WO2017018529A1 - 太陽電池、及び、有機半導体用材料 - Google Patents

太陽電池、及び、有機半導体用材料 Download PDF

Info

Publication number
WO2017018529A1
WO2017018529A1 PCT/JP2016/072410 JP2016072410W WO2017018529A1 WO 2017018529 A1 WO2017018529 A1 WO 2017018529A1 JP 2016072410 W JP2016072410 W JP 2016072410W WO 2017018529 A1 WO2017018529 A1 WO 2017018529A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
solar cell
group
compound
represented
Prior art date
Application number
PCT/JP2016/072410
Other languages
English (en)
French (fr)
Inventor
明伸 早川
麻由美 湯川
智仁 宇野
元彦 浅野
雄一郎 福本
哲也 榑林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP16830632.2A priority Critical patent/EP3331040B1/en
Priority to US15/736,134 priority patent/US20180175222A1/en
Priority to CN201680038384.3A priority patent/CN107710437B/zh
Priority to BR112017028382-4A priority patent/BR112017028382B1/pt
Priority to AU2016300994A priority patent/AU2016300994A1/en
Priority to JP2017525637A priority patent/JP6286106B2/ja
Publication of WO2017018529A1 publication Critical patent/WO2017018529A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a solar cell with high photoelectric conversion efficiency and excellent high-temperature durability, and an organic semiconductor material.
  • a solar cell having a photoelectric conversion element including a stacked body (photoelectric conversion layer) in which an N-type semiconductor layer and a P-type semiconductor layer are arranged between opposing electrodes has been developed.
  • photocarriers electron-hole pairs
  • an electric field is generated when electrons move through an N-type semiconductor and holes move through a P-type semiconductor.
  • inorganic solar cells manufactured using an inorganic semiconductor such as silicon.
  • inorganic solar cells are expensive to manufacture and difficult to increase in size, and the range of use is limited. Therefore, organic solar cells manufactured using organic semiconductors instead of inorganic semiconductors (for example, patent documents) 1, 2) and organic-inorganic solar cells are attracting attention.
  • a hole transport layer is often provided between a photoelectric conversion layer containing an N-type semiconductor and a P-type semiconductor and an anode.
  • the hole transport layer plays a role of improving the photoelectric conversion efficiency of the solar cell by efficiently moving electrons and holes generated by photoexcitation without re-joining.
  • PEDOT polyethylenedioxythiophene: polystyrene sulfonic acid
  • Patent Document 3 polyethylenedioxythiophene: polystyrene sulfonic acid
  • PEDOT PSS
  • PSS is water-soluble, there is a problem that the film forming property is poor.
  • PEDOT: PSS was unsatisfactory in terms of photoelectric conversion efficiency.
  • PEDOT: PSS is strongly acidic, it has been a cause of deterioration of solar cells.
  • 2,2 ′, 7,7′-tetrakis- (N, N-di-methoxyphenylamine) -9,9′-spirobifluorene (Spiro-OMeTAD) and tritium are used as materials for the hole transport layer.
  • Use in combination with a fluorosulfonylimide lithium salt (Li-TFSI) has been studied. If a hole transport layer containing Spiro-OMeTAD and Li-TFSI is used, higher photoelectric conversion efficiency can be achieved. However, when a hole transport layer containing Spiro-OMeTAD and Li-TFSI is used, there is a problem that the solar cell is inferior in high-temperature durability.
  • An object of this invention is to provide the solar cell and organic-semiconductor material which were high in photoelectric conversion efficiency and excellent in high temperature durability in view of the said present condition.
  • the present invention includes an electrode, a counter electrode, a photoelectric conversion layer disposed between the electrode and the counter electrode, and a hole transport layer disposed between the photoelectric conversion layer and the counter electrode.
  • the hole transport layer contains an ionic compound including an organic semiconductor cation and a fluorine-containing compound anion, and the metal concentration in the hole transport layer is 1000 ppm or less.
  • the present inventors examined the cause of the poor high-temperature durability of solar cells when using a hole transport layer containing Spiro-OMeTAD and Li-TFSI. As a result, it was found that the metal (lithium (Li)) deposited when Spiro-OMeTAD and Li-TFSI are used in combination reduces the high-temperature durability. However, a sufficient photoelectric conversion efficiency cannot be obtained without simply adding Li-TFSI. As a result of intensive studies, the present inventors have found that photoelectric conversion efficiency can be improved while maintaining high-temperature durability by using an ionic compound containing a Spiro-OMeTAD cation and a TFSI anion.
  • the present inventors have affected the photoelectric conversion efficiency, and the metal concentration in the hole transport layer It has also been found that higher photoelectric conversion efficiency can be achieved by setting the concentration to 1000 ppm or less.
  • the present inventors have also found that high-temperature durability is improved even when another organic semiconductor is used instead of a spiro compound such as Spiro-OMeTAD.
  • the present inventors have also found that when another organic semiconductor and Li-TFSI are used in combination, the metal (lithium (Li)) is deposited, and the deposited metal (lithium (Li)) is sufficiently used as a dopant.
  • the photoelectric conversion efficiency decreases as a result of the inability to increase the carrier density.
  • the present inventors have used an ionic compound containing an organic semiconductor cation and a TFSI anion, and the metal concentration in the hole transport layer is 1000 ppm or less, while maintaining high temperature durability. The present inventors have found that photoelectric conversion efficiency can be improved and completed the present invention.
  • the solar cell of the present invention comprises an electrode, a counter electrode, a photoelectric conversion layer disposed between the electrode and the counter electrode, and a hole transport layer disposed between the photoelectric conversion layer and the counter electrode.
  • a layer means not only a layer having a clear boundary but also a layer having a concentration gradient in which contained elements gradually change.
  • the elemental analysis of the layer can be performed, for example, by performing FE-TEM / EDS line analysis measurement of the cross section of the solar cell and confirming the element distribution of the specific element.
  • a layer means not only a flat thin film-like layer but also a layer that can form a complicated and complicated structure together with other layers.
  • the hole transport layer contains an ionic compound containing an organic semiconductor cation and a fluorine-containing compound anion (hereinafter, also simply referred to as “ionic compound”).
  • ionic compound a fluorine-containing compound anion
  • the organic semiconductor cation is not particularly limited, but is represented by a spiro compound cation represented by the following general formula (1), a polytriphenylamine compound cation represented by the following general formula (3), or the following general formula (4).
  • a thiophene compound cation containing the structure is preferred.
  • An organic semiconductor material comprising an ionic compound containing a contained compound anion is also one aspect of the present invention.
  • At least one X represents a group represented by the following general formula (2).
  • R 1 represents hydrogen, an alkyl group, an aryl group which may have a substituent, a carboxyl group, a carbonyl group, an alkoxy group, an ester group or an amino group, and one R 1 And the other R 1 may combine to have a cyclic structure.
  • R 2 , R 3 and R 4 represent hydrogen, an alkyl group, an aryl group which may have a substituent, a carboxyl group, a carbonyl group, an alkoxy group, an ester group or an amino group, , R 2 , R 3 , or R 4 may be bonded to each other to have a cyclic structure.
  • n represents an integer. n is preferably an integer of 10 or more.
  • R 5 and R 6 represent hydrogen, an alkyl group, or an aryl group, a carboxyl group, a carbonyl group, an alkoxy group, an ester group, or an amino group, which may have a substituent, and R 5 And R 6 may combine to have a cyclic structure.
  • n represents an integer.
  • At least one X is a group represented by the general formula (2), and the cations of the group are represented by the general formula (1).
  • the spiro compound cation can be ionically bonded to the fluorine-containing compound anion to form the ionic compound.
  • X other than the group represented by the general formula (2) is not particularly limited, but is a group represented by the following general formula (2 ′) or hydrogen. Preferably there is.
  • R 1 represents hydrogen, an alkyl group, an aryl group which may have a substituent, a carboxyl group, a carbonyl group, an alkoxy group, an ester group or an amino group, and one R 1 and the other R 1 may be bonded to each other to have a cyclic structure.
  • the polytriphenylamine compound cation represented by the general formula (3) is not particularly limited as long as it is represented by the general formula (3), and is a polytriphenylamine compound generally used as a solar cell material. Cations can be used. Note that it is not necessary that all of the structural unit represented by the general formula (3) is a cation, and a part of the structural unit represented by the general formula (3) is a cation, and the polytriphenylamine compound as a whole. Any cation may be used.
  • the thiophene compound cation including the structure represented by the general formula (4) may be a low molecular compound or a high molecular compound as long as it includes the structure represented by the general formula (4). May be.
  • a polymer compound it is not necessary that all of the structural unit represented by the general formula (4) is a cation, and a part of the structural unit represented by the general formula (4) is a cation, and the entire thiophene compound As long as it is a cation.
  • the thiophene compound cation containing the structure represented by the general formula (4) is not particularly limited as long as it contains the structure represented by the general formula (4), and thiophene generally used as a material for solar cells. The cation of the compound can be used.
  • the fluorine-containing compound anion is not particularly limited as long as it can form a stable ionic compound with the organic semiconductor cation.
  • an anion represented by the following general formula (5-1), an anion represented by the following general formula (5-2), an anion represented by the following general formula (5-3), An anion represented by 4), an anion represented by the following formula (5-5), or an anion represented by the following formula (5-6) is preferable.
  • R 7 to R 9 each represents an alkyl group partially or entirely substituted with fluorine, and in the general formula (5-1), one of R 7 and the other R 7 may be bonded to each other to have a cyclic structure.
  • the minimum with preferable content of the said ionic compound in the said hole transport layer is 1 weight%.
  • the content of the ionic compound is 1% by weight or more, higher high temperature durability and higher photoelectric conversion efficiency can both be achieved.
  • the more preferable lower limit of the content of the ionic compound in the hole transport layer is 5% by weight, and the more preferable lower limit is 10% by weight.
  • the upper limit of the content of the ionic compound in the hole transport layer is not particularly limited, but since a uniform film can be formed, the preferable upper limit is 100% by weight, the more preferable upper limit is 50% by weight, and the more preferable upper limit is Is 30% by weight.
  • the hole transport layer contains an ionic compound including a spiro compound cation represented by the general formula (1) and a fluorine-containing compound anion
  • the hole transport layer is further represented by the following general formula (1 ′). It is preferable to contain the spiro compound represented. By containing the spiro compound represented by the following general formula (1 '), higher photoelectric conversion efficiency can be obtained.
  • At least one X represents a group represented by the following general formula (2 ′).
  • X other than the group represented by the following general formula (2 ′) is not particularly limited, but is preferably hydrogen.
  • R 1 represents hydrogen, an alkyl group, an aryl group which may have a substituent, a carboxyl group, a carbonyl group, an alkoxy group, an ester group or an amino group, and one R 1 and the other R 1 may be bonded to each other to have a cyclic structure.
  • the metal concentration in the hole transport layer is 1000 ppm or less.
  • the solar cell of this invention can exhibit high photoelectric conversion efficiency.
  • the reason for this is not clear, but if there is a metal in the hole transport layer, the metal becomes a dopant and the carrier density cannot be sufficiently increased, resulting in a decrease in photoelectric conversion efficiency. It is considered that such an action can be suppressed by setting the value below a certain value.
  • a preferable upper limit of the metal concentration in the hole transport layer is 100 ppm, and a more preferable upper limit is 10 ppm.
  • the metal concentration can be measured by, for example, ICP-MS manufactured by Shimadzu Corporation.
  • the metal in the hole transport layer mainly originates from a fluorine-containing compound anion / metal cation salt which is a raw material for obtaining an ionic compound containing the organic semiconductor cation and the fluorine-containing compound anion. That is, when the fluorine-containing compound anion / metal cation salt used as a raw material is, for example, a silver salt, the silver concentration in the hole transport layer becomes a problem.
  • the method of setting the metal concentration in the hole transport layer to 1000 ppm or less is not particularly limited, after the organic semiconductor as a raw material and the fluorine-containing compound anion / metal cation salt are reacted in advance to generate the ionic compound, A method of recovering and removing the liberated metal is preferred.
  • the fluorine-containing compound anion / metal cation salt as a raw material is preferably a silver salt.
  • the ionic compound is obtained by mixing and reacting a fluorine-containing compound anion / silver salt with a dichloromethane solution of an organic semiconductor.
  • a hole transport layer having a metal concentration of 1000 ppm or less can be formed by preparing a solution in which the obtained ionic compound is dissolved in an organic solvent and applying the solution by a coating method such as spin coating. .
  • the preferable lower limit of the thickness of the hole transport layer is 1 nm, and the preferable upper limit is 2000 nm. If the thickness of the hole transport layer is 1 nm or more, electrons can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of hole transport, and a photoelectric conversion efficiency will become high.
  • the more preferable lower limit of the thickness of the hole transport layer is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
  • the photoelectric conversion layer is not particularly limited, the general formula R-M-X 3 (where, R represents an organic molecule, M is a metal atom, X is a halogen atom or a chalcogen atom.)
  • the organic-inorganic perovskite compound represented by It is preferable to contain.
  • the solar cell in which the photoelectric conversion layer includes the organic / inorganic perovskite compound is also referred to as an organic / inorganic hybrid solar cell. By using the organic-inorganic perovskite compound for the photoelectric conversion layer, the photoelectric conversion efficiency of the solar cell can be improved.
  • the organic / inorganic perovskite compound has low moisture resistance
  • the organic / inorganic perovskite compound when used in the photoelectric conversion layer, it will be described later on the counter electrode in order to improve the durability of the solar cell. It is more effective to dispose the sealing resin layer and the inorganic layer.
  • the R is an organic molecule, and is preferably represented by C 1 N m H n (l, m, and n are all positive integers). Specifically, R is, for example, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, triethylamine, tripropyl.
  • ions e.g. Chill ammonium (CH 3 NH 3), etc.
  • methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, formamidine, acetamidine and their ions and phenethylammonium are preferred, and methylamine, ethylamine, propylamine and these ions are more preferred.
  • M is a metal atom, for example, lead, tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, Europium etc. are mentioned. These metal atoms may be used independently and 2 or more types may be used together.
  • X is a halogen atom or a chalcogen atom, and examples thereof include chlorine, bromine, iodine, sulfur, and selenium. These halogen atoms or chalcogen atoms may be used alone or in combination of two or more. Among these, the halogen atom is preferable because the organic / inorganic perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method by containing halogen in the structure. Furthermore, iodine is more preferable because the energy band gap of the organic-inorganic perovskite compound becomes narrow.
  • the organic / inorganic perovskite compound preferably has a cubic structure in which a metal atom M is disposed at the body center, an organic molecule R is disposed at each vertex, and a halogen atom or a chalcogen atom X is disposed at the face center.
  • FIG. 1 shows an example of a crystal structure of an organic / inorganic perovskite compound having a cubic structure in which a metal atom M is arranged at the body center, an organic molecule R is arranged at each vertex, and a halogen atom or a chalcogen atom X is arranged at the face center. It is a schematic diagram.
  • the organic / inorganic perovskite compound is preferably a crystalline semiconductor.
  • the crystalline semiconductor means a semiconductor capable of measuring the X-ray scattering intensity distribution and detecting a scattering peak.
  • the organic / inorganic perovskite compound is a crystalline semiconductor, the mobility of electrons in the organic / inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved.
  • the degree of crystallization can be evaluated as an index of crystallization.
  • the degree of crystallinity is determined by separating the crystalline-derived scattering peak detected by the X-ray scattering intensity distribution measurement and the halo derived from the amorphous part by fitting, obtaining the respective intensity integrals, Can be obtained by calculating the ratio.
  • a preferable lower limit of the crystallinity of the organic-inorganic perovskite compound is 30%. When the crystallinity is 30% or more, the mobility of electrons in the organic / inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved.
  • a more preferred lower limit of the crystallinity is 50%, and a more preferred lower limit is 70%. Examples of the method for increasing the crystallinity of the organic / inorganic perovskite compound include thermal annealing, irradiation with intense light such as laser, and plasma irradiation.
  • the photoelectric conversion layer contains the organic / inorganic perovskite compound
  • the photoelectric conversion layer further includes an organic semiconductor or an inorganic semiconductor in addition to the organic / inorganic perovskite compound as long as the effect of the present invention is not impaired. May be included.
  • the organic semiconductor or inorganic semiconductor here may serve as an electron transport layer or a hole transport layer.
  • the organic semiconductor include compounds having a thiophene skeleton such as poly (3-alkylthiophene).
  • conductive polymers having a polyparaphenylene vinylene skeleton, a polyvinyl carbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton, and the like can be given.
  • compounds having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, or a benzoporphyrin skeleton, a spirobifluorene skeleton, etc.
  • carbon-containing materials such as carbon nanotubes, graphene, and fullerene that may be surface-modified Also mentioned.
  • the inorganic semiconductor examples include titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI, MoO 3 , V 2 O 5 , WO 3 , MoS 2, MoSe 2, Cu 2 S , and the like.
  • the photoelectric conversion layer includes the organic-inorganic perovskite compound and the organic semiconductor or the inorganic semiconductor
  • the photoelectric conversion layer is a laminated body in which a thin-film organic semiconductor or an inorganic semiconductor portion and a thin-film organic-inorganic perovskite compound portion are stacked.
  • a composite film in which an organic semiconductor or inorganic semiconductor part and an organic / inorganic perovskite compound part are combined may be used.
  • a laminated body is preferable in that the production method is simple, and a composite film is preferable in that the charge separation efficiency in the organic semiconductor or the inorganic semiconductor can be improved.
  • the preferable lower limit of the thickness of the thin-film organic / inorganic perovskite compound site is 5 nm, and the preferable upper limit is 5000 nm. If the thickness is 5 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 5000 nm or less, since it can suppress that the area
  • the more preferable lower limit of the thickness is 10 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 20 nm, and the still more preferable upper limit is 500 nm.
  • a preferable lower limit of the thickness of the composite film is 30 nm, and a preferable upper limit is 3000 nm. If the thickness is 30 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 3000 nm or less, since it becomes easy to reach
  • the more preferable lower limit of the thickness is 40 nm, the more preferable upper limit is 2000 nm, the still more preferable lower limit is 50 nm, and the still more preferable upper limit is 1000 nm.
  • the method for forming the photoelectric conversion layer is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, a gas phase reaction method (CVD), an electrochemical deposition method, and a printing method.
  • the solar cell which can exhibit high photoelectric conversion efficiency can be simply formed in a large area by employ
  • the printing method include a spin coating method and a casting method, and examples of a method using the printing method include a roll-to-roll method.
  • the solar cell of the present invention may further have an electron transport layer on the opposite side of the hole transport layer with the photoelectric conversion layer interposed therebetween.
  • the material of the electron transport layer is not particularly limited.
  • N-type conductive polymer, N-type low molecular organic semiconductor, N-type metal oxide, N-type metal sulfide, alkali metal halide, alkali metal, surface activity Specific examples include, for example, cyano group-containing polyphenylene vinylene, boron-containing polymer, bathocuproine, bathophenanthrene, hydroxyquinolinato aluminum, oxadiazole compound, benzimidazole compound, naphthalene tetracarboxylic acid compound, perylene derivative, Examples include phosphine oxide compounds, phosphine sulfide compounds, fluoro group-containing phthalocyanines, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulf
  • the electron transport layer may consist of only a thin film electron transport layer, but preferably includes a porous electron transport layer.
  • the photoelectric conversion layer is a composite film in which an organic semiconductor or an inorganic semiconductor part and an organic / inorganic perovskite compound part are combined, a more complex composite film (a more complicated and complicated structure) is obtained.
  • the composite film is formed on the porous electron transport layer.
  • the preferable lower limit of the thickness of the electron transport layer is 1 nm, and the preferable upper limit is 2000 nm. If the thickness is 1 nm or more, holes can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of electron transport, and photoelectric conversion efficiency will become high.
  • the more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
  • the material of the said electrode and the said counter electrode is not specifically limited, A conventionally well-known material can be used.
  • the counter electrode is often a patterned electrode.
  • the material for the electrode and the counter electrode include FTO (fluorine-doped tin oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / lithium Al 2 O 3 mixture, Al / LiF mixture, a metal such as gold, CuI, ITO (indium tin oxide), SnO 2, AZO (aluminum zinc oxide), IZO (indium zinc oxide), GZO (gallium zinc oxide Conductive transparent materials, conductive transparent polymers, and the like. These materials may be used alone or in combination of two or more. Further, the electrode and the counter electrode may be a cathode or an anode, respectively.
  • the solar cell of the present invention preferably has a sealing resin layer that covers the counter electrode.
  • the sealing resin layer includes the electrode, the counter electrode, a photoelectric conversion layer disposed between the electrode and the counter electrode, and a hole disposed between the photoelectric conversion layer and the counter electrode. It is preferable to seal a laminate having at least a transport layer.
  • the sealing resin layer has a role of suppressing the permeation of moisture into the interior and improving the durability of the solar cell. It is preferable that the sealing resin layer covers the entire laminated body so as to close an end portion thereof. This can reliably prevent moisture from penetrating into the interior.
  • the sealing resin layer is preferably made of a resin having a solubility parameter (SP value) of 10 or less.
  • SP value solubility parameter
  • the SP value is called a solubility parameter, and is an index that can express the ease of dissolution.
  • the SP value is calculated by using the method proposed by Fedors (R. F. Fedors, Polym. Eng. Sci., 14 (2), 147-154 (1974)). From the evaporation energy ( ⁇ ecoh) (cal / mol) and the molar volume ( ⁇ v) (cm 3 / mol) for each atomic group, it can be calculated according to the following formula (1). In formula (1), ⁇ represents an SP value (cal / mol) 1/2 .
  • the SP value of the copolymer can be calculated by the following formula (2) by calculating the SP value of each repeating unit alone in the copolymer and using the volume fraction thereof.
  • ⁇ cop represents the SP value of the copolymer
  • ⁇ 1 and ⁇ 2 represent the volume fraction of repeating units 1 and 2
  • ⁇ 1 and ⁇ 2 represent the SP values of repeating units 1 and 2 alone. Represents.
  • the resin having the solubility parameter (SP value) of 10 or less is not particularly limited.
  • silicone resin SP value of about 7.5
  • polyolefin resin SP value of about 8
  • butyl rubber SP value of about 8
  • Teflon (Registered trademark) resin
  • SP value of about 7.5 polyisobutylene
  • acrylic resin SP value of about 9.5
  • silicone resin, polyolefin resin, butyl rubber, and polyisobutylene are preferable because the SP value is in a suitable position.
  • the epoxy resin generally used as a sealing resin for solar cells has a solubility parameter (SP value) of about 10.5 and does not satisfy the solubility parameter (SP value) in the above range.
  • SP value solubility parameter
  • a method of adjusting the SP value to a suitable range a method of mixing two kinds of materials having different SP values within a suitable range, a method of selecting a monomer having an appropriate skeleton as a monomer for polymerization, and a suitable method Examples thereof include a method of subjecting a reactive compound having a skeleton to an addition reaction.
  • the resin having a solubility parameter (SP value) of 10 or less preferably contains a resin having an alicyclic skeleton.
  • the resin having the solubility parameter (SP value) of 10 or less may be a mixture of the resin having the alicyclic skeleton and the resin not having the alicyclic skeleton.
  • the alicyclic skeleton is not particularly limited, and examples thereof include skeletons such as norbornene, isobornene, adamantane, cyclohexane, dicyclopentadiene, dicyclohexane, and cyclopentane. These skeletons may be used alone or in combination of two or more.
  • the resin having an alicyclic skeleton is not particularly limited as long as it has an alicyclic skeleton, and may be a thermoplastic resin, a thermosetting resin, or a photocurable resin. It may be. These resins having an alicyclic skeleton may be used alone or in combination of two or more. Further, the resin having the alicyclic skeleton may be a resin obtained by forming a resin having a reactive functional group and then crosslinking the reactive functional group. Examples of the resin having an alicyclic skeleton include a polymer of norbornene resin (TOPAS 9014, manufactured by Polyplastics), adamantane acrylate (manufactured by Mitsubishi Gas Chemical Company), and the like.
  • TOPAS 9014 manufactured by Polyplastics
  • adamantane acrylate manufactured by Mitsubishi Gas Chemical Company
  • the preferable lower limit of the thickness of the sealing resin layer is 100 nm, and the preferable upper limit is 100,000 nm.
  • a more preferable lower limit of the thickness is 500 nm, a more preferable upper limit is 50000 nm, a still more preferable lower limit is 1000 nm, and a still more preferable upper limit is 20000 nm.
  • the solar cell of the present invention preferably further has an inorganic layer containing a metal oxide, a metal nitride, or a metal oxynitride on the sealing resin layer.
  • the metal oxide, metal nitride or metal oxynitride is not particularly limited as long as it has a water vapor barrier property.
  • oxides, nitrides or oxynitrides of Si, Al, Zn or Sn are preferable, oxides, nitrides or oxynitrides of Zn or Sn are more preferable. Since flexibility can be imparted, an oxide, nitride, or oxynitride of a metal element containing both Zn and Sn metal elements is more preferable.
  • the metal oxide, metal nitride, or metal oxynitride is particularly preferably a metal oxide represented by the general formula Zn a Sn b O c .
  • a, b, and c represent positive integers.
  • the metal oxide represented by the general formula Zn a Sn b O c for the inorganic layer, the metal oxide contains tin (Sn) atoms, and thus gives the inorganic layer appropriate flexibility. Even if the thickness of the inorganic layer is increased, the stress is reduced, so that peeling between the inorganic layer and the sealing resin layer can be suppressed.
  • steam barrier property of the said inorganic layer can be improved, and the durability of a solar cell can be improved more.
  • the metal oxide contains zinc (Zn) atoms, the inorganic layer can exhibit particularly high barrier properties.
  • the ratio Xs (wt%) of Sn to the sum of Zn and Sn satisfies 70>Xs> 0.
  • the value Y represented by Y c / (a + 2b) satisfies 1.5>Y> 0.5.
  • the element ratio of zinc (Zn), tin (Sn), and oxygen (O) contained in the metal oxide represented by the general formula Zn a Sn b O c in the inorganic layer is determined by X-ray photoelectron spectroscopy ( It can be measured using an XPS) surface analyzer (for example, ESCALAB-200R manufactured by VG Scientific).
  • the inorganic layer when containing a metal oxide represented by the general formula Zn a Sn b O c, preferably further contains silicon (Si) and / or aluminum (Al).
  • silicon (Si) and / or aluminum (Al) By adding silicon (Si) and / or aluminum (Al) to the inorganic layer, the transparency of the inorganic layer can be increased and the photoelectric conversion efficiency of the solar cell can be improved.
  • the preferable lower limit of the thickness of the inorganic layer is 30 nm, and the preferable upper limit is 3000 nm.
  • the inorganic layer can have a sufficient water vapor barrier property, and the durability of the solar cell is improved.
  • the thickness is 3000 nm or less, even if the thickness of the inorganic layer is increased, the generated stress is small, and thus the peeling of the inorganic layer, the electrode, the semiconductor layer, and the like can be suppressed.
  • the more preferable lower limit of the thickness is 50 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 100 nm, and the still more preferable upper limit is 500 nm.
  • the thickness of the inorganic layer can be measured using an optical interference film thickness measuring device (for example, FE-3000 manufactured by Otsuka Electronics Co., Ltd.).
  • the solar cell of the present invention may further cover the sealing resin layer with other materials such as a glass plate, a resin film, a resin film coated with an inorganic material, and a metal foil such as aluminum. Thereby, even if there is a pinhole in the sealing resin layer, water vapor can be sufficiently blocked, and the durability of the solar cell can be further improved. Among these, it is more preferable to dispose a resin film coated with an inorganic material.
  • the solar cell of the present invention may further have a substrate or the like.
  • substrate is not specifically limited, For example, transparent glass substrates, such as soda-lime glass and an alkali free glass, a ceramic substrate, a transparent plastic substrate, etc. are mentioned.
  • the method for producing the solar cell of the present invention is not particularly limited.
  • the electrode, the electron transport layer, the photoelectric conversion layer, the hole transport layer, and the counter electrode are laminated in this order on the substrate to produce a laminate.
  • the method of sealing the said laminated body with the said sealing resin layer, etc. are mentioned.
  • the method for sealing the laminate with the sealing resin layer is not particularly limited. For example, a method for sealing the laminate using a sheet-like sealing resin, or a sealing method in which the sealing resin is dissolved in an organic solvent.
  • the present invention it is possible to provide a solar cell and an organic semiconductor material having high photoelectric conversion efficiency and excellent high-temperature durability.
  • Example 1 Fabrication of laminated body in which electrode / electron transport layer / photoelectric conversion layer / counter electrode are laminated On a glass substrate, an FTO film having a thickness of 1000 nm is formed as an electrode, and pure water, acetone, and methanol are used in this order. Each was subjected to ultrasonic cleaning for 10 minutes and then dried. A titanium isopropoxide ethanol solution adjusted to 2% was applied on the surface of the FTO film by a spin coating method, followed by baking at 400 ° C. for 10 minutes to form a thin-film electron transport layer having a thickness of 20 nm.
  • a titanium oxide paste containing polyisobutyl methacrylate as an organic binder and titanium oxide (a mixture of an average particle size of 10 nm and 30 nm) is applied onto the thin film electron transport layer by a spin coat method, and then heated to 500 ° C. Was fired for 10 minutes to form a porous electron transport layer having a thickness of 500 nm.
  • lead iodide-dimethyl sulfoxide complex is prepared by previously reacting lead iodide with dimethyl sulfoxide (DMSO), and the lead iodide-dimethyl sulfoxide complex is added at a concentration of 40% by weight with N, N-dimethylformamide (A coating solution was obtained by dissolving in DMF). The obtained coating solution is laminated on the electron transport layer to a thickness of 500 nm by a spin coating method, and an 8% isopropanol solution of methylammonium iodide is applied by the spin coating method to react therewith. A photoelectric conversion layer containing an inorganic perovskite compound was formed.
  • an Au film having a thickness of 100 nm was formed as a counter electrode by vacuum vapor deposition to obtain a laminate in which the electrode / electron transport layer / photoelectric conversion layer / hole transport layer / counter electrode were stacked.
  • Examples 2 to 5 Comparative Examples 1 to 3
  • Table 1 a solar cell was obtained in the same manner as in Example 1 except that the hole transport layer and the sealing resin layer were formed.
  • Photoelectric conversion efficiency A power source (manufactured by KEITHLEY, 236 model) is connected between the electrodes of the solar cell, and the photoelectric conversion efficiency is measured by using a solar simulation (manufactured by Yamashita Denso Co., Ltd.) having an intensity of 100 mW / cm 2. The obtained photoelectric conversion efficiency was regarded as the initial conversion efficiency, and evaluated according to the following criteria. ⁇ : Initial photoelectric conversion efficiency value is 10% or more ⁇ : Initial photoelectric conversion efficiency value is less than 10%
  • the value of photoelectric conversion efficiency / initial conversion efficiency after high-temperature durability test is 0.8 or more ⁇ : The value of photoelectric conversion efficiency / initial conversion efficiency after high-temperature durability test is 0.5 or more and less than 0.8 ⁇ : The value of photoelectric conversion efficiency / initial conversion efficiency after high-temperature durability test is less than 0.5
  • Example 6 An FTO film having a thickness of 1000 nm was formed as an electrode on a glass substrate, and ultrasonic cleaning was performed for 10 minutes each using pure water, acetone, and methanol in this order, followed by drying. A titanium isopropoxide ethanol solution adjusted to 2% was applied on the surface of the FTO film by a spin coating method, followed by baking at 400 ° C. for 10 minutes to form a thin-film electron transport layer having a thickness of 20 nm.
  • a titanium oxide paste containing polyisobutyl methacrylate as an organic binder and titanium oxide (a mixture of an average particle size of 10 nm and 30 nm) is applied onto the thin film electron transport layer by a spin coat method, and then heated to 500 ° C. Was fired for 10 minutes to form a porous electron transport layer having a thickness of 500 nm.
  • lead iodide-dimethyl sulfoxide complex is prepared by previously reacting lead iodide with dimethyl sulfoxide (DMSO), and the lead iodide-dimethyl sulfoxide complex is added at a concentration of 40% by weight with N, N-dimethylformamide (A coating solution was obtained by dissolving in DMF). The obtained coating solution is laminated on the electron transport layer to a thickness of 500 nm by a spin coating method, and an 8% isopropanol solution of methylammonium iodide is applied by the spin coating method to react therewith. A photoelectric conversion layer containing an inorganic perovskite compound was formed.
  • an ITO film having a thickness of 100 nm was formed as a counter electrode by vacuum vapor deposition to obtain a solar cell in which the electrode / electron transport layer / photoelectric conversion layer / hole transport layer / counter electrode were laminated.
  • Example 7 In the formation of the hole transport layer, poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA-3Me, manufactured by Aldrich, number average molecular weight 7000) was used instead of PolyTPD. A solar cell was obtained in the same manner as in Example 6.
  • Example 8 In forming the hole transport layer, poly [bis (4-phenyl) (2,4-dimethylphenyl) amine] (PTAA-2Me, manufactured by EM-index, number average molecular weight 22000) was used in place of PolyTPD. A solar cell was obtained in the same manner as in Example 6.
  • Example 9 In the formation of the hole transport layer, an ionic compound containing a thiophene compound cation represented by the following formula (a) and a TFSI anion is obtained using a thiophene compound (P3HT, manufactured by Aldrich, number average molecular weight 50000) instead of PolyTPD.
  • P3HT thiophene compound manufactured by Aldrich, number average molecular weight 50000
  • Example 10 In the formation of the hole transport layer, an ionic compound containing a thiophene compound cation represented by the following formula (b) and a TFSI anion was obtained using a thiophene compound (DR3, manufactured by 1-Material) instead of PolyTPD. A solar cell was obtained in the same manner as in Example 6.
  • Example 11 In the formation of the hole transport layer, an ionic compound containing a thiophene compound cation represented by the following formula (c) and a TFSI anion is obtained using a thiophene compound (P3OT, manufactured by Aldrich, number average molecular weight 50000) instead of PolyTPD.
  • P3OT thiophene compound manufactured by Aldrich, number average molecular weight 50000
  • Example 12 Example 6 except that the thiophene compound cation represented by the following formula (d) and the TFSI anion ionic compound were obtained using a thiophene compound (DH6T, manufactured by Aldrich) instead of PolyTPD in the formation of the hole transport layer. A solar cell was obtained in the same manner.
  • a thiophene compound DH6T, manufactured by Aldrich
  • a hole transport layer is prepared by dissolving Poly-TPD in 10 mg, Li-bis (TFSI) in acetonitrile (170 mg / 1 mL) in 7.5 ⁇ L, t-butylpyridine in 4 ⁇ L in 1 mL of chlorobenzene, and spin-coating this solution.
  • a solar cell was obtained in the same manner as in Example 6 except that was formed.
  • the metal concentration (lithium concentration) in the hole transport layer was measured by ICP-MS and found to be 2500 ppm.
  • Photoelectric conversion efficiency A power source (manufactured by KEITHLEY, 236 model) is connected between the electrodes of the solar cell, and the photoelectric conversion efficiency is measured by using a solar simulation (manufactured by Yamashita Denso Co., Ltd.) having an intensity of 100 mW / cm 2. The obtained photoelectric conversion efficiency was defined as the initial conversion efficiency. The solar cell obtained in Comparative Example 8 was normalized based on the initial conversion efficiency. ⁇ : Normalized photoelectric conversion efficiency value of 0.8 or more ⁇ : Normalized photoelectric conversion efficiency value of 0.7 or more and less than 0.8 ⁇ : Normalized photoelectric conversion efficiency value of less than 0.7
  • the value of photoelectric conversion efficiency / initial conversion efficiency after high-temperature durability test is 0.8 or more ⁇ : The value of photoelectric conversion efficiency / initial conversion efficiency after high-temperature durability test is 0.5 or more and less than 0.8 ⁇ : The value of photoelectric conversion efficiency / initial conversion efficiency after high-temperature durability test is less than 0.5
  • the present invention it is possible to provide a solar cell and an organic semiconductor material having high photoelectric conversion efficiency and excellent high-temperature durability.

Abstract

本発明は、光電変換効率が高く、高温耐久性に優れた太陽電池、及び、有機半導体用材料を提供することを目的とする。本発明は、電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層と、前記光電変換層と前記対向電極との間に配置されたホール輸送層とを有する太陽電池であって、前記ホール輸送層は、有機半導体カチオンとフッ素含有化合物アニオンとを含むイオン化合物を含有し、かつ、前記ホール輸送層中の金属濃度が1000ppm以下である太陽電池である。

Description

太陽電池、及び、有機半導体用材料
本発明は、光電変換効率が高く、高温耐久性に優れた太陽電池、及び、有機半導体用材料に関する。
従来から、対向する電極間にN型半導体層とP型半導体層とを配置した積層体(光電変換層)を備えた光電変換素子を有する太陽電池が開発されている。このような太陽電池では、光励起により光キャリア(電子-ホール対)が生成し、電子がN型半導体を、ホールがP型半導体を移動することで、電界が生じる。
現在、実用化されている太陽電池の多くは、シリコン等の無機半導体を用いて製造される無機太陽電池である。しかしながら、無機太陽電池は製造にコストがかかるうえ大型化が困難であり、利用範囲が限られてしまうことから、無機半導体の代わりに有機半導体を用いて製造される有機太陽電池(例えば、特許文献1、2)や有機無機太陽電池が注目されている。
有機太陽電池や有機無機太陽電池においては、N型半導体及びP型半導体を含有する光電変換層と、陽極との間に、ホール輸送層を設けることが多い。ホール輸送層は、光励起により生じた電子とホールが再接合することなく効率的に移動するようにして、太陽電池の光電変換効率を向上させる役割を発揮する。
現在、ホール輸送層の材料としては、ほとんどの場合、ポリエチレンジオキシチオフェン:ポリスチレンスルホン酸(PEDOT:PSS)が用いられている(例えば、特許文献3)。しかしながら、PEDOT:PSSは水溶性であるため、製膜性が悪いという問題があった。また、PEDOT:PSSでは、光電変換効率の点で不満足であった。更にPEDOT:PSSは強い酸性であるため、太陽電池の劣化の原因にもなっていた。
これに対して、ホール輸送層の材料として2,2’,7,7’-テトラキス-(N,N-ジ-メトキシフェニルアミン)-9,9’-スピロビフルオレン(Spiro-OMeTAD)とトリフルオロスルホニルイミド・リチウム塩(Li-TFSI)とを組み合わせて用いることが検討されている。Spiro-OMeTADとLi-TFSIとを含有するホール輸送層を用いれば、より高い光電変換効率を達成することができる。しかしながら、Spiro-OMeTADとLi-TFSIとを含有するホール輸送層を用いた場合、太陽電池が高温耐久性に劣るという問題があった。
特開2006-344794号公報 特許第4120362号公報 特開2006-237283号公報
本発明は、上記現状に鑑み、光電変換効率が高く、高温耐久性に優れた太陽電池、及び、有機半導体用材料を提供することを目的とする。
本発明は、電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層と、前記光電変換層と前記対向電極との間に配置されたホール輸送層とを有する太陽電池であって、前記ホール輸送層は、有機半導体カチオンとフッ素含有化合物アニオンとを含むイオン化合物を含有し、かつ、前記ホール輸送層中の金属濃度が1000ppm以下である太陽電池である。
以下に本発明を詳述する。
本発明者らは、Spiro-OMeTADとLi-TFSIとを含有するホール輸送層を用いた場合、太陽電池が高温耐久性に劣る原因について検討した。その結果、Spiro-OMeTADとLi-TFSIとを併用したときに析出する金属(リチウム(Li))が高温耐久性を低下させていることを見出した。しかしながら単純にLi-TFSIを加えない場合には、充分な光電変換効率を得ることができない。そこで本発明者らは鋭意検討の結果、Spiro-OMeTADカチオンとTFSIアニオンとを含むイオン化合物を用いることにより、高温耐久性を維持しながら、光電変換効率を向上できることを見出した。
本発明者らは、また、Spiro-OMeTADカチオンとTFSIアニオンとを含むイオン化合物を含有するホール輸送層においては、ホール輸送層中の金属濃度が光電変換効率に影響し、ホール輸送層中の金属濃度を1000ppm以下とすることにより、より高い光電変換効率を達成できることも見出した。
本発明者らは、また、Spiro-OMeTADのようなスピロ化合物に代えて他の有機半導体を用いた場合でも、高温耐久性が向上することを見出した。しかしながら、本発明者らは、他の有機半導体とLi-TFSIとを併用したときにも金属(リチウム(Li))が析出し、析出した金属(リチウム(Li))がドーパントとなって充分にキャリア密度を上昇させることができない結果、光電変換効率が低下してしまうことを見出した。そして本発明者らは更に鋭意検討の結果、有機半導体カチオンとTFSIアニオンとを含むイオン化合物を用い、かつ、ホール輸送層中の金属濃度を1000ppm以下とすることにより、高温耐久性を維持しながら、光電変換効率を向上できることを見出し、本発明を完成した。
本発明の太陽電池は、電極と、対向電極と、該電極と対向電極との間に配置された光電変換層と、該光電変換層と対向電極との間に配置されたホール輸送層とを有する。
なお、本明細書中、層とは、明確な境界を有する層だけではなく、含有元素が徐々に変化する濃度勾配のある層をも意味する。なお、層の元素分析は、例えば、太陽電池の断面のFE-TEM/EDS線分析測定を行い、特定元素の元素分布を確認する等によって行うことができる。また、本明細書中、層とは、平坦な薄膜状の層だけではなく、他の層と一緒になって複雑に入り組んだ構造を形成しうる層をも意味する。
上記ホール輸送層は、有機半導体カチオンとフッ素含有化合物アニオンとを含むイオン化合物(以下、単に「イオン化合物」ともいう。)を含有する。このようなイオン化合物を含有するホール輸送層を用いることにより、本発明の太陽電池は、光電変換効率と高温耐久性とを両立することができる。
上記有機半導体カチオンは特に限定されないが、下記一般式(1)で表されるスピロ化合物カチオン、下記一般式(3)で表されるポリトリフェニルアミン化合物カチオン又は下記一般式(4)で表される構造を含むチオフェン化合物カチオンが好ましい。
下記一般式(1)で表されるスピロ化合物カチオン、下記一般式(3)で表されるポリトリフェニルアミン化合物カチオン又は下記一般式(4)で表される構造を含むチオフェン化合物カチオンと、フッ素含有化合物アニオンとを含むイオン化合物からなる有機半導体用材料もまた、本発明の一つである。
Figure JPOXMLDOC01-appb-C000006
一般式(1)中、少なくとも1つのXは、下記一般式(2)で表される基を表す。
Figure JPOXMLDOC01-appb-C000007
一般式(2)中、Rは、水素、アルキル基、置換基を有してもよいアリール基、カルボキシル基、カルボニル基、アルコキシ基、エステル基若しくはアミノ基を表し、また、一方のRと他方のRとが結合して環状構造を有してもよい。
Figure JPOXMLDOC01-appb-C000008
一般式(3)中、R、R、Rは水素、アルキル基、置換基を有してもよいアリール基、カルボキシル基、カルボニル基、アルコキシ基、エステル基若しくはアミノ基を表し、また、R、R、Rのいずれかが結合して環状構造を有してもよい。nは整数を表す。nは10以上の整数であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
一般式(4)中、R、Rは水素、アルキル基又は置換基を有してもよいアリール基、カルボキシル基、カルボニル基、アルコキシ基、エステル基若しくはアミノ基を表し、また、RとRとが結合して環状構造を有してもよい。nは整数を表す。
上記一般式(1)で表されるスピロ化合物カチオン中、少なくとも1つのXが上記一般式(2)で表される基であり、該基のカチオンにより、上記一般式(1)で表されるスピロ化合物カチオンがフッ素含有化合物アニオンとイオン結合して、上記イオン化合物を生成することができる。
上記一般式(1)で表されるスピロ化合物カチオン中、上記一般式(2)で表される基以外のXは特に限定されないが、下記一般式(2’)で表される基又は水素であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
一般式(2’)中、Rは、水素、アルキル基、置換基を有してもよいアリール基、カルボキシル基、カルボニル基、アルコキシ基、エステル基若しくはアミノ基を表し、また、一方のRと他方のRとが結合して環状構造を有してもよい。
上記一般式(3)で表されるポリトリフェニルアミン化合物カチオンは、上記一般式(3)で表されれば特に限定されず、太陽電池の材料として一般的に用いられるポリトリフェニルアミン化合物のカチオンを用いることができる。なお、上記一般式(3)で表される構成単位のすべてがカチオンである必要はなく、上記一般式(3)で表される構成単位の一部がカチオンでありポリトリフェニルアミン化合物全体としてカチオンであればよい。
上記一般式(4)で表される構造を含むチオフェン化合物カチオンは、上記一般式(4)で表される構造を含んでいれば、低分子化合物であってもよいし、高分子化合物であってもよい。高分子化合物の場合、上記一般式(4)で表される構成単位のすべてがカチオンである必要はなく、上記一般式(4)で表される構成単位の一部がカチオンでありチオフェン化合物全体としてカチオンであればよい。上記一般式(4)で表される構造を含むチオフェン化合物カチオンは、上記一般式(4)で表される構造を含んでいれば特に限定されず、太陽電池の材料として一般的に用いられるチオフェン化合物のカチオンを用いることができる。
上記フッ素含有化合物アニオンは、上記有機半導体カチオンと安定なイオン化合物を形成できるものであれば特に限定されない。なかでも、下記一般式(5-1)で表されるアニオン、下記一般式(5-2)で表されるアニオン、下記一般式(5-3)で表されるアニオン、下記式(5-4)で表されるアニオン、下記式(5-5)で表されるアニオン、又は、下記式(5-6)で表されるアニオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000011
一般式(5-1)~(5-3)中、R~Rは、一部又は全てがフッ素で置換されているアルキル基を表し、一般式(5-1)においては、一方のRと他方のRとが結合して環状構造を有してもよい。
上記ホール輸送層中の上記イオン化合物の含有量の好ましい下限は1重量%である。上記イオン化合物の含有量が1重量%以上であることにより、より高い高温耐久性と、より高い光電変換効率とを両立させることができる。上記ホール輸送層中の上記イオン化合物の含有量のより好ましい下限は5重量%、更に好ましい下限は10重量%である。
上記ホール輸送層中の上記イオン化合物の含有量の上限は特に限定されないが、均一な膜を成膜することができることから、好ましい上限は100重量%、より好ましい上限は50重量%、更に好ましい上限は30重量%である。
上記ホール輸送層が上記一般式(1)で表されるスピロ化合物カチオンと、フッ素含有化合物アニオンとを含むイオン化合物を含有する場合、上記ホール輸送層は、更に、下記一般式(1’)で表されるスピロ化合物を含有することが好ましい。下記一般式(1’)で表されるスピロ化合物を含有することにより、より高い光電変換効率を得ることができる。
Figure JPOXMLDOC01-appb-C000012
一般式(1’)中、少なくとも1つのXは、下記一般式(2’)で表される基を表す。
一般式(1’)で表されるスピロ化合物中、下記一般式(2’)で表される基以外のXは特に限定されないが、水素であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
一般式(2’)中、Rは、水素、アルキル基、置換基を有してもよいアリール基、カルボキシル基、カルボニル基、アルコキシ基、エステル基若しくはアミノ基を表し、また、一方のRと他方のRとが結合して環状構造を有してもよい。
上記ホール輸送層中の金属濃度は、1000ppm以下である。これにより、本発明の太陽電池は、高い光電変換効率を発揮することができる。
この理由については明らかではないが、ホール輸送層中に金属があると、該金属がドーパントとなって充分にキャリア密度を上昇させることができない結果、光電変換効率が低下してしまうところ、金属濃度を一定以下とすることによりこのような作用を抑制できるためではないかと考えられる。上記ホール輸送層中の金属濃度の好ましい上限は100ppm、より好ましい上限は10ppmである。金属濃度は、例えば、島津製作所社製等のICP-MS等により測定することができる。
なお、ホール輸送層中の金属は、主として上記有機半導体カチオンとフッ素含有化合物アニオンとを含むイオン化合物を得るための原料となるフッ素含有化合物アニオン・金属カチオン塩に起因する。即ち、原料として用いるフッ素含有化合物アニオン・金属カチオン塩が、例えば銀塩である場合には、ホール輸送層中の銀濃度が問題となる。
上記ホール輸送層中の金属濃度を1000ppm以下とする方法は特に限定されないが、原料となる有機半導体と、フッ素含有化合物アニオン・金属カチオン塩とを予め反応させて上記イオン化合物を生成させた後、遊離した金属を回収して除去する方法が好適である。この場合、原料となるフッ素含有化合物アニオン・金属カチオン塩は、銀塩であることが好ましい。イオン化傾向の低い銀の塩を用いることにより、容易に銀を析出させて、回収、除去を行うことができる。
より具体的には、有機半導体のジクロロメタン溶液に、フッ素含有化合物アニオン・銀塩を混合して反応させることにより上記イオン化合物を得る。このとき銀が析出してくるので、析出した銀を分離し、その後溶液を濃縮して上記イオン化合物を得る。得られた上記イオン化合物を有機溶媒に溶解させた溶液を調製し、該溶液をスピンコート等の塗布法で塗工することにより、金属濃度が1000ppm以下であるホール輸送層を形成することができる。
上記ホール輸送層の厚みの好ましい下限は1nm、好ましい上限は2000nmである。上記ホール輸送層の厚みが1nm以上であれば、充分に電子をブロックできるようになる。上記厚みが2000nm以下であれば、ホール輸送の際の抵抗になり難く、光電変換効率が高くなる。上記ホール輸送層の厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
上記光電変換層は特に限定されないが、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含むことが好ましい。上記光電変換層が上記有機無機ペロブスカイト化合物を含む太陽電池は、有機無機ハイブリッド型太陽電池とも呼ばれる。
上記光電変換層に上記有機無機ペロブスカイト化合物を用いることにより、太陽電池の光電変換効率を向上させることができる。また、上記有機無機ペロブスカイト化合物は耐湿性が低いことから、上記光電変換層に上記有機無機ペロブスカイト化合物を用いる場合には、太陽電池の耐久性の向上のために上記対向電極上に後述するような封止樹脂層及び無機層を配置することがより有効となる。
上記Rは有機分子であり、C(l、m、nはいずれも正の整数)で示されることが好ましい。
上記Rは、具体的には例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、ホルムアミジン、アセトアミジン、グアニジン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、アゾール、イミダゾリン、カルバゾール及びこれらのイオン(例えば、メチルアンモニウム(CHNH)等)やフェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ホルムアミジン、アセトアミジン及びこれらのイオンやフェネチルアンモニウムが好ましく、メチルアミン、エチルアミン、プロピルアミン及びこれらのイオンがより好ましい。
上記Mは金属原子であり、例えば、鉛、スズ、亜鉛、チタン、アンチモン、ビスマス、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユーロピウム等が挙げられる。これらの金属原子は単独で用いられてもよく、2種以上が併用されてもよい。
上記Xはハロゲン原子又はカルコゲン原子であり、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらのハロゲン原子又はカルコゲン原子は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、構造中にハロゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり、安価な印刷法等への適用が可能になることから、ハロゲン原子が好ましい。更に、上記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、ヨウ素がより好ましい。
上記有機無機ペロブスカイト化合物は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造を有することが好ましい。
図1は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造である、有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。詳細は明らかではないが、上記構造を有することにより、結晶格子内の八面体の向きが容易に変わることができるため、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上すると推定される。
上記有機無機ペロブスカイト化合物は、結晶性半導体であることが好ましい。結晶性半導体とは、X線散乱強度分布を測定し、散乱ピークが検出できる半導体を意味している。上記有機無機ペロブスカイト化合物が結晶性半導体であることにより、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。
また、結晶化の指標として結晶化度を評価することもできる。結晶化度は、X線散乱強度分布測定により検出された結晶質由来の散乱ピークと非晶質部由来のハローとをフィッティングにより分離し、それぞれの強度積分を求めて、全体のうちの結晶部分の比を算出することにより求めることができる。
上記有機無機ペロブスカイト化合物の結晶化度の好ましい下限は30%である。結晶化度が30%以上であると、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。結晶化度のより好ましい下限は50%、更に好ましい下限は70%である。
また、上記有機無機ペロブスカイト化合物の結晶化度を上げる方法として、例えば、熱アニール、レーザー等の強度の強い光の照射、プラズマ照射等が挙げられる。
上記光電変換層が上記有機無機ペロブスカイト化合物を含む場合、上記光電変換層は、本発明の効果を損なわない範囲内であれば、上記有機無機ペロブスカイト化合物に加えて、更に、有機半導体又は無機半導体を含んでいてもよい。なお、ここでいう有機半導体又は無機半導体は、電子輸送層又はホール輸送層としての役割を果たしてもよい。
上記有機半導体として、例えば、ポリ(3-アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物や、表面修飾されていてもよいカーボンナノチューブ、グラフェン、フラーレン等のカーボン含有材料も挙げられる。
上記無機半導体として、例えば、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛、CuSCN、CuO、CuI、MoO、V、WO、MoS、MoSe、CuS等が挙げられる。
上記光電変換層は、上記有機無機ペロブスカイト化合物と上記有機半導体又は上記無機半導体とを含む場合、薄膜状の有機半導体又は無機半導体部位と薄膜状の有機無機ペロブスカイト化合物部位とを積層した積層体であってもよいし、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜であってもよい。製法が簡便である点では積層体が好ましく、上記有機半導体又は上記無機半導体中の電荷分離効率を向上させることができる点では複合膜が好ましい。
上記薄膜状の有機無機ペロブスカイト化合物部位の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが5000nm以下であれば、電荷分離できない領域が発生することを抑制できるため、光電変換効率の向上につながる。上記厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、更に好ましい下限は20nm、更に好ましい上限は500nmである。
上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜である場合、上記複合膜の厚みの好ましい下限は30nm、好ましい上限は3000nmである。上記厚みが30nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが3000nm以下であれば、電荷が電極に到達しやすくなるため、光電変換効率が高くなる。上記厚みのより好ましい下限は40nm、より好ましい上限は2000nmであり、更に好ましい下限は50nm、更に好ましい上限は1000nmである。
上記光電変換層を形成する方法は特に限定されず、真空蒸着法、スパッタリング法、気相反応法(CVD)、電気化学沈積法、印刷法等が挙げられる。なかでも、印刷法を採用することで、高い光電変換効率を発揮できる太陽電池を大面積で簡易に形成することができる。印刷法として、例えば、スピンコート法、キャスト法等が挙げられ、印刷法を用いた方法としてロールtoロール法等が挙げられる。
本発明の太陽電池は、更に、上記光電変換層を挟んで、上記ホール輸送層の反対側に電子輸送層を有してもよい。
上記電子輸送層の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
上記電子輸送層は、薄膜状の電子輸送層のみからなっていてもよいが、多孔質状の電子輸送層を含むことが好ましい。特に、上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜である場合、より複雑な複合膜(より複雑に入り組んだ構造)が得られ、光電変換効率が高くなることから、多孔質状の電子輸送層上に複合膜が製膜されていることが好ましい。
上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が2000nmである。上記厚みが1nm以上であれば、充分にホールをブロックできるようになる。上記厚みが2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
上記電極及び上記対向電極の材料は特に限定されず、従来公知の材料を用いることができる。なお、上記対向電極は、パターニングされた電極であることが多い。
上記電極及び上記対向電極の材料として、例えば、FTO(フッ素ドープ酸化スズ)、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物、金等の金属、CuI、ITO(インジウムスズ酸化物)、SnO、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性透明材料、導電性透明ポリマー等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
また、上記電極及び上記対向電極は、それぞれ陰極になっても、陽極になってもよい。
本発明の太陽電池は、上記対向電極上を覆う封止樹脂層を有することが好ましい。上記封止樹脂層は、上記電極と、上記対向電極と、上記電極と上記対向電極との間に配置された光電変換層と、上記光電変換層と上記対向電極との間に配置されたホール輸送層とを少なくとも有する積層体を封止するものであることが好ましい。上記封止樹脂層は、水分が内部に浸透することを抑制して、太陽電池の耐久性を向上させる役割を有する。
上記封止樹脂層は、その端部を閉じるようにして上記積層体全体を覆うことが好ましい。これにより、水分が内部に浸透することを確実に防止することができる。
上記封止樹脂層は、溶解パラメータ(SP値)が10以下である樹脂からなることが好ましい。このような樹脂からなる封止樹脂層を用いることにより、得られる太陽電池の高温耐久性が向上する。
この理由については明らかではないが、通常の樹脂を用いた場合には、ホール輸送層中の上記イオン化合物が封止樹脂に拡散してしまうところ、溶解パラメータ(SP値)が10以下である樹脂を用いることにより、このような拡散を防止できるためではないかと考えられる。
なお、SP値は溶解性パラメータ(Solubility Parameter)と呼ばれ、溶解のしやすさを表すことのできる指標である。本明細書においてSP値の算出にはFedorsにより提案された方法(R.F.Fedors, Polym. Eng. Sci.,14(2),147-154(1974))を用い、繰り返し単位内又は構造内の各原子団に対する蒸発エネルギー(Δecoh)(cal/mol)及びモル体積(Δv)(cm/mol)から下記式(1)に従って計算することができる。式(1)中、δがSP値(cal/mol)1/2を表す。
Figure JPOXMLDOC01-appb-M000014
Δecoh及びΔvとしては、J.Brandrup ら、「Polymer Handbook,Fourth Edition」,volume2に記載の値を用いることができる。
また、Tg≧25℃の場合、主鎖骨格原子数をnとして、n≧3の時は2n、n<3の時は4nをΔvに加えて計算する。
共重合体のSP値は、共重合体中のそれぞれの繰り返し単位単独でのSP値を算出し、その体積分率を使って下記式(2)により計算することができる。式(2)中、δcopは共重合体のSP値を表し、φ、φは繰り返し単位1、2の体積分率を表し、δ、δは繰り返し単位1、2単独のSP値を表す。
Figure JPOXMLDOC01-appb-M000015
上記溶解パラメータ(SP値)が10以下である樹脂は特に限定されず、例えば、シリコーン樹脂(SP値7.5程度)、ポリオレフィン樹脂(SP値8程度)、ブチルゴム(SP値8程度)、テフロン(登録商標)樹脂(SP値7.5程度)、ポリイソブチレン(SP値7.5程度)、アクリル樹脂(SP値9.5程度)等が挙げられる。なかでも、SP値が好適な位置にあることから、シリコーン樹脂、ポリオレフィン樹脂、ブチルゴム、ポリイソブチレンが好ましい。
なお、太陽電池の封止樹脂として汎用されているエポキシ樹脂は、溶解パラメータ(SP値)が10.5程度であり、上記範囲の溶解パラメータ(SP値)を満たさない。
SP値を好適な範囲に調整する方法としては、SP値の異なる2種の材料を適切な範囲で混合させる方法、重合する際のモノマーとして適切な骨格を有するモノマーを選択する方法、及び適切な骨格を有する反応性化合物を付加反応させる方法等が挙げられる。
上記溶解パラメータ(SP値)が10以下である樹脂は、脂環式骨格を有する樹脂を含有することが好ましい。また、上記溶解パラメータ(SP値)が10以下である樹脂は、上記脂環式骨格を有する樹脂と脂環式骨格を有さない樹脂との混合物であってもよい。
上記脂環式骨格は特に限定されず、例えば、ノルボルネン、イソボルネン、アダマンタン、シクロヘキサン、ジシクロペンタジエン、ジシクロヘキサン、シクロペンタン等の骨格が挙げられる。これらの骨格は単独で用いられてもよく、2種以上が併用されてもよい。
上記脂環式骨格を有する樹脂は、脂環式骨格を有していれば特に限定されず、熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよいし、光硬化性樹脂であってもよい。これらの脂環式骨格を有する樹脂は単独で用いられてもよく、2種以上が併用されてもよい。
また、上記脂環式骨格を有する樹脂は、反応性官能基を有する樹脂を製膜した後、上記反応性官能基を架橋反応させた樹脂であってもよい。
上記脂環式骨格を有する樹脂として、例えば、ノルボルネン樹脂(TOPAS9014、ポリプラスチックス社製)、アダマンタンアクリレート(三菱ガス化学社製)の重合物等が挙げられる。
上記封止樹脂層の厚みは、好ましい下限が100nm、好ましい上限が100000nmである。上記厚みのより好ましい下限は500nm、より好ましい上限は50000nmであり、更に好ましい下限は1000nm、更に好ましい上限は20000nmである。
本発明の太陽電池は、上記封止樹脂層上に、更に、金属酸化物、金属窒化物又は金属酸窒化物を含む無機層を有することが好ましい。これにより、上記無機層が高い水蒸気バリア性を有し、水分が内部に浸透することをより抑制できるため、太陽電池の耐久性をより向上させることができる。
上記金属酸化物、金属窒化物又は金属酸窒化物は、水蒸気バリア性を有するものであれば特に限定されないが、例えば、Si、Al、Zn、Sn、In、Ti、Mg、Zr、Ni、Ta、W、Cu若しくはこれらを2種以上含む合金の酸化物、窒化物又は酸窒化物が挙げられる。なかでも、Si、Al、Zn又はSnの酸化物、窒化物又は酸窒化物が好ましく、Zn又はSnの酸化物、窒化物又は酸窒化物がより好ましく、上記無機層に特に高い水蒸気バリア性及び柔軟性を付与できることから、Zn及びSnの両金属元素を含む金属元素の酸化物、窒化物又は酸窒化物が更に好ましい。
なかでも、上記金属酸化物、金属窒化物又は金属酸窒化物は、一般式ZnSnで表される金属酸化物であることが特に好ましい。ここで、a、b、cは正の整数を表す。
上記無機層に上記一般式ZnSnで表される金属酸化物を用いることにより、上記金属酸化物がスズ(Sn)原子を含むため、上記無機層に適度な可撓性を付与することができ、上記無機層の厚みが増した場合であっても応力が小さくなるため、上記無機層と上記封止樹脂層との剥離を抑えることができる。これにより、上記無機層の水蒸気バリア性を高め、太陽電池の耐久性をより向上させることができる。一方、上記金属酸化物が亜鉛(Zn)原子を含むため、上記無機層は特に高いバリア性を発揮することができる。
上記一般式ZnSnで表される金属酸化物においては、ZnとSnとの総和に対するSnの比Xs(重量%)が70>Xs>0を満たすことが好ましい。また、Y=c/(a+2b)で表される値Yが、1.5>Y>0.5を満たすことが好ましい。
なお、上記無機層中の上記一般式ZnSnで表される金属酸化物に含まれる亜鉛(Zn)、スズ(Sn)及び酸素(O)の元素比率は、X線光電子分光(XPS)表面分析装置(例えば、VGサイエンティフィックス社製のESCALAB-200R等)を用いて測定することができる。
上記無機層は、上記一般式ZnSnで表される金属酸化物を含む場合、更に、ケイ素(Si)及び/又はアルミニウム(Al)を含むことが好ましい。
上記無機層にケイ素(Si)及び/又はアルミニウム(Al)を添加することにより、上記無機層の透明性を高め、太陽電池の光電変換効率を向上させることができる。
上記無機層の厚みは、好ましい下限が30nm、好ましい上限が3000nmである。上記厚みが30nm以上であれば、上記無機層が充分な水蒸気バリア性を有することができ、太陽電池の耐久性が向上する。上記厚みが3000nm以下であれば、上記無機層の厚みが増した場合であっても、発生する応力が小さいため、上記無機層、電極、半導体層等の剥離を抑制することができる。上記厚みのより好ましい下限は50nm、より好ましい上限は1000nmであり、更に好ましい下限は100nm、更に好ましい上限は500nmである。
なお、上記無機層の厚みは、光学干渉式膜厚測定装置(例えば、大塚電子社製のFE-3000等)を用いて測定することができる。
本発明の太陽電池は、更に、上記封止樹脂層上を、例えばガラス板、樹脂フィルム、無機材料を被覆した樹脂フィルム、アルミニウム等の金属箔等のその他の材料が覆っていてもよい。これにより、仮に上記封止樹脂層にピンホールがあった場合にも充分に水蒸気をブロックすることができ、太陽電池の耐久性をより向上させることができる。なかでも、無機材料を被覆した樹脂フィルムを配置することがより好ましい。
本発明の太陽電池は、更に、基板等を有していてもよい。上記基板は特に限定されず、例えば、ソーダライムガラス、無アルカリガラス等の透明ガラス基板、セラミック基板、透明プラスチック基板等が挙げられる。
本発明の太陽電池を製造する方法は特に限定されず、例えば、上記基板上に上記電極、電子輸送層、光電変換層、ホール輸送層及び対向電極をこの順で積層して積層体を作製した後、上記封止樹脂層で上記積層体を封止する方法等が挙げられる。
上記封止樹脂層で上記積層体を封止する方法は特に限定されず、例えば、シート状の封止樹脂を用いて上記積層体をシールする方法、封止樹脂を有機溶媒に溶解させた封止樹脂溶液を上記積層体に塗布する方法、封止樹脂となる反応性官能基を有する化合物を上記積層体に塗布した後、熱又はUV等で反応性官能基を有する化合物を架橋又は重合させる方法、封止樹脂に熱をかけて融解させた後に冷却する方法等が挙げられる。
本発明によれば、光電変換効率が高く、高温耐久性に優れた太陽電池、及び、有機半導体用材料を提供することができる。
有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。
(実施例1)
(1)電極/電子輸送層/光電変換層/対向電極が積層された積層体の作製
ガラス基板上に、電極として厚み1000nmのFTO膜を形成し、純水、アセトン、メタノールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。
FTO膜の表面上に、2%に調整したチタンイソプロポキシドエタノール溶液をスピンコート法により塗布した後、400℃で10分間焼成し、厚み20nmの薄膜状の電子輸送層を形成した。更に、薄膜状の電子輸送層上に、有機バインダとしてのポリイソブチルメタクリレートと酸化チタン(平均粒子径10nmと30nmとの混合物)とを含有する酸化チタンペーストをスピンコート法により塗布した後、500℃で10分間焼成し、厚み500nmの多孔質状の電子輸送層を形成した。
一方、予めヨウ化鉛をジメチルスルホキシド(DMSO)と反応させてヨウ化鉛-ジメチルスルホキシド複合体を調製し、該ヨウ化鉛-ジメチルスルホキシド複合体を濃度40重量%でN,N-ジメチルホルムアミド(DMF)に溶解して塗工液を得た。
上記電子輸送層上に、得られた塗工液をスピンコート法によって500nmの厚みに積層し、その上からヨウ化メチルアンモニウムの8%イソプロパノール溶液をスピンコート法により塗工し反応させることにより有機無機ペロブスカイト化合物を含む光電変換層を形成した。
次いで、2,2’,7,7’-テトラキス-(N,N-ジ-メトキシフェニルアミン)-9,9’-スピロビフルオレン(Spiro-OMeTAD、メルク社製)0.25gと、銀トリフルオロスルフォニルイミド(Ag-TFSI、Aldrich社製)0.17gとをジクロロメタン25mLに溶解させ、1日500rpmで攪拌した。その後1μmメッシュを通して析出物を分離し、回収した溶液をエバポレーターにて濃縮した。これをジエチルエーテルで再結晶することにより、Spiro-OMeTADカチオンとTFSIアニオンとを含むイオン化合物を得た。
得られたイオン化合物1mgと上記Spiro-OMeTAD9mgとをクロロベンゼン100μLに溶解させ、その溶液をスピンコート法で塗布することにより、イオン化合物を10重量%含有するホール輸送層を形成した。
なお、吸収スペクトルを測定し、イオン結合を形成していないものと比較し、吸収が長波長シフトしていることを確認することにより、Spiro-OMeTADとTFSIとがイオン結合を形成していることが確認された。また、ICP―MSによりホール輸送層中の金属濃度(銀濃度)を測定したところ800ppmであった。
得られたホール輸送層上に、対向電極として真空蒸着により厚み100nmのAu膜を形成し、電極/電子輸送層/光電変換層/ホール輸送層/対向電極が積層された積層体を得た。
(2)封止樹脂層による封止
得られた積層体の対向電極上に、ポリイソブチレン樹脂(BASF社製OPPANOL100、SP値7.5)のシクロヘキサン溶液を塗布し、厚みが10μmの封止樹脂層を形成して、積層体を封止して太陽電池を得た。
(実施例2~5、比較例1~3)
表1に示すように、ホール輸送層及び封止樹脂層を形成した以外は実施例1と同様にして太陽電池を得た。
<評価1>
実施例1~5及び比較例1~3で得られた太陽電池について、以下の評価を行った。結果を表1に示した。
(1)光電変換効率
太陽電池の電極間に電源(KEITHLEY社製、236モデル)を接続し、強度100mW/cmのソーラーシミュレーション(山下電装社製)を用いて光電変換効率を測定し、得られた光電変換効率を初期変換効率とし、以下の基準により評価した。
○:初期光電変換効率の値が10%以上
×:初期光電変換効率の値が10%未満
(2)高温耐久性
太陽電池を露点-10℃の環境下で温度90℃のホットプレートに300時間置いて高温耐久性試験を行った。高温耐久性試験後の太陽電池の電極間に電源(KEITHLEY社製、236モデル)を接続し、強度100mW/cmのソーラーシミュレーション(山下電装社製)を用いて光電変換効率を測定し、高温耐久性試験後の光電変換効率/上記で得られた初期変換効率の値を求め、以下の基準により評価した。
○:高温耐久性試験後の光電変換効率/初期変換効率の値が0.8以上
△:高温耐久性試験後の光電変換効率/初期変換効率の値が0.5以上0.8未満
×:高温耐久性試験後の光電変換効率/初期変換効率の値が0.5未満
Figure JPOXMLDOC01-appb-T000016
(実施例6)
ガラス基板上に、電極として厚み1000nmのFTO膜を形成し、純水、アセトン、メタノールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。
FTO膜の表面上に、2%に調整したチタンイソプロポキシドエタノール溶液をスピンコート法により塗布した後、400℃で10分間焼成し、厚み20nmの薄膜状の電子輸送層を形成した。更に、薄膜状の電子輸送層上に、有機バインダとしてのポリイソブチルメタクリレートと酸化チタン(平均粒子径10nmと30nmとの混合物)とを含有する酸化チタンペーストをスピンコート法により塗布した後、500℃で10分間焼成し、厚み500nmの多孔質状の電子輸送層を形成した。
一方、予めヨウ化鉛をジメチルスルホキシド(DMSO)と反応させてヨウ化鉛-ジメチルスルホキシド複合体を調製し、該ヨウ化鉛-ジメチルスルホキシド複合体を濃度40重量%でN,N-ジメチルホルムアミド(DMF)に溶解して塗工液を得た。
上記電子輸送層上に、得られた塗工液をスピンコート法によって500nmの厚みに積層し、その上からヨウ化メチルアンモニウムの8%イソプロパノール溶液をスピンコート法により塗工し反応させることにより有機無機ペロブスカイト化合物を含む光電変換層を形成した。
次いで、ポリ[ビス(4-フェニル)(4-ブチルフェニル)アミン](Poly-TPD、1-Material社製、数平均分子量20000)0.25gと、銀トリフルオロスルフォニルイミド(Ag-TFSI、Aldrich社製)0.17gとをジクロロメタン25mLに溶解させ、24時間、500rpmで攪拌した。その後、1μmメッシュを通して析出物を分離し、回収した溶液をエバポレーターにて濃縮した。これをジエチルエーテルで再結晶することにより、Poly-TPDカチオンとTFSIアニオンとを含むイオン化合物を得た。次いで、得られたイオン化合物1mgと上記Poly-TPD9mgとをクロロベンゼン500μLに溶解させ、その溶液をスピンコート法で塗布することにより、イオン化合物を10重量%含有しているホール輸送層を形成した。
なお、吸収スペクトルを測定し、イオン結合を形成していないものと比較し、吸収が長波長シフトしていることを確認することにより、PolyTPDとTFSIとがイオン結合を形成していることが確認された。また、ICP―MS(島津製作所社製)によりホール輸送層中の金属濃度(銀濃度)を測定したところ、80ppmであった。
得られたホール輸送層上に、対向電極として真空蒸着により厚み100nmのITO膜を形成し、電極/電子輸送層/光電変換層/ホール輸送層/対向電極が積層された太陽電池を得た。
(実施例7)
ホール輸送層の形成において、PolyTPDに代えてポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン](PTAA-3Me、Aldrich社製、数平均分子量7000)を用いた以外は実施例6と同様にして太陽電池を得た。
(実施例8)
ホール輸送層の形成において、PolyTPDに代えてポリ[ビス(4-フェニル)(2,4-ジメチルフェニル)アミン](PTAA-2Me、EM-index社製、数平均分子量22000)を用いた以外は実施例6と同様にして太陽電池を得た。
(実施例9)
ホール輸送層の形成において、PolyTPDに代えてチオフェン化合物(P3HT、Aldrich社製、数平均分子量50000)を用いて下記式(a)で表されるチオフェン化合物カチオンとTFSIアニオンとを含むイオン化合物を得た以外は実施例6と同様にして太陽電池を得た。
Figure JPOXMLDOC01-appb-C000017
(実施例10)
ホール輸送層の形成において、PolyTPDに代えてチオフェン化合物(DR3、1-Material社製)を用いて下記式(b)で表されるチオフェン化合物カチオンとTFSIアニオンとを含むイオン化合物を得た以外は実施例6と同様にして太陽電池を得た。
Figure JPOXMLDOC01-appb-C000018
(実施例11)
ホール輸送層の形成において、PolyTPDに代えてチオフェン化合物(P3OT、Aldrich社製、数平均分子量50000)を用いて下記式(c)で表されるチオフェン化合物カチオンとTFSIアニオンとを含むイオン化合物を得た以外は実施例6と同様にして太陽電池を得た。
Figure JPOXMLDOC01-appb-C000019
(実施例12)
ホール輸送層の形成において、PolyTPDに代えてチオフェン化合物(DH6T、Aldrich社製)を用いて下記式(d)で表されるチオフェン化合物カチオンとTFSIアニオンのイオン化合物を得た以外は実施例6と同様にして太陽電池を得た。
Figure JPOXMLDOC01-appb-C000020
(実施例13)
ホール輸送層の形成において、PolyTPDに代えて2,2’,7,7’-テトラキス-(N,N-ジ-メトキシフェニルアミン)-9,9’-スピロビフルオレン(Spiro-OMeTAD)を用いた以外は実施例6と同様にして太陽電池を得た。
(比較例4)
ホール輸送層の形成において、TFSI・銀塩を用いなかった以外は実施例6と同様にして太陽電池を得た。
(比較例5)
Poly-TPDを10mg、Li-bis(TFSI)のアセトニトリル溶液(170mg/1mL)を7.5μL、t-ブチルピリジンを4μLを1mLのクロロベンゼンに溶解させ、この溶液をスピンコートすることによりホール輸送層を形成した以外は、実施例6と同様にして太陽電池を得た。
なお、ICP-MSによりホール輸送層中の金属濃度(リチウム濃度)を測定したところ、2500ppmであった。
(比較例6)
ホール輸送層の形成において、TFSI・銀塩を用いなかった以外は実施例9と同様にして太陽電池を得た。
(比較例7)
上記式(b)で表されるチオフェン化合物(DR3、1-Material社製)を40mg、Li-bis(TFSI)のアセトニトリル溶液(170mg/1mL)を20μL、t-ブチルピリジンを5μLを1mLのクロロベンゼンに溶解させ、この溶液をスピンコートすることによりホール輸送層を形成した以外は、実施例6と同様にして太陽電池を得た。
なお、ICP-MSによりホール輸送層中の金属濃度(リチウム濃度)を測定したところ、11000ppmであった。
(比較例8)
Spiro-OMeTADを90mg、Li-bis(TFSI)のアセトニトリル溶液(170mg/1mL)を45μL、t-ブチルピリジンを10μLを1mLのクロロベンゼンに溶解させ、この溶液をスピンコートすることによりホール輸送層を形成した以外は、実施例6と同様にして太陽電池を得た。
なお、ICP-MSによりホール輸送層中の金属濃度(リチウム濃度)を測定したところ、11000ppmであった。
<評価2>
実施例6~13及び比較例4~8で得られた太陽電池について、以下の評価を行った。結果を表2に示した。
(1)光電変換効率
太陽電池の電極間に電源(KEITHLEY社製、236モデル)を接続し、強度100mW/cmのソーラーシミュレーション(山下電装社製)を用いて光電変換効率を測定し、得られた光電変換効率を初期変換効率とした。比較例8で得られた太陽電池の初期変換効率を基準として規格化した。
○:規格化した光電変換効率の値が0.8以上
△:規格化した光電変換効率の値が0.7以上、0.8未満
×:規格化した光電変換効率の値が0.7未満
(2)高温耐久性
太陽電池を露点-10℃の環境下で温度90℃のホットプレートに300時間置いて高温耐久性試験を行った。高温耐久性試験後の太陽電池の電極間に電源(KEITHLEY社製、236モデル)を接続し、強度100mW/cmのソーラーシミュレーション(山下電装社製)を用いて光電変換効率を測定し、高温耐久性試験後の光電変換効率/上記で得られた初期変換効率の値を求め、以下の基準により評価した。
○:高温耐久性試験後の光電変換効率/初期変換効率の値が0.8以上
△:高温耐久性試験後の光電変換効率/初期変換効率の値が0.5以上0.8未満
×:高温耐久性試験後の光電変換効率/初期変換効率の値が0.5未満
Figure JPOXMLDOC01-appb-T000021
本発明によれば、光電変換効率が高く、高温耐久性に優れた太陽電池、及び、有機半導体用材料を提供することができる。

Claims (7)

  1. 電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層と、前記光電変換層と前記対向電極との間に配置されたホール輸送層とを有する太陽電池であって、
    前記ホール輸送層は、有機半導体カチオンとフッ素含有化合物アニオンとを含むイオン化合物を含有し、かつ、
    前記ホール輸送層中の金属濃度が1000ppm以下である
    ことを特徴とする太陽電池。
  2. 有機半導体カチオンは、下記一般式(1)で表されるスピロ化合物カチオン、下記一般式(3)で表されるポリトリフェニルアミン化合物カチオン又は下記一般式(4)で表される構造を含むチオフェン化合物カチオンである
    ことを特徴とする請求項1記載の太陽電池。
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)中、少なくとも1つのXは、下記一般式(2)で表される基を表す。
    Figure JPOXMLDOC01-appb-C000002
    一般式(2)中、Rは、水素、アルキル基、置換基を有してもよいアリール基、カルボキシル基、カルボニル基、アルコキシ基、エステル基若しくはアミノ基を表し、また、一方のRと他方のRとが結合して環状構造を有してもよい。
    Figure JPOXMLDOC01-appb-C000003
    一般式(3)中、R、R、Rは水素、アルキル基、置換基を有してもよいアリール基、カルボキシル基、カルボニル基、アルコキシ基、エステル基若しくはアミノ基を表し、また、R、R及びRのいずれかが結合して環状構造を有してもよい。nは整数を表す。
    Figure JPOXMLDOC01-appb-C000004
    一般式(4)中、R、Rは水素、アルキル基、置換基を有してもよいアリール基、カルボキシル基、カルボニル基、アルコキシ基、エステル基若しくはアミノ基を表し、また、RとRとが結合して環状構造を有してもよい。nは整数を表す。
  3. フッ素含有化合物アニオンは、下記一般式(5-1)で表されるアニオン、下記一般式(5-2)で表されるアニオン、下記一般式(5-3)で表されるアニオン、下記式(5-4)で表されるアニオン、下記式(5-5)で表されるアニオン、又は、下記式(5-6)で表されるアニオンであることを特徴とする請求項1又は2記載の太陽電池。
    Figure JPOXMLDOC01-appb-C000005
    一般式(5-1)~(5-3)中、R~Rは、一部又は全てがフッ素で置換されているアルキル基を表し、一般式(5-1)においては、一方のRと他方のRとが結合して環状構造を有してもよい。
  4. 光電変換層は、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含むことを特徴とする請求項1、2又は3記載の太陽電池。
  5. 対向電極上を覆う封止樹脂層であって、かつ、電極と、対向電極と、前記電極と前記対向電極との間に配置された光電変換層と、前記光電変換層と前記対向電極との間に配置されたホール輸送層とを少なくとも有する積層体を封止する封止樹脂層を有することを特徴とする請求項1、2、3又は4記載の太陽電池。
  6. 封止樹脂層は、溶解パラメータ(SP値)が10以下である樹脂からなることを特徴とする請求項5記載の太陽電池。
  7. 一般式(1)で表されるスピロ化合物カチオン、一般式(3)で表されるポリトリフェニルアミン化合物カチオン又は一般式(4)で表される構造を含むチオフェン化合物カチオンと、フッ素含有化合物アニオンとを含むイオン化合物からなることを特徴とする有機半導体用材料。
PCT/JP2016/072410 2015-07-30 2016-07-29 太陽電池、及び、有機半導体用材料 WO2017018529A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16830632.2A EP3331040B1 (en) 2015-07-30 2016-07-29 Solar cell and organic semiconductor material
US15/736,134 US20180175222A1 (en) 2015-07-30 2016-07-29 Solar cell and organic semiconductor material
CN201680038384.3A CN107710437B (zh) 2015-07-30 2016-07-29 太阳能电池、以及有机半导体用材料
BR112017028382-4A BR112017028382B1 (pt) 2015-07-30 2016-07-29 Célula solar e material semicondutor orgânico
AU2016300994A AU2016300994A1 (en) 2015-07-30 2016-07-29 Solar cell and organic semiconductor material
JP2017525637A JP6286106B2 (ja) 2015-07-30 2016-07-29 太陽電池、及び、有機半導体用材料

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015150880 2015-07-30
JP2015-150880 2015-07-30
JP2015152800 2015-07-31
JP2015-152800 2015-07-31
JP2016048434 2016-03-11
JP2016-048434 2016-03-11
JP2016-060853 2016-03-24
JP2016060853 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017018529A1 true WO2017018529A1 (ja) 2017-02-02

Family

ID=57884444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072410 WO2017018529A1 (ja) 2015-07-30 2016-07-29 太陽電池、及び、有機半導体用材料

Country Status (7)

Country Link
US (1) US20180175222A1 (ja)
EP (1) EP3331040B1 (ja)
JP (1) JP6286106B2 (ja)
CN (1) CN107710437B (ja)
AU (1) AU2016300994A1 (ja)
BR (1) BR112017028382B1 (ja)
WO (1) WO2017018529A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848065A (zh) * 2017-02-07 2017-06-13 晋芳芳 一种以金属酞菁化合物作为电子传输层的平面钙钛矿光伏电池
JP2018163939A (ja) * 2017-03-24 2018-10-18 積水化学工業株式会社 太陽電池
JP2019068028A (ja) * 2017-03-28 2019-04-25 住友化学株式会社 光電変換素子およびその製造方法
JP2019175970A (ja) * 2018-03-28 2019-10-10 三菱ケミカル株式会社 光電変換素子及び太陽電池モジュール
JP2023517371A (ja) * 2020-07-09 2023-04-25 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 酸塩基副産物でドープした有機正孔輸送物質及びこれを用いた光素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197942A (ja) * 2001-09-04 2003-07-11 Sony Internatl Europ Gmbh 光起電力装置及びその製造方法
JP2013522868A (ja) * 2010-03-11 2013-06-13 アイシス イノベーション リミティド 感光性固体状態ヘテロ結合デバイス
JP2014509048A (ja) * 2011-02-01 2014-04-10 ビーエーエスエフ ソシエタス・ヨーロピア 光起電力素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160888A1 (en) * 2000-05-29 2001-12-05 Sony International (Europe) GmbH Hole transporting agents and photoelectric conversion device comprising the same
US7767498B2 (en) * 2005-08-25 2010-08-03 Vitex Systems, Inc. Encapsulated devices and method of making
CN1331914C (zh) * 2005-10-18 2007-08-15 武汉大学 一种聚三苯胺聚合物的合成方法
TWI388078B (zh) * 2008-01-30 2013-03-01 Osram Opto Semiconductors Gmbh 電子組件之製造方法及電子組件
JP5627390B2 (ja) * 2010-10-22 2014-11-19 株式会社東芝 光電変換素子およびその製造方法
EP3029696B1 (en) * 2012-05-18 2018-11-14 Oxford University Innovation Limited Optoelectronic device comprising porous scaffold material and perovskites
KR101547870B1 (ko) * 2012-09-12 2015-08-27 한국화학연구원 광흡수 구조체가 구비된 태양전지
AU2014264719B2 (en) * 2013-05-06 2017-11-23 Greatcell Solar S.A. Organic-inorganic perovskite based solar cell
GB201309668D0 (en) * 2013-05-30 2013-07-17 Isis Innovation Organic semiconductor doping process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197942A (ja) * 2001-09-04 2003-07-11 Sony Internatl Europ Gmbh 光起電力装置及びその製造方法
JP2013522868A (ja) * 2010-03-11 2013-06-13 アイシス イノベーション リミティド 感光性固体状態ヘテロ結合デバイス
JP2014509048A (ja) * 2011-02-01 2014-04-10 ビーエーエスエフ ソシエタス・ヨーロピア 光起電力素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848065A (zh) * 2017-02-07 2017-06-13 晋芳芳 一种以金属酞菁化合物作为电子传输层的平面钙钛矿光伏电池
JP2018163939A (ja) * 2017-03-24 2018-10-18 積水化学工業株式会社 太陽電池
JP2019068028A (ja) * 2017-03-28 2019-04-25 住友化学株式会社 光電変換素子およびその製造方法
JP2019175970A (ja) * 2018-03-28 2019-10-10 三菱ケミカル株式会社 光電変換素子及び太陽電池モジュール
JP2023517371A (ja) * 2020-07-09 2023-04-25 コリア リサーチ インスティチュート オブ ケミカル テクノロジー 酸塩基副産物でドープした有機正孔輸送物質及びこれを用いた光素子

Also Published As

Publication number Publication date
JPWO2017018529A1 (ja) 2017-08-17
BR112017028382B1 (pt) 2022-08-16
BR112017028382A2 (pt) 2018-08-28
EP3331040A1 (en) 2018-06-06
US20180175222A1 (en) 2018-06-21
JP6286106B2 (ja) 2018-02-28
CN107710437A (zh) 2018-02-16
CN107710437B (zh) 2022-01-04
AU2016300994A1 (en) 2017-12-21
EP3331040B1 (en) 2021-11-17
EP3331040A4 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP6286106B2 (ja) 太陽電池、及び、有機半導体用材料
JP6138968B2 (ja) 太陽電池
JP6151378B2 (ja) 太陽電池
WO2016121922A1 (ja) 太陽電池及び太陽電池の製造方法
JP2016178295A (ja) 太陽電池
JP2016178290A (ja) 太陽電池
JP6876480B2 (ja) 太陽電池
WO2019181673A1 (ja) 太陽電池
JP6921582B2 (ja) 太陽電池
JP5926466B1 (ja) 太陽電池
JP2016082003A (ja) 薄膜太陽電池の製造方法
JP6196685B2 (ja) 太陽電池
JP6078662B2 (ja) 太陽電池
JP6835644B2 (ja) 太陽電池
JP2018046056A (ja) 太陽電池、及び、太陽電池の製造方法
JP6943591B2 (ja) 太陽電池
JP6660215B2 (ja) 太陽電池
JP2018046055A (ja) 太陽電池
JP2016082004A (ja) 太陽電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017525637

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15736134

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016300994

Country of ref document: AU

Date of ref document: 20160729

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017028382

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017028382

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171228