WO2017014030A1 - 車両用空調装置 - Google Patents
車両用空調装置 Download PDFInfo
- Publication number
- WO2017014030A1 WO2017014030A1 PCT/JP2016/069691 JP2016069691W WO2017014030A1 WO 2017014030 A1 WO2017014030 A1 WO 2017014030A1 JP 2016069691 W JP2016069691 W JP 2016069691W WO 2017014030 A1 WO2017014030 A1 WO 2017014030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compression ratio
- compressor
- air
- target
- target compression
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
Definitions
- the present invention relates to a vehicle air conditioner, and more particularly to an air conditioning control based on a compression ratio of a compressor.
- a blower, an evaporator (evaporator), and a heater core are arranged in order from the upstream side to the downstream side of an air flow in an air passage duct communicating with a vehicle interior. Then, the air sent to the downstream side by the blower is cooled in the evaporator, and a part of the air is heated by the heater core and blown out into the vehicle interior, thereby adjusting the temperature in the vehicle interior.
- air conditioning control in a vehicle air conditioner sets a desired indoor temperature by an occupant, sets an air conditioning air temperature (post-evaporation temperature) immediately after passing an evaporator based on the set indoor temperature and the indoor thermal environment, This is done by controlling the amount of work of the compressor (compressor) so as to realize the post-evaporation temperature (see paragraph 0065 of Patent Document 1).
- Patent Document 1 the amount of work of the compressor can be reduced only when the passenger's cooling request is low, and the effect of fuel saving is limited. Further, in the conventional air conditioning control, the operation target value of the compressor is set to the post-evaporation temperature, but the air conditioning control that can be operated more efficiently as the entire vehicle air conditioner is desired.
- the present invention has been made in view of such problems, and an object of the present invention is to provide a vehicle air conditioner that can realize more efficient driving.
- a vehicle air conditioner according to the present invention is mounted on a vehicle, a refrigerant circuit through which a refrigerant circulates, a compressor that forms part of the refrigerant circuit and pumps the refrigerant, and the refrigerant circuit.
- An evaporator capable of cooling the passing air and the surrounding air using the heat of vaporization of the refrigerant, target compression ratio setting means for setting a target compression ratio in the compressor, and the compressor
- a compression ratio calculating means for calculating the compression ratio of the compressor, and an increase in the suction pressure of the compressor so that the compression ratio calculated by the compression ratio calculating means is a target compression ratio set by the target compression ratio setting means;
- Compression ratio adjustment control means for performing at least one of the reduction of the discharge pressure.
- the compression ratio adjustment control means is an expansion included in the refrigerant circuit.
- the suction pressure is increased by controlling to increase the opening of the valve.
- the compression ratio adjustment control unit blows air toward the evaporator when the compression ratio calculated by the compression ratio calculation unit is higher than the target compression ratio set by the target compression ratio setting unit.
- the suction pressure is increased by controlling the output of the evaporator fan to increase.
- the compression ratio adjustment control means is a condensation unit included in the refrigerant circuit.
- the discharge pressure is lowered by controlling to increase the output of the condenser fan that blows air toward the container.
- the compressor is a scroll compressor.
- FIG. 1 there is shown a schematic configuration diagram of a vehicle air conditioner according to the present invention.
- FIG. 1 schematically shows a front portion of a vehicle, and an air conditioner 1 is configured to extend from a passenger compartment 2 to an engine compartment 3 outside the passenger compartment.
- a ventilation duct 10 that forms an air passage of the air conditioner 1 is provided in an instrument panel (not shown) of the vehicle interior 2.
- the instrument panel has differential, face, and foot air outlets (not shown) formed at predetermined positions, respectively.
- Three openings 11a, 11b, and 11c for the differential, the face, and the foot are formed.
- Each of the openings 11a, 11b, and 11c is provided with a differential door 12a and a face / foot door 12b for opening and closing the corresponding openings 11a, 11b, and 11c.
- an outside air introduction port 13 communicating with the outside of the vehicle interior and an inside air introduction port 14 communicating with the vehicle interior 2 are respectively formed adjacent to the other end side of the ventilation duct 10.
- An inside / outside air switching door 15 is provided between the outside air introduction port 13 and the inside air introduction port 14 to switch between the outside air introduction mode and the inside air circulation mode by switching the opening and closing of the introduction ports 13 and 14. Yes.
- an air flow flows from the outside air inlet 13 or the inside air inlet 14 on the other end side to the openings 11a, 11b, and 11c on the one end side.
- the ventilation duct 10 is provided with an evaporator fan 20, an evaporator 21 (evaporator), and a heater core 22 in order from the other end side to the one end side.
- the evaporator fan 20 is provided in the vicinity of the other end inside the ventilation duct 10, the outside air inlet 13, and the inside air inlet 14. Further, the evaporator fan 20 is a so-called centrifugal blower driven by a motor 20 a and has a function of blowing air toward the evaporator 21 in the ventilation duct 10.
- the evaporator 21 forms part of the refrigeration circuit 30 (refrigerant circuit), and has a function of evaporating the refrigerant circulating in the refrigeration circuit 30 inside and cooling the outside air using this heat of vaporization. is doing.
- the refrigeration circuit 30 includes the evaporator 21, the compressor (compressor) 23, the condenser (condenser) 24, the receiver 25, and the expansion valve 26 in the order of the refrigeration cycle in which the refrigerant circulates.
- the compressor 23 is an electric scroll type compressor.
- the compressor 23 operates by being supplied with electric power, and has a function of compressing the refrigerant in the refrigeration circuit 30 and sending it to the condenser 24 (pressure feeding).
- the condenser 24 has a function of cooling and liquefying the high-temperature and high-pressure refrigerant compressed by the compressor 23.
- a condenser fan 27 is provided in the vicinity of the condenser 24.
- the condenser fan 27 is a multi-blade type blower driven by a motor 27 a and has a function of blowing air toward the condenser 24.
- the receiver 25 has a function of sending only the liquid phase component of the refrigerant to the expansion valve 26, and the expansion valve 26 has a function of reducing the pressure of the refrigerant to form a mist.
- the heater core 22 forms a part of the heating circuit 28. Cooling water for cooling an engine (not shown) circulates in the heating circuit 28. At the time of heating, the cooling water flows through the heater core 22 in a state where the cooling water passes through the engine that is a heat source, whereby the heater core 22 is heated, and the air passing through the heater core 22 and the surrounding air are heated. To do.
- an air mix door 29 is provided immediately upstream of the air flow of the heater core 22.
- the air mix door 29 has a function of adjusting the amount of air reheated by the heater core 22 out of the amount of air cooled by the evaporator 21 by opening and closing and adjusting the amount of air flow to the heater core 22. Yes.
- the vehicle interior 2 is provided with an air conditioning ECU (electronic control unit) 40 that performs air conditioning control.
- ECU electronic control unit
- the vehicle is provided with various ECUs corresponding to various devices of the vehicle in addition to the air conditioning ECU.
- ECUs include an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.) used for storing control programs and control maps, a central processing unit (CPU), a timer counter, and the like.
- the refrigeration circuit 30 is provided with a suction pressure sensor 41 for detecting the suction pressure of the compressor 23 and a discharge pressure sensor 42 for detecting the discharge pressure of the compressor 23.
- an evaporator temperature sensor 43 provided at the outlet of the evaporator 21 for detecting the evaporator outlet air temperature (also referred to as an evaporator outlet temperature), an indoor temperature sensor 44 provided in the vehicle interior 2 for detecting the indoor temperature, and provided outside the vehicle interior.
- Various sensors such as an outside air temperature sensor 45 that detects the outside air temperature, and an operation unit 46 that is provided on the instrument panel and that performs operations related to air conditioning by the occupant are electrically connected.
- Each sensor is electrically connected to the input side of the air conditioning ECU 40. Further, on the output side of the air conditioning ECU 40, the compressor 23, the motor 27a of the condenser fan 27, the expansion valve 26, the motor 20a of the evaporator fan 20, actuators (not shown) of the doors 12a, 12b, 15, 29, and the like are electrically connected. It is connected.
- the air conditioning ECU 40 has a function of performing air conditioning control by controlling the operation of various devices based on information detected by the sensors and information input to the operation unit 46.
- the air conditioning ECU 40 has a target compression ratio setting unit 40a (target compression ratio setting means) for setting a target compression ratio of the compressor 23, and a compression ratio calculation unit 40b (for calculating the compression ratio of the compressor 23).
- Compression ratio calculation means the increase of the suction pressure and the decrease of the discharge pressure of the compressor 23 so that the compression ratio calculated by the compression ratio calculation unit 40b becomes the target compression ratio set by the target compression ratio setting unit 40a.
- It has a compression ratio adjustment control unit 40c (compression ratio adjustment control means) that performs at least one of them.
- an air conditioning control routine executed by the air conditioning ECU 40 is shown in a flowchart, and will be described based on the flowchart.
- the air conditioning ECU 40 acquires information detected by various sensors and information input by the operation unit 46 as step S1.
- the information input through the operation unit 46 includes, for example, a room set temperature.
- step S2 the air conditioning ECU 40 determines whether or not it is necessary to perform rapid cooling based on the acquired information. Specifically, for example, immediately after the air conditioner 1 is started, when the difference between the indoor set temperature and the actual indoor temperature detected by the indoor temperature sensor 44 is equal to or higher than a predetermined temperature. Then, it is determined that rapid cooling that exhibits the maximum refrigeration capacity in the air conditioner 1 is necessary, and the process proceeds to step S3.
- step S3 the air conditioning ECU 40 performs rapid cooling control. Specifically, for example, the air conditioning ECU 40 controls the compressor 23 to operate at as high a rotational speed as possible. After executing the rapid cooling control in this way, the routine is returned.
- step S2 determines whether the room set temperature and the room temperature is less than a predetermined temperature. If the difference between the room set temperature and the room temperature is less than a predetermined temperature, it is determined that rapid cooling is not necessary, and the process proceeds to step S4. .
- step S4 the air conditioning ECU 40 sets a target compression ratio.
- the compression ratio that is optimal for the specifications of the compressor 23 is stored in the target compression ratio setting unit 40a of the air conditioning ECU 40 based on the specifications of the compressor 23 by experiments or the like.
- the optimal compression ratio is set as the target compression ratio.
- the optimum compression ratio may be stored as a constant value, or may be stored as a map according to the operating state of the compressor 23 and other devices, and may be variably set based on this map.
- step S5 the air conditioning ECU 40 calculates the compression ratio of the compressor 23 at this time.
- the compression ratio is calculated from the ratio of the suction pressure detected by the suction pressure sensor 41 and the discharge pressure detected by the discharge pressure sensor 42 by the compression ratio calculation unit 40b of the air conditioning ECU 40.
- step S6 the compression ratio adjustment control unit 40c of the air conditioning ECU 40 determines whether or not the compression ratio calculated in step S5 is larger than the target compression ratio set in step S4. If the determination result is false (No), that is, if the compression ratio is less than or equal to the target compression ratio, the routine is returned with the current operating conditions. On the other hand, if the determination result is true (Yes), the process proceeds to the next step S7.
- step S7 the compression ratio adjustment control unit 40c of the air conditioning ECU 40 executes compression ratio reduction control.
- the compression ratio reduction control is control that performs at least one of an increase in the suction pressure and a decrease in the discharge pressure of the compressor 23. Specifically, as control for increasing the suction pressure, for example, at least one of increasing the opening of the expansion valve 26 and increasing the output of the evaporator fan 20 is performed. Further, as control for increasing the suction pressure, for example, the output of the condenser fan 27 is increased. After executing such compression ratio reduction control, the air conditioning ECU 40 returns the routine.
- the compression ratio of the compressor 23 is maintained below the target compression ratio except during rapid cooling.
- the compression ratio reduction control by increasing the output of the evaporator fan 20 and increasing the output of the condenser fan 27, the power consumption by the motors 20a and 27a that drive the evaporator fan 20 increases.
- the effect of reducing the power consumption of the compressor 23 by reducing the compression ratio of the compressor 23 is greater, and the power consumption of the entire refrigeration circuit 30 can be reduced.
- FIG. 3 there is shown a graph showing the relationship between the compression ratio and the COP (Coefficient of Performance) at each rotation speed of the compressor 23.
- the COP value increases as the compression ratio is reduced at any rotational speed.
- this tendency is the same when operating conditions other than the rotational speed of the compressor 23 (for example, suction pressure and discharge pressure) are changed.
- the air conditioner 1 can be efficiently operated by maintaining the compression ratio of the compressor 23 below the target compression ratio by the air conditioning ECU 40. Furthermore, since the number of intermittent operations of the compressor is reduced by maintaining the compression ratio below the target compression ratio, it is possible to reduce noise generated during ON / OFF and improve durability.
- the suction pressure of the compressor 23 is detected by the suction pressure sensor and the discharge pressure is detected by the discharge pressure sensor.
- the compression ratio may be relatively reduced without detecting by the sensor.
- Air conditioner 10 Ventilation duct 20 Evaporator fan 20a Motor 21 Evaporator 22 heater core 23 compressor 24 condenser 25 receiver 26 expansion valve 27 condenser fan 27a motor 28 heating circuit 30 refrigeration circuit 40 air conditioning ECU 40a Target compression ratio setting unit (target compression ratio setting means) 40b Compression ratio calculation unit (compression ratio calculation means) 40c Compression ratio adjustment control unit (compression ratio adjustment control means) 41 Suction pressure sensor 42 Discharge pressure sensor 43 Evaporation temperature sensor 44 Indoor temperature sensor 45 Outside air temperature sensor 46 Operation section
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
空調ECU40は、急速冷房が必要ない場合には(S2がNo)、圧縮機23の目標圧縮比を設定し(S4)、圧縮比を算出して(S5)、当該圧縮比が目標圧縮比より高い場合には(S6がYes)、膨張弁26の開度増加、エバポレータファン20の出力増加、及びコンデンサファンの出力増加の少なくともいずれかを行う圧縮低減制御を実行する(S7)。
Description
本発明は車両用空調装置に関し、特に圧縮機の圧縮比に基づいた空調制御に関する。
一般的な車両用空調装置は、車室内へと連通している空気通路ダクト内に、送風機、エバポレータ(蒸発器)、及びヒータコアが空気流の上流から下流側に向け順に配設されている。そして、送風機により下流側へと送られる空気はエバポレータにおいて冷却され、さらに一部の空気がヒータコアにより加熱されて車室内へと吹き出されることで、車室内の温度が調整されている。
従来、車両用空調装置における空調制御は、乗員が希望の室内温度を設定し、この設定された室内温度と室内熱環境に基づいてエバポレータ通過直後の空調風温度(エバ後温度)を設定し、このエバ後温度を実現するように圧縮機(コンプレッサ)の仕事量を制御することで行っている(特許文献1の段落0065参照)。
これに対して、特許文献1では、特に乗員の冷房要求が低い場合には、室温設定温度(指令値)が一定であっても、圧縮機に対する作動目標値(エバ後温度)が高くなるよう制御することで、圧縮機の仕事量を次第に減少させて、省燃費を図っている。
特許文献1では、乗員の冷房要求が低い場合にのみ、圧縮機の仕事量を減少させることができるものであり、省燃費化の効果は限定的である。また、従来の空調制御では、圧縮機の作動目標値をエバ後温度としているが、車両用空調装置全体として、より効率的に運転させることのできる空調制御が望まれている。
本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、より効率的な運転を実現することのできる車両用空調装置を提供することにある。
上記目的を達成するため、本発明の車両用空調装置は、車両に搭載され、冷媒が循環する冷媒回路と、前記冷媒回路の一部をなし、前記冷媒を圧送する圧縮機と、前記冷媒回路の一部をなし、通過する空気及び周囲の空気を前記冷媒の気化熱を利用して冷却可能な蒸発器と、前記圧縮機における目標圧縮比を設定する目標圧縮比設定手段と、前記圧縮機の圧縮比を算出する圧縮比算出手段と、前記圧縮比算出手段により算出される圧縮比を前記目標圧縮比設定手段により設定される目標圧縮比とするように前記圧縮機の吸入圧の上昇及び吐出圧の低下の少なくともいずれか一方を行う圧縮比調整制御手段と、を備える。
好ましくは、前記圧縮比調整制御手段は、前記圧縮比算出手段により算出される圧縮比が前記目標圧縮比設定手段により設定される目標圧縮比よりも高い場合には、前記冷媒回路に含まれる膨張弁の開度を増加させるよう制御することで前記吸入圧を上昇させる。
好ましくは、前記圧縮比調整制御手段は、前記圧縮比算出手段により算出される圧縮比が前記目標圧縮比設定手段により設定される目標圧縮比よりも高い場合には、前記蒸発器に向けて送風するエバポレータファンの出力を増加するよう制御することで前記吸入圧を上昇させる。
好ましくは、前記圧縮比調整制御手段は、前記圧縮比算出手段により算出される圧縮比が前記目標圧縮比設定手段により設定される目標圧縮比よりも高い場合には、前記冷媒回路に含まれる凝縮器に向けて送風するコンデンサファン出力を増加するよう制御することで前記吐出圧を低下させる。
さらに好ましくは、前記圧縮機はスクロール式圧縮機である。
本発明の車両用空調装置によれば、より効率的な運転を実現することができる。
以下、本発明の実施の形態を図面に基づき説明する。
図1を参照すると、本発明に係る車両用空調装置の概略構成図が示されている。
図1は車両の前部分を概略的に示しており、空調装置1は車室内2から車室外であるエンジンルーム3に亘って構成されている。そして、当該空調装置1の空気通路を形成する通風ダクト10が車室内2の図示しないインストルメントパネル内に設けられている。
当該インストルメントパネルにはデフ用、フェース用、フット用の吹出口(図示せず)がそれぞれ所定の位置に形成されており、これに対応して通風ダクト10の一端側には各吹出口と連通するデフ用、フェース用、フット用の3つの開口部11a、11b、11cが形成されている。
これら各開口部11a、11b、11cには、対応する開口部11a、11b、11cの開閉を行うデフ用ドア12a、フェース・フット用ドア12bがそれぞれ設けられている。
一方、通風ダクト10の他端側には、車室外と連通した外気導入口13及び車室内2と連通した内気導入口14がそれぞれ隣接して形成されている。そして、当該外気導入口13及び内気導入口14の間には、当該各導入口13、14の開閉を切り替えることで外気導入モード及び内気循環モードの切り替えを行う内外気切替ドア15が設けられている。
このように構成された通風ダクト10では、他端側の外気導入口13または内気導入口14から一端側の開口部11a、11b、11cへと空気流が流れる。
そして、当該通風ダクト10には、他端側から一端側に向けて順に、エバポレータファン20、エバポレータ21(蒸発器)、ヒータコア22が設けられている。
エバポレータファン20は、通風ダクト10内部の他端側、外気導入口13及び内気導入口14の近傍に設けられている。また、当該エバポレータファン20はモータ20aにより駆動する所謂遠心式の送風機であり、通風ダクト10内のエバポレータ21に向けて送風を行う機能を有している。
エバポレータ21は、冷凍回路30(冷媒回路)の一部をなしており、当該冷凍回路30内を循環する冷媒を内部で蒸発させ、この気化熱を利用して外部の空気を冷却する機能を有している。
なお、冷凍回路30は、冷媒が循環する冷凍サイクルの順に、当該エバポレータ21、圧縮機(コンプレッサ)23、コンデンサ(凝縮器)24、レシーバ25、膨張弁26が設けられて構成されている。
詳しくは、圧縮機23は電動のスクロール式の圧縮機である。圧縮機23は電力が供給されることで作動し、冷凍回路30内の冷媒を圧縮しコンデンサ24へと送る(圧送)機能を有している。
コンデンサ24は圧縮機23により圧縮された高温高圧の冷媒を冷却し液化させる機能を有している。コンデンサ24の近傍にはコンデンサファン27が設けられており、当該コンデンサファン27はモータ27aにより駆動する多翼式の送風機であり、コンデンサ24へ向けて送風を行う機能を有している。
レシーバ25は冷媒の液相成分のみを膨張弁26へと送る機能を有し、膨張弁26は冷媒の圧力を減圧し霧状とする機能を有している。
ヒータコア22は、暖房回路28の一部をなしている。当該暖房回路28内には図示しないエンジンを冷却する冷却水が循環している。暖房時には、この冷却水が、熱源であるエンジンを通り温水となった状態で当該ヒータコア22内を流通することで、当該ヒータコア22が加熱され、当該ヒータコア22を通過する空気及び周囲の空気を加熱する。
また、ヒータコア22の空気流直上流位置には、エアミックスドア29が設けられている。当該エアミックスドア29は開閉駆動しヒータコア22への空気流の量を調節することで、エバポレータ21で冷却された空気量のうちヒータコア22により再加熱される空気量を調節する機能を有している。
また、車室内2には空調制御を行う空調ECU(電子コントロールユニット)40が設けられている。また図示しないが、車両には空調ECUの他、車両の各種装置に対応して各種ECUが設けられている。これらECUは図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM,BURAM等)、中央処理装置(CPU)、タイマカウンタ等を備えている。
また、冷凍回路30には、圧縮機23の吸入圧を検出する吸入圧センサ41及び圧縮機23の吐出圧を検出する吐出圧センサ42が設けられている。
この他に、エバポレータ21出口に設けられエバポレータ出口空気温度(エバ出口温度ともいう)を検出するエバ温度センサ43、車室内2に設けられ室内温度を検出する室内温度センサ44、車室外に設けられ外気温度を検出する外気温度センサ45等の各種センサ類及び、インストルメントパネルに設けられ乗員による空調に関する操作が行われる操作部46が電気的に接続されている。
空調ECU40の入力側には、各センサが電気的に接続されている。また、空調ECU40の出力側には、圧縮機23、コンデンサファン27のモータ27a、膨張弁26、エバポレータファン20のモータ20a、各ドア12a、12b、15、29の図示しないアクチュエータ等が電気的に接続されている。
当該空調ECU40は上記センサ類により検出された情報及び操作部46に入力された情報に基づき各種装置の作動を制御することで空調制御を行う機能を有している。この空調制御を行うため、空調ECU40は、圧縮機23の目標圧縮比を設定する目標圧縮比設定部40a(目標圧縮比設定手段)、圧縮機23の圧縮比を算出する圧縮比算出部40b(圧縮比算出手段)、圧縮比算出部40bにより算出される圧縮比を前記目標圧縮比設定部40aにより設定される目標圧縮比とするように圧縮機23の吸入圧の上昇及び吐出圧の低下の少なくともいずれか一方を行う圧縮比調整制御部40c(圧縮比調整制御手段)を有している。
以下、空調ECU40により実行される空調制御について詳しく説明する。
図2を参照すると、空調ECU40が実行する空調制御ルーチンがフローチャートで示されており、同フローチャートに基づき説明する。
まず、空調ECU40は、ステップS1として、各種センサ類により検出される情報及び操作部46にて入力された情報を取得する。なお、操作部46にて入力される情報としては、例えば室内設定温度等がある。
続くステップS2において、空調ECU40は、取得した情報に基づき、急速冷房を行う必要があるか否かを判別する。具体的には、例えば、空調装置1を起動した直後等で、室内設定温度と、室内温度センサ44により検出される実際の室内温度との差が、予め定めた所定の温度以上である場合は、空調装置1において最大限の冷凍能力を発揮する急速冷房が必要と判定し、ステップS3に進む。
ステップS3において、空調ECU40は、急速冷房制御を行う。具体的には、例えば、空調ECU40は、圧縮機23を可能な限り高回転数で運転するよう制御する。このように急速冷房制御を実行した後、当該ルーチンをリターンする。
一方、上記ステップS2に判別結果が偽(No)である場合、例えば、室内設定温度と室内温度との差が所定温度未満である場合は、急速冷房が必要ないと判定し、ステップS4に進む。
ステップS4において空調ECU40は、目標圧縮比を設定する。具体的には、空調ECU40の目標圧縮比設定部40aに、実験等により圧縮機23の仕様に対し、運転環境に応じて最適な効率となる圧縮比が記憶されており、この記憶されている最適な圧縮比を目標圧縮比として設定する。当該最適な圧縮比は一定値として記憶されていてもよいし、圧縮機23及び他の機器の運転状態等に応じたマップとして記憶され、このマップに基づき可変的に設定してもよい。
また、ステップS5において空調ECU40は、この時点における圧縮機23の圧縮比を算出する。当該圧縮比は、空調ECU40の圧縮比算出部40bが、吸入圧センサ41により検出される吸入圧と吐出圧センサ42により検出される吐出圧との比から算出する。
そしてステップS6において、空調ECU40の圧縮比調整制御部40cは、ステップS5にて算出した圧縮比が、ステップS4にて設定した目標圧縮比よりも大であるか否かを判別する。当該判別結果が偽(No)である場合、即ち、圧縮比が目標圧縮比以下である場合は現状の運転条件のまま当該ルーチンをリターンする。一方、当該判別結果が真(Yes)である場合は、次のステップS7に進む。
ステップS7において、空調ECU40の圧縮比調整制御部40cは、圧縮比低減制御を実行する。当該圧縮比低減制御は、圧縮機23の吸入圧の上昇及び吐出圧の低下の少なくともいずれか一方を行う制御である。詳しくは、吸入圧を上昇させる制御としては、例えば、膨張弁26の開度の増加及びエバポレータファン20の出力の増加の少なくともいずれか一方を行う。また、吸入圧を上昇させる制御としては、例えばコンデンサファン27の出力の増加を行う。空調ECU40はこのような圧縮比低減制御を実行した後、当該ルーチンをリターンする。
空調ECU40が当該制御ルーチンを繰り返すことで、急速冷房時以外では、圧縮機23の圧縮比は目標圧縮比以下に維持されることとなる。
このように圧縮比低減制御において、エバポレータファン20の出力の増加、及びコンデンサファン27の出力の増加を行うことで、エバポレータファン20を駆動するモータ20a、27aによる消費電力が増加することとなるが、圧縮機23の圧縮比を低減することによる圧縮機23の消費電力の低減効果の方が大きく、冷凍回路30全体としての消費電力を低減させることができる。
ここで図3を参照すると、圧縮機23の回転数毎における圧縮比とCOP(Coefficient of Performance:成績係数)との関係を示したグラフが示されている。同図に示すように、どの回転数においても、圧縮比を低減するほどCOPの値が上昇することがわかる。図示しないが、このような傾向は圧縮機23の回転数以外の運転条件(例えば、吸入圧、吐出圧)を変動させた場合にも同じであった。
そして、特に本実施形態のように圧縮機23がスクロール式の圧縮機である場合、回転数の増減による体積効率の変化が少なく、図3に示す傾向が顕著となる。
以上のように、本実施形態における車両用空調装置によれば、空調ECU40により圧縮機23の圧縮比を目標圧縮比以下に維持することで、空調装置1を効率的に運転することができる。さらに、圧縮比を目標圧縮比以下に維持することで、圧縮機の断続運転回数が低減することから、ON/OFF時に発生するノイズの低減、及び耐久性の向上を実現することができる。
以上で本発明の実施形態についての説明を終えるが、本発明はこの形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
また上記実施形態では、圧縮機23の吸入圧は吸入圧センサにより、吐出圧は吐出圧センサにより検出しているが、センサにより検出せずに相対的に圧縮比を低減してもよい。
1 空調装置
10 通風ダクト
20 エバポレータファン
20a モータ
21 エバポレータ(蒸発器)
22 ヒータコア
23 圧縮機
24 コンデンサ
25 レシーバ
26 膨張弁
27 コンデンサファン
27a モータ
28 暖房回路
30 冷凍回路
40 空調ECU
40a 目標圧縮比設定部(目標圧縮比設定手段)
40b 圧縮比算出部(圧縮比算出手段)
40c 圧縮比調整制御部(圧縮比調整制御手段)
41 吸入圧センサ
42 吐出圧センサ
43 エバ温度センサ
44 室内温度センサ
45 外気温度センサ
46 操作部
10 通風ダクト
20 エバポレータファン
20a モータ
21 エバポレータ(蒸発器)
22 ヒータコア
23 圧縮機
24 コンデンサ
25 レシーバ
26 膨張弁
27 コンデンサファン
27a モータ
28 暖房回路
30 冷凍回路
40 空調ECU
40a 目標圧縮比設定部(目標圧縮比設定手段)
40b 圧縮比算出部(圧縮比算出手段)
40c 圧縮比調整制御部(圧縮比調整制御手段)
41 吸入圧センサ
42 吐出圧センサ
43 エバ温度センサ
44 室内温度センサ
45 外気温度センサ
46 操作部
Claims (5)
- 車両に搭載され、冷媒が循環する冷媒回路と、
前記冷媒回路の一部をなし、前記冷媒を圧送する圧縮機と、
前記冷媒回路の一部をなし、通過する空気及び周囲の空気を前記冷媒の気化熱を利用して冷却可能な蒸発器と、
前記圧縮機における目標圧縮比を設定する目標圧縮比設定手段と、
前記圧縮機の圧縮比を算出する圧縮比算出手段と、
前記圧縮比算出手段により算出される圧縮比を前記目標圧縮比設定手段により設定される目標圧縮比とするように前記圧縮機の吸入圧の上昇及び吐出圧の低下の少なくともいずれか一方を行う圧縮比調整制御手段と、
を備える車両用空調装置。 - 前記圧縮比調整制御手段は、前記圧縮比算出手段により算出される圧縮比が前記目標圧縮比設定手段により設定される目標圧縮比よりも高い場合には、前記冷媒回路に含まれる膨張弁の開度を増加させるよう制御することで前記吸入圧を上昇させる請求項1記載の車両用空調装置。
- 前記圧縮比調整制御手段は、前記圧縮比算出手段により算出される圧縮比が前記目標圧縮比設定手段により設定される目標圧縮比よりも高い場合には、前記蒸発器に向けて送風するエバポレータファンの出力を増加するよう制御することで前記吸入圧を上昇させる請求項1又は2記載の車両用空調装置。
- 前記圧縮比調整制御手段は、前記圧縮比算出手段により算出される圧縮比が前記目標圧縮比設定手段により設定される目標圧縮比よりも高い場合には、前記冷媒回路に含まれる凝縮器に向けて送風するコンデンサファン出力を増加するよう制御することで前記吐出圧を低下させる請求項1から3のいずれか一項に記載の車両用空調装置。
- 前記圧縮機はスクロール式圧縮機である請求項1から4のいずれか一項に記載の車両用空調装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015145849A JP2017024587A (ja) | 2015-07-23 | 2015-07-23 | 車両用空調装置 |
JP2015-145849 | 2015-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017014030A1 true WO2017014030A1 (ja) | 2017-01-26 |
Family
ID=57833948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069691 WO2017014030A1 (ja) | 2015-07-23 | 2016-07-01 | 車両用空調装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017024587A (ja) |
WO (1) | WO2017014030A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3091562A1 (fr) * | 2019-01-09 | 2020-07-10 | Valeo Systemes Thermiques | Procédé de contrôle d’un compresseur de climatisation électrique et système de climatisation mettant en œuvre un tel procédé de contrôle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110332742A (zh) * | 2019-07-08 | 2019-10-15 | 广东Tcl智能暖通设备有限公司 | 热水装置及热泵系统控制方法、热泵系统控制装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58133569A (ja) * | 1982-02-03 | 1983-08-09 | 株式会社日立製作所 | 空気調和機 |
JP2003254589A (ja) * | 2002-02-28 | 2003-09-10 | Matsushita Electric Ind Co Ltd | 空気調和機 |
JP2003285619A (ja) * | 2002-03-29 | 2003-10-07 | Calsonic Kansei Corp | 車両用空調装置 |
JP2009264717A (ja) * | 2008-04-30 | 2009-11-12 | Panasonic Corp | ヒートポンプ温水システム |
-
2015
- 2015-07-23 JP JP2015145849A patent/JP2017024587A/ja active Pending
-
2016
- 2016-07-01 WO PCT/JP2016/069691 patent/WO2017014030A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58133569A (ja) * | 1982-02-03 | 1983-08-09 | 株式会社日立製作所 | 空気調和機 |
JP2003254589A (ja) * | 2002-02-28 | 2003-09-10 | Matsushita Electric Ind Co Ltd | 空気調和機 |
JP2003285619A (ja) * | 2002-03-29 | 2003-10-07 | Calsonic Kansei Corp | 車両用空調装置 |
JP2009264717A (ja) * | 2008-04-30 | 2009-11-12 | Panasonic Corp | ヒートポンプ温水システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3091562A1 (fr) * | 2019-01-09 | 2020-07-10 | Valeo Systemes Thermiques | Procédé de contrôle d’un compresseur de climatisation électrique et système de climatisation mettant en œuvre un tel procédé de contrôle |
Also Published As
Publication number | Publication date |
---|---|
JP2017024587A (ja) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10889163B2 (en) | Heat pump system | |
US10611213B2 (en) | Vehicular air-conditioning device having a dehumidifying and heating mode | |
US11458810B2 (en) | Air-conditioning device for vehicle | |
JP4134687B2 (ja) | 車両用空調装置 | |
JP2004142646A (ja) | 車両用空調装置 | |
JP6723137B2 (ja) | 車両用空気調和装置 | |
JP2005274104A (ja) | 車両用空調装置 | |
JP2006199247A (ja) | 車両用空調装置 | |
JPWO2017159455A1 (ja) | 空調装置 | |
WO2017017029A1 (en) | Vehicle air conditioner and method for heating a vehicle inner space using such a vehicle air conditioner | |
JP5966796B2 (ja) | 車両用空調装置 | |
KR20180113712A (ko) | 차량용 공조장치 | |
JP2017165142A (ja) | 空調装置 | |
WO2017014030A1 (ja) | 車両用空調装置 | |
JP2009166629A (ja) | 車両用空調装置 | |
WO2020166271A1 (ja) | 温調装置 | |
JP4134434B2 (ja) | 空調装置 | |
JP5413857B2 (ja) | 車両用空調装置 | |
JP5195378B2 (ja) | 車両用空調制御装置 | |
JP2017189997A (ja) | 空調装置 | |
WO2019138807A1 (ja) | 車両用空調装置及び車両用空調装置の制御方法 | |
JP2008137533A (ja) | 車両用空調装置 | |
JP6745895B2 (ja) | 空調システム | |
JP4285228B2 (ja) | 車両用空調装置 | |
KR102043401B1 (ko) | 차량용 공조 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16827594 Country of ref document: EP Kind code of ref document: A1 |