WO2017013869A1 - 発光装置及び発光モジュール - Google Patents

発光装置及び発光モジュール Download PDF

Info

Publication number
WO2017013869A1
WO2017013869A1 PCT/JP2016/003374 JP2016003374W WO2017013869A1 WO 2017013869 A1 WO2017013869 A1 WO 2017013869A1 JP 2016003374 W JP2016003374 W JP 2016003374W WO 2017013869 A1 WO2017013869 A1 WO 2017013869A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
transparent resin
light
semiconductor layer
Prior art date
Application number
PCT/JP2016/003374
Other languages
English (en)
French (fr)
Inventor
徹 青柳
林 茂生
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP16827436.3A priority Critical patent/EP3327804B1/en
Priority to JP2017529456A priority patent/JP6575828B2/ja
Publication of WO2017013869A1 publication Critical patent/WO2017013869A1/ja
Priority to US15/874,422 priority patent/US10355180B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present disclosure relates to a light emitting device and a light emitting module.
  • LEDs Light Emitting Diodes
  • LDs Laser Diodes
  • a light emitting device using a semiconductor light emitting element there is a light emitting device in which a wavelength conversion layer containing a phosphor is mounted on an upper surface of a light emitting element, and side surfaces of the light emitting element and the wavelength conversion layer are covered with a reflecting member (for example, Patent Document 1).
  • a substrate In the light-emitting device described in Patent Literature 1, a substrate, a plurality of light-emitting elements mounted on the substrate, a transparent transparent material layer disposed on the light-emitting element, and a plate-like optical device mounted on the transparent material layer And a reflective material layer disposed on the outer periphery of the plurality of light emitting elements.
  • the lower surface of the plate-shaped optical layer covers the upper surfaces of the plurality of light-emitting elements
  • the reflective material layer includes the lower end of the outer peripheral side surface of the plurality of light-emitting elements and the side surface of the plate-shaped optical layer. Is formed.
  • the light emitting device does not return the light emitted from the side surface of the light emitting element to the inside of the light emitting element, but reflects the light on the inclined surface of the reflective material layer. Therefore, in the light emitting device described in Patent Document 1, the light extraction efficiency, which is the ratio of the amount of light that is extracted from the light emitting device to the outside of the light emitting device, is high.
  • the light emitting device described in Patent Document 1 has a problem that light emitted from the light emitting element cannot be sufficiently extracted outside the light emitting device. Therefore, the present disclosure provides a light-emitting device and a light-emitting module that can improve light extraction efficiency.
  • a light-emitting device includes a light-emitting element having a growth substrate and a semiconductor layer positioned below the growth substrate, a light-transmitting member disposed on an upper surface of the light-emitting element, and an upper surface of the light-emitting element And a transparent resin that adheres the lower surface of the light transmitting member, the lower surface of the light transmitting member includes the upper surface of the light emitting element, and the transparent resin includes the lower surface of the light transmitting member and the semiconductor layer.
  • the transparent resin covers the covering portion of the semiconductor layer located at the center in a direction parallel to the upper surface of the light emitting element, and
  • the transparent resin is formed so as to expose an exposed portion of the semiconductor layer located at a side edge, and the transparent resin covers the side surface of the semiconductor layer at 20% or more of the length in the direction of the semiconductor layer in the covering portion. cover.
  • the transparent resin when the light-emitting device is viewed from the side, the transparent resin is transparent between the region with high emission intensity located at the center of the semiconductor layer and the region with low emission intensity located at the side edge of the semiconductor layer. It forms on the side surface of a light emitting element so that the edge of resin may cross.
  • part of the light emitted from the region where the emission intensity is strong is guided to the outside of the light emitting device at a shorter distance than when all the side surfaces of the light emitting element are covered with the transparent resin.
  • the distance that passes through the transparent resin for a part of the light emitted from the light emitting element is shorter than when all the side surfaces of the light emitting element are covered with the transparent resin.
  • the light extraction efficiency can be improved.
  • FIG. 1 is a perspective view of a light emitting module using the light emitting device in the embodiment.
  • 2 is a cross-sectional view of the light emitting module taken along the broken line II-II in FIG.
  • FIG. 3 is a top view illustrating the light-emitting device according to the embodiment.
  • FIG. 4E is a cross-sectional view showing the light emitting device taken along the broken line IVE-IVE in FIG.
  • FIG. 5 is a schematic perspective view illustrating a surface on which the light-emitting element in Example 1 is coated with a transparent resin.
  • FIG. 6 is a top view of the light emitting device according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing the light emitting device taken along the broken line VII-VII in FIG.
  • FIG. 8 is an SEM image of the side surface of the light emitting device in Example 1.
  • FIG. 9 is a schematic perspective view illustrating a surface on which the light-emitting element in Example 2 is coated with a transparent resin.
  • FIG. 10 is a top view illustrating the light emitting device according to the second embodiment.
  • FIG. 10 is a top view illustrating the light emitting device according to the second embodiment.
  • FIG. 11 is a cross-sectional view showing the light emitting device cut along the broken line XI-XI in FIG. 12 is an SEM image of the side surface of the light emitting device in Example 2.
  • FIG. 13 is an image showing the light emission intensity of the light emitting element.
  • FIG. 14 is a graph showing the lower end coverage of the light emitting element with respect to the coating amount of the transparent resin.
  • FIG. 15 is a graph showing the relative value of the total luminous flux of the light emitting element with respect to the coating amount of the transparent resin.
  • each figure is a schematic diagram and is not necessarily shown strictly. In addition, repeated description of substantially the same configuration may be omitted.
  • the Y axis in each drawing is a direction in which the layers of the light emitting element are stacked. Further, it is assumed that the X axis and the Z axis in each figure are directions orthogonal to the Y axis. The X axis is assumed to be a direction orthogonal to the Z axis. In this specification, the positive direction of the Y axis is defined as the upper direction.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute space recognition.
  • the terms “upper” and “lower” are used not only when two components are spaced apart from each other and there is another component between the two components.
  • the present invention is also applied when two components are in close contact with each other and are in contact with each other.
  • parallel includes substantially parallel, that is, manufacturing errors.
  • orthogonality includes substantially orthogonality, that is, an error in manufacturing.
  • FIG. 1 is a perspective view of a light emitting module including the light emitting device according to the present embodiment.
  • 2 is a cross-sectional view of the light emitting module taken along the broken line II-II in FIG.
  • the light emitting module 200 includes a mounting substrate 203, a light emitting element 101, a light transmitting member 107, a transparent resin 108, a reflective resin 201, and a dam material 202.
  • the mounting substrate 203 is a substrate having a wiring area in which the wiring 204 is provided.
  • the wiring 204 is a metal wiring for supplying power to the light emitting element 101.
  • the material of the mounting substrate 203 is not particularly limited, but may be, for example, a metal, a ceramic, or a resin.
  • As the material of the ceramic substrate for example, aluminum oxide or aluminum nitride is employed.
  • As a material of the metal substrate for example, an aluminum alloy, an iron alloy, or a copper alloy having an insulating film formed on the surface is employed.
  • glass epoxy is used as the resin substrate.
  • the light emitting element 101 is a substantially rectangular parallelepiped semiconductor light emitting element in which a semiconductor layer 103 is formed on a growth substrate 102.
  • the semiconductor layer 103 includes an n-type semiconductor layer (1 type semiconductor layer) 104, an active layer (light emitting layer) 105, and a p type semiconductor layer (2 type semiconductor layer) 106. Specifically, an n-type semiconductor layer 104, an active layer 105, and a p-type semiconductor layer 106 are sequentially formed on the growth substrate 102.
  • the n-type semiconductor layer 104 is provided with an n-electrode (not shown) and an n-electrode bump 150
  • the p-type semiconductor layer 106 is provided with a p-electrode (not shown) and a p-electrode bump 140. Therefore, the p-type semiconductor layer 106 and the active layer 105 are not formed in the portion where the n-electrode bump 150 is provided.
  • the n-electrode bumps 150 are arranged at two locations, that is, a corner portion of the light emitting element 101 on the semiconductor layer 103 side and a corner portion that is opposite to the corner portion when viewed from above.
  • the light generated in the active layer 105 of the light emitting element 101 is emitted to the light transmitting member 107 side through the growth substrate 102. That is, the semiconductor layer 103 side on which the n-electrode bump 150 and the p-electrode bump 140 of the light-emitting element 101 are provided becomes a mounting surface (lower surface of the light-emitting element 101) 114 mounted on the mounting substrate 203.
  • the growth substrate 102 side of the light emitting element 101 is a light emitting surface (upper surface of the light emitting element 101) 113 of light emitted from the light emitting element 101. That is, the light emitting element 101 is flip-chip mounted (or flip-chip connected) on the mounting substrate 203.
  • the light emitting module 200 in this embodiment is a light emitting module in which the light emitting element 101 is flip-chip mounted.
  • the light emitting element 101 emits light not only from the light emitting surface (the upper surface of the light emitting element 101) 113 but also from the side surface and the mounting surface (the lower surface of the light emitting element 101).
  • the upper surface of the element 101 is defined as the light emitting surface 113.
  • the material of the growth substrate 102 is not particularly limited as long as it has translucency.
  • insulating sapphire GaN (gallium nitride), SiC (silicon carbide), AlGaN (gallium aluminum nitride), or AlN (nitride) Aluminum).
  • a GaN substrate may be adopted from the viewpoint of light emission efficiency.
  • the light transmission member 107 is a plate-like member that includes a wavelength conversion member that converts the wavelength of part of the light emitted from the light emitting element 101.
  • the material of the wavelength conversion member is not particularly limited.
  • a known wavelength conversion material such as a YAG (Y 3 Al 5 O 12 ) -based phosphor, a CASN (CaAlSiN 3 ) -based phosphor, or a SiAlON-based phosphor may be used.
  • the light transmitting member 107 is formed by dispersing a wavelength converting member in a material such as resin, ceramic, or glass.
  • the light transmitting member 107 is bonded to the growth substrate 102 located on the light emitting surface 113 of the light emitting element 101 through the transparent resin 108. That is, the surface of the light transmitting member 107 on the light emitting element 101 side is an adhesive surface (the lower surface of the light transmitting member) 110 that is bonded to the light emitting element 101 via the transparent resin 108, and the opposite surface is the light emitting device 100 and It becomes the surface on the side from which the light of the light emitting module 200 is emitted.
  • the transparent resin 108 is an adhesive that adheres the light emitting element 101 and the light transmitting member 107.
  • the transparent resin 108 also has a function of a light guide member that guides light emitted from the side surface of the light emitting element 101 to the light transmitting member 107 side (upward).
  • the transparent resin 108 covers the adhesive surface 110 of the light transmitting member 107 and the side surface of the light emitting element 101.
  • the surface of the transparent resin 108 opposite to the light emitting element 101 side continuously covers the side surface so as to be inclined with respect to the side surface of the light emitting element 101. That is, in the light emitting device 100 in this embodiment, when viewed from the side surface of the light emitting element 101, the inclined surface 111 is formed by the transparent resin 108 that is inclined with respect to the side surface of the light emitting element 101.
  • the light emitting device 100 As a method for manufacturing the light emitting device 100, first, a predetermined amount of the transparent resin 108 is applied to the light emitting surface 113 of the light emitting element 101 by a dispenser. Next, the light transmitting member 107 is placed on the transparent resin 108 and pressed from above so that the transparent resin 108 covers the entire light emitting surface 113 of the light emitting element 101. Then, the transparent resin 108 covers the side surface of the light emitting element 101 so as to extend from the bonding surface 110 of the light transmitting member 107. Further, when viewed from the side surface of the light emitting element, the surface of the transparent resin 108 opposite to the light emitting element 101 side is inclined with respect to the side surface of the light emitting element 101 due to surface tension. A detailed manufacturing method of the light emitting device 100 and the light emitting module 200 in the present embodiment will be described later.
  • the transparent resin 108 is not particularly limited as long as it is a material transparent to the light emitted from the light emitting element 101.
  • a silicone resin having high light transmittance with respect to light emitted from the light emitting element 101 may be employed.
  • the wavelength of the light emitted from the light emitting element 101 is, for example, the wavelength of light from the near ultraviolet region to the visible region.
  • the reflective resin 201 is a silicone resin to which a light reflective material such as titanium oxide is added.
  • the reflective resin 201 is formed so as to cover the side surfaces of the light emitting element 101, the transparent resin 108 and the light transmitting member 107. The light emitted from the side surface of the light emitting element 101 is reflected at the interface between the transparent resin 108 and the reflective resin 201 and guided to the light transmitting member 107.
  • the dam material 202 is provided on the mounting substrate 203 so as to surround the light emitting element 101 in order to block the reflective resin 201 in the manufacturing process of the light emitting device.
  • an insulating thermosetting resin or thermoplastic resin is used for the dam material 202 .
  • the dam material 202 is made of silicone resin, phenol resin, epoxy resin, bismaleimide triazine resin, polyphthalamide (PPA) resin, or the like.
  • the dam material 202 may be a material other than resin.
  • the dam material 202 may be ceramic, for example.
  • FIG. 3 is a top view showing the arrangement of the light transmission member 107 and the light emitting element 101.
  • 4A to 4E are cross-sectional views showing the relationship among the light emitting element 101, the light transmitting member 107, and the transparent resin 108.
  • FIG. 3 to 4E, the mounting substrate 203, the n-electrode bump 150, the p-electrode bump 140, the reflective resin 201, and the dam material 202 are not shown.
  • the light transmitting member 107 and the light emitting element 101 are arranged so that the centers of the respective planes overlap each other when viewed from above.
  • the light transmitting member 107 and the light emitting element 101 are substantially square when viewed from above, and are arranged so that their sides are parallel to each other.
  • FIG. 4A is cut along a broken line IVA-IVA that is about a half of the length of the light emitting element 101 in FIG. 3 in the Z direction (that is, a line passing through substantially the center of the light emitting element 101 in a top view).
  • FIG. 4A the transparent resin 108 is formed so as to cover from the adhesive surface 110 of the light transmitting member 107 to the lower end of the side surface of the light emitting element 101.
  • the surface of the transparent resin 108 opposite to the light emitting element 101 side is formed so as to be inclined with respect to the side surface of the light emitting element 101. That is, when viewed from the side surface of the light emitting element 101, the inclined surface 111 is formed by the transparent resin 108 that is inclined with respect to the side surface of the light emitting element 101.
  • FIG. 4B is a cross-sectional view taken along a broken line IVB-IVB, which is a position about 1 ⁇ 4 of the length in the Z direction of the light emitting element 101 of FIG.
  • the transparent resin 108 is formed so as to connect the lower end of the side surface of the light emitting element 101 and the adhesive surface 110 of the light transmitting member 107. That is, the transparent resin 108 is formed so as to cover the side surface of the light emitting element 101 from the adhesive surface 110 of the light transmitting member 107 to the lower end of the side surface of the light emitting element 101.
  • the surface of the transparent resin 108 opposite to the light emitting element 101 side is formed so as to be inclined with respect to the side surface of the light emitting element 101. That is, when viewed from the side surface of the light emitting element 101, the inclined surface 111 is formed by the transparent resin 108 that is inclined with respect to the side surface of the light emitting element 101.
  • FIG. 4C is a cross-sectional view taken along the broken line IVC-IVC so as to pass through the position on the light emitting element 101 side in the vicinity of the side surface of the light emitting element 101 of FIG.
  • the transparent resin 108 is formed so as to connect the side end portion of the light emitting element 101 (the semiconductor layer 103 or the side end portion of the growth substrate 102) and the bonding surface 110 of the light transmitting member 107.
  • the transparent resin 108 does not cover from the adhesive surface 110 of the light transmitting member 107 to the lower end of the side surface of the light emitting element 101.
  • the transparent resin 108 is formed so as to continuously cover from the adhesive surface 110 of the light transmitting member 107 to the middle of the side surface of the light emitting element 101 in the negative direction of the Y axis. Further, the surface of the transparent resin 108 opposite to the light emitting element 101 side is formed to be inclined with respect to the side surface of the light emitting element 101. That is, when viewed from the side surface of the light emitting element 101, the inclined surface 111 is formed by the transparent resin 108 that is inclined with respect to the side surface of the light emitting element 101.
  • FIG. 4D is a cross-sectional view taken along the broken line IVD-IVD so as to pass just outside the light emitting element 101 of FIG.
  • the appearance of the transparent resin 108 in a side view has a substantially trapezoidal shape with a long upper side on the light transmitting member 107 side.
  • the upper side of the substantially trapezoidal shape of the transparent resin 108 is at the position of the bonding surface 110 of the light transmitting member 107, and the length of the upper side is shorter than the length of the bonding surface 110 of the light transmitting member 107 in the X direction.
  • the length of the upper side of the substantially trapezoidal shape of the transparent resin 108 is longer than the length of the light emitting surface 113 of the light emitting element 101 in the X direction.
  • the lower side of the substantially trapezoidal shape of the transparent resin 108 is formed at the position of the lower end of the side surface of the light emitting element 101.
  • the length of the lower side of the substantially trapezoidal shape in the external shape of the transparent resin 108 is shorter than the length of the mounting surface 114 of the light emitting element 101 in the X direction. That is, the transparent resin 108 is formed so as not to cover the corner on the mounting surface 114 side of the light emitting element 101.
  • FIG. 4E is a cross-sectional view taken along the broken line IVE-IVE located near the end of the light transmitting member 107 in FIG.
  • the external shape of the transparent resin 108 has a substantially trapezoidal shape with a long upper side on the light transmitting member 107 side.
  • the upper side of the substantially trapezoidal shape of the transparent resin 108 is at the position of the bonding surface 110 of the light transmitting member 107.
  • the length of the upper side is approximately the same as the length of the light emitting surface 113 of the light emitting element 101 in the X direction.
  • the lower side of the substantially trapezoidal shape of the transparent resin 108 is formed at a position closer to the light emitting surface 113 of the light emitting element 101 than the mounting surface (lower surface) 114 of the light emitting element 101. Further, the length of the lower side of the substantially trapezoidal shape of the transparent resin 108 is shorter than the length of the mounting surface 114 of the light emitting element 101 in the X direction, and is about 2 / of the length of the mounting surface 114 of the light emitting element 101 in the X direction. 3.
  • the inclined surface 111 that connects the lower end of the side surface of the light emitting element 101 in the transparent resin 108 to the adhesive surface 110 of the light transmitting member 107 may be inclined with respect to the side surface of the light emitting element 101, and the shape thereof is not limited.
  • the inclined surface 111 of the transparent resin 108 may be a flat surface, a convex curved surface, or a concave curved surface.
  • being inclined with respect to the side surface means that the inclined surface 111 that is an interface between the transparent resin 108 and the reflective resin 201 positioned in a direction perpendicular to the side surface of the light emitting element 101 is inclined with respect to the side surface. Means.
  • FIGS. 4A to 4E the light emitting surface 113 of the light emitting element 101 and the adhesive surface 110 of the light transmitting member 107 are illustrated with a transparent resin 108 therebetween.
  • a predetermined amount of the transparent resin 108 is applied onto the light emitting surface 113 of the light emitting element 101 by a dispenser.
  • the light transmitting member 107 is placed on the transparent resin 108 and pressed from above so that the transparent resin 108 covers the entire light emitting surface 113 of the light emitting element 101.
  • the light transmitting member 107 may be pressed so that the light emitting surface 113 of the light emitting element 101 and the adhesive surface 110 of the light transmitting member 107 are in contact with each other.
  • the light emitting surface 113 of the light emitting element 101 and the adhesive surface 110 of the light transmitting member 107 are described as being in contact with each other.
  • the transparent resin 108 is not illustrated, the hatched portion of the light emitting element 101 illustrated in FIG. 5 is a region covered with the transparent resin 108.
  • a growth substrate 102 is disposed above and a semiconductor layer 103 including an active layer 105 is disposed below.
  • the light emitting element 101 has a covering portion 130 that is covered with a transparent resin 108 (not shown) on the side surface. Further, the transparent resin 108 continuously covers the side surface of the light emitting element 101 from the upper end to the lower end of the side surface of the light emitting element 101 on all four side surfaces of the light emitting element 101. Further, an exposed portion 120 that is not covered with the transparent resin 108 is provided at a corner portion of the light emitting element 101 on the semiconductor layer 103 side (mounting surface 114 side).
  • the four corners on the mounting surface 114 side of the light emitting element 101 that is a substantially rectangular parallelepiped are not covered with the transparent resin 108 and are exposed.
  • the transparent resin 108 covers the side surfaces of the light emitting element 101 so that the covering portion 130 and the exposed portion 120 described above are formed.
  • the transparent resin 108 completely covers the predetermined range B at the lower end of the side surface of the light emitting element 101. Further, in a region other than the predetermined range B (exposed portion 120), the p-type semiconductor layer (2 type semiconductor layer) 106, the active layer (light emitting layer) 105, and the n type semiconductor layer (1 type semiconductor layer) 104 are reflected resin. 201 directly coats. In other words, when the side surface of the light emitting element 101 is viewed, it is outside the region of the edge of the transparent resin 108 that connects the lower end of the light emitting element 101 to the side edge of the growth substrate 102 (that is, the corner on the mounting surface 114 side of the light emitting element 101). Part) is not covered with the transparent resin 108. Details of the coverage of the light emitting element 101 with the transparent resin 108 will be described later.
  • FIG. 6 is a top view of the light emitting device 100 according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing light emitting device 100 cut along broken line VII-VII in FIG.
  • FIG. 8 is an SEM (Scanning Electron Microscope) image of the side surface of the light emitting device 100 according to the first embodiment.
  • the inner side of the range surrounded by the broken line is a region where the transparent resin 108 is formed.
  • the light transmitting member 107 and the light emitting element 101 are arranged so that the centers of the respective planes overlap each other when viewed from above. Further, the light transmitting member 107 and the light emitting element 101 are both substantially square in top view, and are arranged so that their sides are substantially parallel. In addition, two n-electrode bumps 150 and 23 p-electrode bumps 140 are formed on the mounting surface 114 of the light emitting element 101.
  • n-electrode bump 150 In the n-electrode bump 150, one n-electrode bump 150 is formed at a corner of the mounting surface 114 of the light emitting element 101, and another n-electrode bump 150 is formed at a diagonal position of the n-electrode bump 150 in a top view. Is done. As shown in FIG. 6, the p electrode bumps 140 are arranged in an array in the X direction and the Z direction on the mounting surface 114 of the light emitting element 101.
  • the two corners on the mounting surface 114 side of the light emitting element 101 where the n-electrode bumps 150 are formed and the two corners where the n-electrode bumps 150 are not formed The layer 103 is exposed without being covered with the transparent resin 108.
  • the edge of the transparent resin 108 is formed so as to connect the lower end of the covering portion 130 and the side end of the growth substrate 102.
  • the edge of the transparent resin 108 is further formed so as to extend from the side edge of the growth substrate 102 to the lower surface of the light transmission member 107 while being inclined with respect to the side surface of the light emitting element 101.
  • the surface of the transparent resin 108 opposite to the light emitting element 101 side is formed to have an inclined surface 111 that is inclined with respect to the side surface of the light emitting element 101.
  • the light emitted from the side surface of the light emitting element 101 is reflected by the inclined surface 111 and emitted from above the light emitting device 100. That is, light emitted from the light emitting element 101 can be sufficiently extracted, so that the light extraction efficiency of the light emitting device 100 is improved.
  • the light emitting element 101 in the vicinity of the n-electrode bump 150 does not emit light because the active layer 105 is not formed, the light emitting element 101 is not covered with the transparent resin 108 but directly covered with the reflective resin 201 as compared with other side portions. Thus, the influence on the light extraction efficiency is small.
  • the rightmost bump in contact with the mounting substrate 203 is an n-electrode bump 150, and the other four bumps are p-electrode bumps 140.
  • FIG. 8 is an SEM image of a side view of the light emitting device 100 according to the first embodiment.
  • the light emitting device 100 illustrated in FIG. 8 is an SEM image before the reflective resin 201 is disposed.
  • the transparent resin 108 At the corner near the n electrode bump 150 on the lower right side of the light emitting element 101 and the corner where the n electrode bump 150 on the lower left side is not formed, there is a region of the semiconductor layer 103 that is not covered with the transparent resin 108. That is, when the side surface of the light emitting element 101 is viewed, the transparent resin is formed so as to cross the semiconductor layer 103 in an oblique direction from the lower end of the semiconductor layer 103 on the mounting surface 114 side of the light emitting element 101 toward the side end of the growth substrate 102. 108 is formed.
  • the shape of the transparent resin 108 in the side view of the light emitting device 100 can be confirmed with a digital scope. Since the image confirmed with the digital scope is an optical microscope image, the edge of the transparent resin 108 positioned at the lower part of the side surface of the light emitting element 101 thinly covered with the transparent resin 108 is confirmed with a line so that there is a boundary. The A line that is confirmed to have the boundary is a boundary of the presence or absence of the transparent resin 108 (an edge of the transparent resin 108).
  • Example 1 the shape of the transparent resin 108 when viewed from one side surface has been described.
  • the light emitting element 101 is a substantially rectangular parallelepiped and has four side surfaces.
  • the description of the first embodiment is the same when any of the four side surfaces is viewed from the side. That is, when the side surface of the light emitting element 101 is viewed, the transparent resin 108 is disposed on the center side covering the semiconductor layer 103 in a direction parallel to the upper surface of the light emitting element 101 (for example, the X direction in FIG. 8). And an exposed portion 120 located on the end side that does not cover the semiconductor layer 103 is formed.
  • Example 2 Next, a covering portion covered with the transparent resin 108 in the light-emitting element 101 of Example 2 will be described with reference to FIG. In FIG. 9, the transparent resin 108 is not illustrated, but the hatched portion of the light emitting element 101 illustrated in FIG. 9 is a region covered with the transparent resin 108.
  • a growth substrate 102 is disposed above, and a semiconductor layer 103 including an active layer 105 is disposed below.
  • a side surface of the light emitting element 101 has a covering portion 131 that is covered with a transparent resin 108 for bonding the light transmitting member 107.
  • the transparent resin 108 of Example 2 continuously covers the side surface of the light emitting element 101 from the upper end to the lower end of the light emitting element 101 in the same manner as the transparent resin 108 of Example 1. Further, when the side surface of the light emitting element 101 is viewed, an exposed portion 121 that is not covered is provided at the end of the light emitting element 101 on the mounting surface 114 side. That is, the corner on the mounting surface 114 side of the light emitting element 101 that is a substantially rectangular parallelepiped is not covered with the transparent resin 108 and is exposed. Note that, on all four side surfaces of the light emitting element 101, the transparent resin 108 covers the side surfaces of the light emitting element 101 so that the above-described covering portion 131 and the exposed portion 121 are formed on the side surface of the light emitting element 101.
  • the light emitting element 101 in the second embodiment differs from the light emitting element 101 in the first embodiment on the mounting surface 114 side of the light emitting element 101 and the exposed corners that are not covered with the transparent resin 108 and the transparent resin 108. There are both unexposed corners covered by.
  • the transparent resin 108 completely covers the lower end of the light emitting element 101 within a predetermined range B.
  • the reflective resin 201 directly covers the p-type semiconductor layer 106, the active layer 105, and the n-type semiconductor layer 104.
  • the transparent resin 108 is not covered with the transparent resin 108. Details of the coverage of the light emitting element 101 with the transparent resin 108 will be described later.
  • FIG. 10 is a top view illustrating the light emitting device 100a according to the second embodiment.
  • FIG. 11 is a cross-sectional view showing the light emitting device 100a cut along the broken line XI-XI in FIG.
  • FIG. 12 is an SEM image of the side surface of the light emitting device 100a in Example 2.
  • the area surrounded by the broken line is the area where the transparent resin 108 is formed.
  • the light transmitting member 107 and the light emitting element 101 are arranged so that the centers of the respective planes overlap in a top view. Further, the light transmitting member 107 and the light emitting element 101 are both substantially square in top view, and are arranged so that their sides are substantially parallel. In addition, two n-electrode bumps 150 and 23 p-electrode bumps 140 are formed on the mounting surface 114 of the light emitting element 101.
  • n-electrode bump 150 In the n-electrode bump 150, one n-electrode bump 150 is formed at a corner of the mounting surface 114 of the light emitting element 101, and another n-electrode bump 150 is formed at a diagonal position of the n-electrode bump 150 in a top view. Is done. As shown in FIG. 10, the p electrode bumps 140 are arranged in an array in the X direction and the Z direction on the mounting surface 114 of the light emitting element 101.
  • the light emitting device 100a in the second embodiment is different from the light emitting device 100 in the first embodiment in that only a corner portion on the mounting surface 114 side of the light emitting element 101 on which the n-electrode bump 150 is formed is a semiconductor.
  • the layer 103 is exposed without being covered with the transparent resin 108.
  • the corner where the n-electrode bump 150 is not formed is completely covered with the transparent resin 108.
  • the edge of the transparent resin 108 is formed so as to connect the lower end of the covering portion 131 and the side end of the growth substrate 102.
  • the edge of the transparent resin 108 is further formed so as to extend from the side edge of the growth substrate 102 to the lower surface of the light transmission member 107 while being inclined with respect to the side surface of the light emitting element 101. That is, the surface of the transparent resin 108 opposite to the light emitting element 101 side is formed to have an inclined surface 111 that is inclined with respect to the side surface of the light emitting element 101. By doing so, the light emitted from the side surface of the light emitting element 101 is reflected by the inclined surface 111 and emitted from above the light emitting device 100. That is, since the light emitted from the light emitting element 101 can be sufficiently extracted, the light extraction efficiency of the light emitting device 100a is improved.
  • the light emitting element 101 in the vicinity of the n-electrode bump 150 does not emit light because the active layer 105 is not formed, the light emitting element 101 is not covered with the transparent resin 108 but directly covered with the reflective resin 201 as compared with other side portions. Thus, the influence on the light extraction efficiency is small.
  • the rightmost bump in contact with the mounting substrate 203 is an n-electrode bump 150, and the other four bumps are p-electrode bumps 140.
  • FIG. 12 is an SEM image of a side view of the light emitting device 100a of Example 2.
  • the light emitting device 100a in FIG. 12 is an SEM image before the reflective resin 201 is arranged.
  • a region of the semiconductor layer 103 that is not covered with the transparent resin 108 exists only at a corner portion where the n-electrode bump 150 is disposed on the lower right side of the light emitting element 101 in FIG. That is, when the side surface of the light emitting element 101 is viewed, the semiconductor layer 103 is crossed in an oblique direction from the lower end of the semiconductor layer 103 toward the side end of the growth substrate 102 only in the vicinity of the corner where the n-electrode bump 150 is disposed. Thus, the edge of the transparent resin 108 is formed. In other words, only the corner portion where the n-electrode bump 150 of the light emitting element 101 is disposed becomes the exposed portion 121 that is not covered with the transparent resin 108.
  • the bump on the right end of the drawing in contact with the mounting substrate 203 is an n-electrode bump 150, and the other four bumps are p-electrode bumps 140.
  • the shape of the transparent resin 108 when viewed from one side has been described.
  • the light emitting element 101 is a substantially rectangular parallelepiped and has four side surfaces. That is, the description of the second embodiment is the same except for the position of the exposed portion 121 when any of the four side surfaces is viewed from the side. That is, in the side view, the semiconductor layer 103 in the direction parallel to the light emitting surface 113 of the light emitting element 101 includes the covering portion 131 covered with the transparent resin 108 and either one end not covered with the transparent resin 108. And an exposed portion 121 located on the side.
  • Example 2 two n-electrode bumps 150 are formed on the mounting surface 114 of the light emitting element 101.
  • One n-electrode bump 150 is formed at a corner of the mounting surface 114 of the light emitting element 101, and another n-electrode bump 150 is disposed at a diagonal position of the n-electrode bump 150 in a top view.
  • Two corners on the mounting surface 114 side of the light emitting element 101 on which the n-electrode bumps 150 are formed are exposed without being covered with the transparent resin 108.
  • FIG. 13 is a measurement result of the light emission intensity of the light emitting element 101 in a side view before the light emitting element 101, the transparent resin 108, and the side surfaces of the light transmitting member 107 are covered with the reflective resin 201.
  • FIG. 14 illustrates the amount of the transparent resin 108 applied on the light emitting element 101 after the side surfaces of the light emitting element 101, the transparent resin 108, and the light transmitting member 107 are covered with the reflective resin 201, and the light emitting element 101 of the transparent resin 108. It is a graph which shows the relationship of the lower end coverage of a side surface.
  • FIG. 14 illustrates the amount of the transparent resin 108 applied on the light emitting element 101 after the side surfaces of the light emitting element 101, the transparent resin 108, and the light transmitting member 107 are covered with the reflective resin 201, and the light emitting element 101 of the transparent resin 108. It is a graph which shows the relationship of the lower end coverage of a side surface.
  • FIG. 15 is a graph showing the relationship between the amount of the transparent resin 108 applied on the light emitting surface 113 of the light emitting element 101 and the total luminous flux of the light emitted from the light emitting device 100.
  • FIG. 15 is a graph showing the relative value of the total luminous flux with respect to the coating amount of the transparent resin 108 when the total luminous flux is 100% when the coating amount of the transparent resin 108 is 8 nL.
  • the amount of power input to the light emitting element 101 is the same amount of power under the conditions of the application amounts of the transparent resin 108.
  • the lower side of the figure (the negative direction of the Y axis) is the semiconductor layer 103 side, and the upper side of the figure (the positive direction of the Y axis) is the growth substrate 102 side.
  • the white part other than the auxiliary line indicating the length is a light emission part, and the light emission intensity of a part with strong whiteness is interpreted to be high.
  • the light emitting element 101 has a higher emission intensity on the semiconductor layer 103 side than an emission intensity on the growth substrate 102 side. Further, when viewed from the side, the light emission intensity at the side end portion of the light emitting element 101 in the semiconductor layer 103 is lower than that at the center portion.
  • the lower end coverage of the light emitting element 101 described later increases by increasing the coating amount of the transparent resin 108.
  • the application amount of the transparent resin 108 is 12 nL
  • the lower end coverage of the light emitting element 101 is 100%. That is, the state where the lower end coverage of the light emitting element 101 is 100% is a state where the lower end of the side surface of the light emitting element 101 is entirely covered with the transparent resin 108 when the side surface of the light emitting element 101 is viewed.
  • the total luminous flux is improved by gradually increasing the coating amount of the transparent resin 108.
  • the application amount of the transparent resin 108 exceeds 8 nL, the total luminous flux decreases.
  • the application amount of the transparent resin 108 is about 95% or more in the range of about 6 nL or more and 9 nL or less. Is obtained. That is, a total luminous flux of about 95% or more is obtained when the lower end coverage of the transparent resin 108 is in the range of about 20% to 90%.
  • the lower end coverage is, in a side view, using the length A of the lower end of the side surface of the light emitting element 101 and the length B of the region where the lower end is covered with the transparent resin 108 by the following formula ( 1).
  • the total luminous flux is larger than when the lower end is completely covered (when the lower end coverage is 100%). That is, when the lower end coverage is 20% or more and 90% or less, the light extraction efficiency of the light emitted from the light emitting element 101 is improved as compared with the case where the lower end is completely covered.
  • the edge of the transparent resin 108 is the lower end of the covering portion 130 and the side end of the growth substrate 102. It is formed to tie. Specifically, when the side surface of the light emitting element 101 is viewed, the edge of the transparent resin 108 approaches the upper surface of the light emitting element 101 from the lower end of the side surface of the light emitting element 101 to the side edge of the growth substrate 102. Inclined. That is, the edge of the transparent resin 108 is formed on the side surface of the semiconductor layer 103 so as to cross between a region with high emission intensity and a region with low emission intensity. This is because the light reflection surface (interface between the transparent resin 108 and the reflection resin 201) is formed on the side surface of the semiconductor layer 103 closer to the region where the emission intensity is stronger than when the lower end is completely covered. means.
  • a part of the light emitted from the region where the emission intensity is strong on the side surface of the semiconductor layer 103 is shorter than the case where the side surface of the light emitting element 101 is entirely covered with the transparent resin 108.
  • the distance that a part of the light emitted from the side surface of the light emitting element 101 passes through the transparent resin 108 is shorter than the case where all the side surfaces of the light emitting element 101 are covered with the transparent resin 108.
  • light loss due to the transparent resin 108 is reduced, so that the light extraction efficiency of the light emitting device 100 is improved.
  • the transparent resin 108 may not completely cover the lower end of the side surface of the light emitting element 101. Specifically, the transparent resin 108 may be formed so as not to completely cover the lower end of the side surface of the light emitting element 101 and to cover the semiconductor layer 103. Further, the transparent resin 108 may be formed so as not to completely cover the lower end of the side surface of the light emitting element 101 and to cover the active layer 105.
  • the semiconductor layer 103 is formed such that the covering portion 130 located at the center and the exposed portion 120 located at the side end are formed.
  • a transparent resin 108 is formed on the side surface of the substrate. Further, in the direction parallel to the light emitting surface 113 of the light emitting element 101, the transparent resin 108 covers the semiconductor so as to cover 20% or more of the length of the semiconductor layer 103 in the direction parallel to the light emitting surface 113 of the light emitting element 101. It is formed on the side surface of the layer 103.
  • a part of the light emitted from the region where the emission intensity is strong on the side surface of the semiconductor layer 103 is shorter than the case where the side surface of the light emitting element 101 is entirely covered with the transparent resin 108. Guided outside. That is, the distance that a part of the light emitted from the side surface of the light emitting element 101 passes through the transparent resin 108 is shorter than the case where all the side surfaces of the light emitting element 101 are covered with the transparent resin 108. As a result, light loss due to the transparent resin 108 is reduced, so that the light extraction efficiency of the light emitting device 100 is improved.
  • a mounting substrate (submount) 203 having a conductive pattern formed on the surface is prepared.
  • an AlN substrate produced by firing is taken out in a matrix by a plating method or the like, and an electrode and a wiring 204 electrode pattern are formed.
  • a metal pad for connecting the light emitting element 101 is formed on the wiring 204 electrode.
  • the protective element When mounting a protective element or the like, the protective element is ultrasonically connected to the mounting substrate 203 using metal bumps in a flip chip manner.
  • the protection element is for preventing an excessive voltage from being applied to the light emitting element 101 and is electrically connected to the light emitting element.
  • the protection element is, for example, a Zener diode (ZD), a diode, a varistor, a capacitor, or a resistance element.
  • the light emitting element 101 mounted on the mounting substrate 203 for example, a blue LED chip in which a nitride compound semiconductor is formed on a GaN substrate is employed.
  • a metal bump is formed on a metal pad to be the formed electrode.
  • the light emitting element 101 is ultrasonically connected to the mounting substrate 203 by flip chip connection with the growth substrate 102 side up.
  • the light emitting element 101 includes the growth substrate 102 and the semiconductor layer 103, and the n-side electrode and the p-side electrode are formed on the same surface (for example, the mounting surface 114 in FIG. 2).
  • the growth substrate 102 serves to hold the semiconductor layer 103.
  • a surface located on the opposite side to the surface on which the semiconductor layer 103 is stacked is a light emitting surface that emits light.
  • minute irregularities may be formed by etching, blasting, laser processing, or dicing blade processing on the back surface of the growth substrate 102 (that is, the light emitting surface 113 that is the upper surface of the mounted light emitting element 101). . Further, a microtexture structure having the light emitting surface 113 as a rough surface may be formed on the light emitting surface 113. Thus, the light extraction efficiency from the light emitting element 101 is improved.
  • the growth substrate 102 is made of the growth substrate 102 having a lower refractive index than GaN such as sapphire, the light emission surface 113 may be formed as a flat surface.
  • the lower end coverage of the light emitting element 101 can be changed by adjusting the amount and position of the transparent resin 108 dropped on the light emitting surface 113 of the light emitting element 101.
  • the application of the transparent resin 108 is performed by, for example, a dispensing method. In the dispensing method, the application amount of the transparent resin 108 can be controlled by the amount of air applied to the dispenser. The diameter of the lower surface of the formed transparent resin 108 is measured, and the coating amount of the transparent resin 108 may be controlled based on the result.
  • the transparent resin 108 is formed in a substantially hemispherical shape on the light emitting element 101 in a side view.
  • the outer shape of the transparent resin 108 discharged from the hollow nozzle spreads in a circular shape. Therefore, when the light transmitting member 107 is pressed from above, the transparent resin 108 spreads in a concentric manner. Since the top view shape of the light emitting element 101 is substantially square, the amount of the transparent resin 108 protruding from the light emitting surface 113 of the light emitting element 101 is the light emitting element in a direction parallel to the light emitting surface 113 of the light emitting element 101 in the side view. The center part of the side surface of 101 becomes more than the end part.
  • the transparent resin 108 covering the side surface of the light emitting element 101 covers the center portion of the side surface farther than the end portion of the side surface (to the lower side). Therefore, by adjusting the coating amount of the transparent resin 108, the lower end of the side surface of the light emitting element 101 is covered with the transparent resin 108 at the center of the side surface of the light emitting element 101 in the direction parallel to the light emitting surface 113 of the light emitting element 101. be able to.
  • a structure in which the side surface of the light emitting element 101 is exposed at the corner portion on the mounting surface 114 side of the light emitting element 101 can be formed by adjusting the coating amount of the transparent resin 108.
  • the shape of the exposed portion 120 is substantially triangular as shown in FIG.
  • the surface of the transparent resin 108 opposite to the light emitting element 101 side is formed to be inclined with respect to the side surface of the light emitting element 101.
  • the shape of the transparent resin 108 after the light transmitting member 107 is bonded is controlled by the application amount of the transparent resin 108 or the position where the transparent resin 108 is applied.
  • the coating amount of the transparent resin 108 positioned immediately above the corner portion on the mounting surface 114 side of the light emitting element 101 where the exposed portion 120 is to be formed is reduced from the coating amount of other portions.
  • the shape of the transparent resin 108 after the light transmitting member 107 is bonded is a shape in which the corner on the mounting surface 114 side of the light emitting element 101 is exposed. Further, for example, at least one of the corners on the mounting surface 114 side of the light emitting element 101 may be exposed.
  • the application of the transparent resin 108 may use a stamp method and is not limited to the dispensing method.
  • the shape of the transparent resin 108 discharged onto the light emitting element 101 can be controlled by the shape of the stamp table.
  • the shape of the stamp base is a square shape or an X shape
  • the light transmitting member 107 is pressed from above and bonded to the light emitting element 101, so that the transparent portion at the end of the light emitting element 101 is transparent.
  • the amount of protrusion of the resin 108 can be controlled. That is, the lower end coverage of the light emitting element 101 can be controlled.
  • the light emitting module 200 is manufactured by forming the dam material 202 in a ring shape around the light emitting element 101 and injecting the reflective resin 201 inside the ring of the formed dam material 202.
  • the light emitted from the side surfaces of the light emitting element 101 or the light transmitting member 107 is reflected in the light emitting direction (upward) of the light emitting module 200.
  • the dam material 202 and the reflective resin 201 are cured by heating in an oven at about 150 ° C. for about 3 hours.
  • the light emitting module 200 is manufactured through the above steps.
  • the light-emitting device 100 includes the light-emitting element 101 including the growth substrate 102, the semiconductor layer 103 positioned below the growth substrate 102, and the light disposed on the top surface of the light-emitting element 101.
  • the light emitting device 101 includes a transparent resin 108 that bonds the upper surface of the light emitting element 101 and the lower surface of the light transmitting member 107. Further, the lower surface of the light transmitting member 107 includes the upper surface of the light emitting element 101.
  • the transparent resin 108 continuously covers the lower surface of the light transmitting member 107 and the side surface of the semiconductor layer 103.
  • the transparent resin 108 covers the covering portion 130 of the semiconductor layer 103 located at the center portion and is positioned at the side edge in a direction parallel to the upper surface of the light emitting element 101.
  • the exposed portion 120 of the semiconductor layer 103 to be exposed is formed.
  • the transparent resin 108 covers the side surface of the semiconductor layer 103 in the covering portion 130 by 20% or more of the length of the semiconductor layer 103 in the direction parallel to the upper surface of the light emitting element 101. .
  • the edge of the transparent resin 108 has a region with a high emission intensity located in the center of the semiconductor layer 103 and a low emission intensity located at the side end of the semiconductor layer 103. It is formed on the side surface of the light emitting element 101 so as to cross between the regions. Therefore, part of the light emitted from the region having high emission intensity is guided to the outside of the light emitting device 100 at a shorter distance than when all the side surfaces of the light emitting element 101 are covered with the transparent resin 108. That is, a part of the light emitted from the light emitting element 101 has a shorter distance through the transparent resin 108. As a result, light loss due to the transparent resin 108 is reduced, so that the light extraction efficiency of the light emitting device 100 is improved.
  • the edge of the transparent resin 108 connects the lower end of the covering portion 130 and the side edge of the growth substrate 102, and further to the lower surface of the light transmitting member 107 on the side surface of the light emitting element 101. It may extend with an inclination.
  • the edge of the transparent resin 108 is between the region where the light emission intensity of the semiconductor layer 103 is high and the region where the light emission intensity of the semiconductor layer 103 is low. It is formed on the side surface of the light emitting element 101 so as to cross in an oblique direction from the lower end to the side end. Therefore, part of the light emitted from the region having high emission intensity is guided to the outside of the light emitting device 100 at a shorter distance than when all the side surfaces of the light emitting element 101 are covered with the transparent resin 108. That is, a part of the light emitted from the light emitting element 101 has a shorter distance through the transparent resin 108. As a result, light loss due to the transparent resin 108 is reduced, so that the light extraction efficiency of the light emitting device 100 is improved.
  • the surface of the transparent resin 108 opposite to the light emitting element 101 is formed to be inclined with respect to the side surface of the light emitting element 101. That is, the transparent resin 108 has an inclined surface 111 that is inclined with respect to the side surface of the light emitting element 101. Thereby, the light extraction efficiency of the light emitting device 100 is improved.
  • the transparent resin 108 covers the lower end of the semiconductor layer in the covering portion 130 by 20% or more of the length of the semiconductor layer 103 in the direction parallel to the upper surface of the light emitting element 101. May be.
  • the lower end coverage of the covering portion 130 formed on the side surface of the light emitting element 101 may be 20% or more. Thereby, the light extraction efficiency of the light emitting device 100 is improved.
  • the transparent resin 108 covers the lower end of the semiconductor layer 103 in the covering portion 130 by 90% or less of the length of the semiconductor layer 103 in the direction parallel to the upper surface of the light emitting element 101. May be.
  • the lower end coverage of the covering portion 130 formed on the side surface of the light emitting element 101 may be 90% or less. Thereby, the light extraction efficiency of the light emitting device 100 is improved.
  • the exposed portions 120 may be at both ends of the semiconductor layer 103 in a direction parallel to the upper surface of the light emitting element 101.
  • the edge of the transparent resin 108 has a region with a high emission intensity located in the center of the semiconductor layer 103 and a low emission intensity located at the side end of the semiconductor layer 103. It is formed on the side surface of the light emitting element 101 so as to cross between the regions. Therefore, part of the light emitted from the region having high emission intensity is guided to the outside of the light emitting device 100 at a shorter distance than when all the side surfaces of the light emitting element 101 are covered with the transparent resin 108. That is, a part of the light emitted from the light emitting element 101 has a shorter distance through the transparent resin 108. As a result, light loss due to the transparent resin 108 is reduced, so that the light extraction efficiency of the light emitting device 100 is improved.
  • the exposed portion 121 may be only at one end of the semiconductor layer 103 in a direction parallel to the upper surface of the light emitting element 101.
  • the edge of the transparent resin 108 has a region with a high emission intensity located in the center of the semiconductor layer 103 and a low emission intensity located at the side end of the semiconductor layer 103. It is formed on the side surface of the light emitting element 101 so as to cross between the regions. Therefore, part of the light emitted from the region having high emission intensity is guided to the outside of the light emitting device 100 at a shorter distance than when all the side surfaces of the light emitting element 101 are covered with the transparent resin 108. That is, a part of the light emitted from the light emitting element 101 has a shorter distance through the transparent resin 108. As a result, light loss due to the transparent resin 108 is reduced, so that the light extraction efficiency of the light emitting device 100a is improved.
  • the light transmission member 107 may be a plate-like wavelength conversion member that converts the wavelength of light from the light emitting element 101.
  • the light transmission member 107 is configured to include a wavelength conversion member that converts the wavelength of part of the light from the light emitting element 101. Accordingly, for example, when a blue LED is used as the light emitting element 101, the light emitting device 100 that emits desired white light is manufactured by adjusting at least one of the type of the wavelength conversion member or the amount of the wavelength conversion member. It becomes possible. Further, by forming the light transmitting member 107 in a plate shape, the transparent resin 108 is formed so as to cover the light emitting element 101 more uniformly when the light emitting element 101 and the light transmitting member 107 are bonded via the transparent resin 108. It becomes possible to do.
  • the growth substrate 102 may be a GaN substrate.
  • the growth substrate 102 for example, a GaN substrate is employed. Accordingly, since the light emitting element 101 manufactured using the GaN substrate has improved light emission efficiency, the light emitting device 100 with improved light emission efficiency can be manufactured.
  • the transparent resin 108 may be a silicone resin.
  • the transparent resin 108 for example, a silicone resin having a high blue light transmittance is employed. Thereby, the light extraction efficiency of the light emitting device 100 manufactured using the silicone resin is improved.
  • the light emitting module 200 in the present embodiment includes a light emitting device 100 or 100a, a mounting substrate 203 on which the light emitting device 100 or 100a is mounted, and a reflective resin 201 disposed so as to cover a side surface of the light emitting device 100 or 100a.
  • the light emitting module 200 the light emitting device 100 or the light emitting device 100a with improved light extraction efficiency is employed. Thereby, the light extraction efficiency of the light emitting module 200 is improved.
  • the light emitting module of the present disclosure may be realized as an SMD (Surface Mount Device) type light emitting module.
  • the SMD type light emitting module includes, for example, a resin container having a recess, the light emitting device of the above-described embodiment mounted in the recess, and a reflective resin enclosed in the recess.
  • the light emitting module has been described using one light emitting device, but this is not restrictive.
  • a light emitting module in which a plurality of the light emitting devices of the above embodiment are mounted may be used, or the shape of the transparent resin of the present embodiment may be formed by bonding one light transmitting member to a plurality of light emitting elements. .
  • the light emitting element includes a plurality of n electrode bumps and p electrode bumps, but the number and arrangement of the electrode bumps formed on the light emitting element are not limited.
  • one n-electrode bump and one p-electrode bump may be formed on each light-emitting element, and each electrode bump may be disposed so as to be located diagonally to the mounting surface of the light-emitting element in a top view. .
  • the light emitting device and the light emitting module of the present disclosure are used as a backlight light source such as an illumination light source or a liquid crystal display device.

Abstract

発光装置(100)は、成長基板(102)と成長基板(102)の下方に位置する半導体層(103)とを有する発光素子(101)と、発光素子(101)の上面に配置された光透過部材(107)と、発光素子(101)の上面と光透過部材(107)の下面とを接着する透明樹脂(108)とを備え、光透過部材(107)の下面は、発光素子(101)の上面を内包し、透明樹脂(108)は、光透過部材(107)の下面と半導体層(103)の側面とを連続して覆う。発光素子(101)の側面を見た場合、透明樹脂(108)は、発光素子(101)の上面に平行な方向において、中央部に位置する半導体層(103)の被覆部(130)を覆い、且つ、側端に位置する半導体層(103)の露出部(120)を露出するように形成され、半導体層(103)の当該方向の長さの20%以上で半導体層(103)の側面を覆う。

Description

発光装置及び発光モジュール
 本開示は、発光装置及び発光モジュールに関する。
 近年、光源として、LED(Light Emitting Diode)又はLD(Laser Diode)等の半導体発光素子が利用されている。また、半導体発光素子を利用した発光装置として、発光素子の上面に蛍光体を含む波長変換層を搭載し、発光素子および波長変換層の側面が反射部材で覆われた発光装置がある(例えば、特許文献1参照)。
 特許文献1記載の発光装置では、基板と、基板上に実装された複数の発光素子と、発光素子上に配置された透明な透明材料層と、透明材料層の上に搭載された板状光学層と、複数の発光素子の外周に配置された反射材料層とを有する。上記特許文献1記載の発光装置において、板状光学層の下面は、複数の発光素子の上面を覆い、反射材料層は、複数の発光素子の外周側の側面の下端と板状光学層の側面とを結ぶ傾斜面を形成している。
 これにより、発光装置は、発光素子の側面から出射された光を発光素子の内部に戻さず、当該光を反射材料層の傾斜面で反射する。そのため、特許文献1記載の発光装置では、発光素子から出射される光量に対して発光装置の外部へ当該光が取り出される光量の比率である光取り出し効率は高い。
特開2012-4303号公報 特開2010-219324号公報
 しかしながら、特許文献1記載の発光装置では、発光素子から出射された光を十分に発光装置の外部へ取り出せていない問題がある。そこで、本開示は、光取り出し効率を向上することができる発光装置及び発光モジュールを提供する。
 本開示の一態様に係る発光装置は、成長基板と前記成長基板の下方に位置する半導体層とを有する発光素子と、前記発光素子の上面に配置された光透過部材と、前記発光素子の上面と前記光透過部材の下面とを接着する透明樹脂と、を備え、前記光透過部材の下面は、前記発光素子の上面を内包し、前記透明樹脂は、前記光透過部材の下面と前記半導体層の側面とを連続して覆い、前記発光素子の側面を見た場合、前記透明樹脂は、前記発光素子の上面に平行な方向において、中央部に位置する前記半導体層の被覆部を覆い、且つ、側端に位置する前記半導体層の露出部を露出するように形成され、前記透明樹脂は、前記被覆部において、前記半導体層の前記方向の長さの20%以上で前記半導体層の側面を覆う。
 つまり、発光装置を側面から見た場合に、透明樹脂は、半導体層の中央部に位置する発光強度の強い領域と、半導体層の側端部に位置する発光強度の弱い領域との間を透明樹脂の端縁が横切るように、発光素子の側面上に形成される。
 そのため、発光強度の強い領域から出射された光の一部は、発光素子の側面をすべて透明樹脂で覆った場合よりも、短距離で発光装置の外部へ導かれる。つまり、発光素子から出射される光の一部にとって透明樹脂を通過する距離は、発光素子の側面をすべて透明樹脂で覆った場合より短くなる。これにより、透明樹脂による光の損失が少なくなるため、発光装置の光取り出し効率は向上される。
 本開示に係る発光装置及び発光モジュールによれば、光取り出し効率を向上することができる。
図1は、実施の形態における発光装置を用いた発光モジュールの斜視図である。 図2は、図1の破線II-IIに沿って切断された発光モジュールの断面図である。 図3は、実施の形態における発光装置を示す上面図である。 図4Aは、図3の破線IVA-IVAに沿って切断された発光装置を示す断面図である。 図4Bは、図3の破線IVB-IVBに沿って切断された発光装置を示す断面図である。 図4Cは、図3の破線IVC-IVCに沿って切断された発光装置を示す断面図である。 図4Dは、図3の破線IVD-IVDに沿って切断された発光装置を示す断面図である。 図4Eは、図3の破線IVE-IVEに沿って切断された発光装置を示す断面図である。 図5は、実施例1における発光素子が透明樹脂で被覆される面を示す概略斜視図である。 図6は、実施例1における発光装置の上面図である。 図7は、図6の破線VII-VIIに沿って切断された発光装置を示す断面図である。 図8は、実施例1における発光装置の側面のSEM像である。 図9は、実施例2における発光素子が透明樹脂で被覆される面を示す概略斜視図である。 図10は、実施例2における発光装置を示す上面図である。 図11は、図10の破線XI-XIに沿って切断された発光装置を示す断面図である。 図12は、実施例2における発光装置の側面のSEM像である。 図13は、発光素子の発光強度を示す画像である。 図14は、透明樹脂の塗布量に対する発光素子の下端被覆率を示すグラフである。 図15は、透明樹脂の塗布量に対する発光素子の全光束の相対値を示すグラフである。
 以下、本開示の実施の形態について図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本開示は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素について説明される。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、実質的に同一の構成に対する重複説明は省略する場合がある。また、本明細書において、各図におけるY軸は、発光素子の各層が積層される方向であるとする。また、各図におけるX軸及びZ軸は、Y軸に直交する方向であるとする。また、X軸は、Z軸と直交する方向であるとする。また、本明細書において、Y軸の正方向を上方と定義する。
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではない。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 なお、本明細書において、平行とは、略平行すなわち製造上の誤差を含む。また、本明細書において、直交とは、略直交すなわち製造上の誤差を含む。
 (実施の形態)
 [1.発光装置及び発光モジュールの基本構成]
 図1及び図2を用いて、本実施の形態における発光装置及び当該発光装置を備える発光モジュールについて説明する。図1は、本実施の形態における発光装置を備える発光モジュールの斜視図である。図2は、図1の破線II-IIに沿って切断された発光モジュールの断面図である。
 図1及び図2に示すように、発光モジュール200は、実装基板203と、発光素子101と、光透過部材107と、透明樹脂108と、反射樹脂201と、ダム材202とを備える。
 実装基板203は、配線204が設けられた配線領域を有する基板である。なお、配線204は、発光素子101に電力を供給するための金属配線である。実装基板203の材料は、特に限定されないが、例えば、金属でもよいし、セラミックでもよいし、樹脂でもよい。セラミック基板の材料としては、例えば、酸化アルミニウム又は窒化アルミニウムなどが採用される。また、金属基板の材料としては、例えば、表面に絶縁膜が形成された、アルミニウム合金、鉄合金又は銅合金が採用される。樹脂基板としては、例えば、ガラスエポキシなどが採用される。
 発光素子101は、成長基板102に、半導体層103が形成された略直方体形状の半導体発光素子である。半導体層103は、n型半導体層(1型半導体層)104、活性層(発光層)105、p型半導体層(2型半導体層)106から構成される。具体的には、成長基板102には、n型半導体層104、活性層105、p型半導体層106が順に形成される。また、n型半導体層104にはn電極(図示せず)とn電極バンプ150が設けられ、p型半導体層106にはp電極(図示せず)とp電極バンプ140がそれぞれ設けられる。そのため、n電極バンプ150が設けられる部分には、p型半導体層106及び活性層105は形成されない。n電極バンプ150は、発光素子101の半導体層103側の角部と、上面視における当該角部の対角に位置する角部との2箇所に配置される。
 発光素子101の活性層105で発生した光は、成長基板102を通して光透過部材107側へ出射される。すなわち、発光素子101のn電極バンプ150及びp電極バンプ140が設けられた半導体層103側が実装基板203に実装される実装面(発光素子101の下面)114となる。また、発光素子101の成長基板102側が発光素子101から出射される光の光出射面(発光素子101の上面)113となる。つまり、発光素子101は、実装基板203上にフリップチップ実装(又は、フリップチップ接続)される。言い換えると、本実施の形態における発光モジュール200は、発光素子101がフリップチップ実装された発光モジュールである。
 なお、発光素子101は、光出射面(発光素子101の上面)113からだけではなく、側面及び実装面(発光素子101の下面)114からも光を出射するが、本明細書においては、発光素子101の上面を光出射面113として定義する。
 成長基板102の材料は、透光性を有していれば特に限定されないが、例えば、絶縁性のサファイア、GaN(窒化ガリウム)、SiC(炭化ケイ素)、AlGaN(窒化ガリウムアルミニウム)又はAlN(窒化アルミニウム)などである。なお、成長基板102の材料としては、発光効率の観点から、GaN基板が採用されてもよい。
 光透過部材107は、発光素子101から出射された光の一部を波長変換する波長変換部材を含む板状の部材である。波長変換部材の材料としては、特に限定されないが、例えば、YAG(YAl12)系蛍光体,CASN(CaAlSiN)系蛍光体、又はSiAlON系蛍光体などの公知の波長変換材料が採用される。光透過部材107は、波長変換部材を樹脂、セラミック又はガラスなどの材料に分散して形成される。
 光透過部材107は、透明樹脂108を介して、発光素子101の光出射面113に位置する成長基板102と接着される。つまり、光透過部材107の、発光素子101側の面が透明樹脂108を介して発光素子101と接着される接着面(光透過部材の下面)110となり、その反対側の面が発光装置100及び発光モジュール200の光が出射される側の面となる。
 透明樹脂108は、発光素子101と光透過部材107とを接着させる接着材である。透明樹脂108は、さらに、発光素子101の側面から出射された光を光透過部材107側(上方)に導く導光部材の機能も有する。透明樹脂108は、光透過部材107の接着面110と発光素子101の側面とを覆う。また、図2に示すように、透明樹脂108の発光素子101側とは反対側の面は、発光素子101の側面に対して傾斜するように当該側面を連続して覆う。つまり、本実施の形態における発光装置100には、発光素子101の側面から見た場合、発光素子101の側面に対して傾斜した透明樹脂108による傾斜面111が形成される。
 発光装置100の製造方法としては、まず、発光素子101の光出射面113に、所定の量の透明樹脂108をディスペンサにより塗布する。次に、透明樹脂108の上に、光透過部材107を載せ、透明樹脂108が発光素子101の光出射面113を全て覆うように上から押さえつける。すると、透明樹脂108は、光透過部材107の接着面110から延びるように発光素子101の側面を覆う。また、発光素子の側面から見た場合に、透明樹脂108の発光素子101側とは反対側の面は、表面張力により、発光素子101の側面に対して傾斜して形成される。本実施の形態における発光装置100及び発光モジュール200の詳細な製造方法については後述する。
 なお、透明樹脂108は、発光素子101から出射された光に対して透明な材料であればよく、特に限定されない。透明樹脂108としては、例えば、発光素子101から出射される光に対して光透過性の高いシリコーン樹脂が採用されてもよい。発光素子101から出射される光の波長は、例えば、近紫外領域から可視領域の光の波長である。
 反射樹脂201は、酸化チタンなどの光反射性の材料を添加したシリコーン樹脂などである。反射樹脂201は、発光素子101、透明樹脂108及び光透過部材107の側面を覆うように形成される。発光素子101の側面から出射された光は、透明樹脂108と反射樹脂201との界面で反射され、光透過部材107へと導かれる。
 ダム材202は、発光装置の製造工程において反射樹脂201をせき止めるために実装基板203上に発光素子101を囲むように設けられる。ダム材202には、例えば、絶縁性を有する熱硬化性樹脂または熱可塑性樹脂等が用いられる。より具体的には、ダム材202には、シリコーン樹脂、フェノール樹脂、エポキシ樹脂、ビスマレイミドトリアジン樹脂、またはポリフタルアミド(PPA)樹脂などが用いられる。なお、ダム材202は、樹脂以外の材料でもよい。ダム材202は、例えば、セラミックでもよい。
 [2-1.透明樹脂の形状]
 [2-1-1.実施例1]
 次に、図3~図4Eを用いて、実施例1における発光装置100の透明樹脂108の断面形状について説明する。図3は、光透過部材107と発光素子101との配置を示す上面図である。図4A~図4Eは、発光素子101、光透過部材107及び透明樹脂108の関係を示す断面図である。なお、図3~図4Eにおいて、実装基板203、n電極バンプ150、p電極バンプ140、反射樹脂201及びダム材202は記載していない。
 図3に示すように、光透過部材107と発光素子101とは、上面視において、各々の平面の中心が重なるように配置される。また、光透過部材107と発光素子101とは、上面視において、略正方形であり、各々の辺が平行になるように配置される。
 図4Aは、図3の発光素子101のZ方向の長さの約1/2の位置となる破線IVA-IVAに沿って切断された(つまり、上面視において発光素子101のほぼ中心を通る線に沿って切断された)断面図である。図4Aに示すように、透明樹脂108は、光透過部材107の接着面110から発光素子101の側面の下端までを覆うように形成される。また、透明樹脂108の発光素子101側とは反対側の面は、発光素子101の側面に対して傾斜するように形成される。つまり、発光素子101の側面から見た場合、発光素子101の側面に対して傾斜した透明樹脂108による傾斜面111が形成される。
 図4Bは、図3の発光素子101のZ方向の長さの約1/4の位置となる破線IVB―IVBに沿って切断された断面図である。図4Bに示すように、透明樹脂108は、発光素子101の側面の下端と光透過部材107の接着面110とを結ぶように形成される。つまり、透明樹脂108は、光透過部材107の接着面110から発光素子101の側面の下端までを、発光素子101の側面を覆うように形成される。また、透明樹脂108の発光素子101側とは反対側の面は、発光素子101の側面に対して傾斜するように形成される。つまり、発光素子101の側面から見た場合、発光素子101の側面に対して傾斜した透明樹脂108による傾斜面111が形成される。
 図4Cは、図3の発光素子101の側面近傍において、発光素子101側の位置を通るように破線IVC―IVCに沿って切断された断面図である。図4Cに示すように、透明樹脂108は、発光素子101の側端部(半導体層103又は成長基板102の側端部)と光透過部材107の接着面110とを結ぶように形成される。言い換えると、透明樹脂108は、光透過部材107の接着面110から発光素子101の側面の下端まで覆わない。つまり、透明樹脂108は、光透過部材107の接着面110から発光素子101の側面のY軸の負方向の途中までを連続して覆うように形成される。また、透明樹脂108の発光素子101側とは反対側の面は、発光素子101の側面に対して傾斜して形成される。つまり、発光素子101の側面から見た場合、発光素子101の側面に対して傾斜した透明樹脂108による傾斜面111が形成される。
 図4Dは、図3の発光素子101のすぐ外側を通るように破線IVD―IVDに沿って切断された断面図である。図4Dに示すように、側面視における透明樹脂108の外観形状は、光透過部材107側の上辺が長い略台形形状をしている。透明樹脂108の当該略台形形状の上辺は、光透過部材107の接着面110の位置にあり、当該上辺の長さは光透過部材107の接着面110のX方向の長さよりも短い。また、透明樹脂108の当該略台形形状の上辺の長さは、発光素子101の光出射面113のX方向の長さよりも長い。また、透明樹脂108の当該略台形形状の下辺は、凡そ発光素子101の側面の下端の位置に形成される。また、透明樹脂108の外観形状における当該略台形形状の下辺の長さは発光素子101の実装面114のX方向の長さよりも短い。つまり、透明樹脂108は、発光素子101の実装面114側の角部を覆わないように形成される。
 図4Eは、図3の光透過部材107の端部近傍に位置する破線IVE―IVEに沿って切断された断面図である。図4Eに示すように、透明樹脂108の外観形状は、光透過部材107側の上辺が長い略台形形状をしている。透明樹脂108の当該略台形形状の上辺は、光透過部材107の接着面110の位置にある。また、当該上辺の長さは、発光素子101の光出射面113のX方向の長さと同程度である。また、透明樹脂108の当該略台形形状の下辺は、発光素子101の実装面(下面)114よりも発光素子101の光出射面113に近い位置に形成される。また、透明樹脂108の当該略台形形状の下辺の長さは、発光素子101の実装面114のX方向の長さよりも短く、発光素子101の実装面114のX方向の長さの約2/3である。
 なお、透明樹脂108における発光素子101の側面の下端から光透過部材107の接着面110を結ぶ傾斜面111は、発光素子101の側面に対して傾斜していればよく、その形状は限定されない。透明樹脂108の傾斜面111は、平面であってもよいし、凸曲面であってもよいし、凹曲面であってもよい。ここで、側面に対して傾斜するとは、発光素子101の側面に垂直な方向に位置する透明樹脂108と反射樹脂201との界面となる傾斜面111が、当該側面に対して傾斜していることを意味する。
 また、図4A~図4Eにおいて、発光素子101の光出射面113と光透過部材107の接着面110とが透明樹脂108を介して離れて記載されている。上述のように、発光装置100の製造方法は、まず、発光素子101の光出射面113上に、所定の量の透明樹脂108をディスペンサにより塗布する。次に、透明樹脂108の上に、光透過部材107を載せ、透明樹脂108が発光素子101の光出射面113を全て覆うように上から押さえつける。この際に、発光素子101の光出射面113と光透過部材107の接着面110とが接するように光透過部材107を押さえつけてもよい。本実施の形態における図4A~図4E以外の図で示す発光装置100及び発光装置100aにおいては、発光素子101の光出射面113と光透過部材107の接着面110とが接するように記載する。
 次に、図5を用いて、実施例1の発光素子101の側面における、透明樹脂108で被覆される被覆部及び透明樹脂108で被覆されない露出部について説明する。なお、図5において、透明樹脂108を図示しないが、図5に示す発光素子101の斜線部が透明樹脂108で覆われる領域である。
 図5に示すように、発光素子101は、上方に成長基板102、下方に活性層105を含む半導体層103が配置されている。発光素子101は、側面に透明樹脂108(図示しない)が被覆する被覆部130が形成される。また、透明樹脂108は、発光素子101の4つの側面すべてにおいて、発光素子101の側面の上端から下端にかけて、発光素子101の側面を連続して被覆する。また、発光素子101の半導体層103側(実装面114側)の角部には、透明樹脂108が被覆していない露出部120が設けられる。つまり、略直方体である発光素子101の実装面114側の4つの角部は、透明樹脂108に覆われておらず露出されている。言い換えると、発光素子101の4つの側面のすべてにおいて、透明樹脂108は、上述した被覆部130と露出部120とが形成されるように発光素子101の側面を覆う。
 発光素子101の一側面において、透明樹脂108は、発光素子101の側面の下端における所定の範囲Bを完全に覆う。また、所定の範囲B以外の領域(露出部120)では、p型半導体層(2型半導体層)106、活性層(発光層)105、n型半導体層(1型半導体層)104を反射樹脂201が直接被覆する。言い換えると、発光素子101の側面を見た場合に、発光素子101の下端から成長基板102の側端を結ぶ透明樹脂108の端縁の領域外(つまり、発光素子101の実装面114側の角部)は、透明樹脂108によって被覆されない。透明樹脂108による発光素子101の被覆範囲の詳細については後述する。
 次に、図6~図8を用いて、実施例1における発光素子101の電極位置及び透明樹脂108による発光素子101の被覆領域について説明する。図6は、実施例1における発光装置100の上面図である。図7は、図6の破線VII-VIIに沿って切断された発光装置100を示す断面図である。図8は、実施例1における発光装置100の側面を見たSEM(Scanning Electron Microscope)像である。なお、図8において、破線で囲まれている範囲の内側が、透明樹脂108の形成された領域である。
 図6に示すように、上面視において、光透過部材107と発光素子101とは、各々の平面の中心が重なるように配置される。また、光透過部材107と発光素子101とは、上面視において、いずれも略正方形であり、各々の辺が略平行になるように配置される。また、発光素子101の実装面114には、2つのn電極バンプ150と23つのp電極バンプ140とが形成される。
 n電極バンプ150は、発光素子101の実装面114の角部に1つのn電極バンプ150が形成され、上面視における当該n電極バンプ150の対角の位置にもう一つのn電極バンプ150が形成される。図6に示すように、p電極バンプ140は、発光素子101の実装面114において、X方向及びZ方向にアレイ状に配列される。
 図7に示すように、n電極バンプ150が形成されている発光素子101の実装面114側の2箇所の角部と、n電極バンプ150が形成されていない2箇所の角部とにおいて、半導体層103は、透明樹脂108に覆われず露出している。また、発光素子101の側面を見た場合、透明樹脂108の端縁は、被覆部130の下端と成長基板102の側端とを結ぶように形成される。透明樹脂108の端縁は、さらに、成長基板102の側端から光透過部材107の下面まで発光素子101の側面に対して傾斜して延びるように形成される。つまり、透明樹脂108の発光素子101側とは反対側の面は、発光素子101の側面に対して傾斜した傾斜面111を有するように形成される。こうすることで、発光素子101の側面から出射された光は、傾斜面111で反射され、発光装置100の上方から出射される。つまり、発光素子101から出射される光を十分に取り出すことができるので、発光装置100の光取り出し効率は向上される。
 n電極バンプ150近傍の発光素子101は、活性層105が形成されていないことにより発光しないため、透明樹脂108に覆われず反射樹脂201に直接覆われていても、他の側面部分と比較して、光取り出し効率への影響が小さい。なお、図7において、発光素子101の実装面114側において、実装基板203に接している右端のバンプはn電極バンプ150であり、それ以外の4つのバンプはp電極バンプ140である。
 図8は、実施例1における発光装置100の側面を見たSEM像である。但し、図8に示す発光装置100は、反射樹脂201を配置する前のSEM像である。発光素子101の右側下方のn電極バンプ150近傍の角部及び左側下方のn電極バンプ150が形成されていない角部では、透明樹脂108に覆われていない半導体層103の領域が存在する。すなわち、発光素子101の側面を見た場合に、発光素子101の実装面114側の半導体層103の下端から成長基板102の側端に向けて、半導体層103を斜め方向に横切るように透明樹脂108が形成される。
 また、発光装置100の側面視における透明樹脂108の形状は、デジタルスコープでも確認できる。デジタルスコープで確認される像は光学顕微鏡像のため、透明樹脂108に薄く覆われている発光素子101の側面の下部に位置する透明樹脂108の端縁は、境界があるように線で確認される。当該境界があるように確認される線が、透明樹脂108の有無の境界(透明樹脂108の端縁)である。
 なお、上記実施例1において、1側面から見た場合の透明樹脂108の形状に関して説明した。しかしながら、発光素子101は略直方体であり、4つの側面を有する。上記実施例1の説明は、4つの側面のいずれを側面視した場合においても同様である。すなわち、発光素子101の側面を見た場合、発光素子101の上面に平行な方向(例えば、図8のX方向)において、透明樹脂108は、半導体層103を覆う中央側に位置する被覆部130と、半導体層103を覆わない端側に位置する露出部120とを形成する。
 [2-1-2.実施例2]
 次に、図9を用いて、実施例2の発光素子101における、透明樹脂108で被覆される被覆部について説明する。なお、図9において、透明樹脂108を図示しないが、図9に示す発光素子101の斜線部が透明樹脂108で覆われる領域である。
 図9に示すように、発光素子101は、上方に成長基板102が配置されており、且つ、下方に活性層105を含む半導体層103が配置されている。また、発光素子101の側面には、光透過部材107を接着するための透明樹脂108が被覆する被覆部131がある。
 また、図9に示すように、実施例2の透明樹脂108は、実施例1の透明樹脂108と同様に、発光素子101の上端から下端にかけて、発光素子101の側面を連続して被覆する。また、発光素子101の側面を見た場合に、発光素子101の実装面114側の端部には、被覆していない露出部121が設けられる。つまり、略直方体である発光素子101の実装面114側の角部は、透明樹脂108に覆われておらず露出されている。なお、発光素子101の4つの側面のすべてにおいて、透明樹脂108は、発光素子101の側面に上述した被覆部131と露出部121とが形成されるように発光素子101の側面を覆う。
 ここで、実施例2における発光素子101は、実施例1の発光素子101とは異なり、発光素子101の実装面114側において、透明樹脂108に覆われない露出される角部と、透明樹脂108に覆われる露出されない角部との両方が存在する。
 発光素子101の一側面において、透明樹脂108は、発光素子101の下端を所定の範囲Bで完全に覆う。また、所定の範囲B以外の領域(露出部121)では、p型半導体層106、活性層105、n型半導体層104を反射樹脂201が直接被覆する。言い換えると、発光素子101の側面を見た場合に、発光素子101の下端から成長基板102の側端を結ぶ透明樹脂108の端縁の領域外(つまり、発光素子101の実装面114側の角部)は、透明樹脂108によって被覆されない。透明樹脂108による発光素子101の被覆範囲の詳細については後述する。
 次に、図10~図12を用いて、実施例2における発光素子101の電極位置と透明樹脂108による発光素子101の被覆領域について説明する。図10は、実施例2における発光装置100aを示す上面図である。図11は、図10の破線XI-XIに沿って切断された発光装置100aを示す断面図である。図12は、実施例2における発光装置100aの側面のSEM像である。なお、図12において、破線で囲まれている範囲の内側が、透明樹脂108の形成された領域である。
 図10に示すように、上面視において、光透過部材107と、発光素子101とは、各々の平面の中心が重なるように配置される。また、光透過部材107と発光素子101とは、上面視において、いずれも略正方形であり、各々の辺が略平行になるように配置される。また、発光素子101の実装面114には、2つのn電極バンプ150と23つのp電極バンプ140とが形成される。
 n電極バンプ150は、発光素子101の実装面114の角部に1つのn電極バンプ150が形成され、上面視における当該n電極バンプ150の対角の位置にもう一つのn電極バンプ150が形成される。図10に示すように、p電極バンプ140は、発光素子101の実装面114において、X方向及びZ方向にアレイ状に配列される。
 図11に示すように、実施例2における発光装置100aは、実施例1における発光装置100とは異なり、n電極バンプ150が形成される発光素子101の実装面114側の角部のみにおいて、半導体層103は透明樹脂108に覆われずに露出している。実施例2において、n電極バンプ150が形成されていない角部は、透明樹脂108に完全に被覆されている。また、発光素子101の側面を見た場合、透明樹脂108の端縁は、被覆部131の下端と成長基板102の側端とを結ぶように形成される。透明樹脂108の端縁は、さらに、成長基板102の側端から光透過部材107の下面まで発光素子101の側面に対して傾斜して延びるように形成される。つまり、透明樹脂108の発光素子101側とは反対側の面は、発光素子101の側面に対して傾斜した傾斜面111を有するように形成される。こうすることで、発光素子101の側面から出射された光は、傾斜面111で反射され、発光装置100の上方から出射される。つまり、発光素子101から出射される光を十分に取り出すことができるので、発光装置100aの光取り出し効率は向上される。
 n電極バンプ150近傍の発光素子101は、活性層105が形成されていないことにより発光しないため、透明樹脂108に覆われず反射樹脂201に直接覆われていても、他の側面部分と比較して、光取り出し効率への影響が小さい。なお、図11において、発光素子101の実装面114側において、実装基板203に接している右端のバンプはn電極バンプ150であり、それ以外の4つのバンプはp電極バンプ140である。
 図12は、実施例2の発光装置100aの側面を見たSEM像である。但し、図12の発光装置100aは、反射樹脂201を配置する前のSEM像である。図12の発光素子101の右側下方のn電極バンプ150が配置された角部のみに透明樹脂108に覆われていない半導体層103の領域が存在する。すなわち、発光素子101の側面を見た場合、n電極バンプ150が配置された角部近傍のみに、半導体層103の下端から成長基板102の側端に向けて、半導体層103を斜め方向に横切るように透明樹脂108の端縁が形成される。言い換えると、発光素子101のn電極バンプ150が配置された角部のみが、透明樹脂108に覆われない露出部121となる。
 なお、図12において、発光素子101の実装面114において、実装基板203に接している紙面右端のバンプはn電極バンプ150であり、それ以外の4つのバンプはp電極バンプ140である。
 また、上記実施例2において、一側面から見た場合の透明樹脂108の形状に関して説明した。しかしながら、発光素子101は略直方体であり、4つの側面を有する。すなわち、上記実施例2の説明は、4つの側面のいずれを側面視した場合においても露出部121の位置以外は同様である。すなわち、側面視において、発光素子101の光出射面113に平行な方向における半導体層103は、透明樹脂108に覆われている被覆部131と、透明樹脂108に覆われていないいずれか一方の片端側に位置する露出部121とがある。
 実施例2においては、発光素子101の実装面114には、2つのn電極バンプ150が形成される。発光素子101の実装面114の角部に1つのn電極バンプ150が形成され、上面視における当該n電極バンプ150の対角の位置に配置にもう一つのn電極バンプ150が配置される。n電極バンプ150が形成されている発光素子101の実装面114側の2箇所の角部は、透明樹脂108に覆われず露出している。
 [3.透明樹脂の下端長さ]
 次に、図13~図15を用いて、本実施の形態に係る発光装置における透明樹脂108が発光素子101の側面の下端を覆う被覆領域について説明する。
 図13は、反射樹脂201で発光素子101、透明樹脂108及び光透過部材107の側面を覆う前の、側面視における発光素子101の発光強度の測定結果である。図14は、反射樹脂201で発光素子101、透明樹脂108及び光透過部材107の側面を覆った後の、発光素子101上に塗布した透明樹脂108の量と、透明樹脂108の発光素子101の側面の下端被覆率の関係を示すグラフである。図15は、発光素子101の光出射面113上に塗布した透明樹脂108量と、発光装置100から発せられる光の全光束の関係を示すグラフである。なお、図15は、透明樹脂108の塗布量が8nLの場合の全光束を100%としたときの、透明樹脂108の塗布量に対する全光束の相対値を示すグラフである。また、発光素子101に投入する電力量は、透明樹脂108の各塗布量の条件で全て同一の電力量である。
 図13に示す発光素子101は、図の下側(Y軸の負方向)が半導体層103側であり、図の上側(Y軸の正方向)が成長基板102側である。また、図13は、長さを示す補助線以外の白色部分が発光部分であり、白みの強い部分の発光強度が高いと解釈される。図13に示すように、発光素子101は半導体層103側の発光強度が成長基板102側の発光強度よりも高い。また、側面視において、半導体層103における発光素子101の側端部の方が、中央部よりも発光強度が低くなる。
 図14に示すように、透明樹脂108の塗布量を増やすことで、発光素子101の後述する下端被覆率は上昇する。透明樹脂108の塗布量が12nLの場合に、発光素子101の下端被覆率が100%となる。つまり、発光素子101の下端被覆率が100%の状態とは、発光素子101の側面を見た場合に、発光素子101の側面の下端が透明樹脂108によって全て覆われた状態である。
 図15に示すように、透明樹脂108の塗布量を徐々に増やすことで、全光束は向上する。しかしながら、透明樹脂108の塗布量が8nLを超えると、全光束は低下する。
 図14及び図15に示すように、透明樹脂108の塗布量が8nLの場合の全光束を100%としたとき、透明樹脂108の塗布量が約6nL以上9nL以下の範囲で、約95%以上の全光束が得られる。つまり、透明樹脂108の下端被覆率が約20%以上90%以下の範囲で、約95%以上の全光束が得られる。
 ここで、下端被覆率とは、側面視において、発光素子101の側面の下端の長さAと、当該下端が透明樹脂108によって被覆される領域の長さBとを用いて、下記の式(1)として定義される。
 (下端被覆率)=B/A    式(1)
 以上のことから、上述した下端被覆率を20%以上90%以下とした場合には、完全に下端を覆った場合(下端被覆率が100%の場合)よりも全光束は大きい。つまり、下端被覆率を20%以上90%以下とした場合には、完全に下端を覆った場合よりも、発光素子101から出射された光の光取り出し効率は向上される。
 上述したように、下端被覆率を20%以上90%以下とした場合、発光素子101の側面を見たとき、透明樹脂108の端縁は、被覆部130の下端と成長基板102の側端とを結ぶように形成される。具体的には、発光素子101の側面を見た場合において、透明樹脂108の端縁は、発光素子101の側面の下端から、成長基板102の側端へ、発光素子101の上面に近付くように傾斜して形成される。つまり、透明樹脂108の端縁は、半導体層103の側面において、発光強度の強い領域と発光強度の弱い領域との間を横切るように形成される。これは、半導体層103の側面において、完全に下端を覆った場合よりも、発光強度の強い領域のより近くに光反射面(透明樹脂108と反射樹脂201との界面)が形成されたことを意味する。
 こうすることで、半導体層103の側面における発光強度の強い領域から出射された光の一部は、発光素子101の側面をすべて透明樹脂108で覆った場合よりも、より短距離で発光装置100の外部へ導かれる。つまり、発光素子101の側面から出射される光の一部にとって透明樹脂108を通過する距離は、発光素子101の側面をすべて透明樹脂108で覆った場合より短くなる。これにより、透明樹脂108による光の損失が少なくなるため、発光装置100の光取り出し効率は向上される。
 なお、透明樹脂108は、発光素子101の側面の下端までを完全に覆わなくてもよい。具体的には、透明樹脂108は、発光素子101の側面の下端までを完全に覆わず、且つ、半導体層103を覆うように形成されていてもよい。さらには、透明樹脂108は、発光素子101の側面の下端までを完全に覆わず、且つ、活性層105を覆うように形成されていてもよい。
 このような場合においても、発光素子101の光出射面113に平行な方向において、中央部に位置する被覆部130と、側端に位置する露出部120とが形成されるように、半導体層103の側面に透明樹脂108が形成される。また、発光素子101の光出射面113に平行な方向において、透明樹脂108は、発光素子101の光出射面113に平行な方向における半導体層103の長さの20%以上を覆うように、半導体層103の側面に形成される。
 こうすることで、半導体層103の側面における発光強度の強い領域から出射された光の一部は、発光素子101の側面をすべて透明樹脂108で覆った場合よりも、短距離で発光装置100の外部へ導かれる。つまり、発光素子101の側面から出射される光の一部にとって透明樹脂108を通過する距離は、発光素子101の側面をすべて透明樹脂108で覆った場合より短くなる。これにより、透明樹脂108による光の損失が少なくなるため、発光装置100の光取り出し効率は向上される。
 [4.製造方法]
 次に、本実施の形態における発光装置100及び発光モジュール200の製造方法の一具体例を示す。
 [4-1.サブマウント準備~保護素子実装工程]
 まず、表面に導電パターンが形成された実装基板(サブマウント)203を準備する。実装基板203は、焼成により作製されたAlN基板に、メッキ法などでマトリックス状に取り出し、電極と配線204電極のパターンとを形成したものを用いる。配線204電極上には、発光素子101を接続するための金属パッドが形成される。多数のLEDチップ(発光素子)101をひとつにパッケージ化にする場合、フリップチップ接続で直列接続又は並列接続が出来るように適宜配線パターンを設計しておく。
 なお、保護素子などを実装する場合、実装基板203に保護素子をフリップチップ方式で金属バンプを用いて超音波接続する。保護素子は、過度な電圧が発光素子101に印加されないようにするためのものであり、発光素子と電気的に接続される。保護素子は、例えば、ツェナーダイオード(ZD)、ダイオード、バリスタ、コンデンサ又は抵抗素子などである。
 [4-2.発光素子実装工程]
 次に、発光素子101の実装基板203への実装工程について説明する。実装基板203に実装される発光素子101としては、例えば、GaN基板に窒化物化合物半導体を形成した青色LEDチップが採用される。発光素子101には、形成された電極となる金属パッド上に金属バンプが形成される。さらに、発光素子101は、成長基板102側を上にしてフリップチップ接続で実装基板203上に超音波接続される。
 ここで、発光素子101は、成長基板102と半導体層103とを備え、n側電極とp側電極とが同じ面(例えば、図2の実装面114)に形成される。成長基板102は、半導体層103を保持する役目を担う。また、成長基板102においては、半導体層103が積層された面とは反対側に位置する面が光を出射する光出射面となる。
 なお、成長基板102の裏面(つまり、実装した発光素子101としては上面となる光出射面113)には、エッチング加工、ブラスト加工、レーザー加工又はダイシングブレード加工により微小な凹凸が形成されてもよい。また、光出射面113には、光出射面113を粗面とするマイクロテクスチャ構造が形成されてもよい。こうすることで、発光素子101からの光取り出し効率は向上される。なお、成長基板102がサファイア等のGaNより低屈折率である成長基板102を材料とする場合には、光出射面113は平坦面で形成されてもよい。
 [4-3.光透過部材接着工程]
 次に、光透過部材107を発光素子101に接着する工程について説明する。まず、発光素子101の光出射面113の中央近傍に、所定の量のシリコーン樹脂系の透明樹脂108をディスペンサにより塗布する。さらに、透明樹脂108の上に、蛍光体(波長変換部材)が分散された光透過部材107を載せ、透明樹脂108が発光素子101の光出射面113を全て覆うように上から押さえつける。すると、光透過部材107における透明樹脂108が接着される接着面110から延びるように発光素子101の側面を覆う。また、表面張力により、発光素子101の側面に対して傾斜して透明樹脂108が形成される。その後、例えば、150℃のオーブンで3時間加熱して透明樹脂108を硬化させる。
 なお、発光素子101の光出射面113上に滴下する透明樹脂108の量及び位置を調整することにより、発光素子101の下端被覆率を変化させることができる。透明樹脂108の塗布は、例えば、ディスペンス法により行われる。ディスペンス法では、透明樹脂108の塗布量をディスペンサに加えるエア量で制御できる。当該形成された透明樹脂108の下面の直径を計測し、その結果に基づいて、透明樹脂108の塗布量は制御されてもよい。また、透明樹脂108の塗布した後、側面視において、発光素子101の上に略半球状に透明樹脂108が形成される。
 ディスペンス法では、中空ノズルから吐出された透明樹脂108の外形が円状に広がるので、光透過部材107を上から押し付けた場合に、透明樹脂108は同心円状に広がる。発光素子101の上面視形状が略正方形であることから、発光素子101の光出射面113からはみ出る透明樹脂108量は、側面視において、発光素子101の光出射面113に平行な方向における発光素子101の側面の中央部の方が端部より多くなる。その結果、発光素子101の側面を覆う透明樹脂108は、側面の中央部の方が側面の端部より遠くまで(より下方まで)覆う。そのため、透明樹脂108の塗布量を調整することにより、発光素子101の光出射面113に平行な方向における発光素子101の側面の中央部において、発光素子101の側面の下端まで透明樹脂108で覆うことができる。
 また、ディスペンス法では、透明樹脂108の塗布量を調整することにより、発光素子101の実装面114側の角部において、発光素子101の側面が露出する構造を形成することが出来る。その露出部120の形状は、側面視おいて、例えば図5に示すように、略三角形となる。また、形成された透明樹脂108を側面から観測すると、透明樹脂108の発光素子101側とは反対側の面は、発光素子101の側面に対して傾斜して形成される。
 なお、光透過部材107を接着させた後の透明樹脂108の形状は、透明樹脂108の塗布量又は透明樹脂108を塗布する位置により制御される。例えば、露出部120を形成したい発光素子101の実装面114側の角部の直上に位置する透明樹脂108の塗布量を、他の部分の塗布量より減らす。こうすることで、図7又は図9に示すように、光透過部材107を接着させた後の透明樹脂108の形状は、発光素子101の実装面114側の角部が露出した形状となる。また、例えば、発光素子101の実装面114側の角部の少なくとも1つが露出した形状とすることもできる。
 また、透明樹脂108の塗布は、スタンプ法を用いてもよく、ディスペンス法に限定されない。スタンプ法の場合には、スタンプ台の形状によって、発光素子101上に吐出される透明樹脂108の形状が制御できる。そのため、例えば、スタンプ台の形状を四角形状又はX字形状などにすることにより、光透過部材107を上部から押圧して発光素子101と接着させた場合に、発光素子101の端部での透明樹脂108のはみ出し量を制御することができる。つまり、発光素子101の下端被覆率は制御され得る。
 [4-4.ダム材形成工程]
 次に、ダム材202の形成工程について説明する。発光モジュール200は、ダム材202を発光素子101の周囲に環状に形成し、形成されたダム材202の環の内側に反射樹脂201を注入して作製される。発光素子101の周囲を反射樹脂201で覆うことにより、発光素子101又は光透過部材107などの側面から出た光を発光モジュール200の光出射方向(上方)へ反射させる。これにより、発光モジュール200の光取り出し効率は向上される。さらに、例えば、150℃程度のオーブンで約3時間加熱し、ダム材202と反射樹脂201とを硬化させる。以上の工程により、発光モジュール200は作製される。
 [5.効果など]
 以上のように、本実施の形態において、発光装置100は、成長基板102と、成長基板102の下方に位置する半導体層103とを有する発光素子101と、発光素子101の上面に配置された光透過部材107とを備える。また、発光装置101は、発光素子101の上面と光透過部材107の下面とを接着する透明樹脂108とを備える。また、光透過部材107の下面は、発光素子101の上面を内包する。また、透明樹脂108は、光透過部材107の下面と半導体層103の側面とを連続して覆う。ここで、発光素子101の側面を見た場合、透明樹脂108は、発光素子101の上面に平行な方向において、中央部に位置する半導体層103の被覆部130を覆い、且つ、側端に位置する半導体層103の露出部120を露出するように形成される。また、発光素子101の側面を見た場合、透明樹脂108は、被覆部130において、半導体層103の発光素子101の上面に平行な方向の長さの20%以上で半導体層103の側面を覆う。
 つまり、透明樹脂108の端縁は、発光素子101の側面を見た場合に、半導体層103の中央部に位置する発光強度の強い領域と、半導体層103の側端に位置する発光強度の弱い領域との間を横切るように、発光素子101の側面上に形成される。そのため、発光強度の強い領域から出射された光の一部は、発光素子101の側面をすべて透明樹脂108で覆った場合よりも短距離で発光装置100の外部へ導かれる。つまり、発光素子101から出射される光の一部は、透明樹脂108を通過する距離がより短くなる。これにより、透明樹脂108による光の損失が少なくなるため、発光装置100の光取り出し効率は向上される。
 また、発光素子101の側面を見た場合、透明樹脂108の端縁は、被覆部130の下端と成長基板102の側端とを結び、さらに光透過部材107の下面まで発光素子101の側面に対して傾斜して延びてもよい。
 つまり、透明樹脂108の端縁は、発光素子101の側面を見た場合に、半導体層103の発光強度の強い領域と、半導体層103の発光強度の弱い領域との間を、発光素子101の下端から側端へ斜め方向に横切るように、発光素子101の側面上に形成される。そのため、発光強度の強い領域から出射された光の一部は、発光素子101の側面をすべて透明樹脂108で覆った場合よりも短距離で発光装置100の外部へ導かれる。つまり、発光素子101から出射される光の一部は、透明樹脂108を通過する距離がより短くなる。これにより、透明樹脂108による光の損失が少なくなるため、発光装置100の光取り出し効率は向上される。
 また、透明樹脂108の発光素子101とは反対側の面は、発光素子101の側面に対して傾斜して形成される。つまり、透明樹脂108は、発光素子101の側面に対して傾斜した傾斜面111が形成される。これにより、発光装置100の光取り出し効率は向上される。
 また、発光素子101の側面を見た場合、透明樹脂108は、被覆部130において、半導体層103の発光素子101の上面に平行な方向の長さの20%以上で前記半導体層の下端を覆ってもよい。
 つまり、発光素子101の側面に形成される被覆部130における下端被覆率は、20%以上でもよい。これにより、発光装置100の光取り出し効率は向上される。
 また、発光素子101の側面を見た場合、透明樹脂108は、被覆部130において、半導体層103の発光素子101の上面に平行な方向の長さの90%以下で半導体層103の下端を覆ってもよい。
 つまり、発光素子101の側面に形成される被覆部130における下端被覆率は、90%以下でもよい。これにより、発光装置100の光取り出し効率は向上される。
 また、発光素子101の側面を見た場合、露出部120は、半導体層103における発光素子101の上面に平行な方向の両端にあってもよい。
 つまり、透明樹脂108の端縁は、発光素子101の側面を見た場合に、半導体層103の中央部に位置する発光強度の強い領域と、半導体層103の側端に位置する発光強度の弱い領域との間を横切るように、発光素子101の側面上に形成される。そのため、発光強度の強い領域から出射された光の一部は、発光素子101の側面をすべて透明樹脂108で覆った場合よりも短距離で発光装置100の外部へ導かれる。つまり、発光素子101から出射される光の一部は、透明樹脂108を通過する距離がより短くなる。これにより、透明樹脂108による光の損失が少なくなるため、発光装置100の光取り出し効率は向上される。
 また、発光素子101の側面を見た場合、露出部121は、半導体層103における発光素子101の上面に平行な方向の片端のみにあってもよい。
 つまり、透明樹脂108の端縁は、発光素子101の側面を見た場合に、半導体層103の中央部に位置する発光強度の強い領域と、半導体層103の側端に位置する発光強度の弱い領域との間を横切るように、発光素子101の側面上に形成される。そのため、発光強度の強い領域から出射された光の一部は、発光素子101の側面をすべて透明樹脂108で覆った場合よりも短距離で発光装置100の外部へ導かれる。つまり、発光素子101から出射される光の一部は、透明樹脂108を通過する距離がより短くなる。これにより、透明樹脂108による光の損失が少なくなるため、発光装置100aの光取り出し効率は向上される。
 また、光透過部材107は、発光素子101からの光を波長変換する板状の波長変換部材であってもよい。
 つまり、光透過部材107は、発光素子101からの光の一部を波長変換する波長変換部材を含んで構成される。これにより、例えば、発光素子101として青色LEDが用いられる場合に、波長変換部材の種類又は当該波長変換部材の量の少なくとも一方を調整することで、所望の白色光を発する発光装置100を作製することが可能となる。また、光透過部材107を板状とすることで、透明樹脂108を介して発光素子101と光透過部材107とを接着させる際に、より均一に透明樹脂108が発光素子101を覆うように形成することが可能となる。
 また、成長基板102は、GaN基板でもよい。
 つまり、成長基板102としては、例えば、GaN基板が採用される。これにより、GaN基板を用いて作製された発光素子101は、発光効率が向上されるため、発光効率が向上された発光装置100を作製することが可能となる。
 また、透明樹脂108は、シリコーン樹脂でもよい。
 つまり、透明樹脂108としては、例えば、青色光の光透過率が高いシリコーン樹脂が採用される。これにより、シリコーン樹脂を用いて作製された発光装置100は、光取り出し効率が向上される。
 また、本実施の形態における発光モジュール200は、発光装置100又は100aと、発光装置100又は100aが実装される実装基板203と、発光装置100又は100aの側面を覆うように配置される反射樹脂201とを備える。
 つまり、発光モジュール200としては、光取り出し効率が向上された発光装置100又は発光装置100aが採用される。これにより、発光モジュール200の光取り出し効率は向上される。
 以上、一つ又は複数の態様に係る発光装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、又は異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
 例えば、上記実施の形態では、COB構造の発光モジュールについて説明したが、本開示の発光モジュールは、SMD(Surface Mount Device)型の発光モジュールとして実現されてもよい。なお、SMD型の発光モジュールは、例えば、凹部を有する樹脂製の容器と、凹部の中に実装された上記実施の形態の発光装置と、凹部内に封入された反射樹脂とを備える。
 また、例えば、上記実施の形態では1つの発光装置を用いて発光モジュールについて説明したがこの限りではない。上記実施の形態の発光装置が複数実装された発光モジュールとしてもよいし、複数の発光素子に一つの光透過部材を接着させることで、本実施の形態の透明樹脂の形状が形成されてもよい。
 また、例えば、上記実施の形態では、発光素子はn電極バンプ及びp電極バンプをそれぞれ複数個備えたが、当該電極バンプが発光素子に形成される数及び配置は限定されない。例えば、n電極バンプとp電極バンプとは、発光素子にそれぞれ一つずつ形成され、且つ、上面視における発光素子の実装面の対角に位置するようにそれぞれの電極バンプが配置されてもよい。
 本開示の発光装置及び発光モジュールは、照明用光源又は液晶表示装置などのバックライト光源として利用される。
 100、100a 発光装置
 101 発光素子(LEDチップ)
 102 成長基板
 103 半導体層
 104 n型半導体層(1型半導体層)
 105 活性層(発光層)
 106 p型半導体層(2型半導体層)
 107 光透過部材
 108 透明樹脂
 110 接着面
 111 傾斜面
 113 光出射面
 114 実装面
 120、121 露出部
 130、131 被覆部
 140 p電極バンプ
 150 n電極バンプ
 200 発光モジュール
 201 反射樹脂
 202 ダム材
 203 実装基板(サブマウント)
 204 配線

Claims (10)

  1.  成長基板と前記成長基板の下方に位置する半導体層とを有する発光素子と、
     前記発光素子の上面に配置された光透過部材と、
     前記発光素子の上面と前記光透過部材の下面とを接着する透明樹脂と、
     を備え、
     前記光透過部材の下面は、前記発光素子の上面を内包し、
     前記透明樹脂は、前記光透過部材の下面と前記半導体層の側面とを連続して覆い、
     前記発光素子の側面を見た場合、前記透明樹脂は、前記発光素子の上面に平行な方向において、中央部に位置する前記半導体層の被覆部を覆い、且つ、側端に位置する前記半導体層の露出部を露出するように形成され、
     前記透明樹脂は、前記被覆部において、前記半導体層の前記方向の長さの20%以上で前記半導体層の側面を覆う
     発光装置。
  2.  前記発光素子の側面を見た場合、前記透明樹脂の端縁は、前記被覆部の下端と前記成長基板の側端とを結び、さらに前記光透過部材の下面まで前記発光素子の側面に対して傾斜して延びる
     請求項1に記載の発光装置。
  3.  前記発光素子の側面を見た場合、前記透明樹脂は、前記被覆部において、前記半導体層の前記方向の長さの20%以上で前記半導体層の下端を覆う
     請求項1または2に記載の発光装置。
  4.  前記発光素子の側面を見た場合、前記透明樹脂は、前記被覆部において、前記半導体層の前記方向の長さの90%以下で前記半導体層の下端を覆う
     請求項1から3のいずれか1項に記載の発光装置。
  5.  前記発光素子の側面を見た場合、前記露出部は、前記半導体層における前記方向の両端にある
     請求項1から4のいずれか1項に記載の発光装置。
  6.  前記発光素子の側面を見た場合、前記露出部は、前記半導体層における前記方向の片端のみにある
     請求項1から4のいずれか1項に記載の発光装置。
  7.  前記光透過部材は、前記発光素子からの光を波長変換する板状の波長変換部材である
     請求項1から6のいずれか1項に記載の発光装置。
  8.  前記成長基板は、GaN基板である
     請求項1から7のいずれか1項に記載の発光装置。
  9.  前記透明樹脂は、シリコーン樹脂である
     請求項1から8のいずれか1項に記載の発光装置。
  10.  請求項1から9のいずれか1項に記載の発光装置と、
     前記発光装置が実装される実装基板と、
     前記発光装置の側面を覆うように配置される反射樹脂と、を備える
     発光モジュール。
PCT/JP2016/003374 2015-07-22 2016-07-19 発光装置及び発光モジュール WO2017013869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16827436.3A EP3327804B1 (en) 2015-07-22 2016-07-19 Light emitting device and light emitting module
JP2017529456A JP6575828B2 (ja) 2015-07-22 2016-07-19 発光装置及び発光モジュール
US15/874,422 US10355180B2 (en) 2015-07-22 2018-01-18 Light emitting device and light emitting module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562195758P 2015-07-22 2015-07-22
US62/195,758 2015-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/874,422 Continuation US10355180B2 (en) 2015-07-22 2018-01-18 Light emitting device and light emitting module

Publications (1)

Publication Number Publication Date
WO2017013869A1 true WO2017013869A1 (ja) 2017-01-26

Family

ID=57834315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003374 WO2017013869A1 (ja) 2015-07-22 2016-07-19 発光装置及び発光モジュール

Country Status (4)

Country Link
US (1) US10355180B2 (ja)
EP (1) EP3327804B1 (ja)
JP (1) JP6575828B2 (ja)
WO (1) WO2017013869A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148075A (ja) * 2017-03-07 2018-09-20 スタンレー電気株式会社 半導体発光装置及び半導体発光装置の製造方法
JP6484745B1 (ja) * 2018-02-27 2019-03-13 ルーメンス カンパニー リミテッド 発光素子パッケージの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4273944A3 (en) * 2015-04-02 2024-02-07 Nichia Corporation Light emitting device and method for manufacturing the same
KR102409963B1 (ko) * 2017-08-22 2022-06-15 삼성전자주식회사 솔더 범프를 구비한 반도체 발광소자 패키지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219324A (ja) * 2009-03-17 2010-09-30 Nichia Corp 発光装置
JP2012004303A (ja) * 2010-06-16 2012-01-05 Stanley Electric Co Ltd 発光装置およびその製造方法
JP2015076456A (ja) * 2013-10-07 2015-04-20 豊田合成株式会社 発光装置および発光装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033823A (ja) * 2010-08-02 2012-02-16 Stanley Electric Co Ltd 発光装置およびその製造方法
JP6099901B2 (ja) * 2012-08-23 2017-03-22 スタンレー電気株式会社 発光装置
JP6097084B2 (ja) * 2013-01-24 2017-03-15 スタンレー電気株式会社 半導体発光装置
JP2014175362A (ja) * 2013-03-06 2014-09-22 Toshiba Corp 半導体発光素子及びその製造方法
JP6164038B2 (ja) * 2013-10-16 2017-07-19 豊田合成株式会社 発光装置
JP6187277B2 (ja) * 2014-01-21 2017-08-30 豊田合成株式会社 発光装置及びその製造方法
KR102282141B1 (ko) * 2014-09-02 2021-07-28 삼성전자주식회사 반도체 발광소자
JP6065135B2 (ja) 2015-04-02 2017-01-25 日亜化学工業株式会社 発光装置
EP4273944A3 (en) 2015-04-02 2024-02-07 Nichia Corporation Light emitting device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219324A (ja) * 2009-03-17 2010-09-30 Nichia Corp 発光装置
JP2012004303A (ja) * 2010-06-16 2012-01-05 Stanley Electric Co Ltd 発光装置およびその製造方法
JP2015076456A (ja) * 2013-10-07 2015-04-20 豊田合成株式会社 発光装置および発光装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327804A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148075A (ja) * 2017-03-07 2018-09-20 スタンレー電気株式会社 半導体発光装置及び半導体発光装置の製造方法
JP7046493B2 (ja) 2017-03-07 2022-04-04 スタンレー電気株式会社 半導体発光装置及び半導体発光装置の製造方法
JP6484745B1 (ja) * 2018-02-27 2019-03-13 ルーメンス カンパニー リミテッド 発光素子パッケージの製造方法
JP2019149533A (ja) * 2018-02-27 2019-09-05 ルーメンス カンパニー リミテッド 発光素子パッケージの製造方法
US10461231B2 (en) 2018-02-27 2019-10-29 Lumens Co., Ltd. Method for fabricating LED package

Also Published As

Publication number Publication date
EP3327804B1 (en) 2019-04-03
US20180204989A1 (en) 2018-07-19
JP6575828B2 (ja) 2019-09-18
US10355180B2 (en) 2019-07-16
JPWO2017013869A1 (ja) 2018-05-10
EP3327804A4 (en) 2018-05-30
EP3327804A1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US10043955B2 (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
JP6248431B2 (ja) 半導体発光装置の製造方法
TWI712181B (zh) 發光裝置、整合式發光裝置、及發光模組
US11411148B2 (en) Light-emitting diode package with light-altering material
US8946749B2 (en) Semiconductor light emitting device
JP6387954B2 (ja) 波長変換部材を用いた発光装置の製造方法
JP5990651B2 (ja) オプトエレクトロニクス部品およびその製造方法
US9368700B2 (en) Optoelectronic component and method for producing an optoelectronic component
US11081626B2 (en) Light emitting diode packages
TWI590495B (zh) 藉由透明分隔物與發光二極體隔開之磷光體
US10355180B2 (en) Light emitting device and light emitting module
KR102227774B1 (ko) 발광다이오드 패키지 제조방법
JP2019016821A (ja) 半導体発光装置
JP2015216153A (ja) 発光装置
US11101411B2 (en) Solid-state light emitting devices including light emitting diodes in package structures
JP6432654B2 (ja) 半導体発光装置
JP6978708B2 (ja) 半導体発光装置
US11791441B2 (en) Support structures for light emitting diode packages
US20230260972A1 (en) Arrangements of multiple-chip light-emitting diode packages
JP2022010198A (ja) 半導体発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016827436

Country of ref document: EP