WO2017010488A1 - 表示装置および表示装置の製造方法 - Google Patents

表示装置および表示装置の製造方法 Download PDF

Info

Publication number
WO2017010488A1
WO2017010488A1 PCT/JP2016/070603 JP2016070603W WO2017010488A1 WO 2017010488 A1 WO2017010488 A1 WO 2017010488A1 JP 2016070603 W JP2016070603 W JP 2016070603W WO 2017010488 A1 WO2017010488 A1 WO 2017010488A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
light emitting
pixel
emitting film
vapor deposition
Prior art date
Application number
PCT/JP2016/070603
Other languages
English (en)
French (fr)
Inventor
学 二星
伸一 川戸
井上 智
勇毅 小林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/735,298 priority Critical patent/US20180166511A1/en
Publication of WO2017010488A1 publication Critical patent/WO2017010488A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/162Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using laser ablation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to a display device, in particular, an organic EL display device and a manufacturing method thereof.
  • an organic EL (Electroluminescence) display device is excellent as an excellent flat panel display because it can realize low power consumption, thinning, and high image quality. Has attracted attention.
  • a vapor deposition film including a light emitting film that emits red, green, and blue is separately applied.
  • a method of forming and using a full color display is frequently employed.
  • Patent Documents 1 and 2 using a photolithography process and a dry etching process, It describes a method of forming a vapor deposition film including a light emitting film by a coating method.
  • Patent Document 3 describes a laser ablation processing method that selectively removes an organic light-emitting film formed on an ITO thin film using laser light.
  • Patent Document 4 describes forming an organic layer patterned by a light irradiation dry etching method in which a resist pattern is used as a mask to irradiate and pattern an organic material layer.
  • an anode 101 As shown in FIG. 14A, conventionally, an anode 101, a hole injection film / hole transport film (HIL / HTL) 102, and a blue light-emitting film (EML (B )) 103, a hole blocking film (HBL) 104, an electron transport film (ETL (sacrificial film)) 105, and a protective layer 106 are stacked in this order, and then a photolithography process is used only for a portion that becomes a blue pixel. Then, a resist 107 is formed.
  • HIL hole injection film / hole transport film
  • EML blue light-emitting film
  • HBL hole blocking film
  • ETL electron transport film
  • each film including the blue light emitting film in a region where the resist 107 is not formed is removed by a dry etching process, for example, using the resist 107 as a mask and ultraviolet rays or oxygen plasma (O 2 plasma).
  • O 2 plasma oxygen plasma
  • each film including the green light emitting film in a region where the resist 107 is not formed is removed by ultraviolet rays or oxygen plasma (O 2 plasma).
  • O 2 plasma oxygen plasma
  • each film including a red light emitting film is formed on the entire surface, and then the resist 107 formed on the blue pixel and the green pixel is peeled off, thereby forming the film on the resist 107.
  • Each film including the red light emitting film is removed, and each film including the red light emitting film is left only in a portion other than the blue pixel and the green pixel.
  • the resist 107 is formed again using only a portion of the blue pixel, the green pixel, and the red pixel using a photolithography process. Then, using the resist 107 as a mask, each film including the red light emitting film in the region where the resist 107 is not formed is removed with ultraviolet rays or oxygen plasma (O 2 plasma), and each blue light emitting film is included in the blue pixel. The film and the resist 107 are in a state in which each film including the green light emitting film and the resist 107 are formed in the green pixel, and each film including the red light emitting film and the resist 107 are formed in the red pixel. . Finally, the resist 107 is removed.
  • O 2 plasma oxygen plasma
  • the resist 107 is patterned and formed three times. Since the resist 107 needs to be peeled off three times and each film including the light emitting film of each color needs to be deposited for each color pixel, the manufacturing process is long and the productivity is low. Further, since it is necessary to perform film processing for film processing such as a protective layer 106 made of a water-soluble material or an inorganic oxide, and an electron transport film (ETL (sacrificial film)) 105 for each color pixel. The process loss is more than three times.
  • ETL electron transport film
  • the characteristics of the light emitting element are deteriorated due to various stripping solutions, etching solutions, ultraviolet rays, and oxygen plasma used in the photolithography process and the etching process.
  • an element having poor moisture resistance is affected (efficiency reduction, life deterioration).
  • a color shift effect of optical interference
  • a change in film thickness of the light-emitting element including the electron transport film (ETL (sacrificial film)) 105 or a light-emitting element characteristic Decrease in luminous efficiency and lifetime.
  • the lower layer of the organic light emitting film that is a film to be removed by laser ablation is an ITO thin film.
  • the organic light-emitting film is not devised to protect the lower layer, such as When the organic light emitting film is laminated and the upper organic light emitting film is removed by laser ablation, the lower organic light emitting film is damaged. Therefore, when such an organic light emitting film and a laser ablation processing method are used, it is not possible to suppress the color shift of the light emitting element and the deterioration of the light emitting element characteristics.
  • the present invention has been made in view of the above-described problems, and has an object to provide a display device and a method for manufacturing the display device that are highly productive and can suppress color misalignment of light emitting elements and deterioration of light emitting element characteristics.
  • the display device of the present invention includes a first pixel and a second pixel that emit light having different peak wavelengths, and a reflective electrode and a semi-transmissive reflective electrode provided in each of the pixels.
  • the first light emitting film is formed on the first pixel
  • the second light emitting film is formed on the second pixel
  • the vapor deposition film formed on the first light emitting film is formed on the first pixel.
  • the film is characterized in that the remaining ratio of the film to the heat generated by the laser light irradiation is higher than that of the vapor deposition film formed on the light emitting film 2.
  • the deposited film formed on the first light-emitting film has a higher film remaining ratio to the heat generated by laser light irradiation than the deposited film formed on the second light-emitting film. Since it is a film, for example, in order to improve productivity during the manufacturing process of the display device, the second light emitting film and the second light emitting film are formed on the vapor deposition film formed on the first light emitting film. Even when the vapor deposition film formed on the light emitting film is formed and the second light emitting film and the vapor deposited film formed on the second light emitting film are removed by heating with laser light, the first light emitting film is formed.
  • a display device that can suppress the influence on the light emitting film and the deposited film formed below the first light emitting film, has high productivity, and can suppress the color shift of the light emitting element and the deterioration of the light emitting element characteristics can be realized.
  • a method for manufacturing a display device of the present invention includes a first pixel and a second pixel that emit light of different peak wavelengths provided on a substrate, and light emission provided in each of the pixels.
  • a display device comprising a film, a reflective electrode, and a transflective electrode, wherein the light emitting film and the reflective electrode are arranged so that light having the peak wavelength of the pixel can be extracted from the transflective electrode.
  • the film Removing the second vapor deposition film including the second light emitting film, and in the first vapor deposition film forming step, the vapor deposition film formed on the first light emitting film includes the first light emitting film, In the second deposited film forming step, the film has a higher residual ratio of the film to heat generated by laser light irradiation than the deposited film formed on the second light emitting film.
  • the vapor deposition film formed on the first light emitting film is formed on the second light emitting film in the second vapor deposition film forming step. Since the remaining ratio of the film to the heat generated by the laser beam irradiation is higher than that of the deposited film, the second light emitting film including the second light emitting film formed other than the second pixel using the laser beam.
  • the step of removing the deposited film when the film on the deposited film formed on the first light emitting film is removed by heating with a laser beam, the first light emitting film and the first light emitting are also removed.
  • the manufacturing method of the display apparatus which can suppress the influence on the vapor deposition film formed under a film
  • a display device and a manufacturing method of a display device that are highly productive and can suppress a color shift of a light emitting element and a decrease in light emitting element characteristics.
  • FIG. (A)-(d) is a figure which shows an example of the process of forming a vapor deposition film in B pixel of the organic electroluminescence display shown in FIG.
  • FIGS. 3A to 3D are examples of a process subsequent to the process shown in FIG. 3D and a process for forming a vapor deposition film on the G pixel and the R pixel of the organic EL display device shown in FIG. FIG.
  • FIG. It is a figure which shows schematic structure of the organic electroluminescence display which concerns on other one Embodiment of this invention.
  • FIG. (A)-(d) is a figure which shows an example of the process of forming a vapor deposition film in G pixel of the organic electroluminescence display shown in FIG.
  • FIGS. 7A to 7D are examples of processes subsequent to the process shown in FIG. 7D, in which a deposited film is formed on the R pixel and the B pixel of the organic EL display device shown in FIG. FIG.
  • FIG. (C)-(d) is a figure which shows schematic structure of the organic electroluminescence display which concerns on another one embodiment of this invention.
  • FIGS. 10A to 10D are diagrams showing an example of a process for forming a vapor deposition film on the R pixel of the organic EL display device shown in FIG.
  • FIGS. 12A to 12D are examples of processes subsequent to the process shown in FIG. 12D, in which a deposited film is formed on the G pixel and the B pixel of the organic EL display device shown in FIG.
  • (b) is a figure for demonstrating the conventional method of forming the vapor deposition film containing a light emitting film by a painting method using a photolitho process and a dry etching process.
  • FIGS. 1 to 13 Embodiments of the present invention will be described with reference to FIGS. 1 to 13 as follows.
  • components having the same functions as those described in the specific embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • FIG. 1 is a diagram showing a schematic configuration of the organic EL display device 9.
  • the anode electrode 2 reflection electrode
  • the IZO film 3a hole injection film / hole transport film (HIL / HTL) 4a
  • the blue light emitting film (EML (B )) 4b an electron transport film (ETL) 4c
  • an electron injection film not shown
  • a cathode electrode 8 semi-transmissive reflective electrode
  • the electron transport film (ETL) 4c is made of the same material as the electron transport film (ETL) 6d in the G pixel and the R pixel, and is thicker than the electron transport film (ETL) 6d in the G pixel and the R pixel. ing.
  • the anode electrode 2 reflection electrode
  • the IZO film 3b hole injection film / hole transport film (HIL / HTL) 6a
  • the green light emitting film (EML (G)) 6b A red light emitting film (EML (R)) 6c
  • an electron transport film (ETL) 6d an electron injection film (not shown)
  • a cathode electrode 8 semi-transmissive reflective electrode
  • an anode electrode 2 reflection electrode
  • an IZO film 3c hole injection film / hole transport film (HIL / HTL) 6a
  • a green light emitting film (EML (G)) 6b A red light emitting film (EML (R)) 6c
  • an electron transport film (ETL) 6d an electron injection film (not shown)
  • a cathode electrode 8 semi-transmissive reflective electrode
  • the film thickness of the IZO films 3a, 3b, and 3c of each pixel can be determined as follows.
  • the B pixel, G pixel, and R pixel emit light having different peak wavelengths ( ⁇ ).
  • the B pixel emits blue light having a peak wavelength ( ⁇ ) of 450 nm
  • the G pixel emits light.
  • Green light having a peak wavelength ( ⁇ ) of 530 nm is emitted
  • red light having a peak wavelength ( ⁇ ) of 600 nm is emitted from the R pixel.
  • the distance between the anode electrode 2 (reflection electrode) and the light emitting film in each pixel is preferably a peak wavelength ( ⁇ ) ⁇ 1/4 ⁇ (2N ⁇ 1) (where N is a natural number).
  • the film thickness of the IZO film 3a and the hole injection film / hole transport film (HIL / HTL) formed between the IZO film 3a and the blue light emitting film (EML (B)) 4b It is sufficient that the film thickness including the film thickness of 4a satisfies 450 nm ⁇ 1/4 ⁇ (2N ⁇ 1).
  • the film thickness of the hole injection film / hole transport film (HIL / HTL) is the same in each pixel, the film thickness of the IZO films 3a, 3b, and 3c is different in each pixel. It becomes.
  • the total film thickness of 6a only needs to satisfy 530 nm ⁇ 1/4 ⁇ (2N ⁇ 1).
  • the thickness of the IZO film 3c, the IZO film 3c, and the red light emitting film ( The film thickness of the hole injection film / hole transport film (HIL / HTL) 6a formed with the EML (R)) 6c and the film thickness of the green light emitting film (EML (G)) 6b are combined.
  • the film thickness should satisfy 600 nm ⁇ 1/4 ⁇ (2N ⁇ 1). Note that N in the above equations is the same natural number.
  • IZO IndiumZinc Oxide
  • transparent conductive film transmission film
  • ITO Indium Tin Oxide
  • FIG. 2 is a diagram for explaining a manufacturing process of the organic EL display device 9 shown in FIG.
  • FIG. 3A to 3D are views for explaining a process of forming a vapor deposition film on the B pixel of the organic EL display device 9.
  • FIG. 3A to 3D are views for explaining a process of forming a vapor deposition film on the B pixel of the organic EL display device 9.
  • FIG. 4 (a) to 4 (d) show an example of a process for forming a vapor deposition film on the G pixel and the R pixel of the organic EL display device 9 after the process shown in FIG. 3 (d).
  • FIG. 4 (a) to 4 (d) show an example of a process for forming a vapor deposition film on the G pixel and the R pixel of the organic EL display device 9 after the process shown in FIG. 3 (d).
  • the TFT substrate 1 shown in FIG. 3A is provided with a plurality of TFT elements.
  • FIG. 3A only two B pixels, one G pixel, and one R pixel are shown, but the numbers of B pixels, G pixels, and R pixels are the same as those in the organic EL display device.
  • a plurality of pixels are provided according to the resolution of 9, and one B pixel, one G pixel, and one R pixel adjacent to each other form one display unit for performing full color display.
  • the anode electrode 2 electrically connected to the drain electrode (or source electrode) of the TFT element provided for each pixel (B pixel, G pixel, R pixel).
  • the anode electrode 2 is made of Al in order to use the anode electrode 2 as a reflective electrode and to form a top emission type organic EL display device 9 that takes out light from the upper side in the figure opposite to the TFT substrate 1.
  • the present invention is not limited to this, and the anode electrode 2 may be formed with an Ag film.
  • the organic EL display device 9 may be a bottom emission type.
  • a transparent conductive film forming step (S2 in FIG. 2) in which a transparent conductive film (also referred to as a conductive light transmission film) is formed on the anode electrode 2 by patterning for each pixel will be described.
  • the above-described electrode formation step (S1 in FIG. 2) and the transparent conductive film formation step (S2 in FIG. 2) are also referred to as an anode formation step.
  • an IZO (Indium Zinc Oxide) film 3a which is a transparent conductive film, is formed on the anode electrode 2, that is, so as to be electrically connected to the anode electrode 2.
  • 3b and 3c were formed by patterning.
  • the patterning of the anode electrode 2 and the IZO films 3a, 3b, and 3c can be performed using, for example, a resist and wet etching (or dry etching).
  • the anode electrode 2 and the IZO films 3a, 3b, and 3c serve as electrodes.
  • the IZO films 3a, 3b, and 3c are formed with a predetermined thickness for each pixel (B pixel, G pixel, and R pixel) in consideration of the light interference effect in each pixel (B pixel, G pixel, and R pixel). Is done.
  • the method of forming the IZO films 3a, 3b, 3c or the transmission film with a predetermined film thickness for each pixel is a microcavity (micro
  • This microcavity method is a method for improving chromaticity of light emission and light emission efficiency by a microcavity (microresonator) effect.
  • the microcavity is a phenomenon in which emitted light undergoes multiple reflections between the anode electrode and the cathode electrode and resonates, resulting in a steep emission spectrum and amplification of emission intensity at the peak wavelength.
  • the microcavity effect can be obtained, for example, by optimally designing the reflectance and film thickness of the anode electrode and the cathode electrode, the layer thickness of the organic layer, and the like.
  • a method for introducing such a resonance structure that is, a microcavity structure into an organic EL element
  • a method of changing the optical path length of the organic EL element in each pixel for each emission color is known.
  • the IZO films 3a, 3b, and 3c are formed with a predetermined film thickness for each pixel (B pixel, G pixel, and R pixel).
  • HIL / HTL hole injection film / hole transport film
  • EML (B) blue light emitting film
  • ETL electron transport film
  • a vapor deposition film 4 including a blue light emitting film (EML (B)) 4b was formed on the entire surface of the TFT substrate 1. As shown in FIG., although mentioned later in detail, the electron carrying film (ETL) 4c was formed thick in consideration of a post process.
  • EML blue light emitting film
  • the vapor deposition film 4 including the blue light emitting film (EML (B)) 4b other than the B pixel is irradiated with laser light to remove the vapor deposition film 4 including the blue light emitting film (EML (B)) 4b.
  • the vapor deposition film removing step (S4 in FIG. 2) including the light emitting film will be described.
  • laser light is irradiated through a mask 5 having a light shielding portion 5a and an opening 5b.
  • the light shielding portion 5a of the mask 5 is disposed on the B pixel portion of the TFT substrate 1, that is, the region where the anode electrode 2 and the IZO film 3a are laminated, and the opening 5b of the mask 5 is formed on the B substrate of the TFT substrate 1. Arranged outside the pixel portion. Therefore, the entire portion of the TFT substrate 1 other than the B pixel portion is irradiated with laser light.
  • the vapor deposition film 4 including the blue light emitting film (EML (B)) 4b is an organic material, and the IZO films 3b and 3c are inorganic materials.
  • the IZO films 3b and 3c are heated on the IZO films 3b and 3c and between the pixels.
  • the deposited film 4 including the formed blue light emitting film (EML (B)) 4b is selectively removed, and as shown in FIG. 3D, the blue light emitting film (EML (B) )) It can be patterned to leave the deposited film 4 containing 4b.
  • the blue light emitting film (EML (B)) of the B pixel is arranged.
  • the vapor deposition film 4 containing 4b is not irradiated with the laser beam, the laser beam is not damaged.
  • the vapor deposition film removing step including the blue light emitting film is preferably performed in a vacuum atmosphere or in an atmosphere where moisture and oxygen are as low as less than 10 ppm, for example.
  • a vacuum atmosphere or in an atmosphere where moisture and oxygen are as low as less than 10 ppm for example.
  • the case of irradiating laser light through the mask 5 is described as an example. However, when the irradiation width of the irradiated laser light is small enough to allow patterning, a mask is used. It is also possible to irradiate with laser light.
  • the laser beam used in the process of removing the deposited film including the blue light emitting film removes the deposited film including the light emitting film that does not have the deposited film including the light emitting film that needs to be protected in the lower layer by heating with the laser beam. Therefore, since it is not necessary to consider the suppression of heat conduction to other films by this laser beam, an extremely short time pulse (for example, Femto Second (10 ⁇ 15 )) It is not necessary to use a laser beam with an extremely short pulse of about Pico Second (10 ⁇ 12 ). For example, a laser beam with a relatively long pulse can be used. Therefore, in this embodiment, in consideration of shortening of the process time, in the deposition film removing process including the blue light emitting film, a laser beam having a relatively long pulse is used, but the present invention is not limited thereto. .
  • the deposition film including the light emitting film is patterned by heating with laser light, it is necessary to form or peel off the resist film as in the past. Absent.
  • a hole injection film / hole transport film (HIL / HTL) 6a, a green light emitting film (EML (G)) 6b, and a red light emitting film (EML (R)) 6c are formed on the entire surface of the TFT substrate 1.
  • the vapor deposition film forming step including the green light emitting film and the red light emitting film (S5 in FIG. 2) for sequentially depositing the electron transport film (ETL) 6d will be described.
  • a vapor deposition film 6 including a green light emitting film (EML (G)) 6b and a red light emitting film (EML (R)) 6c is formed on the entire surface of the TFT substrate 1. .
  • the green light emitting film (EML (G)) 6b and the red light emitting film (EML (R)) 6c are formed in common as a laminated film. Is a phosphorescent material, and it is easy to share the host material, and there is an advantage that it can be dealt with by switching only the dopant in the deposited film forming process including the green light emitting film and the red light emitting film.
  • the green light emitting film (EML (G)) 6b is the lower layer and the red light emitting film (EML (R)) 6c from the viewpoint of carrier characteristics, that is, the recombination balance of holes and electrons.
  • the vapor-deposited film 6 including the green light-emitting film (EML (G)) 6b and the red light-emitting film 6c was vapor-deposited such that the red light-emitting film (EML (R)) 6c was the lower layer and the green light-emitting film (
  • the deposited film 6 including the green light emitting film (EML (G)) 6b and the red light emitting film (EML (R)) 6c may be deposited so that the EML (G)) 6b is an upper layer. It should be noted that the film thickness of the IZO films 3b and 3c changes.
  • the green light-emitting film is removed by irradiating the vapor-deposited film 6 including the green light-emitting film (EML (G)) 6b and the red light-emitting film (EML (R)) 6c other than the G pixel and the R pixel with laser light.
  • the vapor deposition film removing step (S6 in FIG. 2) including the red light emitting film will be described.
  • laser light is irradiated through a mask 7 having a light shielding portion 7a and an opening 7b.
  • the light shielding portion 7a of the mask 7 is formed by laminating the G pixel portion and the R pixel portion of the TFT substrate 1, that is, on the region where the anode electrode 2 and the IZO film 3b are laminated, and the anode electrode 2 and the IZO film 3c.
  • the opening 7b of the mask 7 is disposed in a region other than the G pixel portion and the R pixel portion of the TFT substrate 1. Accordingly, the entire portion of the TFT substrate 1 other than the G pixel portion and the R pixel portion is irradiated with laser light.
  • the vapor deposition film 6 including the green light emitting film (EML (G)) 6b and the red light emitting film (EML (R)) 6c is an organic material
  • the B pixel portion of the TFT substrate 1 and between the pixels are heated by laser light.
  • the deposited film 6 including the green light emitting film (EML (G)) 6b and the red light emitting film (EML (R)) 6c is selectively removed.
  • the deposited film 4 including the blue light emitting film (EML (B)) 4b remains on the B pixel portion of the TFT substrate 1, and the green light emitting film (EML (G)) is formed on the G pixel portion and the R pixel portion of the TFT substrate 1.
  • 6b and the vapor-deposited film 6 including the red light emitting film (EML (R)) 6c can be patterned.
  • the light shielding portion 7a of the mask 7 is disposed on the G pixel and the R pixel of the TFT substrate 1, green light emission in the G pixel and the R pixel. Since the vapor deposition film 6 including the film (EML (G)) 6b and the red light emitting film (EML (R)) 6c is not irradiated with laser light, damage by the laser light does not occur.
  • the electron transport film (ETL) 4c includes the green light emitting film and the red light emitting film.
  • the laser beam used in the vapor deposition film removal step including the film is formed thicker assuming that the laser beam used in the vapor deposition film removal step including the blue light emitting film is a relatively long-time pulse laser beam.
  • the green light emitting film (EML (G)) 6b and the red light emitting film (EML (R)) 6c formed on the vapor deposition film 4 including the blue light emitting film (EML (B)) 4b are provided.
  • the deposited film 6 is removed by laser light irradiation, but the heat generated in this step can be made into the blue light emitting film (EML (B)) 4b and the hole injection film / hole transport film (HIL / HTL) 4a. This is so as not to affect as much as possible.
  • the process characteristics of patterning using heat generated by laser light irradiation also tend to cause variations (such as damage during patterning) in the thickness of the electron transport film (ETL) 4c of the B pixel.
  • the film thickness of the electron transport film (ETL) 4c is preferably a thick structure in which color change does not easily occur. As the film thickness of the electron transport film (ETL) 4c increases, as a result, the film thickness of the entire deposited film 4 including the blue light emitting film (EML (B)) 4b also increases.
  • an extremely short time pulse for example, an extremely short time pulse of about Femto Second (10 ⁇ 15 ) to Pico Second (10 ⁇ 12 )
  • the electron transport film (ETL) 4c can be formed thinner than in the case of using the laser light having a relatively long pulse as described above.
  • the vapor deposition film removing step including the green light emitting film and the red light emitting film is also preferably performed in a vacuum atmosphere or an atmosphere in which moisture and oxygen are less than 10 ppm.
  • an electron injection film (not shown) and a cathode electrode 8 were sequentially formed on the entire surface of the TFT substrate 1 and then patterned. Then, the organic EL display device 9 in which a plurality of organic EL elements (light emitting elements) were provided on the TFT substrate 1 was completed by sealing the entire TFT substrate 1 for each pixel.
  • LiF is used as the electron injection film, but the present invention is not limited to this.
  • the cathode electrode 8 (semi-transmissive reflective electrode), a laminated film of a thin Ag film and an ITO film is used, but the present invention is not limited to this.
  • the drive circuit for driving the plurality of organic EL elements may be provided on the TFT substrate 1 or may be provided externally on the TFT substrate 1.
  • the second patterning (green light emission) is performed on the deposition film 4 of the B pixel left in the first patterning (deposition film removal process including the blue light emitting film).
  • the electron transport film (ETL) 4c of the vapor deposition film 4 of the B pixel is replaced with the electron transport film of the G pixel and the R pixel. (ETL) It was formed thicker than 6d.
  • the method for reducing or avoiding laser damage in the vapor deposition film removing step including the green light emitting film and the red light emitting film on the vapor deposition film 4 of the B pixel is not limited to the above method.
  • At least a part of the electron transport film (ETL) 4c of the B pixel illustrated in FIG. 1 includes at least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material. More than 6d of transport film (ETL) may be contained.
  • an extremely short time pulse for example, an extremely short time pulse of about Femto Second (10 ⁇ 15 ) to Pico Second (10 ⁇ 12 )
  • ETL electron transport film
  • the electron transport film (ETL) 4c of the B pixel is coated with an inorganic material or an inorganic metal oxide (for example, a low work function inorganic metal oxide (an alkali metal oxide of about ⁇ 3 eV, an alkaline earth metal oxide, or an oxidation thereof) Compound oxides)) and crystalline organic materials (such as organic materials that have a low glass transition, such as phenanthroline-based materials, and easily recrystallize), an electron transport film (ETL) Since the remaining rate and heat resistance of the film with respect to the heat generated by the laser light irradiation 4c can be improved, the influence of the heat generated by the laser light irradiation on the lower layer can be suppressed.
  • an inorganic material or an inorganic metal oxide for example, a low work function inorganic metal oxide (an alkali metal oxide of about ⁇ 3 eV, an alkaline earth metal oxide, or an oxidation thereof) Compound oxides)
  • crystalline organic materials such as organic materials
  • the crystalline organic material is a material that is crystallized even in an organic material and has a high film density.
  • an organic material having a low glass transition point for example, a glass transition point of less than 120 ° C.
  • crystallization of an organic material having a low glass transition point occurs due to heat generated by laser light irradiation.
  • heat absorption occurs at this time, the influence of heat generated by the laser light irradiation on the lower layer can be suppressed.
  • the electron transport film (ETL) 4c for the B pixel is formed to have a film thickness equal to or less than the film thickness of the electron transport film (ETL) 6d for the G pixel and the R pixel.
  • the (ETL) 4c may contain at least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material more than the electron transport film (ETL) 6d of the G pixel and the R pixel.
  • the electron transport film (ETL) 4c of the B pixel is difficult to be etched by the laser light irradiation, or even if etched, the blue light emitting film (EML (B)) 4b or the hole injection film / positive It is desirable to have a film thickness that can sufficiently protect the hole transport film (HIL / HTL) 4a. In other words, it is desirable that the electron transport film (ETL) 4c of the B pixel has a high film remaining rate by laser light irradiation so as to ensure a film thickness of a certain level or more.
  • the electron transport films (ETL) 4c and 6d are formed of the same material and the same laser light is irradiated to both of the electron transport films (ETL) 4c and 6d, they are removed by the heat generated by the laser light irradiation. Since the film thickness of the electron transport films (ETL) 4c and 6d is constant, the remaining ratio of the film to the heat generated by the irradiation of the laser beam increases as the film thickness increases.
  • the electron transport film (ETL) 4c of the B pixel contains a large amount of inorganic material, inorganic metal oxide, or crystalline organic material, the electron transport film (ETL) 4c of the B pixel
  • the remaining ratio of the film to the heat generated by the laser light irradiation is higher than the remaining ratio of the film to the heat generated by the laser light irradiation of the electron transport film (ETL) 6d of the G pixel and the R pixel.
  • the remaining ratio of the film to the heat generated by the laser light irradiation is the heat generated by the laser light irradiation of the electron transport film (ETL) 6d of the G pixel and the R pixel. It is desirable that the film be higher than the remaining rate of the film.
  • the remaining ratio of the film to the heat generated by laser light irradiation is (film thickness after laser light irradiation for a predetermined period) / (initial film thickness before laser light irradiation) ⁇ 100.
  • anode electrode (reflection electrode), an IZO film, a hole injection film / hole transport film (HIL / HTL), a single-layer or double-layer light-emitting film (EML),
  • an organic EL light emitting device including an electron transport film (ETL), an electron injection film, and a cathode electrode (semi-transmissive reflective electrode)
  • ETL electron transport film
  • cathode electrode single-layer or double-layer light-emitting film
  • a hole blocking film or an electron blocking film as a carrier blocking film may be further provided.
  • the organic EL display device 9 shown in FIG. 1 and the electron transport film (ETL), which is an upper layer than the light emitting layer, are manufactured by a conventional general coating method in which evaporation is performed as a common layer in each pixel.
  • the difference from the EL display device is as follows.
  • the electron transport film (ETL) which is an upper layer from the light emitting layer, is deposited as a common layer in each pixel.
  • the green light emitting film (EML (G)) 6b and the red light emitting film (EML (R)) 6c are commonly formed as a laminated film.
  • An electron transport film formed on a blue light-emitting film of a pixel, for example, a B pixel is formed on an electron transport film and a red light-emitting film formed on a green light-emitting film of another pixel, the G pixel and the R pixel.
  • the green light emitting film and the red light emitting film are not formed as a laminated film if the film has a higher film remaining rate against heat generated by laser light irradiation than the electron transport film. Only the green light emitting film may be formed in the G pixel, and only the red light emitting film may be formed in the R pixel.
  • FIG. 5 is a diagram showing a schematic configuration of the organic EL display device 19.
  • the anode electrode 2 (reflecting electrode), the IZO film 13a, the hole injection film / hole transport film (HIL / HTL) 14a, and the green light emitting film (EML (G )) 14b, an electron transport film (ETL) 14c, an electron injection film (not shown), and a cathode electrode 8 (semi-transmissive reflective electrode) are sequentially stacked.
  • the electron transport film (ETL) 14c is made of the same material as the electron transport film (ETL) 16d in the R pixel and the B pixel, and is thicker than the electron transport film (ETL) 16d.
  • the anode electrode 2 reflection electrode
  • the IZO film 13b the hole injection film / hole transport film (HIL / HTL) 16a
  • the blue light emitting film (EML (B)) 16b the blue light emitting film (EML (B)) 16b
  • a red light emitting film (EML (R)) 16c an electron transport film (ETL) 16d
  • an electron injection film not shown
  • a cathode electrode 8 sini-transmissive reflective electrode
  • the anode electrode 2 (reflection electrode), the IZO film 13c, the hole injection film / hole transport film (HIL / HTL) 16a, the blue light emitting film (EML (B)) 16b, A red light emitting film (EML (R)) 16c, an electron transport film (ETL) 16d, an electron injection film (not shown), and a cathode electrode 8 (semi-transmissive reflective electrode) are laminated in this order.
  • FIG. 6 is a diagram for explaining a manufacturing process of the organic EL display device 19 shown in FIG.
  • FIG. 7A to 7D are diagrams for explaining a process of forming a vapor deposition film on the G pixel of the organic EL display device 19.
  • FIG. 7A to 7D are diagrams for explaining a process of forming a vapor deposition film on the G pixel of the organic EL display device 19.
  • FIG. 8A to 8D show an example of a process for forming a deposited film on the R pixel and the B pixel of the organic EL display device 19 after the process shown in FIG. 7D.
  • FIG. 8A to 8D show an example of a process for forming a deposited film on the R pixel and the B pixel of the organic EL display device 19 after the process shown in FIG. 7D.
  • FIG. 8A to 8D show an example of a process for forming a deposited film on the R pixel and the B pixel of the organic EL display device 19 after the process shown in FIG. 7D.
  • an electrode forming step (S1 in FIG. 6) in which the anode electrode 2 is patterned on each pixel and provided on the TFT substrate 10 will be described.
  • the anode electrode 2 electrically connected to the drain electrode (or source electrode) of the TFT element provided for each pixel (G pixel, R pixel, B pixel).
  • the drain electrode or source electrode of the TFT element provided for each pixel (G pixel, R pixel, B pixel).
  • a transparent conductive film forming step (S2 in FIG. 6) for forming a transparent conductive film (also referred to as a conductive light transmission film) on the anode electrode 2 by patterning for each pixel will be described.
  • the above-described electrode formation step (S1 in FIG. 6) and the transparent conductive film formation step (S2 in FIG. 6) are also referred to as an anode formation step.
  • an IZO (IndiumiZinc Oxide) film 13a which is a transparent conductive film, is formed on the anode electrode 2, that is, so as to be electrically connected to the anode electrode 2.
  • 13b and 13c were formed by patterning.
  • the IZO films 13a, 13b, and 13c are formed with a predetermined film thickness for each pixel (G pixel, R pixel, and B pixel) in consideration of the light interference effect in each pixel (G pixel, R pixel, and B pixel). Is done.
  • HIL / HTL hole injection film / hole transport film
  • EML (G) green light emitting film
  • ETL electron transport film
  • a vapor deposition film 14 including a green light emitting film (EML (G)) 14b was formed on the entire surface of the TFT substrate 10. As shown in FIG. In addition, although mentioned later in detail, the electron carrying film (ETL) 4c was formed thick in consideration of a post process.
  • EML green light emitting film
  • the vapor deposition film 14 including the green light emitting film (EML (G)) 14b other than the G pixel is irradiated with laser light, and the vapor deposition film 14 including the green light emitting film (EML (G)) 14b other than the G pixel is formed.
  • the vapor deposition film removal process (S4 in FIG. 6) including the green light emitting film to be removed will be described.
  • laser light is irradiated through a mask 15 having a light shielding portion 15a and an opening portion 15b.
  • the light shielding portion 15 a of the mask 15 is disposed on the G pixel portion of the TFT substrate 10, that is, the region where the anode electrode 2 and the IZO film 13 a are laminated, and the opening 15 b of the mask 15 is formed on the G substrate portion of the TFT substrate 10. Arranged outside the pixel portion. Therefore, the entire portion of the TFT substrate 10 other than the G pixel portion is irradiated with laser light.
  • the vapor deposition film 14 including the green light emitting film (EML (G)) 14b is an organic material, and the IZO films 13b and 13c are inorganic materials. Therefore, by heating with laser light, the IZO films 13b and 13c are heated on the IZO films 13b and 13c and between the pixels.
  • the deposited film 14 including the formed green light emitting film (EML (G)) 14b is selectively removed, and as shown in FIG. 7D, the green light emitting film (EML (G) )) It can be patterned to leave the deposited film 14 containing 14b.
  • the green light emitting film (EML (G)) of the G pixel is disposed.
  • the vapor deposition film 14 including 14b is not irradiated with the laser beam, the laser beam is not damaged.
  • the vapor deposition film removing step including the green light emitting film is preferably performed in a vacuum atmosphere or in an atmosphere where moisture and oxygen are as low as less than 10 ppm, for example.
  • the laser beam used in the process of removing the vapor deposition film including the green light emitting film removes the vapor deposition film including the light emitting film that does not have the vapor deposition film including the light emitting film that needs to be protected in the lower layer by heating with the laser light. Therefore, it is not necessary to consider the suppression of heat conduction to other films by this laser beam. Therefore, an extremely short time pulse (for example, Femto Second (10 ⁇ 15 ) to Pico Second (10 It is not necessary to use a laser beam with an extremely short pulse of about -12 ). For example, a laser beam with a relatively long pulse can be used. Therefore, in the present embodiment, in consideration of shortening of the process time, in the deposition film removing process including the green light emitting film, a relatively long pulse laser beam is used, but the present invention is not limited to this. .
  • a hole injection film / hole transport film (HIL / HTL) 16a, a blue light emitting film (EML (B)) 16b, and a red light emitting film (EML (R)) 16c are formed on the entire surface of the TFT substrate 10.
  • the vapor deposition film forming step including the blue light emitting film and the red light emitting film (S5 in FIG. 6) for sequentially depositing the electron transport film (ETL) 16d will be described.
  • a vapor deposition film 16 including a blue light emitting film (EML (B)) 16b and a red light emitting film (EML (R)) 16c is formed on the entire surface of the TFT substrate 10. .
  • the blue light emitting film (EML (B)) 16b and the red light emitting film (EML (R)) 16c are formed in common in the R pixel and the B pixel.
  • the blue light emitting film (EML (B)) 16b is the lower layer and the red light emitting film (EML (R)) 16c from the viewpoint of carrier characteristics, that is, the recombination balance of holes and electrons.
  • the vapor deposition film 16 including the blue light emitting film (EML (B)) 16b and the red light emitting film (EML (R)) 16c is deposited so that the red light emitting film (EML (R)) 16c is the lower layer.
  • the vapor deposition film 16 including the blue light emitting film (EML (B)) 16b and the red light emitting film (EML (R)) 16c is deposited so that the blue light emitting film (EML (B)) 16b is an upper layer.
  • the thickness of the IZO films 13b and 13c changes.
  • the blue light emitting film is removed by irradiating the deposited film 16 including the blue light emitting film (EML (B)) 16b and the red light emitting film (EML (R)) 16c other than the R pixel and the B pixel with a laser beam.
  • the vapor deposition film removing step including the red light emitting film (S6 in FIG. 6) will be described.
  • laser light is irradiated through a mask 17 having a light shielding portion 17a and an opening portion 17b.
  • the light shielding portion 17a of the mask 17 is formed by laminating the R pixel portion and the B pixel portion of the TFT substrate 10, that is, on the region where the anode electrode 2 and the IZO film 13b are laminated, and the anode electrode 2 and the IZO film 13c.
  • the opening 17b of the mask 17 is disposed in a region other than the R pixel portion and the B pixel portion of the TFT substrate 10. Accordingly, the entire portion of the TFT substrate 10 other than the R pixel portion and the B pixel portion is irradiated with laser light.
  • the vapor deposition film 16 including the blue light emitting film (EML (B)) 16b and the red light emitting film (EML (R)) 16c is an organic material
  • the G pixel portion of the TFT substrate 10 and between the pixels are heated by laser light.
  • the deposited film 16 including the blue light-emitting film (EML (B)) 16b and the red light-emitting film (EML (R)) 16c is selectively removed.
  • the vapor deposition film 14 including the green light emitting film (EML (G)) 14b remains on the G pixel portion of the TFT substrate 10, and the blue light emitting film (EML (B)) is formed on the R pixel portion and the B pixel portion of the TFT substrate 10.
  • 16b and a red light emitting film (EML (R)) 16c is an organic material
  • the light shielding portion 17a of the mask 17 is disposed on the R pixel and the B pixel of the TFT substrate 10, blue light emission in the R pixel and the B pixel is achieved. Since the vapor deposition film 16 including the film (EML (B)) 16b and the red light emitting film (EML (R)) 16c is not irradiated with the laser beam, the laser beam is not damaged.
  • the electron transport film (ETL) 14c includes the blue light emitting film and the red light emitting film. It is assumed that the laser beam used in the vapor deposition film removal step including it is a relatively long pulse laser beam used in the vapor deposition film removal step including the green light-emitting film.
  • the blue light emitting film (EML (B)) 16b and the red light emitting film (EML (R)) 16c formed on the vapor deposition film 14 including the green light emitting film (EML (G)) 14b are provided.
  • the deposited film 16 is removed by laser light irradiation, but heat generated in this step can be generated in the green light emitting film (EML (G)) 14b and the hole injection film / hole transport film (HIL / HTL) 14a. This is so as not to affect as much as possible. In addition, the process characteristics of patterning using heat generated by laser light irradiation also tend to cause variations (such as damage during patterning) in the film thickness of the electron transport film (ETL) 14c of the G pixel.
  • the film thickness of the electron transport film (ETL) 14c is preferably a thick structure in which color change does not easily occur. As the film thickness of the electron transport film (ETL) 14c increases, as a result, the film thickness of the entire deposited film 14 including the green light emitting film (EML (G)) 14b also increases.
  • the remaining rate of the film against the heat generated by the irradiation of the laser light of the electron transport film (ETL) 14c of the G pixel is determined by the laser light of the electron transport film (ETL) 16d of the R pixel and B pixel.
  • the electron transport film (ETL) of the G pixel, the R pixel, and the B pixel is formed of the same material so as to be higher than the remaining rate of the film against the heat generated by irradiation, and the film thickness of the electron transport film (ETL) 14c of the G pixel. was formed thicker than the film thickness of the electron transport film (ETL) 16d of the R pixel and the B pixel.
  • a very short time pulse for example, a very short time pulse of about Femto Second (10 ⁇ 15 ) to Pico Second (10 ⁇ 12 )
  • ETL electron transport film
  • the vapor deposition film removing step including the blue light emitting film and the red light emitting film is also preferably performed in a vacuum atmosphere or an atmosphere in which moisture and oxygen are less than 10 ppm.
  • an electron injection film (not shown) and a cathode electrode 8 were sequentially formed on the entire surface of the TFT substrate 10 and then patterned. Then, the organic EL display device 19 in which a plurality of organic EL elements were provided on the TFT substrate 10 was completed by sealing the entire TFT substrate 10 for each pixel.
  • the remaining rate of the film with respect to heat generated by the irradiation of the laser light of the electron transport film (ETL) 14c of the G pixel is expressed as the electron transport film (ETL) of the R pixel and the B pixel.
  • the electron transport of the G pixel As an example of making the remaining rate of the film to the heat generated by the laser beam irradiation of 16d higher than the electron transport film (ETL) of the G pixel, the R pixel, and the B pixel made of the same material, the electron transport of the G pixel
  • the film thickness of the film (ETL) 14c is formed thicker than the film thickness of the electron transport film (ETL) 16d of the R pixel and the B pixel
  • the residual ratio of the film to the heat generated by the laser beam irradiation of the film (ETL) is determined by the heat generated by the laser beam irradiation of the electron transport film (ETL) of the R pixel and the B pixel. To higher than the remaining rate, it may be as follows.
  • At least a part of the electron transport film (ETL) 14c of the G pixel illustrated in FIG. 5 includes at least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material. It may be contained more than the transport film (ETL) 16d.
  • a very short time pulse for example, a very short time pulse of about Femto Second (10 ⁇ 15 ) to Pico Second (10 ⁇ 12 )
  • ETL electron transport film
  • An inorganic material or an inorganic metal oxide (for example, an inorganic metal oxide having a low work function (an alkali metal oxide of about 3 eV, an alkaline earth metal oxide, or an oxidation thereof) is applied to the electron transport film (ETL) 14c of the G pixel.
  • ETL electron transport film
  • Compound oxides) and crystalline organic materials such as organic materials that have a low glass transition, such as phenanthroline-based materials, and easily recrystallize
  • an electron transport film (ETL) Since the film remaining ratio and heat resistance against heat generated by the irradiation of the laser beam 14c can be improved, the influence of the heat generated by the laser beam irradiation on the lower layer can be suppressed.
  • the crystalline organic material is a material that is crystallized even in an organic material and has a high film density.
  • an organic material having a low glass transition point for example, a glass transition point of less than 120 ° C.
  • crystallization of an organic material having a low glass transition point occurs due to heat generated by laser light irradiation.
  • heat absorption occurs at this time, the influence of heat generated by laser light irradiation on the lower layer can be suppressed.
  • the electron transport film (ETL) 14c of the G pixel is formed to have a film thickness equal to or less than the film thickness of the electron transport film (ETL) 16d of the R pixel and the B pixel, and the electron transport film of the G pixel is formed.
  • the (ETL) 14c may contain at least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material more than the electron transport film (ETL) 16d of the R pixel and the B pixel.
  • FIG. 9 is a diagram showing a schematic configuration of an organic EL display device 23 having a color filter.
  • the blue light emitting film (EML (B)) 16b and the red light emitting film (EML (R)) 16c are formed in common in the R pixel and the B pixel, the blue light emitting film (EML (B) ))
  • the red peak wavelength (600 nm) and the blue peak wavelength (450 nm) are nearly 1.5 times, and color mixing tends to occur.
  • the blue color filter 21 and the red color filter 22 are provided at positions opposite to the B pixel and the R pixel in the glass 20 used in the sealing process. Is preferably provided.
  • the blue color filter 21 and the red color filter 22 are provided on the glass 20 has been described as an example.
  • the present invention is not limited to this, and the path through which red light is emitted from the R pixel.
  • a red color filter 22 having a higher transmittance in the wavelength region of red light than that in the other wavelength regions is provided above, and the transmittance in the wavelength region of blue light is on the path from which the blue light is emitted from the B pixel. What is necessary is just to provide the blue color filter 21 higher than the transmittance
  • the vapor deposition film 34 including the red light emitting film (EML (R)) 34b is first formed on the R pixel
  • the blue light emitting film (EML (B)) 36b is formed on the G pixel and the B pixel.
  • the second embodiment is different from the first and second embodiments in that the vapor deposition film 36 including the green light emitting film (EML (G)) 36c is formed, and the others are as described in the first and second embodiments.
  • EML (G) green light emitting film
  • FIG. 10 is a diagram showing a schematic configuration of the organic EL display device 39.
  • the anode electrode 2 reflection electrode
  • the IZO film 33a hole injection film / hole transport film (HIL / HTL) 34a
  • the red light emitting film (EML (R )) 34b an electron transport film (ETL) 34c
  • an electron injection film not shown
  • a cathode electrode 8 semi-transmissive reflective electrode
  • the electron transport film (ETL) 34c is made of the same material as the electron transport film (ETL) 36d in the G pixel and the B pixel, and is thicker than the electron transport film (ETL) 36d.
  • the anode electrode 2 (reflecting electrode), the IZO film 33b, the hole injection film / hole transport film (HIL / HTL) 36a, the blue light emitting film (EML (B)) 36b, A green light-emitting film (EML (G)) 36c, an electron transport film (ETL) 36d, an electron injection film (not shown), and a cathode electrode 8 (semi-transmissive reflective electrode) are sequentially stacked.
  • the anode electrode 2 (reflection electrode), the IZO film 33c, the hole injection film / hole transport film (HIL / HTL) 36a, the blue light emitting film (EML (B)) 36b, A green light-emitting film (EML (G)) 36c, an electron transport film (ETL) 36d, an electron injection film (not shown), and a cathode electrode 8 (semi-transmissive reflective electrode) are sequentially stacked.
  • FIG. 11 is a diagram for explaining a manufacturing process of the organic EL display device 39 shown in FIG.
  • FIG. 12A to 12D are diagrams for explaining a process of forming a vapor deposition film on the R pixel of the organic EL display device 39.
  • FIG. 12A to 12D are diagrams for explaining a process of forming a vapor deposition film on the R pixel of the organic EL display device 39.
  • FIGS. 13A to 13D show an example of a process for forming a deposited film on the G pixel and the B pixel of the organic EL display device 39, which is a subsequent process of the process shown in FIG. 12D.
  • FIG. 13A to 13D show an example of a process for forming a deposited film on the G pixel and the B pixel of the organic EL display device 39, which is a subsequent process of the process shown in FIG. 12D.
  • an electrode formation process (S1 in FIG. 11) in which the anode electrode 2 is patterned on each pixel and provided on the TFT substrate 30 will be described.
  • the anode electrode 2 electrically connected to the drain electrode (or source electrode) of the TFT element provided for each pixel (R pixel, G pixel, B pixel).
  • R pixel, G pixel, B pixel was patterned on each pixel and provided on the TFT substrate 30.
  • a transparent conductive film forming step (S2 in FIG. 11) for forming a transparent conductive film (also referred to as a conductive light transmission film) on the anode electrode 2 by patterning for each pixel will be described.
  • the above-described electrode formation step (S1 in FIG. 11) and the transparent conductive film formation step (S2 in FIG. 11) are also referred to as an anode formation step.
  • IZO (IndiuminZinc Oxide) films 33a, 33b, and 33c which are transparent conductive films, are formed on the anode electrode 2 by patterning.
  • the IZO films 33a, 33b, and 33c are formed with a predetermined film thickness for each pixel (R pixel, G pixel, and B pixel) in consideration of the light interference effect in each pixel (R pixel, G pixel, and B pixel). Is done.
  • HIL / HTL hole injection film / hole transport film
  • EML (R) red light emitting film
  • ETL electron transport film
  • a vapor deposition film 34 including a red light emitting film (EML (R)) 34 b was formed on the entire surface of the TFT substrate 30.
  • EML (R) red light emitting film
  • the electron carrying film (ETL) 34c was formed thick considering the post process.
  • the vapor deposition film 34 including the red light-emitting film (EML (R)) 34b other than the R pixel is irradiated with laser light, and the vapor deposition film 34 including the red light-emitting film (EML (R)) 34b other than the R pixel is formed.
  • the vapor deposition film removing step (S4 in FIG. 11) including the red light emitting film to be removed will be described.
  • laser light is irradiated through a mask 35 having a light shielding portion 35a and an opening portion 35b.
  • the light shielding portion 35 a of the mask 35 is disposed on the R pixel portion of the TFT substrate 30, that is, on the region where the anode electrode 2 and the IZO film 33 a are laminated, and the opening 35 b of the mask 35 is formed on the R substrate portion of the TFT substrate 30. Arranged outside the pixel portion. Therefore, the entire portion of the TFT substrate 30 other than the R pixel portion is irradiated with laser light.
  • the vapor deposition film 34 including the red light emitting film (EML (R)) 34b is an organic material, and the IZO films 33b and 33c are inorganic materials. Therefore, by heating with laser light, the IZO films 33b and 33c are heated on the IZO films 33b and 33c and between the pixels.
  • the deposited film 34 including the formed red light emitting film (EML (R)) 34b is selectively removed, and as shown in FIG. 12D, the red light emitting film (EML (R) only for the R pixel. )) It can be patterned to leave the deposited film 34 including 34b.
  • the red light emitting film (EML (R)) of the R pixel is arranged.
  • EML (R) red light emitting film
  • the vapor deposition film removing step including the red light emitting film is preferably performed in a vacuum atmosphere or in an atmosphere where moisture and oxygen are as low as less than 10 ppm, for example.
  • the laser beam used in the removal process of the deposited film including the red light emitting film removes the deposited film including the light emitting film that does not have the deposited film including the light emitting film that needs to be protected in the lower layer by heating with the laser beam. Therefore, it is not necessary to consider the suppression of heat conduction to other films by this laser beam. Therefore, an extremely short time pulse (for example, Femto Second (10 ⁇ 15 ) to Pico Second (10 It is not necessary to use a laser beam with an extremely short pulse of about -12 ). For example, a laser beam with a relatively long pulse can be used. Therefore, in the present embodiment, in consideration of shortening the process time, the deposition film removing process including the red light emitting film uses a laser beam having a relatively long pulse, but the present invention is not limited thereto. .
  • a hole injection film / hole transport film (HIL / HTL) 36a, a blue light emitting film (EML (B)) 36b, and a green light emitting film (EML (G)) 36c are formed on the entire surface of the TFT substrate 30.
  • the vapor deposition film forming step including the blue light emitting film and the green light emitting film (S5 in FIG. 11) for sequentially depositing the electron transport film (ETL) 36d will be described.
  • a vapor deposition film 36 including a blue light emitting film (EML (B)) 36b and a green light emitting film (EML (G)) 36c is formed on the entire surface of the TFT substrate 30. .
  • the blue light emitting film (EML (B)) 36b and the green light emitting film (EML (G)) 36c are formed in common in the G pixel and the B pixel.
  • the blue light emitting film (EML (B)) 36b is the lower layer and the green light emitting film (EML (G)) 36c from the viewpoint of carrier characteristics, that is, the recombination balance of holes and electrons.
  • the vapor-deposited film 36 including the blue light-emitting film (EML (B)) 36b and the green light-emitting film 36c was vapor-deposited such that the green light-emitting film (EML (G)) 36c was the lower layer and the blue light-emitting film (
  • the vapor deposition film 36 including the blue light emitting film (EML (B)) 36b and the green light emitting film (EML (G)) 36c may be deposited so that the EML (B)) 36b is an upper layer. It should be noted that the film thickness of the IZO films 33b and 33c changes.
  • the blue light emitting film is removed by irradiating the vapor-deposited film 36 including the blue light emitting film (EML (B)) 36b and the green light emitting film (EML (G)) 36c other than the G pixel and the B pixel with laser light.
  • the vapor deposition film removing step (S6 in FIG. 11) including the green light emitting film will be described.
  • laser light is irradiated through a mask 37 having a light shielding portion 37a and an opening portion 37b.
  • the light shielding portion 37a of the mask 37 is formed by laminating the G pixel portion and the B pixel portion of the TFT substrate 30, that is, on the region where the anode electrode 2 and the IZO film 33b are laminated, and the anode electrode 2 and the IZO film 33c.
  • the opening 37b of the mask 37 is disposed in a region other than the G pixel portion and the B pixel portion of the TFT substrate 30. Therefore, the entire portion of the TFT substrate 30 other than the G pixel portion and the B pixel portion is irradiated with laser light.
  • the vapor deposition film 36 including the blue light emitting film (EML (B)) 36b and the green light emitting film (EML (G)) 36c is an organic material
  • the R pixel portion of the TFT substrate 30 and between the pixels are heated by laser light.
  • the deposited film 36 including the blue light emitting film (EML (B)) 36b and the green light emitting film (EML (G)) 36c is selectively removed.
  • the deposited film 34 including the red light emitting film (EML (R)) 34b remains on the R pixel portion of the TFT substrate 30, and the blue light emitting film (EML (B)) is formed on the G pixel portion and the B pixel portion of the TFT substrate 30.
  • the deposited film 36b and the green light-emitting film (EML (G)) 36c the deposited film 36 can be patterned so as to remain.
  • the light shielding portion 37a of the mask 37 is disposed on the G pixel and the B pixel of the TFT substrate 30, blue light emission in the G pixel and the B pixel. Since the vapor deposition film 36 including the film (EML (B)) 36b and the green light emitting film (EML (G)) 36c is not irradiated with laser light, the laser light is not damaged.
  • the electron transport film (ETL) 34c has the blue light emitting film and the green light emitting film.
  • the laser beam used in the vapor deposition film removal step including the film is formed thicker assuming that the laser beam used in the vapor deposition film removal step including the red light emitting film is a relatively long-time pulse laser beam.
  • the blue light emitting film (EML (B)) 36b and the green light emitting film (EML (G)) 36c formed on the vapor deposition film 34 including the red light emitting film (EML (R)) 34b are provided.
  • the deposited film 36 is removed by laser light irradiation, but heat generated in this step can be generated in the red light emitting film (EML (R)) 34b and the hole injection film / hole transport film (HIL / HTL) 34a. This is so as not to affect as much as possible.
  • the process characteristics of patterning using heat generated by laser light irradiation also tend to cause variations (such as damage during patterning) in the thickness of the electron transport film (ETL) 34c of the R pixel.
  • the film thickness of the electron transport film (ETL) 34c is preferably a thick structure in which color change hardly occurs. As the film thickness of the electron transport film (ETL) 34c increases, as a result, the film thickness of the entire deposited film 34 including the red light emitting film (EML (R)) 34b also increases.
  • the remaining rate of the film against the heat generated by the irradiation of the laser light of the electron transport film (ETL) 34c of the R pixel is determined based on the laser light of the electron transport film (ETL) 36d of the G pixel and B pixel.
  • the electron transport film (ETL) of the R pixel, the G pixel, and the B pixel is formed of the same material so as to be higher than the remaining rate of the film against the heat generated by irradiation, and the film thickness of the electron transport film (ETL) 34c of the R pixel. was formed thicker than the film thickness of the electron transport film (ETL) 36d of the G pixel and B pixel.
  • a very short time pulse for example, a very short time pulse of about Femto Second (10 ⁇ 15 ) to Pico Second (10 ⁇ 12 )
  • ETL electron transport film
  • the vapor deposition film removing step including the blue light emitting film and the green light emitting film is also preferably performed in a vacuum atmosphere or an atmosphere in which moisture and oxygen are less than 10 ppm.
  • an electron injection film (not shown) and the cathode electrode 8 were sequentially formed on the entire surface of the TFT substrate 30, and then patterned. Then, the organic EL display device 39 having a plurality of organic EL elements provided on the TFT substrate 30 was completed by sealing the entire TFT substrate 30 for each pixel.
  • the remaining rate of the film with respect to heat generated by the irradiation of the laser light of the electron transport film (ETL) 34c of the R pixel is set as the electron transport film (ETL) of the G pixel and the B pixel.
  • the electron transport films (ETL) of the R pixel, the G pixel, and the B pixel are formed of the same material, and the electron transport of the R pixel
  • the film thickness of the film (ETL) 34c is formed thicker than the film thickness of the electron transport film (ETL) 36d of the G pixel and the B pixel
  • the residual ratio of the film to the heat generated by the laser beam irradiation of the film (ETL) is determined by the heat generated by the laser beam irradiation of the electron transport film (ETL) of the G pixel and the B pixel. To higher than the remaining rate, it may be as follows.
  • At least a part of the electron transport film (ETL) 34c of the R pixel illustrated in FIG. 10 includes at least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material. It may be contained more than the transport film (ETL) 36d.
  • an extremely short time pulse for example, an extremely short time pulse of about Femto Second (10 ⁇ 15 ) to Pico Second (10 ⁇ 12 )
  • ETL electron transport film
  • An electron transport film (ETL) 34c of the R pixel is coated with an inorganic material or an inorganic metal oxide (for example, a low work function inorganic metal oxide (an alkali metal oxide of about ⁇ 3 eV, an alkaline earth metal oxide, or an oxidation thereof) Compound oxides)) and crystalline organic materials (such as organic materials that have a low glass transition, such as phenanthroline-based materials, and easily recrystallize), an electron transport film (ETL) Since the remaining rate and heat resistance of the film with respect to the heat generated by the laser light irradiation of 34c can be improved, the influence of the heat generated by the laser light irradiation on the lower layer can be suppressed.
  • an inorganic material or an inorganic metal oxide for example, a low work function inorganic metal oxide (an alkali metal oxide of about ⁇ 3 eV, an alkaline earth metal oxide, or an oxidation thereof) Compound oxides)
  • crystalline organic materials such as organic
  • the crystalline organic material is a material that is crystallized even in an organic material and has a high film density.
  • an organic material having a low glass transition point for example, a glass transition point of less than 120 ° C.
  • crystallization of an organic material having a low glass transition point occurs due to heat generated by laser light irradiation.
  • heat absorption occurs at this time, the influence of heat generated by laser light irradiation on the lower layer can be suppressed.
  • the electron transport film (ETL) 34c of the R pixel is formed to have a thickness equal to or less than the film thickness of the electron transport film (ETL) 36d of the G pixel and the B pixel, and the electron transport film of the R pixel is formed.
  • (ETL) 34e may contain at least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material more than the electron transport film (ETL) 36d of the G pixel and the B pixel.
  • a display device is a display device including a first pixel and a second pixel that emit light having different peak wavelengths, and a reflective electrode and a transflective electrode provided in each of the pixels.
  • the first light emitting film is formed on the first pixel
  • the second light emitting film is formed on the second pixel
  • the vapor deposition film formed on the first light emitting film is formed on the second light emitting film.
  • the film is characterized in that the film has a higher residual ratio to the heat generated by the irradiation of the laser beam than the deposited film.
  • the deposited film formed on the first light-emitting film has a higher film remaining ratio to the heat generated by laser light irradiation than the deposited film formed on the second light-emitting film. Since it is a film, for example, in order to improve productivity during the manufacturing process of the display device, the second light emitting film and the second light emitting film are formed on the vapor deposition film formed on the first light emitting film. Even when the vapor deposition film formed on the light emitting film is formed and the second light emitting film and the vapor deposited film formed on the second light emitting film are removed by heating with laser light, the first light emitting film is formed.
  • a display device that can suppress the influence on the light emitting film and the deposited film formed below the first light emitting film, has high productivity, and can suppress the color shift of the light emitting element and the deterioration of the light emitting element characteristics can be realized.
  • the display device is the display device according to aspect 1, in which the third pixel that emits light having a peak wavelength different from that of the first pixel and the second pixel, and the reflective electrode provided in the third pixel And the transflective electrode, wherein the second light emitting film and the third light emitting film are laminated on each of the second pixel and the third pixel, and the reflective electrode of the second pixel
  • the distance between the second light emitting film and the distance between the reflective electrode of the third pixel and the third light emitting film is set so that light having the peak wavelength of the pixel can be extracted from the transflective electrode.
  • the vapor deposition film formed on the first light-emitting film is formed on the second light-emitting film which is an upper layer in the laminated film of the second light-emitting film and the third light-emitting film. Against the heat generated by laser light irradiation. It is preferable that the film residual ratio is high membrane.
  • each of the second pixel and the third pixel is provided. Since the second light-emitting film and the third light-emitting film can be patterned in a single process, productivity is high and adverse effects on other films during patterning can be suppressed.
  • both the second light emitting film and the third light emitting film are formed in each of the second and third pixels.
  • the distance between the second light-emitting film and the distance between the reflective electrode of the third pixel and the third light-emitting film are set such that light having the peak wavelength of the pixel can be extracted from the transflective electrode. Therefore, light having a predetermined peak wavelength can be extracted from the corresponding pixel.
  • the vapor deposition film formed on the first light emitting film is a vapor deposition formed on the second light emitting film which is an upper layer in the laminated film of the second light emitting film and the third light emitting film. Since the film has a higher residual ratio to the heat generated by laser light irradiation than the film, for example, when the film on the deposited film formed on the first light emitting film is removed by heating with the laser light However, it is possible to suppress the influence on the first light emitting film and the vapor deposition film formed below the first light emitting film, and to realize a display device capable of suppressing the color shift of the light emitting element and the deterioration of the light emitting element characteristics.
  • the vapor deposition film formed on the first light emitting film is formed thicker than the vapor deposition film formed on the second light emitting film. May be.
  • the vapor deposition film formed on the first light emitting film is formed thicker than the vapor deposition film formed on the second light emitting film, for example, by heating with laser light. Even when the film on the vapor deposition film formed on the first light emitting film is removed, the influence on the first light emitting film and the vapor deposition film formed on the first light emitting film can be suppressed, A display device capable of suppressing color shift of the light-emitting element and deterioration of the light-emitting element characteristics can be realized.
  • the display device according to aspect 4 of the present invention is the display device according to any one of aspects 1 to 3, wherein the vapor deposition film formed on the first light-emitting film includes an inorganic material, an inorganic metal oxide, and a crystalline organic material. At least one of them may be included more than the vapor deposition film formed on the second light emitting film.
  • At least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material is formed on the second light emitting film in the deposited film formed on the first light emitting film. Since it is contained more than the vapor deposition film, for example, even when the film on the vapor deposition film formed on the first light emission film is removed by heating with a laser beam, the first light emission film and the first light emission film are removed. Accordingly, it is possible to realize a display device that can suppress the influence on the deposited film formed on the light emitting film 1 and suppress the color shift of the light emitting element and the deterioration of the light emitting element characteristics.
  • the distance between the reflective electrode of the second pixel and the second light emitting film and the reflective electrode and the third light emitting film of the third pixel are described. Is a 1/4 ⁇ (2N ⁇ 1) of the peak wavelength of the pixel, and N is preferably a natural number.
  • the first light emitting film is a blue light emitting film
  • the second light emitting film is one of a green light emitting film and a red light emitting film.
  • the third light emitting film may be the other of the green light emitting film and the red light emitting film.
  • the green light emitting film and the red light emitting film are formed in common in the second pixel and the third pixel.
  • the dopant is a phosphorescent material, and the host material can be easily shared. This can be dealt with by switching only the dopant in the vapor deposition process.
  • the first light emitting film is a green light emitting film
  • the second light emitting film is one of a red light emitting film and a blue light emitting film.
  • the third light emitting film may be the other of the red light emitting film and the blue light emitting film.
  • the first light emitting film is a red light emitting film
  • the second light emitting film is one of a green light emitting film and a blue light emitting film.
  • the third light emitting film may be the other of the green light emitting film and the blue light emitting film.
  • the display device is the display device according to any one of the aspects 5 to 8, in which each of the light beams having the peak wavelength of the corresponding pixel is emitted from the second pixel and the third pixel. It is preferable that a color filter is provided in which the transmittance in the wavelength region of the peak wavelength light of the corresponding pixel is higher than the transmittance in other wavelength regions.
  • a manufacturing method of a display device includes a first pixel and a second pixel that emit light of different peak wavelengths provided on a substrate, a light-emitting film, a reflective electrode, and A semi-transparent reflective electrode, and a conductive device that adjusts a distance between the light-emitting film and the reflective electrode so that light having the peak wavelength of the pixel can be extracted from the transflective electrode.
  • Removing the second vapor deposition film including the film, and in the first vapor deposition film forming step, the vapor deposition film formed on the first light emitting film is the second vapor deposition film forming step.
  • the film is characterized in that the film has a higher residual ratio to the heat generated by laser light irradiation than the deposited film formed on the second light emitting film.
  • the vapor deposition film formed on the first light emitting film is formed on the second light emitting film in the second vapor deposition film forming step. Since the remaining ratio of the film to the heat generated by the laser beam irradiation is higher than that of the deposited film, the second light emitting film including the second light emitting film formed other than the second pixel using the laser beam.
  • the step of removing the deposited film when the film on the deposited film formed on the first light emitting film is removed by heating with a laser beam, the first light emitting film and the first light emitting are also removed.
  • the manufacturing method of the display apparatus which can suppress the influence on the vapor deposition film formed under a film
  • the third pixel provided on the substrate emits light having a peak wavelength different from that of the first pixel and the second pixel.
  • a reflective electrode and a semi-transmissive reflective electrode provided in the third pixel, and the second vapor deposition film forming step includes a second film including a stacked film of the second light emitting film and the third light emitting film.
  • the second vapor-deposited film including the second light-emitting film and the laminated film of the third light-emitting film formed in a portion other than the second pixel and the third pixel is removed using laser light, and the conductive film In the light transmitting film forming process, the peak of the corresponding pixel
  • the distance between the reflective electrode of the second pixel and the second light emitting film and the reflective electrode of the third pixel and the third light emitting film so that long light can be extracted from the transflective electrode.
  • a conductive light-transmitting film for adjusting the distance is formed with a predetermined film thickness, and in the first vapor deposition film forming step, the vapor deposition film formed on the first light emitting film is formed as the second vapor deposition film.
  • the film remains against heat generated by laser light irradiation from the vapor deposition film formed on the second light-emitting film which is the upper layer in the laminated film of the second light-emitting film and the third light-emitting film.
  • a film having a high rate is preferable.
  • the first vapor deposition film formation step and the second vapor deposition film formation step are performed twice, the first vapor deposition film removal step, and the second vapor deposition film removal step.
  • the deposition films including the light emitting films of the respective colors can be patterned. Therefore, compared to the conventional method in which each film including the light emitting film of each color needs to be deposited for each color pixel, the productivity is high and the adverse effect on other films during patterning can be suppressed.
  • the vapor deposition film including the light emitting film of each color is patterned using the laser beam, that is, the vapor deposition film including the light emitting film of each color is partially removed and patterned by heating with the laser beam. . Therefore, it is not necessary to perform the resist forming process and the resist peeling process as many as three times as in the prior art, so that productivity can be improved and adverse effects on other films that may occur during photolithography of the resist. Can be suppressed.
  • the vapor deposition film formed on the first light emitting film is formed on the second light emitting film which is an upper layer in the second vapor deposition film forming step. Since the film has a higher residual ratio to the heat generated by laser light irradiation than the deposited film, for example, the film on the deposited film formed on the first light emitting film is removed by heating with the laser light. Even in this case, it is possible to suppress the influence on the first light-emitting film and the deposited film formed below the first light-emitting film, and to manufacture a display device capable of suppressing the color shift of the light-emitting element and the deterioration of the light-emitting element characteristics. The method can be realized.
  • the vapor deposition film formed on the first light emitting film is the second vapor deposition film.
  • the deposited film may be formed thicker than the deposited film formed on the second light emitting film.
  • the vapor deposition film formed on the first light emitting film is formed thicker than the vapor deposition film formed on the second light emitting film, for example, by heating with a laser beam, even when the film on the vapor deposition film formed on the first light emitting film is removed, the influence on the first light emitting film and the vapor deposition film formed on the first light emitting film can be suppressed, and light emission can be achieved. It is possible to realize a method for manufacturing a display device capable of suppressing color shift of elements and deterioration of light emitting element characteristics.
  • the method for manufacturing a display device according to the thirteenth aspect of the present invention is the display device according to any one of the tenth to twelfth aspects, wherein the vapor deposition film formed on the first light emitting film in the first vapor deposition film forming step is In the vapor deposition film forming step 2, at least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material may be included more than the vapor deposition film formed on the second light emitting film.
  • At least one of an inorganic material, an inorganic metal oxide, and a crystalline organic material is formed on the second light emitting film in the deposited film formed on the first light emitting film.
  • the first light emitting film and the first light emitting film are contained.
  • the method for manufacturing a display device according to the fourteenth aspect of the present invention is the method according to any one of the tenth to thirteenth aspects, wherein the first vapor deposition film is removed or the second vapor deposition film is removed. It is preferable to use a mask that partially shields the laser beam.
  • the mask since the mask is used, it is possible to perform patterning with high accuracy by the laser beam and to block the laser beam at a portion where the mask is not necessary, thereby suppressing adverse effects on other films.
  • the step of removing the first vapor deposition film or the step of removing the second vapor deposition film is performed in a vacuum atmosphere. It is preferable that the reaction is carried out under an atmosphere where moisture and oxygen are less than 10 ppm.
  • an extremely short time of 10 ⁇ 15 seconds to 10 ⁇ 12 seconds is provided in the step of removing the second deposited film. It is preferable to use pulsed laser light.
  • the thickness of the conductive light transmissive film is the same as that of the reflective electrode of the second pixel and the thickness of the second pixel.
  • the distance between the second light emitting film and the distance between the reflective electrode of the third pixel and the third light emitting film is 1 ⁇ 4 ⁇ (2N ⁇ 1) of the peak wavelength of the corresponding pixel (where N is a natural number). ) Is preferably formed.
  • the first light emitting film is a blue light emitting film
  • the second light emitting film is a green light emitting film or a red light emitting film. It is either one, and the third light emitting film may be the other of the green light emitting film and the red light emitting film.
  • the red light emitting film and the blue light emitting film are formed in common in the second pixel and the third pixel.
  • the dopant is a phosphorescent material, and the host material can be easily shared. This can be dealt with by switching only the dopant in the vapor deposition process.
  • the first light emitting film is a green light emitting film
  • the second light emitting film is a red light emitting film or a blue light emitting film. It is either one, and the third light emitting film may be the other of the red light emitting film and the blue light emitting film.
  • the first light emitting film is a red light emitting film
  • the second light emitting film is a green light emitting film or a blue light emitting film.
  • the third light emitting film may be the other of the green light emitting film and the blue light emitting film.
  • the method for manufacturing a display device according to aspect 21 of the present invention is the method for manufacturing a display device according to any one of the aspects 17 to 20, wherein each of the second pixel and the third pixel on the path from which the peak wavelength light is emitted is output. It is preferable that the method further includes a step of providing a color filter in which the transmittance of the peak wavelength light of the corresponding pixel is higher than the transmittance of other wavelength regions.
  • the present invention can be used for a display device, in particular, an organic EL display device and a manufacturing method thereof.
  • TFT substrate 2 Anode electrode (reflection electrode) 3a IZO film (conductive light transmission film) 3b IZO film (conductive light transmission film) 3c IZO film (conductive light transmission film) 4 Deposition film including blue light-emitting film 4a Hole injection film / hole transport film for B pixel 4b Blue light-emitting film 4c Electron transport film for B pixel 5 Mask 5a Light-shielding part 5b Opening 6 Including green light-emitting film and red light-emitting film Evaporated film 6a Hole injection film / hole transport film for G pixel and R pixel 6b Green light emitting film 6c Red light emitting film 6d Electron transport film for G pixel and R pixel 7 Mask 7a Light shielding part 7b Opening part 8 Cathode electrode (semi-transmissive) Reflective electrode) 9 Organic EL display device (display device) 10 TFT substrate 13a IZO film (conductive light transmission film) 13b IZO film (conductive light transmission film) 13c IZ

Abstract

生産性が高く、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置を提供する。青色発光膜(4b)上に形成されるB画素の電子輸送膜(4c)は、緑色発光膜(6b)および赤色発光膜(6c)上に形成されるG画素およびR画素の電子輸送膜(6d)より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜となるように厚く形成されている。

Description

表示装置および表示装置の製造方法
 本発明は、表示装置、特には、有機EL表示装置およびその製造方法に関するものである。
 近年、さまざまなフラットパネルディスプレイが開発されており、特に、有機EL(Electro luminescence)表示装置は、低消費電力化、薄型化および高画質化などを実現できる点から、優れたフラットパネルディスプレイとして高い注目を浴びている。
 そして、表示装置の高精細化の必要性が高まる環境下で、このような有機EL表示装置の製造分野においては、赤色、緑色、及び青色を発光する発光膜を含む蒸着膜を塗り分け方式を用いて形成し、フルカラー表示を行う方式が頻繁に採用されている。
 蒸着マスクを用いて、発光膜を含む蒸着膜を塗り分け方式で形成する方法以外の方法も提案されており、例えば、特許文献1および2には、フォトリソ工程とドライエッチング工程とを用いて、発光膜を含む蒸着膜を塗り分け方式で形成する方法について記載されている。
 特許文献3には、レーザー光を用いて、ITO薄膜上に形成された有機発光膜を選択的に除去するレーザーアブレーション加工方法について記載されている。また、特許文献4には、レジストパターンをマスクとして、有機材料層に光を照射してパターニングする光照射ドライエッチング法によってパターニングされた有機層を形成することについて記載されている。
日本国公開特許公報「特開2014‐133727号公報(2014年7月24日公開)」 日本国公開特許公報「特開2014‐44810号公報(2014年3月13日公開)」 日本国公開特許公報「特開2002‐124380号公報(2002年4月26日公開)」 日本国公開特許公報「特開2000‐36385号公報(2000年2月2日公開)」
 図14の(a)・(b)は、上記特許文献1、2および4などに記載されているフォトリソ工程で形成されたレジストとこのレジストをマスクとして用いるドライエッチング工程とを利用して、発光膜を含む蒸着膜を塗り分け方式で形成する一般的な方法を説明するための図である。
 図14の(a)に図示されているように、従来は、基板100上に、陽極101と、正孔注入膜/正孔輸送膜(HIL/HTL)102と、青色発光膜(EML(B))103と、正孔ブロッキング膜(HBL)104と、電子輸送膜(ETL(犠牲膜))105と、保護層106とを順に積層した後、青色画素となる部分にのみ、フォトリソ工程を用いてレジスト107を形成する。
 それから、ドライエッチング工程、例えば、レジスト107をマスクとし、紫外線や酸素プラズマ(Oプラズマ)などで、レジスト107が形成されてない領域の青色発光膜を含む各膜を除去し、図14の(b)に図示する状態にする。その後、図示はしていないが、図14の(a)と同様に、緑色発光膜を含む各膜を全面に形成した後、青色画素上に形成されたレジスト107を剥離することによって、レジスト107上に形成された緑色発光膜を含む各膜は除去され、青色画素以外の部分にのみ緑色発光膜を含む各膜が残る。
 そして、青色画素および緑色画素となる部分にのみ、フォトリソ工程を用いて再びレジスト107を形成する。それから、レジスト107をマスクとし、紫外線や酸素プラズマ(Oプラズマ)で、レジスト107が形成されてない領域の緑色発光膜を含む各膜を除去し、青色画素には、青色発光膜を含む各膜とレジスト107とが、緑色画素には、緑色発光膜を含む各膜とレジスト107とが、形成されている状態となる。
 その後、図14の(a)と同様に、赤色発光膜を含む各膜を全面に形成した後、青色画素および緑色画素上に形成されたレジスト107を剥離することによって、レジスト107上に形成された赤色発光膜を含む各膜は除去され、青色画素および緑色画素以外の部分にのみ赤色発光膜を含む各膜が残る。
 そして、青色画素、緑色画素および赤色画素となる部分にのみ、フォトリソ工程を用いて再びレジスト107を形成する。それから、レジスト107をマスクとし、紫外線や酸素プラズマ(Oプラズマ)で、レジスト107が形成されてない領域の赤色発光膜を含む各膜を除去し、青色画素には、青色発光膜を含む各膜とレジスト107とが、緑色画素には、緑色発光膜を含む各膜とレジスト107とが、赤色画素には、赤色発光膜を含む各膜とレジスト107とが、形成されている状態となる。最後に、レジスト107を剥離する。
 しかしながら、以上のように、フォトリソ工程とドライエッチング工程とを用いて、発光膜を含む蒸着膜を塗り分け方式で形成する従来の方法においては、レジスト107を3回パターニング形成し、パターニング形成されたレジスト107を3回剥離する必要があるとともに、各色の発光膜を含む各膜も色画素毎に蒸着する必要があるため、製造工程が長く生産性が悪い。また、水溶性の材料や無機酸化物などの保護層106、電子輸送膜(ETL(犠牲膜))105といった膜のプロセス加工のための膜加工も色画素毎に行う必要があるので、膜加工工程のロスも3倍以上多い。
 さらに、上記従来の方法においては、フォトリソ工程およびエッチング工程で用いる様々な剥離液やエッチング液や紫外線や酸素プラズマの影響で、発光素子特性の低下が生じてしまう。特に、保護層106を形成して溶剤に接触させる方法が用いられる場合には、耐湿性が乏しい素子に影響(効率低下、寿命悪化)がでる。また、紫外線や酸素プラズマなどによるドライエッチングを用いる場合には、電子輸送膜(ETL(犠牲膜))105も含めた発光素子の膜厚変化による色ズレ(光学干渉の影響)や発光素子特性(発光効率、寿命)の低下を招いてしまう。
 なお、特許文献3に記載されているレーザー光を用いた有機発光膜を選択的に除去するレーザーアブレーション加工方法においては、レーザーアブレーションによる除去対象膜である有機発光膜の下層がITO薄膜である場合について記載されており、この場合においては、レーザーアブレーションによるITO薄膜のダメージを考慮しなくてもよいので、上記有機発光膜においては、下層を保護するための工夫はなされておらず、このような有機発光膜を積層させ、上層の有機発光膜をレーザーアブレーションで除去した場合には、下層の有機発光膜はダメージを受けることとなる。したがって、このような有機発光膜およびレーザーアブレーション加工方法を用いた場合には、発光素子の色ズレおよび発光素子特性の低下を抑制できない。
 本発明は、上記の問題点に鑑みてなされたものであり、生産性が高く、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置および表示装置の製造方法を提供することを目的とする。
 本発明の表示装置は、上記の課題を解決するために、異なるピーク波長の光を出射する第1画素および第2画素と、上記各画素に備えられた反射電極および半透過反射電極と、を含む表示装置であって、第1の発光膜は上記第1画素に、第2の発光膜は上記第2画素に形成され、上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることを特徴としている。
 上記構成によれば、上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であるので、例えば、上記表示装置の製造工程中において、生産性の向上を図るため、上記第1の発光膜上に形成される蒸着膜上に、上記第2の発光膜および上記第2の発光膜上に形成される蒸着膜を形成し、レーザー光による加熱で、上記第2の発光膜および上記第2の発光膜上に形成される蒸着膜を除去する場合でも、上記第1の発光膜および上記第1の発光膜より下に形成される蒸着膜への影響を抑制でき、生産性が高く、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置を実現できる。
 本発明の表示装置の製造方法は、上記の課題を解決するために、基板上に備えられた異なるピーク波長の光を出射する第1画素および第2画素と、上記各画素に備えられた発光膜、反射電極および半透過反射電極と、を含む表示装置の製造方法であって、該当画素の上記ピーク波長の光を上記半透過反射電極から取り出せるように、上記発光膜と上記反射電極との距離を調整する導電性光透過膜を所定の膜厚で形成する導電性光透過膜形成工程と、上記発光膜中の第1の発光膜を含む第1の蒸着膜を、上記第1画素および上記第2画素を含む上記基板上の全面に形成する第1の蒸着膜形成工程と、レーザー光を用いて、上記第1画素以外に形成された上記第1の発光膜を含む第1の蒸着膜を除去する工程と、上記発光膜中の第2の発光膜を含む第2の蒸着膜を、上記第1画素および上記第2画素を含む上記基板上の全面に形成する第2の蒸着膜形成工程と、レーザー光を用いて、上記第2画素以外に形成された上記第2の発光膜を含む第2の蒸着膜を除去する工程と、を含み、上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることを特徴としている。
 上記方法によれば、上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であるので、レーザー光を用いて、上記第2画素以外に形成された上記第2の発光膜を含む第2の蒸着膜を除去する工程において、レーザー光による加熱で、上記第1の発光膜上に形成される蒸着膜上の膜を除去する際にも、上記第1の発光膜および上記第1の発光膜より下に形成される蒸着膜への影響を抑制でき、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置の製造方法を実現できる。
 したがって、生産性が高く、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置の製造方法を実現できる。
 本発明の一態様によれば、生産性が高く、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置および表示装置の製造方法を実現できる。
本発明の一実施の形態に係る有機EL表示装置の概略構成を示す図である。 図1に図示した有機EL表示装置の製造工程を説明するための図である。 (a)~(d)は、図1に図示した有機EL表示装置のB画素に蒸着膜を形成する工程の一例を示す図である。 (a)~(d)は、図3の(d)に示す工程の後工程であって、図1に図示した有機EL表示装置のG画素およびR画素に蒸着膜を形成する工程の一例を示す図である。 本発明の他の一実施の形態に係る有機EL表示装置の概略構成を示す図である。 図5に図示した有機EL表示装置の製造工程を説明するための図である。 (a)~(d)は、図5に図示した有機EL表示装置のG画素に蒸着膜を形成する工程の一例を示す図である。 (a)~(d)は、図7の(d)に示す工程の後工程であって、図5に図示した有機EL表示装置のR画素およびB画素に蒸着膜を形成する工程の一例を示す図である。 カラーフィルタを備えた有機EL表示装置の概略構成を示す図である。 本発明のさらに他の一実施の形態に係る有機EL表示装置の概略構成を示す図である。 図10に図示した有機EL表示装置の製造工程を説明するための図である。 (a)~(d)は、図10に図示した有機EL表示装置のR画素に蒸着膜を形成する工程の一例を示す図である。 (a)~(d)は、図12の(d)に示す工程の後工程であって、図10に図示した有機EL表示装置のG画素およびB画素に蒸着膜を形成する工程の一例を示す図である。 (a)および(b)は、フォトリソ工程とドライエッチング工程とを用いて、発光膜を含む蒸着膜を塗り分け方式で形成する従来の方法を説明するための図である。
 本発明の実施の形態について図1から図13に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
 〔実施の形態1〕
 図1から図4に基づき、有機EL(Electro luminescence)表示装置9の製造方法およびその構成について説明する。
 図1は、有機EL表示装置9の概略構成を示す図である。
 図示されているように、B画素においては、陽極電極2(反射電極)と、IZO膜3aと、正孔注入膜/正孔輸送膜(HIL/HTL)4aと、青色発光膜(EML(B))4bと、電子輸送膜(ETL)4cと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。なお、電子輸送膜(ETL)4cは、G画素およびR画素における電子輸送膜(ETL)6dと同じ材料で形成されており、G画素およびR画素における電子輸送膜(ETL)6dより厚く形成されている。
 一方、G画素においては、陽極電極2(反射電極)と、IZO膜3bと、正孔注入膜/正孔輸送膜(HIL/HTL)6aと、緑色発光膜(EML(G))6bと、赤色発光膜(EML(R))6cと、電子輸送膜(ETL)6dと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。
 そして、R画素においては、陽極電極2(反射電極)と、IZO膜3cと、正孔注入膜/正孔輸送膜(HIL/HTL)6aと、緑色発光膜(EML(G))6bと、赤色発光膜(EML(R))6cと、電子輸送膜(ETL)6dと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。
 なお、各画素のIZO膜3a・3b・3cの膜厚は、以下のように決めることができる。B画素、G画素およびR画素からは、異なるピーク波長(λ)の光が出射されるが、例えば、B画素からはピーク波長(λ)が450nmである青色光が出射され、G画素からはピーク波長(λ)が530nmである緑色光が出射され、R画素からはピーク波長(λ)が600nmである赤色光が出射される。そして、各画素における陽極電極2(反射電極)と発光膜との距離は、ピーク波長(λ)×1/4×(2N-1)(上記Nは自然数)であることが好ましい。
 したがって、B画素においては、IZO膜3aの膜厚と、IZO膜3aと青色発光膜(EML(B))4bとの間に形成される正孔注入膜/正孔輸送膜(HIL/HTL)4aの膜厚とを合わせた膜厚が、450nm×1/4×(2N-1)を満たせばよい。本実施の形態においては、正孔注入膜/正孔輸送膜(HIL/HTL)の膜厚は各画素において同じであるので、IZO膜3a・3b・3cの膜厚が、各画素で異なることとなる。同様に、G画素においては、IZO膜3bの膜厚と、IZO膜3bと緑色発光膜(EML(G))6bとの間に形成される正孔注入膜/正孔輸送膜(HIL/HTL)6aの膜厚とを合わせた膜厚が、530nm×1/4×(2N-1)を満たせばよく、R画素においては、IZO膜3cの膜厚と、IZO膜3cと赤色発光膜(EML(R))6cとの間に形成される正孔注入膜/正孔輸送膜(HIL/HTL)6aの膜厚および緑色発光膜(EML(G))6bの膜厚と、を合わせた膜厚が、600nm×1/4×(2N-1)を満たせばよい。なお、上記各式におけるNは、同一自然数である。
 なお、本実施の形態においては、透明導電性膜(透過膜)としてIZO(IndiumZinc Oxide)膜3a・3b・3cを用いた場合を例に挙げたが、これに限定されることはなく、透明導電性膜(透過膜)として例えば、ITO(Indium Tin Oxide)膜などを用いてもよい。
 図2は、図1に図示した有機EL表示装置9の製造工程を説明するための図である。
 図3の(a)~(d)は、有機EL表示装置9のB画素に蒸着膜を形成する工程を説明するための図である。
 図4の(a)~(d)は、図3の(d)に示す工程の後工程であって、有機EL表示装置9のG画素およびR画素に蒸着膜を形成する工程の一例を示す図である。
 先ず、陽極電極2を画素毎にパターニングしてTFT基板1上に設ける電極形成工程(図2のS1)について説明する。図3の(a)に図示するTFT基板1には、図示してないが複数のTFT素子が設けられている。また、図3の(a)においては、B画素二つと、G画素一つと、R画素一つのみを図示しているが、B画素、G画素、およびR画素の数は、有機EL表示装置9の解像度に応じて多数設けられており、互いに隣接する一つのB画素と、一つのG画素と、一つのR画素がフルカラー表示を行う一つの表示単位を成す。
 図3の(a)に図示されているように、画素(B画素、G画素、R画素)毎に備えられたTFT素子のドレイン電極(またはソース電極)に電気的に接続された陽極電極2を画素毎にパターニングしてTFT基板1上に設けた。本実施の形態においては、陽極電極2を反射電極とし、TFT基板1とは反対側である図中上方向から光を取り出すトップエミッション型の有機EL表示装置9とするため、陽極電極2をAl膜で形成したが、これに限定されることはなく、陽極電極2はAg膜で形成してもよい。また、有機EL表示装置9をボトムエミッション型としてもよい。
 次に、陽極電極2上に、透明導電性膜(導電性光透過膜ともいう)を画素毎にパターニングして形成する透明導電性膜形成工程(図2のS2)について説明する。なお、上述した電極形成工程(図2のS1)と透明導電性膜形成工程(図2のS2)とを合わせて陽極形成工程ともいう。
 図3の(a)に図示されているように、陽極電極2上に、すなわち、陽極電極2と電気的に接続されるように、透明導電性膜であるIZO(Indium Zinc Oxide)膜3a・3b・3cをパターニングして形成した。なお、陽極電極2およびIZO膜3a・3b・3cのパターニングは、例えば、レジストとウェットエッチング(またはドライエッチング)を用いて行うことができる。本実施の形態においては、陽極電極2とIZO膜3a・3b・3cとが電極としての役割を有する。IZO膜3a・3b・3cは、各画素(B画素、G画素、R画素)での光の干渉効果を考慮し、画素(B画素、G画素、R画素)毎に所定の膜厚で形成される。
 このように、光の干渉効果を考慮し、画素(B画素、G画素、R画素)毎にIZO膜3a・3b・3cまたは透過膜を所定の膜厚で形成する方式は、マイクロキャビティ(微小共振器)方式とも称され、このマイクロキャビティ方式は、マイクロキャビティ(微小共振器)効果により発光の色度や発光効率を向上させる方式である。
 マイクロキャビティとは、発光した光が陽極電極と陰極電極との間で多重反射し、共振することで発光スペクトルが急峻になり、また、ピーク波長の発光強度が増幅される現象である。
 マイクロキャビティ効果は、例えば、陽極電極や陰極電極の反射率および膜厚、有機層の層厚等を最適に設計することで得ることができる。
 有機EL素子に、このような共振構造、つまりマイクロキャビティ構造を導入する方法としては、例えば、発光色毎の各画素における有機EL素子の光路長を変える方法が知られており、本実施の形態においては、有機EL素子の光路長を変えるため、IZO膜3a・3b・3cを画素(B画素、G画素、R画素)毎に所定の膜厚で形成した。
 次に、TFT基板1の全面に、正孔注入膜/正孔輸送膜(HIL/HTL)4aと、青色発光膜(EML(B))4bと、電子輸送膜(ETL)4cとを順に蒸着する、青色発光膜を含む蒸着膜形成工程(図2のS3)について説明する。
 図3の(b)に図示されているように、TFT基板1の全面に、青色発光膜(EML(B))4bを含む蒸着膜4を形成した。なお、詳しくは後述するが、電子輸送膜(ETL)4cは、後工程を考慮して厚く形成した。
 次に、B画素以外の青色発光膜(EML(B))4bを含む蒸着膜4にレーザー光を照射して、青色発光膜(EML(B))4bを含む蒸着膜4を除去する、青色発光膜を含む蒸着膜除去工程(図2のS4)について説明する。
 図3の(c)に図示されているように、遮光部5aと開口部5bとを備えたマスク5を介して、レーザー光を照射する。マスク5の遮光部5aは、TFT基板1のB画素部分、すなわち、陽極電極2とIZO膜3aとが積層されている領域上に配置され、マスク5の開口部5bは、TFT基板1のB画素部分以外に配置される。したがって、TFT基板1のB画素部分以外の全体には、レーザー光が照射されることとなる。青色発光膜(EML(B))4bを含む蒸着膜4は有機材料であり、IZO膜3b・3cは無機材料であるため、レーザー光による加熱で、IZO膜3b・3c上および各画素間に形成された青色発光膜(EML(B))4bを含む蒸着膜4を選択的に除去し、図3の(d)に図示されているように、B画素にのみ青色発光膜(EML(B))4bを含む蒸着膜4を残すようにパターニングすることができる。
 なお、図3の(c)に図示されているように、TFT基板1のB画素上には、マスク5の遮光部5aが配置されているので、B画素の青色発光膜(EML(B))4bを含む蒸着膜4には、レーザー光が照射されないので、レーザー光によるダメージは生じない。
 この青色発光膜を含む蒸着膜除去工程は、真空雰囲気下や水分および酸素が例えば、10ppm未満と低い雰囲気下で行うことが好ましい。なお、本実施の形態においては、マスク5を介して、レーザー光を照射する場合を例に挙げたが、照射されるレーザー光の照射幅がパターニングをできる程度に小さい場合には、マスクを用いずにレーザー光を照射することもできる。
 また、この青色発光膜を含む蒸着膜除去工程において用いられるレーザー光は、レーザー光による加熱で、下層に保護する必要がある発光膜を含む蒸着膜を有さない発光膜を含む蒸着膜を除去する目的で用いられているため、このレーザー光による他の膜への熱伝導の抑制を大きく考慮する必要はないので、後述するような極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)のレーザー光を用いる必要はなく、例えば、比較的長時間パルスのレーザー光を用いることができる。したがって、本実施の形態においては、工程時間の短縮を考慮し、上記青色発光膜を含む蒸着膜除去工程においては、比較的長時間パルスのレーザー光を用いたがこれに限定されることはない。
 以上のように、本実施の形態においては、レーザー光による加熱で、発光膜を含む蒸着膜のパターニングを行っているので、従来のように、レジスト膜を形成したり、剥離したりする必要がない。
 次に、TFT基板1の全面に、正孔注入膜/正孔輸送膜(HIL/HTL)6aと、緑色発光膜(EML(G))6bと、赤色発光膜(EML(R))6cと、電子輸送膜(ETL)6dとを順に蒸着する、緑色発光膜および赤色発光膜を含む蒸着膜形成工程(図2のS5)について説明する。
 図4の(a)に図示されているように、TFT基板1の全面に、緑色発光膜(EML(G))6bおよび赤色発光膜(EML(R))6cを含む蒸着膜6を形成した。
 以上のように、G画素およびR画素において、緑色発光膜(EML(G))6bと赤色発光膜(EML(R))6cとを積層膜として共通に形成したが、この場合には、ドーパントがリン光材料で、ホスト材料を共通化しやすく、上記緑色発光膜および赤色発光膜を含む蒸着膜形成工程で、ドーパントのみを切り替えるだけで対応できるメリットがある。
 なお、本実施の形態においては、キャリア特性、すなわち、正孔と電子の再結合バランスの観点から、緑色発光膜(EML(G))6bが下層で、赤色発光膜(EML(R))6cが上層となるように、緑色発光膜(EML(G))6bおよび赤色発光膜6cを含む蒸着膜6を蒸着したが、赤色発光膜(EML(R))6cが下層で、緑色発光膜(EML(G))6bが上層となるように、緑色発光膜(EML(G))6bおよび赤色発光膜(EML(R))6cを含む蒸着膜6を蒸着してもよく、この場合には、IZO膜3b・3cの膜厚が変わることに注意すればよい。
 次に、G画素およびR画素以外の緑色発光膜(EML(G))6bおよび赤色発光膜(EML(R))6cを含む蒸着膜6に、レーザー光を照射し、除去する、緑色発光膜および赤色発光膜を含む蒸着膜除去工程(図2のS6)について説明する。
 図4の(b)に図示されているように、遮光部7aと開口部7bとを備えたマスク7を介して、レーザー光を照射する。マスク7の遮光部7aは、TFT基板1のG画素部分およびR画素部分、すなわち、陽極電極2とIZO膜3bとが積層されている領域上と陽極電極2とIZO膜3cとが積層されている領域上とに配置され、マスク7の開口部7bは、TFT基板1のG画素部分およびR画素部分以外に配置される。したがって、TFT基板1のG画素部分およびR画素部分以外の全体には、レーザー光が照射されることとなる。緑色発光膜(EML(G))6bおよび赤色発光膜(EML(R))6cを含む蒸着膜6は有機材料であるので、レーザー光による加熱で、TFT基板1のB画素部分および各画素間に形成された緑色発光膜(EML(G))6bおよび赤色発光膜(EML(R))6cを含む蒸着膜6を選択的に除去し、図4の(c)に図示されているように、TFT基板1のB画素部分には青色発光膜(EML(B))4bを含む蒸着膜4が残り、TFT基板1のG画素部分およびR画素部分には、緑色発光膜(EML(G))6bおよび赤色発光膜(EML(R))6cを含む蒸着膜6が残るようにパターニングすることができる。
 なお、図4の(b)に図示されているように、TFT基板1のG画素およびR画素上には、マスク7の遮光部7aが配置されているので、G画素およびR画素における緑色発光膜(EML(G))6bおよび赤色発光膜(EML(R))6cを含む蒸着膜6には、レーザー光が照射されないので、レーザー光によるダメージは生じない。
 また、TFT基板1のB画素部分に形成されている青色発光膜(EML(B))4bを含む蒸着膜4においては、電子輸送膜(ETL)4cが、上記緑色発光膜および赤色発光膜を含む蒸着膜除去工程において用いられるレーザー光が上記青色発光膜を含む蒸着膜除去工程において用いた比較的長時間パルスのレーザー光である場合を想定し、厚く形成されている。これは、B画素においては、青色発光膜(EML(B))4bを含む蒸着膜4上に形成された緑色発光膜(EML(G))6bおよび赤色発光膜(EML(R))6cを含む蒸着膜6がレーザー光の照射によって除去されるが、この工程で生じる熱が、青色発光膜(EML(B))4bや正孔注入膜/正孔輸送膜(HIL/HTL)4aにできる限り影響を及ぼさないようにするためである。また、レーザー光の照射によって生じる熱を利用したパターニングであるというプロセス特性からも、B画素の電子輸送膜(ETL)4cの膜厚にばらつき(パターニング時の損傷など)が生じやすいので、B画素の電子輸送膜(ETL)4cの膜厚を色変化が生じにくい厚い構造とすることが好ましい。電子輸送膜(ETL)4cの膜厚が厚くなると、結果的に青色発光膜(EML(B))4bを含む蒸着膜4全体の膜厚も厚くなる。
 なお、この緑色発光膜および赤色発光膜を含む蒸着膜除去工程において、極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)レーザー光を用いた場合には、レーザー光による他の膜への熱伝導を抑制できるため、上述した比較的長時間パルスのレーザー光を用いた場合に比べると、電子輸送膜(ETL)4cを薄く形成できる。また、この緑色発光膜および赤色発光膜を含む蒸着膜除去工程も、真空雰囲気下または、水分および酸素が10ppm未満である雰囲気下で行われることが好ましい。
 最後に、電子注入膜と陰極電極8との形成工程(図2のS7)について説明する。
 図4の(d)に図示されているように、電子注入膜(図示せず)と陰極電極8とを順にTFT基板1の全面に形成した後、パターニングした。それから、画素毎にまたは、TFT基板1全体を封止することで、TFT基板1上に複数の有機EL素子(発光素子)が設けられた有機EL表示装置9を完成させた。なお、本実施の形態においては、電子注入膜として、LiFを用いたがこれに限定されることはない。また、陰極電極8(半透過反射電極)としては、薄いAg膜とITO膜との積層膜を用いたがこれに限定されることはない。
 なお、上記複数の有機EL素子を駆動するための駆動回路は、TFT基板1上に設けられていてもよく、TFT基板1に外付けで設けられていてもよい。
 本実施形態では、上述したように2回のパターニングを行う場合に、1回目のパターニング(青色発光膜を含む蒸着膜除去工程)で残したB画素の蒸着膜4に2回目のパターニング(緑色発光膜および赤色発光膜を含む蒸着膜除去工程)でレーザーダメージが入ることを低減・回避するため、B画素の蒸着膜4の電子輸送膜(ETL)4cを、G画素およびR画素の電子輸送膜(ETL)6dよりも厚く形成した。しかしながら、B画素の蒸着膜4に緑色発光膜および赤色発光膜を含む蒸着膜除去工程でレーザーダメージが入ることを低減・回避する方法としては、上記方法に限定されない。
 例えば、図1に図示されているB画素の電子輸送膜(ETL)4cの少なくとも一部には、無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つが、G画素およびR画素の電子輸送膜(ETL)6dより多く含まれていてもよい。
 なお、上記緑色発光膜および赤色発光膜を含む蒸着膜除去工程において、極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)レーザー光を用いた場合には、レーザー光による他の膜への熱伝導を抑制できるため、上述した比較的長時間パルスのレーザー光を用いた場合に比べると、B画素の電子輸送膜(ETL)4cにおける無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つの含有量を減らすことができる。
 B画素の電子輸送膜(ETL)4cに無機材料や無機金属酸化物(例えば、低仕事関数の無機金属酸化物(-3eV程度のアルカリ金属酸化物、アルカリ土類金属酸化物、あるいはこれらの酸化物を含む複合酸化物))や結晶性有機材料(フェナントロリン系材料に代表される低いガラス転移を有して容易に再結晶化する有機材料など)が多く含まれると、電子輸送膜(ETL)4cのレーザー光の照射によって生じる熱に対する膜の残存率および耐熱性を向上させることができるので、上記レーザー光の照射によって生じる熱の下層への影響を抑制することができる。なお、上記結晶性有機材料とは、有機材料でも結晶化して膜密度が高い状態となった材料であり、例えば、ガラス転移点の低い有機材料(例えば、ガラス転移点120℃未満)を用いることにより、図4の(b)に図示されている上記緑色発光膜および赤色発光膜を含む蒸着膜除去工程において、レーザー光の照射によって生じる熱によって、ガラス転移点の低い有機材料の結晶化が生じるとともにこの際熱吸収が生じるので、上記レーザー光の照射によって生じる熱の下層への影響を抑制することができる。
 また、図示はしてないが、B画素の電子輸送膜(ETL)4cの膜厚をG画素およびR画素の電子輸送膜(ETL)6dの膜厚以下に形成し、B画素の電子輸送膜(ETL)4cには、無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つが、G画素およびR画素の電子輸送膜(ETL)6dより多く含まれていてもよい。
 つまり、B画素の電子輸送膜(ETL)4cは、上記レーザー光の照射によってエッチングされ難いか、もしくは、エッチングされたとしても、青色発光膜(EML(B))4bや正孔注入膜/正孔輸送膜(HIL/HTL)4aを十分に保護できる膜厚を有していることが望ましい。言い換えれば、B画素の電子輸送膜(ETL)4cは、一定以上の膜厚を確保できるように、レーザー光の照射による膜の残存率が高いことが望ましい。
 電子輸送膜(ETL)4c・6dが同一材料で形成され、電子輸送膜(ETL)4c・6dの両方に同一のレーザー光が照射されると想定した場合、レーザー光の照射によって生じる熱によって除去される電子輸送膜(ETL)4c・6dの膜厚は一定であるため、膜厚が厚くなるとその分レーザー光の照射によって生じる熱に対する膜の残存率が高くなる。
 また、上述したようにB画素の電子輸送膜(ETL)4cに無機材料や無機金属酸化物や結晶性有機材料が多く含まれている場合にも、B画素の電子輸送膜(ETL)4cのレーザー光の照射によって生じる熱に対する膜の残存率が、G画素およびR画素の電子輸送膜(ETL)6dの上記レーザー光の照射によって生じる熱に対する膜の残存率よりも高くなる。
 したがって、B画素の電子輸送膜(ETL)4cは、レーザー光の照射によって生じる熱に対する膜の残存率が、G画素およびR画素の電子輸送膜(ETL)6dの上記レーザー光の照射によって生じる熱に対する膜の残存率よりも高い膜であることが望ましい。
 なお、レーザー光の照射によって生じる熱に対する膜の残存率は、(所定期間のレーザー光照射後の膜厚)/(レーザー光照射前の初期膜厚)×100である。
 また、本実施の形態においては、陽極電極(反射電極)と、IZO膜と、正孔注入膜/正孔輸送膜(HIL/HTL)と、1層または2層の発光膜(EML)と、電子輸送膜(ETL)と、電子注入膜と、陰極電極(半透過反射電極)とを備えた有機EL発光素子を例に挙げて説明したが、これに限定されることはなく、電子注入層やキャリアブロッキング膜としての正孔ブロッキング膜や電子ブロッキング膜などがさらに備えられていてもよい。
 図1に図示した有機EL表示装置9と、発光層より上層である電子輸送膜(ETL)などについては、各画素において共通層として蒸着を行う従来の一般的な塗分け方法で製造された有機EL表示装置との差は、以下の通りである。従来の一般的な塗分け方法で製造された有機EL表示装置では、発光層より上層である電子輸送膜(ETL)などについては、各画素において共通層として蒸着を行っているので、上述したように各画素において電子輸送膜(ETL)に厚みや材料の差が生じることはない。
 また、従来のマスクやレジストを用いた塗分け方法を利用したドライエッチングによるパターニングでは、共通層として蒸着する電子輸送膜(ETL)の膜厚設定には自由度があるものの、G画素およびR画素において、緑色発光膜(EML(G))と赤色発光膜(EML(R))とを共通に形成した構造は有さない。
 なお、本実施の形態においては、G画素およびR画素において、緑色発光膜(EML(G))6bと赤色発光膜(EML(R))6cとを積層膜として共通に形成したが、ある一画素、例えば、B画素の青色発光膜上に形成される電子輸送膜が、他の画素であるG画素およびR画素の緑色発光膜上に形成される電子輸送膜および赤色発光膜上に形成される電子輸送膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であるのであれば、G画素およびR画素において、緑色発光膜と赤色発光膜とは積層膜として形成されず、G画素に緑色発光膜のみが形成され、R画素に赤色発光膜のみが形成されてもよい。
 〔実施の形態2〕
 次に、図5から図9に基づいて、本発明の実施の形態2について説明する。本実施の形態においては、G画素に、緑色発光膜(EML(G))14bを含む蒸着膜14を先に形成した後、R画素およびB画素に、青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16を形成する点において実施の形態1とは異なり、その他については実施の形態1において説明したとおりである。説明の便宜上、実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図5は、有機EL表示装置19の概略構成を示す図である。
 図示されているように、G画素においては、陽極電極2(反射電極)と、IZO膜13aと、正孔注入膜/正孔輸送膜(HIL/HTL)14aと、緑色発光膜(EML(G))14bと、電子輸送膜(ETL)14cと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。なお、電子輸送膜(ETL)14cは、R画素およびB画素における電子輸送膜(ETL)16dと同じ材料で形成されており、電子輸送膜(ETL)16dより厚く形成されている。
 一方、R画素においては、陽極電極2(反射電極)と、IZO膜13bと、正孔注入膜/正孔輸送膜(HIL/HTL)16aと、青色発光膜(EML(B))16bと、赤色発光膜(EML(R))16cと、電子輸送膜(ETL)16dと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。
 そして、B画素においては、陽極電極2(反射電極)と、IZO膜13cと、正孔注入膜/正孔輸送膜(HIL/HTL)16aと、青色発光膜(EML(B))16bと、赤色発光膜(EML(R))16cと、電子輸送膜(ETL)16dと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。
 図6は、図5に図示した有機EL表示装置19の製造工程を説明するための図である。
 図7の(a)~(d)は、有機EL表示装置19のG画素に蒸着膜を形成する工程を説明するための図である。
 図8の(a)~(d)は、図7の(d)に示す工程の後工程であって、有機EL表示装置19のR画素およびB画素に蒸着膜を形成する工程の一例を示す図である。
 先ず、陽極電極2を画素毎にパターニングしてTFT基板10上に設ける電極形成工程(図6のS1)について説明する。図7の(a)に図示されているように、画素(G画素、R画素、B画素)毎に備えられたTFT素子のドレイン電極(またはソース電極)に電気的に接続された陽極電極2を画素毎にパターニングしてTFT基板10上に設けた。
 次に、陽極電極2上に、透明導電性膜(導電性光透過膜ともいう)を画素毎にパターニングして形成する透明導電性膜形成工程(図6のS2)について説明する。なお、上述した電極形成工程(図6のS1)と透明導電性膜形成工程(図6のS2)とを合わせて陽極形成工程ともいう。
 図7の(a)に図示されているように、陽極電極2上に、すなわち、陽極電極2と電気的に接続されるように、透明導電性膜であるIZO(Indium Zinc Oxide)膜13a・13b・13cをパターニングして形成した。IZO膜13a・13b・13cは、各画素(G画素、R画素、B画素)での光の干渉効果を考慮し、画素(G画素、R画素、B画素)毎に所定の膜厚で形成される。
 次に、TFT基板10の全面に、正孔注入膜/正孔輸送膜(HIL/HTL)14aと、緑色発光膜(EML(G))14bと、電子輸送膜(ETL)と14cを順に蒸着する、緑色発光膜を含む蒸着膜形成工程(図6のS3)について説明する。
 図7の(b)に図示されているように、TFT基板10の全面に、緑色発光膜(EML(G))14bを含む蒸着膜14を形成した。なお、詳しくは後述するが、電子輸送膜(ETL)4cは、後工程を考慮して厚く形成した。
 次に、G画素以外の緑色発光膜(EML(G))14bを含む蒸着膜14にレーザー光を照射して、G画素以外の緑色発光膜(EML(G))14bを含む蒸着膜14を除去する、緑色発光膜を含む蒸着膜除去工程(図6のS4)について説明する。
 図7の(c)に図示されているように、遮光部15aと開口部15bとを備えたマスク15を介して、レーザー光を照射する。マスク15の遮光部15aは、TFT基板10のG画素部分、すなわち、陽極電極2とIZO膜13aとが積層されている領域上に配置され、マスク15の開口部15bは、TFT基板10のG画素部分以外に配置される。したがって、TFT基板10のG画素部分以外の全体には、レーザー光が照射されることとなる。緑色発光膜(EML(G))14bを含む蒸着膜14は有機材料であり、IZO膜13b・13cは無機材料であるため、レーザー光による加熱で、IZO膜13b・13c上および各画素間に形成された緑色発光膜(EML(G))14bを含む蒸着膜14を選択的に除去し、図7の(d)に図示されているように、G画素にのみ緑色発光膜(EML(G))14bを含む蒸着膜14を残すようにパターニングすることができる。
 なお、図7の(c)に図示されているように、TFT基板10のG画素上には、マスク15の遮光部15aが配置されているので、G画素の緑色発光膜(EML(G))14bを含む蒸着膜14には、レーザー光が照射されないので、レーザー光によるダメージは生じない。
 この緑色発光膜を含む蒸着膜除去工程は、真空雰囲気下や水分および酸素が例えば、10ppm未満と低い雰囲気下で行うことが好ましい。
 以上のように、本実施の形態においては、レーザー光による加熱で、パターニングを行っているので、従来のように、レジスト膜を形成したり、剥離したりする必要がない。
 また、この緑色発光膜を含む蒸着膜除去工程において用いられるレーザー光は、レーザー光による加熱で、下層に保護する必要がある発光膜を含む蒸着膜を有さない発光膜を含む蒸着膜を除去する目的で用いられているため、このレーザー光による他の膜への熱伝導の抑制を大きく考慮する必要はないので、極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)レーザー光を用いる必要はなく、例えば、比較的長時間パルスのレーザー光を用いることができる。したがって、本実施の形態においては、工程時間の短縮を考慮し、上記緑色発光膜を含む蒸着膜除去工程においては、比較的長時間パルスのレーザー光を用いたがこれに限定されることはない。
 次に、TFT基板10の全面に、正孔注入膜/正孔輸送膜(HIL/HTL)16aと、青色発光膜(EML(B))16bと、赤色発光膜(EML(R))16cと、電子輸送膜(ETL)16dとを順に蒸着する、青色発光膜および赤色発光膜を含む蒸着膜形成工程(図6のS5)について説明する。
 図8の(a)に図示されているように、TFT基板10の全面に、青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16を形成した。
 以上のように、R画素およびB画素において、青色発光膜(EML(B))16bと赤色発光膜(EML(R))16cとを共通に形成した。
 なお、本実施の形態においては、キャリア特性、すなわち、正孔と電子の再結合バランスの観点から、青色発光膜(EML(B))16bが下層で、赤色発光膜(EML(R))16cが上層となるように、青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16を蒸着したが、赤色発光膜(EML(R))16cが下層で、青色発光膜(EML(B))16bが上層となるように、青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16を蒸着してもよく、この場合には、IZO膜13b・13cの膜厚が変わることに注意すればよい。
 次に、R画素およびB画素以外の青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16に、レーザー光を照射し、除去する、青色発光膜および赤色発光膜を含む蒸着膜除去工程(図6のS6)について説明する。
 図8の(b)に図示されているように、遮光部17aと開口部17bとを備えたマスク17を介して、レーザー光を照射する。マスク17の遮光部17aは、TFT基板10のR画素部分およびB画素部分、すなわち、陽極電極2とIZO膜13bとが積層されている領域上と陽極電極2とIZO膜13cとが積層されている領域上とに配置され、マスク17の開口部17bは、TFT基板10のR画素部分およびB画素部分以外に配置される。したがって、TFT基板10のR画素部分およびB画素部分以外の全体には、レーザー光が照射されることとなる。青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16は有機材料であるので、レーザー光による加熱で、TFT基板10のG画素部分および各画素間に形成された青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16を選択的に除去し、図8の(c)に図示されているように、TFT基板10のG画素部分には緑色発光膜(EML(G))14bを含む蒸着膜14が残り、TFT基板10のR画素部分およびB画素部分には、青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16が残るようにパターニングすることができる。
 なお、図8の(b)に図示されているように、TFT基板10のR画素およびB画素上には、マスク17の遮光部17aが配置されているので、R画素およびB画素における青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16には、レーザー光が照射されないので、レーザー光によるダメージは生じない。
 また、TFT基板10のG画素部分に形成されている緑色発光膜(EML(G))14bを含む蒸着膜14においては、電子輸送膜(ETL)14cが、この青色発光膜および赤色発光膜を含む蒸着膜除去工程に用いられるレーザー光が上記緑色発光膜を含む蒸着膜除去工程において用いた比較的長時間パルスのレーザー光である場合を想定し、厚く形成されている。これは、G画素においては、緑色発光膜(EML(G))14bを含む蒸着膜14上に形成された青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cを含む蒸着膜16がレーザー光の照射によって除去されるが、この工程で生じる熱が、緑色発光膜(EML(G))14bや正孔注入膜/正孔輸送膜(HIL/HTL)14aにできる限り影響を及ぼさないようにするためである。また、レーザー光の照射によって生じる熱を利用したパターニングであるというプロセス特性からも、G画素の電子輸送膜(ETL)14cの膜厚にばらつき(パターニング時の損傷など)が生じやすいので、G画素の電子輸送膜(ETL)14cの膜厚を色変化が生じにくい厚い構造とすることが好ましい。電子輸送膜(ETL)14cの膜厚が厚くなると、結果的に緑色発光膜(EML(G))14bを含む蒸着膜14全体の膜厚も厚くなる。
 本実施の形態においては、G画素の電子輸送膜(ETL)14cのレーザー光の照射によって生じる熱に対する膜の残存率を、R画素およびB画素の電子輸送膜(ETL)16dの上記レーザー光の照射によって生じる熱に対する膜の残存率より高くするため、G画素、R画素およびB画素の電子輸送膜(ETL)を同じ材料で形成するとともに、G画素の電子輸送膜(ETL)14cの膜厚をR画素およびB画素の電子輸送膜(ETL)16dの膜厚より厚く形成した。
 なお、この青色発光膜および赤色発光膜を含む蒸着膜除去工程において、極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)レーザー光を用いた場合には、レーザー光による他の膜への熱伝導を抑制できるため、上述した比較的長時間パルスのレーザー光を用いた場合に比べると、電子輸送膜(ETL)14cを薄く形成できる。また、この青色発光膜および赤色発光膜を含む蒸着膜除去工程も、真空雰囲気下または、水分および酸素が10ppm未満である雰囲気下で行われることが好ましい。
 最後に、電子注入膜と陰極電極8との形成工程(図6のS7)について説明する。
 図8の(d)に図示されているように、電子注入膜(図示せず)と陰極電極8とを順にTFT基板10の全面に形成した後、パターニングした。それから、画素毎にまたは、TFT基板10全体を封止することで、TFT基板10上に複数の有機EL素子が設けられた有機EL表示装置19を完成させた。
 なお、以上のように、本実施の形態においては、G画素の電子輸送膜(ETL)14cのレーザー光の照射によって生じる熱に対する膜の残存率を、R画素およびB画素の電子輸送膜(ETL)16dの上記レーザー光の照射によって生じる熱に対する膜の残存率より高くする一例として、G画素、R画素およびB画素の電子輸送膜(ETL)を同じ材料で形成するとともに、G画素の電子輸送膜(ETL)14cの膜厚をR画素およびB画素の電子輸送膜(ETL)16dの膜厚より厚く形成した場合を例に挙げたがこれに限定されることはなく、G画素の電子輸送膜(ETL)のレーザー光の照射によって生じる熱に対する膜の残存率を、R画素およびB画素の電子輸送膜(ETL)の上記レーザー光の照射によって生じる熱に対する膜の残存率より高くするため、以下のようにしてもよい。
 例えば、図5に図示されているG画素の電子輸送膜(ETL)14cの少なくとも一部には、無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つが、R画素およびB画素の電子輸送膜(ETL)16dより多く含まれていてもよい。
 なお、上記青色発光膜および赤色発光膜を含む蒸着膜除去工程において、極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)レーザー光を用いた場合には、レーザー光による他の膜への熱伝導を抑制できるため、上述した比較的長時間パルスのレーザー光を用いた場合に比べると、G画素の電子輸送膜(ETL)14cにおける無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つの含有量を減らすことができる。
 G画素の電子輸送膜(ETL)14cに無機材料や無機金属酸化物(例えば、低仕事関数の無機金属酸化物(-3eV程度のアルカリ金属酸化物、アルカリ土類金属酸化物、あるいはこれらの酸化物を含む複合酸化物))や結晶性有機材料(フェナントロリン系材料に代表される低いガラス転移を有して容易に再結晶化する有機材料など)が多く含まれると、電子輸送膜(ETL)14cのレーザー光の照射によって生じる熱に対する膜の残存率および耐熱性を向上させることができるので、レーザー光の照射によって生じる熱の下層への影響を抑制することができる。なお、上記結晶性有機材料とは、有機材料でも結晶化して膜密度が高い状態となった材料であり、例えば、ガラス転移点の低い有機材料(例えば、ガラス転移点120℃未満)を用いることにより、図8の(b)に図示されている上記青色発光膜および赤色発光膜を含む蒸着膜除去工程において、レーザー光の照射によって生じる熱によって、ガラス転移点の低い有機材料の結晶化が生じるとともにこの際熱吸収が生じるので、レーザー光の照射によって生じる熱の下層への影響を抑制することができる。
 また、図示はしてないが、G画素の電子輸送膜(ETL)14cの膜厚をR画素およびB画素の電子輸送膜(ETL)16dの膜厚以下に形成し、G画素の電子輸送膜(ETL)14cには、無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つが、R画素およびB画素の電子輸送膜(ETL)16dより多く含まれていてもよい。
 図9は、カラーフィルタを備えた有機EL表示装置23の概略構成を示す図である。
 上述したように、R画素およびB画素において、青色発光膜(EML(B))16bと赤色発光膜(EML(R))16cとを共通に形成した場合には、青色発光膜(EML(B))16bおよび赤色発光膜(EML(R))16cからの光学干渉設計において、赤色のピーク波長(600nm)と青色のピーク波長(450nm)がほぼ1.5倍に近く、混色が生じやすい。
 したがって、図9に図示されているように、色純度を高めるため、例えば、封止工程で用いられるガラス20におけるB画素およびR画素との対向箇所に、青色カラーフィルタ21と赤色カラーフィルタ22とを設けることが好ましい。本実施の形態においては、青色カラーフィルタ21と赤色カラーフィルタ22とをガラス20に設けた場合を例に挙げたが、これに限定されることはなく、R画素から赤色光が出射される経路上に、赤色光の波長領域の透過率がその他の波長領域の透過率より高い赤色カラーフィルタ22を設け、B画素から青色光が出射される経路上に、青色光の波長領域の透過率がその他の波長領域の透過率より高い青色カラーフィルタ21を設ければよい。
 〔実施の形態3〕
 次に、図10から図13に基づいて、本発明の実施の形態3について説明する。本実施の形態においては、R画素に、赤色発光膜(EML(R))34bを含む蒸着膜34を先に形成した後、G画素およびB画素に、青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36を形成する点において実施の形態1および2とは異なり、その他については実施の形態1および2において説明したとおりである。説明の便宜上、実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図10は、有機EL表示装置39の概略構成を示す図である。
 図示されているように、R画素においては、陽極電極2(反射電極)と、IZO膜33aと、正孔注入膜/正孔輸送膜(HIL/HTL)34aと、赤色発光膜(EML(R))34bと、電子輸送膜(ETL)34cと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。なお、電子輸送膜(ETL)34cは、G画素およびB画素における電子輸送膜(ETL)36dと同じ材料で形成されており、電子輸送膜(ETL)36dより厚く形成されている。
 一方、G画素においては、陽極電極2(反射電極)と、IZO膜33bと、正孔注入膜/正孔輸送膜(HIL/HTL)36aと、青色発光膜(EML(B))36bと、緑色発光膜(EML(G))36cと、電子輸送膜(ETL)36dと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。
 そして、B画素においては、陽極電極2(反射電極)と、IZO膜33cと、正孔注入膜/正孔輸送膜(HIL/HTL)36aと、青色発光膜(EML(B))36bと、緑色発光膜(EML(G))36cと、電子輸送膜(ETL)36dと、電子注入膜(図示せず)と、陰極電極8(半透過反射電極)とが順に積層されている。
 図11は、図10に図示した有機EL表示装置39の製造工程を説明するための図である。
 図12の(a)~(d)は、有機EL表示装置39のR画素に蒸着膜を形成する工程を説明するための図である。
 図13の(a)~(d)は、図12の(d)に示す工程の後工程であって、有機EL表示装置39のG画素およびB画素に蒸着膜を形成する工程の一例を示す図である。
 先ず、陽極電極2を画素毎にパターニングしてTFT基板30上に設ける電極形成工程(図11のS1)について説明する。図12の(a)に図示されているように、画素(R画素、G画素、B画素)毎に備えられたTFT素子のドレイン電極(またはソース電極)に電気的に接続された陽極電極2を画素毎にパターニングしてTFT基板30上に設けた。
 次に、陽極電極2上に、透明導電性膜(導電性光透過膜ともいう)を画素毎にパターニングして形成する透明導電性膜形成工程(図11のS2)について説明する。なお、上述した電極形成工程(図11のS1)と透明導電性膜形成工程(図11のS2)とを合わせて陽極形成工程ともいう。
 図12の(a)に図示されているように、陽極電極2上に、透明導電性膜であるIZO(Indium Zinc Oxide)膜33a・33b・33cをパターニングして形成した。IZO膜33a・33b・33cは、各画素(R画素、G画素、B画素)での光の干渉効果を考慮し、画素(R画素、G画素、B画素)毎に所定の膜厚で形成される。
 次に、TFT基板30の全面に、正孔注入膜/正孔輸送膜(HIL/HTL)34aと、赤色発光膜(EML(R))34bと、電子輸送膜(ETL)34cとを順に蒸着する、赤色発光膜を含む蒸着膜形成工程(図11のS3)について説明する。
 そして、図12の(b)に図示されているように、TFT基板30の全面に、赤色発光膜(EML(R))34bを含む蒸着膜34を形成した。なお、詳しくは後述するが、電子輸送膜(ETL)34cは、後工程を考慮して厚く形成した。
 次に、R画素以外の赤色発光膜(EML(R))34bを含む蒸着膜34にレーザー光を照射して、R画素以外の赤色発光膜(EML(R))34bを含む蒸着膜34を除去する、赤色発光膜を含む蒸着膜除去工程(図11のS4)について説明する。
 図12の(c)に図示されているように、遮光部35aと開口部35bとを備えたマスク35を介して、レーザー光を照射する。マスク35の遮光部35aは、TFT基板30のR画素部分、すなわち、陽極電極2とIZO膜33aとが積層されている領域上に配置され、マスク35の開口部35bは、TFT基板30のR画素部分以外に配置される。したがって、TFT基板30のR画素部分以外の全体には、レーザー光が照射されることとなる。赤色発光膜(EML(R))34bを含む蒸着膜34は有機材料であり、IZO膜33b・33cは無機材料であるため、レーザー光による加熱で、IZO膜33b・33c上および各画素間に形成された赤色発光膜(EML(R))34bを含む蒸着膜34を選択的に除去し、図12の(d)に図示されているように、R画素にのみ赤色発光膜(EML(R))34bを含む蒸着膜34を残すようにパターニングすることができる。
 なお、図12の(c)に図示されているように、TFT基板30のR画素上には、マスク35の遮光部35aが配置されているので、R画素の赤色発光膜(EML(R))34bを含む蒸着膜34には、レーザー光が照射されないので、レーザー光によるダメージは生じない。
 この赤色発光膜を含む蒸着膜除去工程は、真空雰囲気下や水分および酸素が例えば、10ppm未満と低い雰囲気下で行うことが好ましい。
 以上のように、本実施の形態においては、レーザー光による加熱で、パターニングを行っているので、従来のように、レジスト膜を形成したり、剥離したりする必要がない。
 また、この赤色発光膜を含む蒸着膜除去工程において用いられるレーザー光は、レーザー光による加熱で、下層に保護する必要がある発光膜を含む蒸着膜を有さない発光膜を含む蒸着膜を除去する目的で用いられているため、このレーザー光による他の膜への熱伝導の抑制を大きく考慮する必要はないので、極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)レーザー光を用いる必要はなく、例えば、比較的長時間パルスのレーザー光を用いることができる。したがって、本実施の形態においては、工程時間の短縮を考慮し、上記赤色発光膜を含む蒸着膜除去工程においては、比較的長時間パルスのレーザー光を用いたがこれに限定されることはない。
 次に、TFT基板30の全面に、正孔注入膜/正孔輸送膜(HIL/HTL)36aと、青色発光膜(EML(B))36bと、緑色発光膜(EML(G))36cと、電子輸送膜(ETL)36dとを順に蒸着する、青色発光膜および緑色発光膜を含む蒸着膜形成工程(図11のS5)について説明する。
 図13の(a)に図示されているように、TFT基板30の全面に、青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36を形成した。
 以上のように、G画素およびB画素において、青色発光膜(EML(B))36bと緑色発光膜(EML(G))36cとを共通に形成した。
 なお、本実施の形態においては、キャリア特性、すなわち、正孔と電子の再結合バランスの観点から、青色発光膜(EML(B))36bが下層で、緑色発光膜(EML(G))36cが上層となるように、青色発光膜(EML(B))36bおよび緑色発光膜36cを含む蒸着膜36を蒸着したが、緑色発光膜(EML(G))36cが下層で、青色発光膜(EML(B))36bが上層となるように、青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36を蒸着してもよく、この場合には、IZO膜33b・33cの膜厚が変わることに注意すればよい。
 次に、G画素およびB画素以外の青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36に、レーザー光を照射し、除去する、青色発光膜および緑色発光膜を含む蒸着膜除去工程(図11のS6)について説明する。
 図13の(b)に図示されているように、遮光部37aと開口部37bとを備えたマスク37を介して、レーザー光を照射する。マスク37の遮光部37aは、TFT基板30のG画素部分およびB画素部分、すなわち、陽極電極2とIZO膜33bとが積層されている領域上と陽極電極2とIZO膜33cとが積層されている領域上とに配置され、マスク37の開口部37bは、TFT基板30のG画素部分およびB画素部分以外に配置される。したがって、TFT基板30のG画素部分およびB画素部分以外の全体には、レーザー光が照射されることとなる。青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36は有機材料であるので、レーザー光による加熱で、TFT基板30のR画素部分および各画素間に形成された青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36を選択的に除去し、図13の(c)に図示されているように、TFT基板30のR画素部分には赤色発光膜(EML(R))34bを含む蒸着膜34が残り、TFT基板30のG画素部分およびB画素部分には、青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36が残るようにパターニングすることができる。
 なお、図13の(b)に図示されているように、TFT基板30のG画素およびB画素上には、マスク37の遮光部37aが配置されているので、G画素およびB画素における青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36には、レーザー光が照射されないので、レーザー光によるダメージは生じない。
 また、TFT基板30のR画素部分に形成されている赤色発光膜(EML(R))34bを含む蒸着膜34においては、電子輸送膜(ETL)34cが、この青色発光膜および緑色発光膜を含む蒸着膜除去工程に用いられるレーザー光が赤色発光膜を含む蒸着膜除去工程において用いた比較的長時間パルスのレーザー光である場合を想定し、厚く形成されている。これは、R画素においては、赤色発光膜(EML(R))34bを含む蒸着膜34上に形成された青色発光膜(EML(B))36bおよび緑色発光膜(EML(G))36cを含む蒸着膜36がレーザー光の照射によって除去されるが、この工程で生じる熱が、赤色発光膜(EML(R))34bや正孔注入膜/正孔輸送膜(HIL/HTL)34aにできる限り影響を及ぼさないようにするためである。また、レーザー光の照射によって生じる熱を利用したパターニングであるというプロセス特性からも、R画素の電子輸送膜(ETL)34cの膜厚にばらつき(パターニング時の損傷など)が生じやすいので、R画素の電子輸送膜(ETL)34cの膜厚を色変化が生じにくい厚い構造とすることが好ましい。電子輸送膜(ETL)34cの膜厚が厚くなると、結果的に赤色発光膜(EML(R))34bを含む蒸着膜34全体の膜厚も厚くなる。
 本実施の形態においては、R画素の電子輸送膜(ETL)34cのレーザー光の照射によって生じる熱に対する膜の残存率を、G画素およびB画素の電子輸送膜(ETL)36dの上記レーザー光の照射によって生じる熱に対する膜の残存率より高くするため、R画素、G画素およびB画素の電子輸送膜(ETL)を同じ材料で形成するとともに、R画素の電子輸送膜(ETL)34cの膜厚をG画素およびB画素の電子輸送膜(ETL)36dの膜厚より厚く形成した。
 なお、この青色発光膜および緑色発光膜を含む蒸着膜除去工程において、極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)レーザー光を用いた場合には、レーザー光による他の膜への熱伝導を抑制できるため、上述した比較的長時間パルスのレーザー光を用いた場合に比べると、電子輸送膜(ETL)34cを薄く形成できる。また、この青色発光膜および緑色発光膜を含む蒸着膜除去工程も、真空雰囲気下または、水分および酸素が10ppm未満である雰囲気下で行われることが好ましい。
 最後に、電子注入膜と陰極電極8との形成工程(図11のS7)について説明する。
 図13の(d)に図示されているように、電子注入膜(図示せず)と陰極電極8とを順にTFT基板30全面に形成した後、パターニングした。それから、画素毎にまたは、TFT基板30全体を封止することで、TFT基板30上に複数の有機EL素子が設けられた有機EL表示装置39を完成させた。
 なお、以上のように、本実施の形態においては、R画素の電子輸送膜(ETL)34cのレーザー光の照射によって生じる熱に対する膜の残存率を、G画素およびB画素の電子輸送膜(ETL)36dの上記レーザー光の照射によって生じる熱に対する膜の残存率より高くする一例として、R画素、G画素およびB画素の電子輸送膜(ETL)を同じ材料で形成するとともに、R画素の電子輸送膜(ETL)34cの膜厚をG画素およびB画素の電子輸送膜(ETL)36dの膜厚より厚く形成した場合を例に挙げたがこれに限定されることはなく、R画素の電子輸送膜(ETL)のレーザー光の照射によって生じる熱に対する膜の残存率を、G画素およびB画素の電子輸送膜(ETL)の上記レーザー光の照射によって生じる熱に対する膜の残存率より高くするため、以下のようにしてもよい。
 例えば、図10に図示されているR画素の電子輸送膜(ETL)34cの少なくとも一部には、無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つが、G画素およびB画素の電子輸送膜(ETL)36dより多く含まれていてもよい。
 なお、上記青色発光膜および緑色発光膜を含む蒸着膜除去工程において、極短時間パルス(例えば、Femto Second(10-15)~Pico Second(10-12)程度の極短時間パルス)レーザー光を用いた場合には、レーザー光による他の膜への熱伝導を抑制できるため、上述した比較的長時間パルスのレーザー光を用いた場合に比べると、R画素の電子輸送膜(ETL)34cにおける無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つの含有量を減らすことができる。
 R画素の電子輸送膜(ETL)34cに無機材料や無機金属酸化物(例えば、低仕事関数の無機金属酸化物(-3eV程度のアルカリ金属酸化物、アルカリ土類金属酸化物、あるいはこれらの酸化物を含む複合酸化物))や結晶性有機材料(フェナントロリン系材料に代表される低いガラス転移を有して容易に再結晶化する有機材料など)が多く含まれると、電子輸送膜(ETL)34cのレーザー光の照射によって生じる熱に対する膜の残存率および耐熱性を向上させることができるので、レーザー光の照射によって生じる熱の下層への影響を抑制することができる。なお、上記結晶性有機材料とは、有機材料でも結晶化して膜密度が高い状態となった材料であり、例えば、ガラス転移点の低い有機材料(例えば、ガラス転移点120℃未満)を用いることにより、図13の(b)に図示されている上記青色発光膜および緑色発光膜を含む蒸着膜除去工程において、レーザー光の照射によって生じる熱によって、ガラス転移点の低い有機材料の結晶化が生じるとともにこの際熱吸収が生じるので、レーザー光の照射によって生じる熱の下層への影響を抑制することができる。
 また、図示はしてないが、R画素の電子輸送膜(ETL)34cの膜厚をG画素およびB画素の電子輸送膜(ETL)36dの膜厚以下に形成し、R画素の電子輸送膜(ETL)34eには、無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つが、G画素およびB画素の電子輸送膜(ETL)36dより多く含まれていてもよい。
 〔まとめ〕
 本発明の態様1に係る表示装置は、異なるピーク波長の光を出射する第1画素および第2画素と、上記各画素に備えられた反射電極および半透過反射電極と、を含む表示装置であって、第1の発光膜は上記第1画素に、第2の発光膜は上記第2画素に形成され、上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることを特徴としている。
 上記構成によれば、上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であるので、例えば、上記表示装置の製造工程中において、生産性の向上を図るため、上記第1の発光膜上に形成される蒸着膜上に、上記第2の発光膜および上記第2の発光膜上に形成される蒸着膜を形成し、レーザー光による加熱で、上記第2の発光膜および上記第2の発光膜上に形成される蒸着膜を除去する場合でも、上記第1の発光膜および上記第1の発光膜より下に形成される蒸着膜への影響を抑制でき、生産性が高く、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置を実現できる。
 本発明の態様2に係る表示装置は、上記態様1において、上記第1画素および上記第2画素とは異なるピーク波長の光を出射する第3画素と、上記第3画素に備えられた反射電極および半透過反射電極と、を含み、上記第2の発光膜および第3の発光膜は、上記第2画素および上記第3画素の各々に積層されて形成され、上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離は、該当画素の上記ピーク波長の光を上記半透過反射電極から取り出せるように設けられており、上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜および上記第3の発光膜の積層膜中、上層である上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることが好ましい。
 上記構成によれば、上記第2の発光膜および上記第3の発光膜は共に、上記第2および上記第3画素の各々に形成されているので、上記第2画素および上記第3画素の各々における上記第2の発光膜および上記第3の発光膜は、一度の工程でパターニングできるので、生産性が高いとともに、パターニング時に生じる他の膜への悪影響を抑制できる。
 また、上記構成によれば、上記第2の発光膜および上記第3の発光膜は共に、上記第2および上記第3画素の各々に形成されているが、上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離は、該当画素の上記ピーク波長の光を上記半透過反射電極から取り出せるように設定されているので、該当画素から所定ピーク波長の光を取り出すことができる。
 また、上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜および上記第3の発光膜の積層膜中、上層である上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であるので、例えば、レーザー光による加熱で、上記第1の発光膜上に形成される蒸着膜上の膜を除去する場合でも、上記第1の発光膜および上記第1の発光膜より下に形成される蒸着膜への影響を抑制でき、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置を実現できる。
 本発明の態様3に係る表示装置は、上記態様1または2において、上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜上に形成される蒸着膜より、厚く形成されていてもよい。
 上記構成によれば、上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜上に形成される蒸着膜より、厚く形成されているので、例えば、レーザー光による加熱で、上記第1の発光膜上に形成される蒸着膜上の膜を除去する場合でも、上記第1の発光膜および上記第1の発光膜上に形成される蒸着膜への影響を抑制でき、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置を実現できる。
 本発明の態様4に係る表示装置は、上記態様1から3の何れかにおいて、上記第1の発光膜上に形成される蒸着膜には、無機材料、無機金属酸化物および結晶性有機材料のうち少なくとも一つが、上記第2の発光膜上に形成される蒸着膜より多く含まれていてもよい。
 上記構成によれば、上記第1の発光膜上に形成される蒸着膜には、無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つが、上記第2の発光膜上に形成される蒸着膜より、多く含まれているので、例えば、レーザー光による加熱で、上記第1の発光膜上に形成される蒸着膜上の膜を除去する場合でも、上記第1の発光膜および上記第1の発光膜上に形成される蒸着膜への影響を抑制でき、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置を実現できる。
 本発明の態様5に係る表示装置は、上記態様2において、上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離は、該当画素の上記ピーク波長の1/4×(2N-1)であり、上記Nは自然数であることが好ましい。
 上記構成によれば、該当画素から所定ピーク波長の光を効率よく取り出すことができる。
 本発明の態様6に係る表示装置は、上記態様2または5において、上記第1の発光膜は青色発光膜であり、上記第2の発光膜は、緑色発光膜および赤色発光膜の何れか一方であり、上記第3の発光膜は、上記緑色発光膜および上記赤色発光膜の他方であってもよい。
 上記構成によれば、第2画素および第3画素において、緑色発光膜と赤色発光膜とが共通に形成されている。この場合には、ドーパントがリン光材料で、ホスト材料を共通化しやすく、蒸着工程で、ドーパントのみを切り替えるだけで対応できる。
 本発明の態様7に係る表示装置は、上記態様2または5において、上記第1の発光膜は緑色発光膜であり、上記第2の発光膜は、赤色発光膜および青色発光膜の何れか一方であり、上記第3の発光膜は、上記赤色発光膜および上記青色発光膜の他方であってもよい。
 上記構成によれば、第2画素および第3画素において、赤色発光膜と青色発光膜とが共通に形成されている表示装置を実現できる。
 本発明の態様8に係る表示装置は、上記態様2または5において、上記第1の発光膜は赤色発光膜であり、上記第2の発光膜は、緑色発光膜および青色発光膜の何れか一方であり、上記第3の発光膜は、上記緑色発光膜および上記青色発光膜の他方であってもよい。
 上記構成によれば、第2画素および第3画素において、緑色発光膜と青色発光膜とが共通に形成されている表示装置を実現できる。
 本発明の態様9に係る表示装置は、上記態様5から8の何れかにおいて、上記第2画素および上記第3画素から該当画素の上記ピーク波長の光が出射される経路上の各々には、上記該当画素の上記ピーク波長の光の波長領域の透過率が他の波長領域の透過率より高いカラーフィルタが備えられていることが好ましい。
 上記構成によれば、色純度を高い表示装置を実現できる。
 本発明の態様10に係る表示装置の製造方法は、基板上に備えられた異なるピーク波長の光を出射する第1画素および第2画素と、上記各画素に備えられた発光膜、反射電極および半透過反射電極と、を含む表示装置の製造方法であって、該当画素の上記ピーク波長の光を上記半透過反射電極から取り出せるように、上記発光膜と上記反射電極との距離を調整する導電性光透過膜を所定の膜厚で形成する導電性光透過膜形成工程と、上記発光膜中の第1の発光膜を含む第1の蒸着膜を、上記第1画素および上記第2画素を含む上記基板上の全面に形成する第1の蒸着膜形成工程と、レーザー光を用いて、上記第1画素以外に形成された上記第1の発光膜を含む第1の蒸着膜を除去する工程と、上記発光膜中の第2の発光膜を含む第2の蒸着膜を、上記第1画素および上記第2画素を含む上記基板上の全面に形成する第2の蒸着膜形成工程と、レーザー光を用いて、上記第2画素以外に形成された上記第2の発光膜を含む第2の蒸着膜を除去する工程と、を含み、上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることを特徴としている。
 上記方法によれば、上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であるので、レーザー光を用いて、上記第2画素以外に形成された上記第2の発光膜を含む第2の蒸着膜を除去する工程において、レーザー光による加熱で、上記第1の発光膜上に形成される蒸着膜上の膜を除去する際にも、上記第1の発光膜および上記第1の発光膜より下に形成される蒸着膜への影響を抑制でき、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置の製造方法を実現できる。
 本発明の態様11に係る表示装置の製造方法は、上記態様10において、上記第1画素および上記第2画素とは異なるピーク波長の光を出射する、上記基板上に備えられた第3画素と、上記第3画素に備えられた反射電極および半透過反射電極と、を含み、上記第2の蒸着膜形成工程においては、上記第2の発光膜および第3の発光膜の積層膜を含む第2の蒸着膜を、上記第1画素、上記第2画素および上記第3画素を含む上記基板上の全面に形成し、上記第2の発光膜を含む第2の蒸着膜を除去する工程においては、レーザー光を用いて、上記第2画素および上記第3画素以外に形成された上記第2の発光膜および上記第3の発光膜の積層膜を含む第2の蒸着膜を除去し、上記導電性光透過膜形成工程においては、該当画素の上記ピーク波長の光を上記半透過反射電極から取り出せるように、上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離を調整する導電性光透過膜を所定の膜厚で形成し、上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜および上記第3の発光膜の積層膜中、上層である上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることが好ましい。
 上記方法によれば、第1の蒸着膜形成工程および第2の蒸着膜形成工程の2回の蒸着膜形成工程と、第1の蒸着膜を除去する工程および第2の蒸着膜を除去する工程の2回の蒸着膜除去工程とで、各色の発光膜を含む蒸着膜をパターニングすることができる。したがって、各色の発光膜を含む各膜を色画素毎に蒸着する必要があった従来の方法に比べると、生産性が高いとともに、パターニング時に生じる他の膜への悪影響を抑制できる。
 さらに、上記方法によれば、レーザー光を用いて、各色の発光膜を含む蒸着膜をパターニングするので、すなわち、レーザー光による加熱で各色の発光膜を含む蒸着膜を部分的に除去しパターニングする。したがって、従来のように、3回にも及ぶレジストの形成工程およびレジストの剥離工程を行う必要がなくなるので、生産性を向上させることができるとともに、レジストのフォトリソ時に生じ得る他の膜への悪影響を抑制できる。
 また、上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上層である上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であるので、例えば、レーザー光による加熱で、上記第1の発光膜上に形成される蒸着膜上の膜を除去する場合でも、上記第1の発光膜および上記第1の発光膜より下に形成される蒸着膜への影響を抑制でき、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置の製造方法を実現できる。
 よって、生産性が高く、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置の製造方法を実現できる。
 本発明の態様12に係る表示装置の製造方法は、上記態様10または11において、上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、厚く形成されていてもよい。
 上記方法によれば、上記第1の発光膜上に形成される蒸着膜が、上記第2の発光膜上に形成される蒸着膜より、厚く形成されるので、例えば、レーザー光による加熱で、上記第1の発光膜上に形成される蒸着膜上の膜を除去する場合でも、上記第1の発光膜および上記第1の発光膜上に形成される蒸着膜への影響を抑制でき、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置の製造方法を実現できる。
 本発明の態様13に係る表示装置の製造方法は、上記態様10から12の何れかにおいて、上記第1の蒸着膜形成工程において、上記第1発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、無機材料、無機金属酸化物および結晶性有機材料のうち少なくとも一つを多く含んでいてもよい。
 上記方法によれば、上記第1の発光膜上に形成される蒸着膜には、無機材料、無機金属酸化物および結晶性有機材料の少なくとも一つが、上記第2の発光膜上に形成される蒸着膜より多く含まれているので、例えば、レーザー光による加熱で、上記第1の発光膜上に形成される蒸着膜上の膜を除去する場合でも、上記第1の発光膜および上記第1の発光膜上に形成される蒸着膜への影響を抑制でき、発光素子の色ズレおよび発光素子特性の低下を抑制できる表示装置の製造方法を実現できる。
 本発明の態様14に係る表示装置の製造方法は、上記態様10から13の何れかにおいて、上記第1の蒸着膜を除去する工程または、上記第2の蒸着膜を除去する工程においては、上記レーザー光を部分的に遮光するマスクが用いられることが好ましい。
 上記方法によれば、マスクを用いているので、レーザー光による精度高いパターニングを行うことができるとともに、マスクが不要な部分のレーザー光を遮光するので、他の膜への悪影響を抑制できる。
 本発明の態様15に係る表示装置の製造方法は、上記態様10から14の何れかにおいて、上記第1の蒸着膜を除去する工程または、上記第2の蒸着膜を除去する工程は、真空雰囲気下または、水分および酸素が10ppm未満である雰囲気下で行われることが好ましい。
 上記方法によれば、より効率よく、レーザー光を用いたパターニングを行うことができる。
 本発明の態様16に係る表示装置の製造方法は、上記態様10から15の何れかにおいて、上記第2の蒸着膜を除去する工程においては、10-15秒~10-12秒の極短時間パルスレーザー光を用いることが好ましい。
 上記方法によれば、10-15秒~10-12秒の極短時間パルスレーザー光を用いているので、レーザー光による他の膜への熱伝導を抑制できる。
 本発明の態様17に係る表示装置の製造方法は、上記態様11において、上記導電性光透過膜形成工程における、上記導電性光透過膜の膜厚は、上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離が、該当画素の上記ピーク波長の1/4×(2N-1)(上記Nは自然数)となるように形成されることが好ましい。
 上記方法によれば、該当画素から所定ピーク波長の光を効率よく取り出すことができる。
 本発明の態様18に係る表示装置の製造方法は、上記態様11または17において、上記第1の発光膜は青色発光膜であり、上記第2の発光膜は、緑色発光膜および赤色発光膜の何れか一方であり、上記第3の発光膜は、上記緑色発光膜および上記赤色発光膜の他方であってもよい。
 上記方法によれば、第2画素および第3画素において、赤色発光膜と青色発光膜とが共通に形成される。この場合には、ドーパントがリン光材料で、ホスト材料を共通化しやすく、蒸着工程で、ドーパントのみを切り替えるだけで対応できる。
 本発明の態様19に係る表示装置の製造方法は、上記態様11または17において、上記第1の発光膜は緑色発光膜であり、上記第2の発光膜は、赤色発光膜および青色発光膜の何れか一方であり、上記第3の発光膜は、上記赤色発光膜および上記青色発光膜の他方であってもよい。
 上記方法によれば、第2画素および第3画素において、赤色発光膜と青色発光膜とが共通に形成されている表示装置を製造できる。
 本発明の態様20に係る表示装置の製造方法は、上記態様11または17において、上記第1の発光膜は赤色発光膜であり、上記第2の発光膜は、緑色発光膜および青色発光膜の何れか一方であり、上記第3の発光膜は、上記緑色発光膜および上記青色発光膜の他方であってもよい。
 上記方法によれば、第2画素および第3画素において、緑色発光膜と青色発光膜とが共通に形成されている表示装置を製造できる。
 本発明の態様21に係る表示装置の製造方法は、上記態様17から20の何れかにおいて、上記第2画素および上記第3画素から該当画素の上記ピーク波長の光が出射される経路上の各々に、上記該当画素の上記ピーク波長の光の波長領域の透過率が他の波長領域の透過率より高いカラーフィルタを設ける工程をさらに含むことが好ましい。
 上記方法によれば、色純度を高い表示装置の製造方法を実現できる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、表示装置、特には、有機EL表示装置およびその製造方法に利用することができる。
 1    TFT基板
 2    陽極電極(反射電極)
 3a   IZO膜(導電性光透過膜)
 3b   IZO膜(導電性光透過膜)
 3c   IZO膜(導電性光透過膜)
 4    青色発光膜を含む蒸着膜
 4a   B画素の正孔注入膜/正孔輸送膜
 4b   青色発光膜
 4c   B画素の電子輸送膜
 5    マスク
 5a   遮光部
 5b   開口部
 6    緑色発光膜および赤色発光膜を含む蒸着膜
 6a   G画素およびR画素の正孔注入膜/正孔輸送膜
 6b   緑色発光膜
 6c   赤色発光膜
 6d   G画素およびR画素の電子輸送膜
 7    マスク
 7a   遮光部
 7b   開口部
 8    陰極電極(半透過反射電極)
 9    有機EL表示装置(表示装置)
 10   TFT基板
 13a  IZO膜(導電性光透過膜)
 13b  IZO膜(導電性光透過膜)
 13c  IZO膜(導電性光透過膜)
 14   緑色発光膜を含む蒸着膜
 14a  G画素の正孔注入膜/正孔輸送膜
 14b  緑色発光膜
 14c  G画素の電子輸送膜
 15   マスク
 15a  遮光部
 15b  開口部
 16   青色発光膜および赤色発光膜を含む蒸着膜
 16a  R画素およびB画素の正孔注入膜/正孔輸送膜
 16b  青色発光膜
 16c  赤色発光膜
 16d  R画素およびB画素の電子輸送膜
 17   マスク
 17a  遮光部
 17b  開口部
 19   有機EL表示装置(表示装置)
 20   ガラス
 21   青色カラーフィルタ(青色光の波長領域の透過率が高いカラーフィルタ)
 22   赤色カラーフィルタ(赤色光の波長領域の透過率が高いカラーフィルタ)
 23   有機EL表示装置(表示装置)
 30   TFT基板
 33a  IZO膜(導電性光透過膜)
 33b  IZO膜(導電性光透過膜)
 33c  IZO膜(導電性光透過膜)
 34   赤色発光膜を含む蒸着膜
 34a  R画素の正孔注入膜/正孔輸送膜
 34b  赤色発光膜
 34c  R画素の電子輸送膜
 35   マスク
 35a  遮光部
 35b  開口部
 36   青色発光膜および緑色発光膜を含む蒸着膜
 36a  G画素およびB画素の正孔注入膜/正孔輸送膜
 36b  青色発光膜
 36c  緑色発光膜
 36d  G画素およびB画素の電子輸送膜
 37   マスク
 37a  遮光部
 37b  開口部
 39   有機EL表示装置(表示装置)

Claims (21)

  1.  異なるピーク波長の光を出射する第1画素および第2画素と、上記各画素に備えられた反射電極および半透過反射電極と、を含む表示装置であって、
     第1の発光膜は上記第1画素に、第2の発光膜は上記第2画素に形成され、
     上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることを特徴とする表示装置。
  2.  上記第1画素および上記第2画素とは異なるピーク波長の光を出射する第3画素と、上記第3画素に備えられた反射電極および半透過反射電極と、を含み、
     上記第2の発光膜および第3の発光膜は、上記第2画素および上記第3画素の各々に積層されて形成され、
     上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離は、該当画素の上記ピーク波長の光を上記半透過反射電極から取り出せるように設けられており、
     上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜および上記第3の発光膜の積層膜中、上層である上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることを特徴とする請求項1に記載の表示装置。
  3.  上記第1の発光膜上に形成される蒸着膜は、上記第2の発光膜上に形成される蒸着膜より、厚く形成されていることを特徴とする請求項1または2に記載の表示装置。
  4.  上記第1の発光膜上に形成される蒸着膜には、無機材料、無機金属酸化物および結晶性有機材料のうち少なくとも一つが、上記第2の発光膜上に形成される蒸着膜より多く含まれていることを特徴とする請求項1から3の何れか1項に記載の表示装置。
  5.  上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離は、該当画素の上記ピーク波長の1/4×(2N-1)であり、上記Nは自然数であることを特徴とする請求項2に記載の表示装置。
  6.  上記第1の発光膜は青色発光膜であり、
     上記第2の発光膜は、緑色発光膜および赤色発光膜の何れか一方であり、
     上記第3の発光膜は、上記緑色発光膜および上記赤色発光膜の他方であることを特徴とする請求項2または5に記載の表示装置。
  7.  上記第1の発光膜は緑色発光膜であり、
     上記第2の発光膜は、赤色発光膜および青色発光膜の何れか一方であり、
     上記第3の発光膜は、上記赤色発光膜および上記青色発光膜の他方であることを特徴とする請求項2または5に記載の表示装置。
  8.  上記第1の発光膜は赤色発光膜であり、
     上記第2の発光膜は、緑色発光膜および青色発光膜の何れか一方であり、
     上記第3の発光膜は、上記緑色発光膜および上記青色発光膜の他方であることを特徴とする請求項2または5に記載の表示装置。
  9.  上記第2画素および上記第3画素から該当画素の上記ピーク波長の光が出射される経路上の各々には、上記該当画素の上記ピーク波長の光の波長領域の透過率が他の波長領域の透過率より高いカラーフィルタが備えられていることを特徴とする請求項5から8の何れか1項に記載の表示装置。
  10.  基板上に備えられた異なるピーク波長の光を出射する第1画素および第2画素と、上記各画素に備えられた発光膜、反射電極および半透過反射電極と、を含む表示装置の製造方法であって、
     該当画素の上記ピーク波長の光を上記半透過反射電極から取り出せるように、上記発光膜と上記反射電極との距離を調整する導電性光透過膜を所定の膜厚で形成する導電性光透過膜形成工程と、
     上記発光膜中の第1の発光膜を含む第1の蒸着膜を、上記第1画素および上記第2画素を含む上記基板上の全面に形成する第1の蒸着膜形成工程と、
     レーザー光を用いて、上記第1画素以外に形成された上記第1の発光膜を含む第1の蒸着膜を除去する工程と、
     上記発光膜中の第2の発光膜を含む第2の蒸着膜を、上記第1画素および上記第2画素を含む上記基板上の全面に形成する第2の蒸着膜形成工程と、
     レーザー光を用いて、上記第2画素以外に形成された上記第2の発光膜を含む第2の蒸着膜を除去する工程と、を含み、
     上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることを特徴とする表示装置の製造方法。
  11.  上記第1画素および上記第2画素とは異なるピーク波長の光を出射する、上記基板上に備えられた第3画素と、上記第3画素に備えられた反射電極および半透過反射電極と、を含み、
     上記第2の蒸着膜形成工程においては、上記第2の発光膜および第3の発光膜の積層膜を含む第2の蒸着膜を、上記第1画素、上記第2画素および上記第3画素を含む上記基板上の全面に形成し、
     上記第2の発光膜を含む第2の蒸着膜を除去する工程においては、レーザー光を用いて、上記第2画素および上記第3画素以外に形成された上記第2の発光膜および上記第3の発光膜の積層膜を含む第2の蒸着膜を除去し、
     上記導電性光透過膜形成工程においては、該当画素の上記ピーク波長の光を上記半透過反射電極から取り出せるように、上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離を調整する導電性光透過膜を所定の膜厚で形成し、
     上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜および上記第3の発光膜の積層膜中、上層である上記第2の発光膜上に形成される蒸着膜より、レーザー光の照射によって生じる熱に対する膜の残存率が高い膜であることを特徴とする請求項10に記載の表示装置の製造方法。
  12.  上記第1の蒸着膜形成工程において、上記第1の発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、厚く形成されていることを特徴とする請求項10または11に記載の表示装置の製造方法。
  13.  上記第1の蒸着膜形成工程において、上記第1発光膜上に形成される蒸着膜は、上記第2の蒸着膜形成工程において、上記第2の発光膜上に形成される蒸着膜より、無機材料、無機金属酸化物および結晶性有機材料のうち少なくとも一つを多く含んでいることを特徴とする請求項10から12の何れか1項に記載の表示装置の製造方法。
  14.  上記第1の蒸着膜を除去する工程または、上記第2の蒸着膜を除去する工程においては、上記レーザー光を部分的に遮光するマスクが用いられることを特徴とする請求項10から13の何れか1項に記載の表示装置の製造方法。
  15.  上記第1の蒸着膜を除去する工程または、上記第2の蒸着膜を除去する工程は、真空雰囲気下または、水分および酸素が10ppm未満である雰囲気下で行われることを特徴とする請求項10から14の何れか1項に記載の表示装置の製造方法。
  16.  上記第2の蒸着膜を除去する工程においては、10-15秒~10-12秒の極短時間パルスレーザー光を用いることを特徴とする請求項10から15の何れか1項に記載の表示装置の製造方法。
  17.  上記導電性光透過膜形成工程における、上記導電性光透過膜の膜厚は、上記第2画素の上記反射電極と上記第2の発光膜との距離および上記第3画素の上記反射電極と上記第3の発光膜との距離が、該当画素の上記ピーク波長の1/4×(2N-1)(上記Nは自然数)となるように形成されることを特徴とする請求項11に記載の表示装置の製造方法。
  18.  上記第1の発光膜は青色発光膜であり、
     上記第2の発光膜は、緑色発光膜および赤色発光膜の何れか一方であり、
     上記第3の発光膜は、上記緑色発光膜および上記赤色発光膜の他方であることを特徴とする請求項11または17記載の表示装置の製造方法。
  19.  上記第1の発光膜は緑色発光膜であり、
     上記第2の発光膜は、赤色発光膜および青色発光膜の何れか一方であり、
     上記第3の発光膜は、上記赤色発光膜および上記青色発光膜の他方であることを特徴とする請求項11または17に記載の表示装置の製造方法。
  20.  上記第1の発光膜は赤色発光膜であり、
     上記第2の発光膜は、緑色発光膜および青色発光膜の何れか一方であり、
     上記第3の発光膜は、上記緑色発光膜および上記青色発光膜の他方であることを特徴とする請求項11または17に記載の表示装置の製造方法。
  21.  上記第2画素および上記第3画素から該当画素の上記ピーク波長の光が出射される経路上の各々に、上記該当画素の上記ピーク波長の光の波長領域の透過率が他の波長領域の透過率より高いカラーフィルタを設ける工程をさらに含むことを特徴とする請求項17から20の何れか1項に記載の表示装置の製造方法。
PCT/JP2016/070603 2015-07-14 2016-07-12 表示装置および表示装置の製造方法 WO2017010488A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/735,298 US20180166511A1 (en) 2015-07-14 2016-07-12 Display device and method for manufacturing display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015140786 2015-07-14
JP2015-140786 2015-07-14

Publications (1)

Publication Number Publication Date
WO2017010488A1 true WO2017010488A1 (ja) 2017-01-19

Family

ID=57758053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070603 WO2017010488A1 (ja) 2015-07-14 2016-07-12 表示装置および表示装置の製造方法

Country Status (2)

Country Link
US (1) US20180166511A1 (ja)
WO (1) WO2017010488A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020042115A (ja) * 2018-09-07 2020-03-19 株式会社Joled 表示パネル製造装置および表示パネル製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200009865A (ko) * 2018-07-20 2020-01-30 엘지디스플레이 주식회사 헤드 장착형 표시 장치 및 이에 포함된 표시 패널
US11683972B2 (en) * 2020-01-29 2023-06-20 Kyonggi University Industry & Academia Cooperation Foundation Emitting device manufacturing method using laser shaving and manufacturing equipment for the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012220A (ja) * 1998-06-17 2000-01-14 Lg Electron Inc 有機elディスプレイパネルの製造方法
JP2002324672A (ja) * 2001-04-09 2002-11-08 Samsung Sdi Co Ltd 有機伝導性物質のマトリックス配列の形成方法及びこれにより製造されたマトリックス配列
JP2011071041A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 有機発光表示装置及び有機発光表示装置の製造方法
JP2012124104A (ja) * 2010-12-10 2012-06-28 Canon Inc 有機el表示装置の製造方法
JP2012216501A (ja) * 2011-03-30 2012-11-08 Canon Inc 有機el表示装置の製造方法
US20140120645A1 (en) * 2012-10-31 2014-05-01 Lg Display Co., Ltd. Method of fabricating organic electroluminescent device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012220A (ja) * 1998-06-17 2000-01-14 Lg Electron Inc 有機elディスプレイパネルの製造方法
JP2002324672A (ja) * 2001-04-09 2002-11-08 Samsung Sdi Co Ltd 有機伝導性物質のマトリックス配列の形成方法及びこれにより製造されたマトリックス配列
JP2011071041A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 有機発光表示装置及び有機発光表示装置の製造方法
JP2012124104A (ja) * 2010-12-10 2012-06-28 Canon Inc 有機el表示装置の製造方法
JP2012216501A (ja) * 2011-03-30 2012-11-08 Canon Inc 有機el表示装置の製造方法
US20140120645A1 (en) * 2012-10-31 2014-05-01 Lg Display Co., Ltd. Method of fabricating organic electroluminescent device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020042115A (ja) * 2018-09-07 2020-03-19 株式会社Joled 表示パネル製造装置および表示パネル製造方法
JP7117773B2 (ja) 2018-09-07 2022-08-15 株式会社Joled 表示パネル製造装置および表示パネル製造方法

Also Published As

Publication number Publication date
US20180166511A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP5722453B2 (ja) 表示装置の製造方法
KR100932940B1 (ko) 유기 발광 디스플레이 장치
KR101349143B1 (ko) 유기 발광 디스플레이 장치의 제조 방법
EP2562816B1 (en) Organic light emitting diode display and manufacturing method thereof
US9343515B2 (en) Display device, manufacturing method thereof, and electronic device
KR100823511B1 (ko) 유기 발광 표시 장치 및 그 제조방법
US7518141B2 (en) Multicolor organic light emitting apparatus
US8183564B2 (en) Multicolor display apparatus
US9111882B1 (en) Organic light emitting device and fabricating method thereof
JP2011065992A (ja) 有機発光ディスプレイ装置
WO2017010488A1 (ja) 表示装置および表示装置の製造方法
JP2011065837A (ja) 有機el表示装置及びその製造方法
WO2007004476A1 (en) Multi-color display apparatus
JP2008192384A (ja) 有機elディスプレイの製造方法
WO2013047457A1 (ja) 表示装置の製造方法および表示装置
WO2013047622A1 (ja) 表示装置及び表示装置の製造方法
JP2008171752A (ja) カラー有機elディスプレイおよびその製造方法
JP2008103256A (ja) 有機el発光装置およびその製造方法
JP2009164049A (ja) 有機elデバイス
JP2003045659A (ja) 表示装置
JP2011159502A (ja) 発光装置の製造方法および発光装置
KR100752384B1 (ko) 유기 전계 발광표시장치의 제조방법
KR20200061282A (ko) 표시장치
CN110034236B (zh) 有机发光二极管显示装置
JP2011082134A (ja) 有機発光表示装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15735298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16824468

Country of ref document: EP

Kind code of ref document: A1