WO2017017723A1 - 変速機 - Google Patents
変速機 Download PDFInfo
- Publication number
- WO2017017723A1 WO2017017723A1 PCT/JP2015/071091 JP2015071091W WO2017017723A1 WO 2017017723 A1 WO2017017723 A1 WO 2017017723A1 JP 2015071091 W JP2015071091 W JP 2015071091W WO 2017017723 A1 WO2017017723 A1 WO 2017017723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- clutch ring
- axial direction
- hub
- shaft
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D11/00—Clutches in which the members have interengaging parts
- F16D11/08—Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially
- F16D11/10—Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially with clutching members movable only axially
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D23/00—Details of mechanically-actuated clutches not specific for one distinct type
- F16D23/02—Arrangements for synchronisation, also for power-operated clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/083—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with radially acting and axially controlled clutching members, e.g. sliding keys
Definitions
- the present invention relates to a transmission, and more particularly to a transmission capable of simplifying machining of parts.
- Patent Document 1 a transmission including a plurality of speed change gears in which a drive gear and a driven gear mesh with each other is known (Patent Document 1).
- a plurality of hubs (clutch cam rings) are fixed to a shaft, and clutch rings with clutch teeth are provided on the outer periphery of the hub.
- the hub is formed with an inclined surface that is inclined with respect to the axial direction, and the clutch ring is provided with a convex portion that protrudes in the radial direction and contacts the inclined surface of the hub.
- the clutch ring has a slope formed at the base of the clutch tooth. In this transmission, the clutch ring is moved in the axial direction, and the gears of the drive gear and the driven gear (transmission gear) are engaged with the clutch teeth of the clutch ring to perform a shift.
- Patent Document 1 has a problem that the clutch ring requires a process of providing a slope at the base of the clutch tooth.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a transmission capable of simplifying the machining of parts while eliminating torque break during shifting.
- the second shaft is disposed along the first shaft to which power is input, and the driving gear and the driven gear that mesh with each other are the first shaft and the second gear.
- Each is arranged on an axis.
- the multi-stage transmission gear is configured such that one of the drive gear and the driven gear can rotate relative to the first shaft or the second shaft.
- a plurality of hubs that cannot rotate relative to the first shaft or the second shaft are arranged on the first shaft or the second shaft along with one of the drive gear and the driven gear.
- a clutch ring is attached to each of the hubs so as to be relatively movable in the axial direction.
- the clutch ring is moved in the axial direction by the operation unit, and the driving gear or the driven gear is coupled to the hub at the first axial position, and the driving gear or the driven gear is moved from the first position to the second axial position. And the hub are separated.
- One of the hub and the clutch ring has a convex portion protruding in the radial direction, and a groove portion in which the convex portion relatively moves in the rotational direction and the axial direction is formed on the other side of the hub or the clutch ring.
- the groove portion includes a first wall and a second wall facing the first wall in the rotation direction, and the second wall and the first wall abut against the convex portion and rotate the hub and the clutch ring integrally.
- the first wall includes a first portion
- the second wall includes a guide portion.
- the clutch ring When the axial force from the first position to the second position is generated in the convex portion by the guide portion inclined with respect to the axial direction, the clutch ring is moved from the transmission gear to the axial direction by the length in the axial direction of the guide portion. Leave.
- the clutch ring is simultaneously coupled to two transmission gears having different transmission ratios when shifting from the low speed stage to the high speed stage, the axial force from the first position to the second position is caused by the first portion inclined with respect to the axial direction. Is generated in the convex portion, and the clutch ring coupled to the low speed transmission gear having a lower rotation speed than the high speed transmission gear is pushed out in the axial direction by the internal circulation torque.
- the guide portion can be formed when the first wall and the second wall are processed to provide the groove portion, it is possible to suppress an increase in the number of processing steps for the parts to provide the guide portion, and a slope is provided to the clutch ring. Processing to be provided can be eliminated. Therefore, there is an effect that the machining of the parts can be simplified while eliminating the torque interruption at the time of shifting.
- the projecting portion comes into contact with the second portion of the second wall during drive travel in which power is transmitted from the drive gear to the driven gear. Since the second part faces the first part in the rotational direction and is connected to the guide part, when the convex part moved to the second part by the guide part relatively moves in the rotational direction from the second part to the first part, Power cannot be transmitted from the drive gear to the driven gear. Since the shift is performed when the clutch ring and the transmission gear are separated from each other, in addition to the effect of the first aspect, the shift can be smoothly performed.
- the projecting portion comes into contact with the guide portion and the second portion during driving traveling in which power is transmitted from the driving gear to the driven gear. Therefore, in addition to the effect of the second aspect, the axial direction of the second wall as compared with the case where the guide portion and the second portion are provided so that the convex portion can move between the guide portion and the second portion during driving. There is an effect that the length of can be shortened.
- the axial position of the convex portion when the clutch ring is moved closest to the drive gear or the driven gear by the operating portion is the same as the axial position of the guide portion. Is set.
- an urging force in the axial direction from the second position to the first position is applied to the clutch ring by the urging portion of the operation portion.
- the second portion is inclined with respect to the axial direction so as to cause the convex portion to generate an axial force from the second position to the first position.
- the biasing portion With the urging force, an axial force that makes it difficult to separate the clutch ring from the transmission gear is exerted on the convex portion.
- the convex portion comes into contact with the third portion of the first wall during coasting in which power is transmitted from the driven gear to the drive gear. Since the third portion is connected to the first portion and faces the guide portion in the rotational direction, the convex portion abuts on the guide portion during driving traveling and abuts on the third portion during coasting traveling. Therefore, in addition to the effect of any one of claims 1 to 4, there is an effect that the switching between the drive traveling and the coast traveling can be smoothly performed.
- (A) is a perspective view of a hub
- (b) is a front view of a hub.
- (A) is a perspective view of a clutch ring
- (b) is a perspective view of the pin which comprises a convex part
- (c) is a perspective view of the clutch ring with which the pin was assembled
- (A) is a perspective view of the hub with which the clutch ring was assembled
- (b) is a front view of a groove part and a convex part. It is a mimetic diagram of a transmission at the time of low speed coast driving. It is a schematic diagram of the transmission during low-speed drive driving.
- FIG. 1 is a skeleton diagram of a transmission 1 according to the first embodiment.
- the transmission 1 includes a first shaft 2 (drive shaft) to which power is input, and a second shaft 3 (output shaft) disposed in parallel with the first shaft 2, and an output gear 4 on the second shaft 3. Is arranged.
- the first shaft 2 and the second shaft 3 support a first speed gear 10, a second speed gear 20, a third speed gear 30, a fourth speed gear 40, a fifth speed gear 50, and a sixth speed gear 60 as a plurality of speed change gears.
- transmission 1 is mounted on an automobile (not shown).
- the first speed gear 10 includes a drive gear 11 fixed to the first shaft 2 so as not to rotate relative to the first shaft 2, and a driven gear 12 meshed with the drive gear 11 and fixed to the second shaft 3 so as to be rotatable relative to the second shaft 3.
- the gear 20 includes a drive gear 21 fixed to the first shaft 2 so as to be relatively rotatable, and a driven gear 22 meshed with the drive gear 21 and fixed to the second shaft 3 so as not to be relatively rotatable.
- the third speed gear 30 includes a drive gear 31 fixed to the first shaft 2 so as not to rotate relative to the first shaft 2, and a driven gear 32 engaged with the drive gear 31 and fixed to the second shaft 3 so as to be rotatable relative to the first shaft 2.
- the gear 40 includes a drive gear 41 that is fixed to the first shaft 2 so as to be relatively rotatable, and a driven gear 42 that is meshed with the drive gear 41 and is fixed to the second shaft 3 so as not to be relatively rotatable.
- the fifth speed gear 50 includes a driving gear 51 fixed to the first shaft 2 so as to be relatively rotatable, and a driven gear 52 meshed with the driving gear 51 and fixed to the second shaft 3 so as not to be relatively rotatable.
- the gear 60 includes a drive gear 61 fixed to the first shaft 2 so as to be relatively rotatable, and a driven gear 62 meshed with the drive gear 61 and fixed to the second shaft 3 so as not to be relatively rotatable.
- the hub 70 is a member fixed to the second shaft 3 between the driven gears 12 and 32, the first shaft 2 between the drive gears 21 and 51, and the first shaft 2 between the drive gears 41 and 61 so as not to be relatively rotatable. is there.
- the driven gears 12 and 32 and the drive gears 21, 41, 51, and 61 are provided with teeth (dog teeth) 106 and 107 (see FIG. 5) that protrude in the axial direction on end surfaces in the axial direction.
- the clutch ring 90 is a member that is attached to the hub 70 so as to be relatively movable in the axial direction while engaging with the hub 70, and has teeth (dog teeth, first teeth 95, and first teeth) protruding in the axial direction on the end surface in the axial direction.
- the operation unit 110 is a device for selectively moving the clutch ring 90 in the axial direction, and is coupled to the shift forks 111, 112, 113 respectively engaged with the clutch ring 90 and the shift forks 111, 112, 113.
- the concavo-convex member 114 and the shift arms 120, 121, and 122 respectively coupled to the concavo-convex member 114 are provided.
- the concavo-convex member 114 is a member that applies an urging force in the axial direction to the clutch ring 90 via the shift forks 111, 112, 113, and the concave portions 115, 116, 117 that are recessed in a hemispherical shape are axial directions (the left-right direction in FIG. 1). ).
- the recesses 115, 116, and 117 are portions where the ball 118 urged toward the concavo-convex member 114 by a spring (coil spring) 119 fixed to the case C is elastically engaged.
- the ends of the shift arms 120, 121, 122 are engaged with shift grooves 124, 125, 126 formed on the outer periphery of a columnar shift drum 123 fixed to the case C.
- the shift drum 123 is rotated about its axis by a motor (not shown) based on an operation signal of a shift lever (not shown) or based on an accelerator opening and a vehicle speed signal by operating an accelerator pedal (not shown). Driven.
- the shift drum 123 is rotationally driven, the shift forks 111, 112, 113 are selectively driven in the axial direction via the shift arms 120, 121, 122 guided by the shift grooves 124, 125, 126.
- the clutch ring 90 moves in the axial direction by driving the shift forks 111, 112, and 113.
- the concave-convex member 114 corresponds to the meshing position (first position) at which the concave portions 116, 117 are coupled with any one of the driven gears 12, 32, the drive gears 21, 41, 51, 61 and the clutch ring 90,
- the position 115 corresponds to a neutral position (second position) where any one of the driven gears 12 and 32 and the drive gears 21, 41, 51 and 61 and the clutch ring 90 are separated.
- the ball 118 is elastically engaged with one of the recesses 115, 116, and 117, and the clutch ring 90 is positioned at the first position (engagement position) or the second position (neutral position) in the axial direction.
- FIG. 2A is a perspective view of the hub 70
- FIG. 2B is a front view of the hub 70
- the hub 70 is a cylindrical member in which a spline coupled to the first shaft 2 or the second shaft 3 (see FIG. 1) is formed on the inner peripheral surface 71.
- Grooves 73 are formed at equal intervals at four locations in the circumferential direction.
- the groove portion 73 is a portion that is formed along the axial direction and that is recessed in the radial direction.
- the first wall 74 and the second wall 75, the first wall 74, and the first wall 74 that face each other at an interval in the circumferential direction. 2 and a bottom portion 76 connected to the wall 75.
- the first wall 74 includes a first portion 77 inclined downward in the circumferential direction (in a direction away from the second wall 75) from the outer side in the axial direction toward the central portion 78. And a third portion 79 connected to the outer side of the portion 77 in the axial direction.
- the first portion 77 is an inclined surface inclined with respect to the axial direction
- the third portion 79 is a flat surface parallel to the axial direction.
- the second wall 75 is connected to the second portion 80 that is inclined upward in the circumferential direction (toward the first wall 74) from the outer side in the axial direction toward the central portion 81, and the outer side in the axial direction of the second portion 80.
- a guide portion 82 that is inclined downward in the circumferential direction (in the direction away from the first wall 74) from the outer side in the axial direction toward the second portion 80.
- the second portion 80 and the guide portion 82 are inclined surfaces having different inclination directions with respect to the axial direction.
- the guide portion 82 faces the third portion 79 in the circumferential direction (rotation direction), and the second portion 80 faces the first portion 77 in the circumferential direction (rotation direction).
- the boundary 83 between the second portion 80 and the guide portion 82 has the same axial position (the left-right direction in FIG. 2B) as the axial position of the boundary 84 between the first portion 77 and the third portion 79. Is set.
- FIG. 3A is a perspective view of the clutch ring 90
- FIG. 3B is a perspective view of the pin 103 constituting the convex portion 105
- FIG. 3C is a clutch ring 90 with the pin 103 assembled thereto
- FIG. 4A is a perspective view of the hub 70 to which the clutch ring 90 is assembled
- FIG. 4B is a front view of the groove 73 and the convex portion 105.
- the clutch ring 90 includes an annular ring main body 91, and a plurality of first teeth 95 and second teeth protruding from the axial end surface of the ring main body 91 toward both sides in the axial direction. 100 (dog teeth).
- the ring body 91 is provided with notches 93 that are notched radially inward from four locations on the outer peripheral surface 92 at equal intervals in the circumferential direction.
- An inner diameter of the inner peripheral surface 94 of the ring body 91 is formed to be slightly larger than an outer diameter of the outer peripheral surface 72 of the hub 70 (see FIG. 2A).
- the first teeth 95 are provided between the circular inner peripheral surface 94 of the ring main body 91 and the bottom of the notch 93, and the tooth thickness (circumferential thickness) of the tooth tip (axial tip).
- the end surface 96 in the circumferential direction is an inclined surface that is inclined from the tooth tip toward the tooth root (inner side in the axial direction) so as to make the tooth thickness of the tooth root smaller.
- the ring body 91 is formed with a hole 99 extending in the radial direction so as to penetrate between the radially outer end surface 97 of the first tooth 95 and the radially inner end surface 98 and the inner peripheral surface 94.
- the inner peripheral surface 94 of the ring main body 91 and the end surface 97 of the first tooth 95 are disposed on the same plane.
- the second teeth 100 are alternately arranged with the first teeth 95 at four positions between the first teeth 95 provided at four positions in the circumferential direction of the ring main body 91.
- the circumferential end face 101 is smaller from the tooth tip (axis) than the tooth thickness (circumferential thickness) of the tooth tip (tip in the axial direction).
- the inclined surface is inclined toward the inside of the direction).
- the length of the second tooth 100 from the tooth root to the tooth tip (the length protruding in the axial direction) is set to be larger than that of the first tooth 95.
- the inner peripheral surface 94 of the ring body 91 and the radially inner end surface 102 of the second tooth 100 are disposed on the same plane.
- the pin 103 protrudes from the end portion of the shaft portion 104 to the outer side in the radial direction of the shaft portion 104 and fits into the hole portion 99 formed in the ring main body 91.
- a convex portion 105 a convex portion 105.
- the shaft portion 104 is formed in a cylindrical shape whose length is set to be substantially the same as the length of the hole 99.
- the convex portion 105 has an axial length (thickness) smaller than the height of the first wall 74 and the second wall 75 of the hub 70 (see FIG. 2A), and the radial size is the first size. It is formed in a columnar shape that is set smaller than the interval between the wall 74 and the second wall 75.
- the clutch ring 90 protrudes from the inner peripheral surface 94 side of the ring main body 91 into the hole 99 to project the end surface 98 of the first tooth 95.
- the part 105 is fixed. Since the convex portion 105 is disposed inside the ring body 91 in the radial direction, the convex portion 105 also serves to prevent the pin 103 from coming off. Since the clutch ring 90 is manufactured by fitting the pin 103 into the hole 99 of the ring main body 91, the processing of the clutch ring 90 can be simplified as compared with the case where the convex portion 105 is provided integrally with the ring main body 91.
- the hole 99 is formed at the position of the first tooth 95 in the clutch ring 90, the diameter of the hole can be increased compared to the case where the hole 99 is formed at a position other than the first tooth 95 or the second tooth 100. 104 can be thickened. Since the strength of the shaft 104 fitted in the hole 99 can be increased, the durability of the clutch ring 90 can be improved.
- the clutch ring 90 is mounted on the outer peripheral surface 72 of the hub 70 by inserting the convex portion 105 into the groove 73 of the hub 70 from the axial direction. As shown in FIG. 4B, the convex portion 105 is disposed between the first wall 74 and the second wall 75. The first wall 74 and the second wall 75 come into contact with the convex portion 105, and the hub 70 and the clutch ring 90 rotate together.
- the clutch ring 90 also serves as a tooth (second tooth 100) as a support portion that prevents the hub 70 from falling over, the processing of the clutch ring 90 can be simplified as compared with the case where a support portion is provided separately from the teeth. Since the second tooth 100 has a larger length protruding in the axial direction than the first tooth 95, the ring with respect to the hub 70 is compared with the case where the first tooth 95 having a small length protruding in the axial direction is also used as the support portion. The support length of the main body 91 can be increased. By using the second teeth 100, it is possible to improve the stability when the clutch ring 90 is moved in the axial direction with respect to the hub 70 as compared with the case where the first teeth 95 are used.
- the number of the first teeth 95 is the same as the number of the second teeth 100, and the protrusions 105 protrude from the position of the first teeth 95 in the radial direction of the ring body 91. Since both the function of rotating the hub 70 and the clutch ring 90 by the convex portion 105 and the function of preventing the fall by the second teeth 100 can be achieved, the reliability of the transmission 1 can be ensured.
- FIG. 5 is a schematic diagram of the transmission 1 during coasting at a low speed (fourth gear 40)
- FIG. 6 is a schematic diagram of the transmission 1 during driving at a low speed (fourth gear 40). 5 to 9, the rotation directions of the drive gears 41 and 51, the hub 70, and the clutch ring 90 are downward (arrow R direction) along the paper surface.
- the shift fork 112 approaches the drive gear 41 of the fourth speed gear 40 by the shift groove 125 and the shift arm 121 of the shift drum 123, and the first teeth 95 and second teeth of the clutch ring 90. 100 meshes with the teeth 106 of the drive gear 41.
- the ball 118 engages with the recess 117 of the uneven member 114 (first position).
- the neutral position (second position) where the ball 118 engages with the recess 115 of the concavo-convex member 114 is maintained, and the clutch ring 90 and the drive gear 51 are separated.
- the clutch ring 90 rotates faster than the hub 70, so that the convex portion 105 has the third portion 79 of the hub 70. Abut. Since the third portion 79 is a flat surface along the axial direction, no axial thrust component is generated at the convex portion 105 (clutch ring 90). Therefore, the meshing between the clutch ring 90 and the drive gear 41 is maintained. Since the end surfaces 96 and 101 in the circumferential direction of the first teeth 95 and the second teeth 100 and the teeth 106 of the drive gear 41 rub against each other, the inclined surfaces that incline from the tooth tip toward the tooth root rub against each other. .
- the hub 70 rotates faster than the clutch ring 90 during driving when power is transmitted from the drive gear 41 to the driven gear 42 (see FIG. 1). 82 abuts. Since the guide portion 82 is inclined with respect to the axial direction and is inclined downward in the circumferential direction toward the second portion 80, an axial force toward the second portion 80 acts on the convex portion 105 (clutch ring 90). Since there is an axial play (gap) G (see FIG. 5) between the shift groove 125 and the shift arm 121, the clutch ring 90 moves in the direction away from the drive gear 41. The convex portion 105 of the clutch ring 90 is in contact with the guide portion 82 and the second portion 80. On the other hand, in the fifth gear 50, the hub 70 rotates faster than the clutch ring 90, so that the convex portion 105 abuts against the central portion 81 of the second wall 75 of the hub 70.
- the concavo-convex member 114 moved in the axial direction as the clutch ring 90 moves pushes the ball 118 by the concave portion 117, compresses the spring 119, and stores elastic energy.
- the spring 119 applies an urging force in the axial direction (arrow B direction) that deepens the engagement with the drive gear 41 to the clutch ring 90.
- the end faces 96 and 101 in the circumferential direction of the first teeth 95 and the second teeth 100 and the teeth 106 of the drive gear 41 are rubbed with each other, the inclined surfaces that are inclined from the tooth tip toward the tooth base rub against each other. To prevent.
- FIG. 7 is a schematic diagram of the transmission 1 in the middle of shifting from the low speed stage (fourth gear 40) to the high speed stage (fifth gear 50), and FIG. 8 shows the state of the transmission 1 immediately after shifting from the low speed stage to the high speed stage.
- FIG. 9 is a schematic diagram, and FIG. 9 is a schematic diagram of the transmission 1 during drive traveling at a high speed (5-speed gear 50).
- the arrow S shown in FIGS. 7 and 8 is the direction of rotation when the shift drum 123 is shifted up.
- the shift drum 123 is rotated to perform a shift-up operation to the high speed stage (5-speed gear 50).
- the shift fork 113 approaches the drive gear 51 of the fifth speed gear 50 by the shift groove 126 and the shift arm 122 of the shift drum 123, and the tooth tip of the first tooth 95 of the clutch ring 90 contacts the tooth 107 of the drive gear 51. Abuts the tooth tip. Since the second tooth 100 of the clutch ring 90 is longer in the axial direction than the first tooth 95, the second tooth 100 and the tooth 107 of the drive gear 51 can be easily engaged with each other.
- the spring 119 is compressed via the ball 118 by the recess 117 of the concavo-convex member 114, so that the clutch ring 90 and the drive gear 41 are kept engaged.
- the driving gear 51 of the fifth speed gear 50 and the clutch ring 90 are engaged (the teeth 107 and the second teeth 100). Since the 5th gear 50 rotates faster than the 4th gear 40, the 4th speed side is in the coast state and the 5th speed side is in the drive state due to the internal circulation torque. In the fifth speed gear 50, the convex portion 105 abuts on the second portion 80 of the hub 70, and an axial force in which the clutch ring 90 is deeply engaged with the drive gear 51 acts on the convex portion 105.
- the relative rotation between the hub 70 and the clutch ring 90 causes the convex portion 105 contacting the second portion 80 and the guide portion 82 to move toward the first wall 74 side.
- the convex part 105 contacts.
- an axial force that releases the meshing with the drive gear 41 by moving the clutch ring 90 in the neutral direction acts on the convex portion 105. Due to this thrust force, the clutch ring 90 moves in the neutral direction.
- the convex portion 105 When driving, in which power is transmitted from the drive gear 51 to the driven gear 52 (see FIG. 1), the convex portion 105 contacts the guide portion 82 of the hub 70. Since the guide portion 82 is inclined with respect to the axial direction and is inclined downward in the circumferential direction toward the second portion 80, an axial force toward the second portion 80 acts on the convex portion 105 (clutch ring 90). Since there is an axial play (gap) G between the shift groove 125 and the shift arm 121, the clutch ring 90 moves in the direction away from the drive gear 51 by that amount. The convex portion 105 of the clutch ring 90 is in contact with the guide portion 82 and the second portion 80.
- the concavo-convex member 114 pushes the ball 118 by the recess 117 and compresses the spring 119 to store elastic energy.
- the spring 119 applies an urging force in the axial direction (arrow B direction) that deepens the engagement with the drive gear 51 to the clutch ring 90.
- the axial force from the meshing position (first position) to the neutral position (second position) of the clutch ring 90 is applied to the convex portion 105 by the guide portion 82 provided on the hub 70.
- the clutch ring 90 is separated from the transmission gear such as the fourth gear 40 in the axial direction by the length of the guide portion 105 in the axial direction. .
- the shift from the low speed stage to the high speed stage can be brought into a standby state, so that a shock during the shift can be suppressed.
- the guide portion 82 can be formed when the first wall 74 and the second wall 75 are processed and the groove portion 73 is provided in the hub 70, it is possible to suppress an increase in the number of processing steps for parts to provide the guide portion 82. In addition, it is possible to eliminate the need to provide a slope at the tooth base of the clutch ring 90. Therefore, it is possible to simplify the machining of the parts while eliminating the torque interruption at the time of shifting.
- the projecting portion 105 abuts on the second portion 80 of the second wall 75 during drive travel in which power is transmitted from the drive gear 41 to the driven gear 42. Since the second portion 80 faces the first portion 77 in the rotational direction (circumferential direction) and is connected to the guide portion 82, the convex portion 105 moved to the second portion 80 by the guide portion 82 is moved from the second portion 80.
- the clutch ring 90 and the fourth speed gear 40 can be separated.
- the clutch ring 90 and the fourth speed gear 40 are separated, the shift to the high speed stage (fifth speed gear 50) is performed, so that the shift can be performed smoothly.
- the projecting portion 105 abuts against the guide portion 82 and the second portion 80 during drive travel in which power is transmitted from the drive gears 41, 51 to the driven gears 42, 52. Therefore, compared to the case where the guide portion 82 and the second portion 80 are provided in the axial direction at a distance so that the convex portion 105 can move between the guide portion 82 and the second portion 80 during driving, the second portion 80 is provided.
- the axial length of the wall 75 that is, the axial length of the hub 70 can be shortened. As a result, the axial length of the transmission 1 in which a plurality of hubs 70 are arranged can be shortened.
- the clutch ring 90 In the transmission 1, when the clutch ring 90 is moved closest to the drive gears 41 and 51 (transmission gears) by the operation unit 110, the position of the projection 105 in the axial direction (the ball 118 is in the recess 117 of the projection / depression member 114)
- the engaging position is set to be the same as the axial position of the guide portion 82.
- an axial biasing force from the neutral position (second position) to the meshing position (first position) of the clutch ring 90 is applied by the spring 119 to the clutch ring 90. To be granted.
- the transmission gear (4 An axial force that makes it difficult to separate the clutch ring 90 from the high speed gear 40) can be applied to the convex portion 105 (clutch ring 90). Therefore, gear loss can be prevented.
- the convex portion 105 abuts on the third portion 79 of the first wall 74 during coasting in which power is transmitted from the driven gear 42 to the drive gear 41. Since the third portion 79 is connected to the first portion 77 and faces the guide portion 82 in the rotational direction (circumferential direction), the convex portion 105 abuts on the guide portion 82 during driving traveling, and the third portion during coast traveling. 79 abuts. Therefore, it is possible to smoothly switch between driving and coasting.
- FIG. 10 is a partially enlarged view of the hub 130 used in the transmission according to the second embodiment.
- the illustration of the circumferential direction of the hub 130 is omitted.
- the hub 130 is arranged in place of the hub 70 of the transmission 1 described in the first embodiment.
- the hub 130 is a cylindrical member coupled to the first shaft 2 or the second shaft 3 (see FIG. 1), and a groove 131 along the axial direction is formed on the outer periphery.
- the groove 131 is a portion that is recessed in the radial direction, and includes a first wall 132 and a second wall 133 that are opposed to each other with an interval in the circumferential direction.
- the first wall 132 includes a first holding portion 134 (third portion) connected to the outer side in the axial direction of the first portion 77 that is inclined downward in the circumferential direction from the outer side in the axial direction toward the central portion 78. .
- the first holding portion 134 is a surface that intersects the axial direction.
- the first holding portion 134 moves in the circumferential direction from the boundary 135 between the first portion 77 and the third portion 134 toward the outside in the axial direction. 2) inclining downward (in the direction away from the wall 133).
- an angle ⁇ 1 formed by a plane P1 parallel to the axis and passing through the boundary 135 between the first portion 77 and the first holding part 134 and the first holding part 134 is 0 ° ⁇ 1 ⁇ 90 °.
- the second wall 133 includes a second holding portion 136 that is connected to the outer side in the axial direction of the second portion 80 and is inclined downward in the circumferential direction (in a direction away from the first wall 132) toward the outer side in the axial direction. ing.
- the second portion 80 and the second holding portion 136 are inclined surfaces having different inclinations with respect to the axial direction.
- An angle ⁇ 2 formed between the plane P2 and the second portion 80 parallel to the axis and passing through the boundary 137 between the second portion 80 and the second holding portion 136 is greater than an angle ⁇ 3 formed between the plane P2 and the second holding portion 136. It is set large ( ⁇ 2> ⁇ 3).
- the formed angle ⁇ 3 is set to 0 ° ⁇ 3 ⁇ 90 °.
- the axial position of the boundary 137 between the second portion 80 and the second holding portion 136 is set to the inner side in the axial direction (the center portion) than the axial position of the boundary 135 between the first portion 77 and the first holding portion 134. 78, 81).
- the hub 130 has a convex portion 105 on the first holding portion 134 (outside in the axial direction from the boundary 135) during coasting (see FIG. 5) in which power is transmitted from the driven gear 42 (see FIG. 1) to the drive gear 41.
- the convex portion 105 can be prevented from moving to the first portion 77 beyond the boundary 135. As a result, it is possible to prevent the clutch ring 90 from moving out in the neutral direction and from being disengaged from the drive gear 41.
- first holding portion 134 is provided on the first wall 132 in conjunction with the processing of the groove portion 131, gear disengagement during coasting can be prevented.
- gear disengagement the gears of the transmission gear 41 and the like and the teeth of the clutch ring 90 can be prevented.
- Processing such as providing a slope on the first teeth 95 and the second teeth 100 can be made unnecessary. Therefore, it is possible to simplify the processing of components (such as the drive gear 41 and the clutch ring 90) while preventing gear loss during coasting.
- the hub 130 has a convex portion 105 on the second holding portion 136 (on the outer side in the axial direction from the boundary 137) during driving (see FIG. 6) in which power is transmitted from the drive gear 41 to the driven gear 42 (see FIG. 1). Abut. Since the second holding portion 136 is formed on an inclined surface that is inclined downward with respect to the plane P2, the convex portion 105 moves beyond the boundary 137 to the second portion 80 during driving (except during shifting). Can be prevented. As a result, it is possible to prevent the clutch ring 90 from moving out in the neutral direction and from being disengaged from the drive gear 41. Since the second holding portion 136 is an inclined surface ( ⁇ 3 ⁇ 90 °) that is inclined downward with respect to the plane P2, a thrust force toward the drive gear 41 acts on the convex portion 105 by the drive torque. Can be increased.
- the angle ⁇ 2 formed by the plane P2 and the second portion 80 is set to be larger than the angle ⁇ 3 formed by the plane P2 and the second holding part 136.
- the portion 105 mainly abuts near the boundary 137 between the second portion 80 and the second holding portion 136 whose inclination with respect to the axial direction changes.
- the hub 130 is provided such that the boundary 137 between the second portion 80 and the second holding portion 136 is located closer to the central portions 78 and 81 than the boundary between the first portion 77 and the first holding portion 134.
- the axial direction of the convex portion 105 when the clutch ring 90 is moved closest to the transmission gear (the drive gear 41, the driven gear 41, etc.) by the operation unit 110 (see FIG. 1). Is set to be the same as the position of the first holding part 134 in the axial direction.
- an axial direction (arrow) from the neutral position (second position) to the mesh position (first position) is detected by the spring 119 of the operation unit 110. The urging force in the B direction is applied to the clutch ring 90.
- the transmission gear (4 An axial force that makes it difficult to separate the clutch ring 90 from the high speed gear 40) can be applied to the convex portion 105 (clutch ring 90). Therefore, it is difficult to cause gear loss.
- FIG. 11 is a partially enlarged view of the hub 140 used in the transmission according to the third embodiment. In FIG. 11, the illustration of the hub 140 in the circumferential direction is omitted. The hub 140 is arranged in place of the hub 70 of the transmission 1 described in the first embodiment.
- the hub 140 is a cylindrical member coupled to the first shaft 2 or the second shaft 3 (see FIG. 1), and a groove portion 141 along the axial direction is formed on the outer periphery.
- the groove portion 141 is a portion that is recessed in the radial direction, and includes a first wall 132 and a second wall 142 that are opposed to each other at an interval in the circumferential direction.
- the second wall 142 is connected to the second portion 143 that rises in the circumferential direction (toward the first wall 132) from the outer side in the axial direction toward the central portion 144, and to the outer side in the axial direction of the second portion 143.
- the second holding portion 145 is inclined downward in the circumferential direction (in the direction away from the first wall 132) from the inner side to the outer side in the axial direction, and is connected to the outer side in the axial direction of the second holding portion 145.
- a guide portion 146 that is inclined upward in the circumferential direction toward the outside in the axial direction.
- the second portion 143 and the second holding portion 145 are inclined surfaces having different inclinations with respect to the axial direction.
- An angle formed between a plane (not shown) parallel to the axis and passing through the boundary 147 between the second portion 143 and the second holding portion 145 and the second portion 143 is formed by the plane and the second holding portion 145. It is set larger than the corner.
- An angle formed by the plane and the second holding portion 145 is set to 0 ° to 90 °.
- the axial position of the boundary 147 between the second portion 143 and the second holding portion 145 is more axially inner than the axial position of the boundary 135 between the first portion 77 and the first holding portion 134 (the central portion). 78, 144).
- the axial position of the boundary 148 between the second holding portion 145 and the guide portion 146 is set to be the same as the axial position of the boundary 135 between the first portion 77 and the first holding portion 134.
- the hub 140 is configured so that the convex portion 105 abuts on the first holding portion 134 and the driven gear 41 moves from the driven gear 41 during coast travel (see FIG. 5) in which power is transmitted from the driven gear 42 (see FIG. 1) to the driving gear 41.
- the convex portion 105 contacts the guide portion 146 that faces the first holding portion 134. Since the guide portion 146 is an inclined surface that is inclined downward toward the second holding portion 145, the protruding portion 105 moves to the second holding portion 145 beyond the boundary 148 due to the thrust force acting on the protruding portion 105.
- the shift from the low speed stage to the high speed stage can be brought into a standby state, so that a shock during the shift can be suppressed.
- the convex portion 105 can be prevented from moving toward the central portion 144 during driving (except during shifting). Since the thrust force in the direction in which the clutch ring 90 and the drive gear 41 (transmission gear) mesh with each other is applied to the convex portion 105 by the second holding portion 136, the clutch ring 90 moves in the neutral direction and meshes with the drive gear 41. It can prevent the gear from coming off.
- the second holding portion 145 on the second wall 142 in conjunction with the processing of the groove portion 141, it is possible to prevent the gear from slipping off during driving, and the guide portion 146 at the time of processing is formed on the second wall 142, so that the gear slipping out.
- it is possible to eliminate the need for processing such as providing inclined surfaces on the gears such as the drive gear 41 and the teeth of the clutch ring 90 (the first teeth 95 and the second teeth 100). Therefore, it is possible to simplify the processing of components (such as the drive gear 41 and the clutch ring 90) while preventing gear disengagement during driving.
- the present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.
- the number of gear stages of the transmission 1, the number of groove portions 73, 131, 141 and the convex portion 105, the number of first teeth 95 and the second teeth 100, and the like can be set as appropriate.
- the transmission 1 is mounted on an automobile.
- the present invention is not limited to this, and the transmission 1 can naturally be mounted on a construction machine, an industrial vehicle, an agricultural machine, or the like. is there.
- the transmission 1 can eliminate the torque shortage at the time of shifting. As a result, it is possible to eliminate idle rotation of the first shaft 2 (drive shaft) and improve fuel efficiency.
- the convex portion 105 is formed in a columnar shape (circular in front view) has been described, but the present invention is not necessarily limited thereto. If the convex portion 105 abuts against the walls of the groove portions 73, 131, 141 to generate axial component force (thrust force), a polygonal column shape such as a quadrangular column, a polygonal pyramid shape such as a quadrangular pyramid, a conical shape, etc. It is naturally possible to form the convex portion 105 in a shape other than the cylindrical shape.
- a part or a plurality of parts of the configuration of the other embodiments are added to the embodiment or replaced with a part or a plurality of parts of the configuration of the embodiment.
- the embodiment may be modified and configured.
- the first holding part 134 described in the second embodiment is provided in the hub 70 in the first embodiment
- the second holding part 145 described in the third embodiment is provided in the hub 70 in the first embodiment. It can be set as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanical Operated Clutches (AREA)
Abstract
変速時のトルク切れを解消しつつ、部品の加工を簡素化できる変速機を提供する。軸方向に対して傾くガイド部(82)により軸方向の力が凸部(105)に生じると、ガイド部(82)の軸方向の長さの分だけ変速ギヤから軸方向へクラッチリング(90)が離れる。低速段から高速段への変速時に第1部分(77)により軸方向の力が凸部(105)に生じ、低速段の変速ギヤとクラッチリング(90)とが分離するときに高速段の変速ギヤとクラッチリング(90)とが結合する。ガイド部(82)は溝部(73)を設けるときに第2壁(75)に形成できるので、ガイド部(82)を設けるために加工工数が増加することを抑制できると共に、クラッチリング(90)に斜面を設ける加工を不要にできる。
Description
本発明は変速機に関し、特に部品の加工を簡素化できる変速機に関するものである。
従来から、駆動ギヤと被動ギヤとが互いに噛み合う変速ギヤを複数段備えた変速機が知られている(特許文献1)。特許文献1に開示される技術では、複数のハブ(クラッチカムリング)を軸に固定し、クラッチ歯の付いたクラッチリングをハブの外周にそれぞれ設ける。ハブには軸方向に対して傾く傾斜面が形成されており、クラッチリングには径方向に突出してハブの傾斜面に当接する凸部が設けられている。クラッチリングは、クラッチ歯の歯元に斜面が形成されている。この変速機では、クラッチリングを軸方向に移動させ、駆動ギヤや被動ギヤ(変速ギヤ)のクラッチ歯とクラッチリングのクラッチ歯とを噛み合わせて変速を行なう。
低速段から高速段への変速時に、クラッチリングのクラッチ歯の歯元に形成された斜面に変速ギヤのクラッチ歯が干渉すると、斜面の軸方向の長さの分だけ変速ギヤから軸方向へクラッチリングが離れ、ハブの傾斜面に凸部が移動する。変速比の異なる2つの変速ギヤのクラッチ歯に2つのクラッチリングのクラッチ歯が同時に噛み合うと、傾斜面によって回転方向の力が凸部に作用する軸方向の力に換えられ、内部循環トルクにより、高速段の変速ギヤに比べて回転数の低い低速段の変速ギヤに噛み合うクラッチリングの凸部が軸方向へ押し出される。高速段の変速ギヤが軸に結合すると、低速段の変速ギヤとクラッチリングとの噛み合いが外れる(高速段が成立する)ので、変速時のトルク切れを解消できる。
しかしながら特許文献1に開示される技術では、クラッチリングは、クラッチ歯の歯元に斜面を設ける加工を要するという問題点がある。
本発明は、上述した問題点を解決するためになされたものであり、変速時のトルク切れを解消しつつ、部品の加工を簡素化できる変速機を提供することを目的としている。
この目的を達成するために請求項1記載の変速機によれば、動力が入力される第1軸に沿って第2軸が配置され、互いに噛み合う駆動ギヤ及び被動ギヤが第1軸および第2軸にそれぞれ配置される。複数段の変速ギヤは、駆動ギヤ又は被動ギヤの一方が第1軸または第2軸に対して相対回転可能に構成される。第1軸または第2軸に対して相対回転不能な複数のハブが、駆動ギヤ及び被動ギヤの一方と並んで第1軸または第2軸に配置される。ハブのそれぞれに軸方向へ相対移動可能にクラッチリングが装着される。クラッチリングは、操作部により軸方向へ移動され、軸方向の第1位置で駆動ギヤ又は被動ギヤをハブに結合し、第1位置から軸方向の第2位置へ移動して駆動ギヤ又は被動ギヤとハブとを分離する。ハブ又はクラッチリングの一方は径方向に凸部が突出し、ハブ又はクラッチリングの他方に、回転方向および軸方向へ凸部が相対移動する溝部が形成される。溝部は、第1壁と、第1壁と回転方向に対向する第2壁とを備え、第2壁および第1壁は、凸部に当接してハブとクラッチリングとを一体に回転させる。第1壁は第1部分を備え、第2壁はガイド部を備えている。
軸方向に対して傾くガイド部により、第1位置から第2位置へ向かう軸方向の力が凸部に生じると、ガイド部の軸方向の長さの分だけ変速ギヤから軸方向へクラッチリングが離れる。低速段から高速段への変速時に、変速比の異なる2つの変速ギヤにクラッチリングが同時に結合すると、軸方向に対して傾く第1部分により、第1位置から第2位置へ向かう軸方向の力が凸部に生じ、内部循環トルクにより、高速段の変速ギヤに比べて回転数の低い低速段の変速ギヤに結合するクラッチリングが軸方向へ押し出される。高速段の変速ギヤとクラッチリングとが結合すると、低速段の変速ギヤとクラッチリングとが分離するので、変速時のトルク切れを解消できる。ガイド部は、第1壁および第2壁を加工して溝部を設けるときに併せて形成できるので、ガイド部を設けるために部品の加工工数が増加することを抑制できると共に、クラッチリングに斜面を設ける加工を不要にできる。よって、変速時のトルク切れを解消しつつ、部品の加工を簡素化できる効果がある。
請求項2記載の変速機によれば、駆動ギヤから被動ギヤへ動力を伝達するドライブ走行時に第2壁の第2部分に凸部が当接する。第2部分は第1部分と回転方向に対向しガイド部に連接されているので、ガイド部によって第2部分へ移動した凸部が、第2部分から第1部分へ回転方向に相対移動すると、駆動ギヤから被動ギヤへ動力を伝達できなくなる。クラッチリングと変速ギヤとが分離されると変速が行われるので、請求項1の効果に加え、変速をスムーズにできる効果がある。
請求項3記載の変速機によれば、駆動ギヤから被動ギヤへ動力を伝達するドライブ走行時に、凸部はガイド部および第2部分に当接する。従って、請求項2の効果に加え、ドライブ走行時にガイド部と第2部分との間を凸部が移動できるようにガイド部および第2部分が設けられる場合に比べて、第2壁の軸方向の長さを短くできる効果がある。
請求項4記載の変速機によれば、操作部により駆動ギヤ又は被動ギヤの最も近くにクラッチリングを移動させたときの凸部の軸方向の位置が、ガイド部の軸方向の位置と同一に設定される。駆動ギヤから被動ギヤへ動力を伝達するドライブ走行時に、操作部の付勢部により、第2位置から第1位置へ向かう軸方向の付勢力がクラッチリングに付与される。第2部分は、第2位置から第1位置へ向かう軸方向の力を凸部に生じさせるように軸方向に対して傾くので、請求項1から3のいずれかの効果に加え、付勢部の付勢力により、変速ギヤからクラッチリングを分離させ難くする軸方向の力を凸部に作用させる効果がある。
請求項5記載の変速機によれば、被動ギヤから駆動ギヤへ動力が伝達されるコースト走行時に、第1壁の第3部分に凸部が当接する。第3部分は、第1部分に連接され、ガイド部と回転方向に対向するので、凸部は、ドライブ走行時にガイド部に当接し、コースト走行時に第3部分に当接する。よって、請求項1から4のいずれかの効果に加え、ドライブ走行とコースト走行との切り換えをスムーズにできる効果がある。
以下、本発明の好ましい実施の形態について添付図面を参照して説明する。まず図1を参照して本発明の第1実施の形態における変速機1の概略構成を説明する。図1は第1実施の形態における変速機1のスケルトン図である。変速機1は、動力が入力される第1軸2(駆動軸)と、第1軸2と平行に配置される第2軸3(出力軸)とを備え、第2軸3に出力ギヤ4が配置されている。第1軸2及び第2軸3は、複数段の変速ギヤとしての1速ギヤ10、2速ギヤ20、3速ギヤ30、4速ギヤ40、5速ギヤ50及び6速ギヤ60を支持する。本実施の形態では変速機1は自動車(図示せず)に搭載されている。
1速ギヤ10は、第1軸2に相対回転不能に固定された駆動ギヤ11と、駆動ギヤ11と噛み合いつつ第2軸3に相対回転可能に固定された被動ギヤ12とを備え、2速ギヤ20は、第1軸2に相対回転可能に固定された駆動ギヤ21と、駆動ギヤ21と噛み合いつつ第2軸3に相対回転不能に固定された被動ギヤ22とを備えている。3速ギヤ30は、第1軸2に相対回転不能に固定された駆動ギヤ31と、駆動ギヤ31と噛み合いつつ第2軸3に相対回転可能に固定された被動ギヤ32とを備え、4速ギヤ40は、第1軸2に相対回転可能に固定された駆動ギヤ41と、駆動ギヤ41と噛み合いつつ第2軸3に相対回転不能に固定された被動ギヤ42とを備えている。5速ギヤ50は、第1軸2に相対回転可能に固定された駆動ギヤ51と、駆動ギヤ51と噛み合いつつ第2軸3に相対回転不能に固定された被動ギヤ52とを備え、6速ギヤ60は、第1軸2に相対回転可能に固定された駆動ギヤ61と、駆動ギヤ61と噛み合いつつ第2軸3に相対回転不能に固定された被動ギヤ62とを備えている。
ハブ70は、被動ギヤ12,32間の第2軸3、駆動ギヤ21,51間の第1軸2、駆動ギヤ41,61間の第1軸2にそれぞれ相対回転不能に固定される部材である。被動ギヤ12,32、駆動ギヤ21,41,51,61は、軸方向の端面にそれぞれ軸方向へ突出する歯(ドグ歯)106,107(図5参照)が設けられている。クラッチリング90は、ハブ70と係合しつつ軸方向へ相対移動可能にハブ70に装着される部材であり、軸方向の端面に軸方向へ突出する歯(ドグ歯、第1歯95及び第2歯100、図5参照)が設けられている。クラッチリング90が軸方向へ移動して第1歯95、第2歯100と歯106,107とが選択的に噛み合うことで、1速ギヤ10、2速ギヤ20、3速ギヤ30、4速ギヤ40、5速ギヤ50及び6速ギヤ60が第1軸2に選択的に結合し、変速が行われる。
操作部110は、クラッチリング90を軸方向へ選択的に移動させるための装置であり、クラッチリング90にそれぞれ係合するシフトフォーク111,112,113と、シフトフォーク111,112,113にそれぞれ結合する凹凸部材114と、凹凸部材114にそれぞれ結合するシフトアーム120,121,122とを備えている。凹凸部材114は、シフトフォーク111,112,113を介してクラッチリング90に軸方向の付勢力を付与する部材であり、半球状に凹んだ凹部115,116,117が軸方向(図1左右方向)に並んでいる。凹部115,116,117は、ケースCに固定されたバネ(コイルスプリング)119で凹凸部材114へ向けて付勢されたボール118が弾性的に係合する部位である。シフトアーム120,121,122は、ケースCに固定された円柱状のシフトドラム123の外周に形成されたシフト溝124,125,126に端部が係合する。
シフトドラム123は、シフトレバー(図示せず)の操作信号に基づき、或いはアクセルペダル(図示せず)の操作によるアクセル開度および車速信号等に基づき、モータ(図示せず)により軸回りに回転駆動される。シフトドラム123が回転駆動されると、シフト溝124,125,126にガイドされたシフトアーム120,121,122を介して、シフトフォーク111,112,113が軸方向へ選択的に駆動する。シフトフォーク111,112,113の駆動によってクラッチリング90が軸方向へ移動する。
凹凸部材114は、凹部116,117の位置が、被動ギヤ12,32、駆動ギヤ21,41,51,61のいずれかとクラッチリング90とが結合する噛み合い位置(第1位置)に対応し、凹部115の位置が、被動ギヤ12,32、駆動ギヤ21,41,51,61のいずれかとクラッチリング90とが分離するニュートラル位置(第2位置)に対応する。凹部115,116,117のいずれかにボール118が弾性的に係合し、クラッチリング90が、軸方向の第1位置(噛み合い位置)又は第2位置(ニュートラル位置)に位置決めされる。
図2を参照してハブ70について説明する。図2(a)はハブ70の斜視図であり、図2(b)はハブ70の正面図である。図2(a)に示すようにハブ70は、第1軸2又は第2軸3(図1参照)に結合するスプラインが内周面71に形成される円筒状の部材であり、外周面72の周方向の4カ所に溝部73が等間隔に形成されている。溝部73は、軸方向に沿って形成されると共に径方向へ向かって凹む部位であり、周方向へ間隔をあけて互いに対向する第1壁74及び第2壁75と、第1壁74及び第2壁75に連接される底部76とを備えている。
図2(b)に示すように第1壁74は、軸方向の外側から中央部78へ向かうにつれて周方向へ(第2壁75から離れる方向へ)下降傾斜する第1部分77と、第1部分77の軸方向の外側に連接される第3部分79とを備えている。第1部分77は軸方向に対して傾く傾斜面であり、第3部分79は軸方向に対して平行な平坦面である。第2壁75は、軸方向の外側から中央部81へ向かうにつれて周方向へ(第1壁74へ近づく方向へ)上昇傾斜する第2部分80と、第2部分80の軸方向の外側に連接されると共に軸方向の外側から第2部分80へ向かうにつれて周方向へ(第1壁74から離れる方向へ)下降傾斜するガイド部82とを備えている。
第2部分80及びガイド部82は、軸方向に対する傾斜方向が互いに異なる傾斜面である。ガイド部82は第3部分79と周方向(回転方向)に対向し、第2部分80は第1部分77と周方向(回転方向)に対向する。第2部分80とガイド部82との境界83は、軸方向(図2(b)左右方向)の位置が、第1部分77と第3部分79との境界84の軸方向の位置と同一に設定されている。
図3及び図4を参照して、ハブ70(図2(a)参照)の外周面72に装着されるクラッチリング90について説明する。図3(a)はクラッチリング90の斜視図であり、図3(b)は凸部105を構成するピン103の斜視図であり、図3(c)はピン103が組み付けられたクラッチリング90の斜視図である。図4(a)はクラッチリング90が組み付けられたハブ70の斜視図であり、図4(b)は溝部73及び凸部105の正面図である。
図3(a)に示すようにクラッチリング90は、円環状のリング本体91と、リング本体91の軸方向の端面から軸方向の両側へ向けて突出する複数の第1歯95及び第2歯100(ドグ歯)とを備えている。リング本体91は、外周面92の4カ所から径方向の内側へ向かって切り欠かれた切欠部93が、周方向に等間隔に設けられている。リング本体91の内周面94の内径は、ハブ70(図2(a)参照)の外周面72の外径よりわずかに大きく形成されている。
第1歯95は、リング本体91の円形状の内周面94と切欠部93の底との間に設けられており、歯先(軸方向の先端)の歯厚(周方向の厚さ)より歯元の歯厚を小さくするように、周方向の端面96が、歯先から歯元(軸方向の内側)へ向かって傾斜する傾斜面とされる。リング本体91は、第1歯95の径方向の外側の端面97と径方向の内側の端面98及び内周面94との間を貫通して径方向へ伸びる孔部99が形成されている。リング本体91の内周面94と第1歯95の端面97とは同一面上に配置される。
第2歯100は、リング本体91の周方向の4カ所に設けられた第1歯95の間の4カ所に第1歯95と交互に配置される。第2歯100は、歯先(軸方向の先端)の歯厚(周方向の厚さ)より歯元の歯厚を小さくするように、周方向の端面101が、歯先から歯元(軸方向の内側)へ向かって傾斜する傾斜面とされる。第2歯100は、歯元から歯先までの長さ(軸方向へ突出する長さ)が、第1歯95より大きく設定される。リング本体91の内周面94と第2歯100の径方向の内側の端面102とは同一面上に配置される。
図3(b)に示すようにピン103は、リング本体91に形成された孔部99に嵌合する軸部104と、軸部104の端部から軸部104の径方向の外側に張り出す凸部105とを備えている。軸部104は、長さが孔部99の長さと略同一に設定された円柱状に形成されている。凸部105は、軸方向の長さ(厚さ)が、ハブ70(図2(a)参照)の第1壁74及び第2壁75の高さより小さく、径方向の大きさが、第1壁74と第2壁75との間隔より小さく設定された円柱状に形成されている。
図3(c)に示すようにクラッチリング90は、リング本体91の内周面94側から孔部99にピン103の軸部104が挿入されることで、第1歯95の端面98に凸部105が固定される。リング本体91の径方向の内側に凸部105が配置されるので、凸部105はピン103の抜け止めを兼ねる。リング本体91の孔部99にピン103を嵌合してクラッチリング90を製造するので、凸部105をリング本体91と一体的に設ける場合に比べて、クラッチリング90の加工を簡素化できる。クラッチリング90は第1歯95の位置に孔部99が形成されるので、第1歯95や第2歯100以外の位置に孔部99を形成する場合に比べて孔径を大きくでき、軸部104を太くできる。孔部99に嵌合する軸部104の強度を高められるので、クラッチリング90の耐久性を向上できる。
図4(a)に示すようにクラッチリング90は、ハブ70の溝部73に凸部105を軸方向から挿入して、ハブ70の外周面72に装着される。図4(b)に示すように第1壁74と第2壁75との間に凸部105が配置される。第1壁74や第2壁75が凸部105に当接して、ハブ70とクラッチリング90とが一体に回転する。
ハブ70にクラッチリング90が装着された状態で、クラッチリング90の内周面94及び第2歯100の端面102はハブ70の外周面72に接触する。ハブ70に対してクラッチリング90が軸方向へ移動するときには、第2歯100の端面102がハブ70の外周面72に擦れて、ハブ70に対してリング本体91が支持される。軸方向に移動するクラッチリング90がハブ70に対して倒れるとスムーズに変速できなくなるおそれがあるが、クラッチリング90のハブ70に対する倒れを第2歯100によって防ぐので、スムーズな変速を確保できる。
クラッチリング90のハブ70に対する倒れを防ぐため、クラッチリング90を支持する部材を別に設ける場合には、クラッチリング90の支持構造が複雑化するという問題点がある。しかし、第2歯100を利用してクラッチリング90を支持するので、クラッチリング90を支持する部材を別に設けることを省略できる。よって、クラッチリング90の支持構造を簡素化できる。
クラッチリング90は、ハブ70に対する倒れを防ぐ支持部を歯(第2歯100)と兼用するので、歯とは別に支持部を設ける場合に比べて、クラッチリング90の加工を簡素化できる。第2歯100は第1歯95より軸方向に突出する長さが大きいので、軸方向に突出する長さが小さい第1歯95と支持部とを兼用する場合に比べて、ハブ70に対するリング本体91の支持長さを大きくできる。第2歯100を利用することにより、第1歯95を利用する場合に比べて、ハブ70に対してクラッチリング90を軸方向へ移動させるときの安定性を向上できる。
第1歯95の数は第2歯100の数と同数であり、第1歯95の位置からリング本体91の径方向に凸部105が突出する。凸部105によるハブ70とクラッチリング90とを一体に回転させる機能と、第2歯100による倒れ防止機能とを両立できるので、変速機1の信頼性を確保できる。
図5から図9を参照して、高速段へ変速(シフトアップ)するときの変速機1の動作を説明する。本実施の形態では一例として4速ギヤ40から5速ギヤ50への変速について説明するが、他の段へ変速する動作も同様なので、他の段の変速については説明を省略する。まず図5及び図6を参照して、低速段(4速ギヤ40)のときの変速機1の動作について説明する。図5は低速段(4速ギヤ40)のコースト走行時の変速機1の模式図であり、図6は低速段(4速ギヤ40)のドライブ走行時の変速機1の模式図である。図5から図9では、駆動ギヤ41,51、ハブ70及びクラッチリング90の回転方向は、紙面に沿って下向き(矢印R方向)である。
図5に示すように4速走行時には、シフトドラム123のシフト溝125及びシフトアーム121によりシフトフォーク112が4速ギヤ40の駆動ギヤ41へ近づき、クラッチリング90の第1歯95及び第2歯100が駆動ギヤ41の歯106に噛み合う。ボール118は凹凸部材114の凹部117に係合する(第1位置)。一方、5速ギヤ50では、ボール118が凹凸部材114の凹部115に係合するニュートラル位置(第2位置)が維持され、クラッチリング90と駆動ギヤ51とが分離する。
4速ギヤ40の被動ギヤ42(図1参照)から駆動ギヤ41へ動力が伝達されるコースト走行時には、クラッチリング90はハブ70より速く回転するので、凸部105はハブ70の第3部分79に当接する。第3部分79は軸方向に沿う平坦面なので、凸部105(クラッチリング90)に軸方向のスラスト分力は生じない。よって、クラッチリング90と駆動ギヤ41との噛み合いが保たれる。第1歯95及び第2歯100の周方向の端面96,101及び駆動ギヤ41の歯106は、歯先から歯元へ向かって傾斜する傾斜面同士が擦れ合うので、摩擦によってギヤ抜けを防止する。
図6に示すように、駆動ギヤ41から被動ギヤ42(図1参照)へ動力が伝達されるドライブ走行時には、ハブ70はクラッチリング90より速く回転するので、凸部105はハブ70のガイド部82に当接する。ガイド部82は、軸方向に対して傾き、第2部分80へ向かうにつれて周方向へ下降傾斜するので、凸部105(クラッチリング90)に第2部分80へ向かう軸方向の力が作用する。シフト溝125とシフトアーム121との間に軸方向の遊び(隙間)G(図5参照)があるので、その分だけ、クラッチリング90は駆動ギヤ41から離脱する方向へ移動する。クラッチリング90の凸部105は、ガイド部82及び第2部分80に当接した状態となる。一方、5速ギヤ50では、ハブ70はクラッチリング90より速く回転するので、凸部105は、ハブ70の第2壁75の中央部81に当接する。
4速ギヤ40では、クラッチリング90の移動につれて軸方向へ移動した凹凸部材114は、凹部117によりボール118を押しのけ、バネ119を圧縮して弾性エネルギーを蓄える。これによりバネ119は、駆動ギヤ41との噛み合いを深くする軸方向(矢印B方向)の付勢力をクラッチリング90に付与する。また、第1歯95及び第2歯100の周方向の端面96,101及び駆動ギヤ41の歯106は、歯先から歯元へ向かって傾斜する傾斜面同士が擦れ合うので、摩擦によってギヤ抜けを防止する。
被動ギヤ42(図1参照)から駆動ギヤ41へ動力が伝達されるコースト走行時には(図5参照)、第1軸2(図1参照)から駆動ギヤ41に動力が伝達されないので、バネ119による軸方向(矢印B方向)の付勢力により、クラッチリング90は、バネ119の復元に伴い駆動ギヤ41との噛み合いを深くする方向へ移動する。クラッチリング90はハブ70より速く回転するので、凸部105はハブ70の第3部分79に当接する。4速ギヤ40による走行時には、凸部105は、ドライブ走行とコースト走行との切り換えにより、ガイド部82及び第2部分80に当接する位置と第3部分79に当接する位置との間を行き来する。
図7は低速段(4速ギヤ40)から高速段(5速ギヤ50)へ変速途中の変速機1の模式図であり、図8は低速段から高速段への変速直後の変速機1の模式図であり、図9は高速段(5速ギヤ50)のドライブ走行時の変速機1の模式図である。図7及び図8に示す矢印Sはシフトドラム123のシフトアップ時の回転方向である。
図7に示すように、駆動ギヤ41から被動ギヤ42(図1参照)へ動力が伝達されるドライブ走行時に、シフトドラム123を回転して高速段(5速ギヤ50)へのシフトアップ操作が行われると、シフトドラム123のシフト溝126及びシフトアーム122によりシフトフォーク113が5速ギヤ50の駆動ギヤ51へ近づき、クラッチリング90の第1歯95の歯先が駆動ギヤ51の歯107の歯先に当接する。クラッチリング90の第2歯100は、軸方向の長さが第1歯95より大きいので、第2歯100と駆動ギヤ51の歯107とを噛み合い易くできる。一方、4速ギヤ40では、凹凸部材114の凹部117によってボール118を介してバネ119が圧縮されるので、クラッチリング90と駆動ギヤ41とが噛み合った状態が維持される。
図8に示すように4速ギヤ40の駆動ギヤ41とクラッチリング90とが噛み合った状態で、5速ギヤ50の駆動ギヤ51とクラッチリング90とが噛み合うと(歯107と第2歯100とが噛み合うと)、5速ギヤ50は4速ギヤ40より速く回転するので、内部循環トルクにより4速側はコースト状態、5速側はドライブ状態となる。5速ギヤ50では、ハブ70の第2部分80に凸部105が当接して、クラッチリング90が駆動ギヤ51に深く噛み合う軸方向の力が凸部105に作用する。4速ギヤ40では、ハブ70とクラッチリング90との相対回転によって、第2部分80及びガイド部82に当接する凸部105が第1壁74側へ移動し、ハブ70の第1部分77に凸部105が当接する。第1部分77では、クラッチリング90をニュートラル方向(ハブ70の中央部78側)へ移動させて駆動ギヤ41との噛み合いを解除する軸方向の力が凸部105に作用する。このスラスト力によりクラッチリング90はニュートラル方向へ移動する。
図9に示すようにシフトドラム123によって5速ギヤ50への変速が完了すると、4速ギヤ40では、ボール118が凹凸部材114の凹部115に係合するニュートラル位置(第2位置)が維持され、クラッチリング90と駆動ギヤ41とが分離した状態が維持される。5速ギヤ50では、ボール118が凹凸部材114の凹部117に係合する。
駆動ギヤ51から被動ギヤ52(図1参照)へ動力が伝達されるドライブ走行時には、凸部105はハブ70のガイド部82に当接する。ガイド部82は、軸方向に対して傾き、第2部分80へ向かって周方向へ下降傾斜するので、凸部105(クラッチリング90)に第2部分80へ向かう軸方向の力が作用する。シフト溝125とシフトアーム121との間に軸方向の遊び(隙間)Gがあるので、その分だけ、クラッチリング90は駆動ギヤ51から離脱する方向へ移動する。クラッチリング90の凸部105は、ガイド部82及び第2部分80に当接した状態となる。凹凸部材114は、凹部117によりボール118を押しのけ、バネ119を圧縮して弾性エネルギーを蓄える。これによりバネ119は、駆動ギヤ51との噛み合いを深くする軸方向(矢印B方向)の付勢力をクラッチリング90に付与する。
以上のように変速機1は、ハブ70に設けられたガイド部82により、クラッチリング90の噛み合い位置(第1位置)からニュートラル位置(第2位置)へ向かう軸方向の力が凸部105に生じると(駆動ギヤ41から被動ギヤ42へ動力が伝達されるドライブ走行時)、ガイド部105の軸方向の長さの分だけ4速ギヤ40等の変速ギヤから軸方向へクラッチリング90が離れる。これにより、低速段から高速段への変速を待機状態にできるので、変速時のショックを抑制できる。
低速段から高速段への変速時に、変速比の異なる2つの変速ギヤ(4速ギヤ40及び第5ギヤ50)にクラッチリング90が2つ同時に結合すると、軸方向に対して傾く第1部分77により、第1位置から第2位置へ向かう軸方向の力が凸部105に生じ、内部循環トルクにより、高速段の変速ギヤ(5速ギヤ50)に比べて回転数の低い低速段の変速ギヤ(4速ギヤ40)に結合するクラッチリング90が軸方向へ押し出される。高速段の変速ギヤ(5速ギヤ50)とクラッチリング90とが結合すると、低速段の変速ギヤ(4速ギヤ40)とクラッチリング90とが分離して高速段が成立するので、変速時のトルク切れを解消できる。
ガイド部82は、第1壁74及び第2壁75を加工してハブ70に溝部73を設けるときに併せて形成できるので、ガイド部82を設けるために部品の加工工数が増加することを抑制できると共に、クラッチリング90の歯元に斜面を設ける加工を不要にできる。よって、変速時のトルク切れを解消しつつ、部品の加工を簡素化できる。
変速機1は、駆動ギヤ41から被動ギヤ42へ動力を伝達するドライブ走行時に第2壁75の第2部分80に凸部105が当接する。第2部分80は第1部分77と回転方向(周方向)に対向しガイド部82に連接されているので、ガイド部82によって第2部分80へ移動した凸部105が、第2部分80から第1部分77へ回転方向に相対移動すると、駆動ギヤ41から被動ギヤ42へ動力を伝達できなくなる。駆動ギヤ41から被動ギヤ42へ動力を伝達できない状態では、クラッチリング90と4速ギヤ40とを分離できる。クラッチリング90と4速ギヤ40とが分離されると高速段(5速ギヤ50)への変速が行われるので、変速をスムーズにできる。
変速機1は、駆動ギヤ41,51から被動ギヤ42,52へ動力を伝達するドライブ走行時に、凸部105はガイド部82及び第2部分80に当接する。よって、ドライブ走行時にガイド部82と第2部分80との間を凸部105が移動できるように距離をあけてガイド部82及び第2部分80が軸方向に設けられる場合に比べて、第2壁75の軸方向の長さ、即ちハブ70の軸方向の長さを短くできる。その結果、ハブ70が複数配置される変速機1の軸方向の長さを短くできる。
変速機1は、操作部110により駆動ギヤ41,51(変速ギヤ)の最も近くにクラッチリング90を移動させたときの凸部105の軸方向の位置(凹凸部材114の凹部117にボール118が係合する位置)が、ガイド部82の軸方向の位置と同一に設定される。駆動ギヤ41から被動ギヤ42へ動力を伝達するドライブ走行時に、バネ119により、ニュートラル位置(第2位置)からクラッチリング90の噛み合い位置(第1位置)へ向かう軸方向の付勢力がクラッチリング90に付与される。第2部分80は、第2位置から第1位置へ向かう軸方向の力を凸部105に生じさせるように軸方向に対して傾くので、バネ119による軸方向の付勢力により、変速ギヤ(4速ギヤ40)からクラッチリング90を分離させ難くする軸方向の力を凸部105(クラッチリング90)に作用させることができる。よって、ギヤ抜けを防止できる。
変速機1は、被動ギヤ42から駆動ギヤ41へ動力が伝達されるコースト走行時に、第1壁74の第3部分79に凸部105が当接する。第3部分79は、第1部分77に連接され、ガイド部82と回転方向(周方向)に対向するので、凸部105は、ドライブ走行時にガイド部82に当接し、コースト走行時に第3部分79に当接する。よって、ドライブ走行とコースト走行との切り換えをスムーズにできる。
図10を参照して第2実施の形態について説明する。第1実施の形態では、第1歯95及び第2歯100の周方向の端面96,101及び駆動ギヤ41,51の歯106,107の周方向の端面に、歯先から歯元へ向かって傾斜する傾斜面を設け、その傾斜面同士の摩擦によってギヤ抜けを防止する場合について説明した。これに対し第2実施の形態では、ハブ130の溝部131にギヤ抜けを防止する部位を設ける場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図10は第2実施の形態における変速機に用いられるハブ130の部分拡大図である。図10では、ハブ130の周方向の図示が省略されている。ハブ130は、第1実施の形態で説明した変速機1のハブ70に代えて配置される。
図10に示すようにハブ130は、第1軸2又は第2軸3(図1参照)に結合する円筒状の部材であり、軸方向に沿う溝部131が外周に形成されている。溝部131は、径方向へ向かって凹む部位であり、周方向へ間隔をあけて互いに対向する第1壁132及び第2壁133を備えている。第1壁132は、軸方向の外側から中央部78へ向かうにつれて周方向へ下降傾斜する第1部分77の軸方向の外側に連接される第1保持部134(第3部分)を備えている。
第1保持部134は、軸方向に対して交差する面であり、本実施の形態では、第1部分77と第3部分134との境界135から軸方向の外側へ向かうにつれて周方向へ(第2壁133から離れる方向へ)下降傾斜する。第1保持部134は、軸に平行であって第1部分77と第1保持部134との境界135を通る平面P1と第1保持部134とのなす角θ1が0°<θ1≦90°に設定される。θ1=90°は、平面P1に対して直交する壁状に第1保持部134が形成されることを示す。
第2壁133は、第2部分80の軸方向の外側に連接されると共に軸方向の外側へ向かうにつれて周方向へ(第1壁132から離れる方向へ)下降傾斜する第2保持部136を備えている。第2部分80及び第2保持部136は、軸方向に対する傾きが互いに異なる傾斜面である。軸に平行であって第2部分80と第2保持部136との境界137を通る平面P2と第2部分80とのなす角θ2は、平面P2と第2保持部136とのなす角θ3より大きく設定されている(θ2>θ3)。なす角θ3は0°<θ3<90°に設定される。また、第2部分80と第2保持部136との境界137の軸方向の位置は、第1部分77と第1保持部134との境界135の軸方向の位置より軸方向の内側(中央部78,81寄り)に設定されている。
ハブ130は、被動ギヤ42(図1参照)から駆動ギヤ41へ動力が伝達されるコースト走行時に(図5参照)、第1保持部134(境界135より軸方向の外側)に凸部105が当接する。第1保持部134は、平面P1に対して下降傾斜する傾斜面(θ1<90°)又は壁状の垂直面(θ1=90°)に形成されるので、コースト走行時(変速時以外)に凸部105が境界135を超えて第1部分77へ移動することを防止できる。その結果、クラッチリング90がニュートラル方向へ移動して駆動ギヤ41との噛み合いが外れるギヤ抜けを防止できる。特に、第1保持部134が平面P1に対して下降傾斜する傾斜面(θ1<90°)の場合には、コースティングトルクによって凸部105に駆動ギヤ41側へのスラスト力が作用するので、ギヤ抜けの抑制効果を高めることができる。
溝部131の加工に併せて第1壁132に第1保持部134を設けることでコースト走行時のギヤ抜けを防止できるので、ギヤ抜けを防ぐために駆動ギヤ41等の変速ギヤやクラッチリング90の歯(第1歯95及び第2歯100)に斜面を設ける等の加工を不要にできる。よって、コースト走行時のギヤ抜けを防ぎつつ部品(駆動ギヤ41やクラッチリング90等)の加工を簡素化できる。
ハブ130は、駆動ギヤ41から被動ギヤ42(図1参照)へ動力が伝達されるドライブ走行時に(図6参照)、第2保持部136(境界137より軸方向の外側)に凸部105が当接する。第2保持部136は、平面P2に対して下降傾斜する傾斜面に形成されるので、ドライブ走行時(変速時以外)に凸部105が境界137を超えて第2部分80へ移動することを防止できる。その結果、クラッチリング90がニュートラル方向へ移動して駆動ギヤ41との噛み合いが外れるギヤ抜けを防止できる。第2保持部136は平面P2に対して下降傾斜する傾斜面(θ3<90°)なので、ドライブトルクによって凸部105に駆動ギヤ41側へのスラスト力が作用するので、ギヤ抜けの抑制効果を高めることができる。
溝部131の加工に併せて第2壁133に第2保持部136を設けることでドライブ走行時のギヤ抜けを防止できるので、ギヤ抜けを防ぐために駆動ギヤ41等の変速ギヤやクラッチリング90の歯(第1歯95及び第2歯100)に斜面を設ける等の加工を不要にできる。よって、ドライブ走行時のギヤ抜けを防ぎつつ部品(駆動ギヤ41やクラッチリング90等)の加工を簡素化できる。
ハブ130は、平面P2と第2部分80とのなす角θ2が、平面P2と第2保持部136とのなす角θ3より大きく設定されるので、ドライブ走行時(変速時以外)には、凸部105は、軸方向に対する傾きが変わる第2部分80と第2保持部136との境界137付近に主に当接する。ハブ130は、第2部分80と第2保持部136との境界137が、第1部分77と第1保持部134との境界より中央部78,81寄りに位置するように設けられる。その結果、ドライブ走行時に第2部分80と第2保持部136との境界137付近に当接する凸部105が回転方向(周方向)に移動すると、凸部105が第1部分77に当接する。これにより、低速段から高速段への変速時に、低速段の第1部分77に凸部105を沿わせて軸方向へクラッチリング90を押し出し易くできる。その結果、変速をスムーズにできる。
ハブ130が配置された変速機では、操作部110(図1参照)により変速ギヤ(駆動ギヤ41や被動ギヤ41等)の最も近くにクラッチリング90を移動させたときの凸部105の軸方向の位置が、第1保持部134の軸方向の位置と同一に設定される。駆動ギヤ41から被動ギヤ42へ動力を伝達するドライブ走行時に(図6参照)、操作部110のバネ119により、ニュートラル位置(第2位置)から噛み合い位置(第1位置)へ向かう軸方向(矢印B方向)の付勢力がクラッチリング90に付与される。第2部分133は、第2位置から第1位置へ向かう軸方向の力を凸部105に生じさせるように軸方向に対して傾くので、バネ119による軸方向の付勢力により、変速ギヤ(4速ギヤ40)からクラッチリング90を分離させ難くする軸方向の力を凸部105(クラッチリング90)に作用させることができる。よって、ギヤ抜けを生じ難くできる。
図11を参照して第3実施の形態について説明する。第2実施の形態では、ハブ130の第2壁133に第2部分80及び第2保持部136が設けられる場合について説明した。これに対し第3実施の形態では、第2部分143及び第2保持部145に加え、第2壁142にガイド部146が設けられる場合について説明する。なお、第1実施の形態および第2実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図11は第3実施の形態における変速機に用いられるハブ140の部分拡大図である。図11では、ハブ140の周方向の図示が省略されている。ハブ140は、第1実施の形態で説明した変速機1のハブ70に代えて配置される。
図11に示すようにハブ140は、第1軸2又は第2軸3(図1参照)に結合する円筒状の部材であり、軸方向に沿う溝部141が外周に形成されている。溝部141は、径方向へ向かって凹む部位であり、周方向へ間隔をあけて互いに対向する第1壁132及び第2壁142を備えている。
第2壁142は、軸方向の外側から中央部144へ向かうにつれて周方向へ(第1壁132に近づく方向へ)上昇傾斜する第2部分143と、第2部分143の軸方向の外側に連接されると共に軸方向の内側から外側へ向かうにつれて周方向へ(第1壁132から離れる方向へ)下降傾斜する第2保持部145と、第2保持部145の軸方向の外側に連接されると共に軸方向の外側へ向かって周方向へ上昇傾斜するガイド部146とを備えている。
第2部分143及び第2保持部145は、軸方向に対する傾きが互いに異なる傾斜面である。軸に平行であって第2部分143と第2保持部145との境界147を通る平面(図示せず)と第2部分143とのなす角は、該平面と第2保持部145とのなす角より大きく設定されている。該平面と第2保持部145とのなす角は0°~90°に設定される。また、第2部分143と第2保持部145との境界147の軸方向の位置は、第1部分77と第1保持部134との境界135の軸方向の位置より軸方向の内側(中央部78,144寄り)に設定されている。第2保持部145とガイド部146との境界148の軸方向の位置は、第1部分77と第1保持部134との境界135の軸方向の位置と同一に設定される。
ハブ140は、被動ギヤ42(図1参照)から駆動ギヤ41へ動力が伝達されるコースト走行時に(図5参照)、第1保持部134に凸部105が当接し、駆動ギヤ41から被動ギヤ42(図1参照)へ動力が伝達されるドライブ走行時に(図6参照)、第1保持部134と対向するガイド部146に凸部105が当接する。ガイド部146は、第2保持部145へ向かって下降傾斜する傾斜面なので、凸部105に作用するスラスト力により、凸部105は境界148を超えて第2保持部145へ移動する。これにより、低速段から高速段への変速を待機状態にできるので、変速時のショックを抑制できる。
第2保持部145は、軸方向に対して傾く方向がガイド部146とは異なるので、ドライブ走行時(変速時以外)に凸部105が中央部144へ向かって移動することを防止できる。第2保持部136によりクラッチリング90と駆動ギヤ41(変速ギヤ)とが噛み合う方向のスラスト力が凸部105に作用するので、クラッチリング90がニュートラル方向へ移動して駆動ギヤ41との噛み合いが外れるギヤ抜けを防止できる。
溝部141の加工に併せて第2壁142に第2保持部145を設けることでドライブ走行時のギヤ抜けを防止でき、また第2壁142に加工時のガイド部146を形成するので、ギヤ抜け等を防ぐために駆動ギヤ41等の変速ギヤやクラッチリング90の歯(第1歯95及び第2歯100)に斜面を設ける等の加工を不要にできる。よって、ドライブ走行時のギヤ抜けを防ぎつつ部品(駆動ギヤ41やクラッチリング90等)の加工を簡素化できる。
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、変速機1の変速段の数、溝部73,131,141及び凸部105の数、第1歯95及び第2歯100の数等は適宜設定できる。
上記各実施の形態では、変速機1を自動車に搭載する場合について説明したが、これに限られるものではなく、建設機械、産業車両、農業機械等に変速機1を搭載することは当然可能である。この場合も変速機1により変速時のトルク切れを解消できる。その結果、第1軸2(駆動軸)の空回りをなくし燃費を改善できる。
上記各実施の形態では、ハブ70,130,140に溝部73,131,141が形成され、クラッチリング90に凸部105が設けられる場合について説明したが、必ずしもこれに限られるものではない。これとは逆に、ハブ70,130,140の外周面に凸部105を設け、クラッチリング90の内周面に溝部73,131,141を設けることは当然可能である。この場合も、凸部105に当接した溝部73,131,141の壁にスラスト力を作用させて、クラッチリング90を軸方向へ移動させることができるからである。
上記各実施の形態では、凸部105が円柱状(正面視が円形状)に形成される場合について説明したが、必ずしもこれに限られるものではない。溝部73,131,141の壁に凸部105が当接して軸方向の分力(スラスト力)を生じさせることができれば、四角柱等の多角柱状、四角錐等の多角錐状、円錐状等の円柱状以外の形に凸部105を形成することは当然可能である。
上記の各実施形態は、それぞれ、他の実施形態が有する構成の一部または複数部分を、その実施形態に追加し或いはその実施形態の構成の一部または複数部分と交換等することにより、その実施形態を変形して構成するようにしても良い。例えば、第2実施の形態で説明した第1保持部134を第1実施の形態におけるハブ70に設けること、第3実施の形態で説明した第2保持部145を第1実施の形態におけるハブ70に設けること等、適宜設定できる。
1 変速機
2 第1軸
3 第2軸
10 1速ギヤ(変速ギヤの一部)
20 2速ギヤ(変速ギヤの一部)
30 3速ギヤ(変速ギヤの一部)
40 4速ギヤ(変速ギヤの一部)
50 5速ギヤ(変速ギヤの一部)
60 6速ギヤ(変速ギヤの一部)
11,21,31,41,51,61 駆動ギヤ
12,22,32,42,52,62 被動ギヤ
70,140 ハブ
73,141 溝部
74,132 第1壁
75,142 第2壁
77 第1部分
79 第3部分
80,143 第2部分
82,146 ガイド部
90 クラッチリング
105 凸部
110 操作部
114 凹凸部材(付勢部の一部)
118 ボール(付勢部の一部)
119 バネ(付勢部の一部)
134 第1保持部(第3部分)
2 第1軸
3 第2軸
10 1速ギヤ(変速ギヤの一部)
20 2速ギヤ(変速ギヤの一部)
30 3速ギヤ(変速ギヤの一部)
40 4速ギヤ(変速ギヤの一部)
50 5速ギヤ(変速ギヤの一部)
60 6速ギヤ(変速ギヤの一部)
11,21,31,41,51,61 駆動ギヤ
12,22,32,42,52,62 被動ギヤ
70,140 ハブ
73,141 溝部
74,132 第1壁
75,142 第2壁
77 第1部分
79 第3部分
80,143 第2部分
82,146 ガイド部
90 クラッチリング
105 凸部
110 操作部
114 凹凸部材(付勢部の一部)
118 ボール(付勢部の一部)
119 バネ(付勢部の一部)
134 第1保持部(第3部分)
Claims (5)
- 動力が入力される第1軸と、
その第1軸に沿って配置される第2軸と、
前記第1軸および前記第2軸にそれぞれ配置されて互いに噛み合う駆動ギヤ及び被動ギヤを備え、前記駆動ギヤ又は前記被動ギヤの一方が前記第1軸または前記第2軸に対して相対回転可能に構成される複数段の変速ギヤと、
前記駆動ギヤ及び前記被動ギヤの一方と並んで前記第1軸または前記第2軸に配置されると共に前記第1軸または前記第2軸に対して相対回転不能な複数のハブと、
そのハブのそれぞれに軸方向へ相対移動可能に装着されると共に、軸方向の第1位置で前記駆動ギヤ又は前記被動ギヤを前記ハブに結合し、前記第1位置から軸方向の第2位置へ移動して前記駆動ギヤ又は前記被動ギヤと前記ハブとを分離するクラッチリングと、
そのクラッチリングを軸方向へ移動させる操作部とを備え、
前記ハブ又は前記クラッチリングの一方は、径方向に突出する凸部を備え、
前記ハブ又は前記クラッチリングの他方は、回転方向および軸方向へ前記凸部が相対移動する溝部を備え、
その溝部は、第1壁と、その第1壁と回転方向に対向する第2壁とを備え、その第2壁および前記第1壁は、前記凸部に当接して前記ハブと前記クラッチリングとを一体に回転させ、
前記第1壁は、軸方向に対して傾き、前記第1位置から前記第2位置へ向かう軸方向の力を前記凸部に生じさせる第1部分を備え、
前記第2壁は、軸方向に対して傾き、前記第1位置から前記第2位置へ向かう軸方向の力を前記凸部に生じさせるガイド部を備えていることを特徴とする変速機。 - 前記第2壁は、前記駆動ギヤから前記被動ギヤへ動力を伝達するドライブ走行時に前記凸部が当接する第2部分を備え、
その第2部分は、前記第1部分と回転方向に対向し、前記ガイド部に連接されていることを特徴とする請求項1記載の変速機。 - 前記凸部は、前記駆動ギヤから前記被動ギヤへ動力を伝達するドライブ走行時に、前記ガイド部および前記第2部分に当接することを特徴とする請求項2記載の変速機。
- 前記操作部は、前記駆動ギヤから前記被動ギヤへ動力を伝達するドライブ走行時に、前記第2位置から前記第1位置へ向かう軸方向の付勢力を前記クラッチリングに付与する付勢部を備え、
前記第2部分は、前記第2位置から前記第1位置へ向かう軸方向の力を前記凸部に生じさせるように軸方向に対して傾き、
前記操作部により前記駆動ギヤ又は前記被動ギヤの最も近くに前記クラッチリングを移動させたときの前記凸部の軸方向の位置が、前記ガイド部の軸方向の位置と同一に設定されていることを特徴とする請求項2又は3に記載の変速機。 - 前記第1壁は、前記被動ギヤから前記駆動ギヤへ動力が伝達されるコースト走行時に前記凸部が当接する第3部分を備え、
その第3部分は、前記第1部分に連接され、前記ガイド部と回転方向に対向することを特徴とする請求項1から4のいずれかに記載の変速機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/071091 WO2017017723A1 (ja) | 2015-07-24 | 2015-07-24 | 変速機 |
JP2017530468A JP6503067B2 (ja) | 2015-07-24 | 2015-07-24 | 変速機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/071091 WO2017017723A1 (ja) | 2015-07-24 | 2015-07-24 | 変速機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017017723A1 true WO2017017723A1 (ja) | 2017-02-02 |
Family
ID=57884325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/071091 WO2017017723A1 (ja) | 2015-07-24 | 2015-07-24 | 変速機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6503067B2 (ja) |
WO (1) | WO2017017723A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018115733A (ja) * | 2017-01-20 | 2018-07-26 | ジヤトコ株式会社 | 回転伝達機構 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012127471A (ja) * | 2010-12-17 | 2012-07-05 | Ikeya Formula Kk | トランスミッション |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9175765B2 (en) * | 2010-11-19 | 2015-11-03 | Ikeya Forumla Co., Ltd. | Transmission and shift control system |
-
2015
- 2015-07-24 WO PCT/JP2015/071091 patent/WO2017017723A1/ja active Application Filing
- 2015-07-24 JP JP2017530468A patent/JP6503067B2/ja not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012127471A (ja) * | 2010-12-17 | 2012-07-05 | Ikeya Formula Kk | トランスミッション |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018115733A (ja) * | 2017-01-20 | 2018-07-26 | ジヤトコ株式会社 | 回転伝達機構 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017017723A1 (ja) | 2018-05-10 |
JP6503067B2 (ja) | 2019-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4875302B2 (ja) | ドグクラッチ | |
JP6438292B2 (ja) | 車両用変速機 | |
JP5545778B2 (ja) | 変速機 | |
JP6577441B2 (ja) | ドグクラッチ | |
JP5956805B2 (ja) | 変速機 | |
WO2017017724A1 (ja) | 変速機 | |
US9188169B2 (en) | Shift device with synchronizer | |
JP6590569B2 (ja) | 変速機 | |
JP5909135B2 (ja) | 変速機 | |
WO2017017723A1 (ja) | 変速機 | |
JP5860330B2 (ja) | 変速機 | |
JP6750166B2 (ja) | 自動変速機 | |
JP6669835B2 (ja) | トランスミッション | |
JP5439555B2 (ja) | 変速機 | |
JP7562040B2 (ja) | ドッグクラッチ | |
JP2020012475A (ja) | 変速機 | |
JP7288975B2 (ja) | 変速機 | |
JP7317321B2 (ja) | 変速機 | |
JP6561335B2 (ja) | 自動変速機 | |
JP7385676B2 (ja) | 変速機 | |
JP6248507B2 (ja) | ドグクラッチ式変速装置 | |
JP5254286B2 (ja) | 変速機のフォークシャフトの支持構造 | |
JP7391106B2 (ja) | 変速機 | |
JP2018071627A (ja) | 自動変速機 | |
JP6236476B2 (ja) | 変速機の異音低減装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15899557 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017530468 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15899557 Country of ref document: EP Kind code of ref document: A1 |