WO2017014190A1 - 露光データ補正装置、配線パターン形成システム、及び配線基板の製造方法 - Google Patents

露光データ補正装置、配線パターン形成システム、及び配線基板の製造方法 Download PDF

Info

Publication number
WO2017014190A1
WO2017014190A1 PCT/JP2016/071013 JP2016071013W WO2017014190A1 WO 2017014190 A1 WO2017014190 A1 WO 2017014190A1 JP 2016071013 W JP2016071013 W JP 2016071013W WO 2017014190 A1 WO2017014190 A1 WO 2017014190A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
pattern
actual pattern
value
upper base
Prior art date
Application number
PCT/JP2016/071013
Other languages
English (en)
French (fr)
Inventor
哲平 山本
中山 肇
荻野 晴夫
聡 磯田
前田 晃
山田 亮
Original Assignee
日立化成株式会社
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社, 株式会社Screenホールディングス filed Critical 日立化成株式会社
Priority to KR1020177037572A priority Critical patent/KR102086497B1/ko
Priority to CN201680042016.6A priority patent/CN107850855B/zh
Publication of WO2017014190A1 publication Critical patent/WO2017014190A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to an exposure data correction apparatus, a wiring pattern forming system, and a method for manufacturing a wiring board, and more particularly, to an exposure data correcting apparatus, a wiring pattern forming system, and a wiring used for manufacturing a wiring board used in electronic equipment and the like.
  • the present invention relates to a method for manufacturing a substrate.
  • a direct drawing type exposure apparatus direct exposure type irradiation apparatus that directly irradiates a photosensitive resist with laser light, UV-LED light or the like ( DI) is combined with an optical inspection device (AOI) that reads the actual pattern actually formed by etching or the like with reflected light and compares it with the original data (design data).
  • AOI optical inspection device
  • a method is considered in which the image is taken into an optical appearance inspection apparatus (AOI) and fed back to an exposure apparatus (DI) (Patent Documents 1 to 3).
  • the actual pattern has a convex shape having an upper base (top) and a lower base (bottom), and a finished value, for example, a wiring pattern (hereinafter simply referred to as “pattern”).
  • the circuit width is different between the top width 1702 and the bottom width 1704.
  • AOI optical appearance inspection apparatus
  • the finished value can be measured relatively easily.
  • the finished value measured by the AOI is the top width, and bottom width data cannot be obtained. For this reason, even if the exposure data is corrected by feeding back to DI using the measured value of AOI, there is a problem that an error due to the difference between the top width and the bottom width occurs.
  • the present invention relates to an exposure data correction apparatus capable of suppressing an error of an exposure data correction amount and improving a circuit width accuracy at the time of forming a fine circuit, while reducing the labor of manual measurement of lower bottom data. It is an object of the present invention to provide a wiring pattern forming system and a method for manufacturing a wiring board.
  • the exposure data correction apparatus of one embodiment of the present invention is a convex first having an upper base and a lower base obtained by circuit processing using exposure data based on design data for a target wiring pattern.
  • first upper base data based on data obtained from an upper base in at least a part of the real pattern, and based on data obtained from a lower base in at least a part of the first real pattern;
  • bottom bottom data determining a correlation between the first top bottom data and the bottom bottom data, and from a top base in a region including a region different from at least a part of the first real pattern
  • second upper base data based on the obtained data or data obtained from the upper base of a second real pattern different from the first real pattern
  • the second upper base data Used Based on the design data for the actual pattern, the second top-bottom data, and the correlation, the factors that cause the difference between the finish value determined in the design data and the finish value in the actual pattern and the difference are suppressed.
  • a correction function indicating a relationship with a correction amount to be determined is determined, and exposure data for an actual pattern used to obtain the second upper base data is corrected based on the correction function.
  • the first upper base data in the present invention includes a finish value measured at the upper base in at least a part of the first actual pattern and a design for the first actual pattern corresponding to the finish value.
  • Correction amount data based on a difference from a finish value determined in the corresponding design data for the first actual pattern, and the second upper base data includes at least a part of the first actual pattern.
  • the finished value Correction amount data based on the difference from the finished value or the finished value measured at the upper base of the second actual pattern different from the first actual pattern and the second actual pattern corresponding to the finished value Including correction amount data based on a difference from a finish value determined in design data for determining the correlation, the first provisional correction function based on the correction amount data in the first upper base data , Determining a second temporary correction function based on the correction amount data in the lower base data, a correction amount obtained from the first temporary correction function, and a second temporary correction function corresponding to the correction amount Generating a correction amount difference function based on a difference from the correction amount obtained from the step, wherein determining the correction function is due to an actual pattern used to acquire the second upper base data Determining a third provisional correction function based on design data and the second top-bottom data, and correcting the third provisional correction function based on
  • the first upper base data includes a finish value measured in at least a part of the upper base of the first real pattern
  • the lower base data includes the lower base data of the first real pattern.
  • the second top-bottom data is measured at the top-bottom in a region including a region different from at least a portion of the first actual pattern.
  • Correction amount data based on the difference between the finish value and the finish value determined in the design data for the first actual pattern corresponding to the finish value, or a second actual pattern different from the first actual pattern Including correction amount data based on the difference between the finish value measured at the top and the finish value determined in the design data for the second actual pattern corresponding to the finish value
  • the determination of the correlation includes a first finish indicating a relationship between a factor that causes a difference between a finish value determined in the design data and a finish value in the actual pattern and a finish value in the first upper base data.
  • Determining a value function determining a second finish value function indicating a relationship between a factor that causes a difference between a finish value determined in the design data and a finish value in the actual pattern and a finish value in the bottom base data; Determining a finish value difference function based on a difference between the first finish value function and the second finish value function, wherein determining the correction function obtains the second top base data.
  • a temporary correction function is determined on the basis of the design data for the actual pattern used for the purpose and the second upper base data, and based on the finished value difference function Determining a correction function to correct the temporary correction function Te may comprise.
  • the first upper base data includes a finish value measured at the upper base in at least a part of the first actual pattern and design data for the first actual pattern corresponding to the finish value.
  • Correction amount data based on the difference from the finish value determined in step (i), and the bottom base data corresponds to the finish value measured at the bottom base in at least a part of the first actual pattern and the finish value.
  • the first upper base data includes a finish value measured in at least a part of the upper base of the first real pattern
  • the lower base data is below the first real pattern.
  • the second top base data is measured at a top base in a region including a region different from at least a part of the first actual pattern. Determining the correlation is measured in the first top-bottom data, including a finished value or a finish value measured at the top bottom of a second real pattern different from the first real pattern Determining a finish value correlation function between a finish value and a finish value measured in the bottom data, wherein determining the correction function is based on the determined finish value correlation function.
  • the method may include determining a correction function based on a difference between a finish value determined in the design data and the estimated finish value in the lower base corresponding to the finish value.
  • the finished values included in the first and second upper base data are based on data obtained by an optical visual inspection apparatus, and the lower base data may be based on data obtained by a microscope. Good.
  • the correction function may be determined for each region on the same substrate surface where the wiring pattern is arranged.
  • the correction function may be determined for each of the upper surface and the lower surface of the same substrate on which the wiring pattern is arranged.
  • the correction function may be determined for each of the vertical line and the horizontal line in the wiring pattern.
  • the wiring pattern forming system of the present invention includes an exposure data generating means for generating exposure data based on design data of a target wiring pattern, and a photosensitive resist arranged on the substrate based on the exposure data.
  • Pattern exposure means for exposing the substrate, development pattern forming means for developing the photosensitive resist exposed to the exposure pattern to form a development pattern, and circuit processing on the substrate on which the development pattern is formed to form an actual pattern
  • Real pattern forming means for forming for forming
  • upper base data generating means for generating upper base data based on data obtained from the upper base in at least a part of the real pattern; and in at least a part of the real pattern.
  • Lower bottom data creating means for creating lower bottom data based on data obtained from the lower bottom, and the upper bottom data
  • a exposure data correction apparatus described above for correcting the exposure data based on the lower base data and design data.
  • a program for correcting exposure data in one embodiment of the present invention is obtained by a computer using an upper base and a lower base obtained by circuit processing using exposure data based on design data for a target wiring pattern.
  • a correction function indicating a relationship between a factor that causes a difference between the finish value determined in step 1 and the finish value in the actual pattern and a correction amount for suppressing the difference; and the second upper base data Correcting the exposure data for the actual pattern used for obtaining based on the correction function.
  • a method for correcting exposure data is the method for correcting upper and lower bases obtained by circuit processing using exposure data based on design data for a target wiring pattern.
  • the second upper base data based on the data obtained from the upper base in the region including the region different from the region or the data obtained from the upper base of the second real pattern different from the first real pattern
  • a finish value determined in the design data based on the design data for the actual pattern used to obtain the second top base data, the second top base data, and the correlation.
  • the wiring board manufacturing method in one embodiment of the present invention is a convex first having an upper base and a lower base obtained by circuit processing using exposure data based on design data for a target wiring pattern.
  • the first upper base data includes a finish value measured at the upper base in at least a part of the first actual pattern and design data for the first actual pattern corresponding to the finish value.
  • Correction amount data based on the difference from the finish value determined in step (i) and the bottom base data corresponds to the finish value measured at the bottom base in at least a part of the first actual pattern and the finish value.
  • Including correction amount data based on a difference from a finish value determined in design data for the first actual pattern, wherein the second upper-bottom data is at least a partial region of the first actual pattern The finish value measured at the upper base in an area including an area different from the above and the finish defined in the design data for the first actual pattern corresponding to the finish value.
  • Correction amount data based on the difference from the edge value or a finish value measured at the upper base of a second actual pattern different from the first actual pattern and the second actual pattern corresponding to the finish value includes correction amount data based on a difference from a finish value determined in the design data, and the step of determining the correlation determines a first temporary correction function based on the correction amount data in the first upper base data
  • a step of determining a second temporary correction function based on the correction amount data in the bottom base data, a correction amount obtained from the first temporary correction function, and a second temporary correction corresponding to the correction amount Generating a correction amount difference function based on a difference from the correction amount obtained from the correction function, and the step of determining the correction function includes the step used to acquire the second upper base data. Patter Determining a third provisional correction function based on the design data and the second top-bottom data, and correcting the third provisional correction function based on the correction amount difference function Determining the step.
  • the first top base data includes a finish value measured in at least a part of the top base of the first real pattern
  • the bottom base data includes at least a bottom base of the first real pattern.
  • the second top base data includes a finish value measured in a partial area
  • the second top base data is a finish value measured in a top base in an area including a region different from at least a part of the first actual pattern.
  • correction amount data based on the difference between the finishing value determined in the design data for the first actual pattern corresponding to the finished value, or the upper base of the second actual pattern different from the first actual pattern
  • Correction amount data based on the difference between the finish value measured in step (1) and the finish value determined in the design data for the second actual pattern corresponding to the finish value
  • the step of determining the relationship includes a first finish value indicating a relationship between a factor that causes a difference between a finish value determined in the design data and a finish value in the actual pattern, and a finish value in the first upper base data.
  • Determining a finish value difference function based on a difference between the first finish value function and the second finish value function, wherein the step of determining the correction function includes: Determining a temporary correction function based on design data for the actual pattern used to acquire the data and the second top-bottom data; and Determining a correction function to correct the temporary correction function based on Values difference function may include.
  • the first upper base data is defined in a finish value measured at the upper base in at least a part of the first actual pattern and design data for the first actual pattern corresponding to the finish value. Correction amount data based on a difference from the finished value obtained, and the bottom base data corresponds to the finish value measured at the bottom bottom in at least a partial region of the first actual pattern and the finish value. Correction amount data based on a difference from a finish value determined in design data for the first actual pattern is included, and the second upper base data is at least a part of the first actual pattern.
  • the step of determining the correlation includes correction amount data based on a difference from the finish value determined in Step 1, and the step of determining the correlation includes the correction amount indicated in the correction amount data in the first upper base data and the correction amount.
  • a step of determining a correction amount correlation function with a correction amount indicated in the correction amount data in the lower base data, wherein the step of determining the correction function includes an actual pattern used to acquire the second upper base data Determining a temporary correction function based on design data for the first and second top-bottom data, and correcting and correcting the temporary correction function based on the correction amount correlation function Determining a number may contain.
  • the first top base data includes a finish value measured in at least a part of the top base of the first real pattern
  • the bottom base data includes at least a bottom base of the first real pattern.
  • the second top base data includes a finish value measured in a partial area, and the second top base data is a finish value measured in a top base in an area including a region different from at least a part of the first actual pattern.
  • the step of determining the correlation includes: a finish value measured in the first upper base data; Determining a finish value correlation function with the finish value measured in the bottom base data, wherein the step of determining the correction function is based on the determined finish value correlation function.
  • the step of calculating the estimated value of the lower base corresponding to the finished value based on the finished value in the upper base data Determining a correction function based on a difference between the determined finish value and the estimated finish value at the bottom bottom corresponding to the finish value.
  • the finished values included in the first and second upper base data are based on data obtained by an optical visual inspection apparatus, and the lower base data may be based on data obtained by a microscope. Good.
  • the correction function may be determined for each region on the same substrate surface where the wiring pattern is arranged.
  • the correction function may be determined for each of the upper surface and the lower surface of the same substrate on which the wiring pattern is arranged.
  • the correction function may be determined for each of the vertical line and the horizontal line in the wiring pattern.
  • a wiring board manufacturing method includes a step of creating exposure data based on design data of a target wiring pattern, and an exposure pattern on a photosensitive resist arranged on the board based on the exposure data. Exposing the exposed pattern, developing the photosensitive resist exposed to the exposure pattern to form a developed pattern, and performing circuit processing on the substrate on which the developed pattern is formed to form a first actual pattern
  • a step of creating first upper base data based on data obtained from an upper base in at least a part of the first real pattern; and in at least a part of the first real pattern Creating a bottom base data based on data obtained from the bottom base, determining a correlation between the first top base data and the bottom base data, Data obtained from the upper base in an area including an area different from at least a part of the area of the first actual pattern or data obtained from the upper base of the second actual pattern different from the first actual pattern Based on design data for the actual pattern used to obtain the second top base data, the second top base data and the correlation, Determining a correction function indicating
  • the amount of error in the exposure data correction amount is reduced based on the correlation between the upper bottom data (AOI measurement data) and the lower bottom data of the actual pattern, while reducing the trouble of manually measuring the lower bottom data. It is possible to provide an exposure data correction apparatus, a wiring pattern forming system, and a method of manufacturing a wiring board that can suppress and improve the circuit width accuracy when forming a fine circuit.
  • the schematic of the wiring pattern formation system of embodiment of this invention is represented.
  • the hardware block diagram of the exposure data correction apparatus in embodiment of this invention is represented.
  • 3 shows a flowchart of an exposure data correction method according to an embodiment of the present invention.
  • 6 shows a flowchart of an exposure data correction process according to an embodiment of the present invention.
  • 6 shows a flowchart of an exposure data correction process according to an embodiment of the present invention.
  • 3 shows a provisional correction function according to an embodiment of the present invention.
  • 3 shows a temporary correction function and a correction function according to an embodiment of the present invention.
  • 6 shows a flowchart of an exposure data correction process according to an embodiment of the present invention.
  • 3 shows a finish value function according to an embodiment of the present invention.
  • 3 shows a temporary correction function and a correction function according to an embodiment of the present invention.
  • 6 shows a flowchart of an exposure data correction process according to an embodiment of the present invention.
  • the correction amount correlation function of one Embodiment of this invention is shown.
  • 3 shows a temporary correction function and a correction function according to an embodiment of the present invention.
  • 6 shows a flowchart of an exposure data correction process according to an embodiment of the present invention.
  • 4 shows a finish value correlation function according to an embodiment of the present invention.
  • 3 shows a correction function according to an embodiment of the present invention.
  • the schematic of the cross-sectional shape of a real pattern is shown.
  • FIG. 1 shows a configuration diagram of a wiring pattern forming system 100 according to an embodiment of the present invention.
  • the wiring pattern forming system 100 includes a design data creation device 101, an exposure data creation device 102, an exposure device 104, a development pattern creation device 106, an actual pattern creation device 108, an upper and lower bottom data creation device 110, and an exposure data correction device 112. Is provided.
  • the design data creation device 101 is a device for creating design data, and in this embodiment, CAD (Computer Aided Design) is used.
  • the wiring pattern design data original data is obtained by converting a target wiring pattern to be formed into data, and is expressed by coordinates and a circuit width, for example. You may have the data to which the information required for exposure was added. In the present invention, any wiring pattern can be used.
  • the exposure data creation device 102 is a device that creates exposure data from design data, and here, CAM (Computer Aided Manufacturing) is used.
  • the exposure apparatus 104 is an apparatus that exposes an exposure pattern to the photosensitive resist arranged on the substrate based on the exposure data created by the exposure data creation apparatus 102.
  • a direct drawing apparatus DI: Direct Imaging
  • the exposure data is data for forming an exposure pattern corresponding to the wiring pattern by exposing a photosensitive resist with an exposure apparatus such as a linear drawing apparatus using laser light or UV light.
  • the photosensitive resist refers to an etching resist used for forming a wiring pattern by etching a metal foil such as a copper foil by a photolithography method.
  • An exposure pattern refers to a pattern exposed to a photosensitive resist based on exposure data, and corresponds to a development pattern formed by subsequent development.
  • the development pattern creation device 106 is a device that develops a photosensitive resist having an exposed exposure pattern to form a development pattern.
  • the real pattern creation device 108 is a device that forms a real pattern by performing circuit processing on a substrate on which a development pattern is formed.
  • an etching apparatus can be used.
  • Circuit processing means forming an actual pattern, for example, forming a wiring pattern by etching a metal foil by a subtract method.
  • the actual pattern can be formed by actual pattern forming means.
  • the actual pattern refers to a wiring pattern that is actually formed by forming a circuit, and includes, for example, a wiring pattern obtained by etching a metal foil by a subtract method.
  • the upper base and lower base data creation device 110 is a device that creates data represented by coordinates of the upper base (top) and lower base (bottom) of an actual pattern and finished values such as a circuit width and a gap width.
  • an optical appearance inspection device AOI: Automatic Optical Inspection
  • the AOI can be used to detect light reflected from the top (top) of an actual pattern, digitize the pattern, and use it as data expressed by coordinates and finished values such as circuit width and gap width.
  • a metal microscope having a measurement function (sometimes simply referred to as a “microscope”) can be used for the creation of lower floor data.
  • the upper bottom and lower bottom data creation device 110 accepts input of the bottom bottom finish value measured using a microscope, and creates bottom bottom data based on this.
  • the exposure data correction device 112 acquires the first upper base data and the lower base data created by the upper and lower base data creation device 110, and determines the correlation between the first upper base data and the lower bottom data. . Furthermore, the data or the first actual pattern obtained from the upper base in an area including an area different from at least a part of the first actual pattern created by the upper and lower base data creating apparatus 110 Second top bottom data based on data obtained from the top bottom of the different second real pattern is acquired.
  • the finish value and the actual pattern determined in the design data Exposure for the actual pattern used to determine the correction function indicating the relationship between the factor causing the difference between the finished value and the correction amount for suppressing the difference, and to obtain the second upper base data
  • the data is corrected based on the correction function.
  • the factor that causes the difference between the finish value determined in the design data and the finish value in the actual pattern is the difference between the finish value determined in the design data due to the variation in the wiring pattern specification of the design data.
  • a factor that causes a change in the difference from the finished value in the actual pattern can be mentioned.
  • the pattern gap of the wiring pattern (here, the gap between the lines) is used as a factor that causes the difference between the actual pattern data and the original data.
  • the correction function defines a relationship between a factor causing a difference and a correction amount of exposure data for suppressing the difference.
  • a computer 200 having a hardware configuration shown in FIG. 2 is used in the present embodiment.
  • the computer 200 includes a processing unit (processor) 201, a display unit 202, an input unit 203, a storage unit 204, a communication unit 205, and a bus 210 that connects these components.
  • the display unit 202 displays an image output by a program executed on the computer 200.
  • the input unit 203 receives input from the user, and is, for example, a keyboard or a mouse.
  • the storage unit 204 may be anything as long as it can store information such as a nonvolatile memory, a volatile memory, and a hard disk.
  • a program 206 for executing a process for correcting exposure data is stored in the storage unit 204.
  • the communication unit 205 performs wireless communication, wired communication using an Ethernet (registered trademark) cable, a USB cable, or the like.
  • the upper base data and the lower base data created by the upper and lower base data creation device 110 may be acquired via the communication unit 205.
  • the processing unit (processor) 201 executes a process for correcting exposure data.
  • the exposure data correction device 112 does not have to be a general-purpose computer, and may be realized by hardware for executing all or part of each process and software operating in cooperation therewith.
  • FIG. 3 shows an operation flow of the system in the present embodiment.
  • the design data creation device 101 creates design data for the first actual pattern (step 301), and the exposure data creation device 102 creates exposure data based on this design data (step 302).
  • the exposure apparatus 104 exposes an exposure pattern to the photosensitive resist disposed on the substrate based on the exposure data created by the exposure data creation apparatus 102 (step 304).
  • the development pattern creation device 106 develops the photosensitive resist exposed with the exposure pattern to form a development pattern (step 306), and the actual pattern creation device 108 performs circuit processing on the substrate on which the development pattern is formed.
  • a first actual pattern is formed (step 308).
  • the upper and lower bottom data creation device 110 creates first upper and lower bottom data (step 310).
  • the entire data obtained from the first actual pattern may be the second upper base data, and a part thereof may be the first upper base data.
  • step 312 it is determined whether or not it is necessary to create a second actual pattern for exposure data correction (step 312). For example, when the second upper base data is obtained from the upper base of the first actual pattern, it is not necessary to create the second actual pattern. If necessary, the process returns to the design data creation step 301 and the same process is performed to form a second actual pattern. In step 310, the bottom data of the second actual pattern is created. The bottom base data of the second actual pattern is not created. When the top bottom data of the second actual pattern is not created, or after the second actual pattern is created, the exposure data correction step 314 is performed, and the operation flow for exposure data correction is terminated. Thereafter, based on the corrected exposure data, a wiring pattern is formed by using, for example, the exposure device 104, the development pattern creation device 106, and the actual pattern creation device 108, and a wiring board is manufactured.
  • the exposure data correction device 112 obtains first upper base data based on data obtained from the upper base in at least a partial region of the first actual pattern generated by the upper base and lower base data generation device 110. Obtaining (step 401), obtaining lower base data based on data obtained from the lower base in at least a portion of the first actual pattern (step 402), and obtaining first upper base data and lower base data; Is determined (step 404). Further, the exposure data correction device 112 can obtain data obtained from the upper base in an area including an area different from at least a partial area of the first actual pattern created by the upper and lower base data creating apparatus 110.
  • Second top-bottom data based on data obtained from the top bottom of a second real pattern different from the first real pattern is acquired (step 406). Then, based on the design data for the actual pattern used to obtain the second top-bottom data, the second top-bottom data, and the correlation created in step 404, the finish value determined in the design data
  • a correction function indicating a relationship between a factor that causes a difference between the actual value and the finished value in the actual pattern and a correction amount for suppressing the difference is determined (step 408), and is used to obtain second upper-bottom data.
  • the exposure data for the actual pattern is corrected based on the correction function (step 410).
  • the correlation between the lower base data obtained from the lower base and the upper base data obtained from the upper base depends on the pattern gap, pattern size, pattern thickness, pattern position, pattern density, pattern shape, etc. It is believed that there is. Therefore, once the correlation is determined, for the same pattern gap or the like, the correlation is applied to the other upper base data obtained from the AOI data, thereby corresponding to the other upper base data.
  • the bottom bottom data can be accurately estimated without manually measuring a new bottom bottom finish value. Then, by creating a correction function based on the estimated lower base data, it is possible to suppress an error in the exposure data correction amount and improve the circuit width accuracy when forming a fine circuit.
  • the correction function is considered to change depending on the area on the substrate from which data is acquired.
  • the correlation between the upper base data and the lower base data is considered to be relatively unchanged depending on the area on the substrate from which the data is acquired. Therefore, for example, the measurement for the first upper base data and the lower base data for determining the correlation is performed only in a limited area of the first actual pattern, so that the correlation is determined with less effort.
  • the determined correlation is performed only in a limited area of the first actual pattern, so that the correlation is determined with less effort.
  • the effort is reduced even for the first actual pattern itself.
  • the correlation and the correction function may vary depending on the area on the substrate, the correlation and the correction function may be determined for each area on the same substrate surface where the wiring pattern is arranged.
  • the relationship between the design data and the finished value may be a unique relationship depending on the region even on the same substrate. For example, since the etching solution tends to accumulate near the center of the substrate and the etching rate is slow, the pattern gap tends to be narrow, and the etching rate is high around the substrate and the pattern gap tends to widen. Also, at the substrate corner, current concentrates when forming a copper film by electroplating, so the copper film tends to be thicker, and the correlation between the upper base data and the lower base data is considered to be different from other areas. . Therefore, by determining the correlation and the correction function according to the present embodiment for each region on the same substrate surface, it is possible to form a circuit with higher accuracy.
  • the correction function may be determined for each of the upper and lower surfaces of the same substrate on which the wiring pattern is arranged. Similar to the area of the substrate surface, the correlation and the correction function may be different. For example, the upper surface tends to accumulate an etchant and the etching rate is slower, so that the pattern gap tends to be narrowed. On the lower surface, the etching rate is faster, and thus the pattern gap tends to be wider. For this reason, it is possible to form a circuit with higher accuracy by determining the correlation and the correction function according to the present embodiment for each of the upper surface and the lower surface of the same substrate surface.
  • the correction function may be determined for each of the vertical line and the horizontal line in the wiring pattern.
  • a second embodiment of the present invention will be described below.
  • the present embodiment is different from the first embodiment in that a step 500 (FIG. 5) is adopted instead of the step 314 (FIGS. 3 and 4) of the first embodiment, but the other points are the first embodiment. It is the same as the form. In the following description, only different parts from the first embodiment will be described, and the same parts will be omitted.
  • a copper clad laminate of MCL-E-700G (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 0.22 mm having a copper foil of 5 ⁇ m on an insulating layer was prepared as a substrate.
  • Form a circuit by applying a copper plating of about 19 ⁇ m, making the copper thickness about 18 ⁇ m by half-etching (entire etching process to reduce the copper thickness of the entire substrate), and exposing the test pattern as the first actual pattern And a case where a correlation extraction substrate is created will be described as an example.
  • the first upper base data created in step 310 includes the finish value measured at the top base in at least a partial region of the first real pattern and the first actual data corresponding to the finish value.
  • the gap width of the wiring pattern is used as the finished value.
  • those skilled in the art will recognize that the present invention can be similarly implemented even when other finished values such as a circuit width are used. it is obvious. The same applies to other embodiments described below.
  • the gap width at the upper base is measured using the AOI in the predetermined areas at the four corners and the center of the first actual pattern, and the difference from the gap width determined by the design data at the coordinates at which each gap width is measured. Is calculated as correction amount data.
  • the gap width at the bottom of the predetermined area at the four corners and the center of the first actual pattern is measured using a microscope, and the design data at the coordinates where the gap width is measured is measured.
  • the difference from the gap width is calculated as correction amount data.
  • the area where the measurement for the upper and lower base data is performed is the same area. By comparing the data obtained from the same region, more accurate correlation between the upper base data and the lower base data can be acquired.
  • Correction amount data in the first upper base data and lower base data created from the correlation extraction substrate obtained based on the above-described conditions is as follows.
  • the CAD data in Table 1 indicates a gap width ( ⁇ m) defined in the design data.
  • the finish value of the AOI measurement indicates the gap width ( ⁇ m) of the upper base in the four corners and the center area of the test pattern obtained by the AOI measurement corresponding to the gap width determined in the design data, and the correction amount is CAD.
  • the difference between the data gap width ( ⁇ m) and the AOI measurement gap width is halved. 1/2 means a correction amount applied to both ends of the gap. The same applies to the microscopic measurement.
  • the finish value of the microscopic measurement indicates the gap width of the lower base in the four corners and the center area of the test pattern obtained by the microscopic measurement, and the correction amount is the difference between the gap width of the CAD data and the gap width of the microscopic measurement. 1/2.
  • this gap of the CAD data should be corrected by 12.0 ⁇ m at both ends, and based on the microscope measurement, it should be corrected by 4.2 ⁇ m.
  • the exposure data correction device 112 acquires the first upper bottom data and lower bottom data created in step 310 by the upper bottom data and lower bottom data creation device 110 (steps 501 and 502).
  • a first temporary correction function is determined based on the correction amount data in the upper base data (step 504)
  • a second temporary correction function is determined based on the correction amount data in the lower base data (step 506)
  • the first A correction amount difference function is created on the basis of a difference (shift amount) between the correction amount obtained from the temporary correction function and the correction amount obtained from the second temporary correction function corresponding to the correction amount (step 508).
  • the first temporary correction function is a function (AOI measurement correction function (etching curve)) representing a correction amount for the AOI measurement gap width with respect to the gap width in the design data shown in Table 1 and FIG.
  • the second temporary correction function is a function (microscope measurement correction function) representing a correction amount for the microscope measurement gap width with respect to the gap width in the design data.
  • the relationship between the gap and the correction amount in each design data shown in Table 1 and FIG. 6 is the respective temporary correction function, but the temporary correction function may be determined by an approximate expression based on the measurement data.
  • the correction amount difference function is a correction amount obtained from the first temporary correction function for the gap width in the design data shown in Table 1 and FIG.
  • the second upper base data is acquired.
  • the second upper base data is the finish value measured at the upper base in an area including a region different from at least a part of the first actual pattern and the first actual data corresponding to the finish value.
  • the correction value data based on the difference from the finish value determined in the design data for the pattern, or the finish value measured at the upper base of the second actual pattern different from the first actual pattern and the finish value.
  • the correction amount data based on the difference from the finished value determined in the design data for the second actual pattern is included.
  • a third provisional correction function is determined based on the design data for the actual pattern used for obtaining the second upper base data and the second upper base data (step 512), and a correction amount difference function Then, the third temporary correction function is modified to determine a correction function (step 514), and the exposure data is corrected based on this correction function (step 516).
  • the second upper base data is a design value for the first actual pattern corresponding to the finished value measured at the upper base in the entire actual pattern including the four corners and the center of the first actual pattern. It is assumed that correction amount data based on a difference from a finish value determined in the data is included. Therefore, the actual pattern used to acquire the second upper base data is the first actual pattern.
  • the correction amount data in the second upper base data created from the correlation extraction substrate obtained based on the above-described conditions is as follows.
  • CAD data in Table 2 indicates the gap width ( ⁇ m) defined in the design data.
  • the correction amount for AOI measurement is obtained by halving the difference between the gap width ( ⁇ m) at the upper base of the test pattern obtained by AOI measurement and the gap width ( ⁇ m) of CAD data.
  • the shift amount is the shift amount in Table 1 (difference between the correction amount for AOI measurement and the correction amount for microscope measurement).
  • the correction amount difference function is a function representing the shift amount with respect to the gap width in the design data shown in Table 2 and FIG.
  • the third provisional correction function is a function (AOI measurement correction function (etching curve)) representing a correction amount for the AOI measurement gap width with respect to the gap width in the design data shown in Table 2 and FIG. is there. Then, the third temporary correction function is corrected by shifting by the correction amount difference function (shift amount).
  • the correction function is obtained by subtracting the shift amount from the correction amount for the AOI measurement for the gap value of each design data.
  • the correction function is a function representing a corrected correction amount (correction amount after shifting in Table 2) with respect to the gap width in the design data.
  • the relationship between the shift correction amount and the gap width in the design data shown in Table 2 and FIG. 7 is used as a correction function, but the correction function may be determined by an approximate expression based on measurement data.
  • the second upper base data is obtained based on the finished value measured at the upper base in the entire real pattern including the four corners and the center of the first real pattern. Only the part not including the four corners and the center of the first actual pattern used for obtaining the data may be used, or the finished value measured at the upper base in the second actual pattern different from the first actual pattern may be used. May be based. The same applies to other embodiments.
  • FIG. 8 A third embodiment of the present invention will be described below. This embodiment is different from the first embodiment in that a process 800 (FIG. 8) is adopted instead of the process 314 (FIGS. 3 and 4) of the first embodiment, but other points are the first implementation. It is the same as the form. In the following description, only different parts from the first embodiment will be described, and the same parts will be omitted. Further, a correlation extraction substrate created under the same conditions as those described in the second embodiment will be described as an example.
  • the first upper base data created in step 310 includes a finish value measured in at least a partial region of the upper base of the first real pattern
  • the lower base data includes the first bottom data It includes finished values measured in at least a portion of the bottom of the actual pattern.
  • the upper base data is measured by using the AOI for the gap width at the upper base in a predetermined area at the four corners and the center of the first real pattern, and the four corners and the center of the first real pattern are similarly measured using a microscope as the lower base data. Measure the gap width at the bottom of the predetermined area.
  • the exposure data correction device 112 acquires the first upper base data and the lower base data created in step 310 by the upper base data and lower base data creation device 110 (steps 801 and 802), and is determined in the design data.
  • a first finish value function indicating a relationship between a factor causing a difference between the finish value and the finish value in the actual pattern and the finish value in the first upper base data is determined (step 804), and is defined in the design data.
  • a second finish value function indicating a relationship between a factor causing a difference between the finish value and the finish value in the actual pattern and the finish value in the bottom base data is determined (step 806), and the first finish value function and the second finish value function are determined.
  • a finish value difference function based on the difference from the finish value function is determined (step 808). Thereby, the correlation between the upper base data and the lower base data is determined.
  • the finish value data in the first upper base data and lower base data created from the correlation extraction substrate obtained based on the above-described conditions are as follows.
  • the CAD data in Table 3 indicates the gap width ( ⁇ m) defined in the design data, and the AOI measurement and the finished value of the microscope were obtained by measurements corresponding to the gap width defined in the design data.
  • the gap width ( ⁇ m) between the upper base and the lower base in the four corners and the center area of the test pattern is shown.
  • the finished values measured in Table 3 are the same as those shown in Table 1. The difference is obtained by halving the difference between the AOI measurement gap width and the microscope measurement gap width corresponding to the gap width of each CAD data.
  • the first finish value function is a function (AOI measurement finish value function) representing the finish value of the AOI measurement gap width with respect to the gap width in the design data shown in Table 3 and FIG.
  • the finish value function is a function (microscope measurement finish value function) representing the finish value of the microscope measurement gap width with respect to the gap width in the design data.
  • the relationship between the gap and the finished value in each design data shown in Table 3 and FIG. 9 is the finished value function, but the finished value function may be determined by an approximate expression based on the measurement data.
  • the finished value difference function is a function representing the difference between the AOI measurement finish value and the microscope measurement finish value for the gap in each design data shown in Table 3 and FIG. Similar to the finish value function, the difference between the AOI measurement finish value and the microscope measurement finish value for the gap in each design data shown in Table 3 and FIG. 9 is the finish value difference function.
  • the finished value difference function may be determined by an expression.
  • second top base data is acquired.
  • the second upper base data is the first value corresponding to the finished value measured at the upper base in an area including an area different from at least a part of the first actual pattern and the finished value.
  • the correction value data based on the difference from the finish value determined in the design data for the actual pattern, or the finish value measured at the upper base of the second actual pattern different from the first actual pattern and the finish value Correction amount data based on the difference from the finished value determined in the design data for the second actual pattern to be included.
  • a temporary correction function is determined based on the design data for the actual pattern used to acquire the second upper base data and the second upper base data (step 812), and based on the finished value difference function
  • the temporary correction function is modified to determine a correction function (step 814).
  • the same data as in the second embodiment is used as the second upper base data.
  • the correction amount data (AOI measurement) in the second upper base data created from the correlation extraction substrate obtained based on the above-described conditions is as shown in Table 4, which is the same as that shown in Table 2. The same.
  • the provisional correction function is a function (AOI measurement correction function (etching curve)) representing a correction amount for the AOI measurement gap width with respect to the gap width in the design data shown in Table 4 and FIG.
  • a correction function is obtained by subtracting the finishing value difference (shift amount) from the correction amount for AOI measurement for the gap value of each design data.
  • the correction function is a function representing a corrected correction amount for the gap width in the design data.
  • the relationship between the post-shift correction amount and the gap width in the design data shown in Table 4 and FIG. 10 is used as a correction function, but the correction function may be determined by an approximate expression based on measurement data.
  • FIG. 11 A fourth embodiment of the present invention will be described below. This embodiment is different from the first embodiment in that a step 1100 (FIG. 11) is adopted instead of the step 314 (FIGS. 3 and 4) of the first embodiment, but other points are the first embodiment. It is the same as the form. In the following description, only different parts from the first embodiment will be described, and the same parts will be omitted. Further, a correlation extraction substrate created under the same conditions as those described in the second embodiment will be described as an example.
  • the first upper base data created in step 310 includes the finish value measured at the top base in at least a partial region of the first real pattern and the first actual data corresponding to the finish value.
  • the second top base data is for the finish value measured at the top base in a region including a region different from at least a part of the first real pattern and the first real pattern corresponding to the finish value.
  • Correction value data based on the difference from the finish value determined in the design data, or a finish value measured at the upper base of the second actual pattern different from the first actual pattern and the second actual corresponding to the finish value It includes correction amount data based on the difference from the finished value determined in the design data for the pattern.
  • the exposure data correction device 112 acquires the first upper bottom data and the lower bottom data created in step 310 by the upper bottom data and lower bottom data creation device 110 (steps 1101 and 1102), and the first upper bottom data.
  • a correction amount correlation function between the correction amount indicated in the correction amount data at and the correction amount indicated in the correction amount data in the bottom base data corresponding to the correction amount is determined (step 1104). Thereby, the correlation between the upper base data and the lower base data is determined.
  • a temporary correction function based on the design data for the actual pattern used to obtain the second top base data and the second top base data (Step 1108), the temporary correction function is modified based on the correction amount correlation function to determine the correction function (Step 1110), and the exposure data is corrected based on the correction function (Step 1112).
  • FIG. 12 is a graph showing the relationship between the correction amount based on the microscopic measurement and the correction amount based on the AOI measurement in Table 1.
  • CAD data 20
  • the correction amount based on AOI measurement 12.1
  • the correction amount data in the second upper base data created from the correlation extraction substrate is as shown below.
  • the temporary correction function is a function (AOI measurement correction function (etching curve)) representing a correction amount for the AOI measurement gap width with respect to the gap width in the design data shown in Table 5 and FIG. Then, the correction function is obtained by correcting the temporary correction function with the correction amount correlation function.
  • the correction function is a function representing a corrected correction amount for the gap width in the design data.
  • the relationship between the correction amount after correction and the gap width in the design data shown in Table 5 and FIG. 13 is used as a correction function, but the correction function may be determined by an approximate expression based on measurement data.
  • FIG. 14 A fifth embodiment of the present invention will be described below. This embodiment is different from the first embodiment in that a step 1400 (FIG. 14) is adopted instead of the step 314 (FIGS. 3 and 4) of the first embodiment, but the other points are the first embodiment. It is the same as the form. In the following description, only different parts from the first embodiment will be described, and the same parts will be omitted. Further, a correlation extraction substrate created under the same conditions as those described in the second embodiment will be described as an example.
  • the first upper base data created in step 310 includes a finish value measured in at least a partial region of the upper base of the first real pattern
  • the lower base data includes the first bottom data It includes finished values measured in at least a portion of the bottom of the actual pattern.
  • the exposure data correction device 112 acquires the first upper base data and the lower base data created by the upper base data and the lower base data creation device 110 (steps 1401 and 1402), and is measured in the first upper base data.
  • a finished value correlation function between the finished value and the finished value measured in the bottom base data is determined (step 1404). Thereby, the correlation between the upper base data and the lower base data is determined.
  • second upper base data is acquired.
  • the second upper bottom data is a finish value measured at the upper base in an area including an area different from at least a part of the first actual pattern or a second actual pattern different from the first actual pattern. Includes the finished value measured at the top and bottom.
  • an estimate of the corresponding bottom bottom finish value is calculated from the finish value in the second top base data (step 1408) and used to obtain the second top base data.
  • a correction function is determined based on the difference between the finish value determined in the design data for the actual pattern and the estimated finish value at the lower base corresponding to the finish value (step 1410).
  • the exposure data is corrected based on this correction function (step 1412).
  • FIG. 15 is a graph showing the relationship between the finishing value based on the microscopic measurement and the finishing value based on the AOI measurement in Table 3.
  • the finished value in AOI measurement is 44.1
  • the finished value based on microscopic measurement is 28.4.
  • a correlation formula is determined by an approximate formula.
  • the finish value data in the second upper base data created from the correlation extraction substrate is as shown below.
  • a correction amount is obtained by halving the difference between the calculated estimated finish value (gap width) and the design finish value in the CAD data.
  • FIG. 16 shows the correction amount for the gap width in the design data shown in this table as a correction function (etching curve).
  • the correction function is a function representing a correction amount based on the estimated finish value for the gap width in the design data.
  • the relationship of the correction amount with respect to the gap width in the design data shown in Table 6 and FIG. 16 is used as the correction function, but the correction function may be determined by an approximate expression based on the calculated data.
  • a copper clad laminate of MCL-E-700G (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 0.22 mm and a copper foil of 5 ⁇ m was prepared, and electroplated with copper.
  • the plating thickness of about 19 ⁇ m is applied, the copper thickness is about 18 ⁇ m by half-etching, exposure data is corrected with the correction function obtained by the above-described Embodiments 2 to 5, exposure of the actual pattern, development, and circuit formation are performed.
  • a circuit forming substrate was prepared.
  • the circuit formation substrates formed using the correction functions created by the steps of Embodiments 2 to 5 are referred to as Examples 1 to 4, respectively.
  • Comparative Example 1 As Comparative Example 1, a copper clad laminate of MCL-E-700G (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 5 ⁇ m and a copper foil of 5 ⁇ m was prepared, and about 19 ⁇ m of plating was performed by electrolytic copper plating Then, the copper thickness was reduced to about 18 ⁇ m by half etching, the test pattern was exposed, the circuit was formed, and a correction function extraction substrate was prepared. Then, the circuit width and the gap width of this correction function extraction substrate were measured with a microscope, and a correction function (etching curve) was created from the measured values.
  • MCL-E-700G trade name, manufactured by Hitachi Chemical Co., Ltd.
  • [Comparative Example 2] Prepare a copper-clad laminate of MCL-E-700G (trade name, manufactured by Hitachi Chemical Co., Ltd.) with a thickness of 5 ⁇ m and a copper foil of about 20 ⁇ m. The copper thickness is set to about 18 ⁇ m, the test pattern is exposed, a circuit is formed, and a correction function extraction substrate is created. The circuit width and the gap width of the correction function extraction substrate were measured with an optical automatic visual inspection apparatus, and a correction function (etching curve) was created from the measured values.
  • the circuit width dimensional accuracy (variation: 3 ⁇ ) in Examples 1 and 2 is 6.7 ⁇ m on the upper surface and 8.8 ⁇ m on the lower surface.
  • the upper surface was 6.5 and the lower surface was 8.4 ⁇ m
  • the upper surface was 6.7 and the lower surface was 9.0 ⁇ m.
  • Comparative Example 1 the upper surface was 7.1 and the lower surface was 9.7 ⁇ m
  • Comparative Example 2 the upper surface was 7.6 and the lower surface was 20.5 ⁇ m.
  • the circuit width dimensional accuracy (variation: 3 ⁇ ) in Examples 1 and 2 is 6.0 on the upper surface and 7.7 ⁇ m on the lower surface.
  • the upper surface was 5.8 and the lower surface was 7.4 ⁇ m
  • the upper surface was 6.0 and the lower surface was 8.3 ⁇ m.
  • Comparative Example 1 the upper surface was 6.4 and the lower surface was 9.2 ⁇ m
  • Comparative Example 2 the upper surface was 6.0 and the lower surface was 8.8 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

下底データの手動測定による手間を低減させつつ、露光データ補正量の誤差を抑制し、回路幅精度を向上させる。 設計データに基づく露光データを用いた回路加工により得られた第1の実パターンの上底から得られたデータに基づく第1の上底データを取得し、第1の実パターンの下底から得られたデータに基づく下底データを取得し、第1の上底データと下底データとの相関関係を決定し、第1の実パターンの異なる領域を含む領域における上底から得られたデータ又は第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得し、第2の上底データを得るために使用された実パターンのための設計データ、第2の上底データ及び相関関係に基づいて、補正関数を決定し、第2の上底データを得るために使用された実パターンのための露光データを補正関数に基づいて補正する、露光データ補正装置。

Description

露光データ補正装置、配線パターン形成システム、及び配線基板の製造方法
 本発明は、露光データ補正装置、配線パターン形成システム及び配線基板の製造方法に関するものであり、特には電子機器等に用いられる配線基板の製造に用いられる露光データ補正装置、配線パターン形成システム及び配線基板の製造方法に関するものである。
 電子機器の高機能化、小型化の動向から、電子機器に用いられる配線基板に対しても、配線パターンの細線化による高密度化が求められている。
 このような配線パターンの細線化による高密度化に対応するための配線パターン形成方法としては、感光性レジストに露光パターンをレーザ光やUV-LED光などで直接照射する直接描画式の露光装置(DI)と、エッチング等で実際に形成された実パターンを反射光で読み取って元データ(設計データ)との比較を行う光学式検査装置(AOI)を組み合わせて、エッチング後の実際の仕上りのデータを光学式外観検査装置(AOI)に取り込み、露光装置(DI)にフィードバックする方法が考えられている(特許文献1~3)。
特開2005-116929号公報 特開2006-303229号公報 特開2007-033764号公報
 図17に示すとおり、実パターンは、上底(トップ)と下底(ボトム)を有する凸状の形状を有するものであり、仕上がり値、例えば、配線パターン(以下、単に「パターン」ということがある。)の回路幅はトップ幅1702とボトム幅1704で異なる。配線パターンの高密度化にあたっては、設計値とボトム幅との誤差を小さくすることが重要である。光学式外観検査装置(AOI)を用いれば、仕上がり値測定を比較的容易に行うことができるが、AOIによって測定される仕上がり値はトップ幅であり、ボトム幅のデータは得られない。このためAOIの測定値を用いてDIにフィードバックして露光データの補正を行っても、トップ幅とボトム幅の差分による誤差が生じる問題がある。
 顕微鏡を用いることによりボトム幅を測定することは可能であるが、手動で行う必要があるため膨大な測定時間が必要となる。測定負担を軽減するために測定箇所を減らして測定を行った場合には、十分なサンプルをとることができないため、正確なフィードバックを行うことができないという問題がある。
 本発明は、下底(ボトム)データの手動測定による手間を低減させつつ、露光データ補正量の誤差を抑制し、微細回路形成時の回路幅精度を向上させることが可能な露光データ補正装置、配線パターン形成システム及び配線基板の製造方法を提供することを目的とする。
 本発明は上記の課題に鑑みてなされたものであり、以下のような特徴を有している。すなわち本発明の一実施態様の露光データ補正装置は、目標とする配線パターンのための設計データに基づく露光データを用いた回路加工により得られた上底及び下底を有する凸状の第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得し、前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得し、前記第1の上底データと前記下底データとの相関関係を決定し、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得し、前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定し、前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する。
 本発明における前記第1の上底データは、前記第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記下底データは、前記第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記相関関係を決定することは、前記第1の上底データにおける補正量データに基づいて第1の仮補正関数を決定し、前記下底データにおける補正量データに基づいて第2の仮補正関数を決定し、前記第1の仮補正関数から得られる補正量と当該補正量に対応する第2の仮補正関数から得られる補正量との差分に基づいて補正量差分関数を作成する、ことを含み、前記補正関数を決定することは、前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて第3の仮補正関数を決定し、前記補正量差分関数に基づいて前記第3の仮補正関数を修正して補正関数を決定する、ことを含んでもよい。
 また、前記第1の上底データは、前記第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、前記下底データは、前記第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含み、前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記相関関係を決定することは、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と前記第1の上底データにおける仕上がり値との関係を示す第1の仕上がり値関数を決定し、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と前記下底データにおける仕上がり値との関係を示す第2の仕上がり値関数を決定し、前記第1の仕上がり値関数と第2の仕上がり値関数との差分に基づく仕上がり値差分関数を決定する、ことを含み、前記補正関数を決定することは、前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて仮補正関数を決定し、前記仕上がり値差分関数に基づいて前記仮補正関数を修正して補正関数を決定する、ことを含んでもよい。
 さらに、前記第1の上底データは、前記第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記下底データは、前記第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記相関関係を決定することは、前記第1の上底データにおける補正量データにおいて示される補正量と当該補正量に対応する前記下底データにおける補正量データにおいて示される補正量との補正量相関関数を決定することを含み、前記補正関数を決定することは、前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて仮補正関数を決定し、前記補正量相関関数に基づいて前記仮補正関数を修正して補正関数を決定する、ことを含んでもよい。
 さらにまた、前記第1の上底データは、前記第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、前記下底データは、前記第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含み、前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値を含み、前記相関関係を決定することは、前記第1の上底データにおいて測定された仕上がり値と下底データにおいて測定された仕上がり値との仕上がり値相関関数を決定することを含み、前記補正関数を決定することは、前記決定された仕上がり値相関関数に基づいて、前記第2の上底データにおける仕上がり値に基づいて当該仕上がり値に対応する下底における仕上がり値の推定値を計算し、前記第2の上底データを得るために使用した実パターンのための設計データにおいて定められた仕上がり値と当該仕上がり値に対応する前記推定された下底における仕上がり値との差分に基づいて補正関数を決定する、ことを含んでもよい。
 前記第1及び第2の上底データに含まれる仕上がり値は、光学式外観検査装置により得られるデータに基づくものであり、前記下底データは、顕微鏡により得られるデータに基づくものであってもよい。
 前記補正関数が、配線パターンが配置された同一基板面の領域毎に決定されてもよい。
 前記補正関数が、配線パターンが配置された同一基板の上面及び下面毎に決定されてもよい。
 前記補正関数が、配線パターンにおける縦ライン及び横ラインのそれぞれに対して決定されてもよい。
 また本発明の配線パターン形成システムは、目標とする配線パターンの設計データに基づく露光データを作成する露光データ作成手段と、露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光するパターン露光手段と、前記露光パターンが露光された感光性レジストを現像して現像パターンを形成する現像パターン形成手段と、前記現像パターンを形成した基板に対して回路加工を行ない実パターンを形成する実パターン形成手段と、前記実パターンの少なくとも一部の領域における上底から得られたデータに基づく上底データを作成する上底データ作成手段と、前記実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを作成する下底データ作成手段と、前記上底データ、下底データ及び設計データに基づいて露光データを補正する前述の露光データ補正装置と、を備える。
 また、本発明の一実施態様における露光データを補正するためのプログラムは、コンピュータに、目標とする配線パターンのための設計データに基づく露光データを用いた回路加工により得られた上底及び下底を有する凸状の第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得する工程と、前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得する工程と、前記第1の上底データと前記下底データとの相関関係を決定する工程と、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得する工程と、前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定する工程と、前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する工程と、を実行させる。
 また、本発明の一実施態様における露光データを補正するための方法であって、目標とする配線パターンのための設計データに基づく露光データを用いた回路加工により得られた上底及び下底を有する凸状の第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得する工程と、前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得する工程と、前記第1の上底データと前記下底データとの相関関係を決定する工程と、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得する工程と、前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定する工程と、前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する工程と、を含む。
 さらに、本発明の一実施態様における配線基板製造方法は、目標とする配線パターンのための設計データに基づく露光データを用いた回路加工により得られた上底及び下底を有する凸状の第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得する工程と、前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得する工程と、前記第1の上底データと前記下底データとの相関関係を決定する工程と、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得する工程と、前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定する工程と、前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する工程と、前記露光データに基づいて配線パターンを形成する工程と、を含む配線基板製造方法。
 また、前記第1の上底データは、前記第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記下底データは、前記第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記相関関係を決定する工程は、前記第1の上底データにおける補正量データに基づいて第1の仮補正関数を決定する工程と、前記下底データにおける補正量データに基づいて第2の仮補正関数を決定する工程と、前記第1の仮補正関数から得られる補正量と当該補正量に対応する第2の仮補正関数から得られる補正量との差分に基づいて補正量差分関数を作成する工程と、を含み、前記補正関数を決定する工程は、前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて第3の仮補正関数を決定する工程と、前記補正量差分関数に基づいて前記第3の仮補正関数を修正して補正関数を決定する工程と、を含んでもよい。
 前記第1の上底データは、前記第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、前記下底データは、前記第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含み、前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記相関関係を決定する工程は、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と前記第1の上底データにおける仕上がり値との関係を示す第1の仕上がり値関数を決定する工程と、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と前記下底データにおける仕上がり値との関係を示す第2の仕上がり値関数を決定する工程と、前記第1の仕上がり値関数と第2の仕上がり値関数との差分に基づく仕上がり値差分関数を決定する工程と、を含み、前記補正関数を決定する工程は、前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて仮補正関数を決定する工程と、前記仕上がり値差分関数に基づいて前記仮補正関数を修正して補正関数を決定する工程と、を含んでもよい。
 前記第1の上底データは、前記第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記下底データは、前記第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、前記相関関係を決定する工程は、前記第1の上底データにおける補正量データにおいて示される補正量と当該補正量に対応する前記下底データにおける補正量データにおいて示される補正量との補正量相関関数を決定する工程を含み、前記補正関数を決定する工程は、前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて仮補正関数を決定する工程と、前記補正量相関関数に基づいて前記仮補正関数を修正して補正関数を決定する工程と、を含んでもよい。
 前記第1の上底データは、前記第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、前記下底データは、前記第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含み、前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値を含み、前記相関関係を決定する工程は、前記第1の上底データにおいて測定された仕上がり値と下底データにおいて測定された仕上がり値との仕上がり値相関関数を決定する工程を含み、前記補正関数を決定する工程は、前記決定された仕上がり値相関関数に基づいて、前記第2の上底データにおける仕上がり値に基づいて当該仕上がり値に対応する下底における仕上がり値の推定値を計算する工程と、前記第2の上底データを得るために使用した実パターンのための設計データにおいて定められた仕上がり値と当該仕上がり値に対応する前記推定された下底における仕上がり値との差分に基づいて補正関数を決定する工程と、を含んでもよい。
 前記第1及び第2の上底データに含まれる仕上がり値は、光学式外観検査装置により得られるデータに基づくものであり、前記下底データは、顕微鏡により得られるデータに基づくものであってもよい。
 前記補正関数が、配線パターンが配置された同一基板面の領域毎に決定されてもよい。
 前記補正関数が、配線パターンが配置された同一基板の上面及び下面毎に決定されてもよい。
 前記補正関数が、配線パターンにおける縦ライン及び横ラインのそれぞれに対して決定されてもよい。
 本発明の一実施態様における配線基板製造方法は、目標とする配線パターンの設計データに基づく露光データを作成する工程と、露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光する工程と、前記露光パターンが露光された感光性レジストを現像して現像パターンを形成する工程と、前記現像パターンを形成した基板に対して回路加工を行ない第1の実パターンを形成する工程と、前記第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを作成する工程と、前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを作成する工程と、前記第1の上底データと前記下底データとの相関関係を決定する工程と、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを作成する工程と、前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定する工程と、前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する工程と、前記補正された露光データに基づいて配線パターンを形成する工程と、を含む。
 本発明によれば、下底データの手動測定による手間を低減させつつ、上底データ(AOI測定データ)と実パターンの下底データとの相関関係に基づいて、露光データ補正量の誤差分を抑制し、微細回路形成時の回路幅精度を向上させることが可能な露光データ補正装置、配線パターン形成システム及び配線基板の製造方法を提供することができる。
本発明の実施形態の配線パターン形成システムの概略図を表す。 本発明の実施形態における露光データ補正装置のハードウェア構成図を表す。 本発明の一実施形態の露光データ補正方法のフローチャートを示す。 本発明の一実施形態の露光データ補正工程のフローチャートを示す。 本発明の一実施形態の露光データ補正工程のフローチャートを示す。 本発明の一実施形態の仮補正関数を示す。 本発明の一実施形態の仮補正関数及び補正関数を示す。 本発明の一実施形態の露光データ補正工程のフローチャートを示す。 本発明の一実施形態の仕上がり値関数を示す。 本発明の一実施形態の仮補正関数及び補正関数を示す。 本発明の一実施形態の露光データ補正工程のフローチャートを示す。 本発明の一実施形態の補正量相関関数を示す。 本発明の一実施形態の仮補正関数及び補正関数を示す。 本発明の一実施形態の露光データ補正工程のフローチャートを示す。 本発明の一実施形態の仕上がり値相関関数を示す。 本発明の一実施形態の補正関数を示す。 実パターンの断面形状の概略図を示す。
[第1の実施形態]
 図1に本発明の一実施形態に係る配線パターン形成システム100の構成図を示す。配線パターン形成システム100は、設計データ作成装置101、露光データ作成装置102、露光装置104、現像パターン作成装置106、実パターン作成装置108、上底及び下底データ作成装置110及び露光データ補正装置112を備える。
 設計データ作成装置101は、設計データを作成する装置であり、本実施形態においてはCAD(Computer Aided Design)を用いる。配線パターンの設計データ(元データ)は、形成しようとする目標の配線パターンをデータ化したものであり、例えば、座標と回路幅で表すものである。露光に必要な情報を付加されたデータを有していてもよい。本発明においては、任意の配線パターンを用いることができる。
 露光データ作成装置102は、設計データから露光データを作成する装置であり、ここではCAM(Computer Aided Manufacturing)を用いる。露光装置104は、露光データ作成装置102によって作成された露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光する装置である。例えば、レーザ光又はUV-LED光を用いて、直接感光性レジストに露光パターンを露光させる直接描画装置(DI:Direct Imaging)を用いることができる。露光データは、配線パターンに対応する露光パターンを、レーザ光又はUV光等を用いた直線描画装置等の露光装置によって、感光性レジストを感光させて形成するためのデータである。
 感光性レジストとは、フォトリソ法によって、銅箔等の金属箔をエッチングすることにより、配線パターンを形成する際に用いるエッチングレジストのことをいう。露光パターンとは、露光データに基づいて、感光性レジストに露光されたパターンをいい、その後の現像によって形成される現像パターンに対応するものである。現像パターン作成装置106は露光パターンが露光された感光性レジストを現像して現像パターンを形成する装置である。
 実パターン作成装置108は、現像パターンを形成した基板に対して回路加工を行ない、実パターンを形成する装置である。例えば、エッチング装置を用いることができる。回路加工とは、実パターンを形成することをいい、例えば、サブトラクト法により金属箔をエッチングして配線パターンを形成することが挙げられる。実パターンは実パターン形成手段によって形成することができる。実パターンとは、回路形成を行って実際に形成される配線パターンをいい、例えば、サブトラクト法により金属箔をエッチングして得られた配線パターンが挙げられる。
 上底及び下底データ作成装置110は、実パターンの上底(トップ)及び下底(ボトム)の座標と回路幅や間隙幅等の仕上がり値で表されたデータを作成する装置である。本実施形態においては、上底データの作成のために光学式外観検査装置(AOI:Automatic Optical Inspection)を用いる。AOIは、実パターンの上底(トップ)から反射する光を検出してそのパターンを数値化し、座標と回路幅や間隙幅等の仕上がり値で表されたデータとするのに用いることができる。また、下底データの作成のために、測定機能を有する金属顕微鏡(単に、「顕微鏡」ということがある。)を用いることができる。ここでは、上底及び下底データ作成装置110は、顕微鏡を用いて測定された下底仕上がり値の入力を受け付け、これに基づいて下底データを作成する。
 露光データ補正装置112は、上底及び下底データ作成装置110によって作成された第1の上底データ及び下底データを取得し、第1の上底データ及び下底データの相関関係を決定する。さらに、上底及び下底データ作成装置110によって作成された、第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得する。そして、第2の上底データを得るために使用された実パターンのための設計データ、第2の上底データ及び決定された相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定し、第2の上底データを得るために使用された実パターンのための露光データを補正関数に基づいて補正する。
 設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子とは、設計データの配線パターン仕様の中で、それが変動することによって、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分に変化を生じさせる因子をいう。このような因子として、例えば、実パターンの設計データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置、パターン粗密、パターン形状等の何れか又は何れか2以上の組み合せが挙げられる。本実施の形態においては、実パターンデータと元データとの差分を生じさせる因子として、配線パターンのパターン間隙(ここでは、ラインとラインの間隙)を用いる。補正関数とは、差分を生じさせる因子と差分を抑制するための露光データの補正量との関係を規定したものである。
 露光データ補正装置112として、本実施形態においては、図2に示すハードウェア構成を備えるコンピュータ200を用いる。コンピュータ200は、処理部(プロセッサ)201、表示部202、入力部203、記憶部204、通信部205、及び、これらの各構成部品を接続するバス210を備える。表示部202はコンピュータ200において実行されるプログラムによって出力される画像を表示する。入力部203はユーザからの入力を受け付けるものであり、例えば、キーボードやマウスである。記憶部204は不揮発性メモリや揮発性メモリ、ハードディスク等の情報を格納できるものであればいかなるものであってもよい。露光データ補正のための工程を実行するためのプログラム206が記憶部204に格納される。通信部205は、無線通信やイーサネット(登録商標)ケーブル、USBケーブル等を用いた有線通信を行う。通信部205を介して、上底及び下底データ作成装置110によって作成された上底データ及び下底データを取得してもよい。プログラム206が実行されると、処理部(プロセッサ)201は露光データ補正のための工程を実行する。露光データ補正装置112は、汎用コンピュータである必要はなく、各工程のすべて又は一部を実行するためのハードウェアとこれと協働して動作するソフトウェアによって実現されてもよい。
 本実施形態におけるシステムの動作フローを図3に示す。まず、設計データ作成装置101が第1の実パターンのための設計データを作成し(工程301)、この設計データに基づいて、露光データ作成装置102が露光データを作成する(工程302)。露光装置104が、露光データ作成装置102によって作成された露光データに基づいて、基板上に配置された感光性レジストに露光パターンを露光する(工程304)。現像パターン作成装置106が、露光パターンが露光された感光性レジストを現像して現像パターンを形成し(工程306)、実パターン作成装置108が、現像パターンを形成した基板に対して回路加工を行ない、第1の実パターンを形成する(工程308)。上底及び下底データ作成装置110が第1の上底及び下底データを作成する(工程310)。第2の上底データが第1の実パターンの上底から作成される場合には、ここで第2の上底データも作成する。また、第1の実パターンから得られる全体のデータを第2の上底データとし、その一部を第1の上底データとすることもできる。
 次に、露光データ補正のために第2の実パターンを作成する必要があるか否かを判定する(工程312)。例えば、第2の上底データが第1の実パターンの上底から得られる場合には、第2の実パターンを作成する必要はない。必要であれば、設計データ作成工程301に戻り、同様の工程を行って第2の実パターンを形成し、工程310において第2の実パターンの上底データを作成する。第2の実パターンの下底データは作成しない。第2の実パターンの上底データを作成しない場合、又は、第2の実パターンを作成した後は、露光データ補正工程314を行って、露光データ補正のための動作フローを終了する。その後、補正された露光データに基づいて、例えば、露光装置104、現像パターン作成装置106、実パターン作成装置108を用いて、配線パターンを形成して、配線基板を製造する。
 図4において、露光データ補正工程314をより具体的に説明する。まず、露光データ補正装置112が、上底及び下底データ作成装置110によって作成された第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得し(工程401)、第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得し(工程402)、第1の上底データと下底データとの相関関係を決定する(工程404)。さらに、露光データ補正装置112は、上底及び下底データ作成装置110によって作成された、第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得する(工程406)。そして、第2の上底データを得るために使用された実パターンのための設計データ、第2の上底データ及び工程404において作成された相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定し(工程408)、第2の上底データを得るために使用された実パターンのための露光データを補正関数に基づいて補正する(工程410)。
 下底から得られた下底データと上底から得られた上底データとの相関関係は、パターン間隙、パターンサイズ、パターンの厚さ、パターン位置、パターン粗密、パターン形状等に依存するものであると考えられる。したがって、一度、相関関係を決定した後は、同様のパターン間隙等については、その相関関係をAOIデータによって得られた他の上底データに適用することにより、当該他の上底データに対応する新たな下底の仕上がり値を手動で測定することなく、下底データを正確に推定することが可能となる。そして、この推定された下底データに基づいて、補正関数を作成することにより、露光データ補正量の誤差を抑制し、微細回路形成時の回路幅精度を向上させることが可能となる。
 補正関数はデータを取得する基板上の領域によって変化するものと考えられる。一方、上底データと下底データとの相関関係は、データを取得する基板上の領域によっては比較的変化しないと考えられる。このため、例えば、相関関係を決定するための第1の上底データ及び下底データのための測定は第1の実パターンの限定された領域のみで行うことで少ない手間で相関関係を決定し、決定された相関関係をこの第1の実パターン全体からAOIを用いて取得された第2の上底データに適用することで、第1の実パターンそれ自体に対しても、手間を軽減しつつ、基板全体の傾向を考慮したより正確な補正関数を得ることができる。
 相関関係及び補正関数が、基板上の領域によって変化する場合があるため、相関関係及び補正関数を配線パターンが配置された同一基板面の領域毎に決定してもよい。設計データと仕上がり値との関係は、同一基板上であっても領域によっては特異な関係となる場合がある。例えば、基板の中央付近においてはエッチング液が溜まりやすくエッチング速度が遅いため、パターン間隙が狭くなる傾向にあり、基板周辺においてはエッチング速度が速いため、パターン間隙が広くなる傾向がある。また、基板角においては、電気めっきによる銅膜形成時において電流が集中するため、銅膜が厚くなる傾向があり、上底データと下底データとの相関関係が他の領域と異なると考えられる。このため、同一基板面の領域毎に、本実施形態に従って、相関関係及び補正関数を決定することにより、より精度の高い回路形成を行うことが可能となる。
 また、補正関数を配線パターンが配置された同一基板の上面及び下面毎に決定してもよい。基板面の領域と同様に、相関関係及び補正関数が異なる場合がある。例えば、上面の方がエッチング液が溜まりやすくエッチング速度が遅いため、パターン間隙が狭くなる傾向にあり、下面においてはエッチング速度が速いため、パターン間隙が広くなる傾向がある。このため、同一基板面の上面及び下面毎に、本実施形態に従って相関関係及び補正関数を決定することにより、より精度の高い回路形成を行うことが可能となる。
 また、配線パターンにおける設計データと仕上がり値との関係が異なる場合があるため、補正関数を配線パターンにおける縦ライン及び横ラインのそれぞれに対して決定してもよい。
[第2の実施形態]
 本発明の第2の実施形態について以下に説明する。本実施形態は第1の実施形態の工程314(図3、4)に代えて、工程500(図5)を採用した点で第1の実施形態と異なるが、その他の点は第1の実施形態と同様である。以下の説明においては、第1の実施形態と異なる部分のみを説明し、同様の部分は省略する。
 発明の理解のため、基板として、絶縁層上に5μmの銅箔を有した厚さ0.22mmのMCL-E-700G(日立化成株式会社製 商品名)の銅張積層板を準備し、電気銅めっきで約19μmのめっきを施し、ハーフエッチング(基板全体の銅厚を薄くするための全面エッチング処理)により銅厚を約18μmにし、第1の実パターンとしてのテストパターンを露光し、回路形成を行い、相関関係抽出用基板を作成した場合を例にとって説明する。
 本実施形態において、工程310において作成される第1の上底データは、第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、下底データは、第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含む。
 本実施形態においては、仕上がり値として配線パターンの間隙幅を用いるが、例えば、回路幅等他の仕上がり値を用いた場合であっても同様に本発明を実施可能であることは当業者には明らかである。以下に説明する他の実施形態においても同様とする。
 ここでは、第1の実パターンの四隅及び中央の所定の領域において上底における間隙幅をAOIを用いて測定し、それぞれの間隙幅を測定した座標における設計データで定められた間隙幅との差分を補正量データとして算出する。同様に、下底データの補正量として、顕微鏡を用いて第1の実パターンの四隅及び中央の所定の領域の下底における間隙幅を測定し、それぞれの間隙幅を測定した座標における設計データの間隙幅との差分を補正量データとして算出する。ここでは、上底及び下底データのための測定を行う領域を同じ領域とする。同じ領域から得られたデータ間で比較することでより正確な上底データと下底データの相関関係を取得できる。
 前述の条件に基づいて得られた相関関係抽出用基板から作成された第1の上底データ及び下底データにおける補正量データは以下のとおりである。
Figure JPOXMLDOC01-appb-T000001
 表1におけるCADデータは設計データにおいて定められた間隙(ギャップ)幅(μm)を示す。AOI測定の仕上値は、設計データにおいて定められた間隙幅に対応するAOI測定によって得られたテストパターンの四隅及び中央領域における上底の間隙幅(μm)を示すものであり、補正量はCADデータの間隙幅(μm)とAOI測定の間隙幅との差分を1/2にしたものである。1/2とするのは、間隙の両端に対して適用する補正量という意味である。顕微鏡測定についても同様である。顕微鏡測定の仕上値は、顕微鏡測定によって得られたテストパターンの四隅及び中央領域における下底の間隙幅を示すものであり、補正量はCADデータの間隙幅と顕微鏡測定の間隙幅との差分を1/2にしたものである。例えば、CADデータ=20、AOI測定仕上値=44.1、顕微鏡測定仕上値=28.4は、設計としては20μmの間隙となるべきところが、AOIによって測定された上底における間隙幅は44.1μmであり、顕微鏡によって測定された間隙幅は28.4μmであったことを意味する。そして、AOI測定仕上値に基づけば、CADデータのこの間隙は両端で12.0μm補正するべきであり、顕微鏡測定に基づけば、4.2μm補正すべきであることになる。
 次に、露光データ補正装置112は、上底データ及び下底データ作成装置110によって工程310において作成された第1の上底データ及び下底データを取得し(工程501、502)、第1の上底データにおける補正量データに基づいて第1の仮補正関数を決定し(工程504)、下底データにおける補正量データに基づいて第2の仮補正関数を決定し(工程506)、第1の仮補正関数から得られる補正量と当該補正量に対応する第2の仮補正関数から得られる補正量との差分(シフト量)に基づいて補正量差分関数を作成する(工程508)。
 本実施形態において第1の仮補正関数は、表1及び図6に示された設計データにおける間隙幅に対するAOI測定間隙幅のための補正量を表す関数(AOI測定補正関数(エッチングカーブ))であり、第2の仮補正関数は、設計データにおける間隙幅に対する顕微鏡測定間隙幅のための補正量を表す関数(顕微鏡測定補正関数)である。ここでは、表1及び図6に示された各設計データにおける間隙と補正量の関係をそれぞれの仮補正関数とするが、測定データに基づく近似式によって仮補正関数を決定してもよい。そして、補正量差分関数は、表1及び図6に示される設計データにおける間隙幅に対する第1の仮補正関数から得られる補正量と当該補正量に対応する第2の仮補正関数から得られる補正量との差分(シフト量)を表す関数である。仮補正関数と同様に、表1及び図6に示された各設計データにおける間隙とシフト量の関係を補正量差分関数とするが、測定データに基づく近似式によって補正量差分関数を決定してもよい。
 次に、工程510において第2の上底データを取得する。本実施形態において第2の上底データは、第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含む。
 そして、第2の上底データを取得するために使用した実パターンのための設計データ及び第2の上底データに基づいて第3の仮補正関数を決定し(工程512)、補正量差分関数に基づいて第3の仮補正関数を修正して補正関数を決定し(工程514)、この補正関数に基づいて露光データを補正する(工程516)。
 ここでは、第2の上底データは、第1の実パターンの四隅及び中央を含む実パターン全体における上底で測定された仕上がり値と当該仕上がり値に対応する第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含むものとする。したがって、第2の上底データを取得するために使用した実パターンは、第1の実パターンである。
 前述の条件に基づいて得られた相関関係抽出用基板から作成された第2の上底データにおける補正量データは以下のとおりである。
Figure JPOXMLDOC01-appb-T000002
 表2におけるCADデータは設計データにおいて定められた間隙幅(μm)を示す。AOI測定の補正量は、AOI測定によって得られたテストパターンの上底における間隙幅(μm)とCADデータの間隙幅(μm)との差分を1/2にしたものである。シフト量は表1のシフト量(AOI測定のための補正量と顕微鏡測定のための補正量の差分)である。本実施形態において補正量差分関数は、表2及び図7に示された設計データにおける間隙幅に対するシフト量を表わす関数である。
 本実施形態において第3の仮補正関数は、表2及び図7に示された設計データにおける間隙幅に対するAOI測定間隙幅のための補正量を表す関数(AOI測定補正関数(エッチングカーブ))である。そして、第3の仮補正関数を補正量差分関数(シフト量)によってシフトすることによって修正する。ここでは、各設計データの間隙値に対するAOI測定のための補正量からシフト量を減算することにより、補正関数を得る。補正関数は、設計データにおける間隙幅に対する修正された補正量(表2のシフト後の補正量)を表す関数である。ここでは、表2及び図7に示された設計データにおける間隙幅に対するシフト後補正量の関係を補正関数とするが、測定データに基づく近似式によって補正関数を決定してもよい。
 本実施形態においては、第2の上底データは、第1の実パターンの四隅及び中央を含む実パターン全体における上底で測定された仕上がり値に基づいて得られたが、第1の上底データを得るために使用された第1の実パターンの四隅及び中央を含まない部分のみとしてもよいし、第1の実パターンとは異なる第2の実パターンにおける上底で測定された仕上がり値に基づいてもよい。他の実施形態においても同様とする。
[実施形態3]
 本発明の第3の実施形態について以下に説明する。本実施形態は第1の実施形態の工程314(図3、4)に代えて、工程800(図8)を採用した点で第1の実施形態と異なるが、その他の点は第1の実施形態と同様である。以下の説明においては、第1の実施形態と異なる部分のみを説明し、同様の部分は省略する。また、第2の実施形態において説明された条件と同じ条件によって作成した相関関係抽出用基板を例にとって説明する。
 本実施形態において、工程310において作成される第1の上底データは、第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、下底データは、第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含む。第1の実パターンの四隅及び中央の所定の領域において上底における間隙幅をAOIを用いて上底データを測定し、下底データとして顕微鏡を用いて同様に第1の実パターンの四隅及び中央の所定の領域の下底における間隙幅を測定する。
 露光データ補正装置112は、上底データ及び下底データ作成装置110によって工程310において作成された第1の上底データ及び下底データを取得し(工程801、802)、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と第1の上底データにおける仕上がり値との関係を示す第1の仕上がり値関数を決定し(工程804)、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と下底データにおける仕上がり値との関係を示す第2の仕上がり値関数を決定し(工程806)、第1の仕上がり値関数と第2の仕上がり値関数との差分に基づく仕上がり値差分関数を決定する(工程808)。これにより、上底データと下底データとの相関関係を決定する。
 前述の条件に基づいて得られた相関関係抽出用基板から作成された第1の上底データ及び下底データにおける仕上がり値データは以下のとおりである。
Figure JPOXMLDOC01-appb-T000003
 表1と同様に、表3におけるCADデータは設計データにおいて定められた間隙幅(μm)を示し、AOI測定及び顕微鏡の仕上値は設計データにおいて定められた間隙幅に対応する測定によって得られたテストパターンの四隅及び中央領域における上底及び下底の間隙幅(μm)を示す。表3における測定された仕上がり値は、表1に示されたものと同じものを使用する。差分は各CADデータの間隙幅に対応するAOI測定の間隙幅と顕微鏡測定の間隙幅の差分を1/2にしたものである。例えば、CADデータ=20、AOI測定仕上値=44.1、顕微鏡測定仕上値=28.4は、設計としては20μmの間隙となるべきところが、AOIによって測定された上底における間隙幅は44.1μmであり、顕微鏡によって測定された間隙幅は28.4μmであったことを意味する。そして、AOI測定仕上値と顕微鏡測定仕上値との差分は15.7であり、その1/2の値を四捨五入した値として、仕上値差分=7・8μmが得られた。
 本実施形態において第1の仕上がり値関数は、表3及び図9に示された設計データにおける間隙幅に対するAOI測定間隙幅の仕上がり値を表す関数(AOI測定仕上値関数)であり、第2の仕上がり値関数は、設計データにおける間隙幅に対する顕微鏡測定間隙幅の仕上がり値を表す関数(顕微鏡測定仕上値関数)である。ここでは、表3及び図9に示された各設計データにおける間隙と仕上がり値の関係をそれぞれの仕上がり値関数とするが、測定データに基づく近似式によって仕上がり値関数を決定してもよい。そして、仕上がり値差分関数は、表3及び図9に示される各設計データにおける間隙に対するAOI測定仕上値と顕微鏡測定仕上値との差分を表す関数である。仕上がり値関数と同様に、表3及び図9に示された各設計データにおける間隙に対するAOI測定仕上値と顕微鏡測定仕上値との差分の関係を仕上がり値差分関数とするが、測定データに基づく近似式によって仕上がり値差分関数を決定してもよい。
 次に、工程810において、第2の上底データを取得する。本実施形態において、第2の上底データは、第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含む。
 そして、第2の上底データを取得するために使用した実パターンのための設計データ及び第2の上底データに基づいて仮補正関数を決定し(工程812)、仕上がり値差分関数に基づいて前記仮補正関数を修正して補正関数を決定する(工程814)。
 ここでは、第2の上底データは、第2の実施形態と同じものを使用する。前述の条件に基づいて得られた相関関係抽出用基板から作成された第2の上底データにおける補正量データ(AOI測定)は表4に示すとおりであり、これは表2に示したものと同じである。
Figure JPOXMLDOC01-appb-T000004
 本実施形態において仮補正関数は、表4及び図10に示された設計データにおける間隙幅に対するAOI測定間隙幅のための補正量を表す関数(AOI測定補正関数(エッチングカーブ))である。そして、この仮補正関数を仕上がり値差分関数によってシフトすることによって修正する。ここでは、各設計データの間隙値に対するAOI測定のための補正量から仕上値差分(シフト量)を減算することにより補正関数を得る。補正関数は、設計データにおける間隙幅に対する修正された補正量を表す関数である。ここでは、表4及び図10に示された設計データにおける間隙幅に対するシフト後補正量の関係を補正関数とするが、測定データに基づく近似式によって補正関数を決定してもよい。
[実施形態4]
 本発明の第4の実施形態について以下に説明する。本実施形態は第1の実施形態の工程314(図3、4)に代えて、工程1100(図11)を採用した点で第1の実施形態と異なるが、その他の点は第1の実施形態と同様である。以下の説明においては、第1の実施形態と異なる部分のみを説明し、同様の部分は省略する。また、第2の実施形態において説明された条件と同じ条件によって作成した相関関係抽出用基板を例にとって説明する。
 本実施形態において、工程310において作成される第1の上底データは、第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、下底データは、第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含む。
 第2の上底データは、第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含む。
 露光データ補正装置112は、上底データ及び下底データ作成装置110によって工程310において作成された第1の上底データ及び下底データを取得し(工程1101、1102)、第1の上底データにおける補正量データにおいて示される補正量と当該補正量に対応する下底データにおける補正量データにおいて示される補正量との補正量相関関数を決定する(工程1104)。これにより、上底データと下底データとの相関関係を決定する。
 そして、第2の上底データを取得した後(工程1106)、第2の上底データを取得するために使用した実パターンのための設計データ及び第2の上底データに基づいて仮補正関数を決定し(工程1108)、補正量相関関数に基づいて仮補正関数を修正して補正関数を決定し(工程1110)、この補正関数に基づいて露光データを補正する(工程1112)。
 前述の条件に基づいて得られた相関関係抽出用基板から作成された第1の上底データ及び下底データにおける補正量データは実施形態2に関連して表1に示したとおりである。表1におけるAOI測定に基づく補正量に対する顕微鏡測定に基づく補正量の関係をグラフに示したものが図12である。例えば、CADデータ=20の行をみると、AOI測定に基づく補正量=12.1であり、これに対して顕微鏡測定に基づく補正量=4.2である。この場合、(x、y)=(12.1、4.2)の座標をプロットする。これをすべてのデータについて行った後、近似式により相関関係式を決定する。ここでは線形近似により相関関係式を決定し、補正量相関関数としてy = 1.2861x - 10.563を得た。
 相関関係抽出用基板から作成された第2の上底データにおける補正量データは以下に示すとおりである。AOI測定に基づく補正量をxとして、前述の補正量相関関数(y = 1.2861x - 10.563)に代入することにより、修正された補正量yを算出する。
Figure JPOXMLDOC01-appb-T000005
 本実施形態において仮補正関数は、表5及び図13に示された設計データにおける間隙幅に対するAOI測定間隙幅のための補正量を表す関数(AOI測定補正関数(エッチングカーブ))である。そして、仮補正関数を補正量相関関数によって修正することによって補正関数を得る。補正関数は、設計データにおける間隙幅に対する修正された補正量を表す関数である。ここでは、表5及び図13に示された設計データにおける間隙幅に対する修正後補正量の関係を補正関数とするが、測定データに基づく近似式によって補正関数を決定してもよい。
[実施形態5]
 本発明の第5の実施形態について以下に説明する。本実施形態は第1の実施形態の工程314(図3、4)に代えて、工程1400(図14)を採用した点で第1の実施形態と異なるが、その他の点は第1の実施形態と同様である。以下の説明においては、第1の実施形態と異なる部分のみを説明し、同様の部分は省略する。また、第2の実施形態において説明された条件と同じ条件によって作成した相関関係抽出用基板を例にとって説明する。
 本実施形態において、工程310において作成される第1の上底データは、第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、下底データは、第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含む。
 露光データ補正装置112は、上底データ及び下底データ作成装置110によって作成された第1の上底データ及び下底データを取得し(工程1401、1402)、第1の上底データにおいて測定された仕上がり値と下底データにおいて測定された仕上がり値との仕上がり値相関関数を決定する(工程1404)。これにより、上底データと下底データとの相関関係を決定する。
 工程1406において、第2の上底データを取得する。第2の上底データは、第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値又は第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値を含む。
 決定された仕上がり値相関関数に基づいて、第2の上底データにおける仕上がり値から対応する下底における仕上がり値の推定値を計算し(工程1408)、第2の上底データを得るために使用した実パターンのための設計データにおいて定められた仕上がり値と当該仕上がり値に対応する推定された下底における仕上がり値との差分に基づいて補正関数を決定する(工程1410)。この補正関数に基づいて露光データを補正する(工程1412)。
 前述の条件に基づいて得られた相関関係抽出用基板から作成された第1の上底データ及び下底データにおける仕上値は第3の実施形態に関連して表3に示したとおりである。表3におけるAOI測定に基づく仕上値に対する顕微鏡測定に基づく仕上値の関係をグラフに示したものが図15である。例えば、CADデータ=20の行をみると、AOI測定における仕上がり値=44.1であり、これに対して顕微鏡測定に基づく仕上がり値=28.4である。この場合、(x、y)=(44.1、28.4)の座標をプロットする。これをすべてのデータについて行った後、近似式により相関関係式を決定する。ここでは線形近似により相関関係式を決定し、仕上がり値相関関数としてy = 1.0177x - 13.389を得た。
 相関関係抽出用基板から作成された第2の上底データにおける仕上がり値データは以下に示すとおりである。AOI測定に基づく仕上がり値をxとして、前述の補正量相関関数(y = 1.0177x - 13.389)に代入することにより、推定される下底仕上がり値(間隙幅)を算出する。そして、その算出された推定仕上がり値(間隙幅)とCADデータにおける設計上の仕上がり値との差分を1/2にしたものを補正量とする。
Figure JPOXMLDOC01-appb-T000006
 この表に示された設計データにおける間隙幅に対する補正量を補正関数(エッチングカーブ)として示すと図16のとおりとなる。ここで補正関数は、設計データにおける間隙幅に対する推定された仕上がり値に基づく補正量を表す関数である。ここでは、表6及び図16に示された設計データにおける間隙幅に対する補正量の関係を補正関数とするが、算出されたデータに基づく近似式によって補正関数を決定してもよい。
 本実施形態の効果を確認するために、5μmの銅箔を有した厚さ0.22mmのMCL-E-700G(日立化成株式会社製 商品名)の銅張積層板を準備し、電気銅めっきで約19μmのめっきを施し、ハーフエッチングにより銅厚を約18μmにし、上述の実施形態2~5によって得られた補正関数で露光データを補正し、実パターンの露光・現像・回路形成を行い、回路形成基板を作成した。実施形態2~5の工程によって作成された補正関数を用いて形成された回路形成基板をそれぞれ実施例1~4とする。
[比較例1]
 比較例1として、5μmの銅箔を有した厚さ0.22mmのMCL-E-700G(日立化成株式会社製 商品名)の銅張積層板を準備し、電気銅めっきで約19μmのめっきを施し、ハーフエッチングにより銅厚を約18μmにし、テストパターンを露光し、回路形成を行い、補正関数抽出用基板を作成した。そして、この補正関数抽出用基板を顕微鏡にて回路幅及び間隙幅を測定し、この測定値より補正関数(エッチングカーブ)を作成した。
 5μmの銅箔を有した厚さ0.22mmのMCL-E-700G(日立化成株式会社製 商品名)の銅張積層板を準備し、電気銅めっきで約19μmのめっきを施し、ハーフエッチングにより銅厚を約18μmにし、前記補正関数(ボトム幅)で露光データを補正し、実パターンの露光・現像・回路形成を行い、回路形成基板を作成した。
[比較例2]
 5μmの銅箔を有した厚さ0.22mmのMCL-E-700G(日立化成株式会社製 商品名)の銅張積層板を準備し、電気銅めっきで約19μmのめっきを施し、ハーフエッチングにより銅厚を約18μmにし、テストパターンを露光し、回路形成を行い、補正関数抽出用基板を作成する。補正関数抽出用基板を光学式自動外観検査装置にて回路幅及び間隙幅を測定し、前記測定値より補正関数(エッチングカーブ)を作成した。
 5μmの銅箔を有した厚さ0.22mmのMCL-E-700G(日立化成株式会社製 商品名)の銅張積層板を準備し、電気銅めっきで約19μmのめっきを施し、ハーフエッチングにより銅厚を約18μmにし、補正関数(トップ幅)で露光データを補正し、実パターンの露光・現像・回路形成を行い、回路形成基板を作成した。
[比較]
 表7及び8に実施例1~4、比較例1及び比較例2の測定結果を示す。表7及び8の各項目は、ライン(回路幅)についての設計値及び顕微鏡測定値を示す。また、表7の「L/S=50/40」は、L(ライン:回路幅)が50μm、S(スペース:間隙幅)が40μmの設計仕様であることを示し、表8の「L/S=50/50」は、L(ライン:回路幅)が50μm、S(スペース:間隙幅)が50μmの設計仕様であることを示す。実施例1及び2は上底データと下底データの相関関係を決定するに際して、上底及び仕上がり値に基づく補正量の差分に基づくか、仕上がり値そのものの差分に基づくかの違いだけであるため、最終的に得られる補正関数は同じとなる。そのため、実施例1及び2によって得られる結果も同じとなる。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7に示すとおり、L/S=50/40の設計仕様については、実施例1及び2における回路幅の寸法精度(ばらつき:3σ)は、上面6.7、下面8.8μmであり、実施例3においては上面6.5、下面8.4μm、実施例4においては上面6.7、下面9.0μmであった。これに対して、比較例1においては上面7.1、下面9.7μmであり、比較例2においては、上面7.6、下面20.5μmであった。
 また、表8に示すとおり、L/S=50/50の設計仕様については、実施例1及び2における回路幅の寸法精度(ばらつき:3σ)は、上面6.0、下面7.7μmであり、実施例3においては上面5.8、下面7.4μm、実施例4においては上面6.0、下面8.3μmであった。これに対して、比較例1においては上面6.4、下面9.2μmであり、比較例2においては、上面6.0、下面8.8μmであった。
 この結果から、上面及び下面におけるばらつきにおいて本発明の実施例1~4はいずれも比較例と比べて良い特性を示し、本発明を用いることにより回路幅精度が向上することがわかった。
 以上に説明してきた各実施形態は、本発明を説明するための例示であり、本発明はこれらの実施形態に限定されるものではない。本発明は、その要旨を逸脱しない限り、種々の形態で実施することができる。
100 配線パターン形成システム
101 設計データ作成装置
102 露光データ作成装置
104 露光装置
106 現像パターン作成装置
108 実パターン作成装置
110 上底及び下底データ作成装置
112 露光データ補正装置
200 コンピュータ
201 処理部
202 表示部
203 入力部
204 記憶部
205 通信部
206 露光データ補正プログラム
1700 基板
1701 配線パターン
1702 上底(トップ)幅
1704 下底(ボトム)幅

Claims (22)

  1.  配線パターンを作成するための露光データを補正する露光データ補正装置であって、
     目標とする配線パターンのための設計データに基づく露光データを用いた回路加工により得られた上底及び下底を有する凸状の第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得し、
     前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得し、
     前記第1の上底データと前記下底データとの相関関係を決定し、
     前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得し、
     前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定し、
     前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する、
     露光データ補正装置。
  2.  前記第1の上底データは、前記第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記下底データは、前記第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記相関関係を決定することは、
      前記第1の上底データにおける補正量データに基づいて第1の仮補正関数を決定し、
      前記下底データにおける補正量データに基づいて第2の仮補正関数を決定し、
      前記第1の仮補正関数から得られる補正量と当該補正量に対応する第2の仮補正関数から得られる補正量との差分に基づいて補正量差分関数を作成する、
     ことを含み、
     前記補正関数を決定することは、
      前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて第3の仮補正関数を決定し、
      前記補正量差分関数に基づいて前記第3の仮補正関数を修正して補正関数を決定する、
     ことを含む、請求項1に記載の露光データ補正装置。
  3.  前記第1の上底データは、前記第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、
     前記下底データは、前記第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含み、
     前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記相関関係を決定することは、
      設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と前記第1の上底データにおける仕上がり値との関係を示す第1の仕上がり値関数を決定し、
      設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と前記下底データにおける仕上がり値との関係を示す第2の仕上がり値関数を決定し、
      前記第1の仕上がり値関数と第2の仕上がり値関数との差分に基づく仕上がり値差分関数を決定する、
     ことを含み、
     前記補正関数を決定することは、
      前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて仮補正関数を決定し、
      前記仕上がり値差分関数に基づいて前記仮補正関数を修正して補正関数を決定する、
     ことを含む、請求項1に記載の露光データ補正装置。
  4.  前記第1の上底データは、前記第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記下底データは、前記第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記相関関係を決定することは、前記第1の上底データにおける補正量データにおいて示される補正量と当該補正量に対応する前記下底データにおける補正量データにおいて示される補正量との補正量相関関数を決定することを含み、
     前記補正関数を決定することは、
      前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて仮補正関数を決定し、
      前記補正量相関関数に基づいて前記仮補正関数を修正して補正関数を決定する、
     ことを含む、請求項1に記載の露光データ補正装置。
  5.  前記第1の上底データは、前記第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、
     前記下底データは、前記第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含み、
     前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値を含み、
     前記相関関係を決定することは、前記第1の上底データにおいて測定された仕上がり値と下底データにおいて測定された仕上がり値との仕上がり値相関関数を決定することを含み、
     前記補正関数を決定することは、
      前記決定された仕上がり値相関関数に基づいて、前記第2の上底データにおける仕上がり値に基づいて当該仕上がり値に対応する下底における仕上がり値の推定値を計算し、
      前記第2の上底データを得るために使用した実パターンのための設計データにおいて定められた仕上がり値と当該仕上がり値に対応する前記推定された下底における仕上がり値との差分に基づいて補正関数を決定する、
     ことを含む、請求項1に記載の露光データ補正装置。
  6.  前記第1及び第2の上底データに含まれる仕上がり値は、光学式外観検査装置により得られるデータに基づくものであり、前記下底データは、顕微鏡により得られるデータに基づくものである、請求項1から5の何れか一項に記載の露光データ補正装置。
  7.  前記補正関数が、配線パターンが配置された同一基板面の領域毎に決定される、請求項1から6の何れか一項に記載の露光データ補正装置。
  8.  前記補正関数が、配線パターンが配置された同一基板の上面及び下面毎に決定される、請求項1から7の何れか一項に記載の露光データ補正装置。
  9.  前記補正関数が、配線パターンにおける縦ライン及び横ラインのそれぞれに対して決定される、請求項1から8の何れか一項に記載の露光データ補正装置。
  10.  目標とする配線パターンの設計データに基づく露光データを作成する露光データ作成手段と、
     露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光するパターン露光手段と、
     前記露光パターンが露光された感光性レジストを現像して現像パターンを形成する現像パターン形成手段と、
     前記現像パターンを形成した基板に対して回路加工を行ない実パターンを形成する実パターン形成手段と、
     前記実パターンの少なくとも一部の領域における上底から得られたデータに基づく上底データを作成する上底データ作成手段と、
     前記実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを作成する下底データ作成手段と、
     前記上底データ、下底データ及び設計データに基づいて露光データを補正する、請求項1から9の何れか一項の露光データ補正装置と、
     を備える配線パターン形成システム。
  11.  配線パターンを作成するための露光データを補正するためのプログラムであって、コンピュータに、
     目標とする配線パターンのための設計データに基づく露光データを用いた回路加工により得られた上底及び下底を有する凸状の第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得する工程と、
     前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得する工程と、
     前記第1の上底データと前記下底データとの相関関係を決定する工程と、
     前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得する工程と、
     前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定する工程と、
     前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する工程と、
     を実行させるプログラム。
  12.  配線パターンを作成するための露光データを補正するための方法であって、
     目標とする配線パターンのための設計データに基づく露光データを用いた回路加工により得られた上底及び下底を有する凸状の第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得する工程と、
     前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得する工程と、
     前記第1の上底データと前記下底データとの相関関係を決定する工程と、
     前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得する工程と、
     前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定する工程と、
     前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する工程と、
     を含む方法。
  13.  目標とする配線パターンのための設計データに基づく露光データを用いた回路加工により得られた上底及び下底を有する凸状の第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを取得する工程と、
     前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを取得する工程と、
     前記第1の上底データと前記下底データとの相関関係を決定する工程と、
     前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを取得する工程と、
     前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定する工程と、
     前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する工程と、
     前記露光データに基づいて配線パターンを形成する工程と、
     を含む配線基板製造方法。
  14.  前記第1の上底データは、前記第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記下底データは、前記第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記相関関係を決定する工程は、
      前記第1の上底データにおける補正量データに基づいて第1の仮補正関数を決定する工程と、
      前記下底データにおける補正量データに基づいて第2の仮補正関数を決定する工程と、
      前記第1の仮補正関数から得られる補正量と当該補正量に対応する第2の仮補正関数から得られる補正量との差分に基づいて補正量差分関数を作成する工程と、
     を含み、
     前記補正関数を決定する工程は、
      前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて第3の仮補正関数を決定する工程と、
      前記補正量差分分関数に基づいて前記第3の仮補正関数を修正して補正関数を決定する工程と、
     を含む、請求項13に記載の配線基板製造方法。
  15.  前記第1の上底データは、前記第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、
     前記下底データは、前記第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含み、
     前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記相関関係を決定する工程は、
      設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と前記第1の上底データにおける仕上がり値との関係を示す第1の仕上がり値関数を決定する工程と、
      設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と前記下底データにおける仕上がり値との関係を示す第2の仕上がり値関数を決定する工程と、
      前記第1の仕上がり値関数と第2の仕上がり値関数との差分に基づく仕上がり値差分関数を決定する工程と、
     を含み、
     前記補正関数を決定する工程は、
      前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて仮補正関数を決定する工程と、
      前記仕上がり値差分関数に基づいて前記仮補正関数を修正して補正関数を決定する工程と、
     を含む、請求項13に記載の配線基板製造方法。
  16.  前記第1の上底データは、前記第1の実パターンの少なくとも一部の領域において上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記下底データは、前記第1の実パターンの少なくとも一部の領域における下底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値と当該仕上がり値に対応する前記第1の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データ又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値と当該仕上がり値に対応する前記第2の実パターンのための設計データにおいて定められた仕上がり値との差分に基づく補正量データを含み、
     前記相関関係を決定する工程は、前記第1の上底データにおける補正量データにおいて示される補正量と当該補正量に対応する前記下底データにおける補正量データにおいて示される補正量との補正量相関関数を決定する工程を含み、
     前記補正関数を決定する工程は、
      前記第2の上底データを取得するために使用した実パターンのための設計データ及び前記第2の上底データに基づいて仮補正関数を決定する工程と、
      前記補正量相関関数に基づいて前記仮補正関数を修正して補正関数を決定する工程と、
     を含む、請求項13に記載の配線基板製造方法。
  17.  前記第1の上底データは、前記第1の実パターンの上底の少なくとも一部の領域において測定された仕上がり値を含み、
     前記下底データは、前記第1の実パターンの下底の少なくとも一部の領域において測定された仕上がり値を含み、
     前記第2の上底データは、前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底で測定された仕上がり値又は前記第1の実パターンとは異なる第2の実パターンの上底で測定された仕上がり値を含み、
     前記相関関係を決定する工程は、前記第1の上底データにおいて測定された仕上がり値と下底データにおいて測定された仕上がり値との仕上がり値相関関数を決定する工程を含み、
     前記補正関数を決定する工程は、
      前記決定された仕上がり値相関関数に基づいて、前記第2の上底データにおける仕上がり値に基づいて当該仕上がり値に対応する下底における仕上がり値の推定値を計算する工程と、
      前記第2の上底データを得るために使用した実パターンのための設計データにおいて定められた仕上がり値と当該仕上がり値に対応する前記推定された下底における仕上がり値との差分に基づいて補正関数を決定する工程と、
     を含む、請求項13に記載の配線基板製造方法。
  18.  前記第1及び第2の上底データに含まれる仕上がり値は、光学式外観検査装置により得られるデータに基づくものであり、前記下底データは、顕微鏡により得られるデータに基づくものである、請求項13から17の何れか一項に記載の配線基板製造方法。
  19.  前記補正関数が、配線パターンが配置された同一基板面の領域毎に決定される、請求項13から18の何れか一項に記載の配線基板製造方法。
  20.  前記補正関数が、配線パターンが配置された同一基板の上面及び下面毎に決定される、請求項13から19の何れか一項に記載の配線基板製造方法。
  21.  前記補正関数が、配線パターンにおける縦ライン及び横ラインのそれぞれに対して決定される、請求項13から20の何れか一項に記載の配線基板製造方法。
  22.  目標とする配線パターンの設計データに基づく露光データを作成する工程と、
     露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光する工程と、
     前記露光パターンが露光された感光性レジストを現像して現像パターンを形成する工程と、
     前記現像パターンを形成した基板に対して回路加工を行ない第1の実パターンを形成する工程と、
     前記第1の実パターンの少なくとも一部の領域における上底から得られたデータに基づく第1の上底データを作成する工程と、
     前記第1の実パターンの少なくとも一部の領域における下底から得られたデータに基づく下底データを作成する工程と、
     前記第1の上底データと前記下底データとの相関関係を決定する工程と、
     前記第1の実パターンの少なくとも一部の領域とは異なる領域を含む領域における上底から得られたデータ又は前記第1の実パターンとは異なる第2の実パターンの上底から得られたデータに基づく第2の上底データを作成する工程と、
     前記第2の上底データを得るために使用された実パターンのための設計データ、前記第2の上底データ及び前記相関関係に基づいて、設計データにおいて定められた仕上がり値と実パターンにおける仕上がり値との差分を生じさせる因子と当該差分を抑制するための補正量との関係を示す補正関数を決定する工程と、
     前記第2の上底データを得るために使用された実パターンのための露光データを前記補正関数に基づいて補正する工程と、
     前記補正された露光データに基づいて配線パターンを形成する工程と、
     を含む配線基板製造方法。
PCT/JP2016/071013 2015-07-17 2016-07-15 露光データ補正装置、配線パターン形成システム、及び配線基板の製造方法 WO2017014190A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177037572A KR102086497B1 (ko) 2015-07-17 2016-07-15 노광 데이터 보정 장치, 배선 패턴 형성 시스템 및 배선 기판의 제조 방법
CN201680042016.6A CN107850855B (zh) 2015-07-17 2016-07-15 曝光数据修正装置、布线图案形成系统及布线基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-143080 2015-07-17
JP2015143080A JP6491974B2 (ja) 2015-07-17 2015-07-17 露光データ補正装置、配線パターン形成システム、及び配線基板の製造方法

Publications (1)

Publication Number Publication Date
WO2017014190A1 true WO2017014190A1 (ja) 2017-01-26

Family

ID=57834365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071013 WO2017014190A1 (ja) 2015-07-17 2016-07-15 露光データ補正装置、配線パターン形成システム、及び配線基板の製造方法

Country Status (5)

Country Link
JP (1) JP6491974B2 (ja)
KR (1) KR102086497B1 (ja)
CN (1) CN107850855B (ja)
TW (1) TWI624200B (ja)
WO (1) WO2017014190A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6663672B2 (ja) * 2015-09-25 2020-03-13 株式会社Screenホールディングス データ補正装置、描画装置、配線パターン形成システム、検査装置、データ補正方法および配線基板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230323A (ja) * 2000-02-14 2001-08-24 Matsushita Electric Ind Co Ltd 回路パラメータ抽出方法、半導体集積回路の設計方法および装置
JP2003017830A (ja) * 2001-06-28 2003-01-17 Nitto Denko Corp 配線回路基板の製造方法および検査方法
JP2005116929A (ja) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd パターン製造システム
JP2005115232A (ja) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd 製造支援システムおよびプログラム
JP2006303229A (ja) * 2005-04-21 2006-11-02 Toray Eng Co Ltd 回路形成システム
JP2007033764A (ja) * 2005-07-26 2007-02-08 Fujifilm Holdings Corp パターン製造システム、露光装置、及び露光方法
WO2007058240A1 (ja) * 2005-11-16 2007-05-24 Nikon Corporation 基板処理方法、フォトマスクの製造方法及びフォトマスク、並びにデバイス製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252202A (ja) * 1999-03-03 2000-09-14 Hitachi Ltd 半導体装置の製造方法
JP3913924B2 (ja) * 1999-03-19 2007-05-09 株式会社東芝 パターン描画方法及び描画装置
WO2004104699A1 (ja) * 2003-05-26 2004-12-02 Fujitsu Limited パターン寸法補正
US7842442B2 (en) * 2006-08-31 2010-11-30 Advanced Micro Devices, Inc. Method and system for reducing overlay errors within exposure fields by APC control strategies
CN101192009B (zh) * 2006-11-28 2011-07-06 中芯国际集成电路制造(上海)有限公司 建立光学近接修正模型的方法
TW201224678A (en) * 2010-11-04 2012-06-16 Orc Mfg Co Ltd Exposure device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230323A (ja) * 2000-02-14 2001-08-24 Matsushita Electric Ind Co Ltd 回路パラメータ抽出方法、半導体集積回路の設計方法および装置
JP2003017830A (ja) * 2001-06-28 2003-01-17 Nitto Denko Corp 配線回路基板の製造方法および検査方法
JP2005116929A (ja) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd パターン製造システム
JP2005115232A (ja) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd 製造支援システムおよびプログラム
JP2006303229A (ja) * 2005-04-21 2006-11-02 Toray Eng Co Ltd 回路形成システム
JP2007033764A (ja) * 2005-07-26 2007-02-08 Fujifilm Holdings Corp パターン製造システム、露光装置、及び露光方法
WO2007058240A1 (ja) * 2005-11-16 2007-05-24 Nikon Corporation 基板処理方法、フォトマスクの製造方法及びフォトマスク、並びにデバイス製造方法

Also Published As

Publication number Publication date
TW201714503A (zh) 2017-04-16
CN107850855A (zh) 2018-03-27
TWI624200B (zh) 2018-05-11
KR102086497B1 (ko) 2020-03-09
JP2017026710A (ja) 2017-02-02
KR20180014057A (ko) 2018-02-07
CN107850855B (zh) 2020-05-26
JP6491974B2 (ja) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6591035B2 (ja) 多層構造体の層間のオーバレイを測定する技法
JP5307876B2 (ja) 検査方法
US6963338B1 (en) Method for refining geometric description models using images
JP2011197520A (ja) フォトマスク製造方法
JPWO2021024402A1 (ja) 寸法計測装置、寸法計測方法及び半導体製造システム
JP2011145564A (ja) マスクパターン生成方法、半導体装置の製造方法およびマスクパターン生成プログラム
JP6491974B2 (ja) 露光データ補正装置、配線パターン形成システム、及び配線基板の製造方法
JP6690204B2 (ja) 配線基板の製造方法、データ補正装置、配線パターン形成システム及びデータ補正方法
TW201537283A (zh) 資料補正裝置,描繪裝置,資料補正方法及描繪方法
US9086634B2 (en) Production method and evaluation apparatus for mask layout
KR101444259B1 (ko) 기판 검사 시의 보상 매트릭스 생성방법
JP2017181613A (ja) 配線基板の製造方法、データ補正装置、配線パターン形成システム及びデータ補正方法
JP6610210B2 (ja) 配線パターン形成システム
JP2015105883A (ja) 計測装置
JP5744998B2 (ja) 露光画像の補償方法
JP2010156875A (ja) パターン補正支援方法およびパターン補正支援プログラム
WO2022157993A1 (ja) 計測システム、検査システム、計測装置、計測方法、検査方法、及びプログラム
WO2021085522A1 (ja) 処理条件推定装置、方法及びプログラム
TWI617934B (zh) 資料修正裝置、描繪裝置、配線圖案形成系統、檢查裝置、資料修正方法及配線基板之製造方法
JP2021143948A (ja) 検査システム、検査方法及びプログラム
TW202328813A (zh) 用於蝕刻製程的補償方法、補償系統及深度學習系統
CN117082740A (zh) 印刷电路板线路的补偿方法、补偿装置及制作方法
Hinaga et al. Determination of copper foil surface roughness from microsection photographs
CN115052422A (zh) 电路板阻抗线补偿模型的建立方法、补偿方法及装置
JP6234694B2 (ja) 描画装置、露光描画装置、プログラム及び描画方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177037572

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827750

Country of ref document: EP

Kind code of ref document: A1