)、
     前記層(a)中に残存する、前記硬化性化合物(a1)及び前記化合物(a1c)からなる群より選択される化合物を硬化させる工程(4)をこの順に有する、反射防止フィルムの製造方法。
  2.  前記工程(4)の後において、前記基材の表面に直交する方向には前記粒子(a2)が複数存在しない、請求項1に記載の反射防止フィルムの製造方法。
  3.  前記工程(2)の前記硬化性化合物(a1)の一部を硬化させる条件が、
     前記組成物から前記粒子(a2)を除いたものを基材上に2μmの厚さで塗布し、硬化させた場合に、硬化率が2~20%となる条件である、請求項1又は2に記載の反射防止フィルムの製造方法。
  4.  前記工程(2)において、前記基材の前記層(a)を有する側とは反対側から紫外線を照射して前記硬化性化合物(a1)の一部を硬化させる、請求項1~3のいずれか1項に記載の反射防止フィルムの製造方法。
  5.  前記硬化性化合物(a1)が、1分子中に(メタ)アクリロイル基を2個以上有する化合物である、請求項1~4のいずれか1項に記載の反射防止フィルムの製造方法。
  6.  前記粒子(a2)が、金属酸化物粒子である、請求項1~5のいずれか1項に記載の反射防止フィルムの製造方法。
  7.  前記工程(3)の加熱により浸透させる際の加熱温度が、60~150℃である、請求項1~6のいずれか1項に記載の反射防止フィルムの製造方法。
  8.  前記加熱における加熱時間が、1~15分である、請求項7に記載の反射防止フィルムの製造方法。
  9.  前記工程(1)と前記工程(2)の間、前記工程(2)と前記工程(3)の間、又は前記工程(3)と前記工程(4)の間に、
     前記硬化性化合物(a1)と相溶しない化合物(b1)を含む層(b)を、前記層(a)の前記基材側の面とは反対の面上に設ける工程(B1)を有し、
     前記工程(B1)の後に、前記層(b)を除去する工程(B2)を有する、請求項1~8のいずれか1項に記載の反射防止フィルムの製造方法。
  10.  前記化合物(b1)が、50℃において液状の油性成分である、請求項9に記載の反射防止フィルムの製造方法。
  11.  前記化合物(b1)が、シリコーン系油性成分、炭化水素系油性成分、エステル系油性成分、天然動植物油脂類、半合成油脂類、高級脂肪酸、高級アルコール、又はフッ素系油性成分である、請求項9又は10に記載の反射防止フィルムの製造方法。
  12.  前記基材は、ハードコート層を有する基材であり、前記ハードコート層上に前記工程(1)における組成物が塗布される、請求項1~11のいずれか1項に記載の反射防止フィルムの製造方法。
  13.  前記ハードコート層が硬化性化合物を含有するハードコート層用組成物を硬化してなり、前記工程(2)の硬化による硬化率の上昇量が5%未満である、請求項12に記載の反射防止フィルムの製造方法。
  14.  前記硬化性化合物(a1)として、少なくとも2種の硬化性化合物を用い、そのうち少なくとも1種が、前記工程(3)で基材に浸透する化合物であり、ラジカル反応性基を有さず、かつラジカル反応性基以外の反応性基を有する、請求項13に記載の反射防止フィルムの製造方法。
  15.  請求項1~14のいずれか1項に記載の反射防止フィルムの製造方法により製造された反射防止フィルム。
  16.  基材と、
     表面に凹凸形状を有する反射防止層と
    を有する反射防止フィルムであって、
     前記反射防止層は、前記凹凸形状の凹部を形成する樹脂と、凸部を形成する平均一次粒径が150nm以上250nm以下の粒子を含有し、
     前記反射防止層の凹凸形状の、原子間力顕微鏡を用いて測定した平均面粗さRaは15nm以上であり、
     前記反射防止フィルムの膜厚方向の断面において、
     前記粒子、前記樹脂、及び空気界面が交わる点Pを通る前記基材に垂直な直線と、前記点Pにおける前記樹脂と空気界面がなす曲線の接線とがなす角度θが5°以上であり、
     前記反射防止フィルムは、450nm以上650nm以下の波長領域における積分反射率と鏡面反射率との差が0.6%以下である、反射防止フィルム。
PCT/JP2016/071862 2015-07-31 2016-07-26 反射防止フィルムの製造方法、及び反射防止フィルム WO2017022566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017532516A JP6464271B2 (ja) 2015-07-31 2016-07-26 反射防止フィルムの製造方法、及び反射防止フィルム
KR1020187002923A KR102013246B1 (ko) 2015-07-31 2016-07-26 반사 방지 필름의 제조 방법, 및 반사 방지 필름
CN201680045143.1A CN107923996B (zh) 2015-07-31 2016-07-26 防反射膜的制造方法及防反射膜
US15/883,594 US10718887B2 (en) 2015-07-31 2018-01-30 Method of manufacturing antireflection film and antireflection film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-152580 2015-07-31
JP2015152580 2015-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/883,594 Continuation US10718887B2 (en) 2015-07-31 2018-01-30 Method of manufacturing antireflection film and antireflection film

Publications (1)

Publication Number Publication Date
WO2017022566A1 true WO2017022566A1 (ja) 2017-02-09

Family

ID=57943891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071862 WO2017022566A1 (ja) 2015-07-31 2016-07-26 反射防止フィルムの製造方法、及び反射防止フィルム

Country Status (5)

Country Link
US (1) US10718887B2 (ja)
JP (1) JP6464271B2 (ja)
KR (1) KR102013246B1 (ja)
CN (1) CN107923996B (ja)
WO (1) WO2017022566A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543379A (zh) * 2015-03-30 2022-05-27 开利公司 低油制冷剂和蒸汽压缩系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256040A (ja) * 1999-03-08 2000-09-19 Nippon Sheet Glass Co Ltd 自動車窓用ガラス板
JP2006003453A (ja) * 2004-06-15 2006-01-05 Sharp Corp 反射防止フィルムおよびその製造方法、偏光板、表示装置
JP2012145748A (ja) * 2011-01-12 2012-08-02 Dainippon Printing Co Ltd 反射防止フィルム、および反射防止フィルムの製造方法
WO2014185314A1 (ja) * 2013-05-13 2014-11-20 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、画像表示装置、反射防止フィルムの製造方法、反射防止フィルム清掃用布、反射防止フィルムと清掃用布を含むキット、反射防止フィルムの清掃方法
JP2014235259A (ja) * 2013-05-31 2014-12-15 王子ホールディングス株式会社 光拡散シート

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383050B2 (ja) * 1993-12-28 2003-03-04 大日本印刷株式会社 最密充填塗膜、その製造方法及び最密充填塗膜形成フィルム
JP5187495B2 (ja) 2007-12-10 2013-04-24 株式会社豊田中央研究所 反射防止膜、反射防止膜の製造方法、反射防止膜用鋳型、反射防止膜用鋳型を用いて得られた反射防止膜及びレプリカ膜を用いて得られた反射防止
JP5724171B2 (ja) * 2009-01-09 2015-05-27 ソニー株式会社 光学素子およびその製造方法、原盤およびその製造方法、ならびに表示装置
US9085484B2 (en) 2010-04-30 2015-07-21 Corning Incorporated Anti-glare surface treatment method and articles thereof
US9017566B2 (en) 2010-04-30 2015-04-28 Corning Incorporated Anti-glare surface treatment method and articles thereof
US9446979B2 (en) 2011-11-02 2016-09-20 Corning Incorporated Method for sparkle control and articles thereof
WO2014012003A2 (en) 2012-07-12 2014-01-16 Corning Incorporated Textured glass surface and methods of making
US10155361B2 (en) 2011-11-09 2018-12-18 Corning Incorporated Method of binding nanoparticles to glass
US20150064405A1 (en) 2011-04-20 2015-03-05 Corning Incorporated Low reflectivity articles and methods thereof
US9272947B2 (en) 2011-05-02 2016-03-01 Corning Incorporated Glass article having antireflective layer and method of making
CN104684858B (zh) 2012-05-29 2017-10-24 康宁股份有限公司 对玻璃表面进行织构化的方法
CN108706887A (zh) * 2012-11-30 2018-10-26 康宁股份有限公司 减反射玻璃制品及其制备和使用方法
JP6167005B2 (ja) * 2013-10-04 2017-07-19 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256040A (ja) * 1999-03-08 2000-09-19 Nippon Sheet Glass Co Ltd 自動車窓用ガラス板
JP2006003453A (ja) * 2004-06-15 2006-01-05 Sharp Corp 反射防止フィルムおよびその製造方法、偏光板、表示装置
JP2012145748A (ja) * 2011-01-12 2012-08-02 Dainippon Printing Co Ltd 反射防止フィルム、および反射防止フィルムの製造方法
WO2014185314A1 (ja) * 2013-05-13 2014-11-20 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、画像表示装置、反射防止フィルムの製造方法、反射防止フィルム清掃用布、反射防止フィルムと清掃用布を含むキット、反射防止フィルムの清掃方法
JP2014235259A (ja) * 2013-05-31 2014-12-15 王子ホールディングス株式会社 光拡散シート

Also Published As

Publication number Publication date
JP6464271B2 (ja) 2019-02-06
KR102013246B1 (ko) 2019-08-22
US20180156943A1 (en) 2018-06-07
CN107923996B (zh) 2019-12-06
US10718887B2 (en) 2020-07-21
JPWO2017022566A1 (ja) 2017-12-07
KR20180026485A (ko) 2018-03-12
CN107923996A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6412835B2 (ja) 反射防止フィルムの製造方法
US10829645B2 (en) Method of manufacturing antireflection film, antireflection film, polarizing plate, cover glass, and image display device
JP6868103B2 (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP6650507B2 (ja) 反射防止フィルム、及び反射防止フィルムの製造方法
JP6275072B2 (ja) 反射防止積層体、偏光板、カバーガラス、画像表示装置、及び反射防止積層体の製造方法
JP6596572B2 (ja) 積層体、積層体の製造方法、及び反射防止フィルムの製造方法
JP6778646B2 (ja) 反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法
US11567238B2 (en) Laminate, antireflection product having three-dimensional curved surface, and method of manufacturing antireflection product
JP2016061794A (ja) 反射防止フィルム、偏光板、カバーガラス、画像表示装置、及び反射防止フィルムの製造方法
JP6464271B2 (ja) 反射防止フィルムの製造方法、及び反射防止フィルム
JP6802906B2 (ja) 積層体、積層体の製造方法、及び反射防止フィルムの製造方法
JP2017173761A (ja) 反射防止フィルムの製造方法、反射防止フィルム、偏光板、カバーガラス、及び画像表示装置
JPWO2019073718A1 (ja) 透過フィルター及び液浸露光装置
JP6726809B2 (ja) 反射防止フィルム、反射防止物品、偏光板、及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532516

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187002923

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832845

Country of ref document: EP

Kind code of ref document: A1