WO2017013772A1 - バスバーユニット及びこれを備えた回転電機 - Google Patents

バスバーユニット及びこれを備えた回転電機 Download PDF

Info

Publication number
WO2017013772A1
WO2017013772A1 PCT/JP2015/070864 JP2015070864W WO2017013772A1 WO 2017013772 A1 WO2017013772 A1 WO 2017013772A1 JP 2015070864 W JP2015070864 W JP 2015070864W WO 2017013772 A1 WO2017013772 A1 WO 2017013772A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
stator
bar holder
insulator
extending
Prior art date
Application number
PCT/JP2015/070864
Other languages
English (en)
French (fr)
Inventor
宣至 宝積
佐々木 健治
良宏 小寺
Original Assignee
Kyb株式会社
株式会社Top
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社, 株式会社Top filed Critical Kyb株式会社
Priority to PCT/JP2015/070864 priority Critical patent/WO2017013772A1/ja
Priority to US15/578,375 priority patent/US10840656B2/en
Priority to CN201580079703.0A priority patent/CN107615623A/zh
Publication of WO2017013772A1 publication Critical patent/WO2017013772A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/16Rails or bus-bars provided with a plurality of discrete connecting locations for counterparts
    • H01R25/161Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only

Definitions

  • the present invention relates to a bus bar unit and a rotating electric machine including the bus bar unit.
  • JP2013-212008A discloses a bus bar unit that supplies current from a terminal portion to a coil of each phase of a stator.
  • This bus bar unit includes a plurality of bus bars that supply current to each coil of the stator, and a bus bar base that holds these bus bars spaced apart in the radial direction of the stator.
  • the bus bar base includes an annular main body portion having an annular groove that accommodates a plurality of bus bars, and a plurality of extending portions that extend from the outer peripheral end of the main body portion and have engaging protrusions at the tips.
  • the bus bar unit is attached to the stator by engaging engagement protrusions of the respective extending portions with engagement recesses on the stator side by snap fitting.
  • the extended portion where the engaging protrusion is formed is provided on the bus bar unit side, the extended portion is formed from the bus bar base according to the outer diameter of the stator side member engaged by the snap fit. Set to large diameter. Therefore, the radial dimension of the bus bar unit is increased.
  • An object of the present invention is to provide a bus bar unit capable of reducing the size in the radial direction and a rotating electrical machine including the bus bar unit.
  • the bus bar unit includes a bus bar that energizes a coil wound around the stator, and a bus bar holder made of an insulating member that holds the bus bar. And an engaged portion that engages with an engaging portion formed in an extending portion that extends in the axial direction.
  • the bus bar unit includes a bus bar that energizes a coil wound around the stator, and a bus bar holder made of an insulating member that holds the bus bar.
  • An extending portion that extends in the axial direction of the stator toward the stator, and an engaging portion that protrudes from the distal end of the extending portion in the circumferential direction of the stator and engages with the engaged portion of the stator. .
  • FIG. 1 is a cross-sectional view of a motor including a bus bar unit according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view of the bus bar unit according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a motor including a bus bar unit according to the second embodiment of the present invention.
  • FIG. 4 is a perspective view of a bus bar unit according to the second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a motor including a bus bar unit according to the third embodiment of the present invention.
  • FIG. 6 is a perspective view of a bus bar unit according to the third embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a motor including a bus bar unit according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view of the bus bar unit according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a motor including a bus bar
  • FIG. 7 is a cross-sectional view of a motor including a bus bar unit according to the fourth embodiment of the present invention.
  • FIG. 8 is a perspective view of a bus bar unit according to the fourth embodiment of the present invention.
  • FIG. 9 is a sectional view of a motor provided with a bus bar unit in the fifth embodiment of the present invention.
  • FIG. 10 is a perspective view of a bus bar unit according to the fifth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a motor 100 equipped with a bus bar unit 110 according to this embodiment.
  • FIG. 2 is a perspective view of the bus bar unit 110 in the present embodiment.
  • the rotation axis direction of the motor 100 is referred to as “axial direction”
  • the radial direction around the rotation axis of the motor 100 is referred to as “radial direction”
  • the direction around the rotation axis of the motor 100 is “ It is called “circumferential direction”.
  • a motor 100 as a rotating electric machine is a three-phase (U-phase, V-phase, W-phase) AC motor, and is used, for example, in an electric power steering device of a vehicle.
  • the motor 100 includes a metal motor case 10, a motor cover 20 made of an insulating resin material that covers the opening of the motor case 10, and is accommodated in the motor case 10 and rotated by the motor case 10 and the motor cover 20.
  • the rotor 30 is pivotally supported, and the stator 40 is provided on the inner peripheral surface of the motor case 10 and is disposed with a predetermined gap on the outer periphery of the rotor 30.
  • the motor case 10 includes a cylindrical tube portion 11, a bottom portion 12 that closes one end of the tube portion 11, an annular opening end portion 13 that is formed around an opening portion that opens at the other end of the tube portion 11, Have
  • the motor cover 20 is fastened to the opening end 13 of the motor case 10 by a plurality of bolts (not shown).
  • a seal ring 21 seals between the motor cover 20 and the motor case 10.
  • the rotor 30 includes a rotor shaft 31 that is rotatably supported by the motor case 10 and a rotor core 32 that houses a plurality of magnets (permanent magnets) that are inserted through the rotor shaft 31 in the axial direction and arranged at predetermined intervals in the circumferential direction. And having.
  • the rotor shaft 31 is supported at one end side by the bottom 12 of the motor case 10 via a bearing 33 and at the other end side by the motor cover 20 via a bearing 34. Thereby, the rotor 30 is supported rotatably about the central axis O.
  • the stator 40 includes a stator core 41 provided on the inner side of the motor case 10 and a plurality of stator coils 42 provided on the stator core 41 at predetermined intervals along the circumferential direction.
  • the stator core 41 is made of a magnetic material and is formed by laminating a plurality of steel plates having a plurality of teeth portions 41a extending radially in the radial direction in the axial direction.
  • the stator core 41 is fixed to the motor case 10 by fitting the outer periphery thereof to the inner periphery of the motor case 10.
  • the stator coil 42 includes a plurality of insulators 120 made of an insulating resin material surrounding each tooth portion 41a of the stator core 41, and an electromagnetic coil 43 as a plurality of coils made of a wire rod wound around the tooth portion 41a via each insulator 120. And. The end of the wire 44 of the electromagnetic coil 43 is drawn out of the stator coil 42 from the gap between the bus bar unit 110 and the insulator 120.
  • the motor 100 further includes a bus bar unit 110 provided in parallel with the stator coil 42 in the axial direction.
  • the bus bar unit 110 includes a plurality of bus bars 50 made of a conductive material that energizes the electromagnetic coil 43 wound around the stator 40, and a bus bar holder 111 made of an insulating resin material that holds the bus bar 50 inside.
  • the bus bar holder 111 is formed by insert molding using an insulating resin material. That is, when the bus bar unit 110 is manufactured, the bus bar holder 111 is formed by injecting an insulating resin material into the mold after disposing each bus bar 50 in the mold (not shown). Each bus bar 50 is held in the bus bar holder 111 while being separated in the axial direction or the radial direction.
  • the plurality of bus bars 50 includes four bus bars 50 corresponding to the U phase, the V phase, the W phase, and the neutral point, respectively.
  • the plate-like bus bar 50 corresponding to each phase includes an arcuate conductive part 51 extending in an arcuate shape around the central axis O, and a plurality of power supply terminals 52 projecting radially from the arcuate conductive part 51. And one bus bar terminal 53 protruding in the axial direction from the arcuate conductive portion 51.
  • a plurality of power supply terminals 52 corresponding to each phase protrude from the outer periphery of the bus bar holder 111.
  • Three bus bar terminals 53 connected to the AC power supply protrude from one end of the bus bar holder 111.
  • the bus bar holder 111 has a positioning step 112 as a block-shaped engaged portion protruding from the outer peripheral surface. Three positioning step portions 112 are arranged at substantially equal intervals in the circumferential direction along the outer peripheral surface of the bus bar holder 111.
  • the positioning step 112 is integrally formed with a resin material together with the bus bar holder 111 when the bus bar holder 111 is molded. Note that the number of positioning steps 112 is not limited to three and may be three or more.
  • Each positioning step 112 is offset in the circumferential direction with respect to the power supply terminal 52 of each bus bar 50 so as not to overlap with the power supply terminal 52 of each bus bar 50 in the axial direction.
  • the wire 44 extending from the electromagnetic coil 43 and connected to the power supply terminal 52 of the bus bar 50 does not interfere with the positioning step 112.
  • each positioning step portion 112 is constituted by a raised ridge portion 113 located on both sides in the circumferential direction, and a concave portion 114 disposed between the raised portions 113 and recessed from the raised portion 113.
  • the insulator 120 has an extending portion 121 extending in the axial direction from the outer peripheral end of the axial end surface on the bus bar unit 110 side toward the bus bar unit 110.
  • Three extending portions 121 are arranged at substantially equal intervals along the circumferential direction so as to be engageable with the positioning step portion 112 of the bus bar holder 111.
  • the circumferential width of the extending portion 121 is set to be approximately equal to the width of the concave portion 114 of the positioning step portion 112.
  • the outer peripheral surface of the extending portion 121 extends from the outer peripheral surface of the insulator 120 without a step.
  • a claw portion 122 is formed at the tip of the extended portion 121 as an engaging portion that protrudes toward the inner peripheral side of the extended portion 121.
  • the bus bar holder 111 is positioned with respect to the stator coil 42 by engaging the plurality of extending portions 121 of the insulator 120 with the positioning step portions 112 by snap fitting. That is, the extended portion 121 is fitted in the concave portion 114 of the positioning step portion 112 and the claw portion 122 is locked to the positioning step portion 112, so that the bus bar holder 111 is radially and circumferentially connected to the stator coil 42. Positioned in the direction. Thereby, the bus bar holder 111 is arranged on the same axis as the stator coil 42 and is held at a predetermined rotational position.
  • the bus bar unit 110 is assembled to the stator coil 42 after the stator coil 42 is assembled to the stator core 41.
  • the wire 44 of each electromagnetic coil 43 extends from the gap between the opening end of the insulator 120 and the outer peripheral end of the bus bar holder 111, and the respective leading end portions are welded to the power feeding terminals 52 of the respective bus bars 50.
  • the motor cover 20 is assembled to the motor case 10.
  • the three bus bar terminals 53 protruding from one end of the bus bar holder 111 pass through the holes of the motor cover 20.
  • the motor cover 20 is provided with a terminal 55 connected to the electric wire 54 corresponding to each phase. After the motor cover 20 is fastened to the motor case 10, each bus bar terminal 53 is welded to one end of each terminal 55.
  • the positioning bar 112 provided on the outer peripheral surface of the bus bar holder 111 is engaged with the extended portion 121 extending in the axial direction from the insulator 120 by snap fitting, whereby the bus bar holder 111 is attached to the insulator 120. For this reason, it is not necessary to provide the extended portion 121 in the bus bar holder 111. Thereby, the diameter of the bus bar holder 111 can be reduced as compared with a structure in which the extended portion 121 is provided in the bus bar holder 111 and engaged with the outer peripheral surface of the insulator 120 by snap fitting. Accordingly, the radial dimension of the bus bar unit 110 can be reduced.
  • FIG. 3 is a cross-sectional view of the motor 200 on which the bus bar unit 210 according to this embodiment is mounted.
  • FIG. 4 is a perspective view of the bus bar unit 210 in the present embodiment.
  • the structure for engaging the bus bar holder 211 and the insulator 220 is different from that of the first embodiment.
  • the bus bar holder 211 of the present embodiment does not have the positioning step 112 of the first embodiment.
  • the insulator 220 has an extending portion 221 that is an axial end surface on the bus bar unit 210 side and extends in the axial direction from the outer peripheral side to the bus bar unit 210 from the electromagnetic coil 43. Three extending portions 221 are arranged at substantially equal intervals along the circumferential direction.
  • a protruding portion 222 is formed at the tip of the extending portion 221 as an engaging portion that protrudes toward the inner peripheral side of the extending portion 221.
  • the axial dimension from the insulator 220 to the protrusion 222 of the extended portion 221 is set to be approximately equal to the axial dimension of the bus bar holder 211.
  • a plurality of extending portions 221 of the insulator 220 have corners as engaged portions at portions where the end surface of the bus bar holder 211 opposite to the insulator 220 in the axial direction and the outer peripheral surface of the bus bar holder 211 intersect.
  • the portion 212 By being engaged with the portion 212 by a snap fit, it is positioned with respect to the stator coil 42. That is, the protrusion 222 of the extending portion 221 engages with the corner portion 212 of the bus bar holder 211 in a state where the bus bar holder 211 is in contact with the insulator 220, so that the bus bar holder 211 is in the radial direction with respect to the stator coil 42.
  • the bus bar holder 211 is arranged on the same axis as the stator coil 42.
  • the bus bar holder 211 is not configured to be positioned in the circumferential direction.
  • a plurality of raised portions are provided in the corner portion 212 of the bus bar holder 211, and an extended portion is provided between the raised portions.
  • 221 protrusion 222 may be configured to fit. Thereby, the bus bar holder 211 can be positioned in the circumferential direction, and the bus bar holder 211 is held at a predetermined rotational position.
  • the bus bar holder 211 is attached to the insulator 220 by the protrusion 222 of the extending portion 221 extending in the axial direction from the insulator 220 engaging with the corner portion 212 of the bus bar holder 211 by snap fit. For this reason, it is not necessary to provide the extended portion 221 in the bus bar holder 211. As a result, the diameter of the bus bar holder 211 can be reduced compared to a structure in which the extended portion 221 is provided in the bus bar holder 211 and engaged with the outer peripheral surface of the insulator 220 by snap fitting. Therefore, the radial dimension of the bus bar unit 210 can be reduced.
  • the bus bar holder 211 since the protrusion 222 of the extending portion 221 extending in the axial direction from the insulator 220 is engaged with the corner portion 212 of the bus bar holder 211 by snap fit, the bus bar holder 211 and the insulator 220 are engaged with each other.
  • the bus bar holder 211 does not require a special configuration. Therefore, since the shape of the mold for molding the bus bar holder 211 is simplified, molding of the resin is facilitated, the manufacturing cost of the bus bar holder 211 can be reduced, and the quality can be improved.
  • FIG. 5 is a cross-sectional view of the motor 300 on which the bus bar unit 310 according to this embodiment is mounted.
  • FIG. 6 is a perspective view of the bus bar unit 310 in the present embodiment.
  • the structure for engaging the bus bar holder 311 and the insulator 320 is different from that of the first embodiment.
  • the bus bar holder 311 of this embodiment has a recess 312 as an engaged portion on the outer peripheral surface instead of the positioning step portion 112 of the first embodiment.
  • Three recesses 312 are arranged at substantially equal intervals in the circumferential direction along the outer peripheral surface of the bus bar holder 311. Note that the number of the recesses 312 is not limited to three and may be three or more.
  • the insulator 320 has an extending portion 321 that is an axial end surface on the bus bar unit 310 side and extends in the axial direction from the outer peripheral side to the bus bar unit 310 from the electromagnetic coil 43.
  • Three extending portions 321 are arranged at substantially equal intervals along the circumferential direction so as to correspond to the recess 312 of the bus bar holder 311.
  • the axial dimension of the extending portion 321 is set substantially equal to the axial dimension of the bus bar holder 311.
  • a protrusion 322 is formed as an engaging portion that protrudes toward the inner peripheral side of the extended portion 321.
  • the protrusion 322 is set to a dimension that can be engaged with the recess 312 of the bus bar holder 311.
  • the bus bar holder 311 is positioned with respect to the stator coil 42 by engaging a plurality of extending portions 321 of the insulator 320 with the recesses 312 by snap fitting. That is, the bus bar holder 311 is positioned in the radial direction and the circumferential direction with respect to the stator coil 42 by the protrusion 322 of the extended portion 321 being fitted into the recess 312. As a result, the bus bar holder 311 is disposed on the same axis as the stator coil 42 and is held at a predetermined rotational position.
  • the recess 312 provided on the outer peripheral surface of the bus bar holder 311 is engaged with the protrusion 322 of the extended portion 321 extending in the axial direction from the insulator 320 by snap fitting, whereby the bus bar holder 311 is attached to the insulator 320. For this reason, it is not necessary to provide the extended part 321 in the bus-bar holder 311. Thereby, the diameter of the bus bar holder 311 can be reduced as compared with a structure in which the extended portion 321 is provided in the bus bar holder 311 and engaged with the outer peripheral surface of the insulator 320 by snap fit. Therefore, the radial dimension of the bus bar unit 310 can be reduced.
  • the bus bar unit 310 is accommodated in the motor case 10 and the motor cover 20 is attached to the motor case 10.
  • the contact area between the bus bar unit 310 and the motor cover 20 can be increased. Therefore, as compared with the case where the bus bar unit 310 contacts at three places in the circumferential direction as in the second embodiment, the play of the bus bar unit 310 can be more reliably suppressed.
  • FIG. 7 is a cross-sectional view of the motor 400 on which the bus bar unit 410 according to this embodiment is mounted.
  • FIG. 8 is a perspective view of the bus bar unit 410 in the present embodiment.
  • the structure for engaging the bus bar holder 411 and the insulator 420 is different from that of the first embodiment.
  • the rotation axis direction of the motor 400 is referred to as “axial direction”
  • the radial direction around the rotation axis of the motor 400 is referred to as “radial direction”
  • the direction around the rotation axis of the motor 400 is “ It is called “circumferential direction”.
  • the motor 400 is a three-phase (U-phase, V-phase, W-phase) AC motor, and is used, for example, in an electric power steering device for a vehicle.
  • the motor 400 includes a metal motor case 10, a motor cover 20 made of an insulating resin material that covers the opening of the motor case 10, and is accommodated in the motor case 10 and rotated by the motor case 10 and the motor cover 20.
  • the rotor 30 is pivotally supported, and the stator 40 is provided on the inner peripheral surface of the motor case 10 and is disposed with a predetermined gap on the outer periphery of the rotor 30.
  • the motor case 10 includes a cylindrical tube portion 11, a bottom portion 12 that closes one end of the tube portion 11, an annular opening end portion 13 that is formed around an opening portion that opens at the other end of the tube portion 11, Have
  • the motor cover 20 is fastened to the opening end 13 of the motor case 10 by a plurality of bolts (not shown).
  • a seal ring 21 seals between the motor cover 20 and the motor case 10.
  • the rotor 30 includes a rotor shaft 31 that is rotatably supported by the motor case 10 and a rotor core 32 that houses a plurality of magnets (permanent magnets) that are inserted through the rotor shaft 31 in the axial direction and arranged at predetermined intervals in the circumferential direction. And having.
  • the rotor shaft 31 is supported at one end side by a bottom 12 of the motor case 10 via a bearing, and supported at the other end side by a motor cover 20 via a bearing. Thereby, the rotor 30 is supported rotatably about the central axis O.
  • the stator 40 includes a stator core 41 provided on the inner side of the motor case 10 and a plurality of stator coils 42 provided on the stator core 41 at predetermined intervals along the circumferential direction.
  • the stator core 41 is made of a magnetic material and is formed by laminating a plurality of steel plates having a plurality of teeth portions 41a extending radially in the radial direction in the axial direction.
  • the stator core 41 is fixed to the motor case 10 by fitting the outer periphery thereof to the inner periphery of the motor case 10.
  • the stator coil 42 includes a plurality of insulators 420 made of an insulating resin material that surrounds each tooth portion 41a of the stator core 41, and a plurality of electromagnetic coils 43 made of a wire 44 wound around the tooth portion 41a via each insulator 420. Consists of The end of the wire 44 of the electromagnetic coil 43 is drawn out of the stator coil 42 from the gap between the bus bar unit 410 and the insulator 420.
  • the motor 400 further includes a bus bar unit 410 provided in parallel with the stator coil 42 in the axial direction.
  • the bus bar unit 410 includes a plurality of bus bars 50 made of a conductive material that energizes the electromagnetic coil 43 wound around the stator 40, and a bus bar holder 411 made of an insulating resin material that holds the bus bar 50 inside.
  • the bus bar holder 411 is formed by insert molding using an insulating resin material. That is, when the bus bar unit 410 is manufactured, the bus bar holder 411 is formed by injecting an insulating resin material into the mold after the bus bars 50 are arranged in the mold (not shown). Each bus bar 50 is held in the bus bar holder 411 so as to be separated in the axial direction or the radial direction.
  • the plurality of bus bars 50 includes four bus bars 50 corresponding to the U phase, the V phase, the W phase, and the neutral point, respectively.
  • the plate-like bus bar 50 corresponding to each phase includes an arcuate conductive part 51 extending in an arcuate shape around the central axis O, and a plurality of power supply terminals 52 projecting radially from the arcuate conductive part 51. And one bus bar terminal 53 protruding in the axial direction from the arcuate conductive portion 51.
  • the plate-like bus bar 50 corresponding to the neutral point has an arcuate conductive part 51 extending in an arcuate shape with the central axis O as the center, and an electromagnetic coil 43 of each phase protruding from the arcuate conductive part 51 in the radial direction. And a plurality of power supply terminals 52 for connecting the two.
  • a plurality of power supply terminals 52 corresponding to each phase protrude from the outer periphery of the bus bar holder 411.
  • Three bus bar terminals 53 connected to the AC power source protrude from one end of the bus bar holder 411.
  • the bus bar holder 411 has an extending portion 412 that protrudes from the outer peripheral surface and engages with the outer peripheral surface of the stator coil 42.
  • Three extending portions 412 are arranged at substantially equal intervals in the circumferential direction along the outer peripheral surface of the bus bar holder 411.
  • the extending portion 412 is integrally formed of a resin material together with the bus bar holder 411 when the bus bar holder 411 is molded. Note that the number of extending portions 412 is not limited to three and may be three or more.
  • Each extending portion 412 is provided offset in the circumferential direction with respect to the power supply terminal 52 of each bus bar 50 so as not to overlap with the power supply terminal 52 of each bus bar 50 in the axial direction. As a result, the wire 44 extending from the electromagnetic coil 43 and connected to the power feeding terminal 52 of the bus bar 50 does not interfere with the extended portion 412.
  • the extended portion 412 has a base end portion 413 that protrudes in the radial direction from the outer peripheral surface, and a front end portion 414 that is bent from the base end portion 413 and extends toward the stator coil 42 in the axial direction.
  • the base end portion 413 of the extending portion 412 extends without a step from the end surface on the stator coil 42 side of the bus bar holder 411 and abuts on the end surface on the bus bar unit side of the insulator 420.
  • the distal end portion 414 of the extending portion 412 is bent from the distal end of the base end portion 413 and engages with an engaged portion 421 formed on the outer periphery of the insulator 420.
  • the bus bar holder 411 is engaged with the stator coil 42 by engaging the front end portions 414 of the plurality of extending portions 412 with the engaged portion 421 on the outer periphery of the insulator 420.
  • an engaged portion 421 that is engaged with the tip portion 414 of the extending portion 412 is formed.
  • Three engaged portions 421 are arranged at substantially equal intervals along the circumferential direction so that the distal end portion 414 of the extending portion 412 can be engaged.
  • the engaged portion 421 includes a concave portion 422 that is recessed from the outer peripheral surface of the insulator 420, and a locking portion 423 that is formed on the bus bar holder 411 side of the concave portion 422 and has a smaller circumferential width than the concave portion 422.
  • the circumferential width of the locking portion 423 is set to be substantially equal to the width of the tip portion 414 of the extending portion 412 and smaller than the width of the portion where the claw portion 415 is formed.
  • the bus bar holder 411 is positioned with respect to the stator coil 42 by engaging the end portions 414 of the extending portions 412 with the engaging portions 423 by snap fitting. At this time, the nail
  • the bus bar holder 411 has a radial direction relative to the stator coil 42. Positioned in the circumferential direction. Accordingly, the bus bar holder 411 is disposed on the same axis as the stator coil 42 and is held at a predetermined rotational position.
  • the bus bar unit 410 is assembled to the stator coil 42 after the stator coil 42 is assembled to the stator core 41.
  • the wire 44 of each electromagnetic coil 43 extends from the gap between the opening end of the insulator 420 and the outer peripheral end of the bus bar holder 411, and the respective end portions 414 are welded to the power supply terminals 52 of the respective bus bars 50.
  • the motor cover 20 is assembled to the motor case 10.
  • the three bus bar terminals 53 protruding from one end of the bus bar holder 411 pass through the holes of the motor cover 20.
  • the motor cover 20 is provided with a terminal 55 connected to the electric wire 54 corresponding to each phase. After the motor cover 20 is fastened to the motor case 10, each bus bar terminal 53 is welded to one end of each terminal 55.
  • the claw portion 415 of the distal end portion 414 of the extending portion 412 that is formed on the bus bar holder 411 and engages the engaged portion 421 of the stator coil 42 is formed to protrude in the circumferential direction, the claw portion 415 is formed in the distal end portion 414.
  • the bus bar holder 411 can be downsized as compared with the case of projecting from the outer periphery side or the inner periphery side. Therefore, the radial dimension of the bus bar unit 410 can be reduced.
  • the claw portion 415 does not protrude from the recess 422 of the insulator 420 to the inner peripheral side, the number of turns of the electromagnetic coil 43 can be increased or the coil diameter can be increased without increasing the diameter of the insulator 420. Therefore, the performance of the motor 400 can be improved.
  • FIG. 9 is a cross-sectional view of a motor 500 on which the bus bar unit 510 according to this embodiment is mounted.
  • FIG. 10 is a perspective view of the bus bar unit 510 in the present embodiment.
  • differences from the fourth embodiment will be mainly described, and the same components as those of the motor 500 of the fourth embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • the structure for engaging the bus bar holder 511 and the insulator 520 is different from that of the fourth embodiment.
  • a protruding portion 514 as an engaging portion formed to protrude on both sides in the circumferential direction is provided at the distal end portion 513 of the extending portion 512 of the bus bar holder 511.
  • the bus bar holder 511 is engaged with the stator coil 42 by engaging the leading end portions 513 of the plurality of extending portions 512 with the engaged portions 521 on the outer periphery of the insulator 520.
  • An engaged portion 521 with which the tip of the extended portion 512 is engaged is formed on the outer periphery of the insulator 520.
  • Three engaged portions 521 are arranged at substantially equal intervals along the circumferential direction so that the tip portion 513 of the extending portion 512 can be engaged.
  • the engaged portion 521 includes a recess 522 that is recessed from the outer peripheral surface of the insulator 520, and a locking portion 523 that is formed on the bus bar holder 511 side of the recess 522 and has a larger circumferential width than the recess 522.
  • the shape of the locking portion 523 is set to a shape similar to the protrusion 514 of the tip portion 513 of the extending portion 512.
  • the bus bar holder 511 is positioned with respect to the stator coil 42 by engaging the distal end portion 513 of the extending portion 512 with the engaging portion 523 by snap fitting. At this time, the tip portion 513 of the extended portion 512 moves in the axial direction while bending outward in the radial direction, and when the protrusion 514 of the tip portion 513 matches the locking portion 523, the protrusion 514 becomes the locking portion 523. It is inserted.
  • the shape of the protrusion 514 may be any shape including a semicircle or a rectangle as long as the shape is similar to the shape of the locking portion 523.
  • the bus bar holder 511 is positioned in the radial direction and the circumferential direction with respect to the stator coil 42, arranged on the same axis as the stator coil 42, and held at a predetermined rotational position.
  • the protruding portion 514 of the distal end portion 513 of the extending portion 512 that is formed on the bus bar holder 511 and engages with the engaged portion 521 of the stator coil 42 is formed to protrude in the circumferential direction, the protruding portion 514 is formed at the distal end portion 513.
  • the bus bar holder 511 can be reduced in size as compared with the case where it protrudes from the outer peripheral side or the inner peripheral side. Therefore, the radial dimension of the bus bar unit 510 can be reduced.
  • the protrusion 514 does not protrude from the recess 522 of the insulator 520 to the inner peripheral side, the number of turns of the electromagnetic coil 43 can be increased or the coil diameter can be increased without increasing the diameter of the insulator 520. Therefore, the performance of the motor 500 can be improved.
  • the positioning step 112 of the bus bar holder 111 is provided on the outer peripheral side of the bus bar holder 111, but may be provided on the inner peripheral side of the bus bar holder 111.
  • the extending portion 121 of the insulator 120 that engages with the positioning step portion 112 by snap fitting may be provided on the inner peripheral side as well.
  • the positioning step 112 is integrally formed with the bus bar holder 111, but the positioning step 112 may be a separate member.
  • the plurality of extending portions 221 of the insulator 220 are formed at corner portions 212 of the portion where the end surface of the bus bar holder 211 opposite to the insulator 220 in the axial direction and the outer peripheral surface of the bus bar holder 211 intersect.
  • the end of the bus bar holder 211 that is opposite to the insulator 220 in the axial direction and the inner peripheral surface of the bus bar holder 211 are engaged by snap fit.
  • the extending portion 221 of the insulator 220 may be provided so as to extend to the inner peripheral side of the bus bar holder 211.
  • the case where the protrusion 322 of the extending portion 321 of the insulator 320 is engaged with the recess 312 formed on the outer peripheral surface of the bus bar holder 211 by snap fitting is illustrated. You may form a recessed part in an internal peripheral surface.
  • the extending portion 321 of the insulator 320 may be disposed so as to extend to the inner peripheral surface of the insulator 320, and the protrusion 322 may be formed to protrude toward the outer peripheral side of the extending portion 321.
  • the claw portions 415 of the extending portion 412 are protruded on both sides in the circumferential direction, but may be protruded only in any one direction.
  • the extended portions 412 and 512 of the bus bar holders 411 and 511 are engaged with the engaged portions 421 and 521 formed on the outer peripheral surfaces of the insulators 420 and 520.
  • the engaged portions 421 and 521 may be formed on the inner peripheral surfaces of the insulators 420 and 520.
  • the extending portions 412 and 512 of the bus bar holders 411 and 511 may be formed so as to extend on the inner peripheral surfaces of the insulators 420 and 520.
  • the motors 100 to 500 that generate power by electric power are illustrated, but the above embodiments can be applied to a generator that generates electric power by power.
  • the bus bar 50 is formed by punching a plate-like conductive member into a shape along the circumferential direction of the stator 40 with a predetermined width, and each bus bar 50 has a predetermined interval in the axial direction.
  • the bus bar units 110, 210, 310, 410, and 510 that are stacked are illustrated, but instead, the bus bar is formed in a shape along the circumferential direction of the stator 40 by curving a linear strip-shaped conductive member in the plate thickness direction.
  • a bus bar unit in which a plurality of bus bars are housed in an insulating holder by changing the diameter of each bus bar may be used.

Abstract

バスバーユニット(110)は、ステータ(40)に巻装されるコイル(43)に通電するバスバー(50)とバスバー(50)を保持する絶縁部材から成るバスバーホルダ(111)とを有する。バスバーホルダ(111)は、ステータ(40)からステータ(40)の軸方向に延設される延設部(121)に形成される係合部(122)と係合する被係合部(112)を有する。

Description

バスバーユニット及びこれを備えた回転電機
 本発明は、バスバーユニット及びこれを備えた回転電機に関する。
 JP2013-212008Aには、端子部からステータの各相のコイルに電流を供給するバスバーユニットが開示されている。このバスバーユニットは、ステータの各コイルに電流を供給する複数のバスバーと、これらのバスバーをステータの径方向に離間させた状態で保持するバスバーベースと、を備える。
 バスバーベースは、複数のバスバーを収容する環状溝を有する円環状の本体部と、本体部の外周端から延出して先端に係合突部を有する複数の延設部と、を有する。バスバーユニットは、各延設部の係合突部がステータ側の係合凹部にスナップフィットにより係合することでステータに取り付けられる。
 上記従来の技術では、係合突部が形成される延設部がバスバーユニット側に設けられるので、延設部はスナップフィットにより係合されるステータ側の部材の外径に応じてバスバーベースより大径に設定される。よって、バスバーユニットの径方向寸法が大型化する。
 本発明は、径方向寸法を小型化することが可能なバスバーユニット及びこれを備えた回転電機を提供することを目的とする。
 本発明のある態様によれば、バスバーユニットであって、ステータに巻装されるコイルに通電するバスバーと、バスバーを保持する絶縁部材から成るバスバーホルダと、を備え、バスバーホルダは、ステータからステータの軸方向に延設される延設部に形成される係合部と係合する被係合部を有する。
 また、本発明の別の態様によれば、バスバーユニットであって、ステータに巻装されるコイルに通電するバスバーと、バスバーを保持する絶縁部材から成るバスバーホルダと、を備え、バスバーホルダは、ステータへ向けてステータの軸方向に延設される延設部と、延設部の先端からステータの周方向に突出して形成されステータの被係合部と係合する係合部と、を有する。
図1は、本発明の第1実施形態におけるバスバーユニットを備えたモータの断面図である。 図2は、本発明の第1実施形態におけるバスバーユニットの斜視図である。 図3は、本発明の第2実施形態におけるバスバーユニットを備えたモータの断面図である。 図4は、本発明の第2実施形態におけるバスバーユニットの斜視図である。 図5は、本発明の第3実施形態におけるバスバーユニットを備えたモータの断面図である。 図6は、本発明の第3実施形態におけるバスバーユニットの斜視図である。 図7は、本発明の第4実施形態におけるバスバーユニットを備えたモータの断面図である。 図8は、本発明の第4実施形態におけるバスバーユニットの斜視図である。 図9は、本発明の第5実施形態におけるバスバーユニットを備えたモータの断面図である。 図10は、本発明の第5実施形態におけるバスバーユニットの斜視図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 初めに、第1実施形態について説明する。
 図1は、本実施形態におけるバスバーユニット110を搭載したモータ100の断面図である。図2は、本実施形態におけるバスバーユニット110の斜視図である。なお、以下の説明において、モータ100の回転軸方向を「軸方向」と称し、モータ100の回転軸を中心とする放射方向を「径方向」と称し、モータ100の回転軸周りの方向を「周方向」と称する。
 回転電機としてのモータ100は、3相(U相、V相、W相)交流モータであり、例えば車両の電動パワーステアリング装置等に用いられる。モータ100は、金属製のモータケース10と、モータケース10の開口部に覆設される絶縁性樹脂材から成るモータカバー20と、モータケース10内に収容されモータケース10及びモータカバー20によって回転可能に軸支されるロータ30と、モータケース10の内周面に設けられロータ30の外周に所定の間隙を有して配置されるステータ40と、を備える。
 モータケース10は、円筒状の筒部11と、筒部11の一端を閉塞する底部12と、筒部11の他端に開口する開口部のまわりに形成される環状の開口端部13と、を有する。
 モータカバー20は、モータケース10の開口端部13に複数のボルト(図示せず)によって締結される。モータカバー20とモータケース10との間は、シールリング21によって密封される。
 ロータ30は、モータケース10に回転自在に支持されるロータシャフト31と、軸方向にロータシャフト31が挿通され周方向に所定の間隔で配置される複数のマグネット(永久磁石)を収容するロータコア32と、を有する。
 ロータシャフト31は、一端側がベアリング33を介してモータケース10の底部12に支持され、他端側がベアリング34を介してモータカバー20に支持される。これにより、ロータ30は、中心軸Oを中心として回転自在に支持される。
 ステータ40は、モータケース10の内側に設けられるステータコア41と、ステータコア41に周方向に亘って所定の間隔で複数設けられるステータコイル42と、を有する。
 ステータコア41は、磁性材から成り、径方向に放射状に伸びる複数のティース部41aを有する鋼板を軸方向に複数積層して形成される。ステータコア41は、外周がモータケース10の内周に嵌合されることによりモータケース10に固定される。
 ステータコイル42は、ステータコア41の各ティース部41aを包囲する絶縁性樹脂材から成る複数のインシュレータ120と、各インシュレータ120を介してティース部41aに巻かれる線材から成る複数のコイルとしての電磁コイル43と、から構成される。電磁コイル43の線材44の端部は、バスバーユニット110とインシュレータ120との隙間からステータコイル42の外部に引き出される。
 モータ100はさらに、ステータコイル42と軸方向に並んで設けられるバスバーユニット110を備える。
 バスバーユニット110は、ステータ40に巻装される電磁コイル43に通電する導電材から成る複数のバスバー50と、バスバー50を内部に保持する絶縁性樹脂材から成るバスバーホルダ111と、を有する。
 バスバーホルダ111は、絶縁性樹脂材を用いてインサート成形によって形成される。すなわち、バスバーユニット110の製造時、金型(図示省略)内に各バスバー50を配設した後に、金型内に絶縁性樹脂材を注入することでバスバーホルダ111が形成される。バスバーホルダ111の内部には、各バスバー50が軸方向もしくは径方向に離間して保持される。
 複数のバスバー50は、U相、V相、W相、中性点のそれぞれに対応する4つのバスバー50から構成される。各相に対応した板状のバスバー50は、中心軸Oを中心とする円弧状に延びる円弧状導電部51と、円弧状導電部51から径方向に突設される複数の給電用端子52と、円弧状導電部51から軸方向に突設される1つのバスバー端子53と、を有する。
 各相に対応した複数の給電用端子52は、バスバーホルダ111の外周から突出する。交流電源に接続される3本のバスバー端子53は、バスバーホルダ111の一端から突出する。
 バスバーホルダ111は、外周面から突出するブロック状の被係合部としての位置決め段部112を有する。位置決め段部112は、バスバーホルダ111の外周面に沿って周方向にほぼ等間隔に3つ配置される。位置決め段部112は、バスバーホルダ111の成型時に、バスバーホルダ111とともに樹脂材により一体形成される。なお、位置決め段部112は、3つに限らず、3つ以上設けてもよい。
 各位置決め段部112は、各バスバー50の給電用端子52に対して軸方向に重複しないように、各バスバー50の給電用端子52に対して周方向にオフセットして設けられる。これにより、電磁コイル43から延びてバスバー50の給電用端子52に接続される線材44が位置決め段部112に干渉しないようになっている。
 また、各位置決め段部112の外周面は、周方向両側に位置する隆起した隆起部113と、隆起部113間に配置され隆起部113より窪んでいる凹部114と、から構成される。
 インシュレータ120は、バスバーユニット110側の軸方向端面の外周端からバスバーユニット110に向けて軸方向に延設される延設部121を有する。延設部121は、バスバーホルダ111の位置決め段部112と係合可能なように、周方向に沿ってほぼ等間隔に3つ配置される。延設部121の周方向の幅は、位置決め段部112の凹部114の幅と略等しく設定される。延設部121の外周面は、インシュレータ120の外周面から段差なく延設される。延設部121の先端には、延設部121の内周側に向けて突出する係合部としての爪部122が形成される。
 バスバーホルダ111は、インシュレータ120の複数の延設部121が、それぞれ位置決め段部112にスナップフィットにより係合することにより、ステータコイル42に対して位置決めされる。すなわち、延設部121が位置決め段部112の凹部114に嵌合するとともに、爪部122が位置決め段部112に係止されることで、バスバーホルダ111はステータコイル42に対して径方向及び周方向に位置決めされる。これにより、バスバーホルダ111は、ステータコイル42と同一軸上に配置されるとともに、所定の回転位置に保持される。
 モータ100の組み立て時、ステータコア41にステータコイル42が組み付けられた後に、ステータコイル42にバスバーユニット110が組み付けられる。このとき、各電磁コイル43の線材44は、インシュレータ120の開口端とバスバーホルダ111の外周端との隙間から延び出し、それぞれの先端部が各バスバー50の給電用端子52に溶接される。
 続いて、ステータ40がモータケース10に組み付けられた後、モータケース10にモータカバー20が組み付けられる。このとき、バスバーホルダ111の一端から突出している3本のバスバー端子53は、モータカバー20の各孔を貫通する。
 モータカバー20には、各相に対応した電線54に接続されるターミナル55が設けられる。モータケース10にモータカバー20が締結された後に、各ターミナル55の一端には、各バスバー端子53が溶接される。
 モータ100の作動時には、駆動電流が電線54、ターミナル55、バスバー50を通じて各電磁コイル43に供給され、ステータコア41に生じる磁力によってロータ30が回転する。
 以上の実施形態によれば、以下に示す効果を奏する。
 バスバーホルダ111の外周面に設けられる位置決め段部112がインシュレータ120から軸方向に延設される延設部121とスナップフィットにより係合することで、バスバーホルダ111がインシュレータ120に取り付けられる。このため、バスバーホルダ111に延設部121を設ける必要がない。これにより、バスバーホルダ111に延設部121を設けてインシュレータ120の外周面にスナップフィットにより係合させる構造と比べてバスバーホルダ111を小径化することができる。よって、バスバーユニット110の径方向寸法を小型化することができる。
 次に、第2実施形態について説明する。
 図3は、本実施形態におけるバスバーユニット210を搭載したモータ200の断面図である。図4は、本実施形態におけるバスバーユニット210の斜視図である。以下の説明では、第1実施形態と異なる点を中心に説明し、第1実施形態のモータ200と同一の構成には同一の符号を付して説明を省略する。
 本実施形態では、バスバーホルダ211とインシュレータ220とを係合させる構造が第1実施形態と異なる。
 本実施形態のバスバーホルダ211は、第1実施形態の位置決め段部112を有していない。インシュレータ220は、バスバーユニット210側の軸方向端面であって電磁コイル43より外周側からバスバーユニット210に向けて軸方向に延設される延設部221を有する。延設部221は、周方向に沿ってほぼ等間隔に3つ配置される。延設部221の先端には、延設部221の内周側に向けて突出する係合部としての突部222が形成される。延設部221のインシュレータ220から突部222までの軸方向寸法は、バスバーホルダ211の軸方向寸法とほぼ等しく設定される。
 バスバーホルダ211は、インシュレータ220の複数の延設部221が、バスバーホルダ211のインシュレータ220とは軸方向反対側の端面とバスバーホルダ211の外周面とが交差する部分の被係合部としての角部212にスナップフィットにより係合することにより、ステータコイル42に対して位置決めされる。すなわち、バスバーホルダ211がインシュレータ220に当接した状態で延設部221の突部222がバスバーホルダ211の角部212に係合することで、バスバーホルダ211はステータコイル42に対して径方向に位置決めされる。これにより、バスバーホルダ211は、ステータコイル42と同一軸上に配置される。
 なお、本実施形態では、バスバーホルダ211を周方向に位置決めする構成を有していないが、例えば、バスバーホルダ211の角部212に複数の隆起部を設け、この隆起部の間に延設部221の突部222が嵌合するように構成されてもよい。これにより、バスバーホルダ211を周方向に位置決めすることができ、バスバーホルダ211が所定の回転位置に保持される。
 以上の実施形態によれば、以下に示す効果を奏する。
 インシュレータ220から軸方向に延設される延設部221の突部222がバスバーホルダ211の角部212とスナップフィットにより係合することで、バスバーホルダ211がインシュレータ220に取り付けられる。このため、バスバーホルダ211に延設部221を設ける必要がない。これにより、バスバーホルダ211に延設部221を設けてインシュレータ220の外周面にスナップフィットにより係合させる構造と比べてバスバーホルダ211を小径化することができる。よって、バスバーユニット210の径方向寸法を小型化することができる。
 さらに、インシュレータ220から軸方向に延設される延設部221の突部222がバスバーホルダ211の角部212とスナップフィットにより係合するので、バスバーホルダ211とインシュレータ220とを係合させるためにバスバーホルダ211に特別な構成を必要としない。よって、バスバーホルダ211を成型するための金型の形状が簡素化されるので、樹脂の成型が容易になり、バスバーホルダ211の製造コストを低下させるとともに品質を向上させることができる。
 次に、第3実施形態について説明する。
 図5は、本実施形態におけるバスバーユニット310を搭載したモータ300の断面図である。図6は、本実施形態におけるバスバーユニット310の斜視図である。以下の説明では、第1実施形態と異なる点を中心に説明し、第1実施形態のモータ300と同一の構成には同一の符号を付して説明を省略する。
 本実施形態では、バスバーホルダ311とインシュレータ320とを係合させる構造が第1実施形態と異なる。
 本実施形態のバスバーホルダ311は、第1実施形態の位置決め段部112の代わりに、外周面に被係合部としての凹部312を有する。凹部312は、バスバーホルダ311の外周面に沿って周方向にほぼ等間隔に3つ配置される。なお、凹部312は、3つに限らず、3つ以上設けてもよい。
 インシュレータ320は、バスバーユニット310側の軸方向端面であって電磁コイル43より外周側からバスバーユニット310に向けて軸方向に延設される延設部321を有する。延設部321は、バスバーホルダ311の凹部312と対応するように周方向に沿ってほぼ等間隔に3つ配置される。延設部321の軸方向寸法は、バスバーホルダ311の軸方向寸法とほぼ等しく設定される。延設部321の内周面には、延設部321の内周側に向けて突出する係合部としての突部322が形成される。突部322は、バスバーホルダ311の凹部312に対して係合可能な寸法に設定される。
 バスバーホルダ311は、インシュレータ320の複数の延設部321が、それぞれ凹部312にスナップフィットにより係合することにより、ステータコイル42に対して位置決めされる。すなわち、延設部321の突部322が凹部312に嵌合することで、バスバーホルダ311はステータコイル42に対して径方向及び周方向に位置決めされる。これにより、バスバーホルダ311は、ステータコイル42と同一軸上に配置されるとともに、所定の回転位置に保持される。
 以上の実施形態によれば、以下に示す効果を奏する。
 バスバーホルダ311の外周面に設けられる凹部312がインシュレータ320から軸方向に延設される延設部321の突部322とスナップフィットにより係合することで、バスバーホルダ311がインシュレータ320に取り付けられる。このため、バスバーホルダ311に延設部321を設ける必要がない。これにより、バスバーホルダ311に延設部321を設けてインシュレータ320の外周面にスナップフィットにより係合させる構造と比べてバスバーホルダ311を小径化することができる。よって、バスバーユニット310の径方向寸法を小型化することができる。
 さらに、インシュレータ320の延設部321の先端がバスバーホルダ311のモータカバー側端面よりモータカバー20側に突出しないので、バスバーユニット310をモータケース10内に収容してモータケース10にモータカバー20が組み付けられた際に、バスバーユニット310とモータカバー20との接触面積を大きくすることができる。したがって、第2実施形態のように、バスバーユニット310が周方向の3箇所で接触する場合と比較して、バスバーユニット310のガタツキをより確実に抑制することができる。
 次に、第4実施形態について説明する。
 図7は、本実施形態におけるバスバーユニット410を搭載したモータ400の断面図である。図8は、本実施形態におけるバスバーユニット410の斜視図である。
 本実施形態では、バスバーホルダ411とインシュレータ420とを係合させる構造が第1実施形態と異なる。なお、以下の説明において、モータ400の回転軸方向を「軸方向」と称し、モータ400の回転軸を中心とする放射方向を「径方向」と称し、モータ400の回転軸周りの方向を「周方向」と称する。
 モータ400は、3相(U相、V相、W相)交流モータであり、例えば車両の電動パワーステアリング装置等に用いられる。モータ400は、金属製のモータケース10と、モータケース10の開口部に覆設される絶縁性樹脂材から成るモータカバー20と、モータケース10内に収容されモータケース10及びモータカバー20によって回転可能に軸支されるロータ30と、モータケース10の内周面に設けられロータ30の外周に所定の間隙を有して配置されるステータ40と、を備える。
 モータケース10は、円筒状の筒部11と、筒部11の一端を閉塞する底部12と、筒部11の他端に開口する開口部のまわりに形成される環状の開口端部13と、を有する。
 モータカバー20は、モータケース10の開口端部13に複数のボルト(図示せず)によって締結される。モータカバー20とモータケース10との間は、シールリング21によって密封される。
 ロータ30は、モータケース10に回転自在に支持されるロータシャフト31と、軸方向にロータシャフト31が挿通され周方向に所定の間隔で配置される複数のマグネット(永久磁石)を収容するロータコア32と、を有する。
 ロータシャフト31は、一端側がベアリングを介してモータケース10の底部12に支持され、他端側がベアリングを介してモータカバー20に支持される。これにより、ロータ30は、中心軸Oを中心として回転自在に支持される。
 ステータ40は、モータケース10の内側に設けられるステータコア41と、ステータコア41に周方向に亘って所定の間隔で複数設けられるステータコイル42と、を有する。
 ステータコア41は、磁性材から成り、径方向に放射状に伸びる複数のティース部41aを有する鋼板を軸方向に複数積層して形成される。ステータコア41は、外周がモータケース10の内周に嵌合されることによりモータケース10に固定される。
 ステータコイル42は、ステータコア41の各ティース部41aを包囲する絶縁性樹脂材から成る複数のインシュレータ420と、各インシュレータ420を介してティース部41aに巻かれる線材44から成る複数の電磁コイル43と、から構成される。電磁コイル43の線材44の端部は、バスバーユニット410とインシュレータ420との隙間からステータコイル42の外部に引き出される。
 モータ400はさらに、ステータコイル42と軸方向に並んで設けられるバスバーユニット410を備える。
 バスバーユニット410は、ステータ40に巻装される電磁コイル43に通電する導電材から成る複数のバスバー50と、バスバー50を内部に保持する絶縁性樹脂材から成るバスバーホルダ411と、を有する。
 バスバーホルダ411は、絶縁性樹脂材を用いてインサート成形によって形成される。すなわち、バスバーユニット410の製造時、金型(図示省略)内に各バスバー50を配設した後に、金型内に絶縁性樹脂材を注入することでバスバーホルダ411が形成される。バスバーホルダ411の内部には、各バスバー50が軸方向もしくは径方向に離間して保持される。
 複数のバスバー50は、U相、V相、W相、中性点のそれぞれに対応する4つのバスバー50から構成される。各相に対応した板状のバスバー50は、中心軸Oを中心とする円弧状に延びる円弧状導電部51と、円弧状導電部51から径方向に突設される複数の給電用端子52と、円弧状導電部51から軸方向に突設される1つのバスバー端子53と、を有する。中性点に対応した板状のバスバー50は、中心軸Oを中心とする円弧状に延びる円弧状導電部51と、円弧状導電部51から径方向に突設されて各相の電磁コイル43間を接続する複数の給電用端子52と、を有する。
 各相に対応した複数の給電用端子52は、バスバーホルダ411の外周から突出する。交流電源に接続される3本のバスバー端子53は、バスバーホルダ411の一端から突出する。
 バスバーホルダ411は、外周面から突出してステータコイル42の外周面に係合する延設部412を有する。延設部412は、バスバーホルダ411の外周面に沿って周方向にほぼ等間隔に3つ配置される。延設部412は、バスバーホルダ411の成型時に、バスバーホルダ411とともに樹脂材により一体形成される。なお、延設部412は、3つに限らず、3つ以上設けてもよい。
 各延設部412は、各バスバー50の給電用端子52に対して軸方向に重複しないように、各バスバー50の給電用端子52に対して周方向にオフセットして設けられる。これにより、電磁コイル43から延びてバスバー50の給電用端子52に接続される線材44が延設部412に干渉しないようになっている。
 延設部412は、外周面から径方向に突出する基端部413と、基端部413から曲折して軸方向のステータコイル42側に延びる先端部414と、を有する。延設部412の基端部413は、バスバーホルダ411のステータコイル42側端面から段差なく延びてインシュレータ420のバスバーユニット側端面に当接する。延設部412の先端部414は、基端部413の先端から曲折してインシュレータ420の外周に形成される被係合部421に係合する。
 延設部412の先端部414には、周方向両側に突出して形成される係合部としての爪部415と、先端部414の先端であって爪部415間に形成される切り欠き416と、が設けられる。バスバーホルダ411は、複数の延設部412の先端部414がインシュレータ420の外周の被係合部421に係合することにより、ステータコイル42に係合する。
 インシュレータ420の外周には、延設部412の先端部414が係合する被係合部421が形成される。被係合部421は、延設部412の先端部414が係合可能なように、周方向に沿ってほぼ等間隔に3つ配置される。被係合部421は、インシュレータ420の外周面から窪んで形成される凹部422と、凹部422のバスバーホルダ411側に形成され凹部422よりも周方向の幅が小さい係止部423と、を有する。係止部423の周方向の幅は、延設部412の先端部414の幅とほぼ等しく、爪部415が形成される部分の幅より小さくなるように設定される。
 バスバーホルダ411は、延設部412の先端部414が、それぞれ係止部423にスナップフィットにより係合することにより、ステータコイル42に対して位置決めされる。このとき、延設部412の先端部414の爪部415が切り欠き416側に撓みながら軸方向に移動することで、爪部415が係止部423を軸方向に通過する。
 すなわち、延設部412の先端部414が係止部423に嵌合するとともに、爪部415が係止部423に係止されることで、バスバーホルダ411はステータコイル42に対して径方向及び周方向に位置決めされる。これにより、バスバーホルダ411は、ステータコイル42と同一軸上に配置されるとともに、所定の回転位置に保持される。
 モータ400の組み立て時、ステータコア41にステータコイル42が組み付けられた後に、ステータコイル42にバスバーユニット410が組み付けられる。このとき、各電磁コイル43の線材44は、インシュレータ420の開口端とバスバーホルダ411の外周端との隙間から延び出し、それぞれの先端部414が各バスバー50の給電用端子52に溶接される。
 続いて、ステータ40がモータケース10に組み付けられた後、モータケース10にモータカバー20が組み付けられる。このとき、バスバーホルダ411の一端から突出している3本のバスバー端子53は、モータカバー20の各孔を貫通する。
 モータカバー20には、各相に対応した電線54に接続されるターミナル55が設けられる。モータケース10にモータカバー20が締結された後に、各ターミナル55の一端には、各バスバー端子53が溶接される。
 モータ400の作動時には、駆動電流が電線54、ターミナル55、バスバー50を通じて各電磁コイル43に供給され、ステータコア41に生じる磁力によってロータ30が回転する。
 以上の実施形態によれば、以下に示す効果を奏する。
 バスバーホルダ411に形成されてステータコイル42の被係合部421に係合する延設部412の先端部414の爪部415が周方向に突出して形成されるので、爪部415が先端部414から外周側又は内周側に突出する場合と比較して、バスバーホルダ411を小型化することができる。よって、バスバーユニット410の径方向寸法を小型化することができる。
 さらに、爪部415がインシュレータ420の凹部422から内周側へ突出しないので、インシュレータ420を大径化することなく、電磁コイル43の巻数を増加もしくはコイル径を大きくすることができる。よって、モータ400の性能を向上させることができる。
 次に、第5実施形態について説明する。
 図9は、本実施形態におけるバスバーユニット510を搭載したモータ500の断面図である。図10は、本実施形態におけるバスバーユニット510の斜視図である。以下の説明では、第4実施形態と異なる点を中心に説明し、第4実施形態のモータ500と同一の構成には同一の符号を付して説明を省略する。
 本実施形態では、バスバーホルダ511とインシュレータ520とを係合させる構造が第4実施形態と異なる。
 バスバーホルダ511の延設部512の先端部513には、周方向両側に突出して形成される係合部としての突部514が設けられる。バスバーホルダ511は、複数の延設部512の先端部513がインシュレータ520の外周の被係合部521に係合することにより、ステータコイル42に係合する。
 インシュレータ520の外周には、延設部512の先端が係合する被係合部521が形成される。被係合部521は、延設部512の先端部513が係合可能なように、周方向に沿ってほぼ等間隔に3つ配置される。被係合部521は、インシュレータ520の外周面から窪んで形成される凹部522と、凹部522のバスバーホルダ511側に形成され凹部522よりも周方向の幅が大きい係止部523と、を有する。係止部523の形状は、延設部512の先端部513の突部514と相似する形状に設定される。
 バスバーホルダ511は、延設部512の先端部513が、それぞれ係止部523にスナップフィットにより係合することにより、ステータコイル42に対して位置決めされる。このとき、延設部512の先端部513が径方向外側に撓みながら軸方向に移動し、先端部513の突部514が係止部523に合致したところで、突部514が係止部523に嵌め込まれる。なお、突部514の形状は、係止部523の形状と相似する形状であれば、半円形や矩形などを含むどのような形状であってもよい。
 これにより、バスバーホルダ511はステータコイル42に対して径方向及び周方向に位置決めされ、ステータコイル42と同一軸上に配置されるとともに、所定の回転位置に保持される。
 以上の実施形態によれば、以下に示す効果を奏する。
 バスバーホルダ511に形成されてステータコイル42の被係合部521に係合する延設部512の先端部513の突部514が周方向に突出して形成されるので、突部514が先端部513から外周側又は内周側に突出する場合と比較して、バスバーホルダ511を小型化することができる。よって、バスバーユニット510の径方向寸法を小型化することができる。
 さらに、突部514がインシュレータ520の凹部522から内周側へ突出しないので、インシュレータ520を大径化することなく、電磁コイル43の巻数を増加もしくはコイル径を大きくすることができる。よって、モータ500の性能を向上させることができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、第1実施形態では、バスバーホルダ111の位置決め段部112がバスバーホルダ111の外周側に設けられているが、バスバーホルダ111の内周側に設けられていてもよい。この場合、位置決め段部112にスナップフィットにより係合するインシュレータ120の延設部121も同様に内周側に設ければよい。
 さらに、第1実施形態では、位置決め段部112をバスバーホルダ111とともに一体形成しているが、位置決め段部112が別部材であってもよい。
 さらに、第2実施形態では、インシュレータ220の複数の延設部221が、バスバーホルダ211のインシュレータ220とは軸方向反対側の端面とバスバーホルダ211の外周面とが交差する部分の角部212にスナップフィットにより係合する場合を例示したが、バスバーホルダ211のインシュレータ220とは軸方向反対側の端面とバスバーホルダ211の内周面とが交差する部分の角部にスナップフィットにより係合させてもよい。この場合、インシュレータ220の延設部221をバスバーホルダ211の内周側に延びるように設ければよい。
 さらに、第3実施形態では、インシュレータ320の延設部321の突部322が、バスバーホルダ211の外周面に形成される凹部312にスナップフィットにより係合する場合を例示したが、バスバーホルダ211の内周面に凹部を形成してもよい。この場合、インシュレータ320の延設部321はインシュレータ320の内周面に延びるように配置し、突部322は延設部321の外周側に向けて突出するように形成すればよい。
 さらに、第4実施形態では、延設部412の爪部415を周方向両側に突出させているが、いずれか一方向のみに突出させてもよい。
 さらに、第4及び第5実施形態では、バスバーホルダ411、511の延設部412、512をインシュレータ420、520の外周面に形成される被係合部421、521に係合させているが、被係合部421、521をインシュレータ420、520の内周面に形成してもよい。この場合、バスバーホルダ411、511の延設部412、512はインシュレータ420、520の内周面に延びるように形成すればよい。
 さらに、上記全ての実施形態では、電力によって動力を発生するモータ100~500を例示したが、動力によって電力を発生する発電機にも上記実施形態は適用可能である。
 さらに、上記実施形態では、バスバー50が板状の導電部材を所定幅でステータ40の周方向に沿った形状に打ち抜いて形成される構造であり、各バスバー50が軸方向に所定の間隔を空けて積層されるバスバーユニット110、210、310、410、510を例示したが、これに代えて、バスバーが直線状の帯状導電部材を板厚方向に湾曲させてステータ40の周方向に沿った形状に形成される構造であり、バスバーごとに径を変えることで複数のバスバーをそれぞれ絶縁ホルダに収納したバスバーユニットであってもよい。

Claims (9)

  1.  バスバーユニットであって、
     ステータに巻装されるコイルに通電するバスバーと、
     前記バスバーを保持する絶縁部材から成るバスバーホルダと、を備え、
     前記バスバーホルダは、前記ステータから前記ステータの軸方向に延設される延設部に形成される係合部と係合する被係合部を有するバスバーユニット。
  2.  請求項1に記載のバスバーユニットであって、
     前記被係合部は、前記バスバーホルダの外周側に形成されるバスバーユニット。
  3.  請求項2に記載のバスバーユニットであって、
     前記係合部は、前記延設部の内周側に突出して形成され、
     前記被係合部は、前記バスバーホルダの前記ステータとは前記ステータの軸方向反対側の端面と前記バスバーホルダの外周面とが交差する部分の角部であるバスバーユニット。
  4.  請求項2に記載のバスバーユニットであって、
     前記係合部は、前記延設部の内周側に突出して形成され、
     前記被係合部は、前記バスバーホルダの外周面に形成される凹部であるバスバーユニット。
  5.  回転電機であって、
     回転可能に軸支されるロータと、
     前記ロータの外周に間隙を有して配置される前記ステータと、
     前記ステータと前記ステータの軸方向に並んで設けられる請求項1に記載の前記バスバーユニットと、を備え、
     前記ステータは、
     前記ステータの径方向に放射状に延びる複数のティース部を有するステータコアと、
     前記ティース部を包囲するインシュレータと、
     前記インシュレータを介して前記ティース部に巻設される前記コイルと、を有し、
     前記延設部及び前記係合部は、前記インシュレータに形成される回転電機。
  6.  バスバーユニットであって、
     ステータに巻装されるコイルに通電するバスバーと、
     前記バスバーを保持する絶縁部材から成るバスバーホルダと、を備え、
     前記バスバーホルダは、
     前記ステータへ向けて前記ステータの軸方向に延設される延設部と、
     前記延設部から前記ステータの周方向に突出して形成され前記ステータの被係合部と係合する係合部と、を有するバスバーユニット。
  7.  請求項6に記載のバスバーユニットであって、
     前記延設部の先端には切り欠きが形成され、
     前記係合部は、前記切り欠きを挟んで前記ステータの周方向両側に突出して形成され、
     前記係合部が前記切り欠き側に撓むことで前記係合部が前記ステータの前記被係合部に係合するバスバーユニット。
  8.  請求項6に記載のバスバーユニットであって、
     前記延設部は、前記ステータの径方向外側に撓むことで前記係合部が前記ステータの被係合部に係合するバスバーユニット。
  9.  回転電機であって、
     回転可能に軸支されるロータと、
     前記ロータの外周に間隙を有して配置される前記ステータと、
     前記ステータと前記ステータの軸方向に並んで設けられる請求項6に記載のバスバーユニットと、を備え、
     前記ステータは、
     前記ステータの径方向に放射状に延びる複数のティース部を有するステータコアと、
     前記ティース部を包囲するインシュレータと、
     前記インシュレータを介して前記ティース部に巻設される前記コイルと、を有し、
     前記被係合部は、前記インシュレータに形成される回転電機。
PCT/JP2015/070864 2015-07-22 2015-07-22 バスバーユニット及びこれを備えた回転電機 WO2017013772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/070864 WO2017013772A1 (ja) 2015-07-22 2015-07-22 バスバーユニット及びこれを備えた回転電機
US15/578,375 US10840656B2 (en) 2015-07-22 2015-07-22 Bus bar unit and rotary electric machine having the same
CN201580079703.0A CN107615623A (zh) 2015-07-22 2015-07-22 汇流条单元和具备该汇流条单元的旋转电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070864 WO2017013772A1 (ja) 2015-07-22 2015-07-22 バスバーユニット及びこれを備えた回転電機

Publications (1)

Publication Number Publication Date
WO2017013772A1 true WO2017013772A1 (ja) 2017-01-26

Family

ID=57834085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070864 WO2017013772A1 (ja) 2015-07-22 2015-07-22 バスバーユニット及びこれを備えた回転電機

Country Status (3)

Country Link
US (1) US10840656B2 (ja)
CN (1) CN107615623A (ja)
WO (1) WO2017013772A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968510A (zh) * 2017-12-29 2018-04-27 重庆超力高科技股份有限公司 绝缘骨架、定子组件以及无刷电机
JP2019068505A (ja) * 2017-09-28 2019-04-25 日本電産株式会社 バスバーユニット、モータおよびバスバーユニットの製造方法
JP2019068506A (ja) * 2017-09-28 2019-04-25 日本電産株式会社 バスバーユニットおよびモータ
JP7155518B2 (ja) 2017-12-21 2022-10-19 日本電産トーソク株式会社 電動オイルポンプ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728279B2 (ja) * 2018-07-24 2020-07-22 本田技研工業株式会社 バスバーユニット

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187875A (ja) * 2007-01-31 2008-08-14 Aichi Elec Co 回転機用巻線接続装置、回転機用固定子及び回転機
JP2009124926A (ja) * 2007-11-19 2009-06-04 Asmo Co Ltd バスバー装置及びブラシレスモータ
JP2014107988A (ja) * 2012-11-28 2014-06-09 Mitsubishi Electric Corp ブラシレスモータ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1491083A (en) * 1975-03-19 1977-11-09 Newage Kitchens Ltd Joint assemblies
JPS5688638A (en) * 1979-12-17 1981-07-18 Matsushita Seiko Co Ltd Resin-molded motor
US4530136A (en) * 1982-09-24 1985-07-23 Sunline Hardware, Inc. Bayonet-type latch mechanism with positive locking function
JP4183155B2 (ja) * 2000-01-12 2008-11-19 東芝キヤリア株式会社 電動機
JP3617810B2 (ja) * 2000-08-31 2005-02-09 三菱電機株式会社 回転電機
DE10045471A1 (de) 2000-09-14 2002-04-04 Miele & Cie Stator für Elektromotoren, insbesondere für Asynchronmotoren
JP4007176B2 (ja) 2002-12-09 2007-11-14 株式会社日立製作所 回転電機及び配線用部材
KR101045647B1 (ko) * 2004-10-05 2011-07-01 엘지전자 주식회사 모터브라켓 체결구조
JP2007318885A (ja) * 2006-05-25 2007-12-06 Mabuchi Motor Co Ltd ブラシレスモータ
JP5232618B2 (ja) 2008-12-16 2013-07-10 日立オートモティブシステムズ株式会社 回転電機
JP5740931B2 (ja) * 2010-03-03 2015-07-01 日本電産株式会社 分割ステータ、及びモータ
EP2458715B1 (en) * 2010-11-05 2014-01-08 LG Innotek Co., Ltd. Bus bar of EPS motor
JP2013042633A (ja) * 2011-08-19 2013-02-28 Nippon Densan Corp モータ
CN103119834B (zh) * 2011-09-22 2014-07-23 丰田自动车株式会社 旋转电机的定子
JP5736339B2 (ja) 2012-03-30 2015-06-17 カヤバ工業株式会社 バスバーユニット
US20140028127A1 (en) * 2012-07-25 2014-01-30 Bradley Duane Chamberlin Buss bar assembly having alignment and retention feature
WO2014174666A1 (ja) * 2013-04-26 2014-10-30 三菱電機株式会社 回転電機
KR101560057B1 (ko) * 2013-11-20 2015-10-15 뉴모텍(주) 버스바 결선 구조를 갖는 모터의 스테이터 및 이를 이용한 코일의 병렬 결선 방법
JP6335506B2 (ja) * 2013-12-24 2018-05-30 Kyb株式会社 モータ
JP6724725B2 (ja) * 2016-11-01 2020-07-15 トヨタ自動車株式会社 回転電機のステータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187875A (ja) * 2007-01-31 2008-08-14 Aichi Elec Co 回転機用巻線接続装置、回転機用固定子及び回転機
JP2009124926A (ja) * 2007-11-19 2009-06-04 Asmo Co Ltd バスバー装置及びブラシレスモータ
JP2014107988A (ja) * 2012-11-28 2014-06-09 Mitsubishi Electric Corp ブラシレスモータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019068505A (ja) * 2017-09-28 2019-04-25 日本電産株式会社 バスバーユニット、モータおよびバスバーユニットの製造方法
JP2019068506A (ja) * 2017-09-28 2019-04-25 日本電産株式会社 バスバーユニットおよびモータ
JP7155518B2 (ja) 2017-12-21 2022-10-19 日本電産トーソク株式会社 電動オイルポンプ
CN107968510A (zh) * 2017-12-29 2018-04-27 重庆超力高科技股份有限公司 绝缘骨架、定子组件以及无刷电机

Also Published As

Publication number Publication date
CN107615623A (zh) 2018-01-19
US10840656B2 (en) 2020-11-17
US20180175570A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5001723B2 (ja) 電動機
WO2018038246A1 (ja) モータ
US10418873B2 (en) Brushless motor with stator having twelve teeth with corresponding coils having axially arranged connecting wires
JP4404199B2 (ja) 同期電動機
JP5060839B2 (ja) 電動機
US10103594B2 (en) Rotary machine
WO2017013772A1 (ja) バスバーユニット及びこれを備えた回転電機
JP6208365B2 (ja) ステータ及び回転機
JP2009261082A (ja) 回転電機の集配電リング
JP6353722B2 (ja) バスバーユニット及びこれを備えた回転電機
CN110098684B (zh) 电机的电磁结构
JP2010154701A (ja) 回転電機用ターミナル
JP2020124105A (ja) モータ
US9614407B2 (en) Rotary electric machine stator
JP2009261094A (ja) 回転電機の集配電構造
JP5233417B2 (ja) 回転電機
JP2018148667A (ja) 回転電機
JP2009124927A (ja) バスバー装置及びブラシレスモータ
WO2020035976A1 (ja) 回転電機、インシュレータ、およびそのアセンブリ方法
JP2011200091A (ja) モータのステータ
JP5657308B2 (ja) 回転電機
JP2022500993A (ja) モーター
KR102514590B1 (ko) 모터
JP2013110811A (ja) 電動モータ
JP2020195205A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15578375

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP