WO2017012162A1 - 富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法 - Google Patents

富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法 Download PDF

Info

Publication number
WO2017012162A1
WO2017012162A1 PCT/CN2015/087673 CN2015087673W WO2017012162A1 WO 2017012162 A1 WO2017012162 A1 WO 2017012162A1 CN 2015087673 W CN2015087673 W CN 2015087673W WO 2017012162 A1 WO2017012162 A1 WO 2017012162A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
pedot
pss
film
substrate
Prior art date
Application number
PCT/CN2015/087673
Other languages
English (en)
French (fr)
Inventor
胡韬
武岳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/786,549 priority Critical patent/US10066062B2/en
Publication of WO2017012162A1 publication Critical patent/WO2017012162A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes

Definitions

  • the present invention relates to the field of display manufacturing, and in particular to a method for preparing a fullerene/PEDOT:PSS mixed solution and a method for preparing a substrate having a fullerene/PEDOT:PSS composite transparent conductive film.
  • LCDs liquid crystal displays
  • OLEDs organic light emitting diodes
  • the display panel is an important component of the LCD and the OLED.
  • the display panel of the LCD mainly consists of a Thin Film Transistor (TFT) substrate, a Color Filter (CF), and a configuration.
  • the liquid crystal layer is formed between the two substrates, and the working principle is to control the rotation of the liquid crystal molecules in the liquid crystal layer by applying a driving voltage on the transparent conductive electrodes on the TFT substrate and the CF substrate, and the backlight module is The light is refracted to produce a picture, and the backlight is transmitted through the CF substrate to provide different colors; therefore, the performance of the transparent conductive electrode material has a great influence on the display effect.
  • a conventional transparent conductive film is an indium tin oxide (ITO) film prepared by a physical vapor deposition (PVD) method.
  • the specific fabrication process is as follows: in the PVD device, a strong current bombards the ITO target, and a transparent conductive ITO film is deposited on the substrate.
  • the transparent conductive ITO film has good light transmittance, high conductivity, and stable structure.
  • the surface resistance of the prepared ITO film is large, and due to the physical properties of the ITO oxide itself, the ITO film cannot exhibit the bending property under a certain external force, which also limits its Application on flexible panels, wearable devices. Therefore, it is of great significance and value to find ITO substitutes with high conductivity and light transmittance, simple preparation methods and abundant resources.
  • Poly 3,4-ethylenedioxythiophene/polystyrene sulfonate is a high molecular polymer in organic solar cells (OPV) with organic field effect transistors (OFETs) and organic light-emitting diodes. Both tubes (OLED) and flexible devices have been widely used.
  • the film formed by this material has high stability, high light transmittance and good electrical conductivity.
  • the surface resistance can be adjusted by the distribution ratio to make the window width. Suitable for large-scale flexible printing. Studies have shown that adding a small amount of glycerol or sorbitol to PEDOT:PSS has a significant increase in conductivity without loss of transmission.
  • Fullerene (C 60 , C 70 ) is an allotrope of elemental carbon with a football-like shape, and each C atom is SP 2 hybridized to achieve three-dimensional aromaticity. Although pure fullerene has poor solubility, various soluble functional groups can be introduced thereon by chemical modification, and the solubility of such molecules in an aqueous solution/organic solution is increased without affecting conductivity. As an excellent carrier transport material, it is also well used in OPV, OFET, OLED and flexible devices.
  • the object of the present invention is to provide a method for preparing a fullerene/PEDOT:PSS mixed solution, which comprises using a fullerene molecule and a PEDOT:PSS solution to prepare a fullerene/PEDOT:PSS for preparing a transparent conductive film.
  • the mixed solution has a wide range of materials and is inexpensive; the fullerene/PEDOT:PSS mixed solution can be used to further produce a fullerene/PEDOT:PSS composite transparent conductive film.
  • the conductive film eliminates expensive PVD equipment compared with the preparation method of the ITO film, reduces the production cost, and has a simple manufacturing method, shortened production time, and improved economic efficiency, and the method is suitable for large-area film formation.
  • the present invention provides a method for preparing a fullerene/PEDOT:PSS mixed solution, comprising the following steps:
  • Step 1 using a fullerene molecule and water or a strong polar solvent to prepare a fullerene solution;
  • the fullerene-based molecule is a fullerene or a fullerene derivative, and the fullerene derivative is a water-soluble fullerene derivative or a water-insoluble fullerene derivative;
  • Step 2 Mixing the fullerene solution with a certain concentration of the PEDOT:PSS diluted solution at a mass ratio of 1:100 to 100:1, and mechanically stirring or sonicating to obtain a uniformly dispersed fullerene/ PEDOT: PSS mixed solution.
  • the step 1 is specifically: introducing the water-soluble fullerene derivative into deionized water according to a mass ratio of the water-soluble fullerene derivative to the deionized water of 1:100 to 10000, and performing ultrasonic dispersion or mechanical stirring.
  • the dispersion was uniform to obtain a fullerene dispersion, and the fullerene dispersion was centrifuged or filtered to remove large particle aggregates to obtain a fullerene solution, and the actual concentration was measured by spectrophotometry.
  • the step 1 is specifically: according to fullerene or water-insoluble fullerene derivatives, surface activity
  • the ratio of the agent to the deionized water is from 1:50 to 500:50 to 10000.
  • the fullerene or the water-insoluble fullerene derivative and the surfactant are put into deionized water and ultrasonically dispersed or mechanically stirred.
  • the dispersion was uniform to obtain a fullerene dispersion, and the fullerene dispersion was centrifuged or filtered to remove large particle aggregates to obtain a fullerene solution, and the actual concentration was measured by spectrophotometry.
  • the surfactant is sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate or sodium tetradecyl sulfate.
  • the step 1 is specifically: putting the fullerene or the water-insoluble fullerene derivative into a ratio of a fullerene or a water-insoluble fullerene derivative to a strong polar solvent in a ratio of 1:100 to 10,000.
  • a strong polar solvent and ultrasonically disperse or mechanically agitate to uniformly disperse to obtain a fullerene dispersion, and centrifuge or filter the fullerene dispersion to remove large particle aggregates to obtain a fullerene solution.
  • the actual concentration is measured by spectrophotometry;
  • the strongly polar solvent is methanol, N,N'-dimethylformamide or dimethyl sulfoxide.
  • the concentration of the fullerene molecule in the fullerene solution obtained in the step 1 is 0.1-10 mg/ml
  • the PEDOT:PSS diluted solution in the step 2 is prepared by using deionized water and a PEDOT:PSS solution, and
  • the mass percentage of the PEDOT:PSS solution in the PEDOT:PSS diluted solution is from 1 to 100% by weight.
  • the invention also provides a preparation method of a substrate having a fullerene/PEDOT:PSS composite transparent conductive film, comprising the following steps:
  • Step 10 preparing a fullerene / PEDOT: PSS mixed solution by the method as described above;
  • Step 20 providing a substrate, applying the fullerene/PEDOT:PSS mixed solution onto the substrate by a wet coating process, and performing film formation to obtain a fullerene/PEDOT:PSS film;
  • Step 30 placing the film-formed substrate on a constant temperature heating plate to remove the solvent in the fullerene/PEDOT:PSS film and curing;
  • Step 40 using a deionized water to rinse the cured fullerene/PEDOT:PSS film multiple times to remove the solvent, surfactant and impurities remaining in the film, and increase the conductivity of the fullerene/PEDOT:PSS film. ;
  • Step 50 Drying the fullerene/PEDOT:PSS film to remove moisture in the film to obtain a dry and uniform film-rich fullerene/PEDOT:PSS composite transparent conductive film on the substrate.
  • the substrate is a glass substrate or a flexible substrate;
  • the wet coating process is spray coating, spin coating, roll coating, slit extrusion coating, dip coating, blade coating, gravure printing, spraying Ink printing or screen printing.
  • the temperature of the constant temperature heating plate is 60-150 ° C, and the baking time is 3-10. Min.
  • the drying treatment process in the step 50 is natural drying, nitrogen drying or rapid drying in an environment of 80-120 ° C.
  • the invention also provides a preparation method of a substrate having a fullerene/PEDOT:PSS composite transparent conductive film, comprising the following steps:
  • Step 10 Preparing a fullerene/PEDOT:PSS mixed solution by the method according to claim 1;
  • Step 20 providing a substrate, applying the fullerene/PEDOT:PSS mixed solution onto the substrate by a wet coating process, and performing film formation to obtain a fullerene/PEDOT:PSS film;
  • Step 30 placing the film-formed substrate on a constant temperature heating plate to remove the solvent in the fullerene/PEDOT:PSS film and curing;
  • Step 40 using a deionized water to rinse the cured fullerene/PEDOT:PSS film multiple times to remove the solvent, surfactant and impurities remaining in the film, and increase the conductivity of the fullerene/PEDOT:PSS film. ;
  • Step 50 drying the fullerene/PEDOT:PSS film to remove moisture in the film to obtain a dry and uniform film-rich fullerene/PEDOT:PSS composite transparent conductive film on the substrate;
  • the substrate is a glass substrate or a flexible substrate;
  • the wet coating process is spray coating, spin coating, roll coating, slit extrusion coating, dip coating, blade coating, gravure printing. , inkjet printing or screen printing;
  • the temperature of the constant temperature heating plate is 60-150 ° C, and the baking time is 3-10 min;
  • the drying treatment process in the step 50 is natural drying, nitrogen drying or rapid drying in an environment of 80-120 ° C.
  • the present invention provides a method for preparing a fullerene/PEDOT:PSS mixed solution, which comprises preparing a fullerene/PEDOT:PSS mixed solution by using a fullerene molecule and a PEDOT:PSS solution.
  • the materials used are widely available and inexpensive, and the obtained fullerene/PEDOT:PSS mixed solution can be used to further fabricate a fullerene/PEDOT:PSS composite transparent conductive film on a substrate or various devices;
  • a method for preparing a substrate having a fullerene/PEDOT:PSS composite transparent conductive film, using a low-cost, high-efficiency wet coating process in the preparation of a fullerene/PEDOT:PSS composite transparent conductive film, with an ITO film The preparation method saves the production cost compared with the expensive PVD equipment, and the production method is simple, the production time is shortened, the economic benefit is improved, and the method is suitable for large-area film formation;
  • a fullerene prepared by the invention PEDOT: PSS composite transparent conductive film has high stability, uniform film quality, high conductivity and high Light transmittance can be used to replace commercial ITO film, and because of its excellent mechanical properties, it also has great application potential in flexible devices and wearable devices.
  • FIG. 1 is a flow chart showing a method for preparing a fullerene/PEDOT:PSS mixed solution of the present invention
  • FIG. 2 is a schematic view showing the structure of a fullerene/PEDOT:PSS composite transparent conductive film prepared by a method for preparing a substrate having a fullerene/PEDOT:PSS composite transparent conductive film of the present invention.
  • the present invention firstly provides a method for preparing a fullerene/PEDOT:PSS mixed solution, comprising the following steps:
  • Step 1 using a fullerene molecule and water or a strong polar solvent to prepare a fullerene solution;
  • the fullerene molecule is a fullerene or a fullerene derivative
  • the fullerene has a structural formula of C 28 , C 32 , C 50 , C 60 , or C 70 , etc., and the fullerene is soluble in some organic solvents, insoluble or insoluble in water. .
  • fullerene derivatives can be classified into two types according to their solubility characteristics in water:
  • One type is a water-insoluble fullerene derivative such as fullerene-Cl x , fullerene-F x , fullerene-Br x , fullerene-H x , etc., wherein x is a natural number greater than 0,
  • the water-insoluble fullerene derivative has similar solubility characteristics to fullerenes, is soluble in certain organic solvents, is insoluble or insoluble in water;
  • the other type is a water-soluble fullerene derivative such as fullerene-(OH) x , fullerene-(TEG) x , fullerene-(COOH) x , or fullerene-(TEG) x ( COOH) y, etc., wherein x, y represents the number of hydroxyl-OH, carboxyl-COOH, or polyethylene glycol group-TEG introduced in the fullerene molecule, and x, y are all natural numbers greater than zero.
  • x, y represents the number of hydroxyl-OH, carboxyl-COOH, or polyethylene glycol group-TEG introduced in the fullerene molecule, and x, y are all natural numbers greater than zero.
  • x y represents the number of hydroxyl-OH, carboxyl-COOH, or polyethylene glycol group-TEG introduced in the fullerene molecule
  • x, y are all natural numbers greater than zero.
  • the water-soluble fullerene derivative is put into deionized water at a mass ratio of water-soluble fullerene derivative to deionized water of 1:100 to 10000 and ultrasonically dispersed or mechanically stirred to uniformly disperse it. Obtaining a fullerene dispersion, centrifuging or filtering the fullerene dispersion to remove large particle aggregates, obtaining a fullerene solution, measuring the actual concentration thereof by spectrophotometry, and dissolving the water in the fullerene solution The concentration of the fullerene derivative is from 0.1 to 10 mg/ml.
  • the surfactant is sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate or tetradecyl Sodium sulfate.
  • the strong polar solvent is methanol, N, N'-dimethylformamide or dimethyl sulfoxide.
  • the high-power ultrasound system is used for ultrasonic dispersion, the ultrasonic power is 500-900 W, and the ultrasonic time is 10-120 min; and the large particles in the fullerene dispersion are removed by centrifugation.
  • the centrifuge speed is 2000 to 5000 rpm, and the centrifugation time is 5 to 60 minutes.
  • Step 2 Mixing the fullerene solution with a certain concentration of the PEDOT:PSS diluted solution at a mass ratio of 1:100 to 100:1, and mechanically stirring or sonicating to obtain a uniformly dispersed fullerene/ PEDOT: PSS mixed solution.
  • the PEDOT:PSS dilution solution is prepared by using deionized water and a PEDOT:PSS solution, and the mass percentage of the PEDOT:PSS solution in the PEDOT:PSS dilution solution is 1 to 100 wt%; when the PEDOT: When the mass percentage of the PEDOT:PSS solution in the PSS dilution solution is 100% by weight, the PEDOT:PSS diluted solution is a pure PEDOT:PSS solution.
  • the PEDOT:PSS solution is an aqueous solution, which is composed of PEDOT (poly(3,4-) Composition of ethylenedioxythiophene), PSS (poly(styrenesulfonic acid)), and water, which can be obtained by commercial purchase or laboratory preparation.
  • PSS in the PEDOT:PSS solution is The mass ratio of PEDOT is from 1 to 5:1, and the total mass of the two substances of PEDOT and PSS in the PEDOT:PSS solution (ie, solid content) is from 1 to 6 wt%.
  • the invention provides a method for preparing a fullerene/PEDOT:PSS mixed solution, which comprises using a fullerene molecule and a PEDOT:PSS solution to prepare a fullerene/PEDOT:PSS mixed solution, and the materials used are widely used.
  • the low-cost, fullerene/PEDOT:PSS mixed solution can be used to further fabricate a fullerene/PEDOT:PSS composite transparent conductive film on a substrate or various devices;
  • the fullerene molecule used in the invention is a spherical molecule, and is easily blended with a PEDOT:PSS solution to form a uniform system.
  • the spherical structure is not easy to aggregate, and the stability of the blending solution can be improved, thereby ensuring preparation by the present invention.
  • the fullerene/PEDOT:PSS composite transparent conductive film further prepared by the fullerene/PEDOT:PSS mixed solution has high stability and good uniformity of film quality;
  • fullerene molecules can be effectively incorporated into PEDOT:PSS to improve their conductivity, and fullerene molecules have poor light absorption in the visible range.
  • the light transmittance of the fullerene/PEDOT:PSS composite transparent conductive film is lowered, so that the fullerene/PEDOT:PSS composite transparent conductive film prepared by the present invention has high conductivity and high light transmittance.
  • the present invention also provides a method for preparing a substrate having a fullerene/PEDOT:PSS composite transparent conductive film, comprising the following steps:
  • Step 10 Prepare a fullerene/PEDOT:PSS mixed solution by the above method.
  • Step 20 providing a substrate, applying the fullerene/PEDOT:PSS mixed solution onto the substrate by a wet coating process, and performing film formation to obtain a fullerene/PEDOT:PSS film;
  • the substrate may be a glass substrate or a flexible substrate such as PET;
  • the wet coating process is a process such as spray coating, spin coating, roll coating, slit extrusion coating, dip coating, blade coating, gravure printing, inkjet printing or screen printing.
  • Step 30 placing the film-formed substrate on a constant temperature heating plate to remove the solvent in the fullerene/PEDOT:PSS film and curing;
  • the constant temperature heating plate has a temperature ranging from 60 to 150 ° C and a baking time of 3 to 10 minutes.
  • Step 40 using a deionized water to rinse the cured fullerene/PEDOT:PSS film multiple times to remove the solvent, surfactant and impurities remaining in the film, and increase the conductivity of the fullerene/PEDOT:PSS film. .
  • Step 50 drying the fullerene/PEDOT:PSS film to remove moisture in the film to obtain a dry and uniform film-rich fullerene/PEDOT:PSS composite transparent conductive film on the substrate;
  • the drying treatment method may be natural drying, nitrogen drying or rapid drying in an environment of 80-140 ° C.
  • the fullerene molecule 10 (fullerene or fullerene derivative) is polymerized with PEDOT:PSS.
  • the material 20 is uniformly dispersed in the film, so that the fullerene/PEDOT:PSS composite transparent conductive film 100 has uniform film quality, high stability, high conductivity and high light transmittance.
  • the invention provides a method for preparing a substrate having a fullerene/PEDOT:PSS composite transparent conductive film, and adopts a low-cost and high-efficiency wet coating process in preparing a fullerene/PEDOT:PSS composite transparent conductive film.
  • the expensive PVD device is omitted, the production cost is reduced, the production method is simple, the production time is shortened, the economic benefit is improved, and the method is suitable for large-area film formation;
  • Fullerene/PEDOT: PSS composite transparent conductive film has high stability, uniform film quality, high conductivity and high light transmittance, can be used to replace commercial ITO film, and is excellent in mechanical properties, in flexible devices, wearable The device also has great application potential.
  • Step 1 in accordance with the water-soluble fullerene derivatives C 60 (OH) 24 with deionized water mass ratio of 1: 100 ratio of water-soluble fullerene derivative C 60 (OH) 24 deionized water and Ultrasonic dispersion, ultrasonic power of 500W, ultrasonic time of 120min, uniform dispersion, obtaining fullerene dispersion, filtering the fullerene dispersion to remove large particle aggregates, obtaining fullerene solution, using splitting The actual concentration is measured by a photometric method, and the concentration of the water-soluble fullerene derivative C 60 (OH) 24 in the fullerene solution is 6 mg/ml;
  • Step 2 Mixing the fullerene solution with a certain concentration of PEDOT:PSS diluted solution at a mass ratio of 1:100, and mechanically stirring or sonicating to obtain a uniformly dispersed fullerene/PEDOT:PSS mixture.
  • the mass percentage of the PEDOT:PSS solution in the PEDOT:PSS dilution solution is 50 wt%, and the mass percentage of PEDOT, PSS, and water in the PEDOT:PSS solution are 0.5 wt%, 1 wt%, and 98.5 wt%, respectively;
  • Step 3 providing a glass substrate, applying the fullerene/PEDOT:PSS mixed solution onto a glass substrate by a spraying process, and performing film formation to obtain a fullerene/PEDOT:PSS film;
  • Step 4 placing the film-formed substrate on a constant temperature hot plate at 60 ° C for 10 min to remove the solvent in the fullerene / PEDOT: PSS film and curing;
  • Step 5 using a deionized water to rinse the cured fullerene/PEDOT:PSS film multiple times to remove impurities in the film and increase the conductivity of the fullerene/PEDOT:PSS film;
  • Step 6 Perform natural drying treatment on the fullerene/PEDOT:PSS film to remove moisture in the film to obtain a dry and uniform film-rich fullerene/PEDOT:PSS composite transparent conductive film on the substrate.
  • Step 1 according to the ratio of the water-insoluble fullerene derivative C 60 Br 24 , sodium dodecylbenzenesulfonate, and deionized water in a ratio of 1:50:9050, the water-insoluble fullerene derivative C 60 Br 24 and sodium dodecylbenzenesulfonate are put into deionized water and mechanically stirred to uniformly disperse to obtain a fullerene dispersion, and the fullerene dispersion is centrifuged to remove large particle aggregates.
  • the centrifuge speed is 5000 rpm, the centrifugation time is 5 min, the water-insoluble fullerene solution is obtained, and the actual concentration is measured by spectrophotometry.
  • the water-insoluble fullerene derivative C 60 Br 24 in the fullerene solution The concentration is 0.05 mg/ml;
  • Step 2 Mixing the fullerene solution with a certain concentration of PEDOT:PSS diluted solution at a mass ratio of 1:1, and mechanically stirring or sonicating to obtain a uniformly dispersed fullerene/PEDOT:PSS mixture.
  • the mass percentage of the PEDOT:PSS solution in the PEDOT:PSS dilution solution is 50 wt%, and the mass percentages of PEDOT, PSS, and water in the PEDOT:PSS solution are 0.5 wt%, 1.5 wt%, and 98 wt%, respectively;
  • Step 3 providing a glass substrate, applying the fullerene/PEDOT:PSS mixed solution onto a glass substrate by a spin coating process to form a film to obtain a fullerene/PEDOT:PSS film;
  • Step 4 placing the film-formed substrate on a constant temperature hot plate at 150 ° C for 3 min to remove the solvent in the fullerene / PEDOT: PSS film and curing;
  • Step 5 The cured fullerene/PEDOT:PSS film is rinsed several times with deionized water to remove the remaining sodium dodecylbenzene sulfonate and impurities in the film to increase the fullerene/PEDOT:PSS film.
  • Step 6 The fullerene/PEDOT:PSS film is blown dry with nitrogen to remove moisture in the film to obtain a dry and film-like fullerene/PEDOT:PSS composite transparent conductive film on the substrate.
  • Step 1 According to the ratio of the fullerene C 60 to the strong polar solvent of 1:200, the fullerene C 60 is put into N, N'-dimethylformamide and ultrasonically dispersed, and the ultrasonic power is 900 W.
  • the ultrasonic time is 10 min; the dispersion is uniform, the fullerene dispersion is obtained, and the fullerene dispersion is centrifuged to remove large particle aggregates, the centrifuge speed is 2000 rpm, and the centrifugation time is 60 min to obtain fullerenes.
  • a solution the actual concentration thereof is measured by spectrophotometry, the concentration of fullerene C 60 in the fullerene solution is 3 mg / ml;
  • Step 2 Mixing the fullerene solution with a certain concentration of PEDOT:PSS solution at a mass ratio of 100:1, and mechanically stirring or sonicating to obtain a uniformly dispersed fullerene/PEDOT:PSS mixed solution. ;
  • the mass percentages of PEDOT, PSS, and water in the PEDOT:PSS solution are 0.5 wt%, 2.5 wt%, and 97 wt%, respectively;
  • Step 3 providing a glass substrate, applying the fullerene/PEDOT:PSS mixed solution onto a glass substrate by a spraying process, and performing film formation to obtain a fullerene/PEDOT:PSS film;
  • Step 4 placing the film-formed substrate on a constant temperature hot plate at 100 ° C for 5 min to remove the solvent in the fullerene / PEDOT: PSS film and curing;
  • Step 5 using a deionized water to rinse the cured fullerene/PEDOT:PSS film multiple times to remove the solvent and impurities remaining in the film, and increase the conductivity of the fullerene/PEDOT:PSS film;
  • Step 6 The fullerene/PEDOT:PSS film is dried in an oven at 100 ° C to remove moisture in the film to obtain a dry and uniform film fullerene/PEDOT:PSS composite transparent on the substrate. Conductive film.
  • the present invention provides a method for preparing a fullerene/PEDOT:PSS mixed solution, which uses a fullerene molecule and a PEDOT:PSS solution to prepare a fullerene/PEDOT:PSS mixed solution.
  • the material used is widely available and inexpensive, and the obtained fullerene/PEDOT:PSS mixed solution can be used to further fabricate a fullerene/PEDOT:PSS composite transparent conductive film on a substrate or various devices;
  • Preparation method of substrate with fullerene/PEDOT:PSS composite transparent conductive film, low-cost, high-efficiency wet coating process and preparation of ITO film in preparation of fullerene/PEDOT:PSS composite transparent conductive film Compared with the expensive PVD equipment, the method reduces the production cost, and the manufacturing method is simple, the production time is shortened, the economic benefit is improved, and the method is suitable for large-area film formation;
  • a fullerene/PEDOT prepared by the invention :PSS composite transparent conductive film has high stability, uniform film quality, high conductivity and high light transmittance. It can be used to replace commercial ITO film, and it has excellent mechanical properties in flexible devices and wearable devices. Great application potential.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Paints Or Removers (AREA)

Abstract

一种富勒烯/PEDOT:PSS混合溶液的制备方法,采用富勒烯类分子(10)与水或强极性溶剂配制成富勒烯溶液;富勒烯类分子(10)为富勒烯或富勒烯衍生物,富勒烯衍生物为水溶性富勒烯衍生物或非水溶性富勒烯衍生物;将富勒烯溶液与一定浓度的PEDOT:PSS稀释溶液按照质量比为1:100至100:1的比例进行混合,机械搅拌或超声处理后,得到分散均匀的富勒烯/PEDOT:PSS混合溶液;及一种具有富勒烯/PEDOT:PSS复合透明导电膜(100)的基板的制备方法,该富勒烯/PEDOT:PSS复合透明导电膜(100)具有高导电性和高透光率,可用于取代商用ITO膜。

Description

富勒烯/PEDOT:PSS混合溶液的制备方法及具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法 技术领域
本发明涉及显示器制造领域,尤其涉及一种富勒烯/PEDOT:PSS混合溶液的制备方法及具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法。
背景技术
在显示技术领域,液晶显示器(Liquid Crystal Display,LCD)与有机发光二极管显示器(Organic Light Emitting Diode,OLED)等平板显示器已经逐步取代CRT显示器,广泛的应用于液晶电视、手机、个人数字助理、数字相机、计算机屏幕或笔记本电脑屏幕等。
显示面板是LCD、OLED的重要组成部分,以LCD的显示面板为例,其主要是由一薄膜晶体管(Thin Film Transistor,TFT)基板、一彩色滤光片基板(Color Filter,CF)、以及配置于两基板间的液晶层(Liquid Crystal Layer)所构成,其工作原理是通过在TFT基板与CF基板上的透明导电电极上施加驱动电压来控制液晶层中液晶分子的旋转,将背光模组的光线折射出来产生画面,通过背光透过CF基板来提供不同的颜色;因此,透明导电电极材料的性能对显示效果有很大的影响。
目前,传统的透明导电膜是由物理气相溅射(PVD)的方法制备出的氧化铟锡(ITO)薄膜。具体制作过程为:在PVD装置中,强电流轰击ITO靶材,在基板上沉积得到透明导电ITO薄膜。该透明导电ITO薄膜的透光率好,导电性高,结构稳定。不过,因气相沉积制程耗时较长,制备的ITO薄膜面电阻值较大,并由于ITO自身氧化物的物理特性,ITO薄膜并不能在一定外力作用下展现弯折特性,这也限制了其在柔性面板、可穿戴设备上的应用。所以寻找高导电性和透光率、制备方法简单、资源丰富的ITO替代品具有重要的意义和价值。
聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)是一种高分子聚合物,在有机太阳能电池(OPV),有机场效应晶体管(OFET),有机发光二级管(OLED)以及柔性器件上均得到了广泛的应用,这种物质形成的薄膜稳定性高,透光率高,导电性好,其面电阻可通过成分配比调节,制成窗 口宽,也适于大规模柔性印刷。研究表明,在PEDOT:PSS中添加少量丙三醇或山梨醇,在不损失透过率的情况下导电率有明显的提升。富勒烯(Fullerene,C60,C70)是单质碳的同素异形体,具有类似足球的形状,其上每个C原子采用SP2杂化方式,实现了三维芳香性。虽然单纯的富勒烯溶解性很差,不过通过化学修饰的方法可在其上引入多种可溶性官能团,在不影响导电性的情况下增加这类分子在水溶液/有机溶液中的溶解性。作为一种优秀的载流子传输材料,其在OPV,OFET,OLED及柔性器件中也得到了很好的应用。
发明内容
本发明的目的在于提供一种富勒烯/PEDOT:PSS混合溶液的制备方法,采用富勒烯类分子与PEDOT:PSS溶液来制备一种用于制备透明导电膜的富勒烯/PEDOT:PSS混合溶液,所使用的材料来源广泛、价格低廉;所述富勒烯/PEDOT:PSS混合溶液可用于进一步制作富勒烯/PEDOT:PSS复合透明导电膜。
本发明的目的在于还提供一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,采用低成本、高效率的湿法涂布工艺来制备富勒烯/PEDOT:PSS复合透明导电膜,与ITO膜的制备方法相比省去了昂贵的PVD设备,降低了生产成本,同时制作方法简单,生产时间缩短,经济效益提高,并且该方法适用于大面积成膜。
为实现上述目的,本发明提供一种富勒烯/PEDOT:PSS混合溶液的制备方法,包括以下步骤:
步骤1、采用富勒烯类分子与水或强极性溶剂配制成富勒烯溶液;
所述富勒烯类分子为富勒烯或富勒烯衍生物,所述富勒烯衍生物为水溶性富勒烯衍生物或非水溶性富勒烯衍生物;
步骤2、将所述富勒烯溶液与一定浓度的PEDOT:PSS稀释溶液按照质量比为1:100至100:1的比例进行混合,机械搅拌或超声处理后,得到分散均匀的富勒烯/PEDOT:PSS混合溶液。
所述步骤1具体为:按照水溶性富勒烯衍生物与去离子水的质量比为1:100~10000的比例将水溶性富勒烯衍生物投入去离子水中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度。
所述步骤1具体为:按照富勒烯或非水溶性富勒烯衍生物、表面活性 剂、及去离子水的质量比为1:50~500:50~10000的比例将富勒烯或非水溶性富勒烯衍生物与表面活性剂投入去离子水中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度。
所述表面活性剂为十二烷基硫酸钠、十二烷基硫酸铵、十二烷基磺酸钠、十二烷基苯磺酸钠或十四烷基硫酸钠。
所述步骤1具体为:按照富勒烯或非水溶性富勒烯衍生物与强极性溶剂的质量比为1:100~10000的比例将富勒烯或非水溶性富勒烯衍生物投入到强极性溶剂中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度;
所述强极性溶剂为甲醇、N,N’-二甲基甲酰胺或者二甲基亚砜。
所述步骤1得到的富勒烯溶液中富勒烯类分子的浓度为0.1~10mg/ml,所述步骤2中所述PEDOT:PSS稀释溶液由去离子水与PEDOT:PSS溶液配制而成,且所述PEDOT:PSS稀释溶液中PEDOT:PSS溶液的质量百分比为1~100wt%。
本发明还提供一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,包括以下步骤:
步骤10、采用如上所述的方法制备富勒烯/PEDOT:PSS混合溶液;
步骤20、提供基板,采用湿法涂布工艺将所述富勒烯/PEDOT:PSS混合溶液涂布于所述基板上,进行成膜,得到富勒烯/PEDOT:PSS薄膜;
步骤30、将成膜后的基板放置于恒温加热板上加热,以除去所述富勒烯/PEDOT:PSS薄膜内的溶剂并固化;
步骤40、采用去离子水对固化后的富勒烯/PEDOT:PSS薄膜进行多次冲洗,以除去薄膜中剩余的溶剂、表面活性剂以及杂质,增加富勒烯/PEDOT:PSS薄膜的导电性;
步骤50、对所述富勒烯/PEDOT:PSS薄膜进行干燥处理,将薄膜内的水分去除,得到位于基板上的干燥且膜质均一的富勒烯/PEDOT:PSS复合透明导电薄膜。
所述步骤20中,所述基板为玻璃基板、或者柔性基板;所述湿法涂布工艺为喷涂、旋涂、辊涂、狭缝挤压涂布、浸涂、刮涂、凹版印刷、喷墨打印或者丝网印刷。
所述步骤30中,恒温加热板的温度范围为60-150℃,烘烤时间为3-10 min。
所述步骤50中的干燥处理工艺为自然干燥、氮气吹干或者在80-120℃环境中快速烘干。
本发明还提供一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,包括以下步骤:
步骤10、采用如权利要求1所述的方法制备富勒烯/PEDOT:PSS混合溶液;
步骤20、提供基板,采用湿法涂布工艺将所述富勒烯/PEDOT:PSS混合溶液涂布于所述基板上,进行成膜,得到富勒烯/PEDOT:PSS薄膜;
步骤30、将成膜后的基板放置于恒温加热板上加热,以除去所述富勒烯/PEDOT:PSS薄膜内的溶剂并固化;
步骤40、采用去离子水对固化后的富勒烯/PEDOT:PSS薄膜进行多次冲洗,以除去薄膜中剩余的溶剂、表面活性剂以及杂质,增加富勒烯/PEDOT:PSS薄膜的导电性;
步骤50、对所述富勒烯/PEDOT:PSS薄膜进行干燥处理,将薄膜内的水分去除,得到位于基板上的干燥且膜质均一的富勒烯/PEDOT:PSS复合透明导电薄膜;
其中,所述步骤20中,所述基板为玻璃基板、或者柔性基板;所述湿法涂布工艺为喷涂、旋涂、辊涂、狭缝挤压涂布、浸涂、刮涂、凹版印刷、喷墨打印或者丝网印刷;
其中,所述步骤30中,恒温加热板的温度范围为60-150℃,烘烤时间为3-10min;
其中,所述步骤50中的干燥处理工艺为自然干燥、氮气吹干或者在80-120℃环境中快速烘干。
本发明的有益效果:本发明提供的一种富勒烯/PEDOT:PSS混合溶液的制备方法,采用富勒烯类分子与PEDOT:PSS溶液来制备一种富勒烯/PEDOT:PSS混合溶液,所使用的材料来源广泛、价格低廉,制得的富勒烯/PEDOT:PSS混合溶液可用于进一步在基板或各种器件上制作富勒烯/PEDOT:PSS复合透明导电膜;本发明提供的一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,在制备富勒烯/PEDOT:PSS复合透明导电膜时采用低成本、高效率的湿法涂布工艺,与ITO膜的制备方法相比省去了昂贵的PVD设备,降低了生产成本,同时制作方法简单,生产时间缩短,经济效益提高,并且该方法适用于大面积成膜;本发明制备的一种富勒烯/PEDOT:PSS复合透明导电膜稳定性高,膜质均一,具有高导电性和高 透光率,可用于取代商用ITO膜,并且由于其机械性能优良,在柔性器件、可穿戴设备中也具有很大的应用潜力。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的富勒烯/PEDOT:PSS混合溶液的制备方法的流程图;
图2为本发明的具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法所制得的富勒烯/PEDOT:PSS复合透明导电膜的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种富勒烯/PEDOT:PSS混合溶液的制备方法,包括以下步骤:
步骤1、采用富勒烯类分子与水或强极性溶剂配制成富勒烯溶液;
所述富勒烯类分子为富勒烯或富勒烯衍生物;
具体的,所述富勒烯的结构式为C28、C32、C50、C60、或C70等,所述富勒烯的性质为可溶于某些有机溶剂、难溶或不溶于水。
具体的,所述富勒烯衍生物按照在水中的溶解特性可以分为两类:
一类是非水溶性富勒烯衍生物,如富勒烯-Clx,富勒烯-Fx,富勒烯-Brx,富勒烯-Hx等,其中,x为大于0的自然数,所述非水溶性富勒烯衍生物与富勒烯的溶解特性相似,可溶于某些有机溶剂、难溶或不溶于水;
另一类是水溶性富勒烯衍生物,如富勒烯-(OH)x,富勒烯-(TEG)x,富勒烯-(COOH)x,或者富勒烯-(TEG)x(COOH)y等,其中,x,y表示在富勒烯分子中引入的羟基-OH、羧基-COOH、或聚乙二醇基团-TEG的数目,并且x,y均为大于0的自然数。优选的,当x≥20时,所述富勒烯-(OH)x具有较好的溶解性。所述水溶性富勒烯衍生物通过在富勒烯分子中引入各种亲水性基团,从而在水中具有较好的溶解性。
因此,基于所述富勒烯、非水溶性富勒烯衍生物、及水溶性富勒烯衍 生物不同的溶解特性,所述步骤1可以通过以下3种具体方案来实现:
方案1:按照水溶性富勒烯衍生物与去离子水的质量比为1:100~10000的比例将水溶性富勒烯衍生物投入去离子水中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度,所述富勒烯溶液中水溶性富勒烯衍生物的浓度为0.1~10mg/ml。
方案2:按照富勒烯或非水溶性富勒烯衍生物、表面活性剂、及去离子水的质量比为1:50~500:50~10000的比例将富勒烯或非水溶性富勒烯衍生物与表面活性剂投入去离子水中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度,所述富勒烯溶液中富勒烯或非水溶性富勒烯衍生物的浓度为0.1~10mg/ml;
具体的,所述方案2中,所述表面活性剂为十二烷基硫酸钠、十二烷基硫酸铵、十二烷基磺酸钠、十二烷基苯磺酸钠或十四烷基硫酸钠。
方案3:按照富勒烯或非水溶性富勒烯衍生物与强极性溶剂的质量比为1:100~10000的比例将富勒烯或非水溶性富勒烯衍生物投入到强极性溶剂中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度,所述富勒烯溶液中富勒烯或非水溶性富勒烯衍生物的浓度为0.1~10mg/ml;
具体的,所述方案3中,所述强极性溶剂为甲醇、N,N’-二甲基甲酰胺或者二甲基亚砜。
具体的,所述方案1-3中均采用高功率超声仪进行超声分散,超声功率为500~900W,超声时间为10~120min;采用离心的方法去除所述富勒烯分散液中的大颗粒聚集体时,离心机的转速为2000~5000rpm,离心时间为5~60min。
步骤2、将所述富勒烯溶液与一定浓度的PEDOT:PSS稀释溶液按照质量比为1:100至100:1的比例进行混合,机械搅拌或超声处理后,得到分散均匀的富勒烯/PEDOT:PSS混合溶液。
具体的,所述PEDOT:PSS稀释溶液由去离子水与PEDOT:PSS溶液配制而成,且所述PEDOT:PSS稀释溶液中PEDOT:PSS溶液的质量百分比为1~100wt%;当所述PEDOT:PSS稀释溶液中PEDOT:PSS溶液的质量百分比为100wt%时,所述PEDOT:PSS稀释溶液即为纯的PEDOT:PSS溶液。
具体的,所述PEDOT:PSS溶液为一种水溶液,由PEDOT(聚(3,4- 亚乙二氧基噻吩)、PSS(聚(苯乙烯磺酸))、和水三种物质构成,其可以通过商业购买或者实验室配制获得,一般情况下,所述PEDOT:PSS溶液中PSS与PEDOT的质量比为1~5:1,且所述PEDOT与PSS两种物质的总量在所述PEDOT:PSS溶液中的质量百分比(即固含量)为1~6wt%。
本发明提供的一种富勒烯/PEDOT:PSS混合溶液的制备方法,采用富勒烯类分子与PEDOT:PSS溶液来制备一种富勒烯/PEDOT:PSS混合溶液,所使用的材料来源广泛、价格低廉,制得的富勒烯/PEDOT:PSS混合溶液可用于进一步在基板或各种器件上制作富勒烯/PEDOT:PSS复合透明导电膜;
本发明采用的富勒烯类分子为球状分子,容易与PEDOT:PSS溶液共混形成均一体系,另外,球状结构不易聚集,共混溶液的稳定性可以得到提升,从而可保证采用本发明制备的富勒烯/PEDOT:PSS混合溶液进一步制备的富勒烯/PEDOT:PSS复合透明导电膜稳定性高,膜质均一性良好;
另外,富勒烯类分子作为一种良好的电子受体单元,掺入PEDOT:PSS中可有效提高其导电能力,并且富勒烯类分子在可见光范围内对光的吸收能力很差,不会降低富勒烯/PEDOT:PSS复合透明导电膜的透光率,从而使得本发明所制备的富勒烯/PEDOT:PSS复合透明导电膜具有高导电性和高透光率。
进一步的,本发明还提供一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,包括以下步骤:
步骤10、采用上述方法制备富勒烯/PEDOT:PSS混合溶液。
步骤20、提供基板,采用湿法涂布工艺将所述富勒烯/PEDOT:PSS混合溶液涂布于所述基板上,进行成膜,得到富勒烯/PEDOT:PSS薄膜;
具体地,所述基板可以为玻璃基板,也可以为PET等柔性基板;
所述湿法涂布工艺为喷涂、旋涂、辊涂、狭缝挤压涂布、浸涂、刮涂、凹版印刷、喷墨打印或者丝网印刷等工艺。
步骤30、将成膜后的基板放置于恒温加热板上加热,以除去所述富勒烯/PEDOT:PSS薄膜内的溶剂并固化;
具体地,所述恒温加热板的温度范围为60-150℃,烘烤时间为3-10min。
步骤40、采用去离子水对固化后的富勒烯/PEDOT:PSS薄膜进行多次冲洗,以除去薄膜中剩余的溶剂、表面活性剂以及杂质,增加富勒烯/PEDOT:PSS薄膜的导电性。
步骤50、对所述富勒烯/PEDOT:PSS薄膜进行干燥处理,将薄膜内的水分去除,得到位于基板上的干燥且膜质均一的富勒烯/PEDOT:PSS复合透明导电薄膜;
具体的,所述干燥处理的方法可以为自然干燥、氮气吹干或者在80-140℃环境中快速烘干等。
如附图2所示,所述步骤50制备得到的富勒烯/PEDOT:PSS复合透明导电膜100中,富勒烯类分子10(富勒烯或者富勒烯衍生物)与PEDOT:PSS聚合物20在膜中均匀分散,使得该富勒烯/PEDOT:PSS复合透明导电膜100的膜质均一,稳定性高,且具有高导电性和高透光率。
本发明提供的一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,在制备富勒烯/PEDOT:PSS复合透明导电膜时采用低成本、高效率的湿法涂布工艺,与ITO膜的制备方法相比省去了昂贵的PVD设备,降低了生产成本,同时制作方法简单,生产时间缩短,经济效益提高,并且该方法适用于大面积成膜;本发明制备的一种富勒烯/PEDOT:PSS复合透明导电膜稳定性高,膜质均一,具有高导电性和高透光率,可用于取代商用ITO膜,并且由于其机械性能优良,在柔性器件、可穿戴设备中也具有很大的应用潜力。
本发明的具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法的具体实施例1:
步骤1、按照水溶性富勒烯衍生物C60(OH)24与去离子水的质量比为1:100的比例将水溶性富勒烯衍生物C60(OH)24投入去离子水中并进行超声分散,超声功率为500W,超声时间为120min,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度,所述富勒烯溶液中水溶性富勒烯衍生物C60(OH)24的浓度为6mg/ml;
步骤2、将所述富勒烯溶液与一定浓度的PEDOT:PSS稀释溶液按照质量比为1:100的比例进行混合,机械搅拌或超声处理后,得到分散均匀的富勒烯/PEDOT:PSS混合溶液;
所述PEDOT:PSS稀释溶液中PEDOT:PSS溶液的质量百分比为50wt%,所述PEDOT:PSS溶液中PEDOT、PSS、及水的质量百分比分别为0.5wt%、1wt%、98.5wt%;
步骤3、提供玻璃基板,采用喷涂工艺将所述富勒烯/PEDOT:PSS混合溶液涂布于玻璃基板上,进行成膜,得到富勒烯/PEDOT:PSS薄膜;
步骤4、将成膜后的基板放置于60℃恒温加热板上加热10min,以除去所述富勒烯/PEDOT:PSS薄膜内的溶剂并固化;
步骤5、采用去离子水对固化后的富勒烯/PEDOT:PSS薄膜进行多次冲洗,以除去薄膜中的杂质,增加富勒烯/PEDOT:PSS薄膜的导电性;
步骤6、对所述富勒烯/PEDOT:PSS薄膜进行自然干燥处理,将薄膜内的水分去除,得到位于基板上的干燥且膜质均一的富勒烯/PEDOT:PSS复合透明导电薄膜。
本发明的具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法的具体实施例2:
步骤1、按照非水溶性富勒烯衍生物C60Br24、十二烷基苯磺酸钠、及去离子水的质量比为1:50:9050的比例将非水溶性富勒烯衍生物C60Br24与十二烷基苯磺酸钠投入去离子水中并进行机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心以除去大颗粒聚集体,离心机转速为5000rpm,离心时间为5min,得到非水溶性富勒烯溶液,采用分光光度法测量其实际浓度,所述富勒烯溶液中非水溶性富勒烯衍生物C60Br24的浓度为0.05mg/ml;
步骤2、将所述富勒烯溶液与一定浓度的PEDOT:PSS稀释溶液按照质量比为1:1的比例进行混合,机械搅拌或超声处理后,得到分散均匀的富勒烯/PEDOT:PSS混合溶液;
所述PEDOT:PSS稀释溶液中PEDOT:PSS溶液的质量百分比为50wt%,所述PEDOT:PSS溶液中PEDOT、PSS、及水的质量百分比分别为0.5wt%、1.5wt%、98wt%;
步骤3、提供玻璃基板,采用旋涂工艺将所述富勒烯/PEDOT:PSS混合溶液涂布于玻璃基板上,进行成膜,得到富勒烯/PEDOT:PSS薄膜;
步骤4、将成膜后的基板放置于150℃恒温加热板上加热3min,以除去所述富勒烯/PEDOT:PSS薄膜内的溶剂并固化;
步骤5、采用去离子水对固化后的富勒烯/PEDOT:PSS薄膜进行多次冲洗,以除去薄膜中剩余的十二烷基苯磺酸钠以及杂质,增加富勒烯/PEDOT:PSS薄膜的导电性;
步骤6、对所述富勒烯/PEDOT:PSS薄膜采用氮气吹干,将薄膜内的水分去除,得到位于基板上的干燥且膜质均一的富勒烯/PEDOT:PSS复合透明导电薄膜。
本发明的具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法的具体实施例3:
步骤1、按照富勒烯C60与强极性溶剂的质量比为1:200的比例将富勒烯C60投入N,N’-二甲基甲酰胺中并进行超声分散,超声功率为900W,超声时间为10min;使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心以除去大颗粒聚集体,离心机转速为2000rpm,离心时间为 60min,得到富勒烯溶液,采用分光光度法测量其实际浓度,所述富勒烯溶液中富勒烯C60的浓度为3mg/ml;
步骤2、将所述富勒烯溶液与一定浓度的PEDOT:PSS溶液按照质量比为100:1的比例进行混合,机械搅拌或超声处理后,得到分散均匀的富勒烯/PEDOT:PSS混合溶液;
所述PEDOT:PSS溶液中PEDOT、PSS、及水的质量百分比分别为0.5wt%、2.5wt%、97wt%;
步骤3、提供玻璃基板,采用喷涂工艺将所述富勒烯/PEDOT:PSS混合溶液涂布于玻璃基板上,进行成膜,得到富勒烯/PEDOT:PSS薄膜;
步骤4、将成膜后的基板放置于100℃恒温加热板上加热5min,以除去所述富勒烯/PEDOT:PSS薄膜内的溶剂并固化;
步骤5、采用去离子水对固化后的富勒烯/PEDOT:PSS薄膜进行多次冲洗,以除去薄膜中剩余的溶剂、及杂质,增加富勒烯/PEDOT:PSS薄膜的导电性;
步骤6、将所述富勒烯/PEDOT:PSS薄膜放在100℃烘箱中烘干,将薄膜内的水分去除,得到位于基板上的干燥且膜质均一的富勒烯/PEDOT:PSS复合透明导电薄膜。
综上所述,本发明提供的一种富勒烯/PEDOT:PSS混合溶液的制备方法,采用富勒烯类分子与PEDOT:PSS溶液来制备一种富勒烯/PEDOT:PSS混合溶液,所使用的材料来源广泛、价格低廉,制得的富勒烯/PEDOT:PSS混合溶液可用于进一步在基板或各种器件上制作富勒烯/PEDOT:PSS复合透明导电膜;本发明提供的一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,在制备富勒烯/PEDOT:PSS复合透明导电膜时采用低成本、高效率的湿法涂布工艺,与ITO膜的制备方法相比省去了昂贵的PVD设备,降低了生产成本,同时制作方法简单,生产时间缩短,经济效益提高,并且该方法适用于大面积成膜;本发明制备的一种富勒烯/PEDOT:PSS复合透明导电膜稳定性高,膜质均一,具有高导电性和高透光率,可用于取代商用ITO膜,并且由于其机械性能优良,在柔性器件、可穿戴设备中也具有很大的应用潜力。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (11)

  1. 一种富勒烯/PEDOT:PSS混合溶液的制备方法,包括以下步骤:
    步骤1、采用富勒烯类分子与水或强极性溶剂配制成富勒烯溶液;
    所述富勒烯类分子为富勒烯或富勒烯衍生物,所述富勒烯衍生物为水溶性富勒烯衍生物或非水溶性富勒烯衍生物;
    步骤2、将所述富勒烯溶液与一定浓度的PEDOT:PSS稀释溶液按照质量比为1:100至100:1的比例进行混合,机械搅拌或超声处理后,得到分散均匀的富勒烯/PEDOT:PSS混合溶液。
  2. 如权利要求1所述的富勒烯/PEDOT:PSS混合溶液的制备方法,其中,所述步骤1具体为:按照水溶性富勒烯衍生物与去离子水的质量比为1:100~10000的比例将水溶性富勒烯衍生物投入去离子水中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度。
  3. 如权利要求1所述的富勒烯/PEDOT:PSS混合溶液的制备方法,其中,所述步骤1具体为:按照富勒烯或非水溶性富勒烯衍生物、表面活性剂、及去离子水的质量比为1:50~500:50~10000的比例将富勒烯或非水溶性富勒烯衍生物与表面活性剂投入去离子水中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度。
  4. 如权利要求3所述的富勒烯/PEDOT:PSS混合溶液的制备方法,其中,所述表面活性剂为十二烷基硫酸钠、十二烷基硫酸铵、十二烷基磺酸钠、十二烷基苯磺酸钠或十四烷基硫酸钠。
  5. 如权利要求1所述的富勒烯/PEDOT:PSS混合溶液的制备方法,其中,所述步骤1具体为:按照富勒烯或非水溶性富勒烯衍生物与强极性溶剂的质量比为1:100~10000的比例将富勒烯或非水溶性富勒烯衍生物投入到强极性溶剂中并进行超声分散或机械搅拌,使其分散均匀,得到富勒烯分散液,对所述富勒烯分散液进行离心或者过滤以除去大颗粒聚集体,得到富勒烯溶液,采用分光光度法测量其实际浓度;
    所述强极性溶剂为甲醇、N,N’-二甲基甲酰胺或者二甲基亚砜。
  6. 如权利要求1所述的富勒烯/PEDOT:PSS混合溶液的制备方法,其 中,所述步骤1得到的富勒烯溶液中富勒烯类分子的浓度为0.1~10mg/ml,所述步骤2中所述PEDOT:PSS稀释溶液由去离子水与PEDOT:PSS溶液配制而成,且所述PEDOT:PSS稀释溶液中PEDOT:PSS溶液的质量百分比为1~100wt%。
  7. 一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,包括以下步骤:
    步骤10、采用如权利要求1所述的方法制备富勒烯/PEDOT:PSS混合溶液;
    步骤20、提供基板,采用湿法涂布工艺将所述富勒烯/PEDOT:PSS混合溶液涂布于所述基板上,进行成膜,得到富勒烯/PEDOT:PSS薄膜;
    步骤30、将成膜后的基板放置于恒温加热板上加热,以除去所述富勒烯/PEDOT:PSS薄膜内的溶剂并固化;
    步骤40、采用去离子水对固化后的富勒烯/PEDOT:PSS薄膜进行多次冲洗,以除去薄膜中剩余的溶剂、表面活性剂以及杂质,增加富勒烯/PEDOT:PSS薄膜的导电性;
    步骤50、对所述富勒烯/PEDOT:PSS薄膜进行干燥处理,将薄膜内的水分去除,得到位于基板上的干燥且膜质均一的富勒烯/PEDOT:PSS复合透明导电薄膜。
  8. 如权利要求7所述的具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,其中,所述步骤20中,所述基板为玻璃基板、或者柔性基板;所述湿法涂布工艺为喷涂、旋涂、辊涂、狭缝挤压涂布、浸涂、刮涂、凹版印刷、喷墨打印或者丝网印刷。
  9. 如权利要求7所述的具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,其中,所述步骤30中,恒温加热板的温度范围为60-150℃,烘烤时间为3-10min。
  10. 如权利要求7所述的具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,其中,所述步骤50中的干燥处理工艺为自然干燥、氮气吹干或者在80-120℃环境中快速烘干。
  11. 一种具有富勒烯/PEDOT:PSS复合透明导电膜的基板的制备方法,包括以下步骤:
    步骤10、采用如权利要求1所述的方法制备富勒烯/PEDOT:PSS混合溶液;
    步骤20、提供基板,采用湿法涂布工艺将所述富勒烯/PEDOT:PSS混合溶液涂布于所述基板上,进行成膜,得到富勒烯/PEDOT:PSS薄膜;
    步骤30、将成膜后的基板放置于恒温加热板上加热,以除去所述富勒烯/PEDOT:PSS薄膜内的溶剂并固化;
    步骤40、采用去离子水对固化后的富勒烯/PEDOT:PSS薄膜进行多次冲洗,以除去薄膜中剩余的溶剂、表面活性剂以及杂质,增加富勒烯/PEDOT:PSS薄膜的导电性;
    步骤50、对所述富勒烯/PEDOT:PSS薄膜进行干燥处理,将薄膜内的水分去除,得到位于基板上的干燥且膜质均一的富勒烯/PEDOT:PSS复合透明导电薄膜;
    其中,所述步骤20中,所述基板为玻璃基板、或者柔性基板;所述湿法涂布工艺为喷涂、旋涂、辊涂、狭缝挤压涂布、浸涂、刮涂、凹版印刷、喷墨打印或者丝网印刷;
    其中,所述步骤30中,恒温加热板的温度范围为60-150℃,烘烤时间为3-10min;
    其中,所述步骤50中的干燥处理工艺为自然干燥、氮气吹干或者在80-120℃环境中快速烘干。
PCT/CN2015/087673 2015-07-20 2015-08-20 富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法 WO2017012162A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/786,549 US10066062B2 (en) 2015-07-20 2015-08-20 Manufacture method for fullerence / PEDOT:PSS mixed solution and manufacture method for compound transparent conductive film having fullerence / PEDOT:PSS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510427292.1A CN105085937B (zh) 2015-07-20 2015-07-20 富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法
CN201510427292.1 2015-07-20

Publications (1)

Publication Number Publication Date
WO2017012162A1 true WO2017012162A1 (zh) 2017-01-26

Family

ID=54567326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087673 WO2017012162A1 (zh) 2015-07-20 2015-08-20 富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法

Country Status (3)

Country Link
US (2) US10066062B2 (zh)
CN (1) CN105085937B (zh)
WO (1) WO2017012162A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461819A (zh) * 2018-10-30 2019-03-12 浙江海洋大学 一种高光电转化率的柔性太阳能电池材料及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108089366B (zh) * 2017-12-06 2021-04-23 Tcl华星光电技术有限公司 一种彩膜基板及其制备方法
CN109683404B (zh) * 2019-01-21 2022-07-12 Tcl华星光电技术有限公司 超支化共轭聚合物、导电组成物与液晶显示面板
CN109979644B (zh) * 2019-03-26 2020-10-13 武汉华星光电半导体显示技术有限公司 导电膜的制备方法及导电膜
CN111009614B (zh) * 2019-12-20 2023-05-30 上海纳米技术及应用国家工程研究中心有限公司 基于一维富勒烯材料/pedot:pss复合薄膜的高灵敏度光电探测器的构筑方法
CN111599922B (zh) * 2020-05-11 2023-11-24 暨南大学 一种调控pedot:pss薄膜组分纵向分布的方法及其薄膜与应用
CN112048086B (zh) * 2020-08-10 2022-07-01 清华大学 富勒烯类改性的芴共聚酯聚合物材料的制备方法
CN112263255A (zh) * 2020-09-28 2021-01-26 北京师范大学 一种基于导电聚合物转移的石墨烯皮肤电极及其制备方法
CN113161490B (zh) * 2021-03-09 2022-09-20 嘉兴学院 一种AuNCs-PEDOT:PSS复合柔性电极及太阳能电池器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157659A (zh) * 2011-03-24 2011-08-17 北京交通大学 一种全湿法制备的聚合物pled器件及其制备方法
CN102386333A (zh) * 2011-11-10 2012-03-21 无锡信怡微电子有限公司 一种叠层有机薄膜太阳能电池
CN102621206A (zh) * 2012-04-19 2012-08-01 江西科技师范学院 一种 pedot:pss复合修饰电极的制备方法
CN102674312A (zh) * 2012-04-17 2012-09-19 深圳市通产丽星股份有限公司 水溶性富勒烯及其制备方法
CN103421280A (zh) * 2012-05-21 2013-12-04 宇亮光电股份有限公司 可挠式透明导电膜及其形成发光二极管的可挠式透明显示结构与方法
CN103440896A (zh) * 2013-06-05 2013-12-11 南京邮电大学 铜纳米线和聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)复合柔性透明电极及其制备方法
US20140225091A1 (en) * 2013-02-13 2014-08-14 Rutgers, The State University Of New Jersey Organic optoelectronic devices incorporating plasmonic electrodes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012530B2 (en) * 2005-09-06 2011-09-06 Kyoto University Organic thin-film photoelectric conversion element and method of manufacturing the same
US7951850B2 (en) * 2007-03-19 2011-05-31 University Of Central Florida Research Foundation, Inc. Polymer composites having highly dispersed carbon nanotubes and methods for forming same
EP2361880A4 (en) * 2008-10-24 2016-03-09 Kuraray Co PROCESS FOR THE PRODUCTION OF METALLIC CARBON NANOTUBES, CARBON NANOTUBE DISPERSION FLUID, CARBON NANOTUBE FILM, AND TRANSPARENT CONDUCTIVE FILM
US20120058255A1 (en) * 2010-09-08 2012-03-08 Nanyang Technological University Carbon nanotube-conductive polymer composites, methods of making and articles made therefrom
WO2013181215A1 (en) * 2012-05-30 2013-12-05 Massachusetts Institute Of Technology Devices comprising graphene and a conductive polymer and related systems and methods
CN102931354B (zh) * 2012-11-16 2015-11-25 中国科学技术大学 复合透明电极、聚合物太阳能电池及它们的制备方法
US9502658B2 (en) * 2013-04-22 2016-11-22 Nano-C, Inc. Fullerene derivatives and related materials, methods, and devices
US10439142B2 (en) * 2014-04-30 2019-10-08 Lg Chem, Ltd. Organic solar cell and manufacturing method therefor
CN103923331A (zh) * 2014-05-08 2014-07-16 郑州大学 一种提高pedot/pss导电薄膜均匀涂布的方法
JP2017519771A (ja) * 2014-06-17 2017-07-20 メルク パテント ゲーエムベーハー フラーレン誘導体
KR20170047370A (ko) * 2014-09-01 2017-05-04 메르크 파텐트 게엠베하 유기 전자 장치에 사용하기 위한 풀러렌 혼합물
KR20170071466A (ko) * 2014-10-21 2017-06-23 가부시키가이샤 아데카 피센 유도체, 광전 변환 재료 및 광전 변환 소자
CN104465993A (zh) * 2014-10-28 2015-03-25 南昌大学 一种碳基复合透明电极及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157659A (zh) * 2011-03-24 2011-08-17 北京交通大学 一种全湿法制备的聚合物pled器件及其制备方法
CN102386333A (zh) * 2011-11-10 2012-03-21 无锡信怡微电子有限公司 一种叠层有机薄膜太阳能电池
CN102674312A (zh) * 2012-04-17 2012-09-19 深圳市通产丽星股份有限公司 水溶性富勒烯及其制备方法
CN102621206A (zh) * 2012-04-19 2012-08-01 江西科技师范学院 一种 pedot:pss复合修饰电极的制备方法
CN103421280A (zh) * 2012-05-21 2013-12-04 宇亮光电股份有限公司 可挠式透明导电膜及其形成发光二极管的可挠式透明显示结构与方法
US20140225091A1 (en) * 2013-02-13 2014-08-14 Rutgers, The State University Of New Jersey Organic optoelectronic devices incorporating plasmonic electrodes
CN103440896A (zh) * 2013-06-05 2013-12-11 南京邮电大学 铜纳米线和聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)复合柔性透明电极及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461819A (zh) * 2018-10-30 2019-03-12 浙江海洋大学 一种高光电转化率的柔性太阳能电池材料及制备方法

Also Published As

Publication number Publication date
US20180312644A1 (en) 2018-11-01
US10385169B2 (en) 2019-08-20
US20170152352A1 (en) 2017-06-01
US10066062B2 (en) 2018-09-04
CN105085937B (zh) 2018-03-30
CN105085937A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017012162A1 (zh) 富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法
WO2016206158A1 (zh) 石墨烯/pedot:pss混合溶液的制备方法及具有石墨烯/pedot:pss复合透明导电膜的基板的制备方法
US20160280947A1 (en) Transparent conductive ink composited by carbon nano tubes and polymers, and method for preparing same
US8455043B2 (en) Method of making transparent conductive film
KR101160909B1 (ko) 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극
CN105788754B (zh) 碳纳米管透明导电薄膜及其制备方法
US20100136343A1 (en) Composition Including Carbon Nanotubes and Transparent and Conductive Film
JP2013544904A (ja) 導電性透明フィルム用の新規組成物
CN104992781A (zh) 一种石墨烯基三元复合材料的制备方法
KR20160084387A (ko) 고분산 탄소나노튜브 복합 전도성 잉크
Guo et al. In situ characterization of the triphase contact line in a brush-coating process: Toward the enhanced efficiency of polymer solar cells
CN103923331A (zh) 一种提高pedot/pss导电薄膜均匀涂布的方法
CN108735349B (zh) 一种含离子液体的银纳米线透明导电薄膜及其制备方法
Liu et al. Comparing build architecture and electrolyte of ITO-free flexible patterned organic screen-printed ECDs based on a novel PEDOT: PSS compound film post-treated with strong and weak organic acids
CN106893084A (zh) 一种分散剂作模板原位聚合制备导电聚合物的方法
KR101190206B1 (ko) 투명도전막 및 그 제조방법
TW201326329A (zh) 透明導電塗佈液/薄膜及其製備方法
CN108089366B (zh) 一种彩膜基板及其制备方法
US20130092878A1 (en) Thermoplastic based electronic conductive inks and method of making the same
KR20110071539A (ko) 투명도전막 및 그 제조방법
KR101163940B1 (ko) 금속 나노 입자를 함유한 전도성 고분자 전극 형성 방법 및 전극 물질
Hsieh et al. Investigation of the mechanism of a facile method for ammonia treatment to effectively tune the morphology and conductivity of PEDOT: PSS films
KR20120086209A (ko) 균일한 전도성 고분자 전극 형성 방법 및 전극 물질
Hu et al. 66‐3: A High Reliability PEDOT: PSS/Graphene Transparent Electrode for Liquid Crystal Displays
CN105244443B (zh) 一种透明电极及其制备方法和有机太阳能电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14786549

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898718

Country of ref document: EP

Kind code of ref document: A1