WO2017013875A1 - 経路切替装置、経路切替システムおよび経路切替方法 - Google Patents
経路切替装置、経路切替システムおよび経路切替方法 Download PDFInfo
- Publication number
- WO2017013875A1 WO2017013875A1 PCT/JP2016/003395 JP2016003395W WO2017013875A1 WO 2017013875 A1 WO2017013875 A1 WO 2017013875A1 JP 2016003395 W JP2016003395 W JP 2016003395W WO 2017013875 A1 WO2017013875 A1 WO 2017013875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- selection
- switching
- input
- transmission
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 13
- 230000005540 biological transmission Effects 0.000 claims abstract description 110
- 230000005856 abnormality Effects 0.000 claims abstract description 42
- 230000003287 optical effect Effects 0.000 claims description 74
- 238000012544 monitoring process Methods 0.000 claims description 39
- 238000001514 detection method Methods 0.000 claims 3
- 238000012790 confirmation Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 208000010119 wrinkly skin syndrome Diseases 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
- H04B10/032—Arrangements for fault recovery using working and protection systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0287—Protection in WDM systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/021—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
- H04J14/0212—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0221—Power control, e.g. to keep the total optical power constant
- H04J14/02212—Power control, e.g. to keep the total optical power constant by addition of a dummy signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/22—Alternate routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0081—Fault tolerance; Redundancy; Recovery; Reconfigurability
Definitions
- the present invention relates to a path switching apparatus, a path switching system, and a path switching method, and in particular, a path switching apparatus, a path switching system, and a path switching system that transmit and receive optical signals via a first path and a second path in which redundant paths are respectively constructed.
- the present invention relates to a route switching method.
- Patent Document 1 when an abnormality such as communication disconnection is detected, the reception side route (A route) in the own device is switched from the working route to the redundant route, and the transmission side route (B route) A path switching device is disclosed that lowers the signal level of the optical signal output from the path and increases the signal level of the optical signal output from the redundant path.
- the signal level of the optical signal input from the working path is low in the B route, and the signal level of the optical signal input from the redundant path is low. Since it is high, the route in the A route and the B route is automatically switched from the working route to the redundant route. Thereby, it is not necessary to install a communication function of a control system for transferring switching information in each path switching device.
- Patent Document 1 switches from the working path to the redundant path even in the B route, although the B route has no failure.
- the present invention has been made in view of the above problems, and in a transmission system including a first route and a second route each having a redundant route, when a failure occurs in one of the routes, a failure has occurred. It is an object to provide a path switching device, a path switching system, and a path switching method that can automatically switch only a side path from a working path to a redundant path.
- a path switching apparatus includes: a first selection unit that selects either the first transmission unit or the second transmission unit and outputs a first main signal to the selected transmission unit; First selection means for selecting one of the first transmission means and the second transmission means, and outputting the first switching instruction signal to the selected transmission means, and the first transmission for transmitting the input signal to the opposite device Means and second transmitting means, first receiving means for dividing the signal received from the opposite apparatus and outputting it to the first monitoring means and the third selecting means, and dividing the signal received from the opposite apparatus to the second
- the second main signal is inputted to the monitoring means and the second receiving means for outputting to the third selection means, the inputted second main signal is monitored, and if an abnormality is detected, an abnormality notification is generated
- a first monitoring means and a second monitoring means for generating a first switching instruction notification and outputting the first switching instruction notification to the first selecting means and the second selecting means, and a second main signal obtained from the selected receiving means.
- 3 selection means and in a normal state, the first selection means selects the first transmission means, and the second selection means selects the second transmission means and includes the first information.
- 1 switching instruction signal is output, the third selecting means selects the first receiving means, the first selecting means switches the selection destination when the first switching instruction notification is input, and the second selecting means
- the selection means receives the second information when the abnormality notification is input. While outputting a switching instruction signal including, when the first switching instruction notification is input to switch the selection target, the third selection means, when the abnormality notification is inputted switches the selection source.
- a path switching system transmits the first main signal and the first switching instruction signal, and receives the second main signal and the second switching instruction signal.
- the first path switching apparatus, the second main signal and the second switching instruction signal, and the second path switching apparatus which receives the first main signal and the first switching instruction signal, Is provided.
- a path switching method includes a first selection unit that outputs a first main signal to a selected transmission unit, and a second selection that outputs a first switching instruction signal to a selected transmission unit.
- a path switching method in a path switching apparatus comprising: a second monitoring unit that monitors a signal input from the second receiving unit; and a third selecting unit that acquires a second main signal from the selected receiving unit.
- the first selection unit is made to select the first transmission unit
- the second selection unit is made to select the second transmission unit
- the first switching instruction signal including the first information is output
- the first receiving unit receives the second main signal
- the second receiving unit receives a second switching instruction signal
- the third selecting unit selects the first receiving unit
- the monitoring unit selects the first receiving unit
- the second selection means outputs a first switching instruction signal including second information
- the monitoring means changes the second switching signal.
- the transmission system including the first route and the second route in which redundant routes are respectively constructed, when a failure occurs in one route, only the route on the side where the failure has occurred. It is possible to automatically switch from the working route to the redundant route.
- FIG. 1 shows a block configuration diagram of the path switching apparatus according to the present embodiment.
- the path switching apparatus 1 includes a first selection unit 10, a second selection unit 20, a first transmission unit 30, a second transmission unit 40, a first reception unit 50, a second reception unit 60, and a first monitor unit. 70, second monitor means 80 and third selection means 90.
- the first selection means 10 selects either the first transmission means 30 or the second transmission means 40 and outputs the first main signal to the selected transmission means.
- the first selection unit 10 selects the first transmission unit 30 and outputs the first main signal to the selected first transmission unit 30.
- the 1st selection means 10 changes the selection destination of the 1st transmission means 30 or the 2nd transmission means 40, when the 1st switching instruction notification is input from the monitor means 70 and 80 mentioned later.
- the second selection means 20 selects either the first transmission means 30 or the second transmission means 40, and outputs a first switching instruction signal to the selected transmission means.
- the second selection unit 20 selects the second transmission unit 40 and outputs the first switching instruction signal including the first information to the selected second transmission unit 40.
- the second selection unit 20 includes the second information instead of outputting the first switching instruction signal including the first information to the selected transmission unit when an abnormality notification is input from the monitor units 70 and 80 described later.
- the first switching instruction signal is output to the selected transmission means.
- the second selection unit 20 changes the selection destination of the first transmission unit 30 or the second transmission unit 40 when a first switching instruction notification is input from the monitoring units 70 and 80 described later.
- the first transmission means 30 transmits the input first main signal or first switching instruction signal to the opposite device not shown in FIG.
- the 1st transmission means 30 which concerns on this embodiment transmits the 1st main signal input from the 1st selection means 10 to an opposing apparatus in a normal state.
- the main signal transmitted from the first transmission means 30 passes through the first path and is transmitted to the opposite device.
- the second transmission means 40 transmits the input first main signal or first switching instruction signal to the opposite device not shown in FIG.
- the 2nd transmission means 40 which concerns on this embodiment transmits the 1st switching instruction
- the first switching instruction signal transmitted from the second transmission means 40 is transmitted to the opposite device through the first redundant path.
- the first receiving means 50 divides the second main signal or the second switching instruction signal received from the opposite device (not shown in FIG. 1) into two, one to the first monitoring means 70 and the other to the third selecting means 90. Output.
- the first receiving means 50 receives the second main signal from the opposite device, and one of the divided second main signals is sent to the first monitor means 70 and the other is the third selecting means. Output to 90.
- the signal transmitted through the second path is input to the first receiving means 50 from the opposite device.
- the second receiving means 60 divides the second main signal or the second switching instruction signal received from the opposite device into two, and outputs one to the second monitoring means 80 and the other to the third selecting means 90.
- the second receiving means 60 receives the second switching instruction signal from the opposite device, and one of the divided second switching instruction signals is supplied to the second monitoring means 80 and the other is the third. It outputs to the selection means 90.
- the signal transmitted through the second redundant path is input to the second receiving means 60 from the opposite device.
- the first monitoring means 70 and the second monitoring means 80 monitor the second main signal or the second switching instruction signal respectively input from the first receiving means 50 and the second receiving means 60, respectively.
- the first monitor means 70 and the second monitor means 80 detect an abnormality of the input second main signal
- the first monitor means 70 and the second monitor means 80 generate an abnormality notification and output it to the second selection means 20 and the third selection means 90.
- the first monitoring unit 70 and the second monitoring unit 80 generate a first switching instruction notification to generate the first switching unit 10 and the first selection unit 10 when the second information is included in the input second switching instruction signal. 2 output to the selection means 20.
- the second main signal is input to the first monitor unit 70
- the second switching instruction signal is input to the second monitor unit 80.
- the third selecting means 90 selects either the first receiving means 50 or the second receiving means 60, and acquires the signal input from the selected receiving means as the second main signal.
- the third selection unit 90 according to the present embodiment selects the first receiving unit 50 in the normal state, and acquires the signal input from the first receiving unit 50 as the second main signal. Note that the third selection unit 90 changes the selection source of the first reception unit 50 or the second reception unit 60 when an abnormality notification is input from the monitoring units 70 and 80.
- the path switching device 1 configured as described above, when an abnormality occurs in the first path transmitting the first main signal from the path switching device 1 to the opposite device, the first redundancy is transmitted from the first route to the opposite device.
- a second switching instruction signal that automatically switches to the path and includes the second information is input from the opposite device via the second redundant path.
- the path switching device 1 changes the switching destination in the first selection unit 10 and the second selection unit 20. As a result, the path of the first main signal is switched from the first path to the first redundant path.
- the path switching device 1 configured as described above notifies the abnormality from the first monitoring means 70 when an abnormality occurs in the second path transmitting the second main signal from the opposite device to the path switching device 1. Is output, the switching source of the third selection means 90 is changed, and the first switching instruction signal including the second information is transmitted to the opposing device. Thereby, in the opposite device, the second path is switched to the second redundant path, and the path of the second main signal is switched from the second path to the second redundant path.
- the path switching device 1 has an abnormality in the first path or the second path by adding the first information or the second information to the switching instruction signal that passes the redundant path.
- the path switching apparatus 1 according to the present embodiment has a fault in one path when the first main signal and the second main signal are transmitted using the first path and the second path in which redundant paths are respectively constructed. When this occurs, it is possible to automatically switch only the path on which the failure has occurred to the redundant path.
- FIG. 2 shows a system configuration diagram of the route switching system according to the present embodiment.
- the path switching system 100 includes an A station side device 200 and a B station side device 300.
- the A-station side apparatus 200 has a first wavelength selective switch (WSS) 211, an spontaneous emission (ASE: Amplified Spontaneous Emission) dummy light source 212, a second WSS 213, and a first coupler (CPL: Coupler) as transmission side functions. ) 214 and the second CPL 215.
- the A station side apparatus 200 includes a third CPL 221, a fourth CPL 222, a first optical channel monitor (OCM) 223, a second OCM 224, and a third WSS 225 as reception side functions.
- the B station side device 300 is configured in the same manner as the A station side device 200. That is, the B station side apparatus 300 includes a first WSS 311, an ASE dummy light source 312, a second WSS 313, a first CPL 314, and a second CPL 315 as transmission side functions. Further, the B station side apparatus 300 includes a third CPL 321, a fourth CPL 322, a first OCM 323, a second OCM 324, and a third WSS 325 as reception side functions.
- the transmission function of the A station side apparatus 200 will be described.
- the transmission function of the B station side apparatus 300 functions similarly.
- the first WSS 211 outputs the first main optical signal input from the A station side client to either the first CPL 214 or the second CPL 215.
- a first main optical signal in which three optical signals of wavelength ⁇ 1 , wavelength ⁇ 2 , and wavelength ⁇ 3 are multiplexed is input to the first WSS 211 from the A station side client.
- the input first main optical signal is output to the first CPL 214.
- the first WSS 211 switches the output destination of the first main optical signal from the first CPL 214 to the second CPL 215 when a first switching request notification is input from the second OCM 224 described later. Furthermore, when the switching withdrawal notification is input from the second OCM 224 after switching the output destination of the first main optical signal, the first WSS 211 restores the output destination.
- the ASE dummy light source 212 generates spontaneous emission light (ASE) that is the source of the dummy light and outputs it to the second WSS 213.
- ASE spontaneous emission light
- the second WSS 213 extracts light having a predetermined wavelength from the input ASE, and outputs dummy light for intensity adjustment and dummy light for switching instruction to the first CPL 214 and the second CPL 215.
- the second WSS 213 according to the present embodiment extracts an optical signal having a wavelength ⁇ 4 other than the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 constituting the main signal from the ASE, and outputs the multiplexed signal output from the first CPL 214.
- the optical intensity of the optical signal having the wavelength ⁇ 4 is adjusted so that the optical intensity of the optical signal becomes a predetermined P 0 , and is output to the first CPL 214 as dummy light for intensity adjustment.
- the second WSS 213 extracts, from the ASE, optical signals having the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 constituting the first main optical signal input from the A station side client. Then, the first 2WSS213 imparts information of either state 0 to state 2 to the extracted wavelength lambda 2 of the optical signal, the wavelength lambda 1 so that the total light intensity is a predetermined P 0, the wavelength lambda 2, The light intensity of the optical signal having the wavelength ⁇ 3 is adjusted and output to the second CPL 215 as dummy light for switching instruction.
- the optical signal of wavelength ⁇ 2 to which any of the information in state 0 to state 2 is given is referred to as a switching information transmission signal.
- the second WSS 213 When a normal notification is input from the first OCM 223, which will be described later, the second WSS 213 outputs a dummy light for switching instruction including a switching information transmission signal to which information of state 0 is added to the second CPL 215.
- the switching information transmission signal will be described later.
- the second WSS 213 switches the output destination of the intensity adjustment dummy light from the first CPL 214 to the second CPL 215, and sets the output destination of the dummy light for switching instruction. Switch from 2CPL 215 to first CPL 214. Note that the second WSS 213 returns the switching destination to the original when a switching withdrawal notification is input from the second OCM 224 after switching the output destination of the dummy light for intensity adjustment and the dummy light for switching instruction.
- the second WSS 213 checks whether a reception confirmation notification is input from the second OCM 224.
- the second WSS 213 determines that the redundant path is functioning normally, and for the switching instruction including the switching information transmission signal to which the information of the state 1 is added instead of the state 0.
- the switching instruction dummy light including the switching information transmission signal to which the information of the state 1 is added is input to the B station side device 300 via the second CPL 215.
- the output destination of the first main light signal and the output destination of the dummy light for switching instruction are switched.
- the switching process is performed when the switching completion notification is not input from the third WSS 225 even after a predetermined time has elapsed. Is determined to have failed.
- the second WSS 213 outputs the dummy light for switching instruction including the switching information transmission signal with the state 2 information added thereto to the second CPL 215.
- the switching instruction dummy light including the switching information transmission signal to which the information of the state 2 is added is input to the B station side device 300, whereby the switching instruction to the first WSS 311 and the second WSS 313 of the B station side device 300 is withdrawn. Is done.
- the first CPL 214 has a first main optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) input from the first WSS 211 and an intensity adjustment dummy light (wavelength ⁇ 4 ) input from the second WSS 213. ) And a multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) is transmitted to the station B side apparatus 300 side.
- the first main optical signal is combined with the dummy light for intensity adjustment
- the first CPL 214 transmits a multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , light intensity) having a predetermined light intensity P 0 .
- Wavelength ⁇ 4 is output.
- FIG. 3A shows the wavelength spectrum of the multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) output from the first CPL 214 in the normal state.
- the second CPL 215 receives the dummy light for switching instruction (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) input from the second WSS 213 and having a total light intensity of predetermined P 0 as it is at the B station side. Transmit to the device 300 side.
- FIG. 3B shows the wavelength spectrum of the switching instruction dummy light (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) output from the second CPL 215 in the normal state.
- the first CPL 214 and the second CPL 215 output a multiplexed optical signal whose light intensity is a predetermined P 0 and a dummy light for switching instruction.
- the relay apparatus attached on the transmission path between the A station side apparatus 200 and the B station side apparatus 300 The operating conditions can be made uniform.
- reception function of the A station side apparatus 200 will be described.
- the reception function of the station B side device 300 also functions in the same manner.
- the third CPL 221 receives the optical signal transmitted from the first CPL 314 of the station B side device 300.
- the third CPL 221 divides the received optical signal into two and outputs it to the first OCM 223 and the third WSS 225.
- a multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) including the second main optical signal is input to the third CPL 221.
- the fourth CPL 222 receives the optical signal transmitted from the second CPL 315 of the station B side device 300.
- the fourth CPL 222 splits the received optical signal into two and outputs them to the second OCM 224 and the third WSS 225.
- dummy light (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) for switching instruction is input to the fourth CPL 222.
- the first OCM 223 receives the main optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) from the multiplexed optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) input from the third CPL 221. ) And monitor the extracted main light signal for abnormalities.
- the first OCM 223 outputs a normal notification to the second WSS 213 when there is no main optical signal abnormality.
- the first OCM 223 outputs an abnormality notification to the second WSS 213 when an abnormality occurs in any of the extracted optical signal with the wavelength ⁇ 1 , optical signal with the wavelength ⁇ 2 , or optical signal with the wavelength ⁇ 3 .
- the switching instruction dummy light including the switching information transmission signal to which the information of the state 1 is added is transmitted to the station B apparatus 300.
- the second OCM 224 extracts the switching information transmission signal having the wavelength ⁇ 2 from the switching instruction dummy light input from the fourth CPL 222, and information (state 0 to state 2) given to the switching information transmission signal To get.
- the second OCM 224 When the acquired information indicates a state 0, the second OCM 224 generates a reception confirmation notification and outputs it to the second WSS 213.
- the second OCM 224 when the acquired information indicates state 1, the second OCM 224 generates a first switching request notification and outputs the first switching request notification to the first WSS 211 and the second WSS 213.
- the second OCM 224 When the first switching request notification is input to the first WSS 211 and the second WSS 213, the output destination of the main optical signal and the output destination of the dummy light for intensity adjustment and the dummy light for switching instruction are switched.
- the switching information transmission signal indicating the state 2 is input after outputting the first switching request notification
- the second OCM 224 When the switching information transmission signal indicating the state 2 is input after outputting the first switching request notification, the second OCM 224 generates a switching withdrawal notification and outputs it to the first WSS 211 and the second WSS 213.
- the switch withdrawal notification is input to the first WSS 211 and the second WSS 213, the output destination of the main light signal, the dummy light for intensity adjustment, and the output destination of the dummy light for switching instruction are restored.
- the second OCM 224 sends a second switching request notification. Output to the third WSS 225.
- the selection target in the third WSS 225 is switched.
- the 3WSS225 selects either of the first 3CPL221 or the 4CPL222, multiplexed optical signal input from CPL selected (wavelength lambda 1, wavelength lambda 2, the wavelength lambda 3, the wavelength lambda 4) wavelength lambda 1 from a wavelength
- the optical signals of ⁇ 2 and wavelength ⁇ 3 are extracted and output to the A station side client as the second main optical signal received from the B station side client.
- the third WSS 225 selects the third CPL 221.
- the third WSS 225 switches the selection target from the third CPL 221 to the fourth CPL 222, and outputs a switching completion notification indicating that the switching is completed to the second WSS 213.
- the WSS can select the output direction in units of wavelengths.
- the number of input / output ports of the plurality of WSSs constituting this embodiment is set to one-to-two. However, when switching between a plurality of paths, WSS having the number of ports that can be switched between them may be applied.
- FIG. 4 shows an example of a switching information transmission signal generated when a 37.5 GHz main optical signal is handled.
- the switching information transmission signal of wavelength ⁇ 2 is formed by three dummy lights of a predetermined grid. Specifically, a switching information transmission signal is formed by three optical signals of wavelength ⁇ 2 ⁇ , wavelength ⁇ 2 ⁇ , and wavelength ⁇ 2 ⁇ for each 10 GHz grid. Then, by shifting the optical intensity of the optical signal of wavelength ⁇ 2 ⁇ , the optical intensity of the optical signal of wavelength ⁇ 2 ⁇ , and the optical intensity of the optical signal of wavelength ⁇ 2 ⁇ , one of states 0 to 2 can be indicated. it can.
- state 0 when the light intensity of the three dummy lights is the same reference level, state 0 is indicated. Also, as shown in FIG. 4, state 1 is indicated when the light intensity of the dummy light of wavelength ⁇ 2 ⁇ is 5 dB smaller than the reference level and the light intensity of the dummy light of wavelength ⁇ 2 ⁇ is 5 dB larger than the reference level. Furthermore, as shown in FIG. 4, state 2 is indicated when the light intensity of the optical signal having the wavelength ⁇ 2 ⁇ is 5 dB larger than the reference level and the light intensity of the optical signal having the wavelength ⁇ 2 ⁇ is 5 dB smaller than the reference level.
- the state 0 indicates that the path switching system 100 is operating normally.
- the state 1 indicates a state where an abnormality has occurred in the transmission path from the own device to the opposite device.
- the state 2 indicates a state in which switching of the transmission path from the own device to the opposite device has failed in the opposite device.
- the dummy light grid (10 GHz) and the light intensity difference ( ⁇ 5 dB) may be determined in accordance with the capabilities of WSS and OCM, and are preferably determined in consideration of crosstalk associated with long-distance transmission. . By appropriately setting the grid, wavelength, multi-value, etc., it is possible to easily increase the number of states that the switching information transmission signal can indicate.
- the second OCM 224 of the A station side apparatus 200 Since the switching information transmission signal indicates the state 1, the second OCM 224 of the A station side apparatus 200 generates a first switching request notification and outputs it to the first WSS 211 and the second WSS 213 (S105).
- the first switching request notification is input to the first WSS 211 and the second WSS 213, the output destination of the first main optical signal and the output destination of the dummy light for intensity adjustment and the dummy light for switching instruction are switched. That is, the first main optical signal (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 ) input from the A station side client is combined with the dummy light for adjusting the intensity (wavelength ⁇ 4 ) in the second CPL 215 and multiplexed.
- the optical signals (wavelength ⁇ 1 , wavelength ⁇ 2 , wavelength ⁇ 3 , wavelength ⁇ 4 ) are input to the fourth CPL 322 of the B station side apparatus 300 (S106).
- the second OCM 324 of the station B side apparatus 300 outputs a second switching request notification to the third WSS 325 when the input optical signal is switched from the dummy light for switching instruction to the multiplexed optical signal.
- the selection target of the third WSS 325 is switched from the third CPL 321 to the fourth CPL 322 (S107).
- the selection target in the third WSS 325 is immediately switched to the fourth CPL 322 when an abnormality is detected in the first OCM 323, an unnecessary switching instruction dummy light is output to the B station side client. Therefore, in this embodiment, after confirming that the second OCM 324 has switched from the dummy light for switching instruction to the multiplexed optical signal, the selection target in the third WSS 325 is switched to the fourth CPL 322.
- the third WSS 325 outputs a switching completion notification to the second WSS 313 when the switching to the fourth CPL 322 is completed. Thereby, the transmission of the multiplexed optical signal between the A station side apparatus 200 and the B station side apparatus 300 is restored.
- the second WSS 313 of the station B side apparatus 300 outputs a switching completion notification from the third WSS 325 even after a predetermined time has elapsed after outputting the switching instruction dummy light including the switching information transmission signal with the state 1 information added thereto. If not input, it is determined that the switching process has failed. In this case, the second WSS 313 outputs dummy light for switching instruction including the switching information transmission signal to which the information of the state 2 is added.
- the switching instruction dummy light including the switching information transmission signal to which the information of the state 2 is added is input to the A station side apparatus 200, whereby the switching instruction in the first WSS 211 and the second WSS 213 of the A station side apparatus 200 is withdrawn.
- route switching apparatus 10 1st selection means 20 2nd selection means 30 1st transmission means 40 2nd transmission means 50 1st reception means 60 2nd reception means 70 1st monitoring means 80 2nd monitoring means 90 3rd selection means 100
- Route switching system 200 A station side device 211 1st WSS 212 ASE dummy light source 213 2nd WSS 214 1st CPL 215 2nd CPL 221 3rd CPL 222 4th CPL 223 1st OCM 224 2nd OCM 225 3rd WSS 300 B station side device 311 1st WSS 312 ASE dummy light source 313 2nd WSS 314 1st CPL 315 2nd CPL 321 3rd CPL 322 4th CPL 323 1st OCM 324 2nd OCM 325 3rd WSS
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本発明の第1の実施形態について説明する。本実施形態に係る経路切替装置のブロック構成図を図1に示す。図1において、経路切替装置1は、第1選択手段10、第2選択手段20、第1送信手段30、第2送信手段40、第1受信手段50、第2受信手段60、第1モニタ手段70、第2モニタ手段80および第3選択手段90を備える。
第2の実施形態について説明する。本実施形態に係る経路切替システムのシステム構成図を図2に示す。図2において、経路切替システム100は、A局側装置200およびB局側装置300によって構成される。
10 第1選択手段
20 第2選択手段
30 第1送信手段
40 第2送信手段
50 第1受信手段
60 第2受信手段
70 第1モニタ手段
80 第2モニタ手段
90 第3選択手段
100 経路切替システム
200 A局側装置
211 第1WSS
212 ASEダミー光源
213 第2WSS
214 第1CPL
215 第2CPL
221 第3CPL
222 第4CPL
223 第1OCM
224 第2OCM
225 第3WSS
300 B局側装置
311 第1WSS
312 ASEダミー光源
313 第2WSS
314 第1CPL
315 第2CPL
321 第3CPL
322 第4CPL
323 第1OCM
324 第2OCM
325 第3WSS
Claims (11)
- 第1送信手段または第2送信手段のいずれか一方を選択し、選択した送信手段に第1主信号を出力する第1選択手段と、
第1送信手段または第2送信手段のいずれか一方を選択し、選択した送信手段に第1切替指示信号を出力する第2選択手段と、
入力された信号を対向装置へ送信する第1送信手段および第2送信手段と、
前記対向装置から受信した信号を分割して第1モニタ手段および第3選択手段へ出力する第1受信手段と、
前記対向装置から受信した信号を分割して第2モニタ手段および前記第3選択手段へ出力する第2受信手段と、
第2主信号が入力された場合、該入力された前記第2主信号をモニタし、異常を検知した場合は異常通知を生成して前記第2選択手段および前記第3選択手段へ出力すると共に、第2切替指示信号が入力された場合、該入力された前記第2切替指示信号をモニタし、該第2切替指示信号に第2情報が含まれていた場合、第1切替指示通知を生成して前記第1選択手段および前記第2選択手段へ出力する第1モニタ手段および第2モニタ手段と、
選択した受信手段から前記第2主信号を取得する第3選択手段と、
を備え、
通常状態においては、前記第1選択手段は前記第1送信手段を選択し、前記第2選択手段は前記第2送信手段を選択して第1情報を含む前記第1切替指示信号を出力し、前記第3選択手段は前記第1受信手段を選択し、
前記第1選択手段は、前記第1切替指示通知が入力された場合は選択先を切替え、
前記第2選択手段は、前記異常通知が入力された場合は第2情報を含む切替指示信号を出力する一方、前記第1切替指示通知が入力された場合は選択先を切替え、
前記第3選択手段は、前記異常通知が入力された場合は選択元を切替える、
経路切替装置。 - 請求項1に記載の経路切替装置において、
前記第2選択手段は、前記第3選択手段における切替えが失敗した場合、第3情報を含む第1切替指示信号を出力する、
経路切替装置。 - 請求項1または2に記載の経路切替装置において、
前記第2モニタ手段は、前記第2切替指示信号に第3情報が含まれていた場合、切替撤回通知を生成して前記第1送信手段および前記第2選択手段へ出力し、
前記第1選択手段および前記第2選択手段は、前記切替撤回通知が入力された場合、送信手段の選択を元に戻す、
経路切替装置。 - 請求項2または3に記載の経路切替装置において、
前記第2選択手段は、前記第1切替指示信号の波形を変化させることによって、前記切替指示信号に前記第1情報、前記第2情報または前記第3情報のいずれかを含ませる、
経路切替装置。 - 請求項1乃至4のいずれか1項に記載の経路切替装置において、
前記第1モニタ手段は、前記第2主信号のモニタ結果が正常である場合は正常通知を生成して前記第2選択手段へ出力し、
前記第2選択手段は、前記正常通知が入力された場合、第1情報を含む第1切替指示信号を出力する、
経路切替装置。 - 請求項1乃至5のいずれか1項に記載の経路切替装置において、
前記第1モニタ手段は、前記異常通知を前記第2選択手段のみへ出力し、
前記第2モニタ手段は、前記第2切替指示信号から前記第2主信号へ切り替わった場合、第2切替指示通知を生成して前記第3選択手段へ出力し、
前記第3選択手段は、前記第2切替指示通知が入力された場合、選択を前記第1受信手段から前記第2受信手段に切替える、
経路切替装置。 - 請求項1乃至6のいずれか1項に記載の経路切替装置において、
前記第2選択手段は、前記第1切替指示信号の光強度を所定値Pに調整して前記選択した送信手段へ出力し、光強度調整用信号を生成して前記第1切替指示信号が出力されない方の送信手段へ出力し、
前記光強度調整用信号は前記第1主信号と合波されて、光強度が前記所定値Pの多重化光信号として前記対向装置へ送信される、
経路切替装置。 - 前記第1主信号および前記第1切替指示信号を送信すると共に、前記第2主信号および前記第2切替指示信号を受信する、請求項1乃至7のいずれか1項に記載の第1経路切替装置と、
前記第2主信号および前記第2切替指示信号を送信すると共に、前記第1主信号および前記第1切替指示信号を受信する、請求項1乃至7のいずれか1項に記載の第2経路切替装置と、
を備える経路切替システム。 - 請求項8に記載の経路切替システムにおいて、
前記第1経路切替装置の前記第1送信手段から送信された前記第1主信号は、第1経路を通過して前記第2経路切替装置の前記第1受信手段によって受信され、
前記第1経路切替装置の前記第2送信手段から送信された前記第1切替指示信号は、第1冗長経路を通過して前記第2経路切替装置の前記第2受信手段によって受信され、
前記第2経路切替装置の前記第1送信手段から送信された前記第2主信号は、第2経路を通過して前記第1経路切替装置の前記第1受信手段によって受信され、
前記第2経路切替装置の前記第2送信手段から送信された前記第2切替指示信号は、第2冗長経路を通過して前記第1経路切替装置の前記第2受信手段によって受信される、
経路切替システム。 - 第1主信号を選択した送信手段に出力する第1選択手段と、
第1切替指示信号を選択した送信手段に出力する第2選択手段と、
入力された信号を対向装置へ送信する第1送信手段および第2送信手段と、
前記対向装置から受信した信号を分割して第1モニタ手段および第3選択手段へ出力する第1受信手段と、
前記対向装置から受信した信号を分割して第2モニタ手段および前記第3選択手段へ出力する第2受信手段と、
前記第1受信手段から入力された信号をモニタする第1モニタ手段と、
前記第2受信手段から入力された信号をモニタする第2モニタ手段と、
選択した受信手段から第2主信号を取得する第3選択手段と、
を備えた経路切替装置における経路切替方法であって、
通常状態においては、前記第1選択手段に前記第1送信手段を選択させ、前記第2選択手段に前記第2送信手段を選択させて第1情報を含む前記第1切替指示信号を出力させ、前記第1受信手段に前記第2主信号を受信させ、前記第2受信手段に第2切替指示信号を受信させ、前記第3選択手段に前記第1受信手段を選択させ、
前記モニタ手段において前記第2主信号の異常を検知した場合、前記第2選択手段から第2情報を含む第1切替指示信号を出力させると共に前記第3選択手段における選択を変更させ、
前記モニタ手段において前記第2切替指示信号から第2情報を検出した場合、前記第1選択手段および前記第1選択手段における選択を変更させる、
経路切替装置における経路切替方法。 - 対向装置から受信した複数の受信信号のいずれかに異常の検知を示す異常検知情報が含まれていると判断した場合は異常通知を出力し、所定の第2情報が含まれていると判断した場合は、第1切替指示通知を出力するモニタ手段と、
前記モニタ手段から前記異常通知が入力された場合、前記複数の受信信号のうち前記異常検知情報を含まないものを出力する第3選択手段と、
入力された信号を前記対向装置へ送信する複数の送信手段と、
前記複数の送信手段のうち第1の送信手段に第1主信号を、第2の送信手段に所定の信号を出力する第1選択手段と
を備え、
前記第1選択手段は、前記第1切替指示通知が入力された場合は前記第1主信号の出力先を前記第1の送信手段以外の送信手段に切り替え、前記異常通知が入力された場合は前記所定の信号に第2情報を含める、
経路切替装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680043318.5A CN107925476B (zh) | 2015-07-23 | 2016-07-20 | 路由切换设备、路由切换系统和路由切换方法 |
US15/743,299 US10505660B2 (en) | 2015-07-23 | 2016-07-20 | Route switching device, route switching system, and route switching method |
EP16827442.1A EP3327955B1 (en) | 2015-07-23 | 2016-07-20 | Route switching device, route switching system, and route switching method |
JP2017529461A JP6436237B2 (ja) | 2015-07-23 | 2016-07-20 | 経路切替装置、経路切替システムおよび経路切替方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015145965 | 2015-07-23 | ||
JP2015-145965 | 2015-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017013875A1 true WO2017013875A1 (ja) | 2017-01-26 |
Family
ID=57834960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/003395 WO2017013875A1 (ja) | 2015-07-23 | 2016-07-20 | 経路切替装置、経路切替システムおよび経路切替方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10505660B2 (ja) |
EP (1) | EP3327955B1 (ja) |
JP (1) | JP6436237B2 (ja) |
CN (1) | CN107925476B (ja) |
WO (1) | WO2017013875A1 (ja) |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9953236B1 (en) | 2017-03-10 | 2018-04-24 | TuSimple | System and method for semantic segmentation using dense upsampling convolution (DUC) |
US9952594B1 (en) | 2017-04-07 | 2018-04-24 | TuSimple | System and method for traffic data collection using unmanned aerial vehicles (UAVs) |
US10067509B1 (en) | 2017-03-10 | 2018-09-04 | TuSimple | System and method for occluding contour detection |
WO2018180611A1 (ja) * | 2017-03-29 | 2018-10-04 | 日本電気株式会社 | 通信装置、通信システム、通信機器及び通信方法 |
US10147193B2 (en) | 2017-03-10 | 2018-12-04 | TuSimple | System and method for semantic segmentation using hybrid dilated convolution (HDC) |
US10303522B2 (en) | 2017-07-01 | 2019-05-28 | TuSimple | System and method for distributed graphics processing unit (GPU) computation |
US10303956B2 (en) | 2017-08-23 | 2019-05-28 | TuSimple | System and method for using triplet loss for proposal free instance-wise semantic segmentation for lane detection |
US10308242B2 (en) | 2017-07-01 | 2019-06-04 | TuSimple | System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles |
US10311312B2 (en) | 2017-08-31 | 2019-06-04 | TuSimple | System and method for vehicle occlusion detection |
US10360257B2 (en) | 2017-08-08 | 2019-07-23 | TuSimple | System and method for image annotation |
US10410055B2 (en) | 2017-10-05 | 2019-09-10 | TuSimple | System and method for aerial video traffic analysis |
US10474790B2 (en) | 2017-06-02 | 2019-11-12 | TuSimple | Large scale distributed simulation for realistic multiple-agent interactive environments |
US10471963B2 (en) | 2017-04-07 | 2019-11-12 | TuSimple | System and method for transitioning between an autonomous and manual driving mode based on detection of a drivers capacity to control a vehicle |
US10481044B2 (en) | 2017-05-18 | 2019-11-19 | TuSimple | Perception simulation for improved autonomous vehicle control |
US10493988B2 (en) | 2017-07-01 | 2019-12-03 | TuSimple | System and method for adaptive cruise control for defensive driving |
US10528851B2 (en) | 2017-11-27 | 2020-01-07 | TuSimple | System and method for drivable road surface representation generation using multimodal sensor data |
US10528823B2 (en) | 2017-11-27 | 2020-01-07 | TuSimple | System and method for large-scale lane marking detection using multimodal sensor data |
US10552979B2 (en) | 2017-09-13 | 2020-02-04 | TuSimple | Output of a neural network method for deep odometry assisted by static scene optical flow |
US10552691B2 (en) | 2017-04-25 | 2020-02-04 | TuSimple | System and method for vehicle position and velocity estimation based on camera and lidar data |
US10558864B2 (en) | 2017-05-18 | 2020-02-11 | TuSimple | System and method for image localization based on semantic segmentation |
US10649458B2 (en) | 2017-09-07 | 2020-05-12 | Tusimple, Inc. | Data-driven prediction-based system and method for trajectory planning of autonomous vehicles |
US10657390B2 (en) | 2017-11-27 | 2020-05-19 | Tusimple, Inc. | System and method for large-scale lane marking detection using multimodal sensor data |
US10656644B2 (en) | 2017-09-07 | 2020-05-19 | Tusimple, Inc. | System and method for using human driving patterns to manage speed control for autonomous vehicles |
US10666730B2 (en) | 2017-10-28 | 2020-05-26 | Tusimple, Inc. | Storage architecture for heterogeneous multimedia data |
US10671083B2 (en) | 2017-09-13 | 2020-06-02 | Tusimple, Inc. | Neural network architecture system for deep odometry assisted by static scene optical flow |
US10671873B2 (en) | 2017-03-10 | 2020-06-02 | Tusimple, Inc. | System and method for vehicle wheel detection |
US10678234B2 (en) | 2017-08-24 | 2020-06-09 | Tusimple, Inc. | System and method for autonomous vehicle control to minimize energy cost |
US10685244B2 (en) | 2018-02-27 | 2020-06-16 | Tusimple, Inc. | System and method for online real-time multi-object tracking |
US10685239B2 (en) | 2018-03-18 | 2020-06-16 | Tusimple, Inc. | System and method for lateral vehicle detection |
US10710592B2 (en) | 2017-04-07 | 2020-07-14 | Tusimple, Inc. | System and method for path planning of autonomous vehicles based on gradient |
US10737695B2 (en) | 2017-07-01 | 2020-08-11 | Tusimple, Inc. | System and method for adaptive cruise control for low speed following |
US10739775B2 (en) | 2017-10-28 | 2020-08-11 | Tusimple, Inc. | System and method for real world autonomous vehicle trajectory simulation |
US10752246B2 (en) | 2017-07-01 | 2020-08-25 | Tusimple, Inc. | System and method for adaptive cruise control with proximate vehicle detection |
US10762635B2 (en) | 2017-06-14 | 2020-09-01 | Tusimple, Inc. | System and method for actively selecting and labeling images for semantic segmentation |
US10762673B2 (en) | 2017-08-23 | 2020-09-01 | Tusimple, Inc. | 3D submap reconstruction system and method for centimeter precision localization using camera-based submap and LiDAR-based global map |
US10768626B2 (en) | 2017-09-30 | 2020-09-08 | Tusimple, Inc. | System and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles |
US10783381B2 (en) | 2017-08-31 | 2020-09-22 | Tusimple, Inc. | System and method for vehicle occlusion detection |
US10782693B2 (en) | 2017-09-07 | 2020-09-22 | Tusimple, Inc. | Prediction-based system and method for trajectory planning of autonomous vehicles |
US10782694B2 (en) | 2017-09-07 | 2020-09-22 | Tusimple, Inc. | Prediction-based system and method for trajectory planning of autonomous vehicles |
WO2020189388A1 (ja) * | 2019-03-20 | 2020-09-24 | 日本電信電話株式会社 | 波長クロスコネクト装置及びクロスコネクト接続方法 |
US10796402B2 (en) | 2018-10-19 | 2020-10-06 | Tusimple, Inc. | System and method for fisheye image processing |
US10812589B2 (en) | 2017-10-28 | 2020-10-20 | Tusimple, Inc. | Storage architecture for heterogeneous multimedia data |
US10816354B2 (en) | 2017-08-22 | 2020-10-27 | Tusimple, Inc. | Verification module system and method for motion-based lane detection with multiple sensors |
US10839234B2 (en) | 2018-09-12 | 2020-11-17 | Tusimple, Inc. | System and method for three-dimensional (3D) object detection |
US10860018B2 (en) | 2017-11-30 | 2020-12-08 | Tusimple, Inc. | System and method for generating simulated vehicles with configured behaviors for analyzing autonomous vehicle motion planners |
US10877476B2 (en) | 2017-11-30 | 2020-12-29 | Tusimple, Inc. | Autonomous vehicle simulation system for analyzing motion planners |
US10942271B2 (en) | 2018-10-30 | 2021-03-09 | Tusimple, Inc. | Determining an angle between a tow vehicle and a trailer |
US10953881B2 (en) | 2017-09-07 | 2021-03-23 | Tusimple, Inc. | System and method for automated lane change control for autonomous vehicles |
US10953880B2 (en) | 2017-09-07 | 2021-03-23 | Tusimple, Inc. | System and method for automated lane change control for autonomous vehicles |
US10962979B2 (en) | 2017-09-30 | 2021-03-30 | Tusimple, Inc. | System and method for multitask processing for autonomous vehicle computation and control |
JPWO2021060124A1 (ja) * | 2019-09-27 | 2021-04-01 | ||
US10970564B2 (en) | 2017-09-30 | 2021-04-06 | Tusimple, Inc. | System and method for instance-level lane detection for autonomous vehicle control |
EP3656132B1 (de) * | 2018-04-12 | 2021-04-21 | Ulrich Lohmann | Verwendung eines faseroptischen kreuzverbindungssystems |
US11010874B2 (en) | 2018-04-12 | 2021-05-18 | Tusimple, Inc. | Images for perception modules of autonomous vehicles |
US11009356B2 (en) | 2018-02-14 | 2021-05-18 | Tusimple, Inc. | Lane marking localization and fusion |
US11009365B2 (en) | 2018-02-14 | 2021-05-18 | Tusimple, Inc. | Lane marking localization |
US11029693B2 (en) | 2017-08-08 | 2021-06-08 | Tusimple, Inc. | Neural network based vehicle dynamics model |
US11104334B2 (en) | 2018-05-31 | 2021-08-31 | Tusimple, Inc. | System and method for proximate vehicle intention prediction for autonomous vehicles |
US11151393B2 (en) | 2017-08-23 | 2021-10-19 | Tusimple, Inc. | Feature matching and corresponding refinement and 3D submap position refinement system and method for centimeter precision localization using camera-based submap and LiDAR-based global map |
US11292480B2 (en) | 2018-09-13 | 2022-04-05 | Tusimple, Inc. | Remote safe driving methods and systems |
US11305782B2 (en) | 2018-01-11 | 2022-04-19 | Tusimple, Inc. | Monitoring system for autonomous vehicle operation |
US11312334B2 (en) | 2018-01-09 | 2022-04-26 | Tusimple, Inc. | Real-time remote control of vehicles with high redundancy |
US11328164B2 (en) * | 2017-09-20 | 2022-05-10 | Tusimple, Inc. | System and method for vehicle taillight state recognition |
US11500101B2 (en) | 2018-05-02 | 2022-11-15 | Tusimple, Inc. | Curb detection by analysis of reflection images |
US11587304B2 (en) | 2017-03-10 | 2023-02-21 | Tusimple, Inc. | System and method for occluding contour detection |
US11701931B2 (en) | 2020-06-18 | 2023-07-18 | Tusimple, Inc. | Angle and orientation measurements for vehicles with multiple drivable sections |
US11810322B2 (en) | 2020-04-09 | 2023-11-07 | Tusimple, Inc. | Camera pose estimation techniques |
US11823460B2 (en) | 2019-06-14 | 2023-11-21 | Tusimple, Inc. | Image fusion for autonomous vehicle operation |
US11972690B2 (en) | 2018-12-14 | 2024-04-30 | Beijing Tusen Zhitu Technology Co., Ltd. | Platooning method, apparatus and system of autonomous driving platoon |
US12099121B2 (en) | 2018-12-10 | 2024-09-24 | Beijing Tusen Zhitu Technology Co., Ltd. | Trailer angle measurement method and device, and vehicle |
US12122398B2 (en) | 2022-04-15 | 2024-10-22 | Tusimple, Inc. | Monitoring system for autonomous vehicle operation |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10771151B2 (en) * | 2017-07-31 | 2020-09-08 | Level 3 Communications, Llc | Outside plant fiber health monitoring system |
US10707958B2 (en) * | 2018-08-31 | 2020-07-07 | Adva Optical Networking Se | Method and apparatus for determining a maximum transmission capacity within an optical network |
WO2020179182A1 (ja) * | 2019-03-04 | 2020-09-10 | 日本電気株式会社 | 光合分波装置、光海底ケーブルシステム、光合分波方法及び非一時的なコンピュータ可読媒体 |
US11245488B2 (en) * | 2019-04-19 | 2022-02-08 | Infinera Corporation | Fast transient suppressor for optical transmission systems |
CN112054843A (zh) * | 2020-08-21 | 2020-12-08 | 武汉光迅信息技术有限公司 | 一种光信号的传输系统及方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003069521A (ja) * | 2001-08-29 | 2003-03-07 | Nippon Telegraph & Telephone West Corp | パス切替装置、パス切替システム及びパス切替方法 |
JP2010161750A (ja) * | 2009-01-09 | 2010-07-22 | Sony Corp | 信号送信装置、信号受信装置及び信号伝送システム |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4592170B2 (ja) * | 2000-10-18 | 2010-12-01 | 株式会社東芝 | 光伝送装置 |
JP3849770B2 (ja) | 2002-01-11 | 2006-11-22 | 日本電気株式会社 | 多重化通信装置の伝送路二重化システム |
US7027732B2 (en) * | 2002-01-18 | 2006-04-11 | Pts Corporation | WDM cross-connects for core optical networks |
JP2003298633A (ja) * | 2002-04-05 | 2003-10-17 | Fujitsu Ltd | 制御チャネル障害時のデータチャネル障害通知機能を有する伝送装置 |
US8139476B2 (en) | 2005-10-13 | 2012-03-20 | Vello Systems, Inc. | Optical ring networks using circulating optical probe in protection switching with automatic reversion |
JP5326500B2 (ja) * | 2008-10-31 | 2013-10-30 | 富士通株式会社 | 方路数拡張方法及び光ハブノード装置 |
JP5187437B2 (ja) * | 2009-02-19 | 2013-04-24 | 日本電気株式会社 | 通信パス監視方法および伝送装置 |
CN102035597B (zh) | 2009-09-30 | 2014-12-31 | 华为技术有限公司 | 一种无源光网络的主备切换方法、装置和系统 |
JP2012175123A (ja) | 2011-02-17 | 2012-09-10 | Nec Corp | 経路冗長切替装置及び経路冗長切替方法 |
JP5863565B2 (ja) * | 2012-05-21 | 2016-02-16 | 三菱電機株式会社 | 光伝送ノードおよび経路切替方法 |
CN103051374B (zh) | 2013-01-07 | 2018-11-09 | 南京中兴新软件有限责任公司 | 保护恢复方法和装置 |
US10419148B2 (en) * | 2014-09-24 | 2019-09-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Optical node |
-
2016
- 2016-07-20 JP JP2017529461A patent/JP6436237B2/ja active Active
- 2016-07-20 US US15/743,299 patent/US10505660B2/en active Active
- 2016-07-20 EP EP16827442.1A patent/EP3327955B1/en active Active
- 2016-07-20 WO PCT/JP2016/003395 patent/WO2017013875A1/ja active Application Filing
- 2016-07-20 CN CN201680043318.5A patent/CN107925476B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003069521A (ja) * | 2001-08-29 | 2003-03-07 | Nippon Telegraph & Telephone West Corp | パス切替装置、パス切替システム及びパス切替方法 |
JP2010161750A (ja) * | 2009-01-09 | 2010-07-22 | Sony Corp | 信号送信装置、信号受信装置及び信号伝送システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3327955A4 * |
Cited By (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10671873B2 (en) | 2017-03-10 | 2020-06-02 | Tusimple, Inc. | System and method for vehicle wheel detection |
US10067509B1 (en) | 2017-03-10 | 2018-09-04 | TuSimple | System and method for occluding contour detection |
US10147193B2 (en) | 2017-03-10 | 2018-12-04 | TuSimple | System and method for semantic segmentation using hybrid dilated convolution (HDC) |
US11587304B2 (en) | 2017-03-10 | 2023-02-21 | Tusimple, Inc. | System and method for occluding contour detection |
US9953236B1 (en) | 2017-03-10 | 2018-04-24 | TuSimple | System and method for semantic segmentation using dense upsampling convolution (DUC) |
US11501513B2 (en) | 2017-03-10 | 2022-11-15 | Tusimple, Inc. | System and method for vehicle wheel detection |
US11967140B2 (en) | 2017-03-10 | 2024-04-23 | Tusimple, Inc. | System and method for vehicle wheel detection |
JPWO2018180611A1 (ja) * | 2017-03-29 | 2019-12-19 | 日本電気株式会社 | 通信装置及び通信機器 |
WO2018180611A1 (ja) * | 2017-03-29 | 2018-10-04 | 日本電気株式会社 | 通信装置、通信システム、通信機器及び通信方法 |
US20200244386A1 (en) * | 2017-03-29 | 2020-07-30 | Nec Corporation | Communication device, communication system, communication apparatus, and communication method |
US10892844B2 (en) | 2017-03-29 | 2021-01-12 | Nec Corporation | Communication device, communication system, communication apparatus, and communication method |
US10471963B2 (en) | 2017-04-07 | 2019-11-12 | TuSimple | System and method for transitioning between an autonomous and manual driving mode based on detection of a drivers capacity to control a vehicle |
US10710592B2 (en) | 2017-04-07 | 2020-07-14 | Tusimple, Inc. | System and method for path planning of autonomous vehicles based on gradient |
US9952594B1 (en) | 2017-04-07 | 2018-04-24 | TuSimple | System and method for traffic data collection using unmanned aerial vehicles (UAVs) |
US11673557B2 (en) | 2017-04-07 | 2023-06-13 | Tusimple, Inc. | System and method for path planning of autonomous vehicles based on gradient |
US11557128B2 (en) | 2017-04-25 | 2023-01-17 | Tusimple, Inc. | System and method for vehicle position and velocity estimation based on camera and LIDAR data |
US11928868B2 (en) | 2017-04-25 | 2024-03-12 | Tusimple, Inc. | System and method for vehicle position and velocity estimation based on camera and LIDAR data |
US10552691B2 (en) | 2017-04-25 | 2020-02-04 | TuSimple | System and method for vehicle position and velocity estimation based on camera and lidar data |
US10867188B2 (en) | 2017-05-18 | 2020-12-15 | Tusimple, Inc. | System and method for image localization based on semantic segmentation |
US10558864B2 (en) | 2017-05-18 | 2020-02-11 | TuSimple | System and method for image localization based on semantic segmentation |
US11885712B2 (en) | 2017-05-18 | 2024-01-30 | Tusimple, Inc. | Perception simulation for improved autonomous vehicle control |
US10481044B2 (en) | 2017-05-18 | 2019-11-19 | TuSimple | Perception simulation for improved autonomous vehicle control |
US10830669B2 (en) | 2017-05-18 | 2020-11-10 | Tusimple, Inc. | Perception simulation for improved autonomous vehicle control |
US10474790B2 (en) | 2017-06-02 | 2019-11-12 | TuSimple | Large scale distributed simulation for realistic multiple-agent interactive environments |
US10762635B2 (en) | 2017-06-14 | 2020-09-01 | Tusimple, Inc. | System and method for actively selecting and labeling images for semantic segmentation |
US11958473B2 (en) | 2017-07-01 | 2024-04-16 | Tusimple, Inc. | System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles |
US11040710B2 (en) | 2017-07-01 | 2021-06-22 | Tusimple, Inc. | System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles |
US10752246B2 (en) | 2017-07-01 | 2020-08-25 | Tusimple, Inc. | System and method for adaptive cruise control with proximate vehicle detection |
US11753008B2 (en) | 2017-07-01 | 2023-09-12 | Tusimple, Inc. | System and method for adaptive cruise control with proximate vehicle detection |
US10493988B2 (en) | 2017-07-01 | 2019-12-03 | TuSimple | System and method for adaptive cruise control for defensive driving |
US10308242B2 (en) | 2017-07-01 | 2019-06-04 | TuSimple | System and method for using human driving patterns to detect and correct abnormal driving behaviors of autonomous vehicles |
US10303522B2 (en) | 2017-07-01 | 2019-05-28 | TuSimple | System and method for distributed graphics processing unit (GPU) computation |
US10737695B2 (en) | 2017-07-01 | 2020-08-11 | Tusimple, Inc. | System and method for adaptive cruise control for low speed following |
US11029693B2 (en) | 2017-08-08 | 2021-06-08 | Tusimple, Inc. | Neural network based vehicle dynamics model |
US11550329B2 (en) | 2017-08-08 | 2023-01-10 | Tusimple, Inc. | Neural network based vehicle dynamics model |
US10360257B2 (en) | 2017-08-08 | 2019-07-23 | TuSimple | System and method for image annotation |
US12007778B2 (en) | 2017-08-08 | 2024-06-11 | Tusimple, Inc. | Neural network based vehicle dynamics model |
US11573095B2 (en) | 2017-08-22 | 2023-02-07 | Tusimple, Inc. | Verification module system and method for motion-based lane detection with multiple sensors |
US11874130B2 (en) | 2017-08-22 | 2024-01-16 | Tusimple, Inc. | Verification module system and method for motion-based lane detection with multiple sensors |
US10816354B2 (en) | 2017-08-22 | 2020-10-27 | Tusimple, Inc. | Verification module system and method for motion-based lane detection with multiple sensors |
US10303956B2 (en) | 2017-08-23 | 2019-05-28 | TuSimple | System and method for using triplet loss for proposal free instance-wise semantic segmentation for lane detection |
US10762673B2 (en) | 2017-08-23 | 2020-09-01 | Tusimple, Inc. | 3D submap reconstruction system and method for centimeter precision localization using camera-based submap and LiDAR-based global map |
US11846510B2 (en) | 2017-08-23 | 2023-12-19 | Tusimple, Inc. | Feature matching and correspondence refinement and 3D submap position refinement system and method for centimeter precision localization using camera-based submap and LiDAR-based global map |
US11151393B2 (en) | 2017-08-23 | 2021-10-19 | Tusimple, Inc. | Feature matching and corresponding refinement and 3D submap position refinement system and method for centimeter precision localization using camera-based submap and LiDAR-based global map |
US10678234B2 (en) | 2017-08-24 | 2020-06-09 | Tusimple, Inc. | System and method for autonomous vehicle control to minimize energy cost |
US11886183B2 (en) | 2017-08-24 | 2024-01-30 | Tusimple, Inc. | System and method for autonomous vehicle control to minimize energy cost |
US11366467B2 (en) | 2017-08-24 | 2022-06-21 | Tusimple, Inc. | System and method for autonomous vehicle control to minimize energy cost |
US10311312B2 (en) | 2017-08-31 | 2019-06-04 | TuSimple | System and method for vehicle occlusion detection |
US11745736B2 (en) | 2017-08-31 | 2023-09-05 | Tusimple, Inc. | System and method for vehicle occlusion detection |
US10783381B2 (en) | 2017-08-31 | 2020-09-22 | Tusimple, Inc. | System and method for vehicle occlusion detection |
US10656644B2 (en) | 2017-09-07 | 2020-05-19 | Tusimple, Inc. | System and method for using human driving patterns to manage speed control for autonomous vehicles |
US11294375B2 (en) | 2017-09-07 | 2022-04-05 | Tusimple, Inc. | System and method for using human driving patterns to manage speed control for autonomous vehicles |
US10782693B2 (en) | 2017-09-07 | 2020-09-22 | Tusimple, Inc. | Prediction-based system and method for trajectory planning of autonomous vehicles |
US10953881B2 (en) | 2017-09-07 | 2021-03-23 | Tusimple, Inc. | System and method for automated lane change control for autonomous vehicles |
US10953880B2 (en) | 2017-09-07 | 2021-03-23 | Tusimple, Inc. | System and method for automated lane change control for autonomous vehicles |
US10782694B2 (en) | 2017-09-07 | 2020-09-22 | Tusimple, Inc. | Prediction-based system and method for trajectory planning of autonomous vehicles |
US11892846B2 (en) | 2017-09-07 | 2024-02-06 | Tusimple, Inc. | Prediction-based system and method for trajectory planning of autonomous vehicles |
US10649458B2 (en) | 2017-09-07 | 2020-05-12 | Tusimple, Inc. | Data-driven prediction-based system and method for trajectory planning of autonomous vehicles |
US11853071B2 (en) | 2017-09-07 | 2023-12-26 | Tusimple, Inc. | Data-driven prediction-based system and method for trajectory planning of autonomous vehicles |
US11983008B2 (en) | 2017-09-07 | 2024-05-14 | Tusimple, Inc. | System and method for using human driving patterns to manage speed control for autonomous vehicles |
US10671083B2 (en) | 2017-09-13 | 2020-06-02 | Tusimple, Inc. | Neural network architecture system for deep odometry assisted by static scene optical flow |
US10552979B2 (en) | 2017-09-13 | 2020-02-04 | TuSimple | Output of a neural network method for deep odometry assisted by static scene optical flow |
US11328164B2 (en) * | 2017-09-20 | 2022-05-10 | Tusimple, Inc. | System and method for vehicle taillight state recognition |
US11734563B2 (en) | 2017-09-20 | 2023-08-22 | Tusimple, Inc. | System and method for vehicle taillight state recognition |
US12073324B2 (en) | 2017-09-20 | 2024-08-27 | Tusimple, Inc. | System and method for vehicle taillight state recognition |
US11853883B2 (en) | 2017-09-30 | 2023-12-26 | Tusimple, Inc. | System and method for instance-level lane detection for autonomous vehicle control |
US10970564B2 (en) | 2017-09-30 | 2021-04-06 | Tusimple, Inc. | System and method for instance-level lane detection for autonomous vehicle control |
US10962979B2 (en) | 2017-09-30 | 2021-03-30 | Tusimple, Inc. | System and method for multitask processing for autonomous vehicle computation and control |
US10768626B2 (en) | 2017-09-30 | 2020-09-08 | Tusimple, Inc. | System and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles |
US11500387B2 (en) | 2017-09-30 | 2022-11-15 | Tusimple, Inc. | System and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles |
US10410055B2 (en) | 2017-10-05 | 2019-09-10 | TuSimple | System and method for aerial video traffic analysis |
US10812589B2 (en) | 2017-10-28 | 2020-10-20 | Tusimple, Inc. | Storage architecture for heterogeneous multimedia data |
US10739775B2 (en) | 2017-10-28 | 2020-08-11 | Tusimple, Inc. | System and method for real world autonomous vehicle trajectory simulation |
US11435748B2 (en) | 2017-10-28 | 2022-09-06 | Tusimple, Inc. | System and method for real world autonomous vehicle trajectory simulation |
US10666730B2 (en) | 2017-10-28 | 2020-05-26 | Tusimple, Inc. | Storage architecture for heterogeneous multimedia data |
US10657390B2 (en) | 2017-11-27 | 2020-05-19 | Tusimple, Inc. | System and method for large-scale lane marking detection using multimodal sensor data |
US11580754B2 (en) | 2017-11-27 | 2023-02-14 | Tusimple, Inc. | System and method for large-scale lane marking detection using multimodal sensor data |
US10528851B2 (en) | 2017-11-27 | 2020-01-07 | TuSimple | System and method for drivable road surface representation generation using multimodal sensor data |
US10528823B2 (en) | 2017-11-27 | 2020-01-07 | TuSimple | System and method for large-scale lane marking detection using multimodal sensor data |
US10877476B2 (en) | 2017-11-30 | 2020-12-29 | Tusimple, Inc. | Autonomous vehicle simulation system for analyzing motion planners |
US10860018B2 (en) | 2017-11-30 | 2020-12-08 | Tusimple, Inc. | System and method for generating simulated vehicles with configured behaviors for analyzing autonomous vehicle motion planners |
US11782440B2 (en) | 2017-11-30 | 2023-10-10 | Tusimple, Inc. | Autonomous vehicle simulation system for analyzing motion planners |
US11681292B2 (en) | 2017-11-30 | 2023-06-20 | Tusimple, Inc. | System and method for generating simulated vehicles with configured behaviors for analyzing autonomous vehicle motion planners |
US11312334B2 (en) | 2018-01-09 | 2022-04-26 | Tusimple, Inc. | Real-time remote control of vehicles with high redundancy |
US12071101B2 (en) | 2018-01-09 | 2024-08-27 | Tusimple, Inc. | Real-time remote control of vehicles with high redundancy |
US11305782B2 (en) | 2018-01-11 | 2022-04-19 | Tusimple, Inc. | Monitoring system for autonomous vehicle operation |
US11009356B2 (en) | 2018-02-14 | 2021-05-18 | Tusimple, Inc. | Lane marking localization and fusion |
US11009365B2 (en) | 2018-02-14 | 2021-05-18 | Tusimple, Inc. | Lane marking localization |
US11740093B2 (en) | 2018-02-14 | 2023-08-29 | Tusimple, Inc. | Lane marking localization and fusion |
US11852498B2 (en) | 2018-02-14 | 2023-12-26 | Tusimple, Inc. | Lane marking localization |
US10685244B2 (en) | 2018-02-27 | 2020-06-16 | Tusimple, Inc. | System and method for online real-time multi-object tracking |
US11295146B2 (en) | 2018-02-27 | 2022-04-05 | Tusimple, Inc. | System and method for online real-time multi-object tracking |
US11830205B2 (en) | 2018-02-27 | 2023-11-28 | Tusimple, Inc. | System and method for online real-time multi- object tracking |
US10685239B2 (en) | 2018-03-18 | 2020-06-16 | Tusimple, Inc. | System and method for lateral vehicle detection |
US11074462B2 (en) | 2018-03-18 | 2021-07-27 | Tusimple, Inc. | System and method for lateral vehicle detection |
US11610406B2 (en) | 2018-03-18 | 2023-03-21 | Tusimple, Inc. | System and method for lateral vehicle detection |
EP3656132B1 (de) * | 2018-04-12 | 2021-04-21 | Ulrich Lohmann | Verwendung eines faseroptischen kreuzverbindungssystems |
US11694308B2 (en) | 2018-04-12 | 2023-07-04 | Tusimple, Inc. | Images for perception modules of autonomous vehicles |
US11010874B2 (en) | 2018-04-12 | 2021-05-18 | Tusimple, Inc. | Images for perception modules of autonomous vehicles |
US11500101B2 (en) | 2018-05-02 | 2022-11-15 | Tusimple, Inc. | Curb detection by analysis of reflection images |
US11948082B2 (en) | 2018-05-31 | 2024-04-02 | Tusimple, Inc. | System and method for proximate vehicle intention prediction for autonomous vehicles |
US11104334B2 (en) | 2018-05-31 | 2021-08-31 | Tusimple, Inc. | System and method for proximate vehicle intention prediction for autonomous vehicles |
US10839234B2 (en) | 2018-09-12 | 2020-11-17 | Tusimple, Inc. | System and method for three-dimensional (3D) object detection |
US11727691B2 (en) | 2018-09-12 | 2023-08-15 | Tusimple, Inc. | System and method for three-dimensional (3D) object detection |
US12033396B2 (en) | 2018-09-12 | 2024-07-09 | Tusimple, Inc. | System and method for three-dimensional (3D) object detection |
US11292480B2 (en) | 2018-09-13 | 2022-04-05 | Tusimple, Inc. | Remote safe driving methods and systems |
US11935210B2 (en) | 2018-10-19 | 2024-03-19 | Tusimple, Inc. | System and method for fisheye image processing |
US10796402B2 (en) | 2018-10-19 | 2020-10-06 | Tusimple, Inc. | System and method for fisheye image processing |
US10942271B2 (en) | 2018-10-30 | 2021-03-09 | Tusimple, Inc. | Determining an angle between a tow vehicle and a trailer |
US11714192B2 (en) | 2018-10-30 | 2023-08-01 | Tusimple, Inc. | Determining an angle between a tow vehicle and a trailer |
US12099121B2 (en) | 2018-12-10 | 2024-09-24 | Beijing Tusen Zhitu Technology Co., Ltd. | Trailer angle measurement method and device, and vehicle |
US11972690B2 (en) | 2018-12-14 | 2024-04-30 | Beijing Tusen Zhitu Technology Co., Ltd. | Platooning method, apparatus and system of autonomous driving platoon |
JP7287806B2 (ja) | 2019-03-20 | 2023-06-06 | 日本電信電話株式会社 | 波長クロスコネクト装置及びクロスコネクト接続方法 |
JP2020155926A (ja) * | 2019-03-20 | 2020-09-24 | 日本電信電話株式会社 | 波長クロスコネクト装置及びクロスコネクト接続方法 |
WO2020189388A1 (ja) * | 2019-03-20 | 2020-09-24 | 日本電信電話株式会社 | 波長クロスコネクト装置及びクロスコネクト接続方法 |
US11823460B2 (en) | 2019-06-14 | 2023-11-21 | Tusimple, Inc. | Image fusion for autonomous vehicle operation |
JPWO2021060124A1 (ja) * | 2019-09-27 | 2021-04-01 | ||
WO2021060124A1 (ja) * | 2019-09-27 | 2021-04-01 | 日本電気株式会社 | 光通信システム、光通信装置、光通信方法及び記憶媒体 |
JP7306466B2 (ja) | 2019-09-27 | 2023-07-11 | 日本電気株式会社 | 光通信システム、光通信装置、光通信方法及びプログラム |
US11855687B2 (en) | 2019-09-27 | 2023-12-26 | Nec Corporation | Optical communication system, optical communication device, optical communication method, and storage medium |
US11810322B2 (en) | 2020-04-09 | 2023-11-07 | Tusimple, Inc. | Camera pose estimation techniques |
US11701931B2 (en) | 2020-06-18 | 2023-07-18 | Tusimple, Inc. | Angle and orientation measurements for vehicles with multiple drivable sections |
US12077024B2 (en) | 2020-06-18 | 2024-09-03 | Tusimple, Inc. | Angle and orientation measurements for vehicles with multiple drivable sections |
US12122398B2 (en) | 2022-04-15 | 2024-10-22 | Tusimple, Inc. | Monitoring system for autonomous vehicle operation |
Also Published As
Publication number | Publication date |
---|---|
EP3327955A4 (en) | 2019-03-20 |
US10505660B2 (en) | 2019-12-10 |
EP3327955A1 (en) | 2018-05-30 |
US20180212707A1 (en) | 2018-07-26 |
CN107925476A (zh) | 2018-04-17 |
JPWO2017013875A1 (ja) | 2018-05-24 |
EP3327955B1 (en) | 2021-11-10 |
JP6436237B2 (ja) | 2018-12-12 |
CN107925476B (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6436237B2 (ja) | 経路切替装置、経路切替システムおよび経路切替方法 | |
US10826601B2 (en) | Optical switch with path continuity monitoring for optical protection switching | |
US8175458B2 (en) | Optical ring networks having node-to-node optical communication channels for carrying data traffic | |
US8305877B2 (en) | System and method for distributed fault sensing and recovery | |
CN108781115B (zh) | 光波长复用传送系统、光波长复用装置和备用系统检查方法 | |
EP1613001A1 (en) | Hybrid optical ring network | |
US9866345B2 (en) | Device, system and method for transmitting wavelength division multiplexed optical signal | |
JP2008236798A (ja) | リング光ネットワークで制御信号を通信する方法及びシステム | |
JP2008271603A (ja) | 光ネットワーク及びプロテクションスイッチング方法 | |
JP2006166037A (ja) | 光伝送装置および光伝送システム | |
JP7035548B2 (ja) | 伝送システム及び伝送方法 | |
JP2010098547A (ja) | パストレース方法及びノード装置 | |
JP4569222B2 (ja) | 光分岐挿入装置並びに光分岐挿入方法 | |
JP6106977B2 (ja) | 光伝送システム、及び光伝送方法 | |
JP2008167306A (ja) | 光クロスコネクト装置 | |
EP1427122B1 (en) | Bidirectional wavelength division multiplexing self-healing ring network | |
US11431433B2 (en) | Optical protection switching for single fibre bidirectional WDM optical ring | |
JP5939811B2 (ja) | 波長多重伝送装置 | |
JP2006186538A (ja) | 光伝送装置及び光伝送路切換方法 | |
KR100334907B1 (ko) | 파장분할다중 광전송시스템에서 광채널계층의 단방향절체장치 | |
JP7544134B2 (ja) | 光分岐結合装置、光伝送システム及び光分岐結合方法 | |
WO2020195737A1 (ja) | 光分岐挿入装置および光伝送方法 | |
JP2015070421A (ja) | 光伝送装置、光伝送システムおよび光伝送方法 | |
JP2009253391A (ja) | 光パス切替え装置 | |
JPH11341530A (ja) | 光adm装置の監視方法並びにこれを用いた光adm装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827442 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017529461 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15743299 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016827442 Country of ref document: EP |