WO2017018514A1 - チタン複合材および熱間圧延用チタン材 - Google Patents

チタン複合材および熱間圧延用チタン材 Download PDF

Info

Publication number
WO2017018514A1
WO2017018514A1 PCT/JP2016/072336 JP2016072336W WO2017018514A1 WO 2017018514 A1 WO2017018514 A1 WO 2017018514A1 JP 2016072336 W JP2016072336 W JP 2016072336W WO 2017018514 A1 WO2017018514 A1 WO 2017018514A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
layer
slab
hot rolling
thickness
Prior art date
Application number
PCT/JP2016/072336
Other languages
English (en)
French (fr)
Inventor
知徳 國枝
浩史 滿田
吉紹 立澤
一浩 ▲高▼橋
藤井 秀樹
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2017530940A priority Critical patent/JP6515359B2/ja
Publication of WO2017018514A1 publication Critical patent/WO2017018514A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to a titanium composite material and a titanium material for hot rolling.
  • Titanium material has excellent properties such as corrosion resistance, oxidation resistance, fatigue resistance, hydrogen embrittlement resistance, and neutron blocking properties. These properties can be achieved by adding various alloying elements to titanium.
  • Titanium materials have been used in the aircraft field due to their excellent specific strength and corrosion resistance, and are also widely used in exhaust systems for automobiles and motorcycles.
  • JIS type 2 industrial pure titanium material is used mainly for motorcycles in place of conventional stainless steel materials.
  • heat resistant titanium alloys having higher heat resistance have been used in place of JIS class 2 industrial pure titanium materials.
  • a muffler equipped with a catalyst used at high temperatures is also used to remove harmful components of exhaust gas.
  • the temperature of the exhaust gas exceeds 700 ° C and may temporarily reach 800 ° C. For this reason, materials used for exhaust devices are required to have strength at a temperature of about 800 ° C., oxidation resistance, etc., and an index of high temperature heat resistance of a creep rate at 600 to 700 ° C. has become important. ing.
  • such a heat-resistant titanium alloy needs to add an element that improves high-temperature strength and oxidation resistance such as Al, Cu, and Nb, and is higher in cost than industrial pure titanium.
  • Patent Document 1 describes Al: 0.5 to 2.3% (in this specification, “%” for chemical components means “% by mass” unless otherwise specified). A titanium alloy excellent in cold workability and high-temperature strength is disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-89821 includes Fe: more than 1% and 5% or less, O (oxygen): 0.05 to 0.75%, and Si: 0.01 ⁇ e 0. Titanium alloy having excellent oxidation resistance and corrosion resistance, including 5 [Fe] to 5 ⁇ e ⁇ 0.5 [Fe] ([Fe] indicates the content (% by mass) in the alloy, and e is a constant of natural logarithm) Is shown).
  • Patent Document 3 discloses a heat-resistant titanium alloy plate excellent in cold workability containing Al: 0.30 to 1.50% and Si: 0.10 to 1.0%, and The manufacturing method is disclosed.
  • JP-A-2009-68026 contains Cu: 0.5 to 1.8%, Si: 0.1 to 0.6%, O: 0.1% or less. Accordingly, there is disclosed a titanium alloy containing Nb: 0.1 to 1.0%, with the balance being Ti and unavoidable impurities coated with a protective film.
  • JP 2013-142183 A includes Si: 0.1 to 0.6%, Fe: 0.04 to 0.2%, and O: 0.02 to 0.15%.
  • a titanium alloy containing a total content of Fe and O of 0.1 to 0.3% and having a balance of Ti and inevitable impurity elements at 700 ° C. and excellent oxidation resistance at 800 ° C. is disclosed. ing.
  • the titanium material is usually manufactured by the method shown below.
  • the raw material titanium oxide is chlorinated to titanium tetrachloride by the crawl method, and then reduced with magnesium or sodium to produce a lump-like sponge-like metal titanium (sponge titanium).
  • This sponge titanium is press-molded to form a titanium consumable electrode, and a titanium ingot is manufactured by vacuum arc melting using the titanium consumable electrode as an electrode.
  • an alloy element is added as necessary to produce a titanium alloy ingot.
  • the titanium alloy ingot is divided, forged and rolled into a titanium slab, and the titanium slab is further subjected to hot rolling, annealing, pickling, cold rolling, and vacuum heat treatment to produce a titanium thin plate.
  • titanium ingot is smashed, hydroground, dehydrogenated, powder crushed, and classified to produce titanium powder, and titanium powder is powder-rolled, sintered, and cold-rolled.
  • the manufacturing method is also known.
  • JP 2011-42828 Patent Document 6
  • titanium metal powder, a binder, a plastic are used to produce titanium powder directly from sponge titanium instead of titanium ingot, and to produce a titanium thin plate from the obtained titanium powder.
  • Sintered compacts are manufactured by sintering pre-sintered compacts made of viscous compositions containing agents and solvents into thin sheets, and sintered compacts are manufactured by compacting the sintered compacts.
  • a method for producing a titanium thin plate for re-sintering a method is disclosed in which the fracture elongation of the sintered thin plate is 0.4% or more, the density ratio is 80% or more, and the density ratio of the sintered compacted plate is 90% or more. ing.
  • Patent Document 7 discloses a composite powder obtained by adding an appropriate amount of iron powder, chromium powder or copper powder to titanium alloy powder using titanium alloy scrap or titanium alloy ingot as a raw material. After extruding the carbon steel capsule, the capsule on the surface of the obtained round bar is dissolved and removed, and further solution treatment or solution treatment and aging treatment are performed to produce a titanium alloy with excellent quality by the powder method A method is disclosed.
  • a sponge capsule is filled with a sponge titanium powder and then subjected to warm extrusion at an extrusion ratio of 1.5 or more and an extrusion temperature of 700 ° C. or less.
  • a method for producing a titanium molded body in which 20% or more of the total length of the grain boundary of the molded body is in metal contact is performed by performing outer peripheral processing excluding copper.
  • a pack rolling method is known as a technique for rolling the sheet.
  • the pack rolling method is a method in which a core material such as a titanium alloy having poor workability is covered with a cover material such as inexpensive carbon steel having good workability and hot rolling is performed.
  • a release agent is applied to the surface of the core material, and at least two upper and lower surfaces thereof are covered with a cover material, or the four peripheral surfaces are covered with a spacer material in addition to the upper and lower surfaces, and the surroundings are welded. Assembled and hot rolled.
  • a core material which is a material to be rolled, is covered with a cover material and hot rolled. Therefore, the core material surface does not directly contact a cold medium (atmosphere or roll), and the temperature drop of the core material can be suppressed, so that even a core material with poor workability can be manufactured.
  • Patent Document 9 discloses a method for assembling a hermetically sealed box
  • Patent Document 10 discloses a degree of vacuum of 10 ⁇ 3 torr order or more.
  • a method of manufacturing a hermetically sealed box by sealing the cover material is disclosed, and further, Japanese Patent Application Laid-Open No. 11-057810 (Patent Document 11) discloses a method in which the cover material is covered with carbon steel (cover material) on the order of 10 ⁇ 2 torr.
  • a method for producing a hermetic coated box by sealing by high energy density welding under the following vacuum is disclosed.
  • Patent Document 12 a steel material is used as a base material and titanium or a titanium alloy is used as a mating material.
  • a method for manufacturing a titanium clad steel sheet in which an assembly slab for rolling is joined by hot rolling is disclosed.
  • Patent Document 13 discloses that pure nickel, pure iron, and a carbon content of 0.01% by mass or less on a surface of a base steel material containing 0.03% by mass or more of carbon. After the titanium foil material is laminated by interposing an insert material made of any one of the above-mentioned low carbon steels with a thickness of 20 ⁇ m or more, a laser beam is irradiated from either side of the lamination direction, A method of manufacturing a titanium-coated steel material by melting and joining at least the vicinity of the edge with a base steel material over the entire circumference is disclosed.
  • JP-A-2015-045040 Patent Document 14
  • the surface of a porous titanium raw material (sponge titanium) formed into an ingot shape is melted with an electron beam under vacuum to make the surface layer portion dense titanium.
  • the titanium ingot is manufactured and hot rolled and cold rolled to form a porous portion in which the porous titanium raw material is formed into an ingot shape, and the entire surface of the porous portion composed of dense titanium.
  • a method for producing a dense titanium material (titanium ingot) having a dense coating portion for coating with very little energy is exemplified.
  • Patent Document 15 Japanese Patent Application Laid-Open No. Sho 62-270277 describes that surface effect treatment of an engine member for automobiles is performed by thermal spraying.
  • titanium alloy disclosed in Patent Document 1 contains Al, it adversely affects the formability, particularly the stretch formability in which processing occurs in the direction in which the thickness decreases.
  • Patent Document 4 Although the titanium alloy disclosed in Patent Document 4 has sufficient workability and oxidation resistance, it contains a large amount of expensive Nb, resulting in high alloy costs.
  • Patent Document 5 Although the titanium alloy disclosed in Patent Document 5 also has sufficient high-temperature oxidation characteristics, the entire surface of the plate is alloyed, so that the alloy cost becomes high.
  • sponge titanium is press-molded to form a titanium consumable electrode, and a titanium ingot is manufactured by vacuum arc melting using the titanium consumable electrode as an electrode.
  • the titanium slab was forged and rolled into a titanium slab, and the titanium slab was manufactured by hot rolling, annealing, pickling, and cold rolling.
  • a process of dissolving titanium and producing a titanium ingot was always added.
  • a method of producing titanium powder by powder rolling, sintering, and cold rolling is also known, but in the method of producing titanium powder from a titanium ingot, a step of dissolving titanium is also added.
  • the core material covered with the cover material is slab or ingot to the last, and has undergone a melting process or is made of expensive titanium powder, and the manufacturing cost cannot be reduced.
  • Patent Document 14 although a dense titanium material can be produced with very little energy, the surface of the titanium sponge formed into an ingot shape is dissolved, and the dense titanium surface layer portion and the internal components are the same kind of pure titanium. Or it is prescribed
  • thermal spraying is a method in which a film is formed by melting metal, ceramics, or the like and spraying it on the surface of a titanium material.
  • a film is formed by this method, the formation of pores in the film cannot be avoided.
  • thermal spraying is performed while shielding with an inert gas in order to avoid oxidation of the film.
  • inert gases are entrained in the pores of the coating.
  • Such pores containing the inert gas are not pressed by hot working or the like.
  • vacuum heat treatment is generally carried out, but during this treatment, the inert gas in the pores may expand and the film may be peeled off.
  • the abundance ratio (porosity) of pores generated by thermal spraying is several vol. % Or more and 10 vol. % May be exceeded.
  • a titanium material having a high porosity in the film has a risk of peeling in the manufacturing process, and there is a risk that a defect such as a crack during processing may occur.
  • melt resolidification process As a process for melting and resolidifying the surface layer of the slab using an electron beam. Usually, the melted and re-solidified surface layer is removed in a pickling step after hot rolling. For this reason, in the conventional melt resolidification treatment, no consideration is given to the segregation of the alloy components in the surface layer portion.
  • the present inventors specify the material for hot rolling at a low price by attaching a titanium plate containing a specific alloy element to the surface of a slab made of industrial pure titanium or titanium alloy. We considered obtaining a titanium material with excellent performance.
  • the present invention reduces the content of alloy elements to be added to improve oxidation resistance (amount of specific alloy elements that express target characteristics) and suppresses the production cost of titanium materials,
  • the object is to obtain a titanium composite material and oxidation-resistant titanium material having oxidation resistance at low cost.
  • the present invention has been made to solve the above-described problems, and the gist of the present invention is the following titanium composite material and titanium material for hot rolling.
  • an inner layer made of industrial pure titanium or titanium alloy A surface layer having a chemical composition different from that of the inner layer formed on at least one rolling surface of the inner layer; An intermediate layer formed between the inner layer and the surface layer and having a different chemical composition from the inner layer;
  • a titanium composite comprising: The surface layer has a thickness of 2 ⁇ m or more, and the proportion of the total thickness is 40% or less per side, The chemical composition of the surface layer part is mass%, Si: 0.1 to 0.6%, Nb: 0.1 to 2.0%, One or more selected from Ta: 0.3-1.0% and Al: 0.3-1.5%, Sn: 0 to 1.5%, Cu: 0 to 1.5%, Fe: 0 to 0.5%, The balance: titanium and impurities
  • the intermediate layer has a thickness of 0.5 ⁇ m or more. Titanium composite material.
  • Another surface layer is formed on a surface other than the rolled surface of the inner layer,
  • the other surface layer has the same chemical composition as the surface layer,
  • a base material made of pure industrial titanium or a titanium alloy A surface layer material joined to at least one rolling surface of the base material;
  • a titanium material for hot rolling comprising a welded portion that joins the periphery of the base material and the surface layer material,
  • the surface layer material has a chemical composition different from that of the base material, and in mass%, Si: 0.1 to 0.6%, Nb: 0.1 to 2.0%, One or more selected from Ta: 0.3-1.0% and Al: 0.3-1.5%, Sn: 0 to 1.5%, Cu: 0 to 1.5%, Fe: 0 to 0.5%,
  • the welded portion shields the interface between the base material and the surface material from outside air; Titanium material for hot rolling.
  • the base material comprises a direct cast slab.
  • the directly cast slab is obtained by forming a melt-resolidified layer on at least a part of the surface.
  • the chemical composition of the melt-resolidified layer is different from the chemical composition of the center portion of the thickness of the direct cast slab, (6) Titanium material for hot rolling.
  • the titanium composite material according to the present invention includes an inner layer made of industrial pure titanium or a titanium alloy and a surface layer having a chemical composition different from that of the inner layer, the whole is compared with a titanium material made of the same titanium alloy. Thus, it has the same oxidation resistance but can be manufactured at low cost.
  • FIG. 1 is an explanatory view showing an example of the configuration of a titanium composite material according to the present invention.
  • FIG. 2 is an explanatory view showing an example of the configuration of the titanium composite material according to the present invention.
  • FIG. 3 is an explanatory view schematically showing that the titanium rectangular slab and the titanium plate are bonded together by welding in a vacuum.
  • FIG. 4 is an explanatory view schematically showing bonding by welding a titanium plate not only on the surface of the titanium rectangular cast piece but also on the side surface.
  • FIG. 5 is an explanatory view showing a method of melt re-solidification.
  • FIG. 6 is an explanatory view showing a method of melt re-solidification.
  • FIG. 7 is an explanatory view showing a method of melt re-solidification.
  • the present inventors reduced the amount of a specific alloy element that exhibits oxidation resistance by alloying only the surface layer of the titanium plate of the final product, and the titanium material
  • the interface between the base material made of industrial pure titanium or titanium alloy and the surface layer material having a different chemical composition from the base material is blocked from the outside air.
  • the titanium material for hot rolling which welded the circumference
  • the titanium composite material obtained by hot working the titanium material for hot rolling becomes a titanium material having excellent oxidation resistance at low cost.
  • Titanium composite 1-1 The surface layers 3 and 4 which have a composition, and the intermediate
  • a surface layer is formed on one or both rolling surfaces of the inner layer 5, but a surface other than the rolling surface of the inner layer 5 (side surface in the example shown in FIGS. 1 and 2).
  • the surface layer, the inner layer, and the intermediate layer will be sequentially described.
  • the thickness is 2 ⁇ m or more, and the proportion of the total thickness is 40% or less per side.
  • the thickness of the surface layer varies depending on the thickness of the material used for production or the subsequent processing rate, but if it is 2 ⁇ m or more, a sufficient effect is exhibited.
  • the thickness of the surface layer is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the ratio of the thickness of the surface layer to the total thickness of the titanium composite is 40% or less per side, and more preferably 30% or less.
  • Si 0.1 to 0.6%
  • Si has an action of improving the oxidation resistance at a high temperature of 600 to 800 ° C.
  • the Si content is less than 0.1%, there is little allowance for improving oxidation resistance.
  • the Si content exceeds 0.6%, the influence on the oxidation resistance is saturated and the workability not only at room temperature but also at a high temperature is remarkably lowered. Therefore, when Si is contained, its content is set to 0.1 to 0.6%.
  • the Si content is preferably 0.15% or more, and more preferably 0.20% or more. Moreover, it is preferable that it is 0.55% or less, and it is more preferable that it is 0.50% or less.
  • Nb 0.1-2.0% Nb also has the effect of improving the oxidation resistance at high temperatures.
  • the Nb content is 0.1% or more.
  • the Nb content is preferably 0.3% or more, and more preferably 0.5% or more.
  • Ta 0.3 to 1.0% Ta also has the effect of improving the oxidation resistance at high temperatures.
  • the Ta content is 0.3% or more.
  • Ta content is set to 0.3 to 1.0%.
  • the Ta content is preferably 0.4% or more, and more preferably 0.5% or more. Moreover, it is preferable that it is 0.9% or less, and it is more preferable that it is 0.8% or less.
  • Al 0.3 to 1.5%
  • Al is an element that improves oxidation resistance at high temperatures.
  • Al when Al is contained in a large amount, the ductility at room temperature is remarkably lowered. If the Al content is 0.3% or more, sufficient oxidation resistance is exhibited. Moreover, if the Al content is 1.5% or less, cold working can be sufficiently secured. Therefore, when Al is contained, its content is set to 0.3 to 1.5%.
  • the Al content is preferably 0.4% or more, and more preferably 0.5% or more. Moreover, it is preferable that it is 1.2% or less.
  • the oxidation resistance is improved, but by containing them in combination, the high temperature oxidation resistance can be further improved.
  • one or more selected from Sn, Cu and Fe may be included.
  • Sn 0 to 1.5%
  • Sn is an ⁇ -phase stabilizing element and is an element that increases the high-temperature strength in the same manner as Cu. However, if the Sn content exceeds 1.5%, twin deformation is suppressed and workability at room temperature is reduced. Therefore, when it contains Sn, the content shall be 1.5% or less.
  • the Sn content is preferably 1.3% or less, and more preferably 1.2% or less. When it is desired to obtain the above effects, the Sn content is preferably 0.2% or more, and more preferably 0.5% or more.
  • Cu 0 to 1.5%
  • Cu is an element that increases the high-temperature strength. Moreover, since it dissolves in the ⁇ phase to a certain degree, the ⁇ phase is not generated even when used at a high temperature. However, if the Cu content exceeds 1.5%, a ⁇ phase is generated depending on the temperature. Therefore, when it contains Cu, the content shall be 1.5% or less.
  • the Cu content is preferably 1.4% or less, and more preferably 1.2% or less.
  • the Cn content is preferably 0.2% or more, and more preferably 0.4% or more.
  • Fe 0 to 0.5%
  • Fe is a ⁇ -phase stabilizing element, but if it is in a small amount, the formation of ⁇ -phase is small and the oxidation resistance is not greatly affected. However, if the Fe content exceeds 0.5%, the amount of ⁇ -phase generated increases and the oxidation resistance is degraded. Therefore, when Fe is contained, the content is set to 0.5% or less.
  • the Fe content is preferably 0.4% or less, and more preferably 0.3% or less.
  • the total content of Sn, Cu and Fe exceeds 2.5%, the workability at room temperature is lowered, and a ⁇ phase is generated depending on the temperature. For this reason, when it contains 1 or more types selected from Sn, Cu, and Fe, it is preferable that the total content shall be 2.5% or less.
  • Impurities can be contained within a range that does not hinder the target characteristics, and other impurities are mainly impurity elements such as Cr, V, Cr, Mn, and Mo as impurity elements mixed from scrap. In combination with C, N, O and H, a total amount of 5% or less is acceptable.
  • Inner layer 5 is made of industrial pure titanium or a titanium alloy.
  • industrial pure titanium is used for the inner layer 5
  • the processability at room temperature is excellent as compared with a titanium material made entirely of the same titanium alloy.
  • the industrial pure titanium mentioned here is an industry defined by JIS standards 1 to 4 and ASTM standards Grades 1 to 4 and DIN standards 3, 7025, 3, 7035, and 37055. Contains pure titanium. That is, the industrial pure titanium targeted in the present invention is, for example, C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less, Fe: It consists of 0.5% or less and the balance Ti.
  • a titanium alloy may be used for the inner layer 5.
  • the alloy cost can be significantly reduced and high strength can be obtained.
  • any of an ⁇ -type titanium alloy, an ⁇ + ⁇ -type titanium alloy, and a ⁇ -type titanium alloy can be used according to a required application.
  • the ⁇ -type titanium alloy for example, a high corrosion resistance alloy (ASTM Grade 7, 11, 16, 26, 13, 30, 33, or a titanium material containing a small amount of JIS species corresponding thereto and various elements).
  • Examples of ⁇ + ⁇ type titanium alloys include Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-7V, Ti-3Al-5V, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al. -2Sn-4Zr-6Mo, Ti-1Fe-0.35O, Ti-1.5Fe-0.5O, Ti-5Al-1Fe, Ti-5Al-1Fe-0.3Si, Ti-5Al-2Fe, Ti-5Al -2Fe-0.3Si, Ti-5Al-2Fe-3Mo, Ti-4.5Al-2Fe-2V-3Mo, or the like can be used.
  • ⁇ -type titanium alloy for example, Ti-11.5Mo-6Zr-4.5Sn, Ti-8V-3Al-6Cr-4Mo-4Zr, Ti-10V-2Fe-3Mo, Ti-13V-11Cr-3Al Ti-15V-3Al-3Cr-3Sn, Ti-6.8Mo-4.5Fe-1.5Al, Ti-20V-4Al-1Sn, Ti-22V-4Al, and the like can be used.
  • the titanium and titanium alloy used for the inner layer 5 desirably have a 0.2% proof stress of 1000 MPa or less.
  • the titanium composite material of the present invention includes an intermediate layer between the inner layer and the surface layer. That is, a titanium material for hot rolling, which will be described later, is a material in which a surface layer material is attached to a base material and the periphery thereof is welded. During the subsequent hot rolling and heat treatment processes after cold rolling, the base material and the surface layer When diffusion occurs at the interface with the material and the titanium composite material is finally finished, an intermediate layer is formed between the inner layer derived from the base material and the surface layer derived from the surface material. This intermediate layer has a chemical composition different from the chemical composition of the base material. This intermediate layer bonds the inner layer and the surface layer to each other and bonds them firmly. Further, since a continuous element gradient is generated in the intermediate layer, the difference in strength between the inner layer and the surface layer can be reduced, and cracks during processing can be suppressed.
  • the thickness of the intermediate layer can be measured using EPMA or GDS. If GDS is used, more detailed measurement is possible. In the case of GDS, after removing the surface layer to some extent by polishing, the thickness of the intermediate layer can be measured by performing GDS analysis in the depth direction from the surface.
  • the intermediate layer is the increased content from the base material (in the case of an element not included in the base material, its content, in the case of an element also included in the base material, the increase in content from the base material) ) Is C MID, and the average of the increased content in the surface layer portion is C AVE , it means a region of 0 ⁇ C MID ⁇ 0.8 ⁇ C AVE .
  • the thickness of this intermediate layer is 0.5 ⁇ m or more. On the other hand, if the thickness of the intermediate layer becomes too large, the surface alloy layer may become thin by that amount, and the effect may not be exhibited. Therefore, the upper limit is preferably 15 ⁇ m.
  • Titanium material for hot rolling is a material (slab, slab, bloom, billet, etc.) used for hot rolling, and after hot rolling, it can be cooled as necessary. It is processed into a titanium composite material by performing inter-processing, heat treatment, etc.
  • the titanium material for hot rolling according to the present invention will be described with reference to the drawings.
  • “%” regarding the content of each element means “mass%”.
  • FIG. 3 is an explanatory view schematically showing that the base material (titanium rectangular cast, slab) 6 and the surface layer material (titanium plate) 7 are bonded together in a vacuum, and FIG. It is typical to bond the surface materials (titanium plates) 7 and 8 not only to the surface (rolled surface) of the base material (titanium rectangular cast slab, slab) but also to the side surfaces (surfaces other than the rolled surface). It is explanatory drawing shown in.
  • titanium plates 7 and 8 containing an alloy element that exhibits oxidation resistance are bonded to the surface of a slab 6 that is a base material, and then bonded by hot rolling cladding. As a result, the surface layers of the titanium composite materials 1 and 2 are alloyed.
  • a titanium plate 7 may be bonded to only one side of the slab 6 in a vacuum as shown in FIG. 3, and the titanium plate 7 is attached to the other side of the slab 6. You may hot-roll without sticking.
  • a titanium plate 7 may be bonded to one side of the slab 6 as well as the other side. Thereby, generation
  • a plate containing an alloy element may be bonded to both rolling surfaces of the slab 6 as shown in FIG.
  • the same standard titanium plate 8 may be bonded together in a vacuum and welded to the side surface of the slab 6 that becomes the edge side during hot rolling.
  • the amount of the side surface of the slab 6 that wraps around during hot rolling varies depending on the manufacturing method, but is usually about 20 to 30 mm. Therefore, it is not necessary to attach the titanium plate 8 to the entire side surface of the slab 6, and the manufacturing method is not limited. It is only necessary to attach the titanium plate 8 only to the portion corresponding to the sneak amount.
  • titanium composites 1 and 2 are manufactured, they are manufactured through a shot-pickling process after hot rolling in order to remove the oxide layer formed by hot rolling. However, if the surface layer formed by the hot-rolled cladding is removed during this step, the oxidation resistance cannot be expressed.
  • the thickness of the surface layer of the titanium composites 1 and 2 becomes too thin, the target oxidation resistance will not be exhibited. On the other hand, if the thickness of the surface layer is too thick, the manufacturing cost increases accordingly. Since the titanium composite materials 1 and 2 only have to have a surface layer thickness suitable for the purpose of use, the thickness of the titanium plates 7 and 8 used as the material is not particularly limited, but the thickness of the slab 6 It is preferably in the range of 5 to 40%.
  • titanium plate As the surface layer material (titanium plate), a titanium plate having the predetermined chemical composition described in the section of the surface layer of the titanium composite material is used. In particular, it is desirable to adjust the chemical composition of the titanium plate to a component containing a predetermined element in the same component as the base material in order to suppress the plate breakage during hot rolling.
  • Base material As the base material, the industrial pure titanium or titanium alloy described in the section of the inner layer of the titanium composite is used. In particular, it is preferable to use a direct casting slab as a base material.
  • the direct cast slab may be one in which a melt resolidified layer is formed on at least a part of the surface.
  • a predetermined element was added to the surface of the direct casting slab when the melt resolidification process was performed, and a melt resolidification layer having a chemical composition different from that of the center portion of the direct casting slab was formed. May be.
  • the slab 6 and the titanium plates 7 and 8 are welded at least around the welded portion 9 in a vacuum vessel.
  • the slab 6 and the titanium plates 7 and 8 are bonded together by sealing with a vacuum, blocking the outside air, and rolling.
  • the welded portion to be joined after the titanium plates 7 and 8 are bonded to the slab 6 is shielded from the atmosphere at the interface between the slab 6 and the titanium plates 7 and 8. Weld.
  • Titanium is an active metal and forms a strong passive film on the surface when left in the atmosphere. It is impossible to remove the oxidized layer on the surface. However, unlike stainless steel, etc., oxygen easily dissolves in titanium. Therefore, when heated in a vacuum and sealed without external oxygen supply, oxygen on the surface diffuses into the solid solution. Therefore, the passive film formed on the surface disappears. Therefore, the slab 6 and the titanium plates 7 and 8 on the surface thereof can be completely adhered by the hot rolling cladding method without generating any inclusions between them.
  • the slab 6 when an as-cast slab is used as the slab 6, surface defects occur in the subsequent hot rolling process due to coarse crystal grains generated during solidification.
  • the titanium plates 7 and 8 are bonded to the rolled surface of the slab 6 as in the present invention, the bonded titanium plate 7 has a fine structure, so that surface defects in the hot rolling process can be suppressed. .
  • a base material of a titanium material for hot rolling is usually manufactured by cutting and refining an ingot after making it into a slab or billet shape by breakdown. In recent years, rectangular slabs that can be hot-rolled directly at the time of ingot production are sometimes produced and used for hot-rolling. When manufactured by breakdown, since the surface is relatively flat by breakdown, it is easy to disperse the material containing the alloy element relatively uniformly, and it is easy to make the element distribution of the alloy phase uniform.
  • an ingot directly manufactured in the shape of a hot-rolling material during casting (direct casting slab)
  • the cutting and refining process can be omitted, so that it can be manufactured at a lower cost.
  • the ingot is manufactured and then used after the surface is cut and refined, the same effect can be expected when it is manufactured through breakdown.
  • an alloy layer may be stably formed on the surface layer, and an appropriate material may be selected according to the situation.
  • the slab and welding the surroundings After assembling the slab and welding the surroundings, it is heated to 700 to 850 ° C. and subjected to 10-30% joint rolling, and then heated at the ⁇ -zone temperature for 3 to 10 hours to diffuse the base material components to the surface layer. It is preferable to perform hot rolling later. This is because by performing hot rolling at a ⁇ -region temperature, the deformation resistance becomes low and rolling becomes easy.
  • the direct cast slab used as the base material may be one in which a melt resolidification layer is formed on at least a part of the surface.
  • a predetermined element was added to the surface of the direct casting slab when the melt resolidification process was performed, and a melt resolidification layer having a chemical composition different from that of the center portion of the direct casting slab was formed. May be.
  • the melt resolidification process will be described in detail.
  • FIGS. 5 to 7 are explanatory diagrams showing the method of melt re-solidification.
  • a method for melting and resolidifying the surface of the base material of the titanium material for hot rolling there are laser heating, plasma heating, induction heating, electron beam heating, etc., and any method may be used.
  • electron beam heating since it is performed in a high vacuum, even if a void or the like is formed in this layer during the melt resolidification treatment, it can be made harmless by pressure bonding in subsequent rolling because it is a vacuum.
  • the degree of vacuum in the case of melting in a vacuum is desirably higher than 3 ⁇ 10 ⁇ 3 Torr.
  • the processing time becomes longer and the cost increases.
  • the melt resolidification method of the surface layer is carried out as shown in FIG. 5 in the case of a rectangular slab. That is, among the outer surfaces of the rectangular slab 10, at least two wide surfaces 10A and 10B that become the rolling surfaces (surfaces in contact with the hot rolling roll) in the hot rolling process are irradiated with an electron beam, and the surfaces on the surfaces are irradiated. Only melt the layer.
  • the surface 10A is one of the two surfaces 10A and 10B.
  • the area of the electron beam irradiation region 14 by the single electron beam irradiation gun 12 on the surface 10A of the rectangular slab 10 is compared with the total area of the surface 10A to be irradiated.
  • the electron beam irradiation is actually performed while continuously moving the electron beam irradiation gun 12 or continuously moving the rectangular slab 10. It is normal.
  • the shape and area of this irradiation area can be adjusted by adjusting the focus of the electron beam or by using an electromagnetic lens to oscillate a small beam at a high frequency (oscillation Oscillation) to form a beam bundle. can do.
  • the moving direction of the electron beam irradiation gun is not particularly limited, it is generally continuous along the length direction (usually the casting direction D) or the width direction (usually the direction perpendicular to the casting direction D) of the rectangular slab 10.
  • the irradiation region 14 is continuously irradiated in a band shape with a width W (in the case of a circular beam or beam bundle, a diameter W).
  • the electron beam irradiation is performed in a belt shape while continuously moving the irradiation gun 12 in the reverse direction (or the same direction) in the adjacent unirradiated belt region.
  • a plurality of irradiation guns may be used to simultaneously perform electron beam irradiation on a plurality of regions.
  • FIG. 5 the case where a rectangular beam is continuously moved along the length direction (usually casting direction D) of the rectangular slab 10 is shown.
  • the surface (surface 10A) of the rectangular titanium cast piece 10 is irradiated with an electron beam by such a surface heat treatment step and heated to melt the surface, the rectangular titanium as shown in the left side of the center of FIG.
  • the surface layer of the surface 10A of the slab 10 is melted at the maximum by a depth corresponding to the heat input.
  • the depth from the direction perpendicular to the irradiation direction of the electron beam is not constant as shown in FIG. 7, and the depth becomes the largest at the central part of the electron beam irradiation, and the thickness increases toward the strip-shaped end part. Decreases, resulting in a downwardly convex curved shape.
  • the surface layer is melted and re-solidified with a material composed of the target alloy element, whereby the surface layer of the material for hot rolling can be alloyed to form an alloy layer having a chemical composition different from that of the base material.
  • a material used in this case one or more of powder, chip, wire, thin film, cutting powder, and mesh may be used.
  • the component and amount of the material to be arranged before melting are determined so that the component in the element concentration region after melting and solidifying together with the material surface becomes the target component.
  • the melt resolidification treatment After the melt resolidification treatment, it is preferable to hold at a temperature of 100 ° C. or higher and lower than 500 ° C. for 1 hour or longer. If it is cooled rapidly after melting and resolidification, fine cracks may occur in the surface layer due to strain during solidification. In the subsequent hot rolling process and cold rolling process, the fine cracks may be the starting point, and the surface layer may be peeled off, or the part of the alloy layer may be partially thin. Further, if the inside is oxidized due to fine cracks, it is necessary to remove in the pickling process, and the thickness of the alloy layer is further reduced. By maintaining at the above temperature, fine cracks on the surface can be suppressed. At this temperature, atmospheric oxidation hardly occurs even if the temperature is maintained.
  • a titanium material for hot rolling can be manufactured by attaching a titanium plate containing a predetermined alloy component to the surface of a base material provided with a surface layer portion formed by melt resolidification treatment.
  • the titanium material for hot rolling is preferably bonded to the slab 6 and the titanium plates 7 and 8 which are welded in advance by the hot rolled clad method.
  • the titanium plates 7 and 8 containing alloy elements that express characteristics are bonded to the surface layer of the slab 6, and then bonded by hot rolling cladding to alloy the surface layer of the titanium composite material.
  • the slab 6 and the titanium plate 7 are preferably welded at least around the welded portion 9 in a vacuum vessel.
  • the space between the slab 6 and the titanium plate 7 is bonded together by vacuum sealing and rolling.
  • the entire circumference is welded so that air does not enter between the slab 6 and the titanium plate 7.
  • Titanium is an active metal and forms a strong passive film on the surface when left in the atmosphere. It is impossible to remove the oxidized layer on the surface. However, unlike stainless steel, etc., oxygen easily dissolves in titanium. Therefore, when heated in a vacuum and sealed without external oxygen supply, oxygen on the surface diffuses into the solid solution. Therefore, the passive film formed on the surface disappears. For this reason, the slab 6 and the titanium plate 7 on the surface thereof can be completely adhered by the hot rolling cladding method without generating any inclusions between them.
  • the slab 6 when an as-cast slab is used as the slab 6, surface defects occur in the subsequent hot rolling process due to coarse crystal grains generated during solidification.
  • the titanium plate 7 when the titanium plate 7 is bonded to the rolled surface of the slab 6 as in the present invention, the bonded titanium plate 7 has a fine structure, so that surface defects in the hot rolling process can be suppressed.
  • titanium plates 7 may be bonded to both sides of the slab 6 instead of just one side. Thereby, generation
  • hot rolling at least a part of the side surface of the slab 6 usually wraps around the surface side of the hot-rolled sheet by being rolled down by the slab 6. Therefore, if the structure of the surface layer on the side surface of the slab 6 is coarse or a large number of defects exist, surface flaws may occur on the surface near both ends in the width direction of the hot-rolled sheet.
  • the same standard titanium plate 8 is preferably bonded and welded to the side surface of the slab 6 on the edge side during hot rolling as well as the rolled surface. Thereby, generation
  • This welding is preferably performed in a vacuum.
  • the amount of the side surface of the slab 6 that wraps around during hot rolling varies depending on the manufacturing method, but is usually about 20 to 30 mm. Therefore, it is not necessary to attach the titanium plate 8 to the entire side surface of the slab 6, and the manufacturing method is not limited. It is only necessary to attach the titanium plate 8 only to the portion corresponding to the sneak amount.
  • the base material-derived component can be contained in the titanium composite material. For example, heat treatment at 700 to 900 ° C. for 30 hours is exemplified.
  • Methods for welding the slab 6 and the titanium plates 7 and 8 in vacuum include electron beam welding and plasma welding.
  • the electron beam welding can be performed under a high vacuum
  • the space between the slab 6 and the titanium plates 7 and 8 can be made a high vacuum, which is desirable.
  • the degree of vacuum when the titanium plates 7 and 8 are welded in a vacuum is desirably a higher degree of vacuum of 3 ⁇ 10 ⁇ 3 Torr or less.
  • the slab 6 and the titanium plate 7 are not necessarily welded in a vacuum vessel.
  • a vacuum suction hole is provided in the titanium plate 7 and the titanium plate 7 is overlapped with the slab 6. Later, the slab 6 and the titanium plate 7 may be welded while evacuating the slab 6 and the titanium plate 7 using a vacuum suction hole, and the vacuum suction hole may be sealed after welding.
  • the thickness and chemical composition of the surface layer are as follows: It depends on the thickness of the titanium plates 7 and 8 before bonding and the distribution of alloy elements.
  • the annealing treatment is performed in a vacuum atmosphere or the like in order to obtain the finally required strength and ductility.
  • a concentration gradient is generated in the depth direction.
  • the diffusion distance of the element generated in the final annealing step is about several ⁇ m, and the entire thickness of the alloy layer does not diffuse, and does not affect the concentration of the alloy element in the vicinity of the surface layer, which is particularly important for property development.
  • titanium plates 7 and 8 the uniformity of the alloy components in the entire titanium plates 7 and 8 leads to stable expression of the characteristics.
  • titanium plates 7 and 8 manufactured as products it is possible to use titanium plates 7 and 8 manufactured as products, so it is easy to control the segregation of alloy components as well as the plate thickness accuracy, and have a uniform thickness and chemical properties after manufacturing. Titanium composite materials 1 and 2 having a surface layer having components can be produced, and stable characteristics can be expressed.
  • Hot rolling process Also in the hot rolling process, if the surface temperature is too high, a large amount of scale is generated during sheet passing, and the scale loss increases. On the other hand, if it is too low, the scale loss is reduced, but surface flaws are likely to occur. Therefore, it is necessary to remove by surface pickling, and it is desirable to perform hot rolling in a temperature range in which surface flaws can be suppressed. . Therefore, it is desirable to perform rolling in the optimum temperature range. In addition, since the surface temperature of the titanium material decreases during rolling, it is desirable to minimize roll cooling during rolling and suppress the decrease in the surface temperature of the titanium material.
  • the hot-rolled plate has an oxide layer on its surface
  • the oxide layer is generally removed by pickling with a nitric hydrofluoric acid solution.
  • the surface may be ground by grinding with a grindstone after pickling.
  • a two-layer or three-layer structure including an inner layer and a surface layer derived from the base material and the surface layer portion of the titanium material for hot rolling may be used.
  • a shot blast treatment is performed as a pretreatment for the pickling treatment to remove a part of the scale on the surface, and at the same time, cracks are formed on the surface, and in the subsequent pickling step The liquid penetrates into the cracks and removes part of the base material.
  • the titanium composite material 2 shown in FIG. 2 was manufactured by the following procedure. That is, at least one or more of Si, Nb, and Ta are formed on the surface of the slab 6 shown in FIG. 4 having a size of 200 mm thickness ⁇ width 1000 mm ⁇ length 4500 mm cast by a rectangular mold by electron beam melting.
  • the containing titanium alloy plate 7 was welded in a vacuum. No. In the examples of 3 and 4, the titanium alloy plate 8 was also welded to the side surface of the slab 6 in a vacuum. Thereafter, the slab 6 to which the titanium alloy plates 7 and 8 were welded was heated to 820 ° C.
  • Titanium composite materials 2 as test materials of Examples 1 to 20 (invention examples) and comparative examples were produced.
  • a test piece of 20 mm ⁇ 20 mm was cut out from these specimens 1 to 21, and the surface and edges thereof were polished with # 400 sandpaper, and then exposed to temperatures of 700 ° C. and 750 ° C. in the atmosphere for 200 hours.
  • the change in weight before and after the test was measured, and the amount of increase in oxidation per unit cross-sectional area was determined.
  • the results are also shown in Table 1.
  • the element concentration of the surface layers 3 and 4 in Table 1 is a result of performing line analysis using EPMA and averaging the range from the surface to the lower end of the alloy layer.
  • the inside 5 is made of industrial pure titanium JIS type 2, and does not have the surface layers 3 and 4. Therefore, the increase in oxidation at 200 ° C. heating at 700 ° C. is 40 g / m 2 or more, and the increase in oxidation at 200 ° C. heating at 750 ° C. is 100 g / m 2 or more.
  • Comparative Example 2 the inside 5 is made of industrially pure titanium JIS type 2, and the surface layers 3 and 4 contain Si, but the thickness is very thin at 1 ⁇ m. In addition, the thickness of the intermediate layer is very thin. Therefore, the increase in oxidation at 200 ° C. heating at 700 ° C. is 40 g / m 2 or more, and the increase in oxidation at 200 ° C. heating at 750 ° C. is 100 g / m 2 or more.
  • the inside 5 is made of industrial pure titanium JIS type 1, and the surface layers 3 and 4 contain Si. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is made of industrially pure titanium JIS type 2, and the surface layers 3 and 4 contain Si. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is made of industrially pure titanium JIS3, and the surface layers 3 and 4 contain Si. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is made of industrially pure titanium JIS3, and the surface layers 3 and 4 contain Si. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is made of industrial pure titanium JIS type 2, and the surface layers 3 and 4 contain Si, but the Si content of the surface layers 3 and 4 is as high as 0.7%. Therefore, the oxidation increase with heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase with heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance. Cracks occur during cold rolling and cold rolling, and workability deteriorates.
  • the inside 5 is made of 2 types of industrial pure titanium JIS, and the surface layers 3 and 4 contain one or more kinds of Si, Nb, Ta, and Al. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the titanium composite material 2 shown in FIG. 2 was manufactured by the following procedure. That is, no.
  • the slab 6 has a dimension of thickness 200 mm ⁇ width 1000 mm ⁇ length 4500 mm obtained by performing electron beam melting, casting with a rectangular mold, and cutting and refining the surface corresponding to the rolling surface.
  • a titanium alloy plate 7 containing at least one kind of Si, Nb, Ta, and Al was welded to the surface of the slab 6 shown in FIG. No.
  • the slab shown in FIG. 4 has a thickness of 100 mm ⁇ width of 1000 mm ⁇ length of 4500 mm obtained by performing electron beam melting, casting with a rectangular mold, and then cutting and refining the surface corresponding to the rolling surface.
  • a titanium alloy plate 7 containing at least one of Si, Nb, Ta, and Al was welded in vacuum.
  • the slab 6 to which the titanium alloy plate 7 was welded was heated to 820 ° C. and hot-rolled to a thickness of 5 mm, and then subjected to descaling treatment on both the front and back surfaces using shot blasting and nitric hydrofluoric acid. Further, cold rolling is performed to obtain a titanium plate having a thickness of 1 mm, and annealing treatment is performed by heating to 600 to 700 ° C. in a vacuum or an inert gas atmosphere and holding for 240 minutes, and as shown in Table 2. No. Titanium composite materials 2 as test materials of Examples 22 to 24 of the present invention were produced.
  • Example 2 For these specimens, the amount of oxidation increase per unit cross-sectional area was determined in the same manner as in Example 1. The results are also shown in Table 2. In addition, the element concentration of the surface layer part in Table 2 is a result of performing line analysis using EPMA and averaging the range from the surface to the lower end of the alloy layer.
  • the inside 5 is made of industrial pure titanium JIS type 1, and the surface layers 3 and 4 contain Si. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is made of industrially pure titanium JIS type 2, and the surface layers 3 and 4 contain Nb. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is made of industrially pure titanium JIS3, and the surface layers 3 and 4 contain Si and Al. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the titanium composite material 2 shown in FIG. 2 was manufactured by the following procedure. That is, after plasma arc melting and casting with a rectangular mold, the surface corresponding to the rolling surface is cut and refined to have a thickness of 200 mm ⁇ width of 1000 mm ⁇ length of 4500 mm on the surface of the slab 6 shown in FIG.
  • the titanium alloy plate containing each element was welded in a vacuum. Thereafter, the slab was heated to 820 ° C. and hot-rolled to a thickness of 5 mm, and then descaling treatment was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid.
  • Titanium composite materials 2 as test materials of Examples 25 to 27 were produced.
  • Example 3 For these specimens, the amount of oxidation increase per unit cross-sectional area was determined in the same manner as in Example 1. The results are also shown in Table 3. In addition, the element concentration of the surface layer part in Table 3 is a result of performing line analysis using EPMA and averaging the range from the surface to the lower end of the alloy layer.
  • the inside 5 is made of industrially pure titanium JIS type 1
  • the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is made of industrially pure titanium JIS type 2
  • the surface layers 3 and 4 contain Nb, and the thickness thereof is sufficient as 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inner part 5 is made of industrially pure titanium JIS3, the surface layers 3 and 4 contain Si and Al, and the thickness thereof is a sufficient thickness of 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the titanium composite material 2 shown in FIG. 2 was manufactured by the following procedure. That is, after making the titanium ingot into a rectangular shape from the breakdown, the surface of the ingot having dimensions of 200 mm in thickness, 1000 mm in width, and 4500 mm in length obtained by cutting and refining the surface corresponding to the rolling surface is cut and refined, as shown in FIG. A titanium alloy plate 7 containing an alloy element was welded to the surface of the slab 6 shown in a vacuum. Thereafter, the slab 6 to which the titanium alloy plate 7 was welded was heated to 820 ° C. and hot-rolled to a thickness of 5 mm, and then descaling treatment was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid.
  • Titanium composite material 2 which is a test material of 28 and 29 examples of the present invention was manufactured.
  • Example 2 For these specimens, the amount of oxidation increase per unit cross-sectional area was determined in the same manner as in Example 1. The results are also shown in Table 4. In addition, the element concentration of the surface layer part in Table 4 is a result of performing line analysis using EPMA and averaging the range from the surface to the lower end of the alloy layer.
  • the inside 5 is made of industrially pure titanium JIS type 1
  • the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is made of 2 types of industrial pure titanium JIS, the surface layers 3 and 4 contain Si, and the thickness is 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the titanium composite material 2 shown in FIG. 2 was manufactured by the following procedure. That is, as the slab 6, an ingot having a thickness of 220 mm ⁇ width of 1000 mm ⁇ length of 4500 mm obtained by performing electron beam melting, casting with a rectangular mold, and cutting and refining the surface corresponding to the rolling surface was used.
  • titanium alloy plate 7 No. 5 in Table 5.
  • a titanium alloy plate made of Ti-1.0Cu-0.5Nb is a titanium alloy plate made of Ti-0.25Fe-0.45Si.
  • a titanium alloy plate made of Ti-0.35Fe-0.45Si was welded to the surface of each slab 6 in a vacuum.
  • the slab was heated to 820 ° C. and hot-rolled to a thickness of 5 mm, and then descaling treatment was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid. Further, cold rolling was performed to obtain a titanium plate having a thickness of 1 mm.
  • As an annealing treatment heat treatment was performed in a vacuum or an inert gas atmosphere at 600 to 700 ° C. and held for 240 minutes, whereby No. shown in Table 5 was obtained. . Titanium composite materials 2 as test materials of Examples 30 to 33 of the present invention were produced.
  • Example 5 For these specimens, the amount of oxidation increase per unit cross-sectional area was determined in the same manner as in Example 1. The results are also shown in Table 5.
  • concentration of the surface layer part in Table 5 is the result of having performed the line analysis using EPMA, and averaging the range from the surface to the lower end of an alloy layer.
  • the inside 5 is industrial pure titanium JIS type 2, and the surface layers 3 and 4 contain one or more kinds of Si, Nb, Ta, and Al, and the thickness is 5 ⁇ m or more. Have Furthermore, other alloys are contained, but the content is less than 2.5%. Furthermore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the titanium composite material 2 shown in FIG. 2 was manufactured by the following procedure. That is, as the slab 6, a titanium alloy ingot having a thickness of 200 mm ⁇ width of 1000 mm ⁇ length of 4500 mm obtained by performing electron beam melting, casting with a rectangular mold, and cutting and refining the surface corresponding to the rolling surface was used.
  • each of the titanium plates 7 containing was welded in a vacuum. Thereafter, the slab was heated to 950 ° C. and hot-rolled to a thickness of 5 mm, and then descaling was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid. Furthermore, no. 34 to 41 are further cold-rolled to form a titanium plate having a thickness of 1 mm, and as an annealing treatment, a heat treatment is performed by heating to 600 to 700 ° C. in a vacuum or an inert gas atmosphere and holding for 240 minutes, No. shown in Table 6 Titanium composite materials 2 as test materials of Examples 34 to 41 of the present invention were produced. Furthermore, no. Nos. 42 to 45 are No.
  • Titanium composite materials 2 as test materials of Examples 42 to 45 of the present invention were produced.
  • Example 6 For these specimens, the amount of oxidation increase per unit cross-sectional area was determined in the same manner as in Example 1. The results are also shown in Table 6. In addition, the element concentration of the surface layer part in Table 6 is a result of performing line analysis using EPMA and averaging the range from the surface to the lower end of the alloy layer.
  • the surface layers 3 and 4 contain one or more kinds of Si, Nb, Ta, and Al, and have a sufficient thickness of 5 ⁇ m or more. Furthermore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the titanium material for hot rolling was subjected to electron beam melting and used a 200 mm thickness ⁇ 1000 mm width ⁇ 4500 mm length cast with a square mold.
  • surface layer melting was performed together with a material composed of one or more of Nb, Si, Ta, and Al. Thereafter, the surface temperature of the titanium material for hot rolling was kept at a temperature of 150 ° C. for 1 hour or longer. Thereafter, the titanium material for hot rolling was heated to 820 ° C. and hot-rolled to a thickness of 5 mm, and then descaling treatment was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid.
  • the inside 5 is industrial pure titanium JIS type 2 and does not have the surface layers 3 and 4. Therefore, the increase in oxidation at 200 ° C. heating at 700 ° C. is 40 g / m 2 or more, and the increase in oxidation at 200 ° C. heating at 750 ° C. is 100 g / m 2 or more.
  • the inside 5 is an industrial pure titanium JIS type 2, and the surface layers 3 and 4 contain Si, but the thickness is very thin as 1 ⁇ m. Therefore, the increase in oxidation at 200 ° C. heating at 700 ° C. is 40 g / m 2 or more, and the increase in oxidation at 200 ° C. heating at 750 ° C. is 100 g / m 2 or more.
  • the inside 5 is an industrially pure titanium JIS type 1
  • the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is 2 types of industrial pure titanium JIS, the surface layers 3 and 4 contain Si, and the thickness has sufficient thickness of 5 micrometers or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is industrially pure titanium JIS3 type, the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is an industrially pure titanium JIS type 4, the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is industrial pure titanium JIS type 2
  • the surface layers 3 and 4 contain Si, and the thickness is 5 ⁇ m or more, but the Si content is 0.00. It is as high as 7%. Therefore, the oxidation increase with heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase with heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance. Cracks occur during cold rolling and cold rolling, and workability is degraded.
  • the inside 5 is industrial pure titanium JIS type 2
  • the surface layers 3 and 4 contain one or more kinds of Si, Nb, Ta, and Al, and the thickness thereof is 5 ⁇ m or more.
  • the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less
  • the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the hot rolling titanium material is subjected to electron beam melting, cast in a square mold, and then the surface corresponding to the rolling surface is cut and refined. Thickness 100 mm ⁇ width 1000 mm ⁇ length 4500 mm was used. After sprinkling a material composed of one or more of Nb, Si, and Al on the titanium material for hot rolling, the surface layer was melted and then held at a temperature of 300 ° C. for 1 hour or more.
  • the slab was heated to 820 ° C. and hot-rolled to a thickness of 5 mm, and then descaling treatment was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid. Further, cold rolling was performed to obtain a titanium plate having a thickness of 1.0 mm, and as an annealing treatment, a heat treatment was performed by heating to 600 to 700 ° C. in a vacuum or an inert gas atmosphere and holding for 240 minutes. No. Titanium composite materials 2 according to examples of the present invention shown in 67 to 69 were produced.
  • the inside 5 is an industrial pure titanium JIS type 1
  • the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is industrial pure titanium JIS type 2
  • the surface layers 3 and 4 contain Nb, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is an industrial pure titanium JIS type 3
  • the surface layers 3 and 4 contain Si and Al, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase by heating for 200 hours at 700 ° C. is 25 g / m 2 or less, and the oxidation increase by heating for 200 hours at 75 ° C. is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the titanium material for hot rolling was plasma-dissolved, and a thickness of 200 mm ⁇ width of 1000 mm ⁇ length of 4500 mm cast by a square mold was used.
  • a material composed of one or more of Nb, Si, and Al was sprayed on the titanium material for hot rolling, surface layer melting was performed, and then the material surface temperature was maintained at a temperature of 300 ° C. for 1 hour or more.
  • the titanium material for hot rolling is plasma-dissolved, casted with a square mold, and then cut and refined the surface corresponding to the rolling surface, using a thickness of 200 mm ⁇ width 1000 mm ⁇ length 4500 mm It was.
  • the material surface temperature was maintained at a temperature of 250 ° C. for 1 hour or more.
  • the slab was heated to 820 ° C. and hot-rolled to a thickness of 5 mm, and then descaling treatment was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid. Further, as an annealing treatment, a heat treatment was performed by heating to 600 to 700 ° C. in a vacuum or an inert gas atmosphere and holding for 240 minutes.
  • the inside 5 is an industrial pure titanium JIS type 1
  • the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is industrial pure titanium JIS type 2
  • the surface layers 3 and 4 contain Nb, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is an industrial pure titanium JIS3 type
  • the surface layers 3 and 4 contain Si and Al
  • the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the titanium material for hot rolling was made into a rectangular shape from the breakdown, and then a thickness of 200 mm ⁇ width of 1000 mm ⁇ length of 4500 mm obtained by cutting and refining the surface corresponding to the rolling surface was used. After the material containing each element made of Si was sprayed on the titanium material for hot rolling, surface melting was performed, and then the surface temperature of the titanium material for hot rolling was maintained at a temperature of 150 ° C. for 1 hour or more. No.
  • the thickness 50 mm ⁇ width 1000 mm ⁇ length 4500 mm obtained by cutting and refining the surface corresponding to the rolling surface was used.
  • the material containing each element made of Si was sprayed on the titanium material for hot rolling, surface melting was performed, and then the surface temperature of the titanium material for hot rolling was maintained at a temperature of 350 ° C. for 1 hour or more.
  • the slab was heated to 820 ° C. and hot-rolled to a thickness of 5 mm, and then descaling treatment was performed on both the front and back surfaces using shot blasting and nitric hydrofluoric acid. Further, as an annealing treatment, a heat treatment was performed by heating to 600 to 700 ° C. in a vacuum or an inert gas atmosphere and holding for 240 minutes.
  • the inside 5 is an industrial pure titanium JIS type 1
  • the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.
  • the inside 5 is industrial pure titanium JIS type 2
  • the surface layers 3 and 4 contain Si, and the thickness thereof is sufficient to be 5 ⁇ m or more. Therefore, the oxidation increase in heating at 700 ° C. for 200 hours is 25 g / m 2 or less, and the oxidation increase in heating at 750 ° C. for 200 hours is 70 g / m 2 or less, indicating excellent oxidation resistance.

Abstract

工業用純チタンまたはチタン合金からなる内層5と、内層5の少なくとも一方の表面に形成された内層5とは異なる化学組成を有する表層3と、内層5と表層3との間に形成され、内層5とは異なる化学組成を有する中間層と、を備え、表層3が、その厚さが2μm以上であり、全厚さに占める割合が片面あたり40%以下であり、中間層の厚さが0.5μm以上である、チタン複合材1。表層3の化学組成は、質量%で、Si:0.1~0.6%、Nb:0.1~2.0%、Ta:0.3~1.0%およびAl:0.3~1.5%から選択される一種以上、Sn:0~1.5%、Cu:0~1.5%、Fe:0~0.5%、残部:チタンおよび不純物である。このチタン複合材は、安価にも関わらず、耐酸化性を有する。

Description

チタン複合材および熱間圧延用チタン材
 本発明は、チタン複合材および熱間圧延用チタン材に関する。
 チタン材は、耐食性、耐酸化性、耐疲労性、耐水素脆化性、中性子遮断性などの特性に優れている。これらの特性は、チタンに様々な合金元素を添加することにより達成することができる。
 チタン材料は、その優れた比強度および耐食性から、航空機分野での利用が進んでおり、さらには、自動車および二輪車の排気装置にも多く使用されている。特に、従来のステンレス素材に代わり、車両軽量化の観点から、二輪車を中心としてJIS2種の工業用純チタン材が使われている。さらに、近年では、JIS2種の工業用純チタン材に代わって、より耐熱性が高い耐熱チタン合金が使用されている。また、排気ガスの有害成分除去のため、高温で使用する触媒を搭載したマフラーも使用されている。
 排気ガスの温度は700℃を超え、一時的には800℃にまで達することがある。そのため、排気装置に用いられる素材には、800℃前後の温度における強度、耐酸化性等が要求され、さらに600~700℃におけるクリープ速度の高温耐熱性の指標が重要視されるようになってきている。
 その一方で、こうした耐熱チタン合金は高温強度を向上させるため、Al、CuおよびNbといった高温強度および耐酸化性を向上させる元素を添加する必要があり、工業用純チタンに比べ高コストである。
 特開2001-234266号公報(特許文献1)には、Al:0.5~2.3%(本明細書では特に断りがない限り化学成分に関する「%」は「質量%」を意味する)を含む冷間加工性および高温強度に優れたチタン合金が開示されている。
 特開2001-89821号公報(特許文献2)には、Fe:1%超5%以下、O(酸素):0.05~0.75%を含み、さらにSi:0.01・e0.5[Fe]~5・e―0.5[Fe]を含む耐酸化性および耐食性に優れたチタン合金([Fe]は合金中の含有率(質量%)を示し、eは自然対数の定数を示す)が開示されている。
 特開2005-290548号公報(特許文献3)には、Al:0.30~1.50%、Si:0.10~1.0%を含有する冷間加工性に優れる耐熱チタン合金板およびその製造方法が開示されている。
 特開2009-68026号公報(特許文献4)には、Cu:0.5~1.8%、Si:0.1~0.6%、O:0.1%以下を含有し、必要に応じ、Nb:0.1~1.0%を含有し、残部がTi及び不可避的不純物からなる表面に保護膜を被覆したチタン合金が開示されている。
 さらに、特開2013-142183号公報(特許文献5)には、Si:0.1~0.6%、Fe:0.04~0.2%、O:0.02~0.15%を含有し、FeとOの含有量総量が0.1~0.3%であり、残部Tiおよび不可避不純物元素からなる700℃における高温強度、および800℃における耐酸化性に優れるチタン合金が開示されている。
 チタン材は、通常、以下に示す方法により製造される。まず、クロール法によって、原料である酸化チタンを塩素化して四塩化チタンとした後、マグネシウムまたはナトリウムで還元することにより、塊状でスポンジ状の金属チタン(スポンジチタン)を製造する。このスポンジチタンをプレス成形してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造する。この際必要に応じて合金元素が添加されて、チタン合金インゴットが製造される。この後、チタン合金インゴットを分塊、鍛造、圧延してチタンスラブとし、さらに、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延、および真空熱処理してチタン薄板が製造される。
 また、チタン薄板の製造方法として、チタンインゴットを分塊、水素化粉砕、脱水素、粉末解砕、および分級してチタン粉末を製造し、チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られる。
 特開2011-42828号公報(特許文献6)には、チタンインゴットではなくスポンジチタンから直接チタン粉末を製造し、得られるチタン粉末からチタン薄板を製造すべく、チタン金属粉、結着剤、可塑剤、溶剤を含む粘性組成物を薄板状に成形した焼結前成形体を焼結して焼結薄板を製造し、焼結薄板を圧密して焼結圧密薄板を製造し、焼結圧密薄板を再焼結するチタン薄板の製造方法において、焼結薄板の破断伸びを0.4%以上、密度比を80%以上とし、焼結圧密板の密度比を90%以上とする方法が開示されている。
 特開2014-19945号公報(特許文献7)には、チタン合金スクラップまたはチタン合金インゴットを原料としたチタン合金粉に、鉄粉、クロム粉または銅粉を適量添加して複合粉とし、複合粉を炭素鋼カプセル押出し、得られた丸棒の表面のカプセルを溶解除去した後、さらに溶体化処理あるいは、溶体化処理および時効処理を行うことにより、粉末法により品質の優れたチタン合金を製造する方法が開示されている。
 特開2001-131609号公報(特許文献8)には、スポンジチタン粉末を銅製カプセルに充填した後で押出比1.5以上、押出温度700℃以下で温間押出加工を施して成形し、外側の銅を除く外周加工を施し、成形体の粒界の全長の内20%以上が金属接触しているチタン成形体を製造する方法が開示されている。
 熱間圧延素材を熱間圧延するに際し、熱間圧延素材が純チタンまたはチタン合金のように熱間での延性不足で熱間変形抵抗値が高い、いわゆる難加工材である場合、これらを薄板に圧延する技術としてパック圧延方法が知られている。パック圧延方法とは、加工性の悪いチタン合金などのコア材を加工性の良い安価な炭素鋼などのカバー材で被覆し、熱間圧延する方法である。
 具体的には、例えば、コア材の表面に剥離剤を塗布し、少なくともその上下2面をカバー材で被覆するか、または、上下面の他に四周面をスペーサー材により覆い、周りを溶接して組み立て、熱間圧延する。パック圧延では、被圧延材であるコア材をカバー材で覆って熱間圧延する。そのため、コア材表面は冷えた媒体(大気またはロール)に直接触れることがなく、コア材の温度低下を抑制できるため、加工性の悪いコア材でも薄板の製造が可能になる。
 特開昭63-207401号公報(特許文献9)には、密閉被覆箱の組み立て方法が開示され、特開平09-136102号公報(特許文献10)には、10-3torrオーダー以上の真空度にしてカバー材を密封して密閉被覆箱を製造する方法が開示され、さらに、特開平11-057810号公報(特許文献11)には、炭素鋼(カバー材)で覆って10-2torrオーダー以下の真空下で高エネルギー密度溶接によって密封し、密閉被覆箱を製造する方法が開示されている。
 一方、耐食性の高い素材を安価に製造する方法として、チタン材を母材となる素材表面に接合する方法が知られている。
 特開平08-141754号公報(特許文献12)には、母材として鋼材を用いるとともに合わせ材としてチタンまたはチタン合金を用い、母材と合わせ材の接合面を真空排気した後に溶接して組み立てた圧延用組立スラブを、熱間圧延で接合するチタンクラッド鋼板の製造方法が開示されている。
 特開平11-170076号公報(特許文献13)には、0.03質量%以上の炭素を含有する母材鋼材の表面上に、純ニッケル、純鉄および炭素含有量が0.01質量%以下の低炭素鋼のうちのいずれかからなる厚さ20μm以上のインサート材を介在させてチタン箔材を積層配置した後、その積層方向のいずれか一方側からレーザビームを照射し、チタン箔材の少なくとも縁部近傍を全周にわたって母材鋼材と溶融接合させることによりチタン被覆鋼材を製造する方法が開示されている。
 特開2015-045040号公報(特許文献14)では、鋳塊状に成形された多孔質チタン原料(スポンジチタン)の表面を、真空下で電子ビームを用いて溶解して表層部を稠密なチタンとしたチタン鋳塊を製造し、これを熱間圧延および冷間圧延することにより、多孔質チタン原料が鋳塊状に成形された多孔質部と、稠密なチタンで構成されて多孔質部の全表面を被覆する稠密被覆部とを備える稠密なチタン素材(チタン鋳塊)を非常に少ないエネルギーで製造する方法が例示されている。
 特開昭62-270277号公報(特許文献15)には、溶射により、自動車用エンジン部材の表面効果処理をすることが記載されている。
特開2001-234266号公報 特開2001-89821号公報 特開2005-290548号公報 特開2009-68026号公報 特開2013-142183号公報 特開2011-42828号公報 特開2014-19945号公報 特開2001-131609号公報 特開昭63-207401号公報 特開平09-136102号公報 特開平11-057810号公報 特開平08-141754号公報 特開平11-170076号公報 特開2015-045040号公報 特開昭62-270277号公報
 特許文献1により開示されたチタン合金は、Alを添加しているため、成形加工性、特に肉厚が減じる方向で加工が起こる張り出し成形性に悪影響を与える。
 特許文献2により開示されたチタン合金では、FeとO合計含有量が多いため、室温における強度が800N/mmを超えて強すぎ、伸びも20%以下と成形性に乏しい。
 特許文献3により開示されたチタン合金では、上記と同様にAlが添加されているため冷間加工性、特に肉厚が減じる方向で加工が起こる張り出し成形性に悪影響を及ぼすおそれがある。
 特許文献4により開示されたチタン合金は、十分な加工性および耐酸化特性を有しているものの、高価なNbを多量に含有しているため、合金コストが高くなってしまう。
 さらに、特許文献5により開示されたチタン合金も十分な高温酸化特性を有しているものの、板全面が合金化しているため、合金コストが高くなってしまう。
 従来、熱間加工を経てチタン材を製造するに際しては、スポンジチタンをプレス成形してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造し、さらにチタンインゴットを分塊、鍛造、圧延してチタンスラブとし、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延することによって製造されていた。
 この場合、チタンを溶解してチタンインゴットを製造する工程が必ず加えられていた。チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られているが、チタンインゴットからチタン粉末を製造する方法では、やはりチタンを溶解する工程が加えられていた。
 チタン粉末からチタン材を製造する方法においては、たとえ溶解工程を経ないとしても、高価なチタン粉末を原料として用いるので、得られたチタン材は非常に高価になる。特許文献9~特許文献10に開示された方法でも同様である。
 パック圧延においては、カバー材で被覆されるコア材はあくまでスラブまたはインゴットであって、溶解工程を経ているか、高価なチタン粉末を原料としており、製造コストを低減することはできない。
 特許文献14では、非常に少ないエネルギーで稠密なチタン素材を製造することができるものの、鋳塊状に成形されたスポンジチタンの表面を溶解して稠密なチタン表層部および内部の成分は同種の純チタンまたはチタン合金と規定されており、例えば、表層部のみにチタン合金層を均一かつ広範囲に亘って形成することにより製造コストの低下を図ることはできない。
 一方、安価な耐食素材を製造できる、母材の表面にチタンまたはチタン合金を接合させた素材では、その多くが母材として鋼を選択している。そのため、表面のチタン層が失われると耐食性は損なわれてしまう。仮に、母材にもチタン材を採用したとしても、通常の製造工程を経て製造されるチタン材を用いる限り、抜本的なコスト改善は期待できない。そこで、本発明者らは、工業用純チタンまたはチタン合金からなるスラブの表層に、特定の合金元素を含有する合金層を設け、安価で特定性能に優れたチタン材を得ることを考えた。
 特許文献15のように、溶射は、金属、セラミックスなどを溶融し、チタン材表面に噴きつけて皮膜を形成させる方法である。この方法で皮膜を形成させた場合、皮膜中の気孔の形成を避けることができない。通常、溶射時には、皮膜の酸化を避けるため、不活性ガスでシールドしながら溶射が行われる。これら不活性ガスは、皮膜の気孔内に巻き込まれる。このような不活性ガスを内包する気孔は、熱間加工などで圧着しない。また、チタンの製造においては、一般的に真空熱処理が実施されるが、この処理時に、気孔内の不活性ガスが膨張して、皮膜が剥がれるおそれがある。本発明者らの経験上、溶射により生じる気孔の存在率(空隙率)は、数vol.%以上となり、溶射条件によっては10vol.%を超えることもある。このように、皮膜内の空隙率が高いチタン材は、製造工程において剥離する危険性があり、また、加工時の割れなどの欠損が生じるおそれがある。
 皮膜の形成方法としては、コールドスプレー法がある。この方法により表面に皮膜を形成する場合も、不活性の高圧ガスが使用される。この方法では、その条件によっては空隙率を1vol.%未満にすることも可能であるものの、気孔の発生を完全に防止することは極めて難しい。そして、溶射の場合と同様に、気孔は不活性ガスを内包しているため、その後の加工によっても消滅しない。また、真空中で熱処理を施した場合、気孔内の不活性ガスが膨張して、皮膜が割れるおそれがある。
 熱延時の表面疵を抑制するために、電子ビームを用いてスラブの表層を溶融し、再凝固させる処理として、溶融再凝固処理がある。通常、溶融再凝固した表層は、熱延後の酸洗工程で除去される。このため、従来の溶融再凝固処理では、表層部の合金成分の偏析について全く考慮されていない。
 そこで、本発明者らは、工業用純チタンまたはチタン合金からなるスラブの表面に、特定の合金元素を含有するチタン板を貼り付けたものを熱間圧延用素材とすることにより、安価で特定性能に優れたチタン材を得ることを考えた。
 本発明は、耐酸化性を向上させるために添加する合金元素の含有量(目標特性を発現する特定の合金元素の使用量)を低減し、かつ、チタン材の製造コストを抑制することにより、安価に耐酸化性を有するチタン複合材および熱間圧延用チタン材を得ることを目的としている。
 本発明は、上記課題を解決するためになされたものであり、下記のチタン複合材および熱間圧延用チタン材を要旨とする。
 (1)工業用純チタンまたはチタン合金からなる内層と、
 前記内層の少なくとも一方の圧延面に形成された前記内層とは異なる化学組成を有する表層と、
 前記内層と前記表層との間に形成され、前記内層とは異なる化学組成を有する中間層と、
を備えるチタン複合材であって、
 前記表層が、その厚さが2μm以上であり、全厚さに占める割合が片面あたり40%以下であり、
 前記表層部の化学組成が、質量%で、
Si:0.1~0.6%、
Nb:0.1~2.0%、
Ta:0.3~1.0%および
Al:0.3~1.5%から選択される一種以上、
Sn:0~1.5%、
Cu:0~1.5%、
Fe:0~0.5%、
残部:チタンおよび不純物であり、
 前記中間層の厚さが0.5μm以上である、
チタン複合材。
 (2)前記内層の圧延面以外の面に、他の表層が形成されており、
 前記他の表層が、前記表層と同一の化学組成を備える、
上記(1)のチタン複合材。
 (3)工業用純チタンまたはチタン合金からなる母材と、
 前記母材の少なくとも一方の圧延面に接合された表層材と、
 前記母材と前記表層材の周囲を接合する溶接部とを備える熱間圧延用チタン材であって、
 前記表層材が、前記母材とは異なる化学組成を有し、かつ、質量%で、
Si:0.1~0.6%、
Nb:0.1~2.0%、
Ta:0.3~1.0%および
Al:0.3~1.5%から選択される一種以上、
Sn:0~1.5%、
Cu:0~1.5%、
Fe:0~0.5%、
残部:チタンおよび不純物であり、
 前記溶接部が、前記母材と前記表層材の界面を外気から遮断する、
熱間圧延用チタン材。
 (4)前記母材の圧延面以外の面に、他の表層材が接合されており、
 前記他の表層材が、前記表層材と同一の化学組成を備える、
上記(3)の熱間圧延用チタン材。
 (5)前記母材が、直接鋳造スラブからなる、
上記(3)または(4)の熱間圧延用チタン材。
 (6)前記直接鋳造スラブが、表面の少なくとも一部に溶融再凝固層を形成したものである、
上記(5)の熱間圧延用チタン材。
 (7)前記溶融再凝固層の化学組成が、前記直接鋳造スラブの板厚中心部の化学組成とは異なる、
上記(6)熱間圧延用チタン材。
 本発明に係るチタン複合材は、工業用純チタンまたはチタン合金からなる内層と、内層とは異なる化学組成を有する表層を備えるものであるから、全体が同一のチタン合金からなるチタン材と比較して、同等の耐酸化性を有するが、安価に製造することができる。
図1は、本発明に係るチタン複合材の構成の一例を示す説明図である。 図2は、本発明に係るチタン複合材の構成の一例を示す説明図である。 図3は、チタン矩形鋳片とチタン板を真空中で溶接することにより、貼り合わせることを模式的に示す説明図である。 図4は、チタン矩形鋳片の表面だけでなく側面にもチタン板を溶接することにより、貼り合わせることを模式的に示す説明図である。 図5は溶融再凝固の方法を示す説明図である。 図6は溶融再凝固の方法を示す説明図である。 図7は溶融再凝固の方法を示す説明図である。
 本発明者らは、上記課題を解決するために、最終製品のチタン板の表層のみを合金化することにより、耐酸化性を発現する特定の合金元素の使用量を低減し、かつ、チタン材の製造コストを抑制するべく、鋭意検討を行った結果、工業用純チタンまたはチタン合金からなる母材と母材とは異なる化学組成を有する表層材とを、これらの界面が外気から遮断されるように母材および表層材の周囲を溶接した熱間圧延用チタン材を見出した。この熱間圧延用チタン材を熱間加工して得たチタン複合材は、安価に優れた耐酸化性を有するチタン材となる。
 本発明は上記の知見に基づいてなされたものである。以下、本発明に係るチタン複合材およびその熱間圧延用のチタン材を、図面を参照しながら説明する。なお、以降の説明では、各元素の含有量に関する「%」は特にことわりがない限り「質量%」を意味する。
 1.チタン複合材
 1-1.全体構成
 図1,2に示すように、チタン複合材1,2は、工業用純チタンまたはチタン合金からなる内層5と、内層5の少なくとも一方の圧延面に形成された内層5とは異なる化学組成を有する表層3,4と、内層5と表層3,4との間に形成され、内層5とは異なる化学組成を有する中間層(図示省略)とを備える。なお、図1,2に示す例では、内層5の一方または両方の圧延面に表層を形成した例を示しているが、内層5の圧延面以外の面(図1,2に示す例では側面)に他の表層(図示省略)を設けてもよい。以下、表層、内層、中間層を順次説明する。
 表層の厚さが薄すぎると、所望の特性が十分に得られない。一方、厚すぎると、チタン複合材全体に占めるチタン合金の割合が増すため、コストメリットが小さくなる。そのため、その厚さは2μm以上とし、全厚さに占める割合は片面あたり40%以下とする。
 1-2.表層
 (厚さ)
 表層のうち外部環境に接する表層の厚さが薄過ぎると、耐酸化性が十分に得られない。表層の厚さは製造に用いる素材の厚さ、またはその後の加工率によって変化するが、2μm以上あれば十分効果を発揮する。表層の厚さは、5μm以上であることが望ましく、10μm以上であることがより望ましい。
 一方、表層が厚い場合には耐酸化性には問題はないが、チタン複合材全体に占めるチタン合金の割合が増すため、コストメリットが小さくなる。このため、チタン複合材の全厚さに対する表層の厚さの割合は、片面あたり40%以下とし、30%以下であることがより望ましい。
 (化学成分)
 本発明に係るチタン複合材1では、表層の少なくとも一方(少なくとも外部環境に接する表層)の耐酸化性を高めるために、以下に掲げる各種合金元素を含有させてもよい。
 Si:0.1~0.6%
 Siは、600~800℃における高温での耐酸化性を向上させる作用を有する。Si含有量が0.1%未満であると、耐酸化性の向上代が少ない。一方、Si含有量が0.6%を超えると、耐酸化性への影響が飽和するとともに、室温のみならず高温での加工性が著しく低下する。よって、Siを含有させる場合にはその含有量を0.1~0.6%とする。Si含有量は0.15%以上であるのが好ましく、0.20%以上であるのがより好ましい。また、0.55%以下であるのが好ましく、0.50%以下であるのがより好ましい。
 Nb:0.1~2.0%
 Nbも、高温での耐酸化性を向上させる作用を有する。耐酸化性を向上させるために、Nb含有量は0.1%以上とする。一方、Nb含有量が2.0%を超えて含有させても効果が飽和するうえ、Nbは高価な添加元素であるため、合金コストの増加に繋がる。よって、Nbを含有させる場合にはその含有量は0.1~2.0%とする。Nb含有量は0.3%以上であるのが好ましく、0.5%以上であるのがより好ましい。また、1.5%以下であるのが好ましく、1.0%以下であるのがより好ましい。
 Ta:0.3~1.0%
 Taも、高温での耐酸化性を向上させる作用を有する。耐酸化性を向上させるために、Ta含有量は0.3%以上とする。一方、Ta含有量が1.0%を超えて含有させても、Taは高価な添加元素であるため、合金コストの増加に繋がるだけでなく、熱処理温度によってはβ相の生成が懸念される。よって、Taを含有させる場合にはその含有量は0.3~1.0%とする。Ta含有量は0.4%以上であるのが好ましく、0.5%以上であるのがより好ましい。また、0.9%以下であるのが好ましく、0.8%以下であるのがより好ましい。
 Al:0.3~1.5%
 Alも高温での耐酸化性を向上させる元素である。その一方で、Alは多量に含有すると室温での延性を著しく低下させる。Al含有量が0.3%以上であれば十分に耐酸化特性を発現する。また、Al含有量が1.5%以下であれば、冷間での加工を十分に担保できる。よって、Alを含有させる場合にはその含有量を0.3~1.5%とする。Al含有量は0.4%以上であるのが好ましく、0.5%以上であるのがより好ましい。また、1.2%以下であるのが好ましい。
 なお、Si、Nb、TaおよびAlは、それぞれ単独でも含有すれば耐酸化性は向上するが、複合して含有することにより、耐高温酸化性をさらに向上させることができる。
 上記の元素に加え、Sn、CuおよびFeから選択される1種以上を含有させてもよい。
 Sn:0~1.5%
 Snは、α相安定化元素であり、かつ、Cuと同様に、高温強度を高める元素である。しかしながら、Sn含有量が1.5%を超えると、双晶変形を抑止し、室温での加工性を低下させる。そのため、Snを含有させる場合にはその含有量は1.5%以下とする。Sn含有量は1.3%以下であるの好ましく、1.2%以下であるのがより好まし)い。上記の効果を得たい場合には、Sn含有量は0.2%以上であるのが好ましく、0.5%以上であるのがより好ましい。
 Cu:0~1.5%
 Cuは、高温強度を高める元素である。また、α相に一定程度固溶するため、高温で使用した際にもβ相を生成しない。しかしながら、Cu含有量が1.5%を超えると、温度によってはβ相を生成してしまう。そのため、Cuを含有させる場合にはその含有量は1.5%以下とする。Cu含有量は1.4%以下であるのが好ましく、1.2%以下であるのがより好ましい。上記の効果を得たい場合には、Cn含有量は0.2%以上であるのが好ましく、0.4%以上であるのがより好ましい。
 Fe:0~0.5%
 Feは、β相安定化元素であるが、少量であればβ相の生成が少なく、耐酸化性に大きな影響を与えない。しかしながら、Fe含有量が0.5%を超えるとβ相の生成量が多くなり、耐酸化性を劣化させる。そのため、Feを含有させる場合にはその含有量は0.5%以下とする。Fe含有量は0.4%以下であるのが好ましく、0.3%以下であるのがより好ましい。
 Sn、CuおよびFeの合計含有量が2.5%を超えると、室温での加工性を低下させ、温度によってはβ相が生成するようになる。このため、Sn、CuおよびFeから選択される1種以上を含有させる場合には、その合計含有量を2.5%以下とするのが好ましい。
 上記以外の残部は、不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてCr、V、Cr、MnおよびMo等があり、一般的な不純物元素であるC、N、OおよびHと併せて、総量で5%以下であれば許容される。
 1-3.内層
 内層5には、工業用純チタンまたはチタン合金からなる。例えば、内層5に工業用純チタンを用いると、全体が同一のチタン合金からなるチタン材と比べて、室温での加工性に優れる。
 なお、ここでいう工業用純チタンは、JIS規格の1種~4種、およびそれに対応するASTM規格のGrade1~4、DIN規格の3・7025,3・7035、3・7055で規定される工業用純チタンを含むものとする。すなわち、本発明で対象とする工業用純チタンは、例えば、C:0.1%以下、H:0.015%以下、O:0.4%以下、N:0.07%以下、Fe:0.5%以下、残部Tiからなるものである。
 また、特定の性能に加え、強度も要求される用途に供される場合には、内層5にチタン合金を用いてもよい。表層のB含有量を高めるとともに内層5をチタン合金により構成することにより、合金コストを大幅に削減できるとともに、高強度を得ることができる。
 内層5をなすチタン合金には、必要とする用途に応じて、α型チタン合金、α+β型チタン合金、β型チタン合金のいずれも用いることが可能である。
 ここで、α型チタン合金としては、例えば高耐食性合金(ASTM Grade 7、11、16、26、13、30、33あるいはこれらに対応するJIS種や更に種々の元素を少量含有させたチタン材)、Ti-0.5Cu、Ti-1.0Cu、Ti-1.0Cu-0.5Nb、Ti-1.0Cu-1.0Sn-0.3Si-0.25Nb、Ti-0.5Al-0.45Si、Ti-0.9Al-0.35Si、Ti-3Al-2.5V、Ti-5Al-2.5Sn、Ti-6Al-2Sn-4Zr-2Mo、Ti-6Al-2.75Sn-4Zr-0.4Mo-0.45Siなどを用いることができる。
 α+β型チタン合金としては、例えば、Ti-6Al-4V、Ti-6Al-6V-2Sn、Ti-6Al-7V、Ti-3Al-5V、Ti-5Al-2Sn-2Zr-4Mo-4Cr、Ti-6Al-2Sn-4Zr-6Mo、Ti-1Fe-0.35O、Ti-1.5Fe-0.5O、Ti-5Al-1Fe、Ti-5Al-1Fe-0.3Si、Ti-5Al-2Fe、Ti-5Al-2Fe-0.3Si、Ti-5Al-2Fe-3Mo、Ti-4.5Al-2Fe-2V-3Moなどを用いることができる。
 さらに、β型チタン合金としては、例えば、Ti-11.5Mo-6Zr-4.5Sn,Ti-8V-3Al-6Cr-4Mo-4Zr,Ti-10V-2Fe-3Mo,Ti-13V-11Cr-3Al,Ti-15V-3Al-3Cr-3Sn,Ti-6.8Mo-4.5Fe-1.5Al、Ti-20V-4Al-1Sn、Ti-22V-4Alな どを用いることができる。
 ただし、内層5の0.2%耐力が1000MPaを超えると、加工性が悪化し、例えば、曲げ加工時に割れが生じる恐れがある。そのため、内層5に用いるチタンおよびチタン合金は、0.2%耐力が1000MPa以下であることが望ましい。
 1-4.中間層
 本発明のチタン複合材は、前記内層と前記表層との間に中間層を備えている。すなわち、後述する熱間圧延用チタン材は、母材に表層材を貼り付け周囲を溶接したものであるが、その後の熱延加熱時、および、冷延後の熱処理工程において、母材と表層材との界面で拡散が生じ、最終的にチタン複合材に仕上げた時には、上記母材由来の内層と、上記表層材由来の表層との間には中間層が形成される。この中間層は、母材の化学組成とは異なる化学組成を有している。この中間層が、上記内層と上記表層とを金属結合させ、強固に接合する。また、中間層では連続した元素勾配を生じるため、上記内層と上記表層との強度差を和らげることができ、加工時の割れを抑制することができる。
 なお、中間層の厚さは、EPMAまたはGDSを用いて測定することができる。GDSを用いればより詳細な測定が可能である。GDSの場合は表層をある程度、研磨で除去した後、表面から深さ方向にGDS分析を行うことで中間層の厚みを測定することが可能である。中間層とは、母材からの増加含有量(母材には含まれない元素の場合は、その含有量、母材にも含まれる元素の場合には、母材からの含有量の増加分)をCMIDとし、表層部における増加含有量の平均をCAVEとするとき、0<CMID≦0.8×CAVEの領域を意味する。
 この中間層の厚さは、0.5μm以上とする。一方、中間層の厚みが大きくなり過ぎると、その分だけ表層の合金層が薄くなってしまい効果を発現しない場合がある。よって、その上限は15μmとするのがよい。
 2.熱間圧延用チタン材
 本発明の熱間圧延用チタン材は、熱間圧延に供される素材(スラブ、ブルーム、ビレットなどの鋳片)であり、熱間圧延後、必要に応じて、冷間加工、熱処理などを施して、チタン複合材に加工される。以下、図面を用いて、本発明本発明の熱間圧延用チタン材を説明する。また、以下の説明において、各元素の含有量に関する「%」は「質量%」を意味する。
 2-1.全体構成
 図3は、母材(チタン矩形鋳片、スラブ)6と表層材(チタン板)7を真空中で溶接することにより貼り合わせることを模式的に示す説明図であり、図4は、母材(チタン矩形鋳片、スラブ)6の表面(圧延面)だけでなく側面(圧延面以外の面)にも表層材(チタン板)7,8を溶接することにより貼り合わせることを模式的に示す説明図である。
 本発明では、図3,4に示すように、母材であるスラブ6の表面に耐酸化性を発現する合金元素を含有したチタン板7,8を貼り合わせた後、熱延クラッド法により接合させることによりチタン複合材1,2の表層を合金化する。
 図1に示すチタン複合材1を製造する場合には、図3に示すようにスラブ6の片面にのみチタン板7を真空中で貼り合わせればよく、スラブ6のもう片面にはチタン板7を貼り付けずに熱間圧延してもよい。
 図4に示すように、スラブ6の片面とともにもう片面にもチタン板7を貼り合わせてもよい。これにより、上述したように熱間圧延工程での熱延疵の発生を抑制できる。
 さらに、図2に示すチタン複合材2を製造する場合には、図4に示すようにスラブ6の両圧延面に合金元素を含有する板を貼り合わせればよい。
 さらに、図4に示すように、熱間圧延時のエッジ側となるスラブ6の側面についても、圧延面と同様に同一規格のチタン板8を真空中で貼り合わせて溶接してもよい。
 すなわち、熱間圧延においては、通常、スラブ6に圧下が加えられることによって、スラブ6の側面の少なくとも一部が熱延板の表面側に回り込む。そのため、スラブ6の側面の表層の組織が粗大であったり、多数の欠陥が存在していたりすると、熱延板の幅方向の両端近くの表面に表面疵が発生する可能性がある。このため、スラブ6の側面にもチタン板8を真空中で貼り合わせて溶接することによって、熱延板の幅方向の両端近くの表面における表面疵の発生を有効に防止できる。
 なお、熱間圧延時にスラブ6の側面が回り込む量は、製造方法により異なるが、通常は20~30mm程度であるため、スラブ6の側面全面にチタン板8を貼り付ける必要はなく、製造方法に則した回り込み量に相当する部分にのみチタン板8を貼り付ければよい。
 2-2.表層材
 チタン複合材1,2を製造する際には、熱間圧延により形成した酸化層を除去するため、熱間圧延後にショット-酸洗の工程を経て製造される。しかしながら、この工程の際に熱延クラッドにより形成した表層が除去されてしまうと、耐酸化性を発現させることができない。
 また、チタン複合材1,2の表層の厚みが薄くなり過ぎると、狙いとする耐酸化性を発現しなくなってしまう。一方で、表層の厚みが厚過ぎると、その分だけ製造コストが増加する。チタン複合材1,2が使用目的に合わせた表層の厚みを有すればよいことから、素材として使用するチタン板7,8の厚さは、特に限定する必要はないが、スラブ6の厚みの5~40%の範囲にあることが好ましい。
 表層材(チタン板)としては、前記のチタン複合材の表層の項で説明した所定の化学組成を有するチタン板を用いる。特に、チタン板の化学組成は、熱間圧延での板破断を抑制するため、上記の母材と同様の成分を基本とし、これに所定の元素が含有されている成分に調整することが望ましい
 2-3.母材(スラブ)
 母材としては、前記のチタン複合材の内層の項で説明した工業用純チタンまたはチタン合金を用いる。特に、母材として直接鋳造スラブを用いるのがよい。直接鋳造スラブは、表面の少なくとも一部に溶融再凝固層を形成したものであってもよい。また、直接鋳造スラブの表面に溶融再凝固処理を実施する際に所定の元素を添加して、直接鋳造スラブの板厚中心部とは異なる化学組成を有する溶融再凝固層を形成したものであってもよい。
 2-4.溶接部
 スラブ6の圧延面に当たる表面に、合金元素を含有するチタン板7を貼り合わせた後、真空容器内で、少なくとも周囲を溶接部9により溶接することによって、スラブ6とチタン板7,8の間を真空で密閉し、外気と遮断し、圧延することによりスラブ6とチタン板7,8とを貼り合わせる。スラブ6にチタン板7,8を貼り合わせた後に接合する溶接部は、スラブ6とチタン板7,8の界面を大気から遮断するように、例えば、図3,4に示すように全周を溶接する。
 チタンは活性な金属であるため、大気中に放置すると表面に強固な不動態皮膜を形成する。この表面部の酸化濃化層を除去することは不可能である。しかし、ステンレス等とは異なり、チタンには酸素が固溶し易いため、真空中で密閉されて外部からの酸素の供給が無い状態で加熱されると、表面の酸素は内部に拡散し固溶するため、表面に形成した不動態皮膜は消滅する。そのため、スラブ6とその表面のチタン板7,8とは、その間に介在物なども発生せずに、熱延クラッド法により完全に密着することができる。
 さらに、スラブ6として鋳造ままのスラブを用いると、凝固時に生成した粗大な結晶粒に起因し、その後の熱間圧延工程で表面疵が発生してしまう。これに対し、本発明のようにスラブ6の圧延面にチタン板7,8を貼り合わせると、貼り合わせたチタン板7が微細な組織を有するために熱間圧延工程での表面疵も抑制できる。
 3.熱間圧延用チタン材の製造方法
 3-1.母材の製造方法
 熱間圧延用チタン材の母材は、通常、インゴットをブレークダウンによりスラブやビレット形状にした後、切削精整して製造される。また、近年ではインゴット製造時に直接熱延可能な矩形スラブを製造し、熱延に供されることもある。ブレークダウンにより製造された場合、ブレークダウンにより表面が比較的平坦になっているため、合金元素を含有する素材を比較的均一に散布し易く、合金相の元素分布を均一にしやすい。
 一方、鋳造時に熱延用素材の形状に直接製造された鋳塊(直接鋳造スラブ)を母材として用いる場合、切削精整工程を省略できるため、より安価に製造することができる。また、鋳塊を製造後に、表面を切削精整してから用いれば、ブレークダウンを経て製造した場合同様の効果が期待できる。本発明においては、表層に安定的に合金層が形成すればよく、状況に合わせて適切な素材を選べばよい。
 例えば、スラブを組み立て、周囲を溶接した後、700~850℃に加熱し10~30%の接合圧延を行い、その後β域温度で3~10時間加熱し母材成分を表層部に拡散させた後に、熱間圧延を行うことが好ましい。β域温度で熱間圧延を行うことによって、変形抵抗が低くなり圧延し易くなるからである。
 母材として用いる直接鋳造スラブは、表面の少なくとも一部に溶融再凝固層を形成したものであってもよい。また、直接鋳造スラブの表面に溶融再凝固処理を実施する際に所定の元素を添加して、直接鋳造スラブの板厚中心部とは異なる化学組成を有する溶融再凝固層を形成したものであってもよい。以下、溶融再凝固処理について詳しく説明する。
 図5~7は、いずれも溶融再凝固の方法を示す説明図である。熱間圧延用チタン材の母材表面を溶融再凝固させる方法としては、レーザー加熱、プラズマ加熱、誘導加熱、電子ビーム加熱などがあり、いずれかの方法で行えばよい。特に、特に電子ビーム加熱の場合、高真空中で行うため、溶融再凝固処理の際に、この層にボイド等を形成しても、真空であるため、後の圧延で圧着し無害化できる。
 さらに、エネルギー効率が高いことから大面積を処理しても深く溶融させることができるため、特にチタン複合材の製造に適している。真空中で溶融する場合の真空度は、3×10-3Torr以下のより高い真空度であることが望ましい。また、熱間圧延用チタン材の表層を溶融再凝固する回数については、特に制限はない。ただし、回数が多くなるほど、処理時間が長くなりコスト増につながるため、1回ないし2回であることが望ましい。
 表層の溶融再凝固法は、矩形のスラブの場合では図5に示しているように実施する。すなわち、矩形スラブ10の外表面のうち、少なくとも熱間圧延工程での圧延面(熱延ロールに接する面)となる幅広な2面10A,10Bについて、電子ビームを照射して、その面における表面層のみを溶融させる。ここでは先ずその2面10A,10Bのうちの一方の面10Aについて実施するものとする。
 ここで、図5に示しているように、矩形鋳片10の面10Aに対する一基の電子ビーム照射ガン12による電子ビームの照射領域14の面積は、照射すべき面10Aの全面積と比較して格段に小さいのが通常である、そこで、実際には、電子ビーム照射ガン12を連続的に移動させながら、または、矩形鋳片10を連続的に移動させながら、電子ビーム照射を行なうのが通常である。この照射領域は、電子ビームの焦点を調整することによって、あるいは電磁レンズを使用して小ビームを高周波数で振動(オシレーション Oscillation)させてビーム束を形成させることによって、その形状や面積を調整することができる。
 そして、図5中の矢印Aで示しているように、電子ビーム照射ガン12を連続的に移動させるものとして、以下の説明を進める。なお電子ビーム照射ガンの移動方向は特に限定されないが、一般には矩形鋳片10の長さ方向(通常は鋳造方向D)または幅方向(通常は鋳造方向Dと垂直な方向)に沿って連続的に移動させ、前記照射領域14の幅W(円形ビームまたはビーム束の場合は、直径W)で連続的に帯状に照射する。さらにその隣の未照射の帯状領域について逆方向(もしくは同方向)に照射ガン12を連続的に移動させながら帯状に電子ビーム照射を行なう。また場合によっては複数の照射ガンを用いて、同時に複数の領域について同時に電子ビーム照射を行なっても良い。図5では、矩形鋳片10の長さ方向(通常は鋳造方向D)に沿って矩形ビームを連続的に移動させる場合を示している。
 このような表層加熱処理工程によって矩形チタン鋳片10の表面(面10A)に電子ビームを照射して、その表面を溶融するように加熱すれば、図6の中央左寄りに示すように、矩形チタン鋳片10の面10Aの表面層が、入熱量に応じた深さだけ最大溶融される。しかしながら、電子ビームの照射方向に対して垂直方向からの深さは図7に示すように一定ではなく、電子ビーム照射の中央部が最も深さが大きくなり、帯状の端部に行くほどその厚みが減少する、下に凸の湾曲形状となる。
 またその溶融層16よりも鋳片内部側の領域も、電子ビーム照射による熱影響によって温度上昇し、純チタンのβ変態点以上の温度となった部分(熱影響層=HAZ層)がβ相に変態する。このように表層加熱処理工程での電子ビーム照射による熱影響によってβ相に変態した領域も、溶融層16の形状と同様に下に凸の湾曲形状となる。
 表層を、目的とする合金元素から成る素材とともに溶融再凝固を行うことにより、熱間圧延用素材表層を合金化し、母材とは異なる化学組成の合金層を形成することができる。この際に用いる素材としては、粉末、チップ、ワイヤー、薄膜、切り粉、メッシュのうちの1種以上を用いればよい。溶融前に配置する材料の成分および量については、素材表面とともに溶融し凝固した後の元素濃化領域の成分が目標成分となるように定める。
 ただし、この添加する素材が大きすぎると、合金成分の偏析の原因となる。そして、合金成分の偏析が存在すると、所望の性能を十分に発揮できないか、劣化が早まってしまう。このため、チタン母材表面の被加熱部位が溶融状態にあるうちに、合金素材が溶融し終えるサイズにすることが重要である。また、特定の時間における溶融部の形状および広さを考慮した上で、上記合金素材をチタン母材表面に均等に配置しておくことが重要である。しかしながら、電子ビームを使って照射位置を連続的に移動させる場合には、溶融部は溶融したチタンおよび合金とともに連続的に移動しながら攪拌されるため、合金素材は必ずしも連続的に配置しておく必要はない。そのほか、チタンの融点よりも極端に高い融点を有する合金素材の使用は避けなければならないことは当然である。
 溶融再凝固処理後は、100℃以上500℃未満の温度で1時間以上保持するのがよい。溶融再凝固後、急激に冷却すると凝固時の歪で表層部に微細な割れが発生するおそれがある。その後の熱延工程や冷延工程において、この微細な割れが起点となって、表層の剥離が発生する、部分的に合金層が薄い部位が発生するなど、特性が劣化するおそれがある。また、微細な割れによって内部が酸化すると、酸洗工程で除去する必要があり、合金層の厚さをさらに減少させる。上記の温度で保持することで表面の微細な割れを抑制できる。また、この温度であれば大気中で保持しても大気酸化は殆どしない。
 溶融再凝固処理によって形成した表層部を備える母材表面に所定の合金成分を含有するチタン板を貼り付けることにより熱間圧延用チタン材を製造することができる。
 3-2.熱延クラッド法
 熱間圧延用チタン材は、熱延クラッド法により、予め、周囲を溶接したスラブ6とチタン板7,8を接合するのがよい。
 図3,4に示すように、スラブ6の表層に特性を発現する合金元素を含有したチタン板7,8を貼り合わせた後、熱延クラッド法により接合させることによりチタン複合材の表層を合金化する。すなわち、スラブ6の圧延面に当たる表面に、合金元素を含有するチタン板7を貼り合わせた後、好ましくは真空容器内で、少なくとも周囲を溶接部9により溶接することによって、スラブ6とチタン板7の間を真空で密閉し、圧延することによりスラブ6とチタン板7とを貼り合わせる。スラブ6にチタン板7を貼り合わせる溶接は、スラブ6とチタン板7の間に大気が侵入しないよう、例えば、図3,4に示すように全周を溶接する。
 チタンは活性な金属であるため、大気中に放置すると表面に強固な不動態皮膜を形成する。この表面部の酸化濃化層を除去することは不可能である。しかし、ステンレス等とは異なり、チタンには酸素が固溶し易いため、真空中で密閉されて外部からの酸素の供給が無い状態で加熱されると、表面の酸素は内部に拡散し固溶するため、表面に形成した不動態皮膜は消滅する。そのため、スラブ6とその表面のチタン板7とは、その間に介在物なども発生せずに、熱延クラッド法により完全に密着することができる。
 さらに、スラブ6として鋳造ままのスラブを用いると、凝固時に生成した粗大な結晶粒に起因し、その後の熱間圧延工程で表面疵が発生してしまう。これに対し、本発明のようにスラブ6の圧延面にチタン板7を貼り合わせると、貼り合わせたチタン板7が微細な組織を有するために熱間圧延工程での表面疵も抑制できる。
 図3に示すように、スラブ6の片面たけでなく両面にチタン板7を貼り合わせてもよい。これにより、上述したように熱間圧延工程での熱延疵の発生を抑制できる。熱間圧延においては、通常、スラブ6に圧下されることによって、スラブ6の側面の少なくとも一部が熱延板の表面側に回り込む。そのため、スラブ6の側面の表層の組織が粗大であったり、多数の欠陥が存在していたりすると、熱延板の幅方向の両端近くの表面に表面疵が発生する可能性がある。このため、図4に示すように、熱間圧延時のエッジ側となるスラブ6の側面についても、圧延面と同様に同一規格のチタン板8を貼り合わせて溶接するのがよい。これにより、熱延板の幅方向の両端近くの表面における表面疵の発生を有効に防止できる。この溶接は、真空中で行うのが好ましい。
 なお、熱間圧延時にスラブ6の側面が回り込む量は、製造方法により異なるが、通常は20~30mm程度であるため、スラブ6の側面全面にチタン板8を貼り付ける必要はなく、製造方法に則した回り込み量に相当する部分にのみチタン板8を貼り付ければよい。熱間圧延以降に高温長時間焼鈍を行うことにより、母材由来成分をチタン複合材の内部に含有させることができる。例えば700~900℃で30時間の熱処理が例示される。
スラブ6とチタン板7,8を真空中で溶接する方法は、電子ビーム溶接やプラズマ溶接などがある。特に電子ビーム溶接は、高真空下で実施できることから、スラブ6とチタン板7,8との間を高真空にすることができるため、望ましい。チタン板7,8を真空中で溶接する場合の真空度は3×10-3Torr以下のより高い真空度であることが望ましい。
 なお、スラブ6とチタン板7との溶接は、必ずしも真空容器内で行う必要はなく、例えば、チタン板7の内部に真空吸引用孔を設けておき、チタン板7をスラブ6と重ね合わせた後に、真空吸引孔を用いてスラブ6とチタン板7との間を真空引きしながらスラブ6とチタン板7とを溶接し、溶接後に真空吸引孔を封止してもよい。
 クラッドとしてスラブ6の表面に目的とする合金元素を有するチタン板7,8を使用し、熱延クラッドによりチタン複合材1,2の表層に合金層を形成する場合、表層の厚みや化学成分は貼り合わせる前のチタン板7,8の厚みや合金元素の分布に依存する。もちろん、チタン板7,8を製造する際には、最終的に必要とする強度や延性を得るために、真空雰囲気などで焼鈍処理が施されるため、界面での拡散を生じ、界面近傍では深さ方向に濃度勾配を生じる。
 しかしながら、最終焼鈍工程で生じる元素の拡散距離は数μm程度であり、合金層の厚み全体が拡散するわけではなく、特に特性発現に重要となる表層の近傍の合金元素の濃度には影響しない。
 このため、チタン板7,8全体での合金成分の均一性が特性の安定的な発現につながる。熱延クラッドの場合、製品として製造されたチタン板7,8を使用することが可能であるため、板厚精度はもちろんのこと、合金成分の偏析をコントロールし易く、製造後に均一な厚みかつ化学成分を有する表層を備えるチタン複合材1,2を製造することが可能であり、安定した特性を発現できる。
 また、上述したように、チタン複合材1,2の表層と内層5との間に介在物が発生しないことから、密着性の他、割れや疲労などの起点になることもない。
 3.チタン複合材の製造方法
 スラブ表面にチタン板を貼り付けることにより形成した合金層を最終製品として残存させることが重要であり、スケールロスや表面疵による表面層の除去を可能な限り抑制する必要がある。具体的には、下記のような熱間圧延工程上の工夫を、生産に使用する設備の特性や能力を考慮した上で最適化し適宜採用することにより、達成される。
 4-1.加熱工程
 熱間圧延用素材を加熱する際には低温短時間加熱を行うことによりスケールロスを低く抑制できるが、チタン材は熱伝導が小さくスラブ内部が低温状態で熱間圧延を行うと内部で割れが発生し易くなる欠点もあり、使用する加熱炉の性能や特性に合わせてスケール発生を最小限に抑制するように最適化する。
 4-2.熱間圧延工程
 熱間圧延工程においても、表面温度が高すぎると通板時にスケールが多く生成し、スケールロスが大きくなる。一方で、低すぎると、スケールロスは小さくなるが、表面疵が発生し易くなるため、後工程の酸洗で除去する必要があり、表面疵が抑制できる温度範囲で熱間圧延することが望ましい。そのため、最適温度域で圧延することが望ましい。また、圧延中にチタン材の表面温度が低下するため、圧延中のロール冷却は最小限とし、チタン材の表面温度の低下を抑制することが望ましい。
 4-3.酸洗工程
 熱間圧延された板には、表面に酸化層があるため、その後の工程で酸化層を除去するデスケーリングの工程がある。チタンでは主に、ショットブラスト後に、硝ふっ酸溶液による酸洗で酸化層を除去するのが一般的である。また、場合によっては酸洗後に砥石研磨により表面を研削する場合もある。デスケーリング後に、熱間圧延用チタン材の母材および表層部に由来する、内層および表層からなる、2層または3層構造となっていればよい。
 熱間圧延工程で生成したスケールは厚いため、通常は酸洗処理の前処理としてショットブラスト処理を行い表面のスケールの一部を除去すると同時に、表面にクラックを形成させ、その後の酸洗工程で液をクラックに浸透させ、母材の一部も含めて除去している。このとき、母材表面にクラックを生じさせないに弱いブラスト処理を行うことが重要であり、チタン材表面の化学成分に応じて最適なブラスト条件を選択する必要がある。具体的には、例えば適正な投射材の選択や投射速度(エンペラーの回転速度で調整可能)を最適化することによって、母材にクラックが生じない条件を選択する。これらの条件の最適化は、スラブ表面に貼り付けたチタン板の特性によって異なるため、予め最適条件をそれぞれ決めておけばよい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 図2に示すチタン複合材2を以下の手順で製造した。
 すなわち、電子ビーム溶解を行い、角型鋳型にて鋳造した厚さ200mm×幅1000mm×長さ4500mmの寸法を有する、図4に示すスラブ6の表面に、Si,Nb,Taを少なくとも一種以上を含有するチタン合金板7を、真空中で溶接した。No.3および4の実施例においては、スラブ6の側面にもチタン合金板8を真空中で溶接した。その後、チタン合金板7,8を溶接されたスラブ6を820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~750℃まで加熱し、240分間保持する熱処理を行うことにより、表1に示すNo.1~20の実施例(本発明例)および比較例の供試材であるチタン複合材2を製造した。
Figure JPOXMLDOC01-appb-T000001
 これらの供試材1~21から20mm×20mmの試験片を切り出し、その表面と端部を#400のサンドペーパーで研磨した後、700℃,750℃の各温度に大気中に200時間暴露し、試験前後の重量の変化を測定し、単位断面積あたりの酸化増量を求めた。結果を表1に併せて示す。なお、表1における表層3,4の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
 表1のNo.1の比較例は、内部5が工業用純チタンJIS2種からなり、表層3,4を有していない。そのため、700℃における200時間の加熱での酸化増量は40g/m以上、750℃における200時間の加熱での酸化増量は100g/m以上と非常に高い。
 No.2の比較例は、内部5が工業用純チタンJIS2種からなり、表層3,4が、Siを含有するが、その厚みが1μmと非常に薄い。また、中間層の厚みも非常に薄い。そのため、700℃における200時間の加熱での酸化増量は40g/m以上、750℃における200時間の加熱での酸化増量は100g/m以上と非常に高い。
 No.3の本発明例は、内部5が工業用純チタンJIS1種からなり、表層3,4が、Siを含有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.4の本発明例は、内部5が工業用純チタンJIS2種からなり、表層3,4が、Siを含有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.5の本発明例は、内部5が工業用純チタンJIS3種からなり、表層3,4が、Siを含有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.6の本発明例は、内部5が工業用純チタンJIS3種からなり、表層3,4が、Siを含有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.7の比較例は、内部5が工業用純チタンJIS2種からなり、表層3,4が、Siを含有しているものの、表層3,4のSi含有量が0.7%と高い。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示しているが、熱間圧延時および冷間圧延時に割れが発生し、加工性が劣化している。
 No.8~21の本発明例は、内部5が工業用純チタンJIS2種からなり、表層3,4が、Si,Nb,Ta,Alを1種類以上含有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 図2に示すチタン複合材2を以下の手順で製造した。
 すなわち、No.22および23の本発明例では、スラブ6は電子ビーム溶解を行い、角型鋳型にて鋳造した後、圧延面に当たる面を切削整精した厚さ200mm×幅1000mm×長さ4500mmの寸法を有する、図3に示すスラブ6の表面に、Si,Nb,Ta,Alを少なくとも一種類以上含有するチタン合金板7を真空中で溶接した。また、No.24の本発明例では電子ビーム溶解を行い、角型鋳型にて鋳造した後、圧延面に当たる面を切削整精した厚さ100mm×幅1000mm×長さ4500mmの寸法を有する、図4に示すスラブ6の表面を、切削精整した後、Si,Nb,Ta,Alを少なくとも一種以上を含有するチタン合金板7を真空中で溶接した。
 その後、チタン合金板7を溶接されたスラブ6を820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに、冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~700℃まで加熱し、240分保持する熱処理を行うことにより、表2に示すNo.22~24の本発明例の供試材であるチタン複合材2を製造した。
Figure JPOXMLDOC01-appb-T000002
 これらの供試材について、実施例1と同様に、単位断面積あたりの酸化増量を求めた。結果を表2に併せて示す。なお、表2における表層部の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
 No.22の本発明例は、内部5が工業用純チタンJIS1種からなり、表層3,4が、Siを含有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.23の本発明例は、内部5が工業用純チタンJIS2種からなり、表層3,4が、Nbを含有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.24の本発明例は、内部5が工業用純チタンJIS3種からなり、表層3,4が、SiおよびAlを含有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 図2に示すチタン複合材2を以下の手順で製造した。
 すなわち、プラズマアーク溶解を行い、角型鋳型にて鋳造した後、圧延面に当たる面を切削整精した厚さ200mm×幅1000mm×長さ4500mmの寸法を有する、図4に示すスラブ6の表面に、各元素を含有するチタン合金板を真空中で溶接した。その後、当該スラブを820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~750℃まで加熱し、240分間保持する熱処理を行うことにより、表3に示すNo.25~27の実施例(本発明例)の供試材であるチタン複合材2を製造した。
 これらの供試材について、実施例1と同様に、単位断面積あたりの酸化増量を求めた。結果を表3に併せて示す。なお、表3における表層部の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
Figure JPOXMLDOC01-appb-T000003
 No.25の本発明例は、内部5が工業用純チタンJIS1種からなり、表層3,4が、Siを含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.26の本発明例は、内部5が工業用純チタンJIS2種からなり、表層3,4が、Nbを含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.27の本発明例は、内部5が工業用純チタンJIS3種からなり、表層3,4が、SiおよびAlを含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 図2に示すチタン複合材2を以下の手順で製造した。
 すなわち、チタン鋳塊をブレークダウンより矩形形状にした後、圧延面に当たる面を切削整精した厚さ200mm×幅1000mm×長さ4500mmの寸法を有するインゴットの表面を切削精整した、図4に示すスラブ6の表面に、合金元素を含有するチタン合金板7を真空中で溶接した。その後、チタン合金板7を溶接されたスラブ6を820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~750℃まで加熱し、240分間保持する熱処理を行うことにより、表4に示すNo.28,29の本発明例の供試材であるチタン複合材2を製造した。
Figure JPOXMLDOC01-appb-T000004
 これらの供試材について、実施例1と同様に、単位断面積あたりの酸化増量を求めた。結果を表4に併せて示す。なお、表4における表層部の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
 No.28の本発明例は、内部5が工業用純チタンJIS1種からなり、表層3,4が、Siを含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.29の本発明例は、内部5が工業用純チタンJIS2種からなり、表層3,4が、Siを含有し、その厚みが5μm以上と十分な厚みを有する。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 図2に示すチタン複合材2を以下の手順で製造した。
 すなわち、スラブ6として、電子ビーム溶解を行い、角型鋳型にて鋳造した後、圧延面に当たる面を切削整精した厚さ220mm×幅1000mm×長さ4500mmのインゴットを用いた。
 チタン合金板7として、表5のNo.30ではTi-1.0Cu-1.0Sn-0.45Si-0.2Nbからなるチタン合金板を、No.31ではTi-1.0Cu-0.5Nbからなるチタン合金板を、No.32ではTi-0.25Fe-0.45Siからなるチタン合金板を、No.33ではTi-0.35Fe-0.45Siからなるチタン合金板を、それぞれスラブ6の表面に真空中で溶接した。
 その後、当該スラブを820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~700℃まで加熱し、240分保持する熱処理を行うことにより、表5に示すNo.30~33の本発明例の供試材であるチタン複合材2を製造した。
Figure JPOXMLDOC01-appb-T000005
 これらの供試材について、実施例1と同様に、単位断面積あたりの酸化増量を求めた。結果を表5に併せて示す。なお、表5における表層部の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
 No.30~33の本発明例は、内部5が工業用純チタンJIS2種であり、表層3,4が、Si,Nb,Ta,Alを1種類以上含有し、その厚みが5μm以上と十分な厚みを有する。さらに、その他合金を含有しているがその含有量は2.5%未満である。さらに、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 図2に示すチタン複合材2を以下の手順で製造した。
 すなわち、スラブ6として、電子ビーム溶解を行い、角型鋳型にて鋳造した後、圧延面に当たる面を切削整精した厚さ200mm×幅1000mm×長さ4500mmのチタン合金インゴットを用いた。
 表6のNo.34では、Ti-1.0Cu-1.0Sn、No.35ではTi-1.0Cu―1.0Sn、No.36ではTi-0.5Al、No.37ではTi-0.9Al、No.38ではTi-3Al-2.5V、No39ではTi-1Fe-0.35O、No.40ではTi-1.5Fe-0.5O、No41ではTi-0.5Cu、No.42ではTi-5Al-1Fe、No.43ではTi-6Al-4V、No44ではTi-20V-4Al-1Sn、No45ではTi-15V-3Al-3Cr-3Snからなるスラブ6の表面に、Si,Nb,Ta,Alの内、一種類以上を含有するチタン板7を、それぞれ真空中で溶接した。その後、当該スラブを950℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに、No.34~41は、さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~700℃まで加熱し、240分間保持する熱処理を行うことにより、表6に示すNo.34~41の本発明例の供試材であるチタン複合材2を製造した。また、さらに、No.42~45は、デスケーリング処理後に焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~700℃まで加熱し、240分間保持する熱処理を行うことにより、表6に示すNo.42~45の本発明例の供試材であるチタン複合材2を製造した。
Figure JPOXMLDOC01-appb-T000006
 これらの供試材について、実施例1と同様に、単位断面積あたりの酸化増量を求めた。結果を表6に併せて示す。なお、表6における表層部の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
 No.34~45の本発明例のいずれも、表層3,4が、Si,Nb,Ta,Alを1種類以上含有し、その厚みが5μm以上と十分な厚みを有する。さらに、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 熱間圧延用チタン素材は電子ビーム溶解を行い、角型鋳型にて鋳造した厚さ200mm×幅1000mm×長さ4500mmを用いた。熱間圧延用チタン素材の表面に、Nb,Si,Ta,Alの1種類以上からなる素材とともに表層溶融を行った。その後、熱間圧延用チタン素材の表面温度を150℃の温度で1時間以上保持した。その後、当該熱間圧延用チタン素材を820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに冷間圧延を行い、厚さ1.0mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~750℃まで加熱し、240分間保持する熱処理を行うことにより、表7のNo.46~66に示す参考例および本発明例の供試材を作製した。これらの供試材の多くは、図1,2に示すチタン複合材1,2の構造を有する。
 これらの供試材から20mm×20mmの試験片を表面と端部を#400のサンドペーパーで研磨した後、700,750℃の各温度に大気中に200時間暴露し、試験前後の重量の変化を測定し、単位断面積あたりの酸化増量を求めた。結果を表7にまとめて示す。なお、表7における表層部の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
Figure JPOXMLDOC01-appb-T000007
 なお、表層部には、スラブ(母材)に由来する元素が含まれるが、表には、スラブには含まれない元素の含有量のみを示している。
 No.46の比較例は、内部5が工業用純チタンJIS2種であり、表層3,4を有していない。そのため、700℃における200時間の加熱での酸化増量は40g/m以上、750℃における200時間の加熱での酸化増量は100g/m以上と非常に高い。
 No.47の比較例は、内部5が工業用純チタンJIS2種であり、表層3,4がSiを含有するが、その厚みが1μmと非常に薄い。そのため、700℃における200時間の加熱での酸化増量は40g/m以上、750℃における200時間の加熱での酸化増量は100g/m以上と非常に高い。
 No.48の本発明例は、内部5が工業用純チタンJIS1種であり、表層3,4がSiを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.49の本発明例は、内部5が工業用純チタンJIS2種であり、表層3,4がSiを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.50の本発明例は、内部5が工業用純チタンJIS3種であり、表層3,4がSiを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.51の本発明例は、内部5が工業用純チタンJIS4種であり、表層3,4がSiを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.52の比較例は、内部5が工業用純チタンJIS2種であり、表層3,4がSiを含有し、その厚みも5μm以上と十分な厚みを有しているが、Si含有量が0.7%と高い。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示しているが、熱間圧延および冷間圧延時に割れが発生し、加工性が劣化している。
 No.53~66の本発明例は、内部5が工業用純チタンJIS2種であり、表層3,4がSi,Nb,Ta,Alを1種類以上含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.67~69に示す本発明例では、熱間圧延用チタン素材は電子ビーム溶解を行い、角型鋳型にて鋳造した後、圧延面に当たる面を切削整精した厚さ100mm×幅1000mm×長さ4500mmのを用いた。熱間圧延用チタン素材に、Nb,Si,Alの1種類以上からなる素材を散布した後、表層溶融を行った後、300℃の温度で1時間以上保持した。
 その後、当該スラブを820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに冷間圧延を行い、厚さ1.0mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~700℃まで加熱し、240分間保持する熱処理を行うことにより、表8のNo.67~69に示す本発明例のチタン複合材2を製造した。
 これらの供試材から20mm×20mmの試験片を表面と端部を#400のサンドペーパーで研磨した後、700,750℃の各温度に大気中に200時間暴露し、試験前後の重量の変化を測定し、単位断面積あたりの酸化増量を求めた。結果を表8にまとめて示す。なお、表8における表層部の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
Figure JPOXMLDOC01-appb-T000008
 なお、表層部には、スラブ(母材)に由来する元素が含まれるが、表には、スラブには含まれない元素の含有量のみを示している。
 No.67の本発明例は、内部5が工業用純チタンJIS1種であり、表層3,4がSiを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.68の本発明例は、内部5が工業用純チタンJIS2種であり、表層3,4がNbを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.69の本発明例は、内部5が工業用純チタンJIS3種であり、表層3,4がSiおよびAlを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、75℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 表9のNo.70~72に示す本発明例において、熱間圧延用チタン素材はプラズマ溶解を行い、角型鋳型にて鋳造した厚さ200mm×幅1000mm×長さ4500mmを用いた。熱間圧延用チタン素材に、Nb,Si,Alの1種類以上からなる素材を散布した後、表層溶融を行った後、素材表面温度を300℃の温度で1時間以上保持した。また、No.27に示す本発明例において、熱間圧延用チタン素材はプラズマ溶解を行い、角型鋳型にて鋳造した後、圧延面に当たる面を切削整精した厚さ200mm×幅1000mm×長さ4500mmを用いた。熱間圧延用チタン素材に、Nb,Si,Alの1種類以上からなる素材を散布した後、表層溶融を行った後、素材表面温度を250度の温度で1時間以上保持した。
 その後、当該スラブを820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~700℃まで加熱し、240分間保持する熱処理を行った。
これらの供試材から20mm×20mmの試験片を表面と端部を#400のサンドペーパーで研磨した後、700,750℃の各温度に大気中に200時間暴露し、試験前後の重量の変化を測定し、単位断面積あたりの酸化増量を求めた。結果を表9にまとめて示す。なお、表9における表層部の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
Figure JPOXMLDOC01-appb-T000009
 なお、表層部には、スラブ(母材)に由来する元素が含まれるが、表には、スラブには含まれない元素の含有量のみを示している。
 No.70の本発明例は、内部5が工業用純チタンJIS1種であり、表層3,4がSiを含有し、さらに、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.71の本発明例は、内部5が工業用純チタンJIS2種であり、表層3,4がNbを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.72の本発明例は、内部5が工業用純チタンJIS3種であり、表層3,4がSiおよびAlを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 表10に記載のNo.73に示す本発明例において、熱間圧延用チタン素材はブレークダウンより矩形形状にした後、圧延面に当たる面を切削整精した厚さ200mm×幅1000mm×長さ4500mmを用いた。熱間圧延用チタン素材に、Siからなる各元素を含有する素材を散布した後、表層溶融を行った後、熱間圧延用チタン素材の表面温度を150℃の温度で1時間以上保持した。また、No.74に示す本発明例において、熱間圧延用チタン素材をブレークダウンより矩形形状にした後、圧延面に当たる面を切削整精した厚さ50mm×幅1000mm×長さ4500mmを用いた。熱間圧延用チタン素材に、Siからなる各元素を含有する素材を散布した後、表層溶融を行った後、熱間圧延用チタン素材の表面温度を350℃の温度で1時間以上保持した。
 その後、当該スラブを820℃に加熱し、厚さ5mmまで熱間圧延した後に、ショットブラストおよび硝ふっ酸を用いて、表裏面ともデスケーリング処理を行った。さらに、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600~700℃まで加熱し、240分保持する熱処理を行った。
 これらの供試材から20mm×20mmの試験片を表面と端部を#400のサンドペーパーで研磨した後、700,750℃の各温度に大気中に200時間暴露し、試験前後の重量の変化を測定し、単位断面積あたりの酸化増量を求めた。結果を表10にまとめて示す。なお、表10における表層3,4の元素濃度は、EPMAを用いて線分析を行い、表面から合金層の下端までの範囲を平均した結果である。
Figure JPOXMLDOC01-appb-T000010
 なお、表層部には、スラブ(母材)に由来する元素が含まれるが、表には、スラブには含まれない元素の含有量のみを示している。
 No.73の本発明例は、内部5が工業用純チタンJIS1種であり、表層3,4がSiを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
 No.74の本発明例は、内部5が工業用純チタンJIS2種であり、表層3,4がSiを含有し、その厚みも5μm以上と十分な厚みを有している。そのため、700℃における200時間の加熱での酸化増量は25g/m以下、750℃における200時間の加熱での酸化増量は70g/m以下と優れた耐酸化性を示している。
1,2 本発明に係るチタン複合材
3,4 表層
5 内層
6 母材(スラブ)
7,8 表層材(チタン板)
9 溶接部

Claims (7)

  1.  工業用純チタンまたはチタン合金からなる内層と、
     前記内層の少なくとも一方の圧延面に形成された前記内層とは異なる化学組成を有する表層と、
     前記内層と前記表層との間に形成され、前記内層とは異なる化学組成を有する中間層と、
    を備えるチタン複合材であって、
     前記表層が、その厚さが2μm以上であり、全厚さに占める割合が片面あたり40%以下であり、
     前記表層部の化学組成が、質量%で、
    Si:0.1~0.6%、
    Nb:0.1~2.0%、
    Ta:0.3~1.0%および
    Al:0.3~1.5%から選択される一種以上、
    Sn:0~1.5%、
    Cu:0~1.5%、
    Fe:0~0.5%、
    残部:チタンおよび不純物であり、
     前記中間層の厚さが0.5μm以上である、
    チタン複合材。
  2.  前記内層の圧延面以外の面に、他の表層が形成されており、
     前記他の表層が、前記表層と同一の化学組成を備える、
    請求項1に記載のチタン複合材。
  3.  工業用純チタンまたはチタン合金からなる母材と、
     前記母材の少なくとも一方の圧延面に接合された表層材と、
     前記母材と前記表層材の周囲を接合する溶接部とを備える熱間圧延用チタン材であって、
     前記表層材が、前記母材とは異なる化学組成を有し、かつ、質量%で、
    Si:0.1~0.6%、
    Nb:0.1~2.0%、
    Ta:0.3~1.0%および
    Al:0.3~1.5%から選択される一種以上、
    Sn:0~1.5%、
    Cu:0~1.5%、
    Fe:0~0.5%、
    残部:チタンおよび不純物であり、
     前記溶接部が、前記母材と前記表層材の界面を外気から遮断する、
    熱間圧延用チタン材。
  4.  前記母材の圧延面以外の面に、他の表層材が接合されており、
     前記他の表層材が、前記表層材と同一の化学組成を備える、
    請求項3に記載の熱間圧延用チタン材。
  5.  前記母材が、直接鋳造スラブからなる、
    請求項3または4に記載の熱間圧延用チタン材。
  6.  前記直接鋳造スラブが、表面の少なくとも一部に溶融再凝固層を形成したものである、
    請求項5に記載の熱間圧延用チタン材。
  7.  前記溶融再凝固層の化学組成が、前記直接鋳造スラブの板厚中心部の化学組成とは異なる、
    請求項6に記載の熱間圧延用チタン材。
     

     
PCT/JP2016/072336 2015-07-29 2016-07-29 チタン複合材および熱間圧延用チタン材 WO2017018514A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017530940A JP6515359B2 (ja) 2015-07-29 2016-07-29 チタン複合材および熱間圧延用チタン材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015149396 2015-07-29
JP2015-149396 2015-07-29

Publications (1)

Publication Number Publication Date
WO2017018514A1 true WO2017018514A1 (ja) 2017-02-02

Family

ID=57884389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072336 WO2017018514A1 (ja) 2015-07-29 2016-07-29 チタン複合材および熱間圧延用チタン材

Country Status (3)

Country Link
JP (1) JP6515359B2 (ja)
TW (1) TWI632959B (ja)
WO (1) WO2017018514A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112004949A (zh) * 2018-04-04 2020-11-27 冶联科技地产有限责任公司 高温钛合金
EP3702057A4 (en) * 2017-10-26 2021-06-23 Nippon Steel Corporation PROCESS FOR THE PRODUCTION OF A HOT ROLLED TITANIUM PLATE
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
US11674200B2 (en) 2018-05-07 2023-06-13 Ati Properties Llc High strength titanium alloys

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807790B (zh) * 2022-04-25 2023-08-29 银邦金属复合材料股份有限公司 一种星用器件抗辐射层状复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179566A (ja) * 1997-02-14 1999-07-06 Nkk Corp チタンクラッド鋼板およびその製造法
JP2004056090A (ja) * 2002-05-31 2004-02-19 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板およびその製造方法
WO2014163087A1 (ja) * 2013-04-01 2014-10-09 新日鐵住金株式会社 熱間圧延用チタン鋳片およびその製造方法
WO2014163086A1 (ja) * 2013-04-01 2014-10-09 新日鐵住金株式会社 熱間圧延用チタン鋳片およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579988A (en) * 1995-06-09 1996-12-03 Rmi Titanium Company Clad reactive metal plate product and process for producing the same
JP4516440B2 (ja) * 2004-03-12 2010-08-04 株式会社神戸製鋼所 耐高温酸化性および耐食性に優れたチタン合金
JP2011174120A (ja) * 2010-02-23 2011-09-08 Thk Co Ltd チタン材料、このチタン材料を構成部材に含む転動装置、及びチタン材料の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179566A (ja) * 1997-02-14 1999-07-06 Nkk Corp チタンクラッド鋼板およびその製造法
JP2004056090A (ja) * 2002-05-31 2004-02-19 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板およびその製造方法
WO2014163087A1 (ja) * 2013-04-01 2014-10-09 新日鐵住金株式会社 熱間圧延用チタン鋳片およびその製造方法
WO2014163086A1 (ja) * 2013-04-01 2014-10-09 新日鐵住金株式会社 熱間圧延用チタン鋳片およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3702057A4 (en) * 2017-10-26 2021-06-23 Nippon Steel Corporation PROCESS FOR THE PRODUCTION OF A HOT ROLLED TITANIUM PLATE
CN112004949A (zh) * 2018-04-04 2020-11-27 冶联科技地产有限责任公司 高温钛合金
US11384413B2 (en) 2018-04-04 2022-07-12 Ati Properties Llc High temperature titanium alloys
US11674200B2 (en) 2018-05-07 2023-06-13 Ati Properties Llc High strength titanium alloys
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
US11920231B2 (en) 2018-08-28 2024-03-05 Ati Properties Llc Creep resistant titanium alloys

Also Published As

Publication number Publication date
TWI632959B (zh) 2018-08-21
JPWO2017018514A1 (ja) 2018-05-24
TW201718119A (zh) 2017-06-01
JP6515359B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6658756B2 (ja) チタン複合材および熱間圧延用チタン材
WO2017018511A1 (ja) 熱間圧延用チタン材
JP6515359B2 (ja) チタン複合材および熱間圧延用チタン材
JP6515358B2 (ja) チタン複合材および熱間圧延用チタン材
JP6128289B1 (ja) チタン複合材および熱間圧延用チタン材
JP6787428B2 (ja) 熱間圧延用チタン材
JP6137423B1 (ja) チタン複合材および熱間圧延用チタン材
JP6086178B1 (ja) 熱間圧延用チタン材
JP6848991B2 (ja) 熱間圧延用チタン材
JP6515357B2 (ja) 熱間圧延用チタン材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530940

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830617

Country of ref document: EP

Kind code of ref document: A1