WO2017022359A1 - 圧力センサ及び圧力センサの製造方法 - Google Patents
圧力センサ及び圧力センサの製造方法 Download PDFInfo
- Publication number
- WO2017022359A1 WO2017022359A1 PCT/JP2016/068756 JP2016068756W WO2017022359A1 WO 2017022359 A1 WO2017022359 A1 WO 2017022359A1 JP 2016068756 W JP2016068756 W JP 2016068756W WO 2017022359 A1 WO2017022359 A1 WO 2017022359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- diaphragm
- housing
- end side
- introduction hole
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L7/00—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
- G01L7/02—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
- G01L7/08—Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/14—Housings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
Definitions
- the present disclosure relates to a pressure sensor and a manufacturing method thereof.
- the housing part, the diaphragm part, and the seal part are made of a single piece of hollow cylindrical metal formed integrally.
- the housing part is attached to the measurement object.
- the pressure introducing hole provided in the housing part is configured as an inner hole having an opening for introducing a measurement pressure from the measurement object on one end side of the housing part and extending to the other end side of the housing part.
- the seal part is provided on one end side of the housing part, and is pressed against the measurement object and sealed, so that the measurement pressure from the measurement object is introduced into the pressure introduction hole without leakage.
- the diaphragm part is a thin part provided on the other end side of the housing, and receives the measurement pressure from the pressure introducing hole and distorts.
- a sensor chip that converts the distortion of the diaphragm portion into an electric signal is provided on the outer surface of the diaphragm portion.
- the reliability of the above single component is important.
- a diaphragm portion that receives a high pressure from a pressure medium among single parts is likely to crack, and it is important to ensure the mechanical strength of the diaphragm portion.
- the diaphragm part and the housing part are separate parts and the diaphragm part is joined and integrated with the housing part, for example, by forming the diaphragm part with a special material excellent in mechanical strength such as SUS630, Reliability can be secured.
- metals with excellent mechanical strength such as SUS630 are generally hard and can only be processed by cutting. Therefore, it is possible to form a small diaphragm part, which is a separate part from the housing part, but let the whole single part that combines the housing part, diaphragm part, and seal part be made of metal with excellent mechanical strength. Then, processing was difficult.
- the sealing performance in the seal part and the single part can be reduced without using a special material having high mechanical strength. It aims at providing the pressure sensor which can ensure the reliability of a diaphragm part.
- a pressure sensor is a housing that is attached to a measurement object, and has an opening for introducing measurement pressure from the measurement object on one end side, and a pressure introduction hole as an inner hole extending to the other end side.
- a seal part provided on one end side of the housing part and pressed and sealed against the object to be measured, and a diaphragm part provided on the other end side of the housing part and receiving and distorting the measurement pressure from the pressure introduction hole
- a sensor chip for converting the distortion of the diaphragm portion into an electric signal.
- the housing part, the seal part, and the diaphragm part are configured as a hollow cylindrical single part made of metal.
- the single part is formed so that the hardness is partially different by the forging process, and the diaphragm part is the most hardened part of the single part.
- the inner wall of the pressure introduction hole has a stepped structure so that the diameter of the pressure introduction hole increases from the other end side of the housing portion to the one end side.
- the diaphragm part requiring the most reliability among the single parts can be made the most hardened part, that is, the part having the most excellent mechanical strength, a pressure sensor that ensures high reliability of the diaphragm part can be provided. realizable.
- the seal portion is a portion having a smaller degree of curing than the diaphragm portion, it becomes easy to ensure the sealing performance using the deformation of the seal portion by pressing against the measurement object. In this way, it is not necessary to make the entire single part including the housing part a special material having excellent mechanical strength.
- a single part is likely to be an elongated shape having a high aspect ratio extending from the seal portion side to the diaphragm portion side, and accordingly, the pressure introduction hole is a hole having a long distance extending from the seal portion side to the diaphragm portion side.
- the pressure introduction hole is formed by drilling by forging from the side that becomes the seal part in a single part, but forming a pressure introduction hole with a long distance is not possible with the drilling by one forging. Difficult and requires drilling by multiple forgings.
- the pressure introduction hole is a stepped inner hole that expands from the other end side of the housing portion to the one end side. Therefore, even if the distance of the pressure introduction hole is long, multiple times of forging It is possible to appropriately form the pressure introduction hole by drilling.
- the sealing performance in the seal part is not used as a single part without using a special material having high mechanical strength. And the reliability of a diaphragm part can be ensured.
- the method for manufacturing a pressure sensor includes a forging process in which a single part is formed by a forging process.
- the single part is forged so that the hardness is partially different, so that the diaphragm portion of the single part becomes the most hardened part.
- a single part is forged multiple times by changing the diameter of the pressing die used for forging from one end side of the housing portion serving as the seal portion to the other end side of the housing portion serving as the diaphragm portion. Perform drilling with.
- a pressure introducing hole having a stepped inner wall so that the diameter increases from the other end side of the housing portion to the one end side can be formed.
- the most reliable diaphragm part of a single part can be made the most hardened part, that is, the part with the most excellent mechanical strength, and a pressure sensor that ensures high reliability of the diaphragm part is manufactured. it can.
- the seal portion has a lower degree of curing than the diaphragm portion, it is easy to ensure the sealing performance using the deformation of the seal portion by pressing against the measurement object. In this way, it is not necessary to make the entire single part including the housing a special material having excellent mechanical strength.
- a single part tends to be an elongated shape having a high aspect ratio extending from the seal portion side to the diaphragm portion side, and accordingly, the pressure introducing hole also extends from the seal portion side to the diaphragm portion side and has a long distance. It becomes.
- the pressure introduction hole is formed by drilling by forging from the side that becomes the seal part in a single part, but forming a pressure introduction hole with a long distance is not possible with the drilling by one forging. Difficult and requires drilling by multiple forgings.
- the pressure introducing hole is appropriately formed. be able to.
- the formed pressure introducing hole becomes a stepped inner hole whose diameter is expanded from the other end side to the one end side of the housing portion.
- the housing part is constituted by a single part in which the diaphragm part and the seal part are also integrated, the sealing performance in the seal part and without using a special material with high mechanical strength as a single part can be obtained. The reliability of the diaphragm portion can be ensured.
- FIG. 2 is a schematic cross-sectional view showing a single component in FIG. 1 in a state before joining with a connector. It is the enlarged view to which the diaphragm part and its vicinity part in the single components in FIG. 2 were expanded. It is a schematic sectional drawing which shows the drilling process by the forge with respect to the single component concerning embodiment.
- FIG. 5 is a schematic cross-sectional view illustrating a drilling process subsequent to FIG. 4.
- FIG. 6 is a schematic cross-sectional view showing a drilling process subsequent to FIG. 5.
- FIG. 7 is a schematic cross-sectional view showing a drilling process subsequent to FIG. 6.
- FIG. 8 is a schematic cross-sectional view showing a seal portion forming step subsequent to the drilling step shown in FIG. 7.
- the pressure sensor S1 according to the embodiment will be described with reference to FIGS.
- the pressure sensor S1 is mounted on, for example, an automobile as the measurement target K1, and detects various measurement pressures such as exhaust pressure, intake pressure, or oil pressure.
- the pressure sensor S1 of the present embodiment includes a single part 10 as a single part in which the housing part 20, the seal part 30, and the diaphragm part 40 are integrated, and a connector case integrated with the single part 10. 50.
- the single part 10 is a single part in the shape of a hollow cylinder in which the housing part 20, the seal part 30 and the diaphragm part 40 are integrated.
- the single component 10 is formed by forging or cutting an iron-based metal such as stainless steel that is usually used as this type of pressure sensor.
- the single part 10 is comprised as one continuous part in which the housing part 20, the seal part 30, and the diaphragm part 40 do not have a junction part.
- the housing part 20 in the single part 10 has a hollow cylindrical shape that forms the main body of the single part 10, and is attached to the measurement object K1.
- a pressure introducing hole 21 is provided in the housing part 20.
- the pressure introduction hole 21 has an opening 21a for introducing the measurement pressure from the measurement object K1 on the one end 20a side of the housing part 20, and is configured as an inner hole extending to the other end 20b side of the housing part 20.
- the pressure introducing hole 21 is a straight hole extending from the one end 20 a side of the housing portion 20 to the other end 20 b side.
- the seal portion 30 is a portion that is provided on the one end 20a side of the housing portion 20, and is pressed against the measurement object K1 to come into airtight contact.
- the seal part 30 is configured to have a tapered surface provided on the entire circumference around the axis of the housing part 20.
- the sealing part 30 is pressed against the measurement object K1 and seals between the measurement object K1, so that the measurement pressure from the measurement object K1 is introduced into the pressure introduction hole 21 without leakage.
- the measurement object K1 is, for example, various pipes such as an exhaust system, an intake system, or an oil system in an automobile as described above.
- the pressure sensor S1 is assembled to the pipe by inserting the one end 20a side of the housing part 20 into the pipe wall of such a pipe and performing screw connection via the screw part 22. Then, the sealing portion 30 receives the axial force of this screw connection, and the above-described sealing is performed, and the pressure sensor S1 detects the pressure in the pipe as the measurement pressure.
- the diaphragm part 40 is a thin part provided on the other end 20b side of the housing part 20, and receives the measurement pressure from the pressure introduction hole 21 to be distorted. Furthermore, the diaphragm portion 40 is a thin-walled portion that closes the end of the pressure introducing hole 21 starting from the opening portion 21 a, and the inner surface of the diaphragm portion 40, that is, the back surface of the diaphragm portion 40 is in the pressure introducing hole 21. positioned.
- a sensor chip 60 is provided on the outer surface of the diaphragm section 40 to convert the distortion of the diaphragm section 40 into an electrical signal.
- the sensor chip 60 is fixed to the outer surface of the diaphragm portion 40 by glass bonding or the like via a bonding material 61 made of low melting point glass or the like.
- the sensor chip 60 is a typical sensor chip applied as a pressure detection element in this type of pressure sensor.
- the sensor chip 60 is formed using, for example, a semiconductor substrate such as a silicon substrate, and a strain gauge (not shown) is provided on the surface of the semiconductor substrate.
- a sensor chip 60 is formed by a normal semiconductor process or the like.
- the strain gauge has a Wheatstone bridge shape formed by doping a P-type impurity, for example. And when the diaphragm part 40 deform
- the sensor chip 60 functions as a pressure detection unit.
- the connector case 50 is joined to the other end 20 b side of the housing part 20 in the single component 10. Thereby, the connector case 50 and the single component 10 are integrated.
- the connector case 50 is formed by molding a resin such as PPS (polypropylene sulfide) or PBT (polybutylene terephthalate).
- the connector case 50 has conductive terminal pins 51 made of metal or the like for exchanging signals with the outside.
- the terminal pin 51 is integrally fixed to the resin constituting the connector case 50 by insert molding or the like.
- the upper end portion of the terminal pin 51 is exposed to the outside from the first opening 50a, and connected to the external wiring member described above, whereby a counterpart circuit or the like provided outside the pressure sensor S1. Electrically connected to
- the connector case 50 is a connector for outputting a signal of the pressure value detected by the pressure sensor S1 to the outside, that is, a so-called case plug.
- the connector case 50 has a cylindrical shape, and a lower end portion (a lower end side in FIG. 1) is connected to the cylindrical housing portion 20.
- the housing portion 20 includes a receiving portion 23 as a protruding portion that receives the lower end portion of the connector case 50. And the lower end part of the connector case 50 is attached to the receiving part 23 so that the other end 20b side of the housing part 20 including the diaphragm part 40 may be surrounded.
- a portion of the receiving portion 23 is caulked against the lower end portion of the connector case 50 to form a caulking portion 23a, whereby the connector case 50 and the single component 10 are fixed.
- an O-ring 70 is disposed between the outer peripheral portion of the connector case 50 and the inner peripheral portion of the receiving portion 23 of the housing portion 20, and thereby, between the connector case 50 and the single component 10. The seal is secured.
- connection member 80 is provided in a space defined by the single component 10 and the connector case 50.
- the connection member 80 electrically connects the sensor chip 60 and the terminal pin 51 of the connector case 50.
- connection member 80 includes a lead frame 81 and a mold resin 82 that seals and supports the lead frame 81.
- the connecting member 80 is provided at a position where it does not interfere with the sensor chip 60 and the diaphragm portion 40, and is fixed to the other end 20b side of the housing portion 20 by adhesion or the like.
- the lead frame 81 is typically made of Cu, 42 alloy or the like, and is disposed around the diaphragm portion 40 and the sensor chip 60.
- the mold resin 82 is made of a mold material such as a typical epoxy resin.
- the wire 90 is formed by ordinary wire bonding or the like, and is made of, for example, Au, Al, Cu, Ag, or the like.
- connection member 80 a part of the lead frame 81 is an outer lead 81a protruding from the mold resin 82. As shown in FIG. 1, the outer lead 81 a is bent at the base portion on the mold resin 82 side and extends in the direction of the terminal pin 51. The front end portion of the outer lead 81a is joined to the terminal pin 51 by welding or the like.
- the sensor chip 60 is electrically connected to the outside via the lead frame 81 and the terminal pin 51. An electrical signal from the sensor chip 60 is output to the outside as an output signal.
- a second opening 52 is provided at a position corresponding to the joint between the outer lead 81a and the terminal pin 51.
- a second opening 52 is provided on a side surface of the cylindrical connector case 50. The outer lead 81 a and the terminal pin 51 are joined by welding or the like through the second opening 52.
- a cover member 53 is attached to the connector case 50 so as to cover the second opening 52.
- a cover member 53 is, for example, a plate-shaped member made of resin, ceramic, metal, or the like.
- the cover member 53 is fixed to the connector case 50 by a technique such as adhesion, press fitting, and fitting.
- the cover member 53 closes the second opening 52 and protects the components, electrical connections, and the like inside the pressure sensor S1 from moisture, mechanical external force, and the like.
- the single component 10 in the pressure sensor S1 and the manufacturing method of the pressure sensor S1 will be further described with reference to FIGS.
- the single component 10 of the present embodiment mainly includes the housing part 20 having the pressure introducing hole 21 and attached to the measurement object K1, and the seal part 30 and the diaphragm part 40 are integrated with the housing part 20. It is configured as a single member having a hollow cylindrical shape.
- the single component 10 is formed by forging or cutting a ferrous metal such as stainless steel.
- the single component 10 is formed to have a partially different hardness by a forging process, typically cold forging, and the diaphragm portion 40 of the single component 10 is the most. It is considered as a cured part. That is, the diaphragm part 40 of the single component 10 is a part where the metal structure is most densified.
- the diaphragm part 40 is a part where the ratio of the fiber flow region is the largest in the single component 10 and is a part harder than the housing part 20 and the seal part 30.
- the diaphragm portion 40 that requires the most reliability among the single components 10 is set to the most cured portion, that is, the portion having the highest mechanical strength.
- the pressure sensor S1 that ensures reliability can be realized.
- the seal part 30 of the single component 10 has a softness that can be deformed so as to absorb mutual unevenness in order to secure the seal, although it depends on the hardness of the measurement object K1 that is closely attached. It is desirable to be.
- the seal portion 30 is a portion having a smaller degree of curing than the diaphragm portion 40, that is, a soft portion, the sealing property utilizing the deformation of the seal portion 30 by pressing against the measurement target K1 is used. Securement becomes easy. Thus, according to this embodiment, it becomes unnecessary to make the whole single component 10 including the housing part 20 into a special material excellent in mechanical strength.
- the center side of the back surface is a flat surface, and the peripheral portion of the back surface and the pressure introduction hole 21 A corner portion 60a formed by the inner wall has an R shape.
- the above-described corner portion 60a in the diaphragm portion 40 is a portion where stress concentration is likely to occur, and is a portion where mechanical strength is desired to be improved.
- the corner portion 60a is formed in an R shape instead of a square shape, the fiber flow is easily concentrated on the corner portion 60a when the diaphragm portion 40 is formed by forging, and the mechanical strength of the corner portion 60a is improved. It becomes easy.
- Such an R shape can be formed if a pressing die used for forging has a shape corresponding to the R shape.
- the diameter of the pressure introducing hole 21 increases with a step from the other end 20b side of the housing part 20 to the one end 20a side.
- the inner wall of the pressure introducing hole 21 has a stepped structure so as to have a diameter.
- the pressure introduction hole 21 is a stepped inner hole that expands in two steps from the other end 20b side of the housing portion 20 toward the one end 20a side. That is, in the single component 10, the pressure introducing hole 21 is configured by three holes having different diameters that are provided so that the diameter decreases in order from the one end 20 a side to the other end 20 b side of the housing portion 20. ing.
- the receiving portion 23 and the screw portion 22 in the single component 10 can be formed by known forging or cutting, and are not shown.
- the single component 10 before the pressure introducing hole 21, the seal portion 30, and the diaphragm portion 40 are formed is formed by a forging process.
- the receiving part 23 is formed in the single component 10 which consists only of this housing substantially.
- the first part 10 shown in FIG. 4 is drilled by first forging using the first pressing die 101.
- the first pressing die 101 is directed from the one end 20 a side of the housing portion 20 that becomes the seal portion 30 toward the other end 20 b side of the housing portion 20 that becomes the diaphragm portion 40.
- Forging is performed by pushing. Thereby, in the single component 10, the largest diameter portion of the pressure introducing hole 21 is formed.
- the second pressing die 102 having a smaller diameter than the first pressing die 101 is used and the same direction as the first time.
- the hole is drilled by the second forging. Thereby, in the single component 10, the second largest diameter portion of the pressure introducing hole 21 is formed.
- the third pressing die 103 having a diameter smaller than that of the second pressing die 102 is used.
- the hole is drilled by the third forging.
- the smallest diameter portion of the pressure introduction hole 21 is formed to form the entire pressure introduction hole 21, and the diaphragm portion 40 as a thin portion is formed at the end portion of the hole. Is done.
- the sealing part 30 and the screw part 22 are formed by cutting the single part 10 at a part on the one end 20 a side of the housing part 20. In this way, the single component 10 of this embodiment is completed.
- the sensor chip 60 is bonded and fixed in the completed single component 10 and the connection member 80 is fixed by adhesion or the like. Thereafter, the sensor chip 60 is connected to the lead frame 81 of the connection member 80 by performing wire bonding or the like.
- the single part 10 and the connector case 50 are assembled through the O-ring 70 and fixed by caulking. Then, the terminal pin 51 and the outer lead 81a are welded and connected through the second opening 52 of the connector case 50. Thereafter, the cover member 53 is attached to the second opening 52 of the connector case 50.
- the pressure sensor S1 of this embodiment is completed. As described above, the completed pressure sensor S1 is assembled by screw coupling to the measurement object K1 via the screw portion 22.
- the single component 10 forms the forging process for forming the pressure introducing hole 21 and the diaphragm portion 40 shown in FIGS. 4 to 7, and the seal portion 30 shown in FIG. It is formed by the cutting process for.
- the portion to be the diaphragm portion 40 located at the end portion of the hole is a portion having the largest number of forging processes due to the drilling process by a plurality of times of forging.
- the diaphragm part 40 is the most cured part.
- the forging process is performed so that the hardness of the single part 10 is partially different by changing the number of forging processes for the single part 10 partially.
- the diaphragm portion 40 is the most cured portion.
- the pressing die 101 is directed from the one end 20 a side of the housing portion 20 that becomes the seal portion 30 toward the other end 20 b side of the housing portion 20 that becomes the diaphragm portion 40. Drilling is performed by multiple forgings by changing the diameters of ⁇ 103. Thereby, in the single component 10, the pressure introducing hole 21 having the above-described stepped inner hole structure is formed.
- the single component 10 as in the present embodiment is likely to be an elongated shape having a high aspect ratio extending from the seal portion 30 side to the diaphragm portion 40 side, and accordingly, the pressure introducing hole 21 also extends from the seal portion 30 side. It becomes a hole with a long distance extending to the part 40 side.
- the pressure introduction hole 21 is formed by performing drilling by forging from the side that becomes the seal portion 30 in the single component 10, but forming the pressure introduction hole 21 having a long distance is by one forging. Drilling is difficult, and drilling by multiple forgings is required.
- the pressure introducing hole 21 is a stepped inner hole that expands from the other end 20b side of the housing portion 20 to the one end 20a side. Therefore, even if the distance of the pressure introduction hole 21 is long, it is possible to appropriately form the pressure introduction hole 21 by drilling by multiple forgings.
- the forging process suitable for the configuration of the pressure introducing hole 21 is adopted, and the diameters of the pressing dies 101 to 103 are changed to perform multiple times of forging. Drill holes. Therefore, even if the distance of the pressure introduction hole 21 is long, the pressure introduction hole 21 is appropriately formed.
- the sealing part and the diaphragm can be obtained without using a special material having high mechanical strength as the single part 10 in which the housing part 20, the seal part 30, and the diaphragm part 40 are integrated.
- the reliability of the unit 40 can be ensured.
- the pressure introduction hole 21 is a straight hole extending from the one end 20a side to the other end 20b side of the housing part 20 in the single component 10, so that the above-described forging process can be easily performed. It was supposed to be possible.
- the pressure introducing hole 21 may be a slightly curved hole as long as it can be formed by forging by forging.
- the diameter has a stepped inner hole structure having a step from the other end 20b side of the housing portion 20 to the one end 20a side, and the number of steps is as follows. It is not limited to the two stages as shown in FIGS. The step may be only one step, or may be three steps, four steps or more.
- the housing part 20 has the screw part 22 as an attachment part, and was screw-coupled with respect to the measuring object K1, as an attachment part in the housing part 20,
- it may be a press-fitted portion.
- the pressure sensor only needs to include the single component 10 and the sensor chip 60, and those having the function of exchanging signals between the pressure sensor and the outside include the connector case 50 and the connecting member 80 described above. It is not limited to.
- the pressure sensor S1 described above is not limited to detecting various measurement pressures for automobiles, and the measurement object K1 may be other than the automobile.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
圧力センサは、測定対象物(K1)に取り付けられ、測定圧力を導入する圧力導入孔(21)を有するハウジング部(20)と、ハウジング部に設けられ、測定対象物に押し付けられてシールされるシール部(30)と、圧力導入孔からの測定圧力を受圧して歪むダイアフラム部(40)と、ダイアフラム部の歪みを電気信号に変換するセンサチップ(60)と、を備える。ハウジング部、シール部、および、ダイアフラム部は、金属よりなる中空筒状の単一部品(10)として構成される。単一部品は、部分的に硬さが異なり、ダイアフラム部が最も硬化される。圧力導入孔の径は、ハウジング部のダイアフラム部側からシール部側へ段差を有して拡径する。
Description
本出願は、2015年8月5日に出願された日本特許出願2015-155132号に基づくもので、ここにその記載内容を援用する。
本開示は、圧力センサ、およびその製造方法に関する。
特許文献1に記載される圧力センサにおいて、ハウジング部、ダイアフラム部、シール部は、一体として形成された中空筒状の金属製の単一部品よりなる。
ハウジング部は、測定対象物に取り付けられる。ハウジング部に設けられている圧力導入孔は、ハウジング部の一端側に測定対象物からの測定圧力を導入する開口部を有し、ハウジング部の他端側へ延びる内孔として構成されている。
シール部は、ハウジング部の一端側に設けられ、測定対象物に押し付けられてシールされることで、測定対象物からの測定圧力が漏れなく圧力導入孔に導入される。
ダイアフラム部は、ハウジングの他端側に設けられた薄肉部であり、圧力導入孔からの測定圧力を受圧して歪む。ダイアフラム部の外表面には、ダイアフラム部の歪みを電気信号に変換するセンサチップが設けられている。
圧力センサにおいては、上記の単一部品の信頼性が重要である。特に、単一部品のうちでも圧力媒体からの高圧を受けるダイアフラム部は、クラック等が発生しやすく、当該ダイアフラム部の機械的強度を確保することが重要である。
ダイアフラム部とハウジング部とが別部品であってダイアフラム部をハウジング部に接合して一体化する場合には、たとえばSUS630等の機械的強度に優れた特別な材料によりダイアフラム部を形成することで、信頼性を確保できる。
しかし、SUS630のような機械的強度に優れる金属は一般的に硬く、切削でしか加工できない。そのため、ハウジング部とは別部品の小型のダイアフラム部を形成することはできるが、ハウジング部、ダイアフラム部、およびシール部が一体となった単一部品全体を、機械的強度に優れる金属で構成しようとすると、加工が困難であった。
機械的強度に優れた金属によって単一部品を形成した場合、シール部も硬いものとなってしまい、圧力センサを測定対象物に取り付ける際に、測定対象物への押し付けによるシール部の変形を利用したシール性の確保が困難になりやすい。
本開示は、ダイアフラム部およびシール部も一体となった単一部品にてハウジング部を構成するにあたって、単一部品として、機械的強度の高い特殊な材料を用いることなく、シール部におけるシール性およびダイアフラム部の信頼性を確保できる圧力センサを提供することを目的とする。
本開示の一態様において、圧力センサは、測定対象物に取り付けられ、一端側に測定対象物からの測定圧力を導入する開口部と、他端側へ延びる内孔としての圧力導入孔を有するハウジング部と、ハウジング部の一端側に設けられ、測定対象物に押し付けられてシールされるシール部と、ハウジング部の他端側に設けられ、圧力導入孔からの測定圧力を受圧して歪むダイアフラム部と、ダイアフラム部に設けられ、ダイアフラム部の歪みを電気信号に変換するためのセンサチップと、を備える。ハウジング部、シール部、および、ダイアフラム部は、金属よりなる中空筒状の単一部品として構成される。
単一部品は、鍛造処理により部分的に硬さが異なるように形成され、単一部品のうちダイアフラム部が最も硬化された部位である。さらに、単一部品において、圧力導入孔の径がハウジング部の他端側から一端側へ段差を有して拡径するように、圧力導入孔の内壁は段付きの構造とされている。
それによれば、単一部品のうちで最も信頼性を要するダイアフラム部を、最も硬化された部位、すなわち最も機械的強度に優れた部位とできるから、ダイアフラム部の高信頼性を確保した圧力センサを実現できる。
また、シール部は、ダイアフラム部よりも硬化度合が小さい部位とされるので、測定対象物への押し付けによるシール部の変形を利用したシール性の確保が容易になる。このように、ハウジング部を含む単一部品全体を、機械的強度に優れた特殊な材料とすることが不要となる。
また、単一部品は、シール部側からダイアフラム部側へ延びる高アスペクト比を有した細長の形状となりやすく、これに伴って圧力導入孔もシール部側からダイアフラム部側へ延びる距離の長い孔となる。
圧力導入孔は、単一部品においてシール部となる側から鍛造による孔開け加工を行うことで形成されるが、距離の長い圧力導入孔を形成することは、一回の鍛造による孔開け加工では難しく、複数回の鍛造による孔開け加工が必要となる。
その点を考慮して、圧力導入孔を、ハウジング部の他端側から一端側へ拡径する段付き内孔としているので、圧力導入孔の距離が長いものであっても、複数回の鍛造による穴開け加工により、適切に圧力導入孔を形成することが可能である。
これによれば、ダイアフラム部およびシール部も一体となった単一部品にてハウジング部を構成するにあたって、単一部品として、機械的強度の高い特殊な材料を用いることなく、シール部におけるシール性およびダイアフラム部の信頼性を確保することができる。
本開示の一態様において、圧力センサの製造方法は、単一部品を鍛造処理により形成する鍛造工程を備える。鍛造工程では、単一部品を部分的に硬さが異なるように鍛造処理することで、単一部品のうちダイアフラム部が最も硬化された部位となるようにする。
さらに、鍛造工程では、単一部品に対し、シール部となるハウジング部の一端側からダイアフラム部となるハウジング部の他端側に向かって、鍛造に用いる押し型の径を変えて複数回の鍛造による孔開け加工を行う。これにより、単一部品において、径がハウジング部の他端側から一端側へ段差を有して拡径するように内壁が段付きの構造とされた圧力導入孔を形成できる。
それによれば、単一部品のうちで最も信頼性を要するダイアフラム部を、最も硬化された部位、すなわち最も機械的強度に優れた部位とでき、ダイアフラム部の高信頼性を確保した圧力センサを製造できる。
また、シール部は、ダイアフラム部よりも硬化度合が小さいので、測定対象物への押し付けによるシール部の変形を利用したシール性の確保が容易になる。このように、ハウジングを含む単一部品全体を、機械的強度に優れた特殊な材料とすることが不要となる。
また、単一部品は、シール部側からダイアフラム部側へ延びる高アスペクト比を有した細長の形状となりやすく、これに伴って圧力導入孔もシール部側からダイアフラム部側へ延びて距離の長い孔となる。
圧力導入孔は、単一部品においてシール部となる側から鍛造による孔開け加工を行うことで形成されるが、距離の長い圧力導入孔を形成することは、一回の鍛造による孔開け加工では難しく、複数回の鍛造による孔開け加工が必要となる。
その点を考慮して、鍛造に用いる押し型の径を変えて複数回の鍛造による孔開け加工を行うことにより、圧力導入孔の距離が長いものであっても、適切に圧力導入孔を形成することができる。形成された圧力導入孔は、ハウジング部の他端側から一端側へ拡径する段付き内孔となる。
このように、ダイアフラム部およびシール部も一体となった単一部品にてハウジング部を構成するにあたって、単一部品として、機械的強度の高い特殊な材料を用いることなく、シール部におけるシール性およびダイアフラム部の信頼性を確保することができる。
実施形態について図に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
実施形態にかかる圧力センサS1について、図1、図2を参照して述べる。圧力センサS1は、たとえば測定対象物K1としての自動車に搭載され、排気圧や吸気圧、あるいは、オイル圧等の各種の測定圧力を検出する。
本実施形態の圧力センサS1は、ハウジング部20、シール部30、および、ダイアフラム部40が一体化された単一の部品としての単一部品10と、単一部品10と一体化されたコネクタケース50と、を備える。
単一部品10は、ハウジング部20、シール部30およびダイアフラム部40が一体となった中空筒状の単一の部品である。単一部品10は、この種の圧力センサとして通常用いられるステンレス等の鉄系金属を鍛造処理や切削加工することにより形成される。さらに言えば、単一部品10は、ハウジング部20、シール部30およびダイアフラム部40が接合部を持たない連続した1個の部品として構成される。
単一部品10におけるハウジング部20は、単一部品10の主体をなす中空筒状のもので、測定対象物K1に取り付けられる。ハウジング部20には、圧力導入孔21が設けられている。
圧力導入孔21は、ハウジング部20の一端20a側に測定対象物K1からの測定圧力を導入する開口部21aを有し、ハウジング部20の他端20b側へ延びる内孔として構成されている。ここでは、圧力導入孔21は、ハウジング部20の一端20a側から他端20b側へのびるストレートな孔とされている。
また、シール部30は、ハウジング部20の一端20a側に設けられ、測定対象物K1に押し付けられて気密に接触する部位である。具体的には、シール部30は、ハウジング部20の軸周りの全周に設けられたテーパ面を有して構成されるものである。
シール部30が、測定対象物K1に押し付けられて測定対象物K1との間をシールすることにより、測定対象物K1からの測定圧力が、漏れなく圧力導入孔21に導入される。
ハウジング部20の外周面には、測定対象物K1に取り付けられる取付部としてのネジ部22が形成されている。具体的に、測定対象物K1とは、たとえば上述のような自動車における排気系統、吸気系統、あるいはオイル系統等の各種の配管などである。
このような配管の管壁に対してハウジング部20の一端20a側を挿入し、ネジ部22を介してネジ結合を行うことにより、圧力センサS1は当該配管に組み付けられる。そして、このネジ結合の軸力をシール部30が受けて上記のシールがなされ、圧力センサS1は、当該配管内の圧力を測定圧力として検出する。
また、ダイアフラム部40は、ハウジング部20の他端20b側に設けられた薄肉部であり、圧力導入孔21からの測定圧力を受圧して歪む。さらに言えば、ダイアフラム部40は、開口部21aを始端とする圧力導入孔21の終端を閉塞する薄肉部であり、ダイアフラム部40の内表面つまりダイアフラム部40の裏面が、圧力導入孔21内に位置している。
図1に示されるように、ダイアフラム部40の外表面には、ダイアフラム部40の歪みを電気信号に変換するためのセンサチップ60が設けられている。ここでは、センサチップ60は、低融点ガラスなどよりなる接合材61を介して、ガラス接合などによって、ダイアフラム部40の外表面に固定されている。
センサチップ60は、この種の圧力センサにおいて圧力検出素子として適用される典型的なセンサチップである。具体的には、センサチップ60は、たとえばシリコン基板等の半導体基板を用いて形成されており、この半導体基板の表面に図示しない歪みゲージが備えられたものとされる。このようなセンサチップ60は、通常の半導体プロセス等により形成される。
ここで、当該歪みゲージは、たとえばP型不純物をドーピングして形成したホイートストンブリッジ状をなすものとされる。そして、圧力導入孔21から導入された圧力によってダイアフラム部40が変形したときに、この変形に応じた当該歪みゲージの抵抗値変化を電気信号に変換して出力する。たとえば、このようにして、センサチップ60は、圧力検出部として機能する。
また、コネクタケース50は、図1に示されるように、単一部品10におけるハウジング部20の他端20b側に接合されている。これにより、コネクタケース50と単一部品10とは一体化されている。このコネクタケース50は、PPS(ポリプロピレンサルファイド)やPBT(ポリブチレンテレフタレート)などの樹脂を成形してなる。
また、コネクタケース50は、外部との信号のやりとりを行うための金属などよりなる導電性のターミナルピン51を有する。ここで、ターミナルピン51は、インサート成形などによりコネクタケース50を構成する樹脂に対して一体に固定されている。
コネクタケース50の上端部(図1中の上端側)には、コネクタケース50を図示しない外部コネクタなどの外部配線部材に接続するための第1の開口部50aが設けられている。
ターミナルピン51の上端部は、この第1の開口部50aより外部に露出しており、上記した外部配線部材に接続されることにより、圧力センサS1の外部に設けられている相手側の回路等へ電気的に接続される。
このように、コネクタケース50は、圧力センサS1で検出された圧力値の信号を外部に出力するためのコネクタ、いわゆるケースプラグをなす。ここでは、コネクタケース50は筒状をなすものとなっており、その下端部(図1中の下端側)が筒状のハウジング部20に接続されている。
具体的には、図1に示されるように、ハウジング部20は、コネクタケース50の下端部を受ける出っ張り部分としての受け部23を備えている。そして、コネクタケース50の下端部は、ダイアフラム部40を含むハウジング部20の他端20b側を取り囲むように、受け部23に取り付けられている。
そして、コネクタケース50の下端部に対して受け部23の一部を、かしめることで、かしめ部23aを形成し、これにより、コネクタケース50と単一部品10とが固定されている。なお、コネクタケース50の外周部とハウジング部20の受け部23の内周部との間には、Oリング70が配置されており、これにより、コネクタケース50と単一部品10との間のシールが確保されている。
ここで、図1に示されるように、単一部品10とコネクタケース50とで区画される空間内には、接続部材80が設けられている。接続部材80は、センサチップ60とコネクタケース50のターミナルピン51とを電気的に接続する。
具体的に、接続部材80は、リードフレーム81と、これを封止して支持するモールド樹脂82とよりなる。そして、接続部材80は、センサチップ60およびダイアフラム部40とは干渉しない位置に設けられ、接着等により、ハウジング部20の他端20b側に固定されている。
リードフレーム81は、Cuや42アロイ等よりなる典型的なもので、ダイアフラム部40およびセンサチップ60の周囲に配置される。モールド樹脂82は、典型的なエポキシ樹脂等のモールド材料よりなる。
接続部材80において、リードフレーム81の一部がモールド樹脂82より露出しており、この露出部分にて、リードフレーム81とセンサチップ60とがワイヤ90により結線されている。ワイヤ90は、通常のワイヤボンディング等により形成され、たとえばAu、Al、Cu、Ag等よりなる。
また、接続部材80においては、リードフレーム81の一部がモールド樹脂82より突出するアウターリード81aとされている。図1に示されるように、アウターリード81aは、モールド樹脂82側の根元部分で曲げられてターミナルピン51の方向へ延びている。アウターリード81aの先端側の部分は、ターミナルピン51に対して溶接等によって接合されている。
こうして、センサチップ60は、リードフレーム81、ターミナルピン51を介して、外部と電気的に接続されるようになっている。センサチップ60からの電気信号は、出力信号として外部へ出力される。
また、コネクタケース50のうちアウターリード81aとターミナルピン51との接合部に対応する位置には、第2の開口部52が設けられている。ここでは、筒状のコネクタケース50における側面部に、第2の開口部52が設けられている。そして、アウターリード81aとターミナルピン51との溶接等による接合は、この第2の開口部52を通して行われている。
また、コネクタケース50には、この第2の開口部52を被覆するように、カバー部材53が取り付けられている。このようなカバー部材53は、樹脂、セラミック、金属などよりなる例えば板状のものである。
そして、カバー部材53は、接着や圧入、嵌合などの手法により、コネクタケース50に固定されている。カバー部材53により、第2の開口部52が閉塞され、圧力センサS1の内部の各部品や電気的接続部等が、湿気や機械的外力等より保護される。
圧力センサS1における単一部品10、および、圧力センサS1の製造方法について、図3~図8も参照してさらに述べる。
上述したが、本実施形態の単一部品10は、圧力導入孔21を有し且つ測定対象物K1に取り付けられるハウジング部20を主体とし、このハウジング部20にシール部30およびダイアフラム部40が一体化された中空筒状をなす単一の部材として構成されている。そして、単一部品10は、ステンレス等の鉄系金属を鍛造処理や切削加工することにより形成されたものである。
本実施形態では、この単一部品10は、鍛造処理、典型的には冷間鍛造により部分的に硬さが異なるように形成されたものとされ、単一部品10のうちダイアフラム部40が最も硬化された部位とされている。つまり、単一部品10のうちダイアフラム部40は、金属組織が最も緻密化された部位である。
より具体的に言うと、単一部品10を鍛造処理したとき、鍛造部分の内部には金属組織が潰れて繊維状となっている部分、いわゆるファイバーブローが形成される。このファイバーブローは、鍛造によって硬化された部位に多く形成される。つまり、本実施形態では、単一部品10のうちダイアフラム部40が、ファイバーフロー領域の割合が最も多い部位であり、ハウジング部20やシール部30よりも硬い部位となっている。
本実施形態では、このように、単一部品10のうちで最も信頼性を要するダイアフラム部40を、最も硬化された部位、すなわち最も機械的強度に優れた部位としているため、ダイアフラム部40の高信頼性を確保した圧力センサS1を実現することができる。
また、単一部品10のうちシール部30は、密着する測定対象物K1の硬さにもよるが、シールの確保のために相互の凹凸を吸収するように変形可能な軟らかさを持つものであることが望ましい。
その点、本実施形態では、シール部30を、ダイアフラム部40よりも硬化度合が小さい部位、つまり軟らかい部位としているので、測定対象物K1への押し付けによるシール部30の変形を利用したシール性の確保が容易になる。このように、本実施形態によれば、ハウジング部20を含む単一部品10全体を、機械的強度に優れた特殊な材料とすることが不要となる。
また、図3に示されるように、ダイアフラム部40のうちの圧力導入孔21側の面である裏面においては、当該裏面の中央側が平坦面とされ、当該裏面の周辺部と圧力導入孔21の内壁とがなすコーナー部60aがR形状とされている。
ダイアフラム部40における上記したコーナー部60aは、応力集中が発生しやすい部位であり、機械的強度を向上させたい部位である。その点、コーナー部60aを角形状ではなくR形状とすれば、ダイアフラム部40を鍛造により形成するにあたって、コーナー部60aに上記のファイバーフローが集中しやすく、コーナー部60aの機械的強度が向上しやすくなる。このようなR形状は、鍛造に用いる押し型をR形状に対応した形状を有するものとすれば、形成可能である。
また、図1、図2に示されるように、本実施形態では、単一部品10において、圧力導入孔21の径がハウジング部20の他端20b側から一端20a側へ段差を有して拡径するように、圧力導入孔21の内壁は段付きの構造とされている。
図示例では、圧力導入孔21は、ハウジング部20の他端20b側から一端20a側へ向かって2段階に拡径する段付き内孔とされている。つまり、単一部品10において、圧力導入孔21は、ハウジング部20の一端20a側から他端20b側に向かって、順に径が小さくなるように設けられた3個の異なる径の孔により構成されている。
このような段付き内孔としての圧力導入孔21を有する単一部品10の製造方法について、主として単一部品10を鍛造処理により形成する鍛造工程について、図4~図8を参照して述べる。なお、図4~図8では、単一部品10における上記した受け部23やネジ部22は、公知の鍛造や切削により形成できるものであるから、図示を省略してある。
まず、図4に示されるように、圧力導入孔21、シール部30およびダイアフラム部40が形成される前の単一部品10を、鍛造処理によって形成する。なお、この実質的にハウジングのみよりなる単一部品10には、受け部23が形成されている。
次に、図4に示される単一部品10に対して、図5に示されるように、第1の押し型101を用いて1回目の鍛造による孔開け加工を行う。具体的には、単一部品10に対し、シール部30となるハウジング部20の一端20a側からダイアフラム部40となるハウジング部20の他端20b側の方向に向かって、第1の押し型101を押し込むことで鍛造を行う。これにより、単一部品10において、圧力導入孔21のうち最も径の大きい部分が形成される。
次に、図5に示される単一部品10に対して、図6に示されるように、第1の押し型101よりも径の小さい第2の押し型102を用いて、1回目と同方向に2回目の鍛造による孔開け加工を行う。これにより、単一部品10において、圧力導入孔21のうち2番目に径の大きい部分が形成される。
次に、図6に示される単一部品10に対して、図7に示されるように、第2の押し型102よりも径の小さい第3の押し型103を用いて、2回目と同方向に3回目の鍛造による孔開け加工を行う。これにより、単一部品10において、圧力導入孔21のうち最も径の小さい部分が形成されて圧力導入孔21の全体が形成されるとともに、孔の終端部に薄肉部としてのダイアフラム部40が形成される。
その後は、図8に示されるように、単一部品10においてハウジング部20の一端20a側の部位に、切削加工を行うことにより、シール部30およびネジ部22を形成する。こうして、本実施形態の単一部品10ができあがる。
その後は、このできあがった単一部品10において、センサチップ60を接合して固定し、接続部材80を接着等により固定する。その後、ワイヤボンディング等を行うことにより、センサチップ60を、接続部材80のリードフレーム81に接続する。
次に、単一部品10とコネクタケース50とをOリング70を介して組み付け、かしめ固定する。そして、コネクタケース50の第2の開口部52を介して、ターミナルピン51とアウターリード81aとを溶接し、接続する。その後は、コネクタケース50の第2の開口部52にカバー部材53を取り付ける。
こうして、本実施形態の圧力センサS1ができあがる。このできあがった圧力センサS1は、上述のように、測定対象物K1に対してネジ部22を介してネジ結合することにより組み付けられる。
ところで、上述のように、単一部品10は、図4~図7に示される圧力導入孔21およびダイアフラム部40を形成するための鍛造工程、および、図8に示されるシール部30を形成するための切削工程により形成される。
ここで、本実施形態の鍛造工程では、複数回の鍛造による孔開け加工により、孔の終端部に位置するダイアフラム部40となる部位は、最も鍛造処理の回数が多い部位となるため、できあがったダイアフラム部40は、最も硬化された部位となる。
つまり、本実施形態の鍛造工程では、単一部品10に対して部分的に鍛造処理回数を変えることで、単一部品10を部分的に硬さが異なるように鍛造処理を行い、単一部品10のうちダイアフラム部40が最も硬化された部位となるようにしている。
また、本実施形態の鍛造工程では、単一部品10に対し、シール部30となるハウジング部20の一端20a側からダイアフラム部40となるハウジング部20の他端20b側に向かって、押し型101~103の径を変えて複数回の鍛造による孔開け加工を行っている。これにより、単一部品10において、上記した段付き内孔の構造とされた圧力導入孔21が形成される。
このような圧力導入孔21における段付き内孔の構成、および、単一部品10の鍛造工程を採用したのは、次のような理由による。
本実施形態のような単一部品10は、シール部30側からダイアフラム部40側へ延びる高アスペクト比を有した細長の形状となりやすく、これに伴って圧力導入孔21もシール部30側からダイアフラム部40側へ延びる距離の長い孔となる。
圧力導入孔21は、単一部品10においてシール部30となる側から鍛造による孔開け加工を行うことで形成されるが、距離の長い圧力導入孔21を形成することは、一回の鍛造による孔開け加工では難しく、複数回の鍛造による孔開け加工が必要となる。
その点を考慮して、本実施形態では、圧力導入孔21を、ハウジング部20の他端20b側から一端20a側へ拡径する段付き内孔としている。そのため、圧力導入孔21の距離が長いものであっても、複数回の鍛造による穴開け加工により、適切に圧力導入孔21を形成することが可能となっている。
本実施形態の製造方法では、上記図4~図7に示されるように、圧力導入孔21の構成に適した鍛造工程を採用し、押し型101~103の径を変えて複数回の鍛造による孔開け加工を行う。そのため、圧力導入孔21の距離が長いものであっても、適切に圧力導入孔21を形成している。
このように、本実施形態によれば、ハウジング部20、シール部30およびダイアフラム部40が一体となった単一部品10として、機械的強度の高い特殊な材料を用いることなく、シール性およびダイアフラム部40の信頼性を確保することができる。
(他の実施形態)
なお、上記実施形態では、圧力導入孔21を、単一部品10におけるハウジング部20の一端20a側から他端20b側へのびるストレートな孔とすることで、上記した鍛造による孔開け加工が容易に行えるものとした。しかし、圧力導入孔21としては、鍛造による孔開け加工で形成できるならば、多少カーブしている孔であってもよい。
なお、上記実施形態では、圧力導入孔21を、単一部品10におけるハウジング部20の一端20a側から他端20b側へのびるストレートな孔とすることで、上記した鍛造による孔開け加工が容易に行えるものとした。しかし、圧力導入孔21としては、鍛造による孔開け加工で形成できるならば、多少カーブしている孔であってもよい。
また、圧力導入孔21としては、径がハウジング部20の他端20b側から一端20a側へ段差を有して拡径する段付き内孔の構造とされていればよく、段差の数は、上記図1、図2のような2段に限定するものではない。当該段差としては、1段のみであってもよいし、さらには、3段、4段以上であってもよい。
また、上記実施形態では、ハウジング部20は、取付部としてネジ部22を有するものであり、測定対象物K1に対してネジ結合されるものであったが、ハウジング部20における取付部としては、たとえば圧入される部分としてもよい。
また、圧力センサとしては、単一部品10およびセンサチップ60を備えるものであればよく、圧力センサと外部との信号のやり取りを行う機能を持つものとしては、上記したコネクタケース50や接続部材80に限定するものではない。
また、上記した圧力センサS1は、自動車用の各種の測定圧力を検出するものに限定されるものではなく、測定対象物K1としては自動車以外のものであってもよい。
本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更して実施可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能であり、また、上記各実施形態は、上記の図示例に限定されるものではない。
Claims (8)
- 測定対象物(K1)に取り付けられ、一端(20a)側に前記測定対象物からの測定圧力を導入する開口部(21a)を有し、前記開口部から他端(20b)側へ延びる内孔としての圧力導入孔(21)を有するハウジング部(20)と、
前記ハウジング部の前記一端側に設けられ、前記測定対象物に押し付けられてシールされるシール部(30)と、
前記ハウジング部の前記他端側に設けられ、前記圧力導入孔からの前記測定圧力を受圧して歪むダイアフラム部(40)と、
前記ダイアフラム部に設けられ、前記ダイアフラム部の歪みを電気信号に変換するセンサチップ(60)と、を備える圧力センサであって、
前記ハウジング部、前記シール部、および、前記ダイアフラム部は、金属よりなる中空筒状の単一部品(10)として構成され、
前記単一部品は、鍛造処理により部分的に硬さが異なるように形成されたものであって、前記単一部品のうち前記ダイアフラム部が最も硬化された部位であり、
前記単一部品において、前記圧力導入孔の径が前記ハウジング部の前記他端側から前記一端側へ段差を有して拡径するように、前記圧力導入孔の内壁は段付きの構造とされている圧力センサ。 - 前記単一部品において、前記ダイアフラム部のうちの前記圧力導入孔側の面は、当該面の中央側が平坦面とされ、当該面の周辺部と前記圧力導入孔の内壁とがなすコーナー部(60a)がR形状とされたものとなっている請求項1に記載の圧力センサ。
- 前記圧力導入孔は、前記ハウジング部の一端側から他端側へのびるストレートな孔である請求項1または2に記載の圧力センサ。
- 前記単一部品は鉄系金属よりなる請求項1ないし3のいずれか1つに記載の圧力センサ。
- 測定対象物(K1)に取り付けられる部材であって、当該部材の一端(20a)側に前記測定対象物からの測定圧力を導入する開口部(21a)を有し当該部材の他端(20b)側へ延びる内孔としての圧力導入孔(21)を有するハウジング部(20)と、
前記ハウジング部の一端側に設けられ、前記測定対象物に押し付けられてシールされるシール部(30)と、
前記ハウジング部の他端側に設けられ、前記圧力導入孔からの前記測定圧力を受圧して歪むダイアフラム部(40)と、
前記ダイアフラム部に設けられ、前記ダイアフラム部の歪みを電気信号に変換するためのセンサチップ(60)と、を備え、
前記ハウジング部、前記シール部、および、前記ダイアフラム部は、金属よりなる中空筒状の単一部品(10)として構成されている圧力センサを製造する製造方法であって、
前記単一部品を鍛造処理により形成する鍛造工程を備え、
前記鍛造工程では、前記単一部品を部分的に硬さが異なるように鍛造処理することで、前記単一部品のうち前記ダイアフラム部が最も硬化された部位となるようにするものであり、
さらに、前記鍛造工程では、前記単一部品に対し、前記シール部となる前記ハウジング部の一端側から前記ダイアフラム部となる前記ハウジング部の他端側に向かって、鍛造に用いる押し型(101~103)の径を変えて複数回の鍛造による孔開け加工を行うことにより、
前記単一部品において、径が前記ハウジング部の他端側から一端側へ段差を有して拡径するように内壁が段付きの構造とされた前記圧力導入孔を形成する圧力センサの製造方法。 - 前記鍛造工程では、前記単一部品において、前記ダイアフラム部のうちの前記圧力導入孔側の面が、中央側を平坦面とし、周辺部と前記圧力導入孔の内壁とがなすコーナー部(60a)をR形状としたものとなるように、鍛造処理を行う請求項5に記載の圧力センサの製造方法。
- 前記鍛造処理では、前記圧力導入孔が前記ハウジング部の一端側から他端側へのびるストレートな孔となるように、前記孔開け加工を行う請求項5または6に記載の圧力センサの製造方法。
- 前記単一部品を鉄系金属より構成する請求項5ないし7のいずれか1つに記載の圧力センサの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015155132A JP2017032489A (ja) | 2015-08-05 | 2015-08-05 | 圧力センサ、圧力センサの製造方法 |
JP2015-155132 | 2015-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017022359A1 true WO2017022359A1 (ja) | 2017-02-09 |
Family
ID=57942782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/068756 WO2017022359A1 (ja) | 2015-08-05 | 2016-06-24 | 圧力センサ及び圧力センサの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017032489A (ja) |
WO (1) | WO2017022359A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6698044B2 (ja) * | 2017-03-17 | 2020-05-27 | 株式会社鷺宮製作所 | 圧力センサ |
EP3961175A4 (en) | 2019-04-26 | 2022-06-22 | Nagano Keiki Co., Ltd. | PRESSURE SENSOR |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3502807B2 (ja) * | 2000-04-14 | 2004-03-02 | 長野計器株式会社 | 圧力センサ |
JP5186725B2 (ja) * | 2006-03-15 | 2013-04-24 | 株式会社デンソー | 圧力センサ |
-
2015
- 2015-08-05 JP JP2015155132A patent/JP2017032489A/ja active Pending
-
2016
- 2016-06-24 WO PCT/JP2016/068756 patent/WO2017022359A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3502807B2 (ja) * | 2000-04-14 | 2004-03-02 | 長野計器株式会社 | 圧力センサ |
JP5186725B2 (ja) * | 2006-03-15 | 2013-04-24 | 株式会社デンソー | 圧力センサ |
Also Published As
Publication number | Publication date |
---|---|
JP2017032489A (ja) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7628078B2 (en) | Combustion pressure sensor | |
JP4742593B2 (ja) | 圧力検出装置の製造方法 | |
US7152483B2 (en) | High pressure sensor comprising silicon membrane and solder layer | |
US20050193826A1 (en) | Pressure sensor | |
US20080148860A1 (en) | Pressure sensor with sensing element disposed on stem | |
JP2005147795A (ja) | 物理量センサおよび圧力センサ | |
JP2006250614A (ja) | 圧力検出装置 | |
JP2009085723A (ja) | 圧力検出装置およびその製造方法 | |
JP6587972B2 (ja) | 圧力測定装置および当該装置の製造方法 | |
WO2017022359A1 (ja) | 圧力センサ及び圧力センサの製造方法 | |
JP4534894B2 (ja) | 圧力検出装置 | |
JP6480375B2 (ja) | 圧力センサ | |
US10845264B2 (en) | Pressure sensor and manufacturing method therefor | |
JP4281221B2 (ja) | 圧力センサ | |
JP4876895B2 (ja) | 圧力センサ | |
JP6554979B2 (ja) | 圧力センサ | |
JP2010032239A (ja) | 圧力センサ | |
JP2008008829A (ja) | 圧力センサ | |
JP2019502121A (ja) | 圧力センサおよびその製造方法 | |
JP2018151192A (ja) | 圧力センサおよびその製造方法 | |
JP2008185334A (ja) | 圧力センサ | |
JP6047026B2 (ja) | ホース用継手及びホース用継手の製造方法 | |
JP2005172761A (ja) | 圧力センサ | |
JP2002013994A (ja) | 圧力センサ | |
JP4525297B2 (ja) | 圧力検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16832638 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16832638 Country of ref document: EP Kind code of ref document: A1 |