WO2017010327A1 - 硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置 - Google Patents

硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置 Download PDF

Info

Publication number
WO2017010327A1
WO2017010327A1 PCT/JP2016/069729 JP2016069729W WO2017010327A1 WO 2017010327 A1 WO2017010327 A1 WO 2017010327A1 JP 2016069729 W JP2016069729 W JP 2016069729W WO 2017010327 A1 WO2017010327 A1 WO 2017010327A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
polyborosiloxane
carbon atoms
composition
Prior art date
Application number
PCT/JP2016/069729
Other languages
English (en)
French (fr)
Inventor
勝宏 秋山
佑 松野
亘 河合
惇也 中辻
真 情野
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016122503A external-priority patent/JP2017020005A/ja
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2017010327A1 publication Critical patent/WO2017010327A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/56Boron-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to a curable polyborosiloxane resin composition that can be suitably used as a sealing material for an optical semiconductor element or a raw material for an adhesive, a cured product thereof, and an optical semiconductor device using the same.
  • a cured product such as an epoxy resin composition or a silicone resin composition is used as a sealing material of a light emitting device using an optical semiconductor element such as a light emitting diode (abbreviation: LED).
  • the properties required for these sealing materials are excellent in “heat-resistant transparency” that can maintain transparency even when exposed to a high temperature for a long time, and the sealing material is peeled off from the package substrate. It may be excellent in "adhesion” that is difficult.
  • an epoxy resin composition is excellent in adhesion, but is inferior in heat-resistant transparency.
  • Epoxy resin compositions are often used for sealing low-power white LEDs because the required heat-resistant transparency is low.
  • the cured products of conventional epoxy resin compositions have power semiconductors and high-intensity light-emitting elements (for example, automobile headlights and LCD TV backlights). It is known that heat resistance is insufficient for use as a sealing material for short-wavelength semiconductor lasers such as high-intensity LEDs) or blue lasers, and current leakage or yellowing due to high-temperature deterioration occurs.
  • Patent Document 1 discloses an addition-curable silicone resin composition as a material for sealing an optical device or a semiconductor device.
  • JP 2000-198930 A Japanese Patent No. 5056998 JP 54-83100 A JP 2009-19104 A JP 2009-127020 A
  • adding a boron compound to the silicone resin composition is useful as a method for imparting adhesion without impairing heat-resistant transparency.
  • Trimethyl borate, triethyl borate, tri-n-borate An organoboron compound such as butyl is used as an adhesion-imparting agent (for example, Patent Document 2).
  • Patent Document 2 An organoboron compound such as butyl is used as an adhesion-imparting agent
  • the weight loss of the silicone resin composition may become large. This is because the silicone resin composition is cured by heating, and the organic boron compound volatilizes from the resin composition by heating.
  • a method using a polyborosiloxane resin is known as a solution for suppressing the weight loss of the resin composition during the curing process.
  • Polyborosiloxane is a polymer compound having a boron atom in the silicone resin skeleton, and gives a cured product having high heat resistance and transparency.
  • Patent Document 3 describes a method of synthesizing polyborosiloxane by hydrolytic polycondensation of an alkoxysilane and a boric acid compound.
  • Patent Documents 4 and 5 describe that a cured product of polyborosiloxane resin can be suitably used as a sealing material for an optical semiconductor element.
  • the polyborosiloxane resin has low water resistance, if the resin is left in the air in the state of the resin, the resin may become cloudy, which causes a problem in storage stability.
  • the polyborosiloxanes described in these documents are cured and synthesized by condensation of alkoxysilane and boron compound, there are concerns about problems with moldability such as foaming during curing.
  • the present invention has been made in view of the above circumstances, and provides a cured product excellent in heat-resistant transparency and adhesion to a package substrate, and also provides an addition-curable curable polyborosiloxane resin composition excellent in storage stability and
  • An object of the present invention is to provide the cured product and an optical semiconductor device.
  • the present inventors have determined that a predetermined polyborosiloxane resin as the component (A), a predetermined silicone resin as the component (B), and a predetermined hydrosilyl as the component (C)
  • the present invention has been completed by finding that the above-mentioned problems can be achieved by using a curable polyborosiloxane resin composition containing at least a fluorination catalyst.
  • the present invention includes the following inventions.
  • invention 1 (A) a curable polyborosiloxane resin composition comprising at least a polyborosiloxane resin as a component, a silicone resin as a component (B), and a hydrosilylation catalyst as a component (C), (A) The component is a polyborosiloxane resin represented by the following formula [1] and containing a hydrogen atom (SiH group) bonded to a silicon atom, The curable polyborosiloxane resin composition, wherein the component (B) is a silicone resin having a vinyl group (Si—CH ⁇ CH 2 group) bonded to a silicon atom in the molecule.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • two R 1 may be the same or different from each other
  • R 2 is an alkyl having 1 to 3 carbon atoms.
  • R 3 is an alkyl group having 1 to 3 carbon atoms or 6 to 10 carbon atoms
  • A, b and c are each greater than 0 and less than 1
  • d is a number greater than or equal to 0 and less than 1
  • e is greater than or equal to 0.01 and less than or equal to 0.20.
  • oxygen atoms in structural units represented by (SiR 2 2 O 2/2 ), (R 3 SiO 3/2 ) and (SiO 4/2 ) each have a siloxane bond.
  • Forming oxygen atoms, oxygen atoms forming borosiloxane bonds, or sila It represents an oxygen atom forming an Lumpur group
  • an oxygen atom in the structural unit represented by (BO 3/2) represents an oxygen atom forming a Borokisan bond in the siloxane chain, to form a borosiloxane bond Or an oxygen atom forming a B—OH group.
  • [Invention 2] The curable polyborosiloxane resin composition of Invention 1, wherein the component (B) is the following component (B-1) or component (B-2).
  • B-1) Component A silicone resin represented by the following formula [2] and containing a vinyl group (Si—CH ⁇ CH 2 group) bonded to a silicon atom.
  • R 4 represents an alkyl group having 1 to 3 carbon atoms, and two R 4 may be the same or different from each other, and R 5 represents an alkyl group having 1 to 3 carbon atoms or a carbon atom.
  • An aromatic hydrocarbon group having 6 to 10 carbon atoms, and two R 5 may be the same or different from each other, and R 6 is an alkyl group having 1 to 3 carbon atoms or an aromatic carbon atom having 6 to 10 carbon atoms
  • the oxygen atoms in the structural units represented by (SiR 5 2 O 2/2 ), (R 6 SiO 3/2 ) and (SiO 4/2 ) are each oxygen atoms forming a siloxane bond, or an oxygen atom forming a silanol group, structural units represented by (BO 3/2) Oxygen atom, an oxygen atom forming an oxygen atom forming a Borokisan bond in the siloxane chain, an oxygen atom or B-OH groups to form a
  • R 7 is an alkyl group having 1 to 3 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the two R 7 may be the same or different from each other.
  • 8 is an alkyl group having 1 to 3 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms
  • j, k and l are each more than 0 and less than 1
  • m is 0 or more and less than 1
  • the atoms are oxygen atoms that form boroxane bonds in the siloxane chain
  • the curable silicone resin composition of Invention 2 which is 10 to 0.30.
  • the curable silicone resin composition of Invention 2 which is 10 to 0.30.
  • invention 8 The curable polyborosiloxane resin composition according to any one of Inventions 1 to 7, further comprising one or more selected from the group consisting of a curing retarder, an adhesion promoter, an antioxidant, a light stabilizer, a phosphor, and inorganic particles.
  • invention 12 A method for producing a cured product of a curable polyborosiloxane resin composition, wherein the curable polyborosiloxane resin composition according to any one of Inventions 1 to 9 is heated and cured at 45 ° C or higher and 300 ° C or lower.
  • invention 13 An optical semiconductor element; An optical semiconductor device comprising at least the optical semiconductor sealing material according to invention 11 for sealing the optical semiconductor element.
  • alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • the aromatic hydrocarbon group having 6 to 10 carbon atoms may be a substituted or unsubstituted aromatic hydrocarbon group, and some or all of the hydrogen atoms may be substituted with fluorine atoms.
  • Specific examples include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, a 3-trifluoromethylphenyl group, a 4-trifluoromethylphenyl group, and a 3,5-di (trifluoromethylphenyl) group.
  • a curable polyborosiloxane resin composition having excellent storage stability can be provided. Furthermore, by using this composition, it is possible to provide a cured product excellent in heat-resistant transparency and adhesion to a package substrate, and an optical semiconductor device using the cured product.
  • the curable polyborosiloxane resin composition of the present invention (sometimes referred to simply as “the composition of the present invention” in the present specification) includes a predetermined component (A) and a component (B-1) or ( It contains at least component B-2) and component (C), and is suitably used for producing the optical semiconductor device of the present invention.
  • the composition of the present invention may further contain other components.
  • items common to the component (B-1) and the component (B-2) may be collectively referred to as “component (B)”.
  • the component (A) is a polyborosiloxane resin containing a hydrogen atom (SiH group) bonded to a silicon atom.
  • One preferred embodiment of the component (A) is a polyborosiloxane resin represented by the following formula [1] and containing a hydrogen atom (SiH group) bonded to a silicon atom.
  • the above formula [1] represents an average composition formula.
  • R 1 is an alkyl group having 1 to 3 carbon atoms, and two R 1 may be the same or different from each other.
  • R 2 is an alkyl group having 1 to 3 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the two R 2 may be the same or different from each other.
  • R 3 is an alkyl group having 1 to 3 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • a, b, and c are each greater than 0 and less than 1
  • d is a number greater than or equal to 0 and less than 1
  • e is a number greater than or equal to 0.01 and less than or equal to 0.20
  • a + b + c + d 1 Fulfill.
  • the oxygen atoms in the structural units represented by (SiR 2 2 O 2/2 ), (R 3 SiO 3/2 ), and (SiO 4/2 ) are oxygen atoms and borosiloxane bonds forming siloxane bonds, respectively.
  • An oxygen atom, an oxygen atom forming a borosiloxane bond, or an oxygen atom forming a B—OH group is shown.
  • alkyl group having 1 to 3 carbon atoms in R 1 a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • alkyl group having 1 to 3 carbon atoms in R 2 a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • the aromatic hydrocarbon group having 6 to 10 carbon atoms in R 2 is preferably a phenyl group.
  • alkyl group having 1 to 3 carbon atoms in R 3 a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • the aromatic hydrocarbon group having 6 to 10 carbon atoms in R 3 is preferably a phenyl group, a 3-trifluoromethylphenyl group, a 4-trifluoromethylphenyl group, or a 3,5-di (trifluoromethylphenyl) group.
  • a phenyl group is particularly preferred.
  • R 1 , R 2 and R 3 are not particularly limited. Among them, R 1 is methyl group or ethyl group, R 2 is methyl group, ethyl group or phenyl group, R 3 is methyl group, ethyl group, phenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group Or any of 3,5-di (trifluoromethylphenyl) groups, particularly preferably R 1 is a methyl group, R 2 is a methyl group, and R 3 is a methyl group or a phenyl group.
  • the value of a is preferably 0.10 to 0.40, and particularly preferably 0.10 to 0.35. If the value of a is 0.10 or more, the composition of the present invention has good moldability, and if it is 0.40 or less, the component (A) has good mechanical strength.
  • the value of b is preferably 0.10 to 0.80, and particularly preferably 0.10 to 0.50. If the value of b is 0.10 or more, the composition of the present invention has good moldability, and if it is 0.80 or less, the component (A) has good mechanical strength.
  • the value of c is preferably 0.10 to 0.80, particularly preferably 0.20 to 0.60. If the value of c is 0.10 or more, the component (A) has good mechanical strength, and if it is 0.80 or less, the composition of the present invention has good moldability.
  • the value of d is preferably 0 to 0.70.
  • the value of d is particularly preferably 0.10 to 0.30 since the cured product of the present invention exhibits good adhesive strength. If the value of d is in this range, a cured product showing good adhesive strength can be obtained.
  • the structural unit of (SiO 4/2 ) does not exist in the above formula [1].
  • the values of a, b, c and d are calculated by measuring the 29 Si-NMR spectrum and 1 H-NMR spectrum of the component (AA) using a nuclear magnetic resonance apparatus and using these in a complementary combination. can do.
  • the value of e can be obtained as follows. First, the sample of component (A) is pretreated by alkali melting and acid dissolution, and then the content (mass%) of silicon atom of component (A) is determined by ICP-AES method. Pretreatment is performed by microwave acid decomposition, and the content (mass%) of the boron atom of the component (A) is determined by ICPAES method. These contents are respectively divided by the atomic weights of silicon atoms and boron atoms to calculate the number of moles of two atoms. When the calculated number of moles of silicon atoms is 1, the molar ratio of boron atoms is determined, and this value is taken as the value of e.
  • the structural unit represented by (SiR 2 2 O 2/2 ) is a structure represented by the following formula [1-2], that is, silicon in the structural unit represented by (SiR 2 2 O 2/2 ).
  • a structure in which one of oxygen atoms bonded to an atom forms a silanol group may be included.
  • R 2 has the same meaning as R 2 in the formula [1]
  • X represents a hydroxy group.
  • the structural unit represented by (SiR 2 2 O 2/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [1-b], and further includes the following formula [1-2-b]
  • the part enclosed with the broken line of the structural unit represented by may be included. That is, a structural unit having a group represented by R 2 and having a hydroxy group remaining at the terminal to form a silanol group is also included in the structural unit represented by (SiR 2 2 O 2/2 ). It is.
  • the oxygen atom in the EO—Si bond is an adjacent silicon atom.
  • the structural unit represented by (R 3 SiO 3/2 ) is a structure represented by the following formula [1-3] or [1-4], that is, a structure represented by (R 3 SiO 3/2 ).
  • the structure which forms the silanol group may be included.
  • R 3 has the same meaning as R 3 in the formula [1]
  • X represents a hydroxy group.
  • the structural unit represented by (R 3 SiO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [1-c], and further includes the following formula [1-3-c] or A portion surrounded by a broken line of the structural unit represented by [1-4-c] may be included. That is, a structural unit having a group represented by R 3 and having a hydroxy group remaining at the terminal to form a silanol group is also included in the structural unit represented by (R 3 SiO 3/2 ). .
  • the structural unit represented by (SiO 4/2 ) is represented by the structure represented by the following formula [1-5], [1-6] or [1-7], that is, represented by (SiO 4/2 ).
  • a structure in which three or two oxygen atoms bonded to a silicon atom in a structural unit each form a silanol group, or an oxygen atom bonded to a silicon atom in a structural unit represented by (SiO 4/2 ) One of these may contain a structure in which a silanol group is formed.
  • X represents a hydroxy group.
  • the structural unit represented by (SiO 4/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [1-d], and further includes the following formulas [1-5-d], [1 A portion surrounded by a broken line of the structural unit represented by ⁇ 6 ⁇ d] or [1-7-d] may be included. That is, a structural unit in which a hydroxy group remains at the terminal to form a silanol group is also included in the structural unit represented by (SiO 4/2 ).
  • an oxygen atom in the EO—Si bond forms a siloxane bond with two adjacent silicon atoms, or a boron with an adjacent silicon atom and a boron atom.
  • a siloxane bond is formed and shares an oxygen atom with an adjacent structural unit. Accordingly, one oxygen atom in the EO—Si bond, that is, one oxygen atom in the Si—O—Si bond or the B—O—Si bond is defined as [O 1/2 ].
  • the structural unit represented by (BO 3/2 ) represents a structural unit having a boron atom bonded to three oxygen atoms.
  • each oxygen atom may be bonded to another atom, that is, a silicon atom, a boron atom, or a hydrogen atom to form a B—O—Si bond, a B—O—B bond, or a B—OH group.
  • the structural unit represented by (BO 3/2 ) is a structure represented by the following formula [1-8] or [1-9], that is, boron in the structural unit represented by (BO 3/2 ).
  • the structure which forms may be included.
  • X represents a hydroxy group.
  • the structural unit represented by (BO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [1-e], and further includes the following formula [1-10-e] or [1 -11-e] may include a part surrounded by a broken line. That is, a structural unit in which a hydroxy group remains at the terminal to form a B—OH group is also included in the structural unit represented by (BO 3/2 ).
  • E The oxygen atom in the —OB bond forms a borosiloxane bond with an adjacent silicon atom, or forms a boroxane bond with an adjacent boron atom, and shares an oxygen atom with an adjacent structural unit. Accordingly, one oxygen atom in the E—O—B bond, that is, one oxygen atom in the Si—O—B bond or the B—O—B bond is defined as “O 1/2 ”.
  • E represents a silicon atom or a boron atom.
  • X represents a hydroxy group.
  • the manufacturing method of (A) component is not specifically limited. Although an example of the manufacturing method of (A) component is shown below, the manufacturing method of (A) component is not limited to this.
  • Dialkoxysilane compounds represented by the following general formula [4], trialkoxysilane compounds represented by the following general formula [5] and boric acid compounds represented by the following general formula [7] (or the following general formula [ 4], a trialkoxysilane compound [5] represented by the following general formula [5], a tetraalkoxysilane compound represented by the following general formula [6], and the following general formula [7]
  • a boric acid compound represented by formula (II)) to obtain a polyboroxixane intermediate [I] by hydrolytic polycondensation (hereinafter sometimes referred to as “first condensation step”); Reaction of the polyborosiloxane intermediate [I] obtained in the first condensation step with a silane compound represented by the following general formula [8-1], [8-2], [
  • R 2 in the general formula [4] has the same meaning as R 2 in the formula [1], R 9 represents an alkyl group having 1-3 carbon atoms, two R 9 may be the same or different types from each other Good.
  • dialkoxysilane compounds represented by the general formula [4] include, but are not limited to, the following compounds. Not: dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane, diphenyldimethoxysilane , Diphenyldiethoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, phenylethyldimethoxysilane, phenylethyldiethoxysilane. Among these, preferred compounds include dimethyldimethoxysilane and dimethyldiethoxysilane.
  • R 3 in the general formula [5] have the same meanings as R 3 in the formula [1], R 10 represents an alkyl group having 1 to 3 carbon atoms, and three R 10 may be the same or different types from each other Good.
  • trialkoxysilane compounds represented by the general formula [5] include, but are not limited to, the following compounds. Not: methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- (trifluoromethyl) phenyltrimethoxysilane, 3- ( Trifluoromethyl) phenyltriethoxysilane, 4- (trifluoromethyl) phenyltrimethoxysilane, 4- (trifluoromethyl) phenyltriethoxysilane, 3,5- (ditrifluoromethyl) phenyltrimethoxysilane, 3,5 -(Ditrifluoromethyl) phenyltri Tokishishiran, naphthyl trim
  • preferred compounds include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- (trifluoromethyl) phenyltrimethoxysilane, and 3- (trifluoromethyl) phenyltriethoxysilane.
  • 4- (trifluoromethyl) phenyltrimethoxysilane, 4- (trifluoromethyl) phenyltriethoxysilane 3,5- (ditrifluoromethyl) phenyltrimethoxysilane, 3,5- (ditrifluoromethyl) phenyltriethoxy Silanes are mentioned, and particularly preferable compounds include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane.
  • R 11 in the general formula [6] represents an alkyl group having 1 to 3 carbon atoms, and the four R 11 may be the same or different from each other.
  • tetraalkoxysilane [6] examples include, but are not limited to, the following compounds. Not: tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane. Among these, preferred compounds include tetramethoxysilane and tetraethoxysilane.
  • R 12 in the general formula [7] represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the three R 12 may be the same or different from each other.
  • boron compound [7] Specific examples of the boron compound represented by the general formula [7] include, but are not limited to, the following compounds. : Boric acid (boric acid is a generic term for boron oxo acids such as orthoboric acid, metaboric acid, hypoboric acid), trimethyl borate, triethyl borate, triisopropyl borate, triborate triborate n-propyl. Among these, a preferable compound is boric acid.
  • R 1 in the [8-4] has the same meaning as R 1 in the formula [1], the two R 1 the same or mutually Different types may be used.
  • R 13 in the general formula [8-3] is an alkyl group having 1 to 3 carbon atoms.
  • silane compounds represented by the general formulas [8-1], [8-2], [8-3] and [8-4] are “chlorosilane compound [8-1]”, “silanol compound [ 8-2] ”,“ monoalkoxysilane compound [8-3] ”, and“ disiloxane compound [8-4] ”, which are collectively referred to as“ silane compound [8 ] ".
  • chlorosilane compound [8-1] examples include, but are not limited to, the following compounds: chlorosilane, chloromethylsilane, chlorodimethylsilane, chloroethylsilane, and chlorodiethylsilane.
  • a preferable compound is chlorodimethylsilane.
  • silanol compound [8-2] examples include, but are not limited to, the following compounds: silanol, methylsilanol, dimethylsilanol, ethylsilanol, diethylsilanol. Among these, a preferred compound is dimethylsilanol.
  • the monoalkoxysilane compound [8-3] include, but are not limited to, the following compounds: methoxysilane, ethoxysilane, methylmethoxysilane, methylethoxysilane, dimethylmethoxysilane, Dimethylethoxysilane, ethylmethoxysilane, ethylethoxysilane, diethylmethoxysilane, diethylethoxysilane.
  • preferred compounds include dimethylmethoxysilane and dimethylethoxysilane.
  • disiloxane compound [8-4] include, but are not limited to, the following compounds: disiloxane, 1,3-dimethyldisiloxane, 1,1,3,3- Tetramethyldisiloxane, 1,3-diethyldisiloxane, 1,1,3,3-tetraethyldisiloxane.
  • 1,1,3,3-tetramethyldisiloxane is a preferred compound.
  • dialkoxysilane [4], trialkoxysilane [5], tetraalkoxysilane [6], and boric acid compound [7] used for the production of component (Ab) is not particularly limited.
  • the dialkoxysilane [4], trialkoxysilane [5], tetraalkoxysilane [6] and boric acid compound [7] may be used singly or in combination.
  • Dialkoxysilane [4] is dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane.
  • Trialkoxysilane [5] is methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- (trifluoromethyl) phenyltrimethoxysilane, 3- (trifluoromethyl) phenyltriethoxy.
  • the tetraalkoxysilane [6] is selected from the group consisting of tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, and tetraisopropoxysilane
  • One or more boric acid compounds [7] are selected from the group consisting of boric acid, trimethyl borate, and triethyl borate.
  • One or more dialkoxysilanes [4] are selected from the group consisting of dimethyldimethoxysilane and dimethyldiethoxysilane
  • the trialkoxysilane [5] is selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane
  • At least one tetraalkoxysilane [6] is selected from the group consisting of tetramethoxysilane and tetraethoxysilane
  • boric acid compound [7] boric acid is selected.
  • first condensation step first, dialkoxysilane [4] and trialkoxysilane [5] (or dialkoxysilane [4], trialkoxysilane [5] and tetraalkoxysilane [6]), After a predetermined amount is placed in the reaction vessel at room temperature (in particular, an atmospheric temperature not heated or cooled, usually 15 to 30 ° C., the same applies hereinafter), a predetermined amount of boron compound is added to obtain a mixed solution.
  • room temperature in particular, an atmospheric temperature not heated or cooled, usually 15 to 30 ° C., the same applies hereinafter
  • boron compound is added to obtain a mixed solution.
  • the order of addition at this time is not limited to this, and can be supplied in any order to obtain a mixed solution.
  • dialkoxysilane [4], trialkoxysilane [5] and tetraalkoxysilane [6] used is not particularly limited.
  • dialkoxysilane [4]: trialkoxysilane [5] is preferably used in a molar ratio of 85:15 to 15:85, and 85:15 to 30:70. It is particularly preferred to use in When the molar ratio of dialkoxysilane [4] is less than 15, it may be higher than the desired molecular weight, and when it exceeds 85, the hydrolysis polycondensation reaction is difficult to proceed and may be lower than the desired molecular weight. is there.
  • the amount thereof is 1 to 80 mol with respect to a total of 100 mol of dialkoxysilane [4], trialkoxysilane [5] and tetraalkoxysilane [6]. It is preferably 1 to 60 moles. By using this amount, a cured product having suitable hardness can be obtained as a sealing material for an optical semiconductor device.
  • the amount of the boric acid compound [7] used is not particularly limited. Boric acid compound of 0.05 times or more and 0.3 times or less with respect to the total molar equivalent of alkoxy groups contained in dialkoxysilane [4], trialkoxysilane [5] and tetraalkoxysilane [6] It is preferable to use it. If the amount is less than 0.05 times the molar equivalent, the alkoxysilane compound may not be hydrolyzed efficiently. If the amount is more than 0.3 times the molar equivalent, the boric acid compound is added to the reaction solution after the reaction. Precipitation may occur and the solution may become cloudy.
  • water may be added to the mixed solution.
  • the amount of water to be added is not particularly limited, but the total molar equivalent of alkoxy groups contained in the raw material alkoxysilane compound, that is, dialkoxysilane [4], trialkoxysilane [5] and tetraalkoxysilane [6]. It is preferable to use water in an amount of 0.5 to 5.0 molar equivalents relative to the total molar equivalents of the contained alkoxy groups.
  • boric acid is used as the boric acid compound [7]
  • water When using -propyl, it is preferable to add water.
  • the amount of water added in this case is not particularly limited, but from the viewpoint of reaction efficiency, 1.0 times the molar equivalent or more of the total molar equivalent of the alkoxy groups contained in the alkoxysilane compound of the raw material compound, 5.0 It is preferable to use water of a double molar equivalent or less. By using water within this range, the alkoxysilane compound is efficiently hydrolyzed.
  • a reaction solvent may be added to the mixed solution.
  • the type of the reaction solvent is not particularly limited as long as the reaction for producing the polyborosiloxane intermediate [I] is not inhibited.
  • hydrophilic organic solvents such as alcohols are preferable. Specific examples include methanol, ethanol, normal propanol, isopropanol, butanol and the like, but are not limited thereto.
  • the amount of the reaction solvent used is preferably 0.1 to 1000% by mass, particularly preferably 1 to 300% by mass, based on the total amount of the alkoxysilane compound used.
  • generated from the alkoxysilane compound of a reaction raw material in the reaction process function as a reaction solvent, it is not necessarily required to add a reaction solvent.
  • a catalyst may be added to the mixed solution.
  • an acidic catalyst or a basic catalyst can be used, and the use of an acidic catalyst is preferred.
  • the kind of acidic catalyst is not particularly limited. Examples thereof include inorganic acids such as acetic acid, hydrochloric acid, nitric acid, sulfuric acid, and hydrofluoric acid, and organic acids such as trifluoromethanesulfonic acid, tosylic acid, trifluoroacetic acid, benzoic acid, citric acid, and oxalic acid.
  • acetic acid hydrochloric acid, nitric acid, trifluoroacetic acid, and hydrofluoric acid are preferable, and acetic acid is more preferable because the acidic catalyst can be easily removed after completion of the reaction.
  • the kind of basic catalyst is not specifically limited.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, triethylamine, pyridine, diisopropylamine, pyrrolidine, 1,8-diazabicyclo [5.4 .0] undecene (abbreviation: DBU), 1,5-diazabicyclo [4.3.0] nonene, guanidine, 1-methylguanidine, 1,1,3,3-tetramethylguanidine, and other organic bases.
  • DBU 1,8-diazabicyclo [5.4 .0] undecene
  • DBU 1,8-diazabicyclo [4.3.0] nonene
  • guanidine 1-methylguanidine
  • 1,1,3,3-tetramethylguanidine 1,1,3,3-tetramethylguanidine
  • the amount of the catalyst used in the first condensation step is preferably 0.001 to 5% by mass, particularly preferably 0.005 to 1% by mass, based on the total mass of the alkoxysilane compound, solvent and water used. is there. Note that the reaction can also proceed without using a catalyst.
  • the reaction time in the first condensation step is usually 3 to 15 hours, and the reaction temperature is usually 60 to 120 ° C., preferably 80 to 100 ° C.
  • the separation and purification method is not particularly limited, but a method of distilling off volatile components from the reaction solution under reduced pressure is preferable.
  • the volatile component may be distilled off under reduced pressure as it is, but after neutralizing the acid or base in the reaction solution, the volatile component is removed. It is preferable to distill off under reduced pressure.
  • a water-insoluble organic solvent such as toluene or xylene is added to the reaction solution and heated in the range of 100 ° C. to 150 ° C., and water is distilled off by evaporating.
  • the volatile component and the water-insoluble organic solvent are preferably distilled off under reduced pressure.
  • the type of the non-aqueous organic solvent is not particularly limited.
  • examples include aromatic hydrocarbons and ethers. Specific examples include toluene, xylene, dibutyl ether and the like. Among these, toluene is preferable, but not limited thereto.
  • the condensed and purified polyborosiloxane intermediate [I] may be further subjected to a condensation reaction by heating and stirring in a solvent or under heating without solvent. Thereby, the molecular weight of the polyborosiloxane intermediate [I] can be increased.
  • a reaction solvent When a reaction solvent is used, the polyborosiloxane intermediate [I] and the reaction solvent are charged into a reaction vessel capable of being heated to reflux to obtain a solution. The solution is heated to reflux and azeotroped with water generated in the system as the condensation proceeds. At this time, tosylic acid or the like may be added to the solution and heated to reflux.
  • the type of reaction solvent is not particularly limited as long as it can dissolve the polyborosiloxane intermediate [I] and can be heated to reflux.
  • the polyborosiloxane intermediate [I] is charged into a reaction vessel capable of being heated and stirred, heated to 100 ° C. or higher and 150 ° C. or lower and stirred for 4 to 18 hours. At this time, in order to suppress a change in the composition ratio of the polyborosiloxane intermediate [I], it is preferable to provide the reaction vessel with a reflux device (for example, a condenser). After heating and stirring, the content liquid is cooled to room temperature.
  • a reflux device for example, a condenser
  • the reaction conditions of the polyborosiloxane intermediate [1] and the silane compound [8] in this step are not particularly limited as long as the component (A) can be produced.
  • the chlorosilane method referred to here is a reaction between (B) a polyborosiloxane intermediate [I] and a chlorosilane compound [8-1], which is a kind of silane compound [8], in a water-insoluble organic solvent. Refers to the method of manufacturing the component.
  • the alkoxysilane method referred to here is a polyborosiloxane intermediate [I] and a silanol compound [8-2], a monoalkoxysilane compound [8-3] or disiloxane which is a kind of silane compound [8].
  • This refers to a method for producing component (A) by reacting compound [8-4] in the presence of an acid in a mixed solvent of a water-insoluble organic solvent and an alcoholic solvent.
  • chlorosilane method In the chlorosilane method, first, a polyborosiloxane intermediate [I] and a water-insoluble organic solvent are put in a predetermined amount in a reaction vessel to dissolve the polyborosiloxane intermediate [I]. Next, a predetermined amount of the chlorosilane compound [8-1] is added to the solution while stirring at about 0 to about 10 ° C. After completion of the addition, the reaction is allowed to proceed by stirring for 0.5 to 18 hours while maintaining 0 ° C. to room temperature. Then, (A) component can be obtained by terminating reaction.
  • the amounts of polyborosiloxane intermediate [I] and chlorosilane compound [8-1] used are not particularly limited. From the viewpoint of adjusting the physical properties of the component (A), it is preferable to use 0.2 to 10 mmol of the chlorosilane compound [8-1] with respect to 1 g of the polyborosiloxane intermediate [I].
  • the type of the water-insoluble organic solvent to be used is not particularly limited as long as it is water-insoluble and does not inhibit the reaction for producing the component (A).
  • aromatic hydrocarbons and ethers are preferable. Specific examples include toluene, xylene, diethyl ether, tetrahydrofuran, diisopropyl ether and the like, but are not limited thereto.
  • the amount of the water-insoluble organic solvent used is preferably 50 to 1,000% by mass, particularly preferably 300 to 700% by mass, based on 1 g of the polyborosiloxane intermediate [I].
  • the method for terminating the reaction is not particularly limited. Usually, the reaction is terminated by dropping water (preferably ion-exchanged water) into the reaction system. After the reaction, it is preferable that the component (A) is separated from the reaction system and purified from the viewpoint of handling the component (A).
  • This separation and purification method is not particularly limited. For example, a method of extracting can be mentioned. Specifically, the organic layer is separated from the reaction solution after the above reaction, and then the organic layer is washed with an acid and further washed with water. Next, a desiccant is added to the washed organic layer to remove water dissolved in the system.
  • the component (A) can be separated with high purity by removing the desiccant and removing the non-aqueous organic solvent under reduced pressure. At this time, water may be simultaneously removed under reduced pressure in the process of removing the non-aqueous organic solvent under reduced pressure without using a desiccant. It is preferable that the component (A) after the separation further removes water contained in the component (A) by heating and stirring without solvent and under reduced pressure.
  • the heating temperature at this time is not particularly limited, but is usually 100 to 130 ° C.
  • Alkoxysilane method In the alkoxysilane method, first, a polyborosiloxane intermediate [I], a non-aqueous organic solvent, and optionally an alcoholic solvent are put in a predetermined amount in a reaction vessel to dissolve the polyborosiloxane intermediate [I]. Let Next, a predetermined amount of silanol compound [8-2], monoalkoxysilane compound [8-3] or disiloxane compound [8-4] is added to the solution. Further, a catalyst for proceeding the hydrolysis and dehydration condensation reaction is added to the reaction system, and the reaction system is stirred for 1 to 48 hours at room temperature to proceed the reaction. Then, (A) component can be obtained by terminating reaction.
  • the amount of the polyborosiloxane intermediate [I] and the silanol compound [8-2], monoalkoxysilane compound [8-3] or disiloxane compound [8-4] used is not particularly limited. From the viewpoint of adjusting the physical properties of the component (A), the silanol compound [8-2], monoalkoxysilane compound [8-3] or disiloxane compound [8-4] is added to 1 g of the polyborosiloxane intermediate [I]. ], The total amount of SiH groups is preferably 0.2 to 10 mmol.
  • the type of the water-insoluble organic solvent to be used is not particularly limited as long as the reaction for producing the component (A) is not inhibited.
  • aromatic hydrocarbons and ethers are preferable. Specific examples include toluene, diethyl ether, tetrahydrofuran, diisopropyl ether, and the like, but are not limited thereto.
  • the amount of the water-insoluble organic solvent used is preferably 50 to 1,000% by mass, particularly preferably 100 to 500% by mass, based on 1 g of the polyborosiloxane intermediate [I].
  • the type of alcohol solvent to be used is not particularly limited as long as the reaction for producing the component (A) is not inhibited.
  • alcohols having 1 to 4 carbon atoms are preferred. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, butanol and the like, but are not limited thereto.
  • the amount of the alcohol solvent used is preferably 10 to 500% by mass, particularly preferably 50 to 300% by mass, based on 1 g of the polyborosiloxane intermediate [I].
  • the alkoxysilane method it is preferable to use a mixed solvent of a water-insoluble organic solvent and an alcohol solvent depending on the type of catalyst used.
  • a proton acid catalyst is used, the reactivity can be improved by using this mixed solvent.
  • the type of catalyst used is not particularly limited as long as it has an action of promoting the reaction for producing the component (A).
  • inorganic acids are preferred. Specific examples include nitric acid, hydrochloric acid, sulfuric acid and the like, but are not limited thereto.
  • the amount of the catalyst used is preferably from 0.0001 to 10 mmol, particularly preferably from 0.005 to 5 mmol% by mass, based on 1 g of the polyborosiloxane intermediate [I].
  • the method for terminating the reaction is not particularly limited.
  • the reaction is terminated by adding water (preferably ion-exchanged water) to the reaction system and stirring.
  • water preferably ion-exchanged water
  • This separation and purification method is not particularly limited.
  • a method of extracting can be mentioned. Specifically, water (preferably ion-exchanged water) is added to the solution after the reaction described above, and after performing an extraction operation, the organic layer is separated. Next, the organic layer is washed with water (preferably ion-exchanged water), and further a desiccant is added to remove water dissolved in the system.
  • the amount of water used is not particularly limited, but is preferably 30 to 400% by mass with respect to the total amount of the reaction solution.
  • the desiccant is removed from the organic layer, and the water-insoluble organic solvent is removed under reduced pressure, whereby the component (A) can be separated with high purity.
  • water may be simultaneously removed under reduced pressure in the process of removing the non-aqueous organic solvent under reduced pressure without using a desiccant.
  • the component (A) after the separation further removes water contained in the component (A) by heating and stirring without solvent and under reduced pressure.
  • the heating temperature at this time is not particularly limited, but is usually 100 to 130 ° C.
  • the amount of hydrogen atoms (SiH groups) bonded to silicon atoms contained in the component (A) according to the present invention is not particularly limited.
  • the range is preferably from 0.1 to 5.0 mmol / g, particularly preferably from 0.3 to 3.5 mmol / g. If it exists in this range, hardening by the hydrosilylation reaction of (A) component and (B) component will advance favorably.
  • the content of the SiH group in the component (A) can be calculated by measuring the 1 H-NMR spectrum of the component (A) with an internal standard using a nuclear magnetic resonance apparatus.
  • the mass average molecular weight of the component (A) is not particularly limited. It is preferably 500 to 50,000, and more preferably 800 to 3,500. If the mass average molecular weight is 500 or more, the cured product of the present invention has good resin strength, and if it is 50,000 or less, the composition of the present invention has good moldability.
  • the mass average molecular weight is a value obtained by measuring with a gel permeation chromatography (abbreviation: GPC) method and converting with a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the viscosity of the component (A) is not particularly limited. From the viewpoint of handling workability, the viscosity at 25 ° C. is preferably 0.001 to 10,000,000 cP (centipoise), more preferably 0.001 to 500,000 cP. If the viscosity is more than 10,000,000 cP, the moldability may be inferior, but it is also possible to treat the temperature by heating.
  • the viscosity of the component (A) can be measured by a rotational viscometer or the like.
  • the component (B) of the present invention is a silicone resin having a vinyl group (Si—CH ⁇ CH 2 group) bonded to a silicon atom in the molecule. More specifically, the component (B) of the present invention may be the following component (B-1) or component (B-2). Of these, the component (B-1) is preferred.
  • (B-1) component The component (B-1) is a silicone resin represented by the following formula [2] and containing a vinyl group (Si—CH ⁇ CH 2 group) bonded to a silicon atom.
  • the above formula [2] represents an average composition formula.
  • R 4 is an alkyl group having 1 to 3 carbon atoms, and the two R 4 may be the same or different.
  • R 5 is an alkyl group having 1 to 3 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and two R 5 may be the same or different from each other.
  • R 6 is an alkyl group having 1 to 3 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • f, g, and h are each greater than 0 and less than 1
  • i is a number greater than or equal to 0 and less than 1
  • the oxygen atoms in the structural units represented by (SiR 5 2 O 2/2 ), (R 6 SiO 3/2 ) and (SiO 4/2 ) are each an oxygen atom or a silanol group forming a siloxane bond.
  • the oxygen atom in the structural unit represented by (BO 3/2 ) is an oxygen atom that forms a boroxane bond in the siloxane chain, and an oxygen that forms a borosiloxane bond.
  • An atom or an oxygen atom forming a B—OH group is shown.
  • a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • alkyl group having 1 to 3 carbon atoms in R 5 a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • the aromatic hydrocarbon group having 6 to 10 carbon atoms in R 5 is preferably a phenyl group.
  • alkyl group having 1 to 3 carbon atoms in R 6 a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • the aromatic hydrocarbon group having 6 to 10 carbon atoms in R 6 is preferably a phenyl group, a 3-trifluoromethylphenyl group, a 4-trifluoromethylphenyl group, or a 3,5-di (trifluoromethylphenyl) group.
  • a phenyl group is particularly preferred.
  • R 4 is methyl group or ethyl group
  • R 5 is methyl group, ethyl group or phenyl group
  • R 6 is methyl group, ethyl group, phenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group
  • it is preferably a 3,5-di (trifluoromethylphenyl) group, particularly preferably R 4 is a methyl group, R 5 is a methyl group, and R 6 is a methyl group or a phenyl group.
  • the value of f is preferably 0.10 to 0.40, and particularly preferably 0.10 to 0.35. If the value of f is 0.10 or more, the composition of the present invention has good moldability, and if it is 0.40 or less, the cured product of the present invention has good mechanical strength.
  • the value of g is preferably 0.10 to 0.80, and particularly preferably 0.10 to 0.50. If the value of g is 0.10 or more, the composition of the present invention has good moldability, and if it is 0.80 or less, the cured product of the present invention has good mechanical strength.
  • the value of h is preferably 0.10 to 0.80, particularly preferably 0.20 to 0.60. If the value of h is 0.10 or more, the cured product of the present invention has good mechanical strength, and if it is 0.80 or less, the composition of the present invention has good moldability.
  • the value of i is preferably 0 to 0.70.
  • the value of i is particularly preferably 0.10 to 0.30 since the cured product of the present invention exhibits good adhesive strength. If the value of i is within this range, a cured product showing good adhesive strength can be obtained.
  • the structural unit of (SiO 4/2 ) does not exist in the above formula [2].
  • the value of x is obtained in the same manner as the method for obtaining the value of e in the component (A). That is, in the method for obtaining the value of e described above, the (A) component is read as the (B-1) component, and the value of e is read as the x value.
  • the structural unit represented by (SiR 5 2 O 2/2 ) is a structure represented by the following formula [2-2], that is, silicon in the structural unit represented by (SiR 5 2 O 2/2 ).
  • a structure in which one of oxygen atoms bonded to an atom forms a silanol group may be included.
  • R 5 has the same meaning as R 5 in the formula [2]
  • X represents a hydroxy group.
  • the structural unit represented by (SiR 5 2 O 2/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [2-b], and further includes the following formula [2-2-2-b]
  • the part enclosed with the broken line of the structural unit represented by may be included. That is, a structural unit having a group represented by R 5 and having a hydroxy group remaining at the terminal to form a silanol group is also included in the structural unit represented by (SiR 5 2 O 2/2 ). It is.
  • an oxygen atom in the EO—Si bond forms a siloxane bond (Si—O—Si bond) with an adjacent silicon atom, or is adjacent
  • a borosiloxane bond (B—O—Si bond) is formed with silicon atoms and boron atoms to be shared, and oxygen atoms are shared with adjacent structural units. Therefore, one oxygen atom in the E—O—Si bond, that is, one oxygen atom in the Si—O—Si bond or the B—O—Si bond is defined as “O 1/2 ”.
  • E represents a silicon atom or a boron atom
  • R 5 has the same meaning as R 5 in the formula [2].
  • X represents a hydroxy group.
  • the structural unit represented by (R 6 SiO 3/2 ) is a structure represented by the following formula [2-3] or [2-4], that is, a structure represented by (R 6 SiO 3/2 ).
  • R 6 has the same meaning as R 6 in the formula [2]
  • X represents a hydroxy group.
  • the structural unit represented by (R 6 SiO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [2-c], and further includes the following formula [2-3-c] or A portion surrounded by a broken line of the structural unit represented by [2-4-c] may be included. That is, a structural unit having a group represented by R 6 and having a hydroxy group remaining at the terminal to form a silanol group is also included in the structural unit represented by (R 6 SiO 3/2 ). .
  • the formula [2-c], in [2-3-c] and [2-4-c] E represents a silicon atom or a boron atom, R 6 is synonymous with R 6 in the formula [2] is there.
  • X represents a hydroxy group.
  • the structural unit represented by (SiO 4/2 ) is represented by the following formula [2-5], [2-6] or [2-7], ie, (SiO 4/2 ).
  • a structure in which three or two oxygen atoms bonded to a silicon atom in a structural unit each form a silanol group, or an oxygen atom bonded to a silicon atom in a structural unit represented by (SiO 4/2 ) One of these may contain a structure in which a silanol group is formed.
  • X represents a hydroxy group.
  • the structural unit represented by (SiO 4/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [2-d], and further includes the following formulas [2-5-d], [2 A portion surrounded by a broken line of the structural unit represented by ⁇ 6 ⁇ d] or [2-7-d] may be included. That is, a structural unit in which a hydroxy group remains at the terminal to form a silanol group is also included in the structural unit represented by (SiO 4/2 ).
  • E represents a silicon atom or a boron atom
  • X represents a hydroxy group.
  • Structural unit represented by (BO 3/2) has the same meaning as the structural unit represented by the according to the above formula [1] (BO 3/2).
  • a dialkoxysilane compound represented by the following general formula [9] and a trialkoxysilane compound represented by the general formula [10] are subjected to hydrolysis polycondensation (or represented by the following general formula [9].
  • a dialkoxysilane compound represented by the following general formula [10], a tetraalkoxysilane compound represented by the following general formula [11] and a boron represented by the following general formula [17] A step of hydrolyzing and polycondensing at least one selected from the group consisting of acid compounds to obtain silicone intermediate (II) (hereinafter sometimes referred to as “second condensation step”); The silicone intermediate (II) obtained in the second condensation step is reacted with a vinylsilane compound represented by the general formula [12-1], [12-2], [12-3] or [12-4]. (B-1) obtaining a component (hereinafter sometimes referred to as “second modification step”).
  • R 5 has the same meaning as R 5 in formula [2].
  • R 13 is an alkyl group having 1 to 3 carbon atoms, and two R 13 may be the same or different from each other.
  • dialkoxysilane [9] include, but are not limited to, the following compounds. Not: dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane.
  • preferred compounds include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.
  • R 6 has the same meaning as R 6 in the formula [2].
  • R 14 is an alkyl group having 1 to 3 carbon atoms, and the three R 14 may be the same or different.
  • trialkoxysilane compounds represented by the general formula [10] include, but are not limited to, the following compounds: Not: methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- (trifluoromethyl) phenyltrimethoxysilane, 3- (trifluoro Methyl) phenyltriethoxysilane, 4- (trifluoromethyl) phenyltrimethoxysilane, 4- (trifluoromethyl) phenyltriethoxysilane, 3,5- (ditrifluoromethyl) phenyltrimethoxysilane, 3,5- ( Ditrifluoromethyl) phenyltriet Shishiran, naphthyl
  • preferred compounds include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- (trifluoromethyl) phenyltrimethoxysilane, and 3- (trifluoromethyl) phenyltriethoxysilane.
  • 4- (trifluoromethyl) phenyltrimethoxysilane, 4- (trifluoromethyl) phenyltriethoxysilane 3,5- (ditrifluoromethyl) phenyltrimethoxysilane, 3,5- (ditrifluoromethyl) phenyltriethoxy Silanes are mentioned, and particularly preferable compounds include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane.
  • R 15 is an alkyl group having 1 to 3 carbon atoms, and the four R 15 may be the same or different.
  • tetraalkoxysilane [11] examples include, but are not limited to, the following compounds. Not: tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane. Among these, preferred compounds include tetramethoxysilane and tetraethoxysilane.
  • R 21 in the general formula [17] represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the three R 21 may be the same or different from each other.
  • boron compound [17] Specific examples of the boron compound represented by the general formula [17] include, but are not limited to, the following compounds. : Boric acid (boric acid is a generic term for boron oxo acids such as orthoboric acid, metaboric acid, hypoboric acid), trimethyl borate, triethyl borate, triisopropyl borate, triborate triborate n-propyl. Among these, a preferable compound is boric acid.
  • dialkoxysilane [9], trialkoxysilane [10] and tetraalkoxysilane [11] used for the production of component (B-1) is not particularly limited.
  • the dialkoxysilane [9], trialkoxysilane [10] and tetraalkoxysilane [11] may be used singly or in combination.
  • Dialkoxysilane [9] is dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane.
  • One or more dialkoxysilanes [9] are selected from the group consisting of dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane
  • the trialkoxysilane [10] is selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane
  • One or more tetraalkoxysilanes [11] are selected from the group consisting of tetramethoxysilane and tetraethoxysilane.
  • Boron compound [17] can be further used for these combinations.
  • the type of the boron compound [17] is not particularly limited.
  • Boric acid (where boric acid is a generic term for boron oxo acids such as orthoboric acid, metaboric acid, and hypoboric acid), trimethyl borate, triethyl borate, triisopropyl borate, and tri-n borate
  • boric acid is particularly preferred.
  • R 16 is an alkyl group having 1 to 3 carbon atoms.
  • the vinylsilane compounds represented by the general formulas [12-1], [12-2], [12-3] and [12-4] are “chlorovinylsilane compound [12-1]” and “vinylsilanol”, respectively.
  • Compound [12-2] “monoalkoxyvinylsilane compound [12-3]”
  • dioalkoxyvinylsilane compound [12-4] “divinyldisiloxane compound [12-4]”. Compound [12] ".
  • chlorovinylsilane compound [12-1] include, but are not limited to, the following compounds: chlorovinylsilane, chloromethylvinylsilane, chlorodimethylvinylsilane, chloroethylvinylsilane, and chlorodiethylvinylsilane.
  • a preferred compound is chlorodimethylvinylsilane.
  • vinylsilanol compound [12-2] include, but are not limited to, the following compounds: vinylsilanol, methylvinylsilanol, dimethylvinylsilanol, ethylvinylsilanol, diethylvinylsilanol.
  • a preferable compound is dimethylvinylsilanol.
  • the monoalkoxyvinylsilane compound [12-3] include, but are not limited to, the following compounds: methoxyvinylsilane, ethoxyvinylsilane, methylmethoxyvinylsilane, methylethoxyvinylsilane, dimethylmethoxyvinylsilane, Dimethyl ethoxy vinyl silane, ethyl methoxy vinyl silane, ethyl ethoxy vinyl silane, diethyl methoxy vinyl silane, diethyl ethoxy vinyl silane.
  • preferred compounds include dimethylmethoxyvinylsilane and dimethylethoxyvinylsilane.
  • divinyldisiloxane compound [12-4] include, but are not limited to, the following compounds: 1,3-vinyldisiloxane, 1,3-dimethyl-1,3- Divinyldisiloxane, 1,1,3,3-tetramethyl-1,3-divinyldisiloxane, 1,3-diethyl-1,3-divinyldisiloxane, 1,1,3,3-tetraethyl-1,3 -Divinyldisiloxane.
  • 1,1,3,3-tetramethyl-1,3-divinyldisiloxane is a preferred compound.
  • first dialkoxysilane [9] and trialkoxysilane [10] (or dialkoxysilane [9], trialkoxysilane [10] and tetraalkoxysilane [11] are used.
  • at least one selected from the group consisting of boron compounds [17]) a predetermined amount in a reaction vessel at room temperature, water and, if necessary, a reaction solvent are added, and a condensation reaction proceeds if desired.
  • the order of charging at this time is not limited to this, and the reaction solution can be prepared by charging in any order.
  • the silicone intermediate [II] can be obtained by allowing the reaction to proceed at a predetermined temperature for a predetermined time while stirring the reaction solution.
  • the reaction vessel is equipped with a reflux device. It is preferable.
  • the amount of dialkoxysilane [9], trialkoxysilane [10] and tetraalkoxysilane [11] used is not particularly limited.
  • the dialkoxysilane [9]: trialkoxysilane [10] is preferably mixed in a molar ratio of 85:15 to 15:85, and 85: It is particularly preferable to mix at 15 to 30:70.
  • the molar ratio of dialkoxysilane [9] is less than 15, it may be higher than the desired molecular weight, and when it exceeds 85, the hydrolysis polycondensation reaction is difficult to proceed and may be lower than the desired molecular weight. is there.
  • the amount is 1 to 80 mol with respect to 100 mol in total of dialkoxysilane [9], trialkoxysilane [10] and tetraalkoxysilane [11]. It is preferably 1 to 60 mol, particularly preferably.
  • the amount when the boron compound [17] is used is not particularly limited.
  • Total molar equivalent of alkoxy groups contained in dialkoxysilane [9] and trialkoxysilane [10] (when using tetraalkoxysilane [6], dialkoxysilane [9] and trialkoxysilane It is preferable to use a boric acid compound of 0.05 times or more and 0.3 times or less with respect to [10] and the total molar equivalent of alkoxy groups contained in tetraalkoxysilane [6]. If the amount is less than 0.05 times the molar equivalent, the alkoxysilane compound may not be hydrolyzed efficiently. If the amount is more than 0.3 times the molar equivalent, the boric acid compound is added to the reaction solution after the reaction. Precipitation may occur and the solution may become cloudy.
  • the amount of water used in the second condensation step is not particularly limited. From the viewpoint of reaction efficiency, it is preferably 1.0 to 5 times the molar equivalent of the total molar equivalent of the alkoxy groups contained in the alkoxysilane compound of the raw material compound. Within this range, the hydrolysis of the alkoxysilane compound proceeds efficiently.
  • the reaction can be performed under solvent-free conditions, but a reaction solvent can also be used.
  • the type of the reaction solvent is not particularly limited as long as the reaction for producing the silicone intermediate [II] is not inhibited.
  • hydrophilic organic solvents such as alcohols are preferable. Specific examples include methanol, ethanol, n-propanol, isopropanol, butanol and the like, but are not limited thereto.
  • the amount of the reaction solvent used is preferably 0.1 to 1000% by mass, particularly preferably 1 to 300% by mass, based on the total amount of the alkoxysilane compound used.
  • alcohols generated from the alkoxysilane compound as a reaction raw material in the reaction process function as a reaction solvent, it may not always be necessary to add.
  • an acidic catalyst or a basic catalyst can be used, and the use of an acidic catalyst is preferred.
  • This type is not particularly limited. Examples thereof include inorganic acids such as acetic acid, hydrochloric acid, nitric acid, sulfuric acid, and hydrofluoric acid, and organic acids such as trifluoromethanesulfonic acid, tosylic acid, trifluoroacetic acid, benzoic acid, citric acid, and oxalic acid.
  • acetic acid, hydrochloric acid, nitric acid, sulfuric acid, and hydrofluoric acid are preferable, and acetic acid is more preferable because it is easy to remove the acidic catalyst after completion of the reaction.
  • the kind of basic catalyst is not specifically limited.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, triethylamine, pyridine, diisopropylamine, pyrrolidine, 1,8-diazabicyclo [5.4 .0] undecene (abbreviation: DBU), 1,5-diazabicyclo [4.3.0] nonene, guanidine, 1-methylguanidine, 1,1,3,3-tetramethylguanidine, and other organic bases.
  • the amount of the catalyst used in the second condensation step is preferably 0.001 to 5% by mass, particularly preferably 0.005 to 1% by mass, based on the total mass of the alkoxysilane compound, solvent and water used. is there.
  • the reaction time in the second condensation step is usually from about 3 hours to about 15 hours, and the reaction temperature is usually from 60 ° C. to 120 ° C., preferably from 80 ° C. to 100 ° C.
  • This separation method is not particularly limited.
  • the separation method include an extraction method. Specifically, after lowering the temperature of the reaction solution after the above-described reaction to room temperature, silicone intermediate [II] present in the reaction system is extracted by contacting with a non-aqueous organic solvent as an extraction solvent. Next, the catalyst contained in the solution after extraction is removed.
  • the method for removing the catalyst is not particularly limited. For example, if the catalyst used (for example, acetic acid) is water-soluble, this catalyst can be removed by washing the solution after extraction with water (preferably ion-exchanged water).
  • the amount of water to be used is not particularly limited, it is preferably carried out in an amount of 30% by mass to 400% by mass with respect to the total amount of the reaction solution.
  • a desiccant is added to the solution after removing the catalyst to remove water dissolved in the system.
  • silicone intermediate [II] can be separated with high purity by removing the desiccant and removing the extraction solvent under reduced pressure. At this time, water may be simultaneously removed under reduced pressure in the process of removing the extraction solvent from the solution after removing the catalyst under reduced pressure without using a desiccant.
  • a non-aqueous organic solvent can be used as the extraction solvent.
  • the kind of this non-aqueous organic solvent is not specifically limited. Examples thereof include aromatic hydrocarbons and ethers. Specific examples include toluene, diethyl ether, isopropyl ether, dibutyl ether, and the like, but are not limited thereto.
  • the desiccant is not particularly limited as long as water can be removed from the system and separated from the silicone intermediate [II].
  • a solid desiccant is preferably used. Specifically, although magnesium sulfate etc. are mentioned, it is not limited to this.
  • the silicone intermediate [II] thus separated and purified may be further subjected to a condensation reaction by heating and stirring in a solvent or under heating without solvent. Thereby, the molecular weight of silicone intermediate [II] can be increased.
  • the silicone intermediate [II] and the solvent are put into a reaction vessel capable of being heated to reflux to obtain a solution.
  • the solution is heated to reflux and azeotroped with water generated in the system as the condensation proceeds.
  • tosylic acid or the like may be added to the solution and heated to reflux.
  • the type of solvent used is not particularly limited as long as it can dissolve the silicone intermediate [II] and can be heated to reflux.
  • the silicone intermediate [II] is charged into a reaction vessel capable of being heated and stirred, heated to 100 ° C. or higher and 150 ° C. or lower and stirred for 6 to 18 hours. At this time, in order to suppress the change in the composition ratio of the silicone intermediate [II], it is preferable to provide the reaction vessel with a reflux device (for example, a condenser). After heating and stirring, the content liquid is cooled to room temperature.
  • a reflux device for example, a condenser
  • the second modification step can be described by applying the first modification step in the above-described method for producing the component (A). That is, the silane compound [8], chlorosilane compound [8-1], silanol compound [8-2], monoalkoxysilane compound [8-3], disiloxane compound [8-4] in the chlorosilane method or alkoxysilane method described above. ] Are respectively replaced with a vinylsilane compound [12], a chlorovinylsilane compound [12-1], a vinylsilanol compound [12-2], a monoalkoxyvinylsilane compound [12-3], and a divinyldisiloxane compound [12-4].
  • the silicone intermediate (B-1) can be produced from the silicone intermediate (II).
  • (B-2) component The component (B-2) is a silicone resin represented by the following formula [3] and containing a vinyl group (Si—CH ⁇ CH 2 group) bonded to a silicon atom.
  • the above formula [3] represents an average composition formula.
  • the oxygen atoms in the structural units represented by (SiR 7 2 O 2/2 ), (R 8 SiO 3/2 ), (CH 2 ⁇ CH—SiO 3/2 ) and (SiO 4/2 ) are each siloxane.
  • An oxygen atom, an oxygen atom forming a borosiloxane bond, or an oxygen atom forming a B—OH group is shown.
  • alkyl group having 1 to 3 carbon atoms in R 7 of the above formula [3] a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • the aromatic hydrocarbon group having 6 to 10 carbon atoms in R 7 is preferably a phenyl group.
  • alkyl group having 1 to 3 carbon atoms in R 8 a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
  • the aromatic hydrocarbon group having 6 to 10 carbon atoms for R 8 is preferably a phenyl group, a 3-trifluoromethylphenyl group, a 4-trifluoromethylphenyl group, or a 3,5-di (trifluoromethylphenyl) group.
  • a phenyl group is particularly preferred.
  • R 7 and R 8 are not particularly limited. Among these, R 7 is preferably a methyl group or an ethyl group, R 8 is preferably a methyl group, an ethyl group or a phenyl group, and R 7 is particularly preferably a methyl group and R 8 is a methyl group.
  • the value of j is preferably 0.10 to 0.80, and particularly preferably 0.10 to 0.50. If the value of j is 0.10 or more, the composition of the present invention has good moldability, and if it is 0.40 or less, the cured product of the present invention has good mechanical strength.
  • the value of k is preferably 0.10 to 0.80, particularly preferably 0.20 to 0.60. If the value of k is 0.10 or more, the composition of the present invention has good moldability, and if it is 0.80 or less, the cured product of the present invention has good mechanical strength.
  • the value of l is preferably 0.10 to 0.80, and particularly preferably 0.10 to 0.35. If the value of l is 0.10 or more, the cured product of the present invention has good mechanical strength, and if it is 0.80 or less, the composition of the present invention has good moldability.
  • the value of m is preferably 0 to 0.70.
  • the value of m is particularly preferably 0.10 to 0.30 because the cured product of the present invention exhibits good adhesive strength. If the value of l is within this range, a cured product showing good adhesive strength can be obtained.
  • the structural unit of (SiO 4/2 ) does not exist in the above formula [3].
  • the 29 Si-NMR spectrum and 1 H-NMR spectrum of the component (B) are measured using a nuclear magnetic resonance apparatus, and these are complementarily combined. Can be used to calculate.
  • the value of y is obtained in the same manner as the method for obtaining the value of e in the component (A). That is, in the above-described method for obtaining the value of e, the (A) component is replaced with the (B-2) component, and the e value is replaced with the y value.
  • the structural unit represented by (SiR 7 2 O 2/2 ) is a structure represented by the following formula [3-2], that is, silicon in the structural unit represented by (SiR 7 2 O 2/2 ).
  • a structure in which one of oxygen atoms bonded to an atom forms a silanol group may be included.
  • R 7 has the same meaning as R 7 in the formula [3]
  • X represents a hydroxy group.
  • the structural unit represented by (SiR 7 2 O 2/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [3-b], and further includes the following formula [3-2-b]
  • the part enclosed with the broken line of the structural unit represented by may be included. That is, a structural unit having a group represented by R 7 and having a hydroxy group remaining at the terminal to form a silanol group is also included in the structural unit represented by (SiR 7 2 O 2/2 ). It is.
  • the oxygen atom in the Si—O—Si bond forms a siloxane bond with the adjacent silicon atom, and the adjacent structural unit and oxygen atom Sharing.
  • one oxygen atom in the Si—O—Si bond is defined as “O 1/2 ”.
  • E represents a silicon atom or a boron atom
  • R 7 has the same meaning as R 7 in the formula [3].
  • X represents a hydroxy group.
  • the structural unit represented by (R 8 SiO 3/2 ) is a structure represented by the following formula [3-3] or [3-4], that is, a structure represented by (R 8 SiO 3/2 ).
  • the structure which forms the silanol group may be included.
  • R 8 has the same meaning as R 8 in the above formula [3]
  • X represents a hydroxy group.
  • the structural unit represented by (R 8 SiO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [3-c-1], and further includes the following formula [3-3-3-c ] Or a portion surrounded by a broken line of the structural unit represented by [3-4-c]. That is, a structural unit having a group represented by R 8 and having a hydroxy group remaining at the terminal to form a silanol group is also included in the structural unit represented by (R 8 SiO 3/2 ). .
  • the formula [3-c-1], in [3-3-c] and [3-4-c] E represents a silicon atom or a boron atom, R 8 and R 8 in the formula [3] It is synonymous.
  • X represents a hydroxy group.
  • the structural unit represented by (CH 2 ⁇ CH—SiO 3/2 ) is a structure represented by the following formula [3-5] or [3-6], that is, (CH 2 ⁇ CH—SiO 3/2 ) In which two of the oxygen atoms bonded to the silicon atom in the structural unit represented by each form a silanol group, or silicon in the structural unit represented by (CH 2 ⁇ CH—SiO 3/2 ) A structure in which one of oxygen atoms bonded to an atom forms a silanol group may be included.
  • Vi has the same meaning as the CH 2 ⁇ CH— group in the formula [3]
  • X represents a hydroxy group.
  • the structural unit represented by (R 8 SiO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [3-c-2], and further includes the following formula [3-5-c ] Or a portion surrounded by a broken line of the structural unit represented by [3-6-c]. That is, a structural unit having a group represented by R 8 and having a hydroxy group remaining at the terminal to form a silanol group is also included in the structural unit represented by (R 8 SiO 3/2 ). .
  • E represents a silicon atom or a boron atom
  • Vi represents CH 2 ⁇ CH in the above formula [3].
  • X represents a hydroxy group.
  • the structural unit represented by (SiO 4/2 ) is represented by the following formula [3-7], [3-8] or [3-9], ie, (SiO 4/2 ).
  • a structure in which three or two oxygen atoms bonded to a silicon atom in a structural unit each form a silanol group, or an oxygen atom bonded to a silicon atom in a structural unit represented by (SiO 4/2 ) One of these may contain a structure in which a silanol group is formed.
  • X represents a hydroxy group.
  • the structural unit represented by (SiO 4/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula [3-d], and further includes the following formulas [3-7-d], [3 A portion surrounded by a broken line of the structural unit represented by -8-d] or [3-9-d] may be included. That is, a structural unit in which a hydroxy group remains at the terminal to form a silanol group is also included in the structural unit represented by (SiO 4/2 ).
  • E represents a silicon atom or a boron atom
  • X represents a hydroxy group.
  • Structural unit represented by (BO 3/2) has the same meaning as the structural unit represented by the according to the above formula [1] (BO 3/2).
  • a dialkoxysilane compound represented by the following general formula [13], a trialkoxysilane compound represented by the following general formula [14], and a vinyltrialkoxysilane represented by the following general formula [16] Decomposed and polycondensed (or the dialkoxysilane compound represented by the following general formula [13], the trialkoxysilane compound represented by the following general formula [14], and the following general formula [16] Hydrolysis polycondensation of vinyltrialkoxysilane and at least one selected from the group consisting of a tetraalkoxysilane compound represented by the following general formula [15] and a boric acid compound represented by the following general formula [18] And (B-2) a step of obtaining a component (hereinafter sometimes referred to as “third condensation step”).
  • R 7 in the general formula [13] has the same meaning as R 7 in the formula [3], R 17 represents an alkyl group having 1-3 carbon atoms, the two R 17 are the same or different types from each other Also good.
  • dialkoxysilane [13]] include, but are not limited to, the following compounds. Not: dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane.
  • preferred compounds include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.
  • R 8 in the general formula [14] has the same meaning as R 8 in the formula [3], R 18 is an alkyl group having 1 to 3 carbon atoms, the three R 18 is a same or different kind from each other Also good.
  • trialkoxysilane compounds represented by the general formula [14] include, but are not limited to, the following compounds: Not: methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- (trifluoromethyl) Phenyltrimethoxysilane, 3- (trifluoromethyl) phenyltriethoxysilane, 4- (trifluoromethyl) phenyltrimethoxysilane, 4- (trifluoromethyl) phenyltriethoxysilane, 3,5- (ditrifluoromethyl) Phenyltrimethoxysila , 3,5- (ditrifluoromethyl) Phenyltrimethoxysila , 3,5- (ditrifluoro
  • preferred compounds include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- (trifluoromethyl) phenyltrimethoxysilane, and 3- (trifluoromethyl) phenyltriethoxysilane.
  • 4- (trifluoromethyl) phenyltrimethoxysilane, 4- (trifluoromethyl) phenyltriethoxysilane 3,5- (ditrifluoromethyl) phenyltrimethoxysilane, 3,5- (ditrifluoromethyl) phenyltriethoxy Silanes are mentioned, and particularly preferable compounds include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane.
  • R 19 in the general formula [15] is an alkyl group having 1 to 3 carbon atoms, and the four R 19 may be the same or different from each other.
  • tetraalkoxysilane [15] examples include, but are not limited to, the following compounds. Not: tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane. Among these, preferred compounds include tetramethoxysilane and tetraethoxysilane.
  • R 20 in the general formula [16] is an alkyl group having 1 to 3 carbon atoms, and the two R 20 may be the same or different from each other.
  • vinyltrialkoxysilane compound represented by the general formula [16] include, but are not limited to, the following compounds. Not: vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltri-n-propoxysilane. Among these, preferred compounds include vinyltrimethoxysilane and vinyltriethoxysilane.
  • R 22 in the general formula [18] represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and the three R 22 may be the same or different from each other.
  • boron compound [18] Specific examples of the boron compound represented by the general formula [18] include, but are not limited to, the following compounds. : Boric acid (boric acid is a generic term for boron oxo acids such as orthoboric acid, metaboric acid, hypoboric acid), trimethyl borate, triethyl borate, triisopropyl borate, triborate triborate n-propyl. Among these, a preferable compound is boric acid.
  • dialkoxysilane [13], trialkoxysilane [14], tetraalkoxysilane [15], and vinyltrialkoxysilane [16] used for the production of component (B-2) is not particularly limited.
  • Dialkoxysilane [13], trialkoxysilane [14], tetraalkoxysilane [15], and vinyltrialkoxysilane [16] may be used singly or in combination.
  • Dialkoxysilane [13] is dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane, One or more selected from the group consisting of diphenyldimethoxysilane, diphenyldiethoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, phenylethyldimethoxysilane and phenylethyldiethoxysilane, Trialkoxysilane [14] is methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane
  • One or more dialkoxysilanes [13] are selected from the group consisting of dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane and diphenyldiethoxysilane
  • the trialkoxysilane [14] is selected from the group consisting of methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane
  • At least one tetraalkoxysilane [15] is selected from the group consisting of tetramethoxysilane and tetraethoxysilane
  • One or more vinyltrialkoxysilane [16] is selected from the group consisting of vinyltrimethoxysilane and vinyltriethoxysilane.
  • Boron compound [18] can be further used for these combinations.
  • the type of the boron compound [18] is not particularly limited.
  • Boric acid (where boric acid is a generic term for boron oxo acids such as orthoboric acid, metaboric acid, and hypoboric acid), trimethyl borate, triethyl borate, triisopropyl borate, and tri-n borate
  • boric acid is particularly preferred.
  • dialkoxysilane [13], trialkoxysilane [14], and vinyltrialkoxysilane [16] (or dialkoxysilane [13] and trialkoxysilane [16] are used.
  • vinyltrialkoxysilane [16] and at least one selected from the group consisting of tetraalkoxysilane [15] and boron compound [17]) are placed in a reaction vessel at room temperature, Water and, if necessary, a reaction solvent are added, and, if desired, a catalyst for advancing the condensation reaction is added to obtain a reaction solution.
  • the order of charging at this time is not limited to this, and the reaction solution can be prepared by charging in any order.
  • the component (B-2) can be obtained by advancing the reaction at a predetermined temperature for a predetermined time while stirring the reaction solution.
  • the reaction vessel is equipped with a reflux device. It is preferable.
  • the amount of dialkoxysilane [13], trialkoxysilane [14], tetraalkoxysilane [15] and vinyltrialkoxysilane [16] used is not particularly limited.
  • the dialkoxysilane [14]: trialkoxysilane [15] is preferably mixed in a molar ratio of 85:15 to 15:85, and 85: It is particularly preferable to mix at 15 to 30:70.
  • dialkoxysilane [14] When the molar ratio of dialkoxysilane [14] is less than 15, it may be higher than the desired molecular weight, and when it exceeds 85, the hydrolysis polycondensation reaction is difficult to proceed and may be lower than the desired molecular weight. is there.
  • the amount When tetraalkoxysilane [15] is used, the amount is 100 mol in total of dialkoxysilane [13], trialkoxysilane [14], tetraalkoxysilane [15], and vinyltrialkoxysilane [16]. The amount is preferably 1 to 80 mol, particularly preferably 1 to 60 mol.
  • the total amount of dialkoxysilane [13], trialkoxysilane [14], tetraalkoxysilane [15] and vinyltrialkoxysilane [16] is 100 mol.
  • the amount is preferably 5 to 50 mol, particularly preferably 10 to 40 mol.
  • the amount when the boron compound [18] is used is not particularly limited.
  • Total molar equivalent of alkoxy groups contained in dialkoxysilane [13], trialkoxysilane [14] and vinyltrialkoxysilane [16] (when using tetraalkoxysilane [15], dialkoxy 0.05 times or more of the total molar equivalent of alkoxy groups contained in silane [13], trialkoxysilane [14], vinyltrialkoxysilane [16], and tetraalkoxysilane [15]) It is preferable to use a boric acid compound of 0.3 times or less.
  • the alkoxysilane compound may not be hydrolyzed efficiently. If the amount is more than 0.3 times the molar equivalent, the boric acid compound is added to the reaction solution after the reaction. Precipitation may occur and the solution may become cloudy.
  • the amount of water used in the third condensation step is not particularly limited.
  • the total molar equivalent of alkoxy groups contained in the alkoxysilane compound of the raw material compound that is, dialkoxysilane [13], trialkoxysilane [14], tetraalkoxysilane [15] and vinyltrialkoxysilane It is preferable that it is 1.0 times molar equivalent or more and 5 times molar equivalent or less with respect to the total molar equivalent of the alkoxy group contained in [16]. Within this range, the alkoxysilane compound is efficiently hydrolyzed.
  • the reaction can be performed under solvent-free conditions, but a reaction solvent can also be used.
  • the type of the reaction solvent is not particularly limited as long as the reaction for producing the component (B-2-b) is not inhibited.
  • Specific examples of the hydrophilic organic solvent include, but are not limited to, methanol, ethanol, normal propanol, isopropanol, butanol and the like.
  • the water-insoluble organic solvent include, but are not limited to, benzene, toluene, xylene, diisopropyl ether, tetrahydrofuran, and the like.
  • the ratio of the hydrophilic organic solvent to the water-insoluble organic solvent is preferably in the range of 5: 1 to 1: 5, more preferably in the range of 1: 1 to 1: 3 by mass ratio.
  • the amount of the reaction solvent used is preferably 0.1 to 1,000% by mass, particularly preferably 1 to 300% by mass, based on the total amount of the alkoxysilane compound used.
  • an acidic catalyst or a basic catalyst can be used, and the use of a basic catalyst is preferred.
  • the kind of the basic catalyst is not particularly limited.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, triethylamine, pyridine, diisopropylamine, pyrrolidine, 1,8-diazabicyclo [5.4 .0] undecene (abbreviation: DBU), 1,5-diazabicyclo [4.3.0] nonene, guanidine, 1-methylguanidine, 1,1,3,3-tetramethylguanidine, and other organic bases.
  • DBU 1,8-diazabicyclo [5.4 .0] undecene
  • the kind of acidic catalyst is not specifically limited. Examples thereof include water-soluble inorganic acids such as acetic acid, hydrochloric acid, nitric acid, sulfuric acid, and hydrofluoric acid, and organic acids such as trifluoromethanesulfonic acid, tosylic acid, trifluoroacetic acid, benzoic acid, citric acid, and oxalic acid.
  • the amount of the catalyst used in the third condensation step is preferably 0.001 to 5% by mass, particularly preferably 0.005 to 1% by mass, based on the total amount of the alkoxysilane compound, solvent and water used. is there.
  • the reaction time in the third condensation step is usually 1 to 48 hours, and the reaction temperature is usually 10 to 80 ° C., preferably 20 to 60 ° C.
  • the separation method is not particularly limited.
  • the separation method include an extraction method. Specifically, after the temperature of the reaction solution after the reaction described above is lowered to room temperature, the component (B-2) present in the reaction system is extracted by contacting with a non-aqueous organic solvent as an extraction solvent.
  • a catalyst it is preferable to remove the catalyst contained in the solution after extraction.
  • the method for removing the catalyst is not particularly limited. For example, if the catalyst used is a base catalyst, the catalyst can be removed by washing the extracted solution with an acidic aqueous solution such as hydrochloric acid. Further, water is removed from the system using a desiccant as necessary.
  • a non-aqueous organic solvent can be used as the extraction solvent.
  • the kind of this non-aqueous organic solvent is not specifically limited. Examples thereof include aromatic hydrocarbons and ethers. Specific examples include toluene, diethyl ether, isopropyl ether, dibutyl ether, and the like, but are not limited thereto.
  • the desiccant is not particularly limited as long as water can be removed from the system and separated from the component (B-2).
  • a solid desiccant is preferably used.
  • magnesium sulfate etc. are mentioned, it is not limited to this.
  • the amount of CH 2 ⁇ CH—Si group contained in the component (B) is not particularly limited.
  • the range is preferably from 0.1 to 5.0 mmol / g, particularly preferably from 0.3 to 3.5 mmol / g. If the content of CH 2 ⁇ CH—Si group is 0.1 mmol / g or more, the addition curing reaction proceeds easily, and if it is 5.0 mmol / g or less, the component (B) has good storage stability.
  • the content of CH 2 ⁇ CH—Si group in the component (B) is calculated by measuring the 1 H-NMR spectrum of the component (B) with the internal standard using a nuclear magnetic resonance apparatus. be able to.
  • the amount of Si—OH group contained in the component (B) is not particularly limited.
  • the range is preferably from 0.5 to 6.0 mmol / g, particularly preferably from 1.0 to 3.5 mmol / g. If the Si—OH group content is 6.0 mmol / g or less, bubbles are hardly observed in the cured product.
  • the content of the Si—OH group in the component (B) was determined by measuring the 29 Si-NMR spectrum and the 1 H-NMR spectrum of the component (B) using a nuclear magnetic resonance apparatus. It can be calculated using a combination.
  • the mass average molecular weight of the component (B) is not particularly limited. It is preferably 500 to 50,000, and more preferably 800 to 3,500. If the mass average molecular weight is 500 or more, the cured product of the present invention has good resin strength, and if it is 50,000 or less, the curable polyborosiloxane resin composition has good moldability.
  • the mass average molecular weight is a value obtained by measuring with a gel permeation chromatography (abbreviation: GPC) method and converting with a standard polystyrene calibration curve.
  • the viscosity of a component is not specifically limited. From the viewpoint of handling workability, the viscosity at 25 ° C. is preferably 0.001 to 10,000,000 cP (centipoise), more preferably 0.001 to 500,000 cP. If the viscosity is more than 10,000,000 cP, the moldability may be inferior, but it is also possible to treat the temperature by heating.
  • the viscosity of the component (B) can be measured with a rotational viscometer or the like.
  • the hydrosilylation catalyst as component (C) is used to promote an addition curing reaction (hydrosilylation reaction) between the SiH group in component (A) and the Si—CH ⁇ CH 2 group in component (B) described later. Blended.
  • the kind of (C) component is not specifically limited, It is preferable to use at least 1 or more types chosen from the group which consists of a platinum-type catalyst, a rhodium-type catalyst, and a palladium-type catalyst. Especially, since the transparency of a sealing material can be made high, it is especially preferable to use a platinum-type catalyst.
  • platinum catalyst examples include platinum powder, chloroplatinic acid, complexes of chloroplatinic acid and alcohols, aldehydes, ketones, platinum-olefin complexes, platinum-alkenylsiloxane complexes, platinum-carbonyl complexes, and the like.
  • platinum-carbonylvinylmethyl complex platinum-divinyltetramethyldisiloxane complex (cursed catalyst), platinum-cyclovinylmethylsiloxane complex, platinum-octylaldehyde complex, platinum-phosphine complex, dicarbonyldichloroplatinum and the like. Of these, platinum-divinyltetramethyldisiloxane complex, platinum-cyclovinylmethylsiloxane complex and the like are preferable.
  • component (C) A commercially available product may be used as the component (C), or a synthesized product may be used.
  • Component (C) can be synthesized by a conventionally known method.
  • a curing condensation catalyst may be added to the composition of the present invention for the purpose of improving the hardness of the cured product.
  • the kind of the condensation catalyst for curing is not particularly limited.
  • an organic tin compound, an organic titanium compound, an organic zinc compound, an organic aluminum compound, an organic zirconium compound, a boron compound, and the like can be given. These compounds may be used alone or in combination.
  • organotin compounds related to the curing condensation catalyst include di-n-butyldiacetoxytin, bis (2-ethylhexanoate) tin (II), bis (neodecanoate) tin (II), and dibutylbis (2-ethylhexylmale).
  • tin dibutyl laurate tin (IV), dimethyl dineodecanoate tin, dibutyl bis (2,4-pentanedionate) tin, dioctyl diurarate tin, dibutyl dioleate, tin acetate (IV), Examples thereof include tin (II) acetate.
  • organic titanium compounds related to the condensation catalyst for curing include tetraisopropoxy titanium, tetrabutoxy titanium, titanium tetraacetylacetonate, diisopropoxybis (ethyl acetoacetate) titanium, diisopropoxybis (acetylacetone) titanium, dibutoxybis (acetate). And ethyl acetate) titanium.
  • Examples of the organic zinc compound related to the curing condensation catalyst include zinc benzoate, dimethoxyzinc, diethoxyzinc, zinc methoxyethoxide, bis (2,4-pentanedionate) zinc, zinc acetate, zinc 2-ethylhexanoate, Examples include zinc formate, zinc methacrylate, zinc neodecanoate, zinc undecylenate, and zinc octylate.
  • organoaluminum compounds related to the condensation catalyst for curing include trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, tri-n-propoxyaluminum, tri-n-butoxyaluminum, aluminum naphthenate, aluminum stearate, aluminum octylate
  • Examples of the organic zirconium compound related to the condensation catalyst for curing include zirconium tetrabutoxide, zirconium tetraisopropoxide, zirconium tetramethoxide, zirconium tributoxide monoacetylacetonate, zirconium dibutoxide bisacetylacetonate, zirconium monobutoxide trisethylacetonate. , Zirconium tetraacetylacetonate, zirconium tetraethylacetoacetonate and the like.
  • Examples of boron compounds related to the condensation catalyst for curing include tetrafluoroborate methylamine salt, tetrafluoroborate dimethylamine salt, tetrafluoroborate trimethylamine salt, tetrafluoroborate ethylamine salt, tetrafluoroborate diethylamine salt, tetrafluoroborate triethylamine salt, and the like. Can be mentioned.
  • the content of the curing condensation catalyst in the composition of the present invention is not particularly limited. In the present composition, 0.001 to 1.0% by mass is preferable, and 0.005 to 0.1% by mass is particularly preferable.
  • the composition of the present invention aims to improve the storage stability and handling workability of the composition and to adjust the hydrosilylation reactivity during the curing process.
  • a curing retarder may be blended.
  • the type of the curing retarder is not particularly limited as long as it is a compound having a curing retarding effect with respect to the component (C).
  • a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, a nitrogen-containing compound, an organic sulfur compound, an organic peroxide, and the like can be given. These compounds may be used alone or in combination.
  • the compound containing an aliphatic unsaturated bond as a retarder examples include 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, and 3,5-dimethyl
  • examples thereof include propargyl alcohols such as -1-hexyn-3-ol and 1-ethynyl-1-cyclohexanol, ene-yne compounds, and maleic esters such as maleic anhydride and dimethyl maleate.
  • organophosphorus compound related to the curing retarder include triorganophosphines, diorganophosphines, organophosphines, triorganophosphites and the like.
  • nitrogen-containing compounds related to the retarder include N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, and the like.
  • N′-tetrasubstituted alkylenediamines N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dibutylethylenediamine, N, N-dibutyl-1,3-propanediamine, N, N-dimethyl-1 N, N-disubstituted alkylenediamines such as 1,3-propanediamine, N, N-dibutyl-1,4-butanediamine, trisubstituted amines such as tributylamine, benzotriazole, and 2,2′-bipyridine It is done.
  • organic sulfur compound related to the curing retarder examples include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide and the like.
  • organic peroxide related to the curing retarder examples include di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and tert-butyl perbenzoate.
  • oxidation retardants compounds containing an aliphatic unsaturated bond and nitrogen-containing compounds are preferred, and maleic esters, propargyl alcohols, N, N, N ′, N′-tetrasubstituted alkylenediamines are preferred.
  • maleic esters, propargyl alcohols, N, N, N ′, N′-tetrasubstituted alkylenediamines are preferred.
  • Preferred are dimethyl maleate, 2-methyl-3-butyn-2-ol, 1-ethynyl-1-cyclohexanol, and N, N, N ′, N′-tetramethylethylenediamine.
  • the content of the curing retarder in the composition of the present invention is not particularly limited. Usually, a curing retarder may be added in an amount of 20 to 200 equivalents per 1 equivalent of platinum atoms in the component (C) contained in the composition of the present invention, but this is not restrictive.
  • the degree of the retarding effect of the retarder varies depending on the chemical structure of the retarder. Therefore, it is preferable to adjust the blending amount to an optimal amount depending on the type of the curing retarder used. By adding an optimum amount of the retarder, the composition of the present invention has excellent long-term storage stability at room temperature and heat curability.
  • an adhesion-imparting agent may be blended for the purpose of improving the adhesion (adhesion).
  • the adhesion-imparting agent include silane coupling agents and hydrolysis condensates thereof.
  • silane coupling agent epoxy group-containing silane coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane, (meth) acryl group-containing silane coupling agent, isocyanate group-containing silane coupling agent, isocyanurate group-containing Examples include known silane coupling agents, amino group-containing silane coupling agents, mercapto group-containing silane coupling agents, and the like.
  • the content of this adhesion-imparting agent in the composition of the present invention is not particularly limited. In the present composition, it is preferably in the range of 1 to 20% by mass, particularly preferably in the range of 5 to 15% by mass.
  • antioxidants may be added to the composition of the present invention in order to suppress the occurrence of coloring and oxidative degradation of the cured product.
  • antioxidants include phenolic antioxidants, phosphorus antioxidants, and amine antioxidants. More specifically, 2,6-di-tert-butyl-4-methylphenol, 2,5-di-tert-amylhydroquinone, 2,5-di-tert-butylhydroquinone, 4,4′-butylidenebis ( 3-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), etc. . These may be used individually by 1 type and may use 2 or more types together.
  • the blending amount in the case of using this antioxidant is not particularly limited as long as it is within the range that does not impair the characteristics such as transparency of the cured product of the present invention and is an effective amount as an antioxidant. It is usually preferable to add about 0.1 to 1,000 ppm, particularly about 10 to 500 ppm with respect to the total mass of the composition of the present invention. When the blending amount is within the above range, the antioxidant ability is sufficiently exhibited, and a cured product having excellent engineering characteristics can be obtained without occurrence of coloring, white turbidity, oxidative degradation and the like.
  • a light stabilizer may be added to the composition of the present invention in order to impart resistance to light deterioration caused by light energy such as sunlight and fluorescent light.
  • the kind of this light stabilizer is not specifically limited,
  • generated by photooxidation degradation is used suitably.
  • antioxidant effect can also be improved more by using together with the above-mentioned antioxidant.
  • Specific examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 4-benzoyl-2,2,6,6-tetramethylpiperidine, ADK STAB LA-77Y ( And ADEKA STAB LA-52 (manufactured by ADEKA Corporation).
  • the blending amount in the case of using this light stabilizer is not particularly limited as long as it is in an amount that does not impair the characteristics such as transparency of the cured product of the present invention and is an effective amount as a light stabilizer.
  • 0.001 to 5 mass% is blended with respect to the total mass of the composition of the present invention, and it is particularly preferable to blend about 0.01 to 1 mass%.
  • the composition of the present invention can contain a phosphor as an optional component.
  • the type of the phosphor is not particularly limited.
  • yellow which is widely used for light emitting diodes (LEDs), such as oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, oxysulfide phosphors, Examples include red, green, and blue light emitting phosphors.
  • oxide phosphors include yttrium, aluminum, and garnet-based YAG green to yellow light-emitting phosphors that include cerium ions, terbium, aluminum, and garnet-based TAG-based yellow light-emitting phosphors that include cerium ions.
  • Examples include silicate green to yellow light emitting phosphors containing europium ions.
  • Examples of the oxynitride phosphor include silicon, aluminum, oxygen, and nitrogen-based sialon-based red to green light-emitting phosphors containing europium ions.
  • Examples of nitride-based phosphors include calcium, strontium, aluminum, silicon, nitrogen-based casoon-based red light-emitting phosphors including europium ions.
  • Examples of sulfides include ZnS-based green color phosphors including copper ions and aluminum ions.
  • Examples of the oxysulfide phosphor include Y 2 O 2 S red light-emitting phosphor containing europium ions. These phosphors may be used alone or in a mixture of two or more.
  • the content of this phosphor in the composition of the present invention is not particularly limited. In the present composition, it is preferably in the range of 5 to 50% by mass, particularly preferably in the range of 10 to 40% by mass.
  • inorganic particles may be blended for the purpose of improving optical properties, workability, mechanical properties, and physicochemical properties in the cured product.
  • the kind of inorganic particles to be blended may be selected according to the purpose, or a single kind may be blended or a plurality of kinds may be blended in combination.
  • the inorganic particles may be surface-treated with a surface treatment agent such as a silane coupling agent.
  • inorganic oxide particles such as silica, barium titanate, titanium oxide, zirconium oxide, niobium oxide, aluminum oxide, cerium oxide, yttrium oxide, silicon nitride, boron nitride, silicon carbide, nitride
  • inorganic oxide particles such as silica, barium titanate, titanium oxide, zirconium oxide, niobium oxide, aluminum oxide, cerium oxide, yttrium oxide, silicon nitride, boron nitride, silicon carbide, nitride
  • nitride particles such as aluminum, carbon compound particles, and diamond particles, but other materials can be selected according to the purpose, and the present invention is not limited thereto.
  • the form of the inorganic particles to be blended may be any form such as powder or slurry depending on the purpose.
  • the refractive index of the cured product of the present invention should be adjusted to the same level, or blended with the curable polyborosiloxane resin composition of the present invention as an aqueous / solvent transparent sol. Is preferred.
  • the average particle size of the inorganic particles to be blended is not particularly limited, and those having an average particle size according to the purpose are used. Usually, it is about 1/10 or less of the particle
  • the average particle diameter of the inorganic particles means an arithmetic average value when the major axis is measured by selecting any 20 particles from 50 or more particles by observation with a scanning electron microscope (abbreviation: SEM). .
  • the amount of the inorganic particles to be blended is arbitrary as long as the characteristics such as heat-resistant transparency of the cured product of the present invention are not impaired. If the blended amount of inorganic particles is too small, the desired effect may not be obtained, and if it is too large, it may adversely affect various properties such as heat-resistant transparency, adhesion, transparency, moldability, and hardness of the cured product. is there. Usually, about 1 to 50% by mass may be added, and about 5 to 35% by mass is preferable.
  • composition of the present invention has a mold release agent, a resin modifier, a colorant, a diluent, an antibacterial agent, an antifungal agent, and leveling as long as the characteristics such as transparency of the cured product are not impaired.
  • An agent, an anti-sagging agent, and the like may be included.
  • the compounding ratio of the component (A) and the component (B) in the composition of the present invention is not particularly limited. Usually, it is blended based on the molar ratio of the SiH group contained in the molecule of the component (A) and the Si—CH ⁇ CH 2 group contained in the molecule of the component (B). Specifically, the number of moles of SiH groups contained in the molecule of component (A): the number of moles of Si—CH ⁇ CH 2 groups contained in the molecule of component (B) is 0.8: 0. A range of 2 to 0.5: 0.5 is preferable.
  • the composition of the present invention exhibits good moldability, and if the ratio is 0.5 or more, the present invention
  • the cured product has excellent heat-resistant transparency.
  • the amount of component (C) in the composition of the present invention is not particularly limited. Based on the total mass of component (A), component (B), and component (C), the amount of metal atoms in component (C) is preferably in the range of 0.003 to 30 ppm in terms of mass unit, More preferably, it is 0.003 to 5.0 ppm. If the compounding amount of the component (C) is 0.003 ppm or more, the addition curing reaction proceeds well, and if it is 30 ppm or less, excellent heat-resistant transparency is exhibited. Even within the above range, the smaller the amount of the component (C), the better the heat-resistant transparency. Therefore, the smaller the amount of the component (C), the better.
  • the total content of Si—OH groups in the component (A) and the component (B) in the composition of the present invention is not particularly limited, but may be in the range of 0.5 to 6.0 mmol / g. A range of 1.0 to 3.5 mmol / g is particularly preferable. If the Si—OH group content is 6.0 mmol / g or less, bubbles are hardly observed in the cured product.
  • the content of silanol groups in the component (A) and the component (B) was determined by measuring 29 Si-NMR spectrum and 1 H-NMR spectrum for each component using a nuclear magnetic resonance apparatus, and combining these in a complementary manner. Can be used to calculate.
  • the viscosity of the composition of the present invention is not particularly limited. From the viewpoint of handling workability, the viscosity at 25 ° C. is preferably 0.001 to 10,000,000 cP, and more preferably 0.001 to 500,000 cP. If the viscosity is more than 10,000,000 cP, the moldability may be inferior, but it is also possible to treat the temperature by heating.
  • the viscosity of the composition of the present invention can be measured with a rotational viscometer or the like.
  • the composition of this invention can be prepared by mix
  • This mixing method is not particularly limited. For example, a mixing method such as a universal kneader or a kneader can be employed. Moreover, you may mix
  • the component (A) and the component (C) are stored in separate containers, for example, a first composition containing a part of the component (B) and the component (C); B) The remainder of the component and the second composition containing the component (A) are stored in separate containers, blended immediately before use to make the composition of the present invention, degassed under reduced pressure, and used. May be.
  • a cured product of the curable polyborosiloxane resin composition of the present invention (sometimes referred to simply as “the cured product of the present invention” in the present specification) can be obtained by heating the composition of the present invention. it can.
  • the cured product of the present invention can be used as a sealing material for semiconductor devices, and is particularly suitable as a sealing material for optical semiconductor devices and power semiconductor devices.
  • a sealing material for optical semiconductor devices it can be suitably used as a sealing material for LED optical members, a sealing material for optical members for semiconductor lasers, etc., among others, as a sealing material for LED optical members. Particularly preferred.
  • optical semiconductor devices have their light extraction efficiency enhanced by various technologies.
  • the transparency of the sealing material of the optical semiconductor element is low, the sealing material absorbs light.
  • the light extraction efficiency of the optical semiconductor device used decreases. As a result, it tends to be difficult to obtain a high-brightness optical semiconductor device product.
  • the energy corresponding to the decrease in light extraction efficiency is changed to heat, which causes thermal deterioration of the optical semiconductor device, which is not preferable.
  • the cured product of the present invention is excellent in transparency. Specifically, the cured product of the present invention has a good light beam at a wavelength in the range of usually 300 nm or more, preferably 350 nm or more, and usually 900 nm or less, preferably 500 nm or less. It has transmittance. Therefore, it is preferable to use the cured product of the present invention as the sealing material in an optical semiconductor device having an emission wavelength in this region because a high-luminance optical semiconductor device can be obtained. In addition, this does not prevent using the hardened
  • the light transmittance can be measured by measuring transmittance with an ultraviolet / visible spectrophotometer.
  • the cured product of the present invention is excellent in heat-resistant transparency. That is, the cured product of the present invention has a property that the transmittance with respect to light having a predetermined wavelength does not easily fluctuate even when left for a long time under high temperature conditions. Specifically, the cured product of the present invention has a transmittance for light having a wavelength in the range of usually 300 nm or more, preferably 350 nm or more, and usually 900 nm or less, preferably 500 nm or less before and after being left at 200 ° C. for 100 hours. Has a good retention rate.
  • the cured product of the present invention as an encapsulant for an optical semiconductor device having an emission wavelength in this region because a high-intensity optical semiconductor device can be obtained and heat degradation is difficult. In addition, this does not prevent using the hardened
  • the variation ratio of the transmittance can be measured by measuring the transmittance with an ultraviolet / visible spectrophotometer.
  • the method for curing the composition of the present invention is not particularly limited.
  • an object to be sealed such as an LED by a method such as injection, dripping, casting, casting, extrusion from a container, or integral molding by transfer molding or injection molding to a site where the composition of the present invention is to be used.
  • the composition is usually heated at 45 to 300 ° C., preferably 60 to 200 ° C., so that the composition is cured to obtain a cured product, and the object to be sealed can be sealed. If the heating temperature is 45 ° C. or higher, stickiness is hardly observed in the obtained cured product, and if it is 300 ° C. or lower, foaming is hardly observed in the cured product, which is practical.
  • the heating time is not particularly limited, but is about 0.5 to 12 hours, preferably about 1 to 10 hours. If the heating time is 0.5 hours or longer, curing proceeds sufficiently, but if accuracy is required, such as for LED sealing, it is preferable to lengthen the curing time.
  • the cured product of the present invention can be used as a semiconductor encapsulant, and is particularly suitable as an encapsulant for optical semiconductor devices, power semiconductor devices, and the like.
  • the sealing material comprising the cured product of the present invention is excellent in heat-resistant transparency as described above. Moreover, it is excellent in heat resistance, cold resistance, and electrical insulation similarly to the hardened
  • the optical semiconductor device of the present invention includes at least an optical semiconductor element and a sealing material that seals the optical semiconductor element, and the cured product of the present invention is used as the sealing material.
  • Other configurations in the optical semiconductor device of the present invention are not particularly limited, and members may be provided in addition to the optical semiconductor element and the sealing material. Examples of such members include a base substrate, lead-out wiring, wire wiring, control element, insulating substrate, reflecting material, heat sink, conductive member, die bonding material, bonding pad, and the like.
  • some or all of the other members may be sealed with the cured product of the present invention.
  • optical semiconductor device of the present invention include, but are not limited to, a light emitting diode (LED) device, a semiconductor laser device, and a photocoupler.
  • the optical semiconductor device of the present invention includes, for example, a backlight such as a liquid crystal display, a light source such as illumination, various sensors, a printer and a copier, a measurement light source for a vehicle, a signal light, a display light, a display device, and a light source for a planar light emitter. It is suitably used for displays, decorations, various lights and switching elements.
  • the optical semiconductor device 10 includes at least a sealing material 1, an optical semiconductor element 2, and a bonding wire 3 on an optical semiconductor substrate 6.
  • the optical semiconductor substrate 6 has a recess composed of a bottom surface made of the lead frame 5 and an inner peripheral side surface made of the reflector 4.
  • the optical semiconductor element 2 is connected to the lead frame 5 using a die bond material (not shown).
  • a bonding pad (not shown) provided in the optical semiconductor element 2 and the lead frame 5 are electrically connected by a bonding wire 3.
  • the reflective material 4 has a function of reflecting light from the optical semiconductor element 2 in a predetermined direction.
  • a sealing material 1 is filled in the region of the concave portion of the optical semiconductor substrate 6 so as to at least seal the optical semiconductor element 2. At this time, the sealing material 1 may be filled so as to also seal the bonding wire 3.
  • the sealing material 1 consists of the hardened
  • the phosphor (not shown) may be included in the sealing material 1.
  • the sealing material 1 can protect the optical semiconductor element 2 from moisture, dust, and the like, and can maintain reliability over a long period of time. Furthermore, since the sealing material 1 also seals the bonding wire 3, it is possible to prevent electrical problems caused by the bonding wire 3 being disconnected, cut, or short-circuited at the same time.
  • the cured product of the present invention can be used as an adhesive for semiconductors as described later. Therefore, it can also be employed as the above-described die bond material.
  • optical semiconductor device 10 of the present invention as the optical semiconductor element 2 sealed by the sealing material 1 made of the cured product of the present invention, for example, an LED, a semiconductor laser, a photodiode, a phototransistor, a solar cell, CCD (Charge Coupled Device) and the like can be mentioned.
  • LED LED
  • semiconductor laser a photodiode
  • phototransistor a phototransistor
  • solar cell a solar cell
  • CCD Charge Coupled Device
  • FIG. 1 is only an example of the optical semiconductor device of the present invention, and the structure of the reflector, the structure of the lead frame, the mounting structure of the optical semiconductor element, and the like can be modified as appropriate.
  • the method for manufacturing the optical semiconductor device 10 shown in FIG. 1 is not particularly limited.
  • the optical semiconductor element 2 is die-bonded to a lead frame 5 provided with a reflective material 4, the optical semiconductor element 2 and the lead frame 5 are wire-bonded by a bonding wire 3, and then provided around the optical semiconductor element.
  • An example is a method in which the composition of the present invention is filled on the inner side of the reflecting material (the recess made of the lead frame and the reflecting material), and then cured by heating at 50 to 250 ° C. to obtain the sealing material 1.
  • the composition of the present invention Since the composition of the present invention has good adhesion, it can be used as an adhesive for semiconductor devices. Specifically, for example, when bonding a semiconductor element and a package, when bonding a semiconductor element and a submount, when bonding package components, when bonding a semiconductor device and an external optical member, etc.
  • the composition of the invention can be used by coating, printing, potting and the like. Since the composition of the present invention is excellent in heat resistance, it provides an optical semiconductor device having high reliability that can withstand long-term use when used as an adhesive for high-power optical semiconductor devices exposed to high temperatures and ultraviolet light for a long time. be able to.
  • a nuclear magnetic resonance apparatus manufactured by JEOL Ltd., model number: ECA-400 having a resonance frequency of 400 MHz was used.
  • f area of peak (o) / sum of total peak areas
  • g (sum of areas of peaks (a), (b), (c), and (d)) / sum of total peak areas
  • j (sum of areas of peaks (a), (b), (c), and (d)) / sum of total peak areas
  • h (the sum of the areas of peaks (e), (f), (g), (h), (i), and (j)) / sum of the total peak areas
  • k (sum of areas of peaks (e), (f), (g), (h), (i), and (j)) / sum of total peak areas
  • l (peak (p) area + peak (q) area + peak (r) area) / total peak area
  • i (peak (k) area + peak (l
  • the value of x in the above equation [2] and the value of y in the above equation [3] were also determined in accordance with the method for determining the value of e.
  • the composition ratio of the synthesized resin was determined based on the method for determining the value of e described above.
  • Mass average molecular weight (Mw) measurement The mass average molecular weight (Mw) of the synthesized resin was calculated by creating a calibration curve using polystyrene as a reference material by the gel permeation chromatography (abbreviation: GPC) method under the following conditions: Equipment: Tosoh Corporation, trade name: HLC-8320GPC, Column: manufactured by Tosoh Corporation, trade name: TSK gel Super HZ 2000x4, 3000x2, Eluent: tetrahydrofuran.
  • GPC gel permeation chromatography
  • the refractive index of the synthesized resin was measured using a refractometer (manufactured by Kyoto Electronics Industry Co., Ltd., model: RA-600).
  • Viscosity measurement Regarding the viscosity of the resin, using a rotational viscometer (Brookfield Engineering Laboratories, Inc., product name: DV-II + PRO) and a temperature control unit (Brookfield Engineering Laboratories, Inc., product name: THERMOSEL), 25 ° C. The value at was measured.
  • a polyborosiloxane intermediate (I-1) was obtained as a colorless viscous liquid.
  • the yield of the polyborosiloxane intermediate (I-1) is 246.7 g
  • the mass average molecular weight (Mw) is 620
  • the silicon atom content is 20 mass%
  • the boron atom content is 2.
  • the composition ratio of the product was (Me 2 SiO 2/2 ) 0.45 (PhSiO 3/2 ) 0.55 (BO 3/2 ) 0.35 .
  • reaction solution was stirred in an ice bath for 2 hours.
  • the reaction solution was dropped into a 2 L Erlenmeyer flask containing 500 mL of ion-exchanged water and stirred using a stirring blade.
  • the reaction solution was transferred to a separatory funnel and the organic layer was recovered, and then the organic layer was washed 3 times with 200 mL of 1N aqueous hydrochloric acid. Thereafter, the organic layer was washed three times with ion-exchanged water, and toluene was distilled off from the organic layer with an evaporator, followed by vacuum distillation (130 ° C., 2 hours) by heating.
  • a polyborosiloxane resin (A1) was obtained as a colorless and transparent viscous liquid.
  • the yield of the polyborosiloxane resin (A1) is 200.9 g
  • the mass average molecular weight (Mw) is 1,300
  • the viscosity is 1,100 cP
  • the silicon atom content is 16% by mass
  • boron The atomic content is 0.31% by mass
  • the composition ratio is (Me 2 SiO 2/2 ) 0.36 (PhSiO 3/2 ) 0.51 (H (Me) 2 SiO 1/2 ) 0.14 (BO 3/2 )
  • the H—Si group content was 0.7 mmol / g
  • the HO—Si group content was 4.0 mmol / g (6.8% by mass).
  • the reaction solution was returned to room temperature, transferred to a 1 L eggplant-shaped flask, and volatiles and methanol in the reaction solution were distilled off under reduced pressure using an evaporator.
  • a polyborosiloxane intermediate (I-2) was obtained as a colorless viscous liquid.
  • the yield of the polyborosiloxane intermediate (I-2) is 280.3 g
  • the mass average molecular weight (Mw) is 660
  • the content of silicon atoms is 19% by mass
  • the content of boron atoms is 2.
  • the composition ratio of the product was (Me 2 SiO 2/2 ) 0.40 (PhSiO 3/2 ) 0.50 (SiO 4/2 ) 0.10 (BO 3/2 ) 0.38 .
  • the yield of the polyborosiloxane resin (A2) is 228.6 g, the mass average molecular weight (Mw) is 1,600, the viscosity is 27,000 cP, the silicon atom content is 22% by mass, boron The atomic content is 0.37% by mass, and the composition ratio is (Me 2 SiO 2/2 ) 0.29 (PhSiO 3/2 ) 0.49 (SiO 4/2 ) 0.07 (H (Me) 2 SiO 1/2 ) 0.15 (BO 3/2 ) 0.044 , the H—Si group content was 1.0 mmol / g, and the HO—Si group content was 3.4 mmol / g (5.8 mass%). .
  • a polyborosiloxane intermediate (I-3) was obtained as a colorless viscous liquid.
  • the yield of the polyborosiloxane intermediate (I-3) is 203.4 g
  • the mass average molecular weight (Mw) is 570
  • the silicon atom content is 26% by mass
  • the boron atom content is 3.
  • the composition ratio of the product was (Me 2 SiO 2/2 ) 0.40 (MeSiO 3/2 ) 0.50 (BO 3/2 ) 0.34 .
  • polyborosiloxane resin (A3) As a colorless and transparent viscous liquid.
  • the yield of the polyborosiloxane resin (A3) is 119.8 g, the mass average molecular weight (Mw) is 1,300, the viscosity is 14,000 cP, the silicon atom content is 20% by mass, boron
  • the atomic content is 0.29% by mass, and the composition ratio is (Me 2 SiO 2/2 ) 0.37 (MeSiO 3/2 ) 0.51 (H (Me) 2 SiO 1/2 ) 0.12 (BO 3/2 )
  • the H—Si group content was 1.3 mmol / g, and the HO—Si group content was 4.6 mmol / g (7.8% by mass).
  • the reaction solution was returned to room temperature, transferred to a 1 L eggplant-shaped flask, and volatiles and methanol in the reaction solution were distilled off under reduced pressure using an evaporator.
  • a polyborosiloxane intermediate (I-4) was obtained as a colorless viscous liquid.
  • the yield of the polyborosiloxane intermediate (I-4) is 337.3 g
  • the mass average molecular weight (Mw) is 800
  • the silicon atom content is 19% by mass
  • the boron atom content is 3.
  • the composition ratio of the product was (Me 2 SiO 2/2 ) 0.43 (PhSiO 3/2 ) 0.39 (SiO 4/2 ) 0.18 (BO 3/2 ) 0.41 .
  • the yield of the polyborosiloxane resin (A4) is 116.8 g, the mass average molecular weight (Mw) is 2,000, the viscosity is 49,000 cP, the silicon atom content is 20% by mass, boron
  • the atomic content is 0.31% by mass, and the composition ratio is (Me 2 SiO 2/2 ) 0.30 (PhSiO 3/2 ) 0.36 (H (Me) 2 SiO 1/2 ) 0.14 (SiO 4/2 ) 0.20 (BO 3/2 ) 0.040 , the H—Si group content was 0.88 mmol / g, and the HO—Si group content was 5.0 mmol / g (8.1% by mass). .
  • the yield of the polyborosiloxane resin (B3) is 120.3 g, the mass average molecular weight (Mw) is 1,900, the viscosity is 220,000 cP, the content of silicon atoms is 20% by mass, boron
  • the atomic content is 0.38 mass%, and the composition ratio is (Me 2 SiO 2/2 ) 0.34 (PhSiO 3/2 ) 0.38 (SiO 4/2 ) 0.18 (CH 2 ⁇ CH (Me) 2 SiO 1 / 2 ) 0.10 (BO 3/2 ) 0.050 , the content of CH 2 ⁇ CH—Si groups is 0.94 mmol / g, and the content of HO—Si groups is 3.8 mmol / g (6.1 Mass%).
  • reaction solution was returned to room temperature, transferred to a 2 L separatory funnel, 400 mL of toluene and 400 mL of water were added, and after performing a liquid separation operation, the aqueous layer was removed.
  • the organic layer was washed twice with 400 mL of water. Thereafter, the organic layer was recovered, and toluene was distilled off under reduced pressure using an evaporator. As a result, a silicone intermediate (II-1) was obtained as a colorless and transparent viscous liquid.
  • the yield of the silicone intermediate (II-1) is 148.5 g, the mass average molecular weight (Mw) is 1,200, and the composition ratio is (Me 2 SiO 2/2 ) 0.32 (PhSiO 3/2 ) 0.50 ( SiO 4/2 ) 0.18 , and the content of HO—Si groups was 7.9 mmol / g (13.4% by mass).
  • the yield of the silicone resin (B1) is 154.0 g, the weight average molecular weight (Mw) is 1,500, the viscosity is 13000 cP, and the composition ratio is (Me 2 SiO 2/2 ) 0.22 (PhSiO 3/2 ) 0.42 (SiO 4/2 ) 0.13 (CH 2 ⁇ CH (Me) 2 SiO 1/2 ) 0.23 , CH 2 ⁇ CH—Si group content is 2.1 mmol / g, and HO—Si group The content of was 1.9 mmol / g (3.2% by mass).
  • the yield of the silicone resin (B2) is 234.6 g, the mass average molecular weight (Mw) is 3,000, the viscosity is 14,000 cP, and the composition ratio is (Me 2 SiO 2/2 ) 0.46 (Ph 2 SiO 2/2 ) 0.09 (PhSiO 3/2 ) 0.32 (CH 2 ⁇ CH—SiO 3/2 ) 0.13 , CH 2 ⁇ CH—Si group content is 1.6 mmol / g, and HO—Si The group content was 1.0 mmol / g (1.7% by mass).
  • the yield of the silicone intermediate (II-2) is 892 g, the mass average molecular weight (Mw) is 780, the composition ratio is (Me 2 SiO 2/2 ) 0.45 (PhSiO 3/2 ) 0.55 , and HO— The Si group content was 7.2 mmol / g (12.2% by mass).
  • the weight average molecular weight (Mw) of the silicone intermediate (II-3) is 1,800, the composition ratio is (Me 2 SiO 2/2 ) 0.47 (PhSiO 3/2 ) 0.53 , and contains HO—Si group The amount was 4.6 mmol / g (7.8% by mass).
  • the yield of the silicone resin (DA1) is 430.1 g, the weight average molecular weight (Mw) is 2,500, the viscosity is 5,500 cP, and the composition ratio is (Me 2 SiO 2/2 ) 0.29 (PhSiO 3 / 2 ) 0.52 (SiO 4/2 ) 0.13 (H (Me) 2 SiO 1/2 ) 0.19 , the H—Si group content is 1.2 mmol / g, and the HO—Si group content is It was 2.4 mmol / g (4.1% by mass).
  • a silicone resin (DA2) was obtained as a colorless and transparent viscous liquid.
  • the yield of the silicone resin (DA2) is 259.4 g
  • the weight average molecular weight (Mw) is 1,400
  • the viscosity is 3,100 cP
  • the composition ratio is (Me 2 SiO 2/2 ) 0.17 (PhSiO 3 / 2 ) 0.44 (SiO 4/2 ) 0.13 (CH 2 ⁇ CH (Me) 2 SiO 1/2 ) 0.26
  • CH 2 ⁇ CH—Si group content is 2.1 mmol / g
  • HO— The Si group content was 2.6 mmol / g (4.4% by mass).
  • Table 2 shows the ratio and each physical property value (content of HO—Si group, content of H—Si group or CH 2 ⁇ CH—Si group, mass average molecular weight, viscosity, refractive index, transparency).
  • Vi represents a CH 2 ⁇ CH— group.
  • Samples 6 to 8 obtained by collecting polyborosiloxane intermediates (I-1) to (I-3) having a relatively high composition ratio of (BO 3/2 ) in samples 1 to 8 after being left in the air for 4 hours In No. 8, the resin surface solidified and became cloudy. This is presumably because a part of the polyborosixane intermediates (I-1) to (I-3) was hydrolyzed by moisture in the air.
  • samples 1 to 5 in which the polyborosiloxane resins (A1) to (A4) and (B3) having a relatively low composition ratio of (BO 3/2 ) were collected, there was no change in properties and appearance before and after being left. There wasn't. Therefore, the polyborosiloxane resins (A1) to (A4) and (B3) according to the present invention are excellent in storage stability in air.
  • platinum catalyst a platinum-divinyltetramethyldisiloxane complex was used so that the content of platinum atoms was 0.03 ppm in mass units with respect to the total amount of components (A) to (C).
  • Table 4 shows the components constituting the prepared composition and the content of HO—Si groups.
  • a cured product is prepared using each prepared composition, and its physical properties (adhesion, hardness, heat resistance, transparency, heat transparency, linear thermal expansion coefficient, 5% weight loss temperature, adhesive strength), and curing The appearance at the time was measured and evaluated as follows. The results are shown in Table 4.
  • 6050SMD type PPA resin package 6050 surface mount type polyphthalamide resin package
  • the prepared composition was poured into a 6050 SMD type PPA resin package (6.0 mm ⁇ 5.0 mm ⁇ 2.0 mm), heated at 90 ° C. for 1 hour, and further heated at 150 ° C. for 4 hours to obtain a cured sample 3 Individually produced.
  • the prepared composition was mixed with zirconia balls having a diameter of 50 ⁇ m, and the mixture was potted on a glass substrate (50 mm ⁇ 50 mm ⁇ 3.0 mm) or an alumina substrate (50 mm ⁇ 50 mm ⁇ 2.0 mm). Thereafter, a glass chip (5.0 mm ⁇ 5.0 mm ⁇ 1.1 mm) was placed on the potted mixture and sandwiched between glass substrates or alumina substrates. This was heated in air at 90 ° C. for 1 hour, and further heated at 150 ° C. for 4 hours to prepare a specimen that was a cured product. Similarly, a total of 10 specimens were produced.
  • the adhesive strength (adhesive strength) of the prepared specimens was measured with a bond tester (manufactured by Daisy Japan Co., Ltd., model: Dage4000Plus), and the average value of the adhesive strength of 10 specimens was calculated.
  • the prepared composition was poured into a mold (25 mm ⁇ ), heated in air at 90 ° C. for 1 hour, and further heated at 150 ° C. for 4 hours to produce a cured product having a thickness of 6 to 7 mm.
  • the hardness of Shore A or Shore D of the cured product is determined according to JIS K 7215 “Plastic Durometer Hardness Test Method” using a durometer (manufactured by Teclock Co., Ltd., model: GS-719R, GS-720R). It measured according to.
  • Td5 5% weight loss temperature
  • the prepared composition was heated in air at 90 ° C. for 1 hour, and further heated at 150 ° C. for 4 hours to produce a cured product.
  • the cured product was measured using a ThermoPlus TG8120 (manufactured by Rigaku Corporation) as a thermogravimetric / differential thermal simultaneous measurement apparatus (Thermogravimetric / Differential Thermal Analysis, abbreviated as TG-DTA) at a temperature rising rate of 5 ° C./min. It heated from 25 degreeC to 500 degreeC, and measured the temperature ( Td5 ) when a 5% weight loss was carried out.
  • TG-DTA thermogravimetric / differential thermal simultaneous measurement apparatus
  • the prepared composition was poured into a mold (22 mm ⁇ ), heated in air at 90 ° C. for 1 hour, and further heated at 150 ° C. for 4 hours to produce a cured product having a thickness of 22 mm ⁇ and 2 mm.
  • the cured product was heated at 200 ° C. for 100 hours, and then the transmittance in the wavelength region of 405 nm and 365 nm was measured using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model number: UV-3150).
  • the composition in the category of the present invention can obtain a cured product adjusted to a suitable hardness in accordance with the purpose of sealing by adjusting the composition.
  • the cured product produced from the compositions of Examples 1 to 5 within the scope of the present invention has good adhesion to the 3528 SMD type PPA resin package and the 6050 SMD type PPA resin package, and High moldability, adhesive strength and transparency.
  • the polyborosiloxane resin compositions were prepared as follows.
  • Component (A) resin [polyborosiloxane resin (A1), (A2), (A4)] and component (B) resin [silicone resin (B2), polyborosiloxane resin (B3)] are 2: 1.
  • component (C) resin a platinum-divinyltetramethyldisiloxane complex was used so that the content of platinum atoms was 0.03 ppm in mass units with respect to the total amount of components (A) to (C).
  • silicone resin compositions (Comparative Examples 4 to 6) to which a boron compound was added was performed as follows.
  • Component (A) resin [silicone resins (DA1) to (DA2)] and component (B) resin [silicone resins (B1) to (B2)] are blended at a mass ratio of 2: 1 (C) Mixed with the component platinum catalyst.
  • the platinum catalyst a platinum-divinyltetramethyldisiloxane complex was used so that the content of platinum atoms was 0.03 ppm in mass units with respect to the total amount of components (A) to (C).
  • To 1 g of this silicone resin composition 87.2 mg of trinormal butoxide borate was added as a boron compound, and the boron atom content in this composition was adjusted to 0.38% by mass.
  • Table 5 shows a summary of the composition and boron atom content of the composition thus prepared.
  • the physical property evaluation method of the cured product of the prepared composition is as follows.
  • the cured product was cloudy in Comparative Examples 4 and 6, and in Comparative Example 5, foaming was observed in the cured product.
  • Comparative Examples 4 to 6 it was found that the weight loss during curing was higher than 5% by mass.
  • the cured products produced in Examples 6 and 8 that are within the scope of the present invention have a good appearance, and the weight loss upon curing is lower than 5% by mass.
  • cured material produced in Example 8 showed the especially low value.
  • a cured product having good transparency and moldability was obtained from a composition containing polyborosiloxane having boron atoms introduced into the molecule within the scope of the present invention.
  • Example 9 ⁇ Evaluation of curing condensation catalyst> A polyborosiloxane resin (A2) as the component (A) and a silicone resin (B2) as the component (B) are blended at a mass ratio of 2: 1, and a platinum catalyst is added as the component (C). C) Mixing is performed so that the content of platinum atoms is 0.03 ppm by mass with respect to the total amount of components, and tetrafluoroborate ethylamine salt [BF 4 NH 2 Et], bis is used as a curing condensation catalyst.
  • a polyborosiloxane resin (A2) as the component (A) and a silicone resin (B2) as the component (B) are blended at a mass ratio of 2: 1, and a platinum catalyst is added as the component (C). C) Mixing is performed so that the content of platinum atoms is 0.03 ppm by mass with respect to the total amount of components, and tetrafluoroborate ethylamine salt [BF 4 NH 2 Et], bis is used as
  • a composition 2-1 was prepared only by mixing so that the content of platinum atoms was 0.03 ppm by mass with respect to the total amount of component C).
  • the platinum catalyst in the composition 2-1 to the composition 2-6 the content of platinum atoms is 0.03 ppm by mass with respect to the total amount of the components (A) to (C).
  • a platinum-divinyltetramethyldisiloxane complex was used.
  • the adhesive strength of both the glass substrate and the alumina substrate was over 100 N for composition 2-2 to composition 2-6, and good adhesive strength was maintained.
  • the cured products of Composition 2-2 to Composition 2-6 were 89 to 90% at a wavelength of 365 nm and 90 to 91% at a wavelength of 405 nm. High transparency was maintained. From this result, it was found that even when a curing condensation catalyst was added to the composition within the scope of the present invention, the transparency of the cured product was not impaired.
  • the transmittance of the cured product having a wavelength of 365 nm was 83 to 87%, which was 83% of that of Composition 2-1. It was found to have transparency equal to or higher than that, and the transmittance at a wavelength of 405 nm was 87 to 90%, which was as high as 88% of the composition 2-1. From these results, it was found that the compositions 2-2 to 2-6 to which the curing condensation catalyst was added had the same heat-resistant transparency as compared with the cured products to which the curing condensation catalyst was not added.
  • the cured products of Composition 2-2 to Composition 2-6 within the scope of the present invention have good adhesion to 3528 SMD type PPA resin package and 6050 SMD type PPA resin package. It was. Moreover, the composition to which the condensation catalyst for curing was added improved the hardness of the cured product as compared with the composition without addition, and the moldability, adhesive strength, transparency and heat-resistant transparency were maintained.
  • Optical semiconductor device 1 ... Sealing material, 2 ... Optical semiconductor element, 3 ... bonding wire, 4 ... reflecting material, 5 ... Lead frame, 6 ... Optical semiconductor substrate, 10: Optical semiconductor device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 パッケージ基板への密着性および耐熱透明性に優れる硬化物を与える上、保存安定性に優れる硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置を提供することを目的とする。本発明の硬化性ポリボロシロキサン樹脂組成物は、(A)成分としてヒドロシリル基を有する所定のポリボロシロキサン樹脂と、(B)成分としてビニル基を有する所定のシリコーン樹脂と、(C)成分としてヒドロシリル化触媒とを少なくとも含む。該組成物は、パッケージ基板への密着性および耐熱透明性に優れる硬化物を与える上、保存安定性に優れる。該硬化物は、光半導体素子の封止材として光半導体装置に好適に使用される。

Description

硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
 本発明は、光半導体素子の封止材または接着剤の原料として好適に用いることができる硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置に関する。
 発光ダイオード(略称:LED)などの光半導体素子を利用した発光装置の封止材には、エポキシ樹脂組成物やシリコーン樹脂組成物などの硬化物が用いられる。これらの封止材に要求される特性としては、長期間高温度で曝されても透明性を維持することができるという「耐熱透明性」に優れることと、パッケージ基板から該封止材が剥がれ難いという「密着性」に優れることとがある。
 一般的にエポキシ樹脂組成物は、密着性に優れるが、耐熱透明性は劣る。低出力の白色LEDの封止用途では、必要な耐熱透明性の要求が低いことから、エポキシ樹脂組成物が多く用いられている。
 しかし、近年LEDがますます高輝度化、高出力化するのに伴い、従来のエポキシ樹脂組成物の硬化物では、パワー半導体、高輝度発光素子(例えば、自動車のヘッドライトや液晶テレビのバックライト用高輝度LED)または青色レーザー等の短波長半導体レーザーの封止材に用いるには耐熱性が不充分であり、高温劣化による電流のリーク、または黄変等が生じることが知られている。
 最近では、これらの問題を解決するために、エポキシ樹脂組成物に替わって、耐熱性に優れるシリコーン樹脂をベースにした樹脂組成物の硬化物がLEDの封止材に使用されている。例えば、特許文献1では、光デバイス又は半導体デバイスを封止するための材料として、付加硬化型のシリコーン樹脂組成物が開示されている。
特開2000-198930号公報 特許第5056998号公報 特開昭54-83100号公報 特開2009-19104号公報 特開2009-127020号公報
 多くのシリコーン樹脂組成物は、耐熱透明性に優れるものの、パッケージ基板への密着性が十分でないという問題があった。このため、樹脂中に接着付与材としてエポキシ化合物を添加するなどの方法が取られていたが、エポキシ化合物は長時間の過熱により黄変するため、耐熱透明性を損なう欠点があった。
 上記問題に対して、シリコーン樹脂組成物にホウ素化合物を添加することが、耐熱透明性を損なうことなく、密着性を付与する方法として有用であり、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn-ブチルなどの有機ホウ素化合物が密着性付与剤として用いられている(例えば、特許文献2)。しかしながら、このようなシリコーン樹脂組成物を硬化処理する際、シリコーン樹脂組成物の重量減少が大きくなることがあった。これは、シリコーン樹脂組成物の硬化処理は加熱により行われるが、この加熱によって上記有機ホウ素化合物が樹脂組成物中から揮発する等の理由による。
 このような硬化処理時の樹脂組成物の重量減少を抑えるための解決策として、ポリボロシロキサン樹脂を用いる方法が知られている。ポリボロシロキサンはシリコーン樹脂骨格中にホウ素原子を有する高分子化合物で、耐熱透明性の高い硬化物を与える。例えば、特許文献3では、アルコキシシランとホウ酸化合物を加水分解重縮合し、ポリボロシロキサンを合成する方法が記載されている。また、特許文献4および5では、ポリボロシロキサン樹脂の硬化物は光半導体素子の封止材として好適に使用可能であることが記載されている。しかしながら、ポリボロシロキサン樹脂は耐水性が低いため、該樹脂の状態で空気中に放置すると、該樹脂が白濁することがあり、保存安定性に問題がある。また、これらの文献に記載されているポリボロシロキサンは、アルコキシシランとホウ素化合物の縮合により硬化させて合成するため、硬化時の発泡など成形性への問題が懸念される。
 以上のことから、耐熱透明性と、パッケージ基板への密着性とに優れた硬化物を与え、保存安定性に優れる光学透明性封止材料の開発が望まれている。
 本発明は、上記事情に鑑みてなされたもので、耐熱透明性およびパッケージ基板への密着性に優れる硬化物を与える上、保存安定性に優れる付加硬化型の硬化性ポリボロシロキサン樹脂組成物および、該硬化物と光半導体装置を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った結果、(A)成分として所定のポリボロシロキサン樹脂、(B)成分として所定のシリコーン樹脂、(C)成分として所定のヒドロシリル化触媒とを少なくとも含む、硬化性ポリボロシロキサン樹脂組成物を用いることにより、上記課題を達成できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の各発明を含む。
 [発明1]
 (A)成分としてポリボロシロキサン樹脂、(B)成分としてシリコーン樹脂、(C)成分としてヒドロシリル化触媒とを少なくとも含む、硬化性ポリボロシロキサン樹脂組成物であり、
 (A)成分が、下記式[1]で示され、ケイ素原子に結合する水素原子(SiH基)を含有する、ポリボロシロキサン樹脂であり、
 (B)成分が、分子中にケイ素原子に結合するビニル基(Si-CH=CH2基)を有するシリコーン樹脂である、硬化性ポリボロシロキサン樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式[1]中、R1は水素原子または炭素数1~3のアルキル基であり、2つのR1は同じまたは互いに異なる種類であってもよく、R2は炭素数1~3のアルキル基、または炭素数6~10の芳香族炭化水素基であり、2つのR2は同じまたは互いに異なる種類であってもよく、R3は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、a、bおよびcはそれぞれ0超、1未満の数であり、dは0以上、1未満の数であり、eは0.01以上、0.20以下の数であり、a+b+c+d=1を満たし、(SiR2 22/2)、(R3SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子は、シロキサン鎖中にボロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。)
 [発明2]
 (B)成分が以下の(B-1)成分または(B-2)成分である、発明1の硬化性ポリボロシロキサン樹脂組成物。
 (B-1)成分:
 下記式[2]で示され、ケイ素原子に結合するビニル基(Si-CH=CH2基)を含有するシリコーン樹脂。
Figure JPOXMLDOC01-appb-C000005
(式[2]中、R4は炭素数1~3のアルキル基であり、2つのR4は同じまたは互いに異なる種類であってもよく、R5は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、2つのR5は同じまたは互いに異なる種類であってもよく、R6は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、f、gおよびhはそれぞれ0超、1未満の数であり、iは0以上、1未満の数であり、xは0以上0.20以下の数であり、f+g+h+i=1を満たし、(SiR5 22/2)、(R6SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子は、シロキサン鎖中にボロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。)
 (B-2)成分:
 下記式[3]で示され、ケイ素原子に結合するビニル基(Si-CH=CH2基)を含有するシリコーン樹脂。
Figure JPOXMLDOC01-appb-C000006
(式[3]中、R7は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、2つのR7は同じまたは互いに異なる種類であってもよく、R8は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、j、kおよびlは、それぞれ0超、1未満の数であり、mは0以上、1未満の数であり、yは0.01以上0.20以下の数であり、j+k+l+m=1を満たし、(SiR7 22/2)、(R8SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子は、シロキサン鎖中にボロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。)
 [発明3]
 (A)成分におけるa、b、cおよびdが、a:b:c:d=0.10~0.40:0.10~0.80:0.10~0.80:0~0.70であり、
 (B-1)成分におけるf、g、hおよびiが、f:g:h:i=0.10~0.40:0.10~0.80:0.10~0.80:0~0.70である、発明2の硬化性シリコーン樹脂組成物。
 [発明4]
 (A)成分におけるa、b、cおよびdが、a:b:c:d=0.10~0.40:0.10~0.80:0.10~0.80:0~0.70であり、
 (B-2)成分におけるj、k、lおよびmが、j:k:l:m=0.10~0.80:0.10~0.80:0.10~0.40:0~0.70である、発明2の硬化性シリコーン樹脂組成物。
 [発明5]
 (A)成分におけるa、b、cおよびdが、a:b:c:d=0.10~0.35:0.10~0.50:0.20~0.60:0.10~0.30であり、
 (B-1)成分におけるf、g、hおよびiが、f:g:h:i=0.10~0.35:0.10~0.50:0.20~0.60:0.10~0.30である、発明2の硬化性シリコーン樹脂組成物。
 [発明6]
 (A)成分におけるa、b、cおよびdが、a:b:c:d=0.10~0.35:0.10~0.50:0.20~0.60:0.10~0.30であり、
 (B-2)成分における、j、k、lおよびmが、j:k:l:m=0.10~0.50:0.20~0.60:0.10~0.35:0.10~0.30である、発明2の硬化性シリコーン樹脂組成物。
 [発明7]
 硬化用縮合触媒をさらに含む、発明1乃至6のいずれかの硬化性ポリボロシロキサン樹脂組成物。
 [発明8]
 硬化遅延剤、接着付与剤、酸化防止剤、光安定剤、蛍光体、無機粒子からなる群から選ばれる一種以上をさらに含む、発明1乃至7のいずれかの硬化性ポリボロシロキサン樹脂組成物。
 [発明9]
 離型剤、樹脂改質剤、着色剤、希釈剤、抗菌剤、防黴剤、レベリング剤、タレ防止剤からなる群から選ばれる一種以上をさらに含む、発明1乃至8のいずれかの硬化性ポリボロシロキサン樹脂組成物。
 [発明10]
 発明1乃至9のいずれかの硬化性ポリボロシロキサン樹脂組成物を硬化してなる、硬化物。
 [発明11]
 発明10の硬化物からなる、光半導体封止材。
 [発明12]
 発明1乃至9のいずれかの硬化性ポリボロシロキサン樹脂組成物を45℃以上、300℃以下で加熱して硬化させる、硬化性ポリボロシロキサン樹脂組成物の硬化物の製造方法。
 [発明13]
 光半導体素子と、
 該光半導体素子を封止する発明11に記載の光半導体封止材とを少なくとも備える、光半導体装置。
 [発明14]
 発明10の硬化物からなる、半導体用接着剤。
 本明細書において、炭素数1~3のアルキル基の具体例として、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。炭素数6~10の芳香族炭化水素基は、置換または非置換の芳香族炭化水素基であってもよく、水素原子の一部または全部がフッ素原子に置換されていてもよい。具体例として、フェニル基、ナフチル基、トリル基、キシリル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、3,5-ジ(トリフルオロメチルフェニル)基などが挙げられる。
 本発明によると、保存安定性に優れる硬化性ポリボロシロキサン樹脂組成物を提供することができる。さらに、この組成物を用いることにより、耐熱透明性およびパッケージ基板への密着性に優れる硬化物および、該硬化物を用いた光半導体装置を提供することができる。
本発明の光半導体装置の一例を示す概略断面図である。
 以下、本発明についてさらに詳しく説明するが、本発明は、以下に示す実施の形態および実施例の記載内容に限定して解釈されるものではない。
 [硬化性ポリボロシロキサン樹脂組成物]
 本発明の硬化性ポリボロシロキサン樹脂組成物(本明細書において、単に「本発明の組成物」と称することがある。)は、所定の(A)成分と、(B-1)成分または(B-2)成分と、(C)成分とを少なくとも含み、本発明の光半導体装置を製造するのに好適に使用される。また、本発明の組成物は、その他の成分をさらに含んでいてもよい。本明細書において、(B-1)成分と(B-2)成分に関して共通する項目については「(B)成分」と総称して説明することがある。
 以下、本発明の組成物に含まれる各成分について説明する。
 <(A)成分>
 (A)成分は、ケイ素原子に結合する水素原子(SiH基)を含有する、ポリボロシロキサン樹脂である。(A)成分の好ましい態様の一つとして、下記式[1]で示され、かつ、ケイ素原子に結合する水素原子(SiH基)を含有する、ポリボロシロキサン樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記式[1]は平均組成式を示す。式[1]中、R1は炭素数1~3のアルキル基であり、2つのR1は同じまたは互いに異なる種類であってもよい。R2は炭素数1~3のアルキル基、または炭素数6~10の芳香族炭化水素基であり、2つのR2は同じまたは互いに異なる種類であってもよい。R3は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基である。a、b、およびcはそれぞれ0超、1未満の数であり、dは0以上、1未満の数であり、eは0.01以上、0.20以下の数であり、a+b+c+d=1を満たす。(SiR2 22/2)、(R3SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子はそれぞれ、シロキサン鎖中にボロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。
 R1における炭素数1~3のアルキル基としては、メチル基、エチル基が好ましく、メチル基が特に好ましい。
 R2における炭素数1~3のアルキル基としては、メチル基、エチル基が好ましく、メチル基が特に好ましい。R2における炭素数6~10の芳香族炭化水素基としては、フェニル基が好ましい。
 R3における炭素数1~3のアルキル基としては、メチル基、エチル基が好ましく、メチル基が特に好ましい。R3における炭素数6~10の芳香族炭化水素基としては、フェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、3,5-ジ(トリフルオロメチルフェニル)基が好ましく、フェニル基が特に好ましい。
 R1、R2およびR3の組み合わせは、特に限定されない。中でも、R1がメチル基またはエチル基、R2がメチル基、エチル基またはフェニル基、R3がメチル基、エチル基、フェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基または3,5-ジ(トリフルオロメチルフェニル)基の何れかであることが好ましく、R1がメチル基、R2がメチル基、R3がメチル基またはフェニル基であることが特に好ましい。
 aの値は、0超、1未満の範囲内であり、a+b+c+d=1を満たせば、特に限定されない。aの値は0.10~0.40であることが好ましく、0.10~0.35であることが特に好ましい。aの値が0.10以上であれば、本発明の組成物は良好な成形性を有し、0.40以下であれば、(A)成分は良好な機械的強度を有する。
 bの値は、0超、1未満の範囲内であり、a+b+c+d=1を満たせば、特に限定されない。bの値は0.10~0.80であることが好ましく、0.10~0.50であることが特に好ましい。bの値が0.10以上であれば、本発明の組成物は良好な成形性を有し、0.80以下であれば、(A)成分は良好な機械的強度を有する。
 cの値は、0超、1未満の範囲内であり、a+b+c+d=1を満たせば、特に限定されない。cの値は0.10~0.80であることが好ましく、0.20~0.60であることが特に好ましい。cの値が0.10以上であれば、(A)成分は良好な機械的強度を有し、0.80以下であれば、本発明の組成物は良好な成形性を有する。
 dの値は、0以上、1未満の範囲内であり、a+b+c+d=1を満たせば、特に限定されない。dの値は0~0.70であることが好ましい。中でも、本発明の硬化物が良好な接着強度を示すことから、dの値は0.10~0.30であることが特に好ましい。dの値がこの範囲内であれば、良好な接着強度を示す硬化物を得ることができる。なお、dの値が0である場合、上記式[1]中、(SiO4/2)の構造単位は存在しない。
 eの値は、a、b、cおよびdの値の総和(a+b+c+d=1)に対して、0.01以上、0.20以下の範囲内であり、0.02以上、0.07以下が好ましい。eの値が0.01以上であれば本発明の硬化物はパッケージ基板に対して良好な密着性を有し、0.20以下であれば本発明の組成物は良好な保存安定性を有する。
 a、b、cおよびdの値は、a:b:c:d=0.10~0.40:0.10~0.80:0.10~0.80:0~0.70であることが好ましく、a:b:c:d=0.10~0.35:0.10~0.50:0.20~0.60:0.10~0.30であることが特に好ましい。
 a、b、cおよびdの値は、核磁気共鳴装置を用いて(A-a)成分の29Si-NMRスペクトルと1H-NMRスペクトルを測定し、これらを相補的に組み合わせて用いて算出することができる。
 eの値は、次のようにして求めることができる。まず、(A)成分の試料をアルカリ融解、酸溶解による前処理後、ICP-AES法により(A)成分のケイ素原子の含有量(質量%)を求め、また、(A)成分の試料をマイクロ波酸分解により前処理し、ICPAES法により(A)成分のホウ素原子の含有量(質量%)を求める。これらの含有量をそれぞれケイ素原子およびホウ素原子の原子量で割って2つの原子のモル数を算出する。算出されるケイ素原子のモル数を1とする場合のホウ素原子のモル比を求め、この値をeの値とする。
 (SiR2 22/2)で表される構造単位は、下記式[1-2]で表される構造、すなわち、(SiR2 22/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000008
 上記式[1-2]中、R2は上記式[1]中のR2と同義であり、Xはヒドロキシ基を表す。
 (SiR2 22/2)で表される構造単位は、下記式[1-b]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[1-2-b]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R2で表される基を有し、かつヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(SiR2 22/2)で表される構造単位に含まれる。また、下記式[1-b]で表される構造単位および下記式[1-2-b]で表される構造単位において、E-O-Si結合中の酸素原子は、隣接するケイ素原子とシロキサン結合(Si-O-Si結合)を形成し、または隣接するケイ素原子およびホウ素原子とボロシロキサン結合(B-O-Si結合)を形成しており、隣接する構造単位と酸素原子を共有している。従って、E-O-Si結合中の1つの酸素原子、すなわち、Si-O-Si結合中またはB-O-Si結合中の1つの酸素原子を「O1/2」とする。
Figure JPOXMLDOC01-appb-C000009
 上記式[1-b]および[1-2-b]中、Eはケイ素原子またはホウ素原子を表し、R2は上記式[1]中のR2と同義である。上記式[1-2-b]中、Xはヒドロキシ基を表す。
 (R3SiO3/2)で表される構造単位は、下記式[1-3]または[1-4]で表される構造、すなわち、(R3SiO3/2)で表される構造単位中のケイ素原子に結合した酸素原子の2つがそれぞれシラノール基を形成している構造、または(R3SiO3/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000010
 上記式[1-3]および式[1-4]中、R3は上記式[1]中のR3と同義であり、Xはヒドロキシ基を表す。
 (R3SiO3/2)で表される構造単位は、下記式[1-c]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[1-3-c]または[1-4-c]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R3で表される基を有し、かつヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(R3SiO3/2)で表される構造単位に含まれる。また、下記式[1-c]で表される構造単位、下記式[1-3-c]で表される構造単位および下記式[1-4-c]で表される構造単位において、E-O-Si結合中の酸素原子は、隣接する2つのケイ素原子とシロキサン結合を形成し、または隣接するケイ素原子およびホウ素原子とボロシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、E-O-Si結合中の1つの酸素原子、すなわち、Si-O-Si結合中またはB-O-Si結合中の1つの酸素原子を[O1/2]とする。
Figure JPOXMLDOC01-appb-C000011
 上記式[1-c]、[1-3-c]および[1-4-c]中、Eはケイ素原子またはホウ素原子を表し、R3は上記式[1]中のR3と同義である。上記式[1-3-c]および[1-4-c]中、Xはヒドロキシ基を表す。
 (SiO4/2)で表される構造単位は、下記式[1-5]、[1-6]または[1-7]で表される構造、すなわち、(SiO4/2)で表される構造単位中のケイ素原子に結合した酸素原子の3つもしくは2つがそれぞれシラノール基を形成している構造、または(SiO4/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000012
 上記式[1-5]、[1-6]および[1-7]中、Xはヒドロキシ基を表す。
 (SiO4/2)で表される構造単位は、下記式[1-d]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[1-5-d]、[1-6-d]または[1-7-d]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、ヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(SiO4/2)で表される構造単位に含まれる。また、下記式[1-d]で表される構造単位、下記式[1-5-d]で表される構造単位、下記式[1-6-d]で表される構造単位および下記式[1-7-d]で表される構造単位において、E-O-Si結合中の酸素原子は、隣接する2つのケイ素原子とシロキサン結合を形成し、または隣接するケイ素原子およびホウ素原子とボロシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、E-O-Si結合中の1つの酸素原子、すなわち、Si-O-Si結合中またはB-O-Si結合中の1つの酸素原子を[O1/2]とする。
Figure JPOXMLDOC01-appb-C000013
 上記式[1-d]、[1-5-d]、[1-6-d]および[1-7-d]中、Eはケイ素原子またはホウ素原子を表す。上記式[1-5-d]、[1-6-d]および[1-7-d]中、Xはヒドロキシ基を表す。
 (BO3/2)で表される構造単位は、3つの酸素原子に結合したホウ素原子を有する構造単位を表す。ここで、各酸素原子は、他の原子、すなわち、ケイ素原子、ホウ素原子または水素原子に結合され、B-O-Si結合、B-O-B結合またはB-OH基を形成していてもよい。(BO3/2)で表される構造単位は、下記式[1-8]または[1-9]で表される構造、すなわち、(BO3/2)で表される構造単位中のホウ素原子に結合した酸素原子の2つがそれぞれB-OH基を形成している構造、または(BO3/2)で表される構造単位中のホウ素原子に結合した酸素原子の1つがB-OH基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000014
 上記式[1-8]および[1-9]中、Xはヒドロキシ基を表す。
 (BO3/2)で表される構造単位は、下記式[1-e]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[1-10-e]または[1-11-e]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、ヒドロキシ基が末端に残存してB-OH基を形成している構造単位も、(BO3/2)で表される構造単位に含まれる。また、下記式[1-e]で表される構造単位、下記式[1-10-e]で表される構造単位および下記式[1-11-e]で表される構造単位において、E-O-B結合中の酸素原子は、隣接するケイ素原子とボロシロキサン結合を形成し、または隣接するホウ素原子とボロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、E-O-B結合中の1つの酸素原子、すなわち、Si-O-B結合またはB-O-B結合中の1つの酸素原子を「O1/2」とする。
Figure JPOXMLDOC01-appb-C000015
 上記式[1-e]、[1-10-e]および[1-11-e]中、Eはケイ素原子またはホウ素原子を表す。上記式[1-10-e]および[1-11-e]中、Xはヒドロキシ基を表す。
 (A)成分の製造方法は、特に限定されない。以下に(A)成分の製造方法の一例を示すが、(A)成分の製造方法はこれに限定されない。(A)成分の製造方法の一例においては、
 下記一般式[4]で表されるジアルコキシシラン化合物、下記一般式[5]で表されるトリアルコキシシラン化合物および下記一般式[7]で表されるホウ酸化合物(あるいは、下記一般式[4]で表されるジアルコキシシラン化合物、下記一般式[5]で表されるトリアルコキシシラン化合物[5]、下記一般式[6]で表されるテトラアルコキシシラン化合物および下記一般式[7]で表されるホウ酸化合物)、を加水分解重縮合させてポリボロシキサン中間体[I]を得る工程(以下、「第一の縮合工程」と称することがある。)と、
 第一の縮合工程で得られたポリボロシキサン中間体[I]を下記一般式[8-1]、[8-2]、[8-3]または[8-4]で表されるシラン化合物と反応させて(A)成分を得る工程(以下、「第一の修飾工程」と称することがある。)を含む。
Figure JPOXMLDOC01-appb-C000016
 一般式[4]中のR2は式[1]のR2と同義であり、R9は炭素数1~3のアルキル基を表し、2つのR9は同じまたは互いに異なる種類であってもよい。
 一般式[4]で表されるジアルコキシシラン化合物(以下、「ジアルコキシシラン[4]」と称することがある。)としては、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジn-プロピルジメトキシシラン、ジn-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシラン、フェニルエチルジエトキシシラン。
 これらの中でも好ましい化合物としては、ジメチルジメトキシシラン、ジメチルジエトキシシランが挙げられる。
 一般式[5]中のR3は式[1]のR3と同義であり、R10は炭素数1~3のアルキル基を表し、3つのR10は同じまたは互いに異なる種類であってもよい。
 一般式[5]で表されるトリアルコキシシラン化合物(以下、「トリアルコキシシラン[5]」と表すことがある。)としては、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリメトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリエトキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン。
 これらの中でも好ましい化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン3,5-(ジトリフルオロメチル)フェニルトリメトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリエトキシシランが挙げられ、特に好ましい化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランが挙げられる。
 一般式[6]中のR11は炭素数1~3のアルキル基を表し、4つのR11は同じまたは互いに異なる種類であってもよい。
 一般式[6]で表されるテトラアルコキシシラン化合物(以下、「テトラアルコキシシラン[6]」と表すことがある。)としては、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン。
 これらの中でも好ましい化合物として、テトラメトキシシラン、テトラエトキシシランが挙げられる。
 一般式[7]中のR12は水素原子または炭素数1~3のアルキル基を表し、3つのR12は同じまたは互いに異なる種類であってもよい。
 一般式[7]で表されるホウ素化合物(以下、「ホウ素化合物[7]」と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ホウ酸(ここで、ホウ酸とはオルトホウ酸、メタホウ酸、次ホウ酸などのホウ素のオキソ酸を総称したものである)、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル、ホウ酸トリn-プロピル。
 これらの中でも好ましい化合物として、ホウ酸が挙げられる。
 一般式[8-1]、[8-2]、[8-3]および[8-4]中のR1は式[1]のR1と同義であり、2つのR1は同じまたは互いに異なる種類であってもよい。一般式[8-3]中のR13は炭素数1~3のアルキル基である。
 以下、一般式[8-1]、[8-2]、[8-3]および[8-4]で表されるシラン化合物は、それぞれ「クロロシラン化合物[8-1]」、「シラノール化合物[8-2]」、「モノアルコキシシラン化合物[8-3]」、「ジシロキサン化合物[8-4]」と表すことがあり、これらを区別せずに総称する際には「シラン化合物[8]」と表すことがある。
 クロロシラン化合物[8-1]は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:クロロシラン、クロロメチルシラン、クロロジメチルシラン、クロロエチルシラン、クロロジエチルシラン。
 これらの中でも好ましい化合物として、クロロジメチルシランが挙げられる。
 シラノール化合物[8-2]は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:シラノール、メチルシラノール、ジメチルシラノール、エチルシラノール、ジエチルシラノール。
 これらの中でも好ましい化合物として、ジメチルシラノールが挙げられる。
 モノアルコキシシラン化合物[8-3]は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:メトキシシラン、エトキシシラン、メチルメトキシシラン、メチルエトキシシラン、ジメチルメトキシシラン、ジメチルエトキシシラン、エチルメトキシシラン、エチルエトキシシラン、ジエチルメトキシシラン、ジエチルエトキシシラン。
 これらの中でも好ましい化合物として、ジメチルメトキシシラン、ジメチルエトキシシランが挙げられる。
 ジシロキサン化合物[8-4]は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ジシロキサン、1,3-ジメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、1,3-ジエチルジシロキサン、1,1,3,3-テトラエチルジシロキサン。
 これらの中でも好ましい化合物として、1,1,3,3-テトラメチルジシロキサンが挙げられる。
 (A-b)成分の製造に用いるジアルコキシシラン[4]、トリアルコキシシラン[5]、テトラアルコキシシラン[6]、およびホウ酸化合物[7]の組み合わせは特に限定されない。ジアルコキシシラン[4]、トリアルコキシシラン[5]、テトラアルコキシシラン[6]およびホウ酸化合物[7]はそれぞれ単種類を用いてもよいし、複数種類を併用してもよい。
 好ましい組み合わせとしては、
 ジアルコキシシラン[4]は、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジn-プロピルジメトキシシラン、ジn-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン。ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシランおよびフェニルエチルジエトキシシランからなる群から一種以上が選択され、
 トリアルコキシシラン[5]は、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン3,5-(ジトリフルオロメチル)フェニルトリメトキシシランおよび3,5-(ジトリフルオロメチル)フェニルトリエトキシシランからなる群から一種以上が選択され、
 テトラアルコキシシラン[6]は、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシランからなる群から一種以上が選択され、
 ホウ酸化合物[7]は、ホウ酸、ホウ酸トリメチルおよびホウ酸トリエチルからなる群から一種以上が選択される。
 この中でも、特に好ましい組み合わせとしては、
 ジアルコキシシラン[4]は、ジメチルジメトキシシランおよびジメチルジエトキシシランからなる群から一種以上が選択され、
 トリアルコキシシラン[5]は、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシランおよびフェニルトリエトキシシランからなる群から一種以上が選択され、
 テトラアルコキシシラン[6]は、テトラメトキシシランおよびテトラエトキシシランからなる群から一種以上が選択され、
 ホウ酸化合物[7]は、ホウ酸が選択される。
 以下、前記「第一の縮合工程」について説明する。前記第一の縮合工程においては、まず、ジアルコキシシラン[4]およびトリアルコキシシラン[5](あるいは、ジアルコキシシラン[4]、トリアルコキシシラン[5]およびテトラアルコキシシラン[6])を、室温(特に加熱または冷却しない雰囲気温度を言い、通常、15~30℃である。以下同じ。)にて反応容器内に所定量入れた後、ホウ素化合物を所定量加えて混合溶液とする。このときの投入順序はこれに限定されず、任意の順序で投入して混合溶液とすることができる。この混合溶液には、各々のアルコキシシラン化合物を加水分解重縮合するための水、反応溶媒、縮合反応を効率的に進行させるための触媒を加えてもよい。次いで、この混合溶液を撹拌しながら所定時間、所定温度で反応を進行させることで、ポリボロシロキサン中間体[I]を得ることができる。この際、反応系中の未反応原料のアルコキシシラン化合物や、加えられた水、反応溶媒および/または触媒が、反応系外へ留去されることを防ぐため、反応容器には還流装置を具備することが好ましい。
 前記第一の縮合工程において、ジアルコキシシラン[4]、トリアルコキシシラン[5]およびテトラアルコキシシラン[6]の使用量は、特に限定されない。(A)成分の物性調整の観点から、ジアルコキシシラン[4]:トリアルコキシシラン[5]はモル比で表して85:15~15:85で用いることが好ましく、85:15~30:70で用いることが特に好ましい。ジアルコキシシラン[4]のモル比が15を下回ると、所望の分子量よりも高くなることがあり、85を超えると、加水分解重縮合反応が進行しにくく、所望の分子量よりも低くなることがある。また、テトラアルコキシシラン[6]を使用する場合、その量は、ジアルコキシシラン[4]、トリアルコキシシラン[5]およびテトラアルコキシシラン[6]の合計100モルに対して、1~80モルであることが好ましく、1~60モルであることが特に好ましい。この量を用いることで、光半導体装置用の封止材として、好適な硬さを有する硬化物を得ることができる。
 前記第一の縮合工程において、ホウ酸化合物[7]の使用量は、特に限定されない。ジアルコキシシラン[4]、トリアルコキシシラン[5]およびテトラアルコキシシラン[6]に含有されるアルコキシ基の合計モル当量に対して、0.05倍以上、0.3倍以下のホウ酸化合物を用いることが好ましい。0.05倍モル当量より少ないと、アルコキシシラン化合物の加水分解が効率よく行われないことがあり、また、0.3倍モル当量より多く加えると、反応後、反応溶液中にホウ酸化合物の析出が生じて、溶液が白濁する場合がある。
 前記第一の縮合工程において、上記混合溶液には水を加えてもよい。加える水の量は特に限定されないが、原料化合物のアルコキシシラン化合物に含有されるアルコキシ基の合計モル当量、すなわち、ジアルコキシシラン[4]、トリアルコキシシラン[5]およびテトラアルコキシシラン[6]に含有されるアルコキシ基の合計モル当量に対して、0.5倍モル当量以上5.0倍モル当量以下の水を使用することが好ましい。ホウ酸化合物[7]としてホウ酸を使用する場合には、水を添加する必要は必ずしもないが、ホウ酸化合物[7]としてホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピルまたはホウ酸トリn-プロピルを使用する場合には、水を添加することが好ましい。この場合の水の添加量は特に限定されないが、反応効率の観点から、原料化合物のアルコキシシラン化合物に含有されるアルコキシ基の合計モル当量に対して、1.0倍モル当量以上、5.0倍モル当量以下の水を使用することが好ましい。この範囲内の水を使用することで、アルコキシシラン化合物の加水分解が効率よく行われる。
 前記第一の縮合工程において、上記混合溶液には反応溶媒を加えてもよい。反応溶媒の種類としては、ポリボロシロキサン中間体[I]を製造するための反応を阻害しなければ、特に限定されない。中でも、アルコール類などの親水性の有機溶媒が好ましい。具体的には、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、ブタノールなどを例示することができるが、これらに限定されない。反応溶媒の使用量としては、使用するアルコキシシラン化合物全量に対して0.1~1000質量%が好ましく、特に好ましくは1~300質量%である。なお、反応過程で反応原料のアルコキシシラン化合物から生成するアルコール類が反応溶媒として機能するため、反応溶媒は必ずしも加える必要はない。
 前記第一の縮合工程において、上記混合溶液には触媒を加えてもよい。この触媒の種類としては、酸性触媒または塩基性触媒を使用でき、酸性触媒の使用が好ましい。この酸性触媒の種類は特に限定されない。例えば、酢酸、塩酸、硝酸、硫酸、フッ化水素酸などの無機酸や、トリフルオロメタンスルホン酸、トシル酸、トリフルオロ酢酸、安息香酸、クエン酸、シュウ酸などの有機酸が挙げられる。中でも、反応終了後の酸性触媒の除去処理が容易なことから、酢酸、塩酸、硝酸、トリフルオロ酢酸、フッ化水素酸が好ましく、より好ましくは酢酸である。また、塩基性触媒の種類は特に限定されない。例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの無機塩基や、トリエチルアミン、ピリジン、ジイソプロピルアミン、ピロリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン(略称:DBU)、1,5-ジアザビシクロ[4.3.0]ノネン、グアニジン、1-メチルグアニジン、1,1,3,3-テトラメチルグアニジンなどの有機塩基が挙げられる。前記第一の縮合工程における触媒の使用量としては、使用するアルコキシシラン化合物、溶媒および水の合計質量に対して0.001~5質量%が好ましく、特に好ましくは0.005~1質量%である。なお、触媒を使用しなくても反応を進行させることもできる。
 前記第一の縮合工程における反応時間は、通常3~15時間であり、反応温度は、通常60~120℃であり、80~100℃が好ましい。
 反応後は、反応溶液からポリボロシロキサン中間体[I]を分離精製することが好ましい。この分離精製の方法は特に限定されないが、反応溶液から揮発成分を減圧留去する方法が好ましい。この際、反応を酸性触媒または塩基性触媒の存在下で行った場合には、そのまま揮発成分を減圧留去してもよいが、反応溶液中の酸または塩基を中和した後、揮発成分を減圧留去することが好ましい。また、反応溶液中に水が存在する場合には、トルエン、キシレンなどの非水溶性有機溶媒を反応溶液に加えて100℃~150℃の範囲で加熱し、水分を共弗により留去した後、揮発成分や非水溶性有機溶媒を減圧留去することが好ましい。
 前記非水性有機溶媒の種類は、特に限定されない。例えば、芳香族炭化水素類やエーテル類などが挙げられる。具体的には、トルエン、キシレン、ジブチルエーテルなどが挙げられ、このなかでもトルエンが好ましいが、これらに限定されない。
 濃縮、精製したポリボロシロキサン中間体[I]は、溶媒中で加熱還流または無溶媒下で加熱撹拌を行うことで、さらに縮合反応を進行させてもよい。これにより、ポリボロシロキサン中間体[I]の分子量を増加させることができる。反応溶媒を用いる場合には、加熱還流が可能な反応容器にポリボロシロキサン中間体[I]と反応溶媒を投入し、溶解液とする。この溶解液を加熱還流して、縮合の進行とともに系中に生成する水と共沸させる。この際、溶解液中にトシル酸等を加えて加熱還流させてもよい。反応溶媒の種類としては、ポリボロシロキサン中間体[I]を溶解させることができ、加熱還流が可能な溶媒であれば特に限定されない。具体的には、トルエン、キシレン、ベンゼンなどの芳香族炭化水素類、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、酢酸エチルなどのエステル類が挙げられる。また、無溶媒下の場合には、加熱攪拌が可能な反応容器にポリボロシロキサン中間体[I]を投入し、100℃以上150℃以下に加熱して4~18時間攪拌する。このとき、ポリボロシロキサン中間体[I]の組成比の変化を抑えるために、反応容器に還流装置(例えば、コンデンサー)を具備させることが好ましい。加熱攪拌後に内容液を室温まで降温させる。これらの一連の操作は繰り返し行うことができ、繰り返す回数は特に限定されない。1~4回行うことが好ましい。
 次に、前記「第一の修飾工程」について説明する。この工程におけるポリボロシロキサン中間体[1]とシラン化合物[8]との反応条件は、(A)成分を製造することができれば特に限定されない。例えば、後述するクロロシラン法とアルコキシシラン法の2種類の方法が挙げられる。ここで言うクロロシラン法とは、ポリボロシロキサン中間体[I]と、シラン化合物[8]の一種であるクロロシラン化合物[8-1]とを、非水溶性有機溶媒中で反応させて(A)成分を製造する方法を指す。また、ここで言うアルコキシシラン法とは、ポリボロシロキサン中間体[I]と、シラン化合物[8]の一種であるシラノール化合物[8-2]、モノアルコキシシラン化合物[8-3]またはジシロキサン化合物[8-4]とを、酸存在下、非水溶性有機溶媒とアルコール性溶媒との混合溶媒中で反応させて(A)成分を製造する方法を指す。この2つの方法について、以下に具体的に説明する。
 “クロロシラン法”
 クロロシラン法においては、まず、ポリボロシロキサン中間体[I]と、非水溶性有機溶媒を反応容器内に所定量入れて、ポリボロシロキサン中間体[I]を溶解させる。次いでこの溶解液に対して、約0~約10℃で撹拌しながら、所定量のクロロシラン化合物[8-1]を添加する。添加終了後、0℃~室温を維持しながら0.5~18時間攪拌して反応を進行させる。その後、反応を終了させることで、(A)成分を得ることができる。
 クロロシラン法において、ポリボロシロキサン中間体[I]とクロロシラン化合物[8-1]の使用量は、特に限定されない。(A)成分の物性調整の観点から、ポリボロシロキサン中間体[I]1gに対して、クロロシラン化合物[8-1]を0.2~10mmol使用することが好ましい。
 クロロシラン法において、使用する非水溶性有機溶媒の種類としては、非水溶性であって、(A)成分を製造するための反応を阻害しなければ、特に限定されない。中でも、芳香族炭化水素類、エーテル類などが好ましい。具体的には、トルエン、キシレン、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテルなどを例示することができるが、これらに限定されない。非水溶性有機溶媒の使用量としては、ポリボロシロキサン中間体[I]1gに対して、50~1,000質量%が好ましく、特に好ましくは300~700質量%である。
 クロロシラン法において、反応を終了させる方法は特に限定されない。通常、反応系に水(好ましくはイオン交換水)を滴下することで反応を終了させる。反応後は、(A)成分のハンドリングの観点から、反応系内から(A)成分を分離して精製することが好ましい。この分離精製方法は特に限定されない。例えば抽出する方法が挙げられる。具体的には、前述の反応後の反応溶液から有機層を分取し、次いで、その有機層を酸で洗浄し、さらに水で洗浄する。次いで、洗浄後の有機層に乾燥剤を加えて、系中に溶解している水を除去する。さらに、乾燥剤の除去、非水性有機溶媒の減圧除去を経ることで、(A)成分を高純度で分離することができる。このとき、乾燥剤を用いずに、非水性有機溶媒を減圧除去する過程で、水を同時に減圧除去してもよい。分離後の(A)成分は、無溶媒、減圧下で加熱攪拌することで、(A)成分中に含まれる水分をさらに除去することが好ましい。このときの加熱温度は特に限定されないが、通常、100~130℃である。
 “アルコキシシラン法”
 アルコキシシラン法においては、まず、ポリボロシロキサン中間体[I]と、非水性有機溶媒と、所望によりアルコール性溶媒とを反応容器内に所定量入れて、ポリボロシロキサン中間体[I]を溶解させる。次いで、この溶解液に、所定量のシラノール化合物[8-2]、モノアルコキシシラン化合物[8-3]またはジシロキサン化合物[8-4]を加える。さらに、加水分解および脱水縮合反応を進行させるための触媒を反応系に加え、反応系を1~48時間、室温で攪拌して反応を進行させる。その後、反応を終了させることで(A)成分を得ることができる。
 アルコキシシラン法において、ポリボロシロキサン中間体[I]と、シラノール化合物[8-2]、モノアルコキシシラン化合物[8-3]またはジシロキサン化合物[8-4]の使用量は、特に限定されない。(A)成分の物性調整の観点から、ポリボロシロキサン中間体[I]1gに対して、シラノール化合物[8-2]、モノアルコシシラン化合物[8-3]またはジシロキサン化合物[8-4]におけるSiH基の総量が0.2~10mmolとなる範囲で使用することが好ましい。
 アルコキシシラン法において、使用する非水溶性有機溶媒の種類としては、(A)成分を製造するための反応を阻害しなければ、特に限定されない。中でも、芳香族炭化水素類、エーテル類などが好ましい。具体的には、トルエン、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテルなどを例示することができるが、これらに限定されない。非水溶性有機溶媒の使用量は、ポリボロシロキサン中間体[I]1gに対して、50~1,000質量%が好ましく、特に好ましくは100~500質量%である。
 アルコキシシラン法において、使用するアルコール系溶媒の種類としては、(A)成分を製造するための反応を阻害しなければ、特に限定されない。中でも、炭素数1~4のアルコールが好ましい。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノールなどを例示することができるが、これらに限定されない。アルコール系溶媒の使用量は、ポリボロシロキサン中間体[I]1gに対して、10~500質量%が好ましく、特に好ましくは50~300質量%である。
 アルコキシシラン法においては、使用する触媒の種類に応じて、非水溶性有機溶媒とアルコール系溶媒の混合溶媒を用いることが好ましい。プロトン酸触媒を使用する場合には、この混合溶媒を用いることで反応性を向上させることができる。
 アルコキシシラン法において、使用する触媒の種類としては、(A)成分を製造するための反応を促進する作用があれば、特に限定されない。中でも、無機酸が好ましい。具体的には、硝酸、塩酸、硫酸などを例示することができるが、これらに限定されない。触媒の使用量は、ポリボロシロキサン中間体[I]1gに対して、0.0001~10mmolが好ましく、特に好ましくは0.005~5mmol質量%である。
 アルコキシシラン法において、反応を終了させる方法は特に限定されない。通常、反応系に水(好ましくはイオン交換水)を加えて攪拌することで反応を終了させる。反応後は、(A)成分のハンドリングの観点から反応系内から(A)成分を分離して精製することが好ましい。この分離精製方法は特に限定されない。例えば、抽出する方法が挙げられる。具体的には、前述の反応後の溶液に水(好ましくは、イオン交換水)を加え、抽出操作を行った後、有機層を分取する。次いで、その有機層を水(好ましくは、イオン交換水)で洗浄し、さらに乾燥剤を加えて、系中に溶解している水を除去する。使用する水の量は特に限定されるものではないが、反応溶液全量に対して30~400質量%が好ましい。その後、有機層中から乾燥剤を除去し、非水溶性有機溶媒の減圧除去を経ることで、(A)成分を高純度で分離することができる。このとき、乾燥剤を用いずに、非水性有機溶媒を減圧除去する過程で、水を同時に減圧除去してもよい。分離後の(A)成分は、無溶媒、減圧下で加熱攪拌することで、(A)成分中に含まれる水分をさらに除去することが好ましい。このときの加熱温度は特に限定されないが、通常、100~130℃である。
 本発明に係る(A)成分に含有されるケイ素原子に結合する水素原子(SiH基)の量は特に限定されない。0.1~5.0mmol/gの範囲であることが好ましく、0.3~3.5mmol/gの範囲であることが特に好ましい。この範囲内であれば、(A)成分と(B)成分のヒドロシリル化反応による硬化が良好に進行する。ここで、(A)成分中のSiH基の含有量は、核磁気共鳴装置を用いて(A)成分の1H-NMRスペクトルを、内部標準を加えて測定し、算出することができる。
 (A)成分の質量平均分子量は、特に限定されるものではない。500~50,000であることが好ましく、さらに好ましくは、800~3,500である。質量平均分子量が500以上であれば、本発明の硬化物は良好な樹脂強度を有し、50,000以下であれば、本発明の組成物は良好な成形性を有する。ここで、質量平均分子量は、ゲルパーミエーションクロマトグラフィー(略称:GPC)法により測定し、標準ポリスチレン検量線により換算して得られる値である。
 (A)成分の粘度は特に限定されない。取扱作業性の観点から、25℃における粘度が0.001~10,000,000cP(センチポイズ)であることが好ましく、さらに好ましくは、0.001~500,000cPである。粘度が10,000,000cP超だと成形性に劣ることがあるが、加温して粘度を下げる処置をすることもできる。ここで、(A)成分の粘度は回転粘度計などにより測定することができる。
 <(B)成分>
 本発明の(B)成分は、分子中にケイ素原子に結合するビニル基(Si-CH=CH2基)を有するシリコーン樹脂である。より具体的には、本発明の(B)成分は、以下の(B-1)成分であってもよく、(B-2)成分であってもよい。中でも、(B-1)成分が好ましい。
 “(B-1)成分”
 (B-1)成分は、下記式[2]で示され、ケイ素原子に結合するビニル基(Si-CH=CH2基)を含有するシリコーン樹脂である。
Figure JPOXMLDOC01-appb-C000017
 上記式[2]は平均組成式を示す。式[2]中、R4は炭素数1~3のアルキル基であり、2つのR4は同じまたは互いに異なる種類であってもよい。R5は炭素数1~3のアルキル基、または炭素数6~10の芳香族炭化水素基であり、2つのR5は同じまたは互いに異なる種類であってもよい。R6は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基である。f、gおよびhはそれぞれ0超、1未満の数であり、iは0以上、1未満の数であり、xは0以上0.20以下の数であり、f+g+h+i=1を満たす。(SiR5 22/2)、(R6SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子は、シロキサン鎖中にボロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。
 上記式[2]のR4における炭素数1~3のアルキル基としては、メチル基、エチル基が好ましく、メチル基が特に好ましい。
 R5における炭素数1~3のアルキル基としては、メチル基、エチル基が好ましく、メチル基が特に好ましい。R5における炭素数6~10の芳香族炭化水素基としては、フェニル基が好ましい。
 R6における炭素数1~3のアルキル基としては、メチル基、エチル基が好ましく、メチル基が特に好ましい。R6における炭素数6~10の芳香族炭化水素基としては、フェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、3,5-ジ(トリフルオロメチルフェニル)基が好ましく、フェニル基が特に好ましい。
 R4、R5およびR6の組み合わせは、特に限定されない。中でも、R4がメチル基またはエチル基、R5がメチル基、エチル基またはフェニル基、R6がメチル基、エチル基、フェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基または3,5-ジ(トリフルオロメチルフェニル)基であることが好ましく、R4がメチル基、R5がメチル基、R6がメチル基またはフェニル基であることが特に好ましい。
 fの値は、0超、1未満の範囲内であり、f+g+h+i=1を満たせば、特に限定されない。fの値は0.10~0.40であることが好ましく、0.10~0.35であることが特に好ましい。fの値が0.10以上であれば本発明の組成物は良好な成形性を有し、0.40以下であれば本発明の硬化物は良好な機械的強度を有する。
 gの値は、0超、1未満の範囲内であり、f+g+h+i=1を満たせば、特に限定されない。gの値は0.10~0.80であることが好ましく、0.10~0.50であることが特に好ましい。gの値が0.10以上であれば本発明の組成物は良好な成形性を有し、0.80以下であれば本発明の硬化物は良好な機械的強度を有する。
 hの値は、0超、1未満の範囲内であり、f+g+h+i=1を満たせば、特に限定されない。hの値は0.10~0.80であることが好ましく、0.20~0.60であることが特に好ましい。hの値が0.10以上であれば本発明の硬化物は良好な機械的強度を有し、0.80以下であれば本発明の組成物は良好な成形性を有する。
 iの値は、0以上、1未満の範囲内であり、f+g+h+i=1を満たせば、特に限定されない。iの値は0~0.70であることが好ましい。中でも、本発明の硬化物が良好な接着強度を示すことから、iの値は0.10~0.30であることが特に好ましい。iの値がこの範囲内であれば、良好な接着強度を示す硬化物を得ることができる。なお、iの値が0である場合、上記式[2]中、(SiO4/2)の構造単位は存在しない。
 xの値は、f、g、hおよびiの値の総和(f+g+h+i=1)に対して、0以上、0.20以下の範囲内であり、0超、0.2以下が好ましく、0以上、0.1以下が特に好ましい。xの値が0超であれば本発明の硬化物はパッケージ基板に対して良好な密着性を有し、また、0.2以下であれば本発明の組成物は良好な保存安定性を有し、0.1以下であればさらに良好な保存安定性を有する。なお、xの値が0である場合、上記式[2]中、(BO3/2)の構造単位は存在しない。
 f、g、hおよびiの値は、f:g:h:i=0.10~0.40:0.10~0.80:0.10~0.80:0~0.70であることが好ましく、e:f:g:h=0.10~0.35:0.10~0.50:0.20~0.60:0.10~0.30であることが特に好ましい。
 上記式[2]におけるf、g、hおよびiの値は、核磁気共鳴装置を用いて(B)成分の29Si-NMRスペクトルと1H-NMRスペクトルを測定し、これらを相補的に組み合わせて用いて算出することができる。
 xの値は、(A)成分におけるeの値を求める方法と同様にして求める。すなわち、前述のeの値を求める方法において、(A)成分を(B-1)成分と読み替え、eの値をxの値と読み替えて準用する。
 (SiR5 22/2)で表される構造単位は、下記式[2-2]で表される構造、すなわち、(SiR5 22/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000018
 上記式[2-2]中、R5は上記式[2]中のR5と同義であり、Xはヒドロキシ基を表す。
 (SiR5 22/2)で表される構造単位は、下記式[2-b]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[2-2-b]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R5で表される基を有し、かつヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(SiR5 22/2)で表される構造単位に含まれる。また、下記式[2-b]で表される構造単位において、E-O-Si結合中の酸素原子は、隣接するケイ素原子とシロキサン結合(Si-O-Si結合)を形成し、または隣接するケイ素原子およびホウ素原子とボロシロキサン結合(B-O-Si結合)を形成しており、隣接する構造単位と酸素原子を共有している。従って、E-O-Si結合中の1つの酸素原子、すなわち、Si-O-Si結合中またはB-O-Si結合中の1つの酸素原子を「O1/2」とする。
Figure JPOXMLDOC01-appb-C000019
 上記式[2-b]および[2-2-b]中、Eはケイ素原子またはホウ素原子を表し、R5は上記式[2]中のR5と同義である。上記式[2-2-b]中、Xはヒドロキシ基を表す。
 (R6SiO3/2)で表される構造単位は、下記式[2-3]または[2-4]で表される構造、すなわち、(R6SiO3/2)で表される構造単位中のケイ素原子に結合した酸素原子の2つがそれぞれシラノール基を形成している構造、または(R6SiO3/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000020
 上記式[2-3]および[2-4]中、R6は上記式[2]中のR6と同義であり、Xはヒドロキシ基を表す。
 (R6SiO3/2)で表される構造単位は、下記式[2-c]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[2-3-c]または[2-4-c]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R6で表される基を有し、かつヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(R6SiO3/2)で表される構造単位に含まれる。
Figure JPOXMLDOC01-appb-C000021
 上記式[2-c]、[2-3-c]および[2-4-c]中、Eはケイ素原子またはホウ素原子を表し、R6は上記式[2]中のR6と同義である。上記式[2-3-c]および[2-4-c]中、Xはヒドロキシ基を表す。
 (SiO4/2)で表される構造単位は、下記式[2-5]、[2-6]または[2-7]で表される構造、すなわち、(SiO4/2)で表される構造単位中のケイ素原子に結合した酸素原子の3つもしくは2つがそれぞれシラノール基を形成している構造、または(SiO4/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000022
 上記式[2-5]、[2-6]および[2-7]中、Xはヒドロキシ基を表す。
 (SiO4/2)で表される構造単位は、下記式[2-d]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[2-5-d]、[2-6-d]または[2-7-d]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、ヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(SiO4/2)で表される構造単位に含まれる。
Figure JPOXMLDOC01-appb-C000023
 上記式[2-d]、[2-5-d]、[2-6-d]および[2-7-d]中、Eはケイ素原子またはホウ素原子を表し、Xはヒドロキシ基を表す。
 (BO3/2)で表される構造単位は、上記式[1]に係る(BO3/2)で表される構造単位と同義である。
 以下に、(B-1)成分の製造方法の一例を示すが、(B-1)成分の製造方法はこれに限定されない。(B-1)成分の製造方法の一例においては、
 下記一般式[9]で表されるジアルコキシシラン化合物と、記一般式[10]で表されるトリアルコキシシラン化合物とを、加水分解重縮合させて(あるいは、下記一般式[9]で表されるジアルコキシシラン化合物と、下記一般式[10]で表されるトリアルコキシシラン化合物と、下記一般式[11]で表されるテトラアルコキシシラン化合物および下記一般式[17]で表されるホウ酸化合物からなる群より選ばれる少なくとも一種とを、加水分解重縮合させて)、シリコーン中間体(II)を得る工程(以下、「第二の縮合工程」と称することがある。)と、
 第二の縮合工程で得られたシリコーン中間体(II)を一般式[12-1]、[12-2]、[12-3]または[12-4]で表されるビニルシラン化合物と反応させて(B-1)成分を得る工程(以下、「第二の修飾工程」と称することがある。)とを含む。
Figure JPOXMLDOC01-appb-C000024
 一般式[9]において、R5は式[2]のR5と同義である。R13は炭素数1~3のアルキル基であり、2つのR13は同じまたは互いに異なる種類であってもよい。
 一般式[9]で表されるジアルコキシシラン化合物(以下、「ジアルコキシシラン[9]」と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジn-プロピルジメトキシシラン、ジn-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン。ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシラン、フェニルエチルジエトキシシラン。
 これらの中でも好ましい化合物として、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランが挙げられる。
 一般式[10]において、R6は式[2]のR6と同義である。R14は炭素数1~3のアルキル基であり、3つのR14は同じまたは互いに異なる種類であってもよい。
 一般式[10]で表されるトリアルコキシシラン化合物(以下、「トリアルコキシシラン[10]と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリメトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリエトキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン。
 これらの中でも好ましい化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン3,5-(ジトリフルオロメチル)フェニルトリメトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリエトキシシランが挙げられ、特に好ましい化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランが挙げられる。
 一般式[11]において、R15は炭素数1~3のアルキル基であり、4つのR15は同じまたは互いに異なる種類であってもよい。
 一般式[11]で表されるテトラアルコキシシラン化合物(以下、「テトラアルコキシシラン[11]」と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン。
 これらの中でも好ましい化合物として、テトラメトキシシラン、テトラエトキシシランが挙げられる。
 一般式[17]中のR21は水素原子または炭素数1~3のアルキル基を表し、3つのR21は同じまたは互いに異なる種類であってもよい。
 一般式[17]で表されるホウ素化合物(以下、「ホウ素化合物[17]」と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ホウ酸(ここで、ホウ酸とはオルトホウ酸、メタホウ酸、次ホウ酸などのホウ素のオキソ酸を総称したものである)、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル、ホウ酸トリn-プロピル。
 これらの中でも好ましい化合物として、ホウ酸が挙げられる。
 (B-1)成分の製造に用いるジアルコキシシラン[9]、トリアルコキシシラン[10]およびテトラアルコキシシラン[11]の組み合わせは特に限定されない。ジアルコキシシラン[9]、トリアルコキシシラン[10]およびテトラアルコキシシラン[11]はそれぞれ単種類を用いてもよいし、複数種類を併用してもよい。
 好ましい組み合わせとしては、
 ジアルコキシシラン[9]は、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジn-プロピルジメトキシシラン、ジn-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン。ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシラン、フェニルエチルジエトキシシランからなる群から一種以上が選択され、
 トリアルコキシシラン[10]は、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリメトキシシランおよび3,5-(ジトリフルオロメチル)フェニルトリエトキシシランからなる群から一種以上が選択され、
 テトラアルコキシシラン[11]は、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシランおよびテトライソプロポキシシランからなる群から一種以上が選択される。
 この中でも、特に好ましい組み合わせとしては、
 ジアルコキシシラン[9]は、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、およびジフェニルジエトキシシランからなる群から一種以上が選択され、
 トリアルコキシシラン[10]は、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシランおよびフェニルトリエトキシシランからなる群から一種以上が選択され、
 テトラアルコキシシラン[11]は、テトラメトキシシランおよびテトラエトキシシランからなる群から一種以上が選択される。
 これらの組み合わせに対して、ホウ素化合物[17]をさらに用いることもできる。この場合のホウ素化合物[17]の種類は特に限定されない。ホウ酸(ここで、ホウ酸とはオルトホウ酸、メタホウ酸、次ホウ酸などのホウ素のオキソ酸を総称したものである)、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピルおよびホウ酸トリn-プロピルからなる群から一種以上が選択されることが好ましく、ホウ酸が特に好ましい。
 一般式[12-1]、[12-2]、[12-3]および[12-4]におけるR4は、式[2]のR4と同義である。一般式[12-3]において、R16は炭素数1~3のアルキル基である。
 以下、一般式[12-1]、[12-2]、[12-3]および[12-4]で表されるビニルシラン化合物は、それぞれ「クロロビニルシラン化合物[12-1]」、「ビニルシラノール化合物[12-2]」、「モノアルコキシビニルシラン化合物[12-3]」、「ジビニルジシロキサン化合物[12-4]」と表すことがあり、これらを区別せずに総称する際には「ビニルシラン化合物[12]」と表すことがある。
 クロロビニルシラン化合物[12-1]は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:クロロビニルシラン、クロロメチルビニルシラン、クロロジメチルビニルシラン、クロロエチルビニルシラン、クロロジエチルビニルシラン。
 これらの中でも好ましい化合物として、クロロジメチルビニルシランが挙げられる。
 ビニルシラノール化合物[12-2]は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ビニルシラノール、メチルビニルシラノール、ジメチルビニルシラノール、エチルビニルシラノール、ジエチルビニルシラノール。
 これらの中でも好ましい化合物として、ジメチルビニルシラノールが挙げられる。
 モノアルコキシビニルシラン化合物[12-3]は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:メトキシビニルシラン、エトキシビニルシラン、メチルメトキシビニルシラン、メチルエトキシビニルシラン、ジメチルメトキシビニルシラン、ジメチルエトキシビニルシラン、エチルメトキシビニルシラン、エチルエトキシビニルシラン、ジエチルメトキシビニルシラン、ジエチルエトキシビニルシラン。
 これらの中でも好ましい化合物として、ジメチルメトキシビニルシラン、ジメチルエトキシビニルシランが挙げられる。
 ジビニルジシロキサン化合物[12-4]は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:1,3-ビニルジシロキサン、1,3-ジメチル-1,3-ジビニルジシロキサン、1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン、1,3-ジエチル-1,3-ジビニルジシロキサン、1,1,3,3-テトラエチル-1,3-ジビニルジシロキサン。
 これらの中でも好ましい化合物として、1,1,3,3-テトラメチル-1,3-ジビニルジシロキサンが挙げられる。
 前記第二の縮合工程において、まず、ジアルコキシシラン[9]と、トリアルコキシシラン[10]とを(あるいは、ジアルコキシシラン[9]と、トリアルコキシシラン[10]と、テトラアルコキシシラン[11]およびホウ素化合物[17]からなる群より選ばれる少なくとも一種とを)、室温にて反応容器内に所定量入れた後、水、必要であれば反応溶媒を加え、所望により、縮合反応を進行させるための触媒を加えて反応溶液とする。このときの投入順序はこれに限定されず、任意の順序で投入して反応溶液とすることができる。次いで、この反応溶液を撹拌しながら所定時間、所定温度で反応を進行させることで、シリコーン中間体[II]を得ることができる。この際、反応系中の未反応原料のアルコキシシラン化合物、ホウ素化合物、水、反応溶媒および/または触媒が、反応系外へ留去されることを防ぐため、反応容器には還流装置を具備することが好ましい。
 前記第二の縮合工程において、ジアルコキシシラン[9]、トリアルコキシシラン[10]およびテトラアルコキシシラン[11]の使用量は、特に限定されない。(B-1-b)成分の物性調整の観点から、ジアルコキシシラン[9]:トリアルコキシシラン[10]はモル比で表して85:15~15:85で混合することが好ましく、85:15~30:70で混合することが特に好ましい。ジアルコキシシラン[9]のモル比が15を下回ると、所望の分子量よりも高くなることがあり、85を超えると、加水分解重縮合反応が進行しにくく、所望の分子量よりも低くなることがある。また、テトラアルコキシシラン[11]を使用する場合の量は、ジアルコキシシラン[9]、トリアルコキシシラン[10]およびテトラアルコキシシラン[11]の合計100モルに対して、1~80モルであることが好ましく、1~60モルであることが特に好ましい。
 前記第二の縮合工程において、ホウ素化合物[17]を使用する場合の量は、特に限定されない。ジアルコキシシラン[9]と、トリアルコキシシラン[10]とに含有されるアルコキシ基の合計モル当量(テトラアルコキシシラン[6]を使用する場合には、ジアルコキシシラン[9]と、トリアルコキシシラン[10]と、テトラアルコキシシラン[6]とに含有されるアルコキシ基の合計モル当量)に対して、0.05倍以上、0.3倍以下のホウ酸化合物を用いることが好ましい。0.05倍モル当量より少ないと、アルコキシシラン化合物の加水分解が効率よく行われないことがあり、また、0.3倍モル当量より多く加えると、反応後、反応溶液中にホウ酸化合物の析出が生じて、溶液が白濁する場合がある。
 前記第二の縮合工程において使用する水の量は、特に限定されない。反応効率の観点から、原料化合物のアルコキシシラン化合物に含有されるアルコキシ基の合計モル当量に対して、1.0倍モル当量以上、5倍モル当量以下であることが好ましい。この範囲内であれば、アルコキシシラン化合物の加水分解が効率よく進行する。
 前記第二の縮合工程においては、無溶媒条件でも反応させることは可能であるが、反応溶媒を使用することもできる。反応溶媒の種類としては、シリコーン中間体[II]を製造するための反応を阻害しなければ、特に限定されない。中でも、アルコール類などの親水性の有機溶媒が好ましい。具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、ブタノールなどを例示することができるが、これらに限定されない。反応溶媒の使用量としては、使用するアルコキシシラン化合物全量に対して0.1~1000質量%が好ましく、特に好ましくは1~300質量%である。なお、反応過程で反応原料のアルコキシシラン化合物から生成するアルコール類が反応溶媒として機能するため、必ずしも加える必要はない場合がある。
 前記第二の縮合工程において使用する触媒の種類としては、酸性触媒または塩基性触媒を使用でき、酸性触媒の使用が好ましい。この種類は特に限定されない。例えば、酢酸、塩酸、硝酸、硫酸、フッ化水素酸などの無機酸や、トリフルオロメタンスルホン酸、トシル酸、トリフルオロ酢酸、安息香酸、クエン酸、シュウ酸などの有機酸が挙げられる。中でも、反応終了後の酸性触媒の除去処理が容易なことから、酢酸、塩酸、硝酸、硫酸、フッ化水素酸が好ましく、より好ましくは酢酸である。また、塩基性触媒の種類は特に限定されない。例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの無機塩基や、トリエチルアミン、ピリジン、ジイソプロピルアミン、ピロリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン(略称:DBU)、1,5-ジアザビシクロ[4.3.0]ノネン、グアニジン、1-メチルグアニジン、1,1,3,3-テトラメチルグアニジンなどの有機塩基が挙げられる。前記第二の縮合工程における触媒の使用量としては、使用するアルコキシシラン化合物、溶媒および水の合計質量に対して0.001~5質量%が好ましく、特に好ましくは0.005~1質量%である。
 前記第二の縮合工程における反応時間は、通常約3時間以上約15時間以下であり、反応温度は、通常60℃以上120℃以下であり、80℃以上100℃以下が好ましい。
 反応後は、シリコーン中間体[II]のハンドリングの観点から、反応系内からシリコーン中間体[II]を分離して精製することが好ましい。この分離方法は特に限定されない。分離方法としては、例えば抽出する方法が挙げられる。具体的には、前述の反応後の反応溶液を室温まで降温させた後、抽出溶媒として非水性有機溶媒と接触させることで反応系中に存在するシリコーン中間体[II]を抽出する。次いで、抽出後の溶液に含まれる触媒の除去を行う。触媒の除去方法は、特に限定されない。例えば、使用した触媒(例えば、酢酸)が水溶性であれば、抽出後の溶液を水(好ましくはイオン交換水)で洗浄することでこの触媒を除去することができる。使用する水の量は特に限定されるものではないが、反応溶液全量に対して30質量%から400質量%の量で行うことが好ましい。次いで、触媒を除去した後の溶液に乾燥剤を加えて、系中に溶解している水を除去する。さらに、乾燥剤の除去、抽出溶媒の減圧除去を経ることで、シリコーン中間体[II]を高純度で分離することができる。このとき、乾燥剤を用いずに、触媒を除去した後の溶液から抽出溶媒を減圧除去する過程で水を同時に減圧除去してもよい。
 上記抽出溶媒としては、非水性有機溶媒を用いることができる。この非水性有機溶媒の種類は、特に限定されない。例えば、芳香族炭化水素類、エーテル類などが挙げられる。具体的には、トルエン、ジエチルエーテル、イソプロピルエーテル、ジブチルエーテルなどが挙げられるが、これらに限定されない。
 上記乾燥剤としては、系中から水を除去し、シリコーン中間体[II]と分離することができれば特に限定されない。このような乾燥剤としては、固体乾燥剤が好ましく用いられる。具体的には、硫酸マグネシウムなどが挙げられるが、これに限定されない。
 分離、精製したシリコーン中間体[II]は、溶媒中で加熱還流または無溶媒下で加熱撹拌を行うことで、さらに縮合反応を進行させてもよい。これにより、シリコーン中間体[II]の分子量を増加させることができる。溶媒を用いる場合には、加熱還流が可能な反応容器にシリコーン中間体[II]と溶媒を投入し、溶解液とする。この溶解液を加熱還流して、縮合の進行とともに系中に生成する水と共沸させる。この際、溶解液中にトシル酸等を加えて加熱還流させてもよい。用いる溶媒の種類としては、シリコーン中間体[II]を溶解させることができ、加熱還流が可能な溶媒であれば特に限定されない。具体的には、トルエン、キシレン、ベンゼンなどの芳香族炭化水素類、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、酢酸エチルなどのエステル類が挙げられる。また、無溶媒下の場合には、加熱攪拌が可能な反応容器にシリコーン中間体[II]を投入し、100℃以上150℃以下に加熱して6~18時間攪拌する。このとき、シリコーン中間体[II]の組成比の変化を抑えるために、反応容器に還流装置(例えば、コンデンサー)を具備させることが好ましい。加熱攪拌後に内容液を室温まで降温させる。これらの一連の操作は繰り返し行うことができ、繰り返す回数は特に限定されない。1~4回行うことが好ましい。
 次に、前記「第二の修飾工程」について説明する。前記第二の修飾工程は、上述の(A)成分の製造方法における第一の修飾工程を準用して説明することができる。すなわち、上述のクロロシラン法またはアルコキシシラン法におけるシラン化合物[8]、クロロシラン化合物[8-1]、シラノール化合物[8-2]、モノアルコキシシラン化合物[8-3]、ジシロキサン化合物[8-4]を、それぞれビニルシラン化合物[12]、クロロビニルシラン化合物[12-1]、ビニルシラノール化合物[12-2]、モノアルコキシビニルシラン化合物[12-3]、ジビニルジシロキサン化合物[12-4]に置き換え、さらに、SiH基、ポリボロシロキサン中間体[I]および(A)成分を、それぞれSi-CH=CH2基、シリコーン中間体[II]および(B-1)成分に置き換えることで、シリコーン中間体(II)から(B-1)成分を製造する工程を説明することができる。この方法により、シリコーン中間体(II)から(B-1)成分を製造することができる。
 “(B-2)成分”
 (B-2)成分は、下記式[3]で示され、ケイ素原子に結合するビニル基(Si-CH=CH2基)を含有するシリコーン樹脂である。
Figure JPOXMLDOC01-appb-C000025
 上記式[3]は平均組成式を示す。式[3]中、R7は炭素数1~3のアルキル基、または炭素数6~10の芳香族炭化水素基であり、2つのR7は同じまたは互いに異なる種類であってもよく、R8は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、j、kおよびlは、それぞれ0超、1未満の数であり、mは0以上、1未満の数であり、yは0以上0.20以下の数であり、j+k+l+m=1を満たす。(SiR7 22/2)、(R8SiO3/2)、(CH2=CH-SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子は、シロキサン鎖中にボロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。
 上記式[3]のR7における炭素数1~3のアルキル基としては、メチル基、エチル基が好ましく、メチル基が特に好ましい。R7における炭素数6~10の芳香族炭化水素基としては、フェニル基が好ましい。
 R8における炭素数1~3のアルキル基としては、メチル基、エチル基が好ましく、メチル基が特に好ましい。R8における炭素数6~10の芳香族炭化水素基としては、フェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、3,5-ジ(トリフルオロメチルフェニル)基が好ましく、フェニル基が特に好ましい。
 R7およびR8の組み合わせは、特に限定されない。中でも、R7がメチル基またはエチル基、R8がメチル基、エチル基またはフェニル基であることが好ましく、R7がメチル基、R8がメチル基であることが特に好ましい。
 jの値は、0超、1未満の範囲内であり、j+k+l+m=1を満たせば、特に限定されない。jの値は0.10~0.80であることが好ましく、0.10~0.50であることが特に好ましい。jの値が0.10以上であれば本発明の組成物は良好な成形性を有し、0.40以下であれば本発明の硬化物は良好な機械的強度を有する。
 kの値は、0超、1未満の範囲内であり、j+k+l+m=1を満たせば、特に限定されない。kの値は0.10~0.80であることが好ましく、0.20~0.60であることが特に好ましい。kの値が0.10以上であれば本発明の組成物は良好な成形性を有し、0.80以下であれば本発明の硬化物は良好な機械的強度を有する。
 lの値は、0超、1未満の範囲内であり、j+k+l+m=1を満たせば、特に限定されない。lの値は0.10~0.80であることが好ましく、0.10~0.35であることが特に好ましい。lの値が0.10以上であれば本発明の硬化物は良好な機械的強度を有し、0.80以下であれば本発明の組成物は良好な成形性を有する。
 mの値は、0以上、1未満の範囲内であり、j+k+l+m=1を満たせば、特に限定されない。mの値は0~0.70であることが好ましい。中でも、本発明の硬化物が良好な接着強度を示すことから、mの値は0.10~0.30であることが特に好ましい。lの値がこの範囲内であれば、良好な接着強度を示す硬化物を得ることができる。なお、mの値が0である場合、上記式[3]中、(SiO4/2)の構造単位は存在しない。
 yの値は、j、k、lおよびmの値の総和(j+k+l+m=1)に対して、0以上、0.20以下の範囲内であり、0超、0.2以下が好ましく、0以上、0.1以下が特に好ましい。yの値が0超であれば本発明の硬化物はパッケージ基板に対して良好な密着性を有し、また、0.2以下であれば本発明の組成物は良好な保存安定性を有し、0.1以下であればさらに良好な保存安定性を有する。なお、xの値が0である場合、上記式[3]中、(BO3/2)の構造単位は存在しない。
 j、k、lおよびmの値は、j:k:l:m=0.10~0.80:0.10~0.80:0.10~0.40:0~0.70であることが好ましく、i:j:k:l=0.10~0.50:0.20~0.60:0.10~0.35:0.10~0.30であることが特に好ましい。
 上記式[3]におけるj、k、lおよびmの値は、核磁気共鳴装置を用いて(B)成分の29Si-NMRスペクトルと1H-NMRスペクトルを測定し、これらを相補的に組み合わせて用いて算出することができる。
 yの値は、(A)成分におけるeの値を求める方法と同様にして求める。すなわち、前述のeの値を求める方法において、(A)成分を(B-2)成分と読み替え、eの値をyの値と読み替えて準用する。
 (SiR7 22/2)で表される構造単位は、下記式[3-2]で表される構造、すなわち、(SiR7 22/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000026
 上記式[3-2]中、R7は上記式[3]中のR7と同義であり、Xはヒドロキシ基を表す。
 (SiR7 22/2)で表される構造単位は、下記式[3-b]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[3-2-b]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R7で表される基を有し、かつヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(SiR7 22/2)で表される構造単位に含まれる。また、下記式[3-b]で表される構造単位において、Si-O-Si結合中の酸素原子は、隣接するケイ素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、Si-O-Si結合中の1つの酸素原子を「O1/2」とする。
Figure JPOXMLDOC01-appb-C000027
 上記式[3-b]および[3-2-b]中、Eはケイ素原子またはホウ素原子を表し、R7は上記式[3]中のR7と同義である。上記式[3-2-b]中、Xはヒドロキシ基を表す。
 (R8SiO3/2)で表される構造単位は、下記式[3-3]または[3-4]で表される構造、すなわち、(R8SiO3/2)で表される構造単位中のケイ素原子に結合した酸素原子の2つがそれぞれシラノール基を形成している構造、または(R8SiO3/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000028
 上記式[3-3]および[3-4]中、R8は上記式[3]中のR8と同義であり、Xはヒドロキシ基を表す。
 (R8SiO3/2)で表される構造単位は、下記式[3-c-1]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[3-3-c]または[3-4-c]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R8で表される基を有し、かつヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(R8SiO3/2)で表される構造単位に含まれる。
Figure JPOXMLDOC01-appb-C000029
 上記式[3-c-1]、[3-3-c]および[3-4-c]中、Eはケイ素原子またはホウ素原子を表し、R8は上記式[3]中のR8と同義である。上記式[3-3-c]および[3-4-c]中、Xはヒドロキシ基を表す。
 (CH2=CH-SiO3/2)で表される構造単位は、下記式[3-5]または[3-6]で表される構造、すなわち、(CH2=CH-SiO3/2)で表される構造単位中のケイ素原子に結合した酸素原子の2つがそれぞれシラノール基を形成している構造、または(CH2=CH-SiO3/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000030
 上記式[3-5]および[3-6]中、Viは上記式[3]中のCH2=CH-基と同義であり、Xはヒドロキシ基を表す。
 (R8SiO3/2)で表される構造単位は、下記式[3-c-2]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[3-5-c]または[3-6-c]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R8で表される基を有し、かつヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(R8SiO3/2)で表される構造単位に含まれる。
Figure JPOXMLDOC01-appb-C000031
 上記式[3-c-2]、[3-5-c]および[3-6-c]中、Eはケイ素原子またはホウ素原子を表し、Viは上記式[3]中のCH2=CH-基と同義である。上記式[3-5-c]および[3-6-c]中、Xはヒドロキシ基を表す。
 (SiO4/2)で表される構造単位は、下記式[3-7]、[3-8]または[3-9]で表される構造、すなわち、(SiO4/2)で表される構造単位中のケイ素原子に結合した酸素原子の3つもしくは2つがそれぞれシラノール基を形成している構造、または(SiO4/2)で表される構造単位中のケイ素原子に結合した酸素原子の1つがシラノール基を形成している構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000032
 上記式[3-7]、[3-8]および[3-9]中、Xはヒドロキシ基を表す。
 (SiO4/2)で表される構造単位は、下記式[3-d]で表される構造単位の破線で囲まれた部分を含み、さらに下記式[3-7-d]、[3-8-d]または[3-9-d]で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、ヒドロキシ基が末端に残存してシラノール基を形成している構造単位も、(SiO4/2)で表される構造単位に含まれる。
Figure JPOXMLDOC01-appb-C000033
 上記式[3-d]、[3-7-d]、[3-8-d]および[3-9-d]中、Eはケイ素原子またはホウ素原子を表し、Xはヒドロキシ基を表す。
 (BO3/2)で表される構造単位は、上記式[1]に係る(BO3/2)で表される構造単位と同義である。
 以下に、(B-2)成分の製造方法の一例を示すが、(B-2)成分の製造方法はこれに限定されない。(B-2)成分の製造方法の一例においては、
 下記一般式[13]で表されるジアルコキシシラン化合物と、下記一般式[14]で表されるトリアルコキシシラン化合物と、下記一般式[16]で表されるビニルトリアルコキシシランとを、加水分解重縮合させて(あるいは、下記一般式[13]で表されるジアルコキシシラン化合物と、下記一般式[14]で表されるトリアルコキシシラン化合物と、下記一般式[16]で表されるビニルトリアルコキシシランと、下記一般式[15]で表されるテトラアルコキシシラン化合物および下記一般式[18]で表されるホウ酸化合物からなる群より選ばれる少なくとも一種とを、加水分解重縮合させて)、(B-2)成分を得る工程(以下、「第三の縮合工程」と称することがある。)を含む。
Figure JPOXMLDOC01-appb-C000034
 一般式[13]中のR7は式[3]中のR7と同義であり、R17は炭素数1~3のアルキル基を表し、2つのR17は同じまたは互いに異なる種類であってもよい。
 一般式[13]で表されるジアルコキシシラン化合物(以下、「ジアルコキシシラン[13]」と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジn-プロピルジメトキシシラン、ジn-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン。ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシラン、フェニルエチルジエトキシシラン。
 これらの中でも好ましい化合物として、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランが挙げられる。
 一般式[14]中のR8は式[3]中のR8と同義であり、R18は炭素数1~3のアルキル基であり、3つのR18は同じまたは互いに異なる種類であってもよい。
 一般式[14]で表されるトリアルコキシシラン化合物(以下、「トリアルコキシシラン[14]と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリメトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリエトキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン。
 これらの中でも好ましい化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン3,5-(ジトリフルオロメチル)フェニルトリメトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリエトキシシランが挙げられ、特に好ましい化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランが挙げられる。
 一般式[15]中のR19は炭素数1~3のアルキル基であり、4つのR19は同じまたは互いに異なる種類であってもよい。
 一般式[15]で表されるテトラアルコキシシラン化合物(以下、「テトラアルコキシシラン[15]」と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン。
 これらの中でも好ましい化合物として、テトラメトキシシラン、テトラエトキシシランが挙げられる。
 一般式[16]中のR20は炭素数1~3のアルキル基であり、2つのR20は同じまたは互いに異なる種類であってもよい。
 一般式[16]で表されるビニルトリアルコキシシラン化合物(以下、「ビニルトリアルコキシシラン[16]」と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリn-プロポキシシラン。
 これらの中でも好ましい化合物として、ビニルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。
 一般式[18]中のR22は水素原子または炭素数1~3のアルキル基を表し、3つのR22は同じまたは互いに異なる種類であってもよい。
 一般式[18]で表されるホウ素化合物(以下、「ホウ素化合物[18]」と表すことがある。)は、具体的には以下の化合物が挙げられるが、これらに限定されるものではない:ホウ酸(ここで、ホウ酸とはオルトホウ酸、メタホウ酸、次ホウ酸などのホウ素のオキソ酸を総称したものである)、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル、ホウ酸トリn-プロピル。
 これらの中でも好ましい化合物として、ホウ酸が挙げられる。
 (B-2)成分の製造に用いるジアルコキシシラン[13]、トリアルコキシシラン[14]、テトラアルコキシシラン[15]、およびビニルトリアルコキシシラン[16]の組み合わせは特に限定されない。ジアルコキシシラン[13]、トリアルコキシシラン[14]、テトラアルコキシシラン[15]、およびビニルトリアルコキシシラン[16]はそれぞれ単種類を用いてもよいし、複数種類を併用してもよい。
 好ましい組み合わせとしては、
 ジアルコキシシラン[13]は、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジn-プロピルジメトキシシラン、ジn-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシランおよびフェニルエチルジエトキシシランからなる群から一種以上が選択され、
 トリアルコキシシラン[14]は、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-(トリフルオロメチル)フェニルトリメトキシシラン、3-(トリフルオロメチル)フェニルトリエトキシシラン、4-(トリフルオロメチル)フェニルトリメトキシシラン、4-(トリフルオロメチル)フェニルトリエトキシシラン、3,5-(ジトリフルオロメチル)フェニルトリメトキシシランおよび3,5-(ジトリフルオロメチル)フェニルトリエトキシシランからなる群から一種以上が選択され、
 テトラアルコキシシラン[15]は、テトラメトキシシラン、テトラエトキシシランおよびテトライソプロポキシシランからなる群から一種以上が選択され、
 ビニルトリアルコキシシラン[16]はビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシランおよびビニルトリn-プロポキシシランからなる群から一種以上が選択される。
 この中でも、特に好ましい組み合わせとしては、
 ジアルコキシシラン[13]は、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシランおよびジフェニルジエトキシシランからなる群から一種以上が選択され、
 トリアルコキシシラン[14]は、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシランおよびフェニルトリエトキシシランからなる群から一種以上が選択され、
 テトラアルコキシシラン[15]は、テトラメトキシシランおよびテトラエトキシシランからなる群から一種以上が選択され、
 ビニルトリアルコキシシラン[16]はビニルトリメトキシシランおよびビニルトリエトキシシランからなる群から一種以上が選択される。
 これらの組み合わせに対して、ホウ素化合物[18]をさらに用いることもできる。この場合のホウ素化合物[18]の種類は特に限定されない。ホウ酸(ここで、ホウ酸とはオルトホウ酸、メタホウ酸、次ホウ酸などのホウ素のオキソ酸を総称したものである)、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピルおよびホウ酸トリn-プロピルからなる群から一種以上が選択されることが好ましく、ホウ酸が特に好ましい。
 前記第三の縮合工程において、まず、ジアルコキシシラン[13]と、トリアルコキシシラン[14]と、ビニルトリアルコキシシラン[16]とを(あるいは、ジアルコキシシラン[13]と、トリアルコキシシラン[14]と、ビニルトリアルコキシシラン[16]と、テトラアルコキシシラン[15]およびホウ素化合物[17]からなる群より選ばれる少なくとも一種とを)、室温にて反応容器内に所定量入れた後、水、必要であれば反応溶媒を加え、所望により、縮合反応を進行させるための触媒を加えて反応溶液とする。このときの投入順序はこれに限定されず、任意の順序で投入して反応溶液とすることができる。次いで、この反応溶液を撹拌しながら所定時間、所定温度で反応を進行させることで、(B-2)成分を得ることができる。この際、反応系中の未反応原料のアルコキシシラン化合物、ホウ素化合物、水、反応溶媒および/または触媒が、反応系外へ留去されることを防ぐため、反応容器には還流装置を具備することが好ましい。
 前記第三の縮合工程において、ジアルコキシシラン[13]、トリアルコキシシラン[14]、テトラアルコキシシラン[15]およびビニルトリアルコキシシラン[16]の使用量は、特に限定されない。(B-2-b)成分の物性調整の観点から、ジアルコキシシラン[14]:トリアルコキシシラン[15]はモル比で表して85:15~15:85で混合することが好ましく、85:15~30:70で混合することが特に好ましい。ジアルコキシシラン[14]のモル比が15を下回ると、所望の分子量よりも高くなることがあり、85を超えると、加水分解重縮合反応が進行しにくく、所望の分子量よりも低くなることがある。テトラアルコキシシラン[15]を使用する場合の量は、ジアルコキシシラン[13]、トリアルコキシシラン[14]、テトラアルコキシシラン[15]、およびビニルトリアルコキシシラン[16]の合計100モルに対して、1~80モルであることが好ましく、1~60モルであることが特に好ましい。また、ビニルトリアルコキシシラン[16]を使用する場合の量は、ジアルコキシシラン[13]、トリアルコキシシラン[14]、テトラアルコキシシラン[15]、およびビニルトリアルコキシシラン[16]の合計100モルに対して、5~50モルであることが好ましく、10~40モルであることが特に好ましい。
 前記第三の縮合工程において、ホウ素化合物[18]を使用する場合の量は、特に限定されない。ジアルコキシシラン[13]と、トリアルコキシシラン[14]と、ビニルトリアルコキシシラン[16]とに含有されるアルコキシ基の合計モル当量(テトラアルコキシシラン[15]を使用する場合には、ジアルコキシシラン[13]と、トリアルコキシシラン[14]と、ビニルトリアルコキシシラン[16]と、テトラアルコキシシラン[15]とに含有されるアルコキシ基の合計モル当量)に対して、0.05倍以上、0.3倍以下のホウ酸化合物を用いることが好ましい。0.05倍モル当量より少ないと、アルコキシシラン化合物の加水分解が効率よく行われないことがあり、また、0.3倍モル当量より多く加えると、反応後、反応溶液中にホウ酸化合物の析出が生じて、溶液が白濁する場合がある。
 前記第三の縮合工程において使用する水の量は、特に限定されない。反応効率の観点から、原料化合物のアルコキシシラン化合物に含有されるアルコキシ基の合計モル当量、すなわち、ジアルコキシシラン[13]、トリアルコキシシラン[14]、テトラアルコキシシラン[15]およびビニルトリアルコキシシラン[16]に含有されるアルコキシ基の合計モル当量に対して、1.0倍モル当量以上、5倍モル当量以下であることが好ましい。この範囲内であればアルコキシシラン化合物の加水分解が効率よく行われる。
 前記第三の縮合工程においては、無溶媒条件でも反応させることは可能であるが、反応溶媒を使用することもできる。反応溶媒の種類としては、(B-2-b)成分を製造するための反応を阻害しなければ、特に限定されない。中でも、アルコール類などの親水性の有機溶媒とトルエン類などの非水溶性の有機溶媒を同時に使用することが好ましい。親水性有機溶媒としては、具体的には、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、ブタノールなどを例示することができるが、これらに限定されない。非水溶性有機溶媒としては、具体的には、ベンゼン、トルエン、キシレン、ジイソプロピルエーテル、テトラヒドロフランなどを例示することができるが、これらに限定されない。親水性有機溶媒と非水溶性有機溶媒の比は質量比で5:1~1:5の範囲が好ましく1:1~1:3の範囲がより好ましい。反応溶媒の使用量としては、使用するアルコキシシラン化合物全量に対して0.1~1,000質量%が好ましく、特に好ましくは1~300質量%である。
 前記第三の縮合工程において使用する触媒の種類としては、酸性触媒または塩基性触媒を使用でき、塩基性触媒の使用が好ましい。この塩基性触媒の種類は特に限定されない。例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの無機塩基や、トリエチルアミン、ピリジン、ジイソプロピルアミン、ピロリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン(略称:DBU)、1,5-ジアザビシクロ[4.3.0]ノネン、グアニジン、1-メチルグアニジン、1,1,3,3-テトラメチルグアニジンなどの有機塩基が挙げられる。中でも、有機塩基であって、塩基性の強い、1,8-ジアザビシクロ[5.4.0]ウンデセン、1,5-ジアザビシクロ[4.3.0]ノネン、グアニジン、1-メチルグアニジン、1,1,3,3-テトラメチルグアニジンが好ましく、1,8-ジアザビシクロ[5.4.0]ウンデセンがより好ましい。また、酸性触媒の種類は特に限定されない。酢酸、塩酸、硝酸、硫酸、フッ化水素酸などの水溶性の無機酸や、トリフルオロメタンスルホン酸、トシル酸、トリフルオロ酢酸、安息香酸、クエン酸、シュウ酸などの有機酸が挙げられる。前記第三の縮合工程における触媒の使用量としては、使用するアルコキシシラン化合物、溶媒および水の合計量に対して0.001~5質量%が好ましく、特に好ましくは0.005~1質量%である。
 前記第三の縮合工程における反応時間は、通常1~48時間であり、反応温度は、通常10~80℃であり、20~60℃が好ましい。
 反応後は、(B-2)成分のハンドリングの観点から、反応系内から(B-2)成分を分離して精製することが好ましい。この分離方法は特に限定されない。分離方法としては、例えば抽出する方法が挙げられる。具体的には、前述の反応後の反応溶液を室温まで降温させた後、抽出溶媒として非水性有機溶媒と接触させることで反応系中に存在する(B-2)成分を抽出する。触媒を用いた場合には、抽出後の溶液に含まれる触媒の除去を行うことが好ましい。触媒の除去方法は、特に限定されない。例えば、使用した触媒が塩基触媒であれば、抽出後の溶液を塩酸などの酸性水溶液で洗浄することでこの触媒を除去することができる。また、必要に応じて乾燥剤を用いて系中から水の除去を行う。
 上記抽出溶媒としては、非水性有機溶媒を用いることができる。この非水性有機溶媒の種類は、特に限定されない。例えば、芳香族炭化水素類、エーテル類などが挙げられる。具体的には、トルエン、ジエチルエーテル、イソプロピルエーテル、ジブチルエーテルなどが挙げられるが、これらに限定されない。
 上記乾燥剤としては、系中から水を除去し、(B-2)成分と分離することができれば特に限定されない。このような乾燥剤としては、固体乾燥剤が好ましく用いられる。具体的には、硫酸マグネシウムなどが挙げられるが、これに限定されない。
 (B)成分に含有されるCH2=CH-Si基の量は特に限定されない。0.1~5.0mmol/gの範囲であることが好ましく、0.3~3.5mmol/gの範囲であることが特に好ましい。CH2=CH-Si基の含有量が0.1mmol/g以上であれば付加硬化反応が進行しやすく、5.0mmol/g以下であれば(B)成分は良好な保存安定性を有する。ここで、(B)成分中のCH2=CH-Si基の含有量は、核磁気共鳴装置を用いて(B)成分の1H-NMRスペクトルを、内部標準を加えて測定し、算出することができる。
 (B)成分に含有されるSi-OH基の量は特に限定されない。0.5~6.0mmol/gの範囲であることが好ましく、1.0~3.5mmol/gの範囲であることが特に好ましい。Si-OH基の含有量が6.0mmol/g以下であれば、硬化物に気泡が観測され難い。ここで、(B)成分中のSi-OH基の含有量は、核磁気共鳴装置を用いて(B)成分の29Si-NMRスペクトルと1H-NMRスペクトルを測定し、これらを相補的に組み合わせて用いて算出することができる。
 (B)成分の質量平均分子量は、特に限定されるものではない。500~50,000であることが好ましく、さらに好ましくは、800~3,500である。質量平均分子量が500以上であれば、本発明の硬化物は良好な樹脂強度を有し、50,000以下であれば、硬化性ポリボロシロキサン樹脂組成物は良好な成形性を有する。ここで、質量平均分子量は、ゲルパーミエーションクロマトグラフィー(略称:GPC)法により測定し、標準ポリスチレン検量線により換算して得られる値である。
 (B)成分の粘度は特に限定されない。取扱作業性の観点から、25℃における粘度が0.001~10,000,000cP(センチポイズ)であることが好ましく、さらに好ましくは、0.001~500,000cPである。粘度が10,000,000cP超だと成形性に劣ることがあるが、加温して粘度を下げる処置をすることもできる。ここで、(B)成分の粘度は回転粘度計などにより測定することができる。
 <(C)成分>
 (C)成分であるヒドロシリル化触媒は、後述する(A)成分中のSiH基と(B)成分中のSi-CH=CH2基との付加硬化反応(ヒドロシリル化反応)を促進するために配合される。(C)成分の種類は特に限定されないが、白金系触媒、ロジウム系触媒およびパラジウム系触媒からなる群から選ばれる少なくとも1種類以上を用いることが好ましい。中でも、封止材の透明性を高くすることができるため、白金系触媒を用いることが特に好ましい。
 この白金系触媒としては、白金粉末、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金-オレフィン錯体、白金-アルケニルシロキサン錯体、白金-カルボニル錯体などが挙げられる。白金-カルボニルビニルメチル錯体、白金-ジビニルテトラメチルジシロキサン錯体(カーステッド触媒)、白金-シクロビニルメチルシロキサン錯体、白金-オクチルアルデヒド錯体、白金-ホスフィン錯体、ジカルボニルジクロロ白金などが挙げられる。中でも、白金-ジビニルテトラメチルジシロキサン錯体、白金-シクロビニルメチルシロキサン錯体などが好ましい。
 (C)成分は、市販品を使用してもよいし、合成したものを使用してもよい。(C)成分は、従来知られている方法により合成することができる。
 本発明の組成物には、上述した(A)~(C)成分に加えて、当該組成物の硬化物の硬度の向上を目的として、硬化用縮合触媒を配合してもよい。硬化用縮合触媒の種類は特に限定されない。例えば、有機スズ化合物、有機チタン化合物、有機亜鉛化合物、有機アルミニウム化合物、有機ジルコニウム化合物、ホウ素化合物などが挙げられる。これらの化合物は単種類を用いてもよいし、複数種類を併用してもよい。
 硬化用縮合触媒に係る有機スズ化合物としては、ジ-n-ブチルジアセトキシスズ、ビス(2-エチルヘキサノエート)スズ(II)、ビス(ネオデカノエート)スズ(II)、ジブチルビス(2-エチルヘキシルマレエート)スズ、ジブチルラウリン酸スズ(IV)、ジメチルジネオデカノエートスズ、ジブチルビス(2,4-ペンタンジオネート)スズ、ジオクチルジウラリン酸スズ、ジブチルジオレイン酸スズ、酢酸スズ(IV)、酢酸スズ(II)などが挙げられる。
 硬化用縮合触媒に係る有機チタン化合物としては、テトライソプロポキシチタン、テトラブトキシチタン、チタンテトラアセチルアセトナート、ジイソプロポキシビス(アセト酢酸エチル)チタン、ジイソプロポキシビス(アセチルアセトン)チタン、ジブトキシビス(アセト酢酸エチル)チタンなどが挙げられる。
 硬化用縮合触媒に係る有機亜鉛化合物としては、安息香酸亜鉛、ジメトキシ亜鉛、ジエトキシ亜鉛、亜鉛メトキシエトキシド、ビス(2,4-ペンタンジオネート)亜鉛、酢酸亜鉛、亜鉛2-エチルヘキサノエート、蟻酸亜鉛、メタクリル酸亜鉛、亜鉛ネオデカノエート、ウンデシレン酸亜鉛、オクチル酸亜鉛などが挙げられる。
 硬化用縮合触媒に係る有機アルミニウム化合物としては、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、トリ-n-プロポキシアルミニウム、トリ-n-ブトキシアルミニウム、ナフテン酸アルミニウム、ステアリン酸アルミニウム、オクチル酸アルミニウム、安息香酸アルミニウム、アルミニウム(III)エチルアセトアセテートジイソプロピレート、アルミニウム(III)エチルアセトアセトアセテートジイソブチレート、アルミニウムトリス(エチルアセトアセテート)、アルミニウムビスエチルアセトアセテートモノアセチルアセトネート、アルミニウムトリス(アセチルアセトネート)などが挙げられる。
 硬化用縮合触媒に係る有機ジルコニウム化合物としては、ジルコニウムテトラブトキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラメトキシド、ジルコニウムトリブトキシドモノアセチルアセトナート、ジルコニウムジブトキシドビスアセチルアセトナート、ジルコニウムモノブトキシドトリスエチルアセトナート、ジルコニウムテトラアセチルアセトナート、ジルコニウムテトラエチルアセトアセトナートなどが挙げられる。
 硬化用縮合触媒に係るホウ素化合物としては、テトラフルオロボレートメチルアミン塩、テトラフルオロボレートジメチルアミン塩、テトラフルオロボレートトリメチルアミン塩、テトラフルオロボレートエチルアミン塩、テトラフルオロボレートジエチルアミン塩、テトラフルオロボレートトリエチルアミン塩などが挙げられる。
 本発明の組成物中の硬化用縮合触媒の含有量は、特に限定されない。本組成物中、0.001~1.0質量%が好ましく、0.005~0.1質量%が特に好ましい。
 <その他の添加物>
 本発明の組成物には、上述した(A)~(C)成分に加えて、当該組成物の保存安定性や取扱作業性の向上、硬化過程でのヒドロシリル化反応性を調整することを目的として、硬化遅延剤を配合してもよい。硬化遅延剤の種類としては、上記(C)成分に対して硬化遅延効果を有する化合物であれば特に限定されない。例えば、脂肪族不飽和結合を含有する化合物、有機リン化合物、窒素含有化合物、有機硫黄化合物、有機過酸化物などが挙げられる。これらの化合物は単種類を用いてもよいし、複数種類を併用してもよい。
 硬化遅延剤に係る脂肪族不飽和結合を含有する化合物としては、具体的には2-メチル-3-ブチン-2-オール、2-フェニル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、1-エチニル-1-シクロヘキサノールなどのプロパギルアルコール類、エン-イン化合物類、無水マレイン酸、マレイン酸ジメチルなどのマレイン酸エステル類などが挙げられる。
 硬化遅延剤に係る有機リン化合物としては、具体的にはトリオルガノホスフィン類、ジオルガノホスフィン類、オルガノホスフォン類、トリオルガノホスファイト類などが挙げられる。
 硬化遅延剤に係る窒素含有化合物としては、具体的にはN,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミンなどのN,N,N’,N’-四置換アルキレンジアミン類、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジブチルエチレンジアミン、N,N-ジブチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジブチル-1,4-ブタンジアミンなどのN,N-二置換アルキレンジアミン類、トリブチルアミンなどの三置換アミン、ベンゾトリアゾール、2,2’-ビピリジンなどが挙げられる。
 硬化遅延剤に係る有機硫黄化合物としては、具体的にはオルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイドなどが挙げられる。
 硬化遅延剤に係る有機過酸化物としては、具体的にはジ-tert-ブチルパーオキシド、ジクミルパーオキシド、ベンゾイルパーオキシド、過安息香酸tert-ブチルなどが挙げられる。
 これらの酸化遅延剤の中でも、脂肪族不飽和結合を含有する化合物、窒素含有化合物が好ましく、マレイン酸エステル類、プロパギルアルコール類、N,N,N’,N’-四置換アルキレンジアミン類が好ましく、マレイン酸ジメチル、2-メチル-3-ブチン-2-オール、1-エチニル-1-シクロヘキサノール、N,N,N’,N’-テトラメチルエチレンジアミンが特に好ましい。
 本発明の組成物における硬化遅延剤の含有量は、特に限定されない。通常、本発明の組成物に含有される(C)成分中の白金原子1当量に対して、硬化遅延剤を20~200当量添加すればよいが、この限りではない。硬化遅延剤による硬化遅延効果の度合は、その硬化遅延剤の化学構造によって異なる。したがって、使用する硬化遅延剤の種類によって、その配合量を最適な量に調整することが好ましい。最適な量の硬化遅延剤を添加することにより、本発明の組成物は室温での長期貯蔵安定性及び加熱硬化性に優れたものとなる。
 本発明の組成物には、その接着性(密着性)を向上させることを目的として、接着付与剤を配合してもよい。この接着付与剤としては、シランカップリング剤やその加水分解縮合物等が例示される。このシランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン等のエポキシ基含有シランカップリング剤、(メタ)アクリル基含有シランカップリング剤、イソシアネート基含有シランカップリング剤、イソシアヌレート基含有シランカップリング剤、アミノ基含有シランカップリング剤、メルカプト基含有シランカップリング剤等公知のものが例示される。
 本発明の組成物におけるこの接着付与剤の含有量は、特に限定されない。本組成物中、1~20質量%の範囲内が好ましく、5~15質量%の範囲内が特に好ましい。
 硬化物の着色、酸化劣化などの発生を抑えるために、本発明の組成物に従来から公知の酸化防止剤を添加してもよい。このような酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤などが挙げられる。より具体的には、2,6-ジ-tert-ブチル-4-メチルフェノール、2,5-ジ-tert-アミルヒドロキノン、2,5-ジ-tert-ブチルヒドロキノン、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)などが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 この酸化防止剤を使用する場合の配合量は、本発明の硬化物の透明性などの特徴を損なわない範囲で、かつ酸化防止剤としての有効量であれば特に限定されない。本発明の組成物の合計質量に対して、通常、0.1~1,000ppm、特に10~500ppm程度配合することが好ましい。上記範囲内の配合量であれば、酸化防止能力が十分発揮され、着色、白濁、酸化劣化などの発生がなく工学的特性に優れた硬化物を得ることができる。
 太陽光線、蛍光灯などの光エネルギーによる光劣化に抵抗性を付与するために、本発明の組成物に光安定剤を添加してもよい。この光安定剤の種類は特に限定されず、光酸化劣化で生成するラジカルを捕捉するヒンダードアミン系安定剤が好適に用いられる。また、前述の酸化防止剤と併用することで、酸化防止効果をより向上させることもできる。この光安定剤の具体例としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、4-ベンゾイル-2,2,6,6-テトラメチルピペリジン、アデカスタブLA-77Y(株式会社ADEKA製)、アデカスタブLA-52(株式会社ADEKA製)などが挙げられる。
 この光安定剤を使用する場合の配合量は、本発明の硬化物の透明性などの特徴を損なわない範囲で、かつ光安定剤としての有効量であれば特に限定されない。本発明の組成物の合計質量に対して、通常、0.001~5質量%配合し、特に、0.01~1質量%程度配合することが好ましい。
 本発明の組成物には、任意の成分として、蛍光体を含有することができる。この蛍光体の種類は特に限定されない。例えば、発光ダイオード(LED)に広く利用されている、酸化物系蛍光体、酸窒化物系蛍光体、窒化物系蛍光体、硫化物系蛍光体、酸硫化物系蛍光体などからなる黄色、赤色、緑色、青色発光蛍光体が挙げられる。酸化物系蛍光体としては、セリウムイオンを包含するイットリウム、アルミニウム、ガーネット系のYAG系緑色~黄色発光蛍光体、セリウムイオンを包含するテルビウム、アルミニウム、ガーネット系のTAG系黄色発光蛍光体、セリウムやユーロピウムイオンを包含するシリケート系緑色~黄色発光蛍光体などが挙げられる。酸窒化物蛍光体としては、ユーロピウムイオンを包含するケイ素、アルミニウム、酸素、窒素系のサイアロン系赤色~緑色発光蛍光体などが挙げられる。窒化物系蛍光体としては、ユーロピウムイオンを包含するカルシウム、ストロンチウム、アルミニウム、ケイ素、窒素系のカズン系赤色発光蛍光体などが挙げられる。硫化物系としては、銅イオンやアルミニウムイオンを包含するZnS系緑色発色蛍光体などが挙げられる。酸硫化物系蛍光体としては、ユーロピウムイオンを包含するY22S系赤色発光蛍光体などが挙げられる。これらの蛍光体は、1種を単独で用いてもよいし、2種以上の混合物を用いてもよい。
 本発明の組成物におけるこの蛍光体の含有量は、特に限定されない。本組成物中、5~50質量%の範囲内が好ましく、10~40質量%の範囲内が特に好ましい。
 本発明の組成物には、その硬化物における光学的特性や作業性、機械的特性、物理化学的特性を向上させることを目的として、無機粒子を配合してもよい。
 配合する無機粒子の種類は目的に応じて選択すればよく、また、単種類を配合してもよく、複数種類を組み合わせて配合してもよい。また、分散性を改善するために、無機粒子はシランカップリング剤などの表面処理剤で表面処理されていてもよい。
 配合する無機粒子の種類としては、シリカ、チタン酸バリウム、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化イットリウムなどの無機酸化物粒子や、窒化ケイ素、窒化ホウ素、炭化ケイ素、窒化アルミニウムなどの窒化物粒子や、炭素化合物粒子、ダイヤモンド粒子などが例示されるが、目的に応じて他の物質を選択することもでき、これらに限定されるものではない。
 配合する無機粒子の形態は、紛体状、スラリー状等、目的に応じていかなる形態であってもよい。透明性を保つ必要がある場合には、本発明の硬化物と屈折率を同等に調節することや、水系・溶媒系の透明ゾルとして本発明の硬化性ポリボロシロキサン樹脂組成物に配合することが好ましい。
 配合する無機粒子の平均粒径は特に限定されず、目的に応じた平均粒径のものが用いられる。通常、後述する蛍光体の粒子の1/10以下程度である。なお、無機粒子の平均粒子径は、走査型電子顕微鏡(略称:SEM)観察により、50個以上の粒子から任意の20個の粒子を選択して長径を測定したときの算術平均値を意味する。
 配合する無機粒子の量は、本発明の硬化物の耐熱透明性などの特徴を損なわない限り、任意である。無機粒子の配合量が少なすぎると所望の効果が得られなくなることがあり、多すぎると硬化物の耐熱透明性、密着性、透明性、成形性、硬度などの諸特性に悪影響を及ぼすことがある。通常、1~50質量%程度配合すればよく、5~35質量%程度配合することが好ましい。
 これらの他にも、本発明の組成物は、硬化物の透明性などの特徴を損なわない範囲で、離型剤、樹脂改質剤、着色剤、希釈剤、抗菌剤、防黴剤、レベリング剤、タレ防止剤などを含んでいてもよい。
 <(A)成分、(B)成分および(C)成分の配合比>
 本発明の組成物における(A)成分と(B)成分の配合比は、特に限定されない。通常は、(A)成分の分子中に含有されるSiH基と、(B)成分の分子中に含有されるSi-CH=CH2基のモル比を基準として配合する。具体的には、(A)成分の分子中に含有されるSiH基のモル数:(B)成分の分子中に含有されるSi-CH=CH2基のモル数を0.8:0.2~0.5:0.5の範囲にすることが好ましい。Si-CH=CH2基のモル数に対してSiH基のモル数の比が0.8以下であれば本発明の組成物は良好な成形性を示し、0.5以上であれば本発明の硬化物は優れた耐熱透明性を有する。
 本発明の組成物における(C)成分の配合量は特に限定されない。(A)成分と(B)成分と(C)成分の合計質量に基づいて、(C)成分中の金属原子が質量単位で0.003~30ppmの範囲内となる量であることが好ましく、より好ましくは0.003~5.0ppmである。(C)成分の配合量が0.003ppm以上であれば付加硬化反応は良好に進行し、30ppm以下であれば優れた耐熱透明性を示す。上記範囲内においても、(C)成分の配合量が少ないほど耐熱透明性に優れる傾向があることから、(C)成分の配合量が少ないほど好ましい。
 本発明の組成物における(A)成分と(B)成分中のSi-OH基の総含有量は特に限定されるものではないが、0.5~6.0mmol/gの範囲であることが好ましく、1.0~3.5mmol/gの範囲であることが特に好ましい。Si-OH基の含有量が6.0mmol/g以下であれば、硬化物に気泡が観測され難い。(A)成分と(B)成分中のシラノール基の含有量は、各成分について核磁気共鳴装置を用いて29Si-NMRスペクトルと1H-NMRスペクトルを測定し、これらを相補的に組み合わせて用いて算出することができる。
 本発明の組成物の粘度は特に限定されない。取扱作業性の観点から、25℃における粘度が0.001~10,000,000cPであることが好ましく、さらに好ましくは、0.001~500,000cPである。粘度が10,000,000cP超だと成形性に劣ることがあるが、加温して粘度を下げる処置をすることもできる。本発明の組成物の粘度は回転粘度計などにより測定することができる。
 <硬化性ポリボロシロキサン樹脂組成物の調製>
 本発明の組成物は、(A)成分と(B)成分と(C)成分、必要に応じてその他の添加物を配合することで調製することができる。配合した(A)成分、(B)成分、(C)成分、および、必要に応じて加えた添加物は、混合して実質的に均一に分散していることが好ましい。この混合方法は特に限定されない。例えば、万能混練機、ニーダーなどの混合方法を採用することができる。また、(C)成分は予め(A)成分および/または(B)成分と配合させてもよい。また、安定に長期間貯蔵するために、(A)成分と(C)成分を別途の容器に保存し、例えば(B)成分の一部および(C)成分を含む第一組成物と、(B)成分の残部および(A)成分を含む第二組成物を、それぞれ別の容器に保存しておき、使用直前に配合して本発明の組成物とし、減圧で脱泡して使用に供してもよい。
 [硬化性ポリボロシロキサン樹脂組成物の硬化物]
 本発明の硬化性ポリボロシロキサン樹脂組成物の硬化物(本明細書において、単に「本発明の硬化物」と称することがある。)は、本発明の組成物を加熱することにより得ることができる。
 本発明の硬化物は、半導体装置用の封止材として利用することができ、中でも光半導体装置用、パワー半導体装置用の封止材として好適である。光半導体装置用の封止材としては、LED用光学部材の封止材や半導体レーザー用光学部材の封止材などとして好適に利用することができ、中でも、LED用光学部材の封止材として特に好適である。
 一般的に、光半導体装置は各種の技術によりその光取り出し効率が高められているが、光半導体素子の封止材の透明度が低いと、当該封止材が光を吸収してしまい、これを用いた光半導体装置の光取り出し効率が低下する。その結果、高輝度な光半導体装置製品を得にくくなる傾向にある。さらに、光取り出し効率が低下した分のエネルギーは熱に変わり、光半導体装置の熱劣化の原因となるため好ましくない。
 本発明の硬化物は透明性に優れ、具体的には、本発明の硬化物は、通常300nm以上、好ましくは350nm以上、また、通常900nm以下、好ましくは500nm以下の範囲の波長において良好な光線透過率を有する。したがって、この領域に発光波長を有する光半導体装置に、本発明の硬化物を上記の封止材として用いれば、高輝度な光半導体装置を得られるため好ましい。なお、このことは、上記の領域外に発光波長を有する光半導体装置に、本発明の硬化物を封止材として用いることを妨げない。なお、上記の光線透過率は、紫外/可視分光光度計による透過率測定によって測定することができる。
 また、本発明の硬化物は耐熱透明性に優れる。すなわち、本発明の硬化物は、高温条件下に長期間放置した場合でも、所定の波長を有する光における透過率が変動しにくい性質を有する。具体的には、本発明の硬化物は、200℃に100時間放置した前後において、通常300nm以上、好ましくは350nm以上、また、通常900nm以下、好ましくは500nm以下の範囲の波長の光に対する透過率は良好な維持率を有する。したがって、この領域に発光波長を有する光半導体装置に本発明の硬化物を封止材として用いれば、高輝度な光半導体装置を得られ、かつ、熱劣化しにくいため好ましい。なお、このことは、上記の領域外に発光波長を有する光半導体装置に、本発明の硬化物を封止材として用いることを妨げない。なお、透過率の変動比は、紫外/可視分光光度計による透過率測定によって測定することができる。
 本発明の組成物を硬化させる方法は、特に限定されない。例えば、本発明の組成物を使用すべき部位に注入、滴下、流延、注型、容器からの押出しなどの方法により、またはトランスファー成形や射出成形による一体成形によって、LEDのような封止対象物と組み合わせて、通常、45~300℃、好ましくは60~200℃で加熱することにより、該組成物を硬化させて硬化物とし、該封止対象物を封止することができる。加熱温度が45℃以上であれば得られる硬化物に粘着性が観測され難く、300℃以下であれば硬化物に発泡が観測され難く、実用的である。加熱時間は、特に限定されないが、0.5時間~12時間程度で、好ましくは1時間~10時間程度である。加熱時間が0.5時間以上であれば、硬化が充分に進行するが、LED封止用など精度が要求される場合には、硬化時間を長めにすることが好ましい。
 [封止材]
 本発明の硬化物は、半導体封止材として用いることができ、特に光半導体装置用、パワー半導体装置用などの封止材として好適である。
 本発明の硬化物からなる封止材は、上述のように耐熱透明性に優れる。また、通常の付加硬化性シリコーン樹脂組成物の硬化物と同様に、耐熱性、耐寒性、電気絶縁性に優れる。
 [光半導体装置]
 本発明の光半導体装置は、光半導体素子と、該光半導体素子を封止する封止材とを少なくとも備え、該封止材として、本発明の硬化物を用いる。本発明の光半導体装置におけるその他の構成は特に限定されず、光半導体素子と封止材のほかにも部材を備えていてもよい。そのような部材の一例としては、例えば、ベース基板、引き出し配線、ワイヤー配線、制御素子、絶縁基板、反射材、ヒートシンク、導電部材、ダイボンド材、ボンディングパッドなどが挙げられる。また、光半導体素子に加えて、その他の部材の一部または全部が、本発明の硬化物で封止されていてもよい。
 本発明の光半導体装置としては、具体的には、発光ダイオード(LED)装置、半導体レーザー装置、フォトカプラなどが挙げられるが、これらに限定されない。本発明の光半導体装置は、例えば、液晶ディスプレイなどのバックライト、照明、各種センサー、プリンターおよびコピー機などの光源、車両用計測器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライトならびにスイッチング素子などに好適に用いられる。
 本発明の光半導体装置の一例を図1に示す。図1に例示するように、光半導体装置10は、封止材1と、光半導体素子2と、ボンディングワイヤー3とを光半導体基板6上に少なくとも備える。光半導体基板6は、リードフレーム5からなる底面と、反射材4からなる内周側面とから構成される凹部を有する。
 光半導体素子2は、リードフレーム5上に、ダイボンド材(図示せず)を用いて接続されている。光半導体素子2に備えられたボンディングパッド(図示せず)とリードフレーム5とは、ボンディングワイヤー3により電気的に接続されている。反射材4は、光半導体素子2からの光を所定方向に反射させる作用を有する。光半導体基板6が有する上記凹部の領域内には、光半導体素子2を少なくとも封止するように封止材1が充填されている。このとき、ボンディングワイヤー3をも封止するように、封止材1が充填されていてもよい。封止材1は、本発明の硬化物からなる。封止材1の内部には、前述の蛍光体(図示せず)が含まれていてもよい。封止材1により、湿気、塵埃などから光半導体素子2を保護し、長期間に渡って信頼性を維持することができる。さらに、封止材1がボンディングワイヤー3をも封止することで、同時に、ボンディングワイヤー3が外れたり、切断したり、短絡したりすることによって生じる電気的な不具合を防止することができる。
 本発明の硬化物は、後述するように、半導体用接着剤として用いることができる。したがって、上述のダイボンド材として採用することもできる。
 このような本発明の光半導体装置10において、本発明の硬化物からなる封止材1によって封止される光半導体素子2としては、例えばLED、半導体レーザー、フォトダイオード、フォトトランジスタ、太陽電池、CCD(電荷結合素子)などが挙げられる。
 なお、図1に示す構造は、本発明の光半導体装置の一例にすぎず、反射材の構造、リードフレームの構造、光半導体素子の実装構造などは適宜変形され得る。
 図1で示される光半導体装置10を製造する方法は、特に限定されない。例えば、反射材4を備えたリードフレーム5に光半導体素子2をダイボンドし、この光半導体素子2とリードフレーム5とをボンディングワイヤー3によりワイヤーボンドし、次いで、光半導体素子の周囲に設けられた反射材の内側(リードフレームと反射材からなる凹部)に本発明の組成物を充填した後、50~250℃で加熱することにより硬化させて封止材1とする方法が挙げられる。
 [半導体装置用接着剤]
 本発明の組成物は、良好な密着性を有するため、半導体装置用接着剤として用いることができる。具体的には、例えば、半導体素子とパッケージを接着する場合、半導体素子とサブマウントを接着する場合、パッケージ構成要素同士を接着する場合、半導体装置と外部光学部材とを接着する場合などに、本発明の組成物を塗布、印刷、ポッティングなどすることにより用いることができる。本発明の組成物は耐熱性に優れるため、長時間高温や紫外光にさらされる高出力の光半導体装置用接着剤として用いた場合、長期使用に耐える高い信頼性を有する光半導体装置を提供することができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
 以下の合成例、比較合成例で合成した樹脂の物性評価は、以下に示す方法で行った。
 [Si-H基及びSi-CH=CH2基の定量]
 6mLのサンプル管に合成した樹脂を20~30mg秤量し、0.8mLの重ジクロロメタンを加え、樹脂を溶解させた。その溶液に2.0μLのジメチルスルホキシド(0.0282mmol)をマイクロシリンジで添加し、サンプル管を閉じ、溶液を攪拌により均一にして測定試料とした。その試料を1H-NMRで測定し、ジメチルスルホキシドのプロトン比と、Si-H基またはSi-CH=CH2基のプロトン比とを算出して、測定試料中のSiH基またはSi-CH=CH2基のモル数を決定した。次いで、以下の式に従って、測定試料1g中の各官能基の含有量を算出した:
 樹脂中の官能基のモル数(mmol)/測定試料量(mg)×1000=測定試料1g中の官能基量(mmol/g)。
 なお、樹脂の1H-NMR測定には、共鳴周波数400MHzの核磁気共鳴装置(日本電子株式会社製、型番:ECA-400)を使用した。樹脂中の各官能基のケミカルシフトを以下に示す:
 Si-Me: 0.0~0.5ppm(3H)、
 Si-H: 4.0~5.0ppm(1H)、
 Si-CH=CH2: 5.5~6.5ppm(3H)、
 Si-Ph: 7.0~8.0ppm(5H)。
 [各構造単位の比率の決定およびHO-Si基の定量]
 合成した樹脂300mgに、0.5mLの重クロロホルムを加えて溶解させ、緩和剤としてクロム(III)アセチルアセトナート錯体を10mg加えた。これにより調製した溶液を29Si-NMRで測定した。検出したシグナルを、表1に示すように、ピーク(a)~(r)に分類し、それぞれのピークを全積分値の和から百分率(積分比)として算出した。なお、樹脂の29Si-NMR測定には、共鳴周波数400MHzの核磁気共鳴装置(日本電子株式会社製、型番:JNM-AL400)を使用した。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-C000036
 上記式[1]におけるa、b、cおよびdの値は以下の式からそれぞれ算出することで決定した:
 a=ピーク(n)の面積/全ピーク面積の和、
 b=(ピーク(a)、(b)、(c)、及び(d)の面積の和)/全ピーク面積の和、
 c=(ピーク(e)、(f)、(g)、(h)、(i)、及び(j)の面積の和)/全ピーク面積の和、
 d=(ピーク(k)、(l)、および(m)の面積の和)/全ピーク面積の和。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 上記式[2]におけるf、g、hおよびiの値と、上記式[3]におけるj、k、lおよびmの値は以下の式から算出することで決定した:
 f=ピーク(o)の面積/全ピーク面積の和、
 g=(ピーク(a)、(b)、(c)、及び(d)の面積の和)/全ピーク面積の和、
 j=(ピーク(a)、(b)、(c)、及び(d)の面積の和)/全ピーク面積の和、
 h=(ピーク(e)、(f)、(g)、(h)、(i)、及び(j)の面積の和)/全ピーク面積の和、
 k=(ピーク(e)、(f)、(g)、(h)、(i)、及び(j)の面積の和)/全ピーク面積の和、
 l=(ピーク(p)面積+ピーク(q)面積+ピーク(r)面積)/全ピーク面積の和、
 i=(ピーク(k)面積+ピーク(l)面積+ピーク(m)面積)/全ピーク面積の和、
 m=(ピーク(k)面積+ピーク(l)面積+ピーク(m)面積)/全ピーク面積の和。
 上述のa~dおよびf~mの値の決定方法に準拠して、合成した樹脂の組成比を決定した。
 また、合成した樹脂におけるHO-Si基の含有量(mmol/g)は、上述の方法で算出した積分比から以下の式に従って決定した:
 [M]= ピーク(a)積分比+ピーク(c)積分比+2×ピーク(e)積分比+ピーク(f)積分比+2×ピーク(h)積分比+ピーク(i)積分比+2×ピーク(k)積分比+ピーク(l)積分比+2×ピーク(p)積分比+ピーク(q)積分比、
 [N]=ピーク(a)積分比×83.16+ピーク(b)積分比×74.15+ピーク(c)積分比×207.3+ピーク(d)積分比×198.3+ピーク(e)積分比×85.13+ピーク(f)積分比×76.13+ピーク(g)積分比×67.12+ピーク(h)積分比×147.2+ピーク(i)積分比×138.2+ピーク(j)積分比×129.2+ピーク(k)積分比×78.10+ピーク(l)積分比×69.09+ピーク(m)積分比×60.08+ピーク(n)積分比×67.16+ピーク(o)積分比×93.20+ピーク(p)積分比×97.15+ピーク(q)積分比×88.14+ピーク(r)積分比×79.13、
 HO-Si基の含有量(mmol/g)=([M]/[N])×1000。
 29Si-NMRの測定において、ピーク(p)、(q)および(r)がピーク(h)、(i)およびピーク(j)と重なるときは、1H-NMRの測定によりPh-SiとCH=CH2-Siの比率を求め、その積分比を基に29Si-NMRのピーク(p)、(q)および(r)とピーク(h)、(i)および(j)の積分値を算出し、gとhを算出した。その他のケースで29Si-NMRのピークが重なった場合は、上記の方法と同様に1H-NMRの積分比をもとに算出した。
 [ホウ素原子含有比の決定]
 上記式[1]におけるeの値は以下の式から算出して決定した:
 ケイ素原子の含有量(質量%)/ケイ素原子量(28.09)=[C]、
 ホウ素原子の含有量(質量%)/ホウ素原子量(10.81)=[D]、
 e=[D]/[C]。
 ここで、ケイ素原子の含有量(質量%)は(A)成分の試料をアルカリ融解、酸溶解させた後、ICP-AES法により求め、ホウ素原子の含有量(質量%)は、(A)成分の試料をマイクロ波酸分解により前処理を施し、ICP-AES法により求めた。
 上記式[2]におけるxの値、上記式[3]におけるyの値についても、上記のeの値の決定方法に準拠して、決定した。
 上述のeの値の決定方法に準拠して、合成した樹脂の組成比を決定した。
 [質量平均分子量(Mw)測定]
 合成した樹脂の質量平均分子量(Mw)は、下記条件のゲル透過クロマトグラフィ(略称:GPC)法により、ポリスチレンを基準物質として検量線を作成して値を算出した:
 装置:東ソー株式会社製、商品名:HLC-8320GPC、
 カラム:東ソー株式会社製、商品名:TSK gel Super HZ 2000x4、3000x2、
 溶離液:テトラヒドロフラン。
 [屈折率]
 屈折率計(京都電子工業株式会社製、型式:RA-600)を使用して、合成した樹脂の屈折率を測定した。
 [粘度測定]
 樹脂の粘度について、回転粘度計(ブルックフィールド・エンジニアリング・ラボラトリーズ・インク製、品名:DV-II+PRO)と温度制御ユニット(ブルックフィールド・エンジニアリング・ラボラトリーズ・インク製、品名:THERMOSEL)を使用し、25℃における値を測定した。
 [調製例1]
 <ポリボロシロキサン中間体(I-1)の合成>
 フッ素樹脂製の撹拌翼、ジムロート型還流器を具備した容積2Lの3口フラスコに、120.2g(1.0mol)のMe2Si(OMe)2、198.3g(1.0mol)のPhSi(OMe)3を採取した。次いで、61.8g(1.0mol)のホウ酸をこのフラスコ内に加えて、該フラスコ内を4時間、連続的に100℃に加温し、加水分解および縮合反応を行った。その後、反応液を室温に戻し、1Lのナス型フラスコに移し、エバポレーターにて、該反応液中の揮発物やメタノールを減圧留去した。その結果、無色の粘性液体としてポリボロシロキサン中間体(I-1)を得た。ポリボロシロキサン中間体(I-1)の収量は246.7gであり、質量平均分子量(Mw)は620であり、ケイ素原子の含有量は20質量%であり、ホウ素原子の含有量は2.7質量%であり、生成物の組成比は(Me2SiO2/20.45(PhSiO3/20.55(BO3/20.35であった。
 <ポリボロシロキサン樹脂(A1)の合成>
 フッ素樹脂製の撹拌翼を具備した容積2Lの3口フラスコに、240gのポリボロシロキサン中間体(I-1)、830gのトルエン、97.4g(0.962mol)のトリエチルアミンを加えた。次いで、このフラスコ内の溶液を攪拌しながら氷浴で0~4℃に冷却し、該溶液の温度が10℃以上にならないように、104mL(0.960mol)のジメチルクロロシランを滴下ロートでゆっくり滴下した。滴下終了後、反応溶液を氷浴中で2時間攪拌した。イオン交換水500mLの入った2Lの三角フラスコに、反応溶液を滴下し、攪拌翼を用いて攪拌した。分液ロートに反応溶液を移し、有機層を回収した後、1N塩酸水溶液200mLで有機層を3回洗浄した。その後、イオン交換水により有機層を3回洗浄し、エバポレーターにより有機層からトルエンを留去した後、加熱による減圧留去(130℃、2時間)を行った。その結果、無色透明な粘性液体としてポリボロシロキサン樹脂(A1)を得た。ポリボロシロキサン樹脂(A1)の収量は200.9gであり、質量平均分子量(Mw)は1,300であり、粘度は1,100cPであり、ケイ素原子の含有量は16質量%であり、ホウ素原子の含有量は0.31質量%であり、組成比は(Me2SiO2/20.36(PhSiO3/20.51(H(Me)2SiO1/20.14(BO3/20.050であり、H-Si基の含有量は0.7mmol/gであり、HO-Si基の含有量は4.0mmol/g(6.8質量%)であった。
 [調製例2]
 <ポリボロシロキサン中間体(I-2)の合成>
 フッ素樹脂製の撹拌翼、ジムロート型還流器を具備した容積2Lの3口フラスコに、120.2g(1.0mol)のMe2Si(OMe)2、198.3g(1.0mol)のPhSi(OMe)3、41.7g(0.2mol)のSi(OEt)4を採取した。次いで、71.7g(1.16mol)のホウ酸をこのフラスコ内に加えて、該フラスコ内を4時間、連続的に100℃に加温し、加水分解および縮合反応を行った。その後、反応液を室温に戻し、1Lのナス型フラスコに移し、エバポレーターにて、該反応液中の揮発物やメタノールを減圧留去した。その結果、無色の粘性液体としてポリボロシロキサン中間体(I-2)を得た。ポリボロシロキサン中間体(I-2)の収量は280.3gであり、質量平均分子量(Mw)は660であり、ケイ素原子の含有量は19質量%であり、ホウ素原子の含有量は2.8質量%であり、生成物の組成比は(Me2SiO2/20.40(PhSiO3/20.50(SiO4/20.10(BO3/20.38であった。
 <ポリボロシロキサン樹脂(A2)の合成>
 フッ素樹脂製の撹拌翼を具備した容積2Lの3口フラスコに、279gのポリボロシロキサン中間体(I-2)、965gのトルエン、113g(1.119mol)のトリエチルアミンをフラスコ内に加えた。次いで、このフラスコ内の溶液を攪拌しながら氷浴で溶液の温度が0~4℃に冷却し、該溶液の温度が10℃以上にならないように、121mL(1.116mol)のジメチルクロロシランを滴下ロートでゆっくり滴下した。滴下終了後、反応溶液を氷浴中で2時間攪拌した。攪拌後、調製例1の<ポリボロシロキサン樹脂(A1)の合成>と同様の後処理を施した。その結果、無色透明な粘性液体としてポリボロシロキサン樹脂(A2)を得た。ポリボロシロキサン樹脂(A2)の収量は228.6gであり、質量平均分子量(Mw)は1,600であり、粘度は27,000cPであり、ケイ素原子の含有量は22質量%であり、ホウ素原子の含有量は0.37質量%であり、組成比は(Me2SiO2/20.29(PhSiO3/20.49(SiO4/20.07(H(Me)2SiO1/20.15(BO3/20.044であり、H-Si基の含有量は1.0mmol/gであり、HO-Si基の含有量は3.4mmol/g(5.8質量%)であった。
 [調製例3]
 <ポリボロシロキサン中間体(I-3)の合成>
 フッ素樹脂製の撹拌翼、ジムロート型還流器を具備した容積2Lの3口フラスコに、120.2g(1.0mol)のMe2Si(OMe)2、178.3g(1.0mol)のMeSi(OMe)3、を採取した。次いで、61.8g(1.0mol)のホウ酸をこのフラスコ内に加えて、該フラスコ内を4時間、連続的に100℃に加温し、加水分解および縮合反応を行った。その後、反応液を室温に戻し、1Lのナス型フラスコに移し、エバポレーターにて、該反応液中の揮発物やメタノールを減圧留去した。その結果、無色の粘性液体としてポリボロシロキサン中間体(I-3)を得た。ポリボロシロキサン中間体(I-3)の収量は203.4gであり、質量平均分子量(Mw)は570であり、ケイ素原子の含有量は26質量%であり、ホウ素原子の含有量は3.4質量%であり、生成物の組成比は(Me2SiO2/20.40(MeSiO3/20.50(BO3/20.34であった。
 <ポリボロシロキサン樹脂(A3)の合成>
 フッ素樹脂製の撹拌翼を具備した容積2Lの3口フラスコに、200gのポリボロシロキサン中間体(I-3)、692gのトルエン、81.3g(0.802mol)のトリエチルアミンをフラスコ内に加え、攪拌しながら氷浴で溶液の温度が0~4℃に冷却し、該溶液の温度が10℃以上にならないように、87mL(0.800mol)のジメチルクロロシランを滴下ロートでゆっくり滴下した。滴下終了後、反応溶液を氷浴中で2時間攪拌した。攪拌後、調製例1の<ポリボロシロキサン樹脂(A1)の合成>と同様の後処理を施すことで、無色透明な粘性液体としてポリボロシロキサン樹脂(A3)を得た。ポリボロシロキサン樹脂(A3)の収量は119.8gであり、質量平均分子量(Mw)は1,300であり、粘度は14,000cPであり、ケイ素原子の含有量は20質量%であり、ホウ素原子の含有量は0.29質量%であり、組成比は(Me2SiO2/20.37(MeSiO3/20.51(H(Me)2SiO1/20.12(BO3/20.038であり、H-Si基の含有量は1.3mmol/gであり、HO-Si基の含有量は4.6mmol/g(7.8質量%)であった。
 [調製例4]
 <ポリボロシロキサン中間体(I-4)の合成>
 フッ素樹脂製の撹拌翼、ジムロート型還流器を具備した容積2Lの3口フラスコに、120.2g(1.0mol)のMe2Si(OMe)2、198.3g(1.0mol)のPhSi(OMe)3、125.0g(0.6mol)のSi(OEt)4を採取した。次いで、91.5g(1.48mol)のホウ酸をこのフラスコ内に加えて、該フラスコ内を4時間、連続的に100℃に加温し、加水分解および縮合反応を行った。その後、反応液を室温に戻し、1Lのナス型フラスコに移し、エバポレーターにて、該反応液中の揮発物やメタノールを減圧留去した。その結果、無色の粘性液体としてポリボロシロキサン中間体(I-4)を得た。ポリボロシロキサン中間体(I-4)の収量は337.3gであり、質量平均分子量(Mw)は800であり、ケイ素原子の含有量は19質量%であり、ホウ素原子の含有量は3.0質量%であり、生成物の組成比は(Me2SiO2/20.43(PhSiO3/20.39(SiO4/20.18(BO3/20.41であった。
 <ポリボロシロキサン樹脂(A4)の合成>
 167gのポリボロシロキサン樹脂(I-4)、150.0gのトルエン、50.0gのメタノール、10.8gの1,1,3,3-テトラメチルジシロキサンおよび0.27gの70%濃硝酸をフラスコ内に加え、室温で攪拌を行った。4時間後、分液ロートに反応溶液を移し、150mLの水を加え、抽出操作をした後、有機層を回収した。同様の操作を4回繰り返すことにより、有機層を洗浄した。エバポレーターにより有機層からトルエンを留去した後、加熱による減圧留去(130℃、2時間)を行った。その結果、無色透明な粘性液体としてポリボロシロキサン樹脂(A4)を得た。ポリボロシロキサン樹脂(A4)の収量は116.8gであり、質量平均分子量(Mw)は2,000であり、粘度は49,000cPであり、ケイ素原子の含有量は20質量%であり、ホウ素原子の含有量は0.31質量%であり、組成比は(Me2SiO2/20.30(PhSiO3/20.36(H(Me)2SiO1/20.14(SiO4/20.20(BO3/20.040であり、H-Si基の含有量は0.88mmol/gであり、HO-Si基の含有量は5.0mmol/g(8.1質量%)であった。
 <ポリボロシロキサン樹脂(B3)の合成>
 167gのポリボロシロキサン中間体(I-4)、150.0gのトルエン、50.0gのメタノール、14.9gの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンおよび5.04gの70%濃硝酸をフラスコ内に加え、室温で攪拌を行った。4時間後、分液ロートに反応溶液を移し、150mLの水を加え、抽出操作をした後、有機層を回収した。同様の操作を4回繰り返すことにより、有機層を洗浄した。エバポレーターにより有機層からトルエンを留去した後、加熱による減圧留去(130℃、2時間)を行った。その結果、無色透明な粘性液体としてポリボロシロキサン樹脂(B3)を得た。ポリボロシロキサン樹脂(B3)の収量は120.3gであり、質量平均分子量(Mw)は1,900であり、粘度は220,000cPであり、ケイ素原子の含有量は20質量%であり、ホウ素原子の含有量は0.38質量%であり、組成比は(Me2SiO2/20.34(PhSiO3/20.38(SiO4/20.18(CH2=CH(Me)2SiO1/20.10(BO3/20.050であり、CH2=CH-Si基の含有量は0.94mmol/gであり、HO-Si基の含有量は3.8mmol/g(6.1質量%)であった。
 [調製例5]
 <シリコーン中間体(II-1)の合成>
 フッ素樹脂製の撹拌翼、ジムロート型還流器を具備した容積2Lの3口フラスコに、90.2g(0.75mol)のMe2Si(OMe)2、148.7g(0.75mol)のPhSi(OMe)3および65.1g(0.313mol)のSi(OEt)4を採取した。次いで、239.6gの2-プロパノール、185.0gの水および0.12gの酢酸をこのフラスコ内に加えて、該フラスコ内を6時間、連続的に100℃にて加温し、加水分解および縮合反応を行った。その後、反応液を室温に戻し、2Lの分液ロートに移し、400mLのトルエンおよび400mLの水を加え、分液操作を行った後、水層を除去した。次いで400mLの水により有機層の洗浄操作を2回行った。その後、有機層を回収し、エバポレーターにて、トルエンを減圧留去した。その結果、無色透明な粘性液体としてシリコーン中間体(II-1)を得た。シリコーン中間体(II-1)の収量は148.5gであり、質量平均分子量(Mw)は1,200であり、組成比は(Me2SiO2/20.32(PhSiO3/20.50(SiO4/20.18であり、HO-Si基の含有量は7.9mmol/g(13.4質量%)であった。
 <シリコーン樹脂(B1)の合成>
 145gのシリコーン樹脂(II-1)、402.6gのトルエン、136.8gのメタノール、35.3gの1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンおよび12.1mLの70%濃硝酸をフラスコ内に加え、室温で攪拌を行った。4時間後、分液ロートに反応溶液を移し、400mLの水を加え、抽出操作をした後、有機層を回収した。同様の操作を4回繰り返すことにより、有機層を洗浄した。エバポレーターにより有機層からトルエンを留去した後、加熱による減圧留去(130℃、2時間)を行った。その結果、無色透明な粘性液体としてシリコーン樹脂(B1)を得た。シリコーン樹脂(B1)の収量は154.0gであり、質量平均分子量(Mw)は1,500であり、粘度は13000cPであり、組成比は(Me2SiO2/20.22(PhSiO3/20.42(SiO4/20.13(CH2=CH(Me)2SiO1/20.23であり、CH2=CH-Si基の含有量は2.1mmol/gであり、HO-Si基の含有量は1.9mmol/g(3.2質量%)であった。
 [調製例6]
 <シリコーン樹脂(B2)の合成>
 以下の(手順1)~(手順3)を行って、シリコーン樹脂(B2)を合成した。
 (手順1)
 フッ素樹脂製の撹拌翼、ジムロート型還流器を具備した容積2Lの3口フラスコに、86.56g(0.720mol)のMe2Si(OMe)2、79.3g(0.400mol)のPhSi(OMe)3、39.1g(0.160mol)のPh2Si(OMe)2および35.6g(0.240mol)のCH2=CHSi(OMe)3を採取した。次いで、320gのトルエン、69.6gのイオン交換水および160gのイソプロピルアルコールをこのフラスコ内に加えた。このフラスコを40℃のオイルバス中で攪拌し、1.12g(7.36mmol)のジアザビシクロウンデセン(略称:DBU)を加えた後、連続的に4時間攪拌し、加水分解および縮合反応を行った。
 (手順2)
 500mLのナス型フラスコに、43.3g(0.360mol)のMe2Si(OMe)2、39.7g(0.200mol)のPhSi(OMe)3、19.6g(0.080mol)のPh2Si(OMe)2、17.8g(0.120mol)のCH2=CHSi(OMe)3を採取した。次いで、60gのトルエン、34.8gのイオン交換水および30gのイソプロピルアルコールをこのフラスコ内に加えた。このフラスコ内の溶液を40℃で攪拌しながら0.56g(3.68mmol)のDBUを加え、さらに連続的に4時間攪拌し、加水分解および縮合反応を行った。
 (手順3)
 (手順1)および(手順2)で得られた反応溶液を混合し、400mLのトルエンで洗いこみながら2L分液ロートに溶液を移し、300mLの1N塩酸で有機層を3回洗浄した。その後300mLのイオン交換水で有機層を5回洗浄し、エバポレーターにより有機層からトルエンを留去し、無色透明な粘性液体としてシリコーン樹脂(B2)を得た。シリコーン樹脂(B2)の収量は234.6gであり、質量平均分子量(Mw)は3,000であり、粘度は14,000cPであり、組成比は(Me2SiO2/20.46(Ph2SiO2/20.09(PhSiO3/20.32(CH2=CH-SiO3/20.13であり、CH2=CH-Si基の含有量は1.6mmol/gであり、HO-Si基の含有量は1.0mmol/g(1.7質量%)であった。
 [調製例7]
 <シリコーン中間体(II-2)の合成>
 フッ素樹脂製の撹拌翼、ジムロート型還流器を具備した容積10Lの反応容器に、665.1g(0.75mol)のMe2Si(OMe)2および997.2g(0.75mol)のPhSi(OMe)3を採取した。次いで、1,208gの2-プロパノール、906gの水および0.60gの酢酸をこのフラスコ内に加えて、該フラスコ内を6時間、連続的に100℃にて加熱攪拌し、加水分解および縮合反応を行った。その後、反応液を室温に戻し、2,500mLのトルエンおよび2,500mLの水を加え、分液操作を行った後、水層を除去した。次いで2,500mLの水により有機層の洗浄操作を2回行った。その後、有機層を回収し、エバポレーターにて、トルエンを減圧留去した。その結果、無色透明な粘性液体としてシリコーン中間体(II-2)を得た。シリコーン中間体(II-2)の収量は892gであり、質量平均分子量(Mw)は780であり、組成比は(Me2SiO2/20.45(PhSiO3/20.55であり、HO-Si基の含有量は7.2mmol/g(12.2質量%)であった。
 <シリコーン中間体(II-2)の高分子量化体(シリコーン中間体(II-3))の合成>
 500mLの容積2Lの3口フラスコに500gのシリコーン中間体(II-2)を採取し、トルエン125gを加え、ディーンスタークトラップを装備させた。オイルバス中で、このフラスコ内温度を130℃に調整しつつ連続的に20時間、加熱還流した。その結果、シリコーン中間体(II-3)のトルエン溶液を得た。シリコーン中間体(II-3)の質量平均分子量(Mw)は1,800であり、組成比は(Me2SiO2/20.47(PhSiO3/20.53であり、HO-Si基の含有量は4.6mmol/g(7.8質量%)であった。
 <シリコーン樹脂(DA1)の合成>
 上記シリコーン中間体(II-3)のトルエン溶液に、1,360gのトルエン、453gのメタノール、69.4gの1,1,3,3-テトラメチルジシロキサンおよび1.66mLの70%濃硝酸を加えて、室温で4時間攪拌した。攪拌後、分液ロートに反応溶液を移し、1,800mLの水を加え、抽出操作をした後、有機層を回収した。同様の操作を4回繰り返すことにより、有機層を洗浄した。エバポレーターにより有機層からトルエンを留去した後、加熱による減圧留去(130℃、2時間)を行った。その結果、無色透明の粘性液体としてシリコーン樹脂(DA1)を得た。シリコーン樹脂(DA1)の収量は430.1gであり、質量平均分子量(Mw)は2,500であり、粘度は5,500cPであり、組成比は(Me2SiO2/20.29(PhSiO3/20.52(SiO4/20.13(H(Me)2SiO1/20.19であり、H-Si基の含有量は1.2mmol/gであり、HO-Si基の含有量は2.4mmol/g(4.1質量%)であった。
 <シリコーン樹脂(DA2)の合成>
 145gのシリコーン中間体(II-3)、790.1gのトルエン、268.3gのメタノール、51.9gの1,1,3,3-テトラメチルジシロキサンおよび1.24mLの70%濃硝酸をフラスコ内に加え、室温で4時間攪拌した。攪拌後、分液ロートに反応溶液を移し、800mLの水を加え、抽出操作をした後、有機層を回収した。同様の操作を4回繰り返すことにより、有機層を洗浄した。エバポレーターにより有機層からトルエンを留去した後、加熱による減圧留去(130℃、2時間)を行った。その結果、無色透明の粘性液体としてシリコーン樹脂(DA2)を得た。シリコーン樹脂(DA2)の収量は259.4gであり、質量平均分子量(Mw)は1,400であり、粘度は3,100cPであり、組成比は(Me2SiO2/20.17(PhSiO3/20.44(SiO4/20.13(CH2=CH(Me)2SiO1/20.26であり、CH2=CH-Si基の含有量は2.1mmol/gであり、HO-Si基の含有量は2.6mmol/g(4.4質量%)であった。
 上記調製例1~7で調製したポリボロシロキサン樹脂(A1)~(A4)、シリコーン樹脂(B1)、(B2)、ポリボロシロキサン樹脂(B3)およびシリコーン樹脂(DA1)、(DA2)における組成比および各物性値(HO-Si基の含有量、H-Si基またはCH2=CH-Si基の含有量、質量平均分子量、粘度、屈折率、透明性)を表2に示す。表2中、ViはCH2=CH-基を表す。
Figure JPOXMLDOC01-appb-T000039
 <ポリボロシロキサンの安定性の評価>
 上記調製例1~4で調製したポリボロシロキサン樹脂(A1)~(A4)および(B3)の空気中での安定性の評価を行った。具体的には、まず、6mLのサンプル管に合成したポリボロシロキサン樹脂(A1)を400mg採取して、サンプル1を作成した。ポリボロシロキサン樹脂(A2)~(A4)、(B3)およびポリボロシロキサン中間体(I-1)~(I-3)についても同様にしてサンプル2~8を作成した。これらを空気中(温度:25~26℃、湿度:42~52%)で4時間放置し、その放置前後の性状と外観を確認した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000040
 空気中で4時間放置した後のサンプル1~8において、(BO3/2)の組成比が比較的高いポリボロシロキサン中間体(I-1)~(I-3)を採取したサンプル6~8では、樹脂の表面が固化し、白濁していた。これは、ポリボロシキサン中間体(I-1)~(I-3)の一部が空気中の水分によって加水分解されたことによるものと考えられる。これに対し、(BO3/2)の組成比が比較的低いポリボロシロキサン樹脂(A1)~(A4)および(B3)を採取したサンプル1~5では、放置前後で性状と外観に変化はなかった。したがって、本発明に係るポリボロシロキサン樹脂(A1)~(A4)および(B3)は空気中での保存安定性に優れる。
 [実施例1~5、比較例1~3]
 <硬化性樹脂組成物の調製>
 上記調製例1~7で調製した(A)成分の樹脂[ポリボロシロキサン樹脂(A1)~(A4)、シリコーン樹脂(DA1)~(DA2)]と、(B)成分の樹脂[シリコーン樹脂(B1)~(B2)、ポリボロシロキサン樹脂(B3)]を2:1の質量比で配合し、(C)成分の白金触媒と混合して組成物を調製した。ここで、白金触媒としては、(A)~(C)成分の合計量に対して白金原子の含有量が質量単位で0.03ppmとなるように白金-ジビニルテトラメチルジシロキサン錯体を用いた。調製した組成物を構成する各成分およびHO-Si基の含有量を表4に示す。
 <硬化物の作製とその物性評価>
 調製した各組成物を用いて硬化物を作製し、その物理特性(密着性、硬度、耐熱性、透明性、耐熱透明性、線熱膨張係数、5%重量減少温度、接着強度)、および硬化時の外観を次のようにして測定、評価した。その結果を表4に示す。
 [パッケージ基板に対する硬化物の密着性試験]
 (i)3528SMD型PPA樹脂パッケージ(3528表面実装型ポリフタルアミド樹脂パッケージ)
 調製した組成物を3528SMD型PPA樹脂パッケージ(3.5mm×2.8mm×0.9mm)に流し込み、90℃で1時間加熱し、さらに150℃で4時間加熱して硬化物とした検体を16個作製した。これらの検体を光学顕微鏡で確認し、硬化物がパッケージから剥離していたものを「剥離」、硬化物にクラックが入ったものを「クラック」、剥離、クラックのないものを「密着」と評価した。16検体中、「密着」と評価した検体の数を「合格数」として計上した。
 (ii)6050SMD型PPA樹脂パッケージ(6050表面実装型ポリフタルアミド樹脂パッケージ)
 調製した組成物を6050SMD型PPA樹脂パッケージ(6.0mm×5.0mm×2.0mm)に流し込み、90℃で1時間加熱し、さらに150℃で4時間加熱して硬化物とした検体を3個作製した。これらの検体を光学顕微鏡で確認し、硬化物がパッケージから剥離していたものを「剥離」、硬化物にクラックが入ったものを「クラック」、剥離、クラックのないものを「密着」と評価した。3検体中、「密着」と評価した検体の数を「合格数」として計上した。
 [硬化物の接着強度]
 調製した組成物と直径50μmのジルコニアボールを混合し、この混合物をガラス基板(50mm×50mm×3.0mm)またはアルミナ基板(50mm×50mm×2.0mm)の上にポッティングした。その後、ポッティングした混合物をガラスチップ(5.0mm×5.0mm×1.1mm)を置き、ガラス基板またはアルミナ基板で挟みこんだ。これを、空気中90℃で1時間加熱し、さらに150℃で4時間加熱して硬化物とした検体を作製した。同様にして計10個の検体を作製した。作製した検体の接着力(接着強度)をボンドテスター(デイジ・ジャパン株式会社製、型式:Dage4000Plus)により測定し、10検体の接着力の平均値を算出した。
 [硬化物の硬度]
 調製した組成物を型(25mmφ)に流し込み、空気中90℃で1時間加熱し、さらに150℃で4時間加熱して厚さが6~7mmの硬化物を作製した。この硬化物のショアAまたはショアDの硬度を、デュロメーター(株式会社テクロック製、型式:GS-719R、GS-720R)を用いて、JIS K 7215「プラスチックのデュロメータ硬さ試験方法」に規定の方法に準じて測定した。
 [5%重量減少温度(Td5)]
 調製した組成物を空気中90℃で1時間加熱し、さらに150℃で4時間加熱して硬化物を作製した。この硬化物を、熱重量-示差熱同時測定装置(Thermogravimetric/Differential Thermal Analysis、略称:TG-DTA)としてThermoPlusTG8120(リガク株式会社製)を用いて、空気中、5℃/分の昇温速度で25℃から500℃まで加熱し、5%重量減少するときの温度(Td5)を測定した。
 [硬化時の外観]
 調製した組成物1gを、ガラスモールド(22mmφ)全面に薄く広げた。その後、空気中90℃で1時間加熱し、さらに150℃で4時間加熱して硬化物とし、これを25℃まで自然冷却して試験体を作製した。同様にして、計3個の試験体を作製した。試験体における硬化物の概観を目視で確認し、全ての試験体において、透明で、発泡およびクラックの発生が観測されない状態を「良好」、いずれかの試験体において、硬化物中に泡が観測される状態を「発泡」、いずれかの試験体において、組成物が硬化せずに粘性液体のままである状態を「未硬化」と表記した。
 [硬化物の透明性]
 調製した組成物を型(22mmφ)に流し込み、空気中90℃で1時間加熱し、さらに150℃で4時間加熱して22mmφ、2mm厚の硬化物を作製した。紫外可視分光光度計(株式会社島津製作所製、型番:UV-3150)を使用して、この硬化物の405nmおよび365nm波長領域における透過率をそれぞれ測定した。
 [硬化物の耐熱透明性]
 調製した組成物を型(22mmφ)に流し込み、空気中90℃で1時間加熱し、さらに150℃で4時間加熱して22mmφ、2mm厚の硬化物を作製した。この硬化物を200℃で100時間加熱した後、紫外可視分光光度計(株式会社島津製作所製、型番:UV-3150)を使用し、405nmおよび365nm波長領域における透過率をそれぞれ測定した。
Figure JPOXMLDOC01-appb-T000041
 パッケージ基板に対する硬化物の密着性試験において、3528SMD型PPA樹脂パッケージを用いた場合、実施例1~5の組成物では、16検体の全てにおいてパッケージに密着した硬化物が得られた。これに対し、比較例1では、合格数は12検体であり、4検体がパッケージから剥離していた。6050SMD型PPA樹脂パッケージを用いた場合においても、実施例1~5の組成物では、3検体全てがパッケージに密着していた。これに対し、比較例2では、3検体の全てにおいて、硬化物にクラックが入っており、パッケージへの良好な密着性は見られなかった。このことから、実施例1~4の組成物から作製した硬化物は、3528SMD型PPA樹脂パッケージ、6050SMD型PPA樹脂パッケージの両方に対して良好な密着性を有する。
 硬化物のショア硬度を測定すると、実施例1~5で作製した硬化物はショア硬度A13~95という幅広い値をとることがわかった。このことから、本発明の範疇にある組成物は、その組成を調節することにより、封止の目的に合わせて好適な硬度に調節した硬化物を得ることが可能である。
 耐熱性(Td5)試験では、実施例1~5及び比較例1~3で作製した全ての硬化物において300℃を超える良好な耐熱性が得られた。
 硬化時の外観は、実施例1~5及び比較例1~3の全てにおいて、硬化物中に発泡やクラックが確認されず、良好であった。
 硬化物の透明性試験では、実施例1~5、比較例1~3の組成物から作製した硬化物のいずれにおいても、波長365nmの透過率は90%、波長405nmの透過率は89~91%であり、高い透明性を有していた。このことから、ホウ素原子が組成物中に含有されている実施例1~5の組成物においても、ホウ素原子が組成物中に含有されていない比較例1~3の組成物と比べて、硬化物の透明性を損なうことはないことがわかった。
 以上のことから、本発明の範疇にある実施例1~5の組成物から作製される硬化物は、3528SMD型PPA樹脂パッケージおよび6050SMD型PPA樹脂パッケージに対して良好な密着性を有し、かつ、成型性、接着強度および透明性が高い。
 [実施例6~8、比較例4~6]
 <ポリボロシロキサン樹脂の硬化物と、ホウ素化合物を添加した硬化性シリコーン樹脂の硬化物との比較>
 本発明の範疇にあるポリボロシロキサン樹脂組成物の硬化物と、本発明の範疇にないホウ素化合物を添加したシリコーン樹脂組成物の硬化物との比較を行った。
 ポリボロシロキサン樹脂組成物(実施例6~8)の調製は、以下のようにして行った。
 (A)成分の樹脂[ポリボロシロキサン樹脂(A1)、(A2)、(A4)]と、(B)成分の樹脂[シリコーン樹脂(B2)、ポリボロシロキサン樹脂(B3)]を2:1の質量比で配合し、(C)成分の白金触媒と混合して調製した。ここで、白金触媒としては、(A)~(C)成分の合計量に対して白金原子の含有量が質量単位で0.03ppmとなるように白金-ジビニルテトラメチルジシロキサン錯体を用いた。
 一方、ホウ素化合物を添加したシリコーン樹脂組成物(比較例4~6)の調製は、以下のようにして行った。
 (A)成分の樹脂[シリコーン樹脂(DA1)~(DA2)]と、(B)成分の樹脂[シリコーン樹脂(B1)~(B2)]を2:1の質量比で配合し、(C)成分の白金触媒と混合した。ここで、白金触媒としては、(A)~(C)成分の合計量に対して白金原子の含有量が質量単位で0.03ppmとなるように白金-ジビニルテトラメチルジシロキサン錯体を用いた。このシリコーン樹脂組成物1gに、ホウ素化合物としてホウ酸トリノルマルブトキシドを87.2mg添加し、この組成物中のホウ素原子の含有量が0.38質量%となるように調製した。
 このようにして調製した組成物の各組成とホウ素原子含有量をまとめたものを表5に示す。調製した組成物の硬化物の物性評価方法は以下の通りである。
 [硬化時の外観]
 調製した組成物1gを、ガラスモールド(22mmφ)に薄く広げた。その後、空気中90℃で1時間加熱し、さらに150℃で4時間加熱して硬化物を作製した。作製した硬化物を25℃に自然冷却した。同様にして、3個の試験体を作製した。硬化物の概観を目視で確認し、全ての試験体において、透明で、発泡およびクラックの発生が観測されない状態を「良好」、いずれかの試験体において、硬化物中に泡が観測される状態を「発泡」、いずれかの試験体において、硬化物中に白濁が観測される状態を「白濁」と評価した。
 [硬化時重量減少]
 調製した組成物1gを、ガラスモールド(22mmφ)に薄く広げた。その後、空気中90℃で1時間加熱し、さらに150℃で4時間加熱して硬化物を作製した。作製した硬化物を25℃に自然冷却した。硬化処理前の組成物量を基準に、硬化処理後に得られた硬化物の重量がどれだけ減少したかを質量%で算出した。
Figure JPOXMLDOC01-appb-T000042
 作製した硬化物の外観において、比較例4と6では硬化物は白濁しており、比較例5では、硬化物に発泡が観測された。また、比較例4~6ではいずれも硬化時重量減少は5質量%よりも高いことがわかった。一方、本発明の範疇である実施例6および8で作製した硬化物は、その外観は良好であり、かつ、硬化時重量減少も5質量%よりも低い。中でも、実施例8で作製した硬化物の硬化時重量減少は特に低い値を示した。本発明の範疇にあるホウ素原子が分子中に導入されたポリボロシロキサンを含有する組成物から、透明性、成形性の良い硬化物が得られた。
 [実施例9]
 <硬化用縮合触媒の評価>
 (A)成分としてポリボロシロキサン樹脂(A2)と、(B)成分としてシリコーン樹脂(B2)とを2:1の質量比で配合し、(C)成分として白金触媒を、(A)~(C)成分の合計量に対して白金原子の含有量が質量単位で0.03ppmとなるように混合し、さらに、硬化用縮合触媒として、テトラフルオロボレートエチルアミン塩[BF4NH2Et]、ビス(2,4-ペンタンジオネート)亜鉛[Zn(acac)2]、ジブチルビス(2,4-ペンタンジオネート)スズ[Bu2Sn(acac)2]、トリ-n-ブトキシアルミニウム[Al(On-Bu)3]またはジルコニウムテトラブトキシド[Zr(On-Bu)4]をそれぞれ混合した組成物2-2~組成物2-6を調製した。一方、硬化用縮合触媒を配合せず、ポリボロシロキサン樹脂(A2)とシリコーン樹脂(B2)とを2:1の質量比で配合し、(C)成分として白金触媒を、(A)~(C)成分の合計量に対して白金原子の含有量が質量単位で0.03ppmとなるように混合したのみの組成物2-1を調製した。ここで、組成物2-1~組成物2-6における白金触媒としては、(A)~(C)成分の合計量に対して白金原子の含有量が質量単位で0.03ppmとなるように白金-ジビニルテトラメチルジシロキサン錯体を用いた。
 これらの組成物および比較用組成物を用いて、上述の[密着性試験]、[接着強度]、[ショア硬度]、[硬化時の外観]、[硬化物の透明性]及び[硬化物の耐熱透明性]を記載の方法に従って評価した。これらの結果を表6に示す。
Figure JPOXMLDOC01-appb-T000043
 パッケージへの密着性を評価すると、組成物2-2~組成物2-6において、3528SMD型PPA樹脂パッケージ、6050SMD型PPA樹脂パッケージともに全ての検体で硬化物は型に密着しており、組成物2-1と同様の結果だった。このように、硬化用縮合触媒を添加した場合においても、パッケージへの密着性は保たれていた。
 接着強度は、ガラス基板、アルミナ基板いずれにおいても、組成物2-2~組成物2-6は100N超であり、良好な接着強度を維持していた。
 ショア硬度は、硬化用縮合触媒を加えた組成物2-2~組成物2-6では、組成物2-1と比較して、高い硬度の硬化物が得られた(A51~A95)。
 硬化時の外観は、硬化用縮合触媒を加えた組成物2-2~組成物2-6は、組成物2-1と同様に、硬化物中に発泡やクラックを確認せず、良好であった。
 硬化物の透明性試験では、組成物2-2~組成物2-6の硬化物において、波長365nmでは89~90%、波長405nmでは90~91%であり、組成物2-1と同様に高い透明性を維持していた。この結果から、本発明の範疇にある組成物に硬化用縮合触媒を添加しても硬化物の透明性を損なわないことがわかった。
 硬化物の耐熱透明性試験では、組成物2-2~組成物2-6の硬化物では、波長365nmの硬化物の透過率は83~87%であり、組成物2-1の83%と同等以上の透明性を有し、波長405nmの透過率は87~90%であり、組成物2-1の88%と同等の高い透明性を有することがわかった。この結果から、硬化用縮合触媒を添加した組成物2-2~組成物2-6は、硬化用縮合触媒を添加しない硬化物と比較して同等の耐熱透明性を有することがわかった。
 以上のことから、本発明の範疇にある組成物2-2~組成物2-6の硬化物は、3528SMD型PPA樹脂パッケージ、6050SMD型PPA樹脂パッケージに対して良好な密着性を有することがわかった。また、硬化用縮合触媒を添加した組成物は、未添加のものと比較して、硬化物の硬度が向上し、成型性、接着強度、透明性及び耐熱透明性は維持していた。
 1…封止材、
 2…光半導体素子、
 3…ボンディングワイヤー、
 4…反射材、
 5…リードフレーム、
 6…光半導体基板、
 10…光半導体装置

Claims (14)

  1. (A)成分としてポリボロシロキサン樹脂、(B)成分としてシリコーン樹脂、(C)成分としてヒドロシリル化触媒とを少なくとも含む、硬化性ポリボロシロキサン樹脂組成物であり、
     (A)成分が、下記式[1]で示され、ケイ素原子に結合する水素原子(SiH基)を含有する、ポリボロシロキサン樹脂であり、
     (B)成分が、分子中にケイ素原子に結合するビニル基(Si-CH=CH2基)を有するシリコーン樹脂である、硬化性ポリボロシロキサン樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、R1は水素原子または炭素数1~3のアルキル基であり、2つのR1は同じまたは互いに異なる種類であってもよく、R2は炭素数1~3のアルキル基、または炭素数6~10の芳香族炭化水素基であり、2つのR2は同じまたは互いに異なる種類であってもよく、R3は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、a、bおよびcはそれぞれ0超、1未満の数であり、dは0以上、1未満の数であり、eは0.01以上、0.20以下の数であり、a+b+c+d=1を満たし、(SiR2 22/2)、(R3SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子は、シロキサン鎖中にボロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。)
  2. (B)成分が以下の(B-1)成分または(B-2)成分である、請求項1に記載の硬化性ポリボロシロキサン樹脂組成物。
     (B-1)成分:
     下記式[2]で示され、ケイ素原子に結合するビニル基(Si-CH=CH2基)を含有するシリコーン樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式[2]中、R4は炭素数1~3のアルキル基であり、2つのR4は同じまたは互いに異なる種類であってもよく、R5は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、2つのR5は同じまたは互いに異なる種類であってもよく、R6は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、f、gおよびhはそれぞれ0超、1未満の数であり、iは0以上、1未満の数であり、xは0以上0.20以下の数であり、f+g+h+i=1を満たし、(SiR5 22/2)、(R6SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子は、シロキサン鎖中にボロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。)
     (B-2)成分:
     下記式[3]で示され、ケイ素原子に結合するビニル基(Si-CH=CH2基)を含有するシリコーン樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (式[3]中、R7は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、2つのR7は同じまたは互いに異なる種類であってもよく、R8は炭素数1~3のアルキル基または炭素数6~10の芳香族炭化水素基であり、j、kおよびlは、それぞれ0超、1未満の数であり、mは0以上、1未満の数であり、yは0以上0.20以下の数であり、j+k+l+m=1を満たし、(SiR7 22/2)、(R8SiO3/2)および(SiO4/2)で表される構造単位における酸素原子はそれぞれ、シロキサン結合を形成している酸素原子、またはシラノール基を形成している酸素原子を示し、(BO3/2)で表される構造単位における酸素原子は、シロキサン鎖中にボロキサン結合を形成している酸素原子、ボロシロキサン結合を形成している酸素原子、またはB-OH基を形成している酸素原子を示す。)
  3. (A)成分におけるa、b、cおよびdが、a:b:c:d=0.10~0.40:0.10~0.80:0.10~0.80:0~0.70であり、(B-1)成分におけるf、g、hおよびiが、f:g:h:i=0.10~0.40:0.10~0.80:0.10~0.80:0~0.70である、請求項2に記載の硬化性シリコーン樹脂組成物。
  4. (A)成分におけるa、b、cおよびdが、a:b:c:d=0.10~0.40:0.10~0.80:0.10~0.80:0~0.70であり、(B-2)成分におけるj、k、lおよびmが、j:k:l:m=0.10~0.80:0.10~0.80:0.10~0.40:0~0.70である、請求項2に記載の硬化性シリコーン樹脂組成物。
  5. (A)成分におけるa、b、cおよびdが、a:b:c:d=0.10~0.35:0.10~0.50:0.20~0.60:0.10~0.30であり、(B-1)成分におけるf、g、hおよびiが、f:g:h:i=0.10~0.35:0.10~0.50:0.20~0.60:0.10~0.30である、請求項2に記載の硬化性シリコーン樹脂組成物。
  6. (A)成分におけるa、b、cおよびdが、a:b:c:d=0.10~0.35:0.10~0.50:0.20~0.60:0.10~0.30であり、(B-2)成分における、j、k、lおよびmが、j:k:l:m=0.10~0.50:0.20~0.60:0.10~0.35:0.10~0.30である、請求項2に記載の硬化性シリコーン樹脂組成物。
  7. 硬化用縮合触媒をさらに含む、請求項1乃至6のいずれか一項に記載の硬化性ポリボロシロキサン樹脂組成物。
  8. 硬化遅延剤、接着付与剤、酸化防止剤、光安定剤、蛍光体、無機粒子からなる群から選ばれる一種以上をさらに含む、請求項1乃至7のいずれか一項に記載の硬化性ポリボロシロキサン樹脂組成物。
  9. 離型剤、樹脂改質剤、着色剤、希釈剤、抗菌剤、防黴剤、レベリング剤、タレ防止剤からなる群から選ばれる一種以上をさらに含む、請求項1乃至8のいずれか一項に記載の硬化性ポリボロシロキサン樹脂組成物。
  10. 請求項1乃至9のいずれか一項に記載の硬化性ポリボロシロキサン樹脂組成物を硬化してなる、硬化物。
  11. 請求項10に記載の硬化物からなる、光半導体封止材。
  12. 請求項1乃至9のいずれか一項に記載の硬化性ポリボロシロキサン樹脂組成物を45℃以上、300℃以下で加熱して硬化させる、硬化性ポリボロシロキサン樹脂組成物の硬化物の製造方法。
  13. 光半導体素子と、該光半導体素子を封止する請求項11に記載の光半導体封止材とを少なくとも備える、光半導体装置。
  14. 請求項10に記載の硬化物からなる、半導体用接着剤。
PCT/JP2016/069729 2015-07-10 2016-07-04 硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置 WO2017010327A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-138680 2015-07-10
JP2015138680 2015-07-10
JP2016122503A JP2017020005A (ja) 2015-07-10 2016-06-21 硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
JP2016-122503 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017010327A1 true WO2017010327A1 (ja) 2017-01-19

Family

ID=57757004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069729 WO2017010327A1 (ja) 2015-07-10 2016-07-04 硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置

Country Status (1)

Country Link
WO (1) WO2017010327A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109734920A (zh) * 2018-12-17 2019-05-10 烟台德邦科技有限公司 一种含硼粘接剂的制备方法
WO2019167704A1 (ja) * 2018-02-28 2019-09-06 Jsr株式会社 基材表面の修飾方法、組成物及び重合体
CN110982277A (zh) * 2019-12-23 2020-04-10 成都硅宝科技股份有限公司 一种单组分耐温导热硅泥组合物及其制备方法
JP2020527645A (ja) * 2017-07-19 2020-09-10 アヴァンター・パフォーマンス・マテリアルズ・エルエルシー 動的共有結合ポリシロキサンを含む硬化性オルガノポリシロキサン組成物
CN113265222A (zh) * 2021-05-27 2021-08-17 河南守真电子科技有限公司 高分子防潮防火封堵组合材料及其使用方法
CN115806800A (zh) * 2022-11-17 2023-03-17 烟台德邦科技股份有限公司 一种半导体芯片围框粘接有机硅密封胶及其制备方法
CN115820206A (zh) * 2022-12-23 2023-03-21 烟台德邦科技股份有限公司 一种uv固化有机硅密封胶
CN116285708A (zh) * 2021-12-20 2023-06-23 华为技术有限公司 胶粘剂组合物及其制备方法、光学胶膜及其应用
CN116288811A (zh) * 2023-03-20 2023-06-23 西安理工大学 一种改性热塑性聚氨酯弹性体复丝的制备方法
JP7506641B2 (ja) 2021-07-14 2024-06-26 信越化学工業株式会社 エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438473A (en) * 1987-08-04 1989-02-08 Toshiba Silicone Release composition
JP2001335685A (ja) * 2000-05-30 2001-12-04 Kanegafuchi Chem Ind Co Ltd 難燃性樹脂組成物
JP2009167361A (ja) * 2008-01-21 2009-07-30 Nitto Denko Corp 光半導体素子封止用樹脂組成物の製造方法
JP2011513551A (ja) * 2008-03-04 2011-04-28 ダウ・コーニング・コーポレイション ポリボロシロキサン及びその調製方法
JP2011518893A (ja) * 2008-03-04 2011-06-30 ダウ・コーニング・コーポレイション ボロシロキサン組成物、ボロシロキサン接着剤、塗装基板及び積層基板
WO2012077529A1 (ja) * 2010-12-09 2012-06-14 株式会社ダイセル 付加硬化性メタロシロキサン化合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438473A (en) * 1987-08-04 1989-02-08 Toshiba Silicone Release composition
JP2001335685A (ja) * 2000-05-30 2001-12-04 Kanegafuchi Chem Ind Co Ltd 難燃性樹脂組成物
JP2009167361A (ja) * 2008-01-21 2009-07-30 Nitto Denko Corp 光半導体素子封止用樹脂組成物の製造方法
JP2011513551A (ja) * 2008-03-04 2011-04-28 ダウ・コーニング・コーポレイション ポリボロシロキサン及びその調製方法
JP2011518893A (ja) * 2008-03-04 2011-06-30 ダウ・コーニング・コーポレイション ボロシロキサン組成物、ボロシロキサン接着剤、塗装基板及び積層基板
WO2012077529A1 (ja) * 2010-12-09 2012-06-14 株式会社ダイセル 付加硬化性メタロシロキサン化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHIAVON MARCO A. ET AL.: "Novel poly (borosiloxane)precursors to amorphous SiBCO ceramics", MATERIALS CHEMISTRY AND PHYSICS, vol. 112, 2008, pages 1047 - 1054, XP025656821 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527645A (ja) * 2017-07-19 2020-09-10 アヴァンター・パフォーマンス・マテリアルズ・エルエルシー 動的共有結合ポリシロキサンを含む硬化性オルガノポリシロキサン組成物
JP7136182B2 (ja) 2018-02-28 2022-09-13 Jsr株式会社 基材表面の修飾方法、組成物及び重合体
WO2019167704A1 (ja) * 2018-02-28 2019-09-06 Jsr株式会社 基材表面の修飾方法、組成物及び重合体
JPWO2019167704A1 (ja) * 2018-02-28 2021-03-04 Jsr株式会社 基材表面の修飾方法、組成物及び重合体
US11426761B2 (en) 2018-02-28 2022-08-30 Jsr Corporation Modification method of surface of base, composition, and polymer
CN109734920A (zh) * 2018-12-17 2019-05-10 烟台德邦科技有限公司 一种含硼粘接剂的制备方法
CN110982277B (zh) * 2019-12-23 2022-02-22 成都硅宝科技股份有限公司 一种单组分耐温导热硅泥组合物及其制备方法
CN110982277A (zh) * 2019-12-23 2020-04-10 成都硅宝科技股份有限公司 一种单组分耐温导热硅泥组合物及其制备方法
CN113265222A (zh) * 2021-05-27 2021-08-17 河南守真电子科技有限公司 高分子防潮防火封堵组合材料及其使用方法
JP7506641B2 (ja) 2021-07-14 2024-06-26 信越化学工業株式会社 エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
CN116285708A (zh) * 2021-12-20 2023-06-23 华为技术有限公司 胶粘剂组合物及其制备方法、光学胶膜及其应用
CN115806800B (zh) * 2022-11-17 2024-01-16 烟台德邦科技股份有限公司 一种半导体芯片围框粘接有机硅密封胶及其制备方法
CN115806800A (zh) * 2022-11-17 2023-03-17 烟台德邦科技股份有限公司 一种半导体芯片围框粘接有机硅密封胶及其制备方法
CN115820206A (zh) * 2022-12-23 2023-03-21 烟台德邦科技股份有限公司 一种uv固化有机硅密封胶
CN115820206B (zh) * 2022-12-23 2024-04-02 烟台德邦科技股份有限公司 一种uv固化有机硅密封胶
CN116288811A (zh) * 2023-03-20 2023-06-23 西安理工大学 一种改性热塑性聚氨酯弹性体复丝的制备方法

Similar Documents

Publication Publication Date Title
WO2017010327A1 (ja) 硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
KR101560030B1 (ko) 경화성 조성물
EP2878636B1 (en) Curable composition
CN102834465A (zh) 光半导体装置用密封剂及使用其的光半导体装置
JP2016211003A (ja) 半導体発光デバイス部材用2液型硬化性ポリオルガノシロキサン組成物、該組成物を硬化させてなるポリオルガノシロキサン硬化物及びその製造方法
US10947384B2 (en) Curable resin composition, cured product thereof, and semiconductor device
JP2013124324A (ja) 硬化性ポリオルガノシロキサン組成物および該組成物を硬化させてなるポリオルガノシロキサン硬化物
JP2016169358A (ja) 硬化性シリコーン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
EP2784125B1 (en) Curable composition
JP2017020005A (ja) 硬化性ポリボロシロキサン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
US20110147722A1 (en) Semiconductor light emitting device comprising high performance resins
JP2012111836A (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
KR20140015219A (ko) 경화성 조성물
KR101560043B1 (ko) 경화성 조성물
JP2018111783A (ja) 硬化性シリコーン樹脂組成物およびその硬化物、並びにこれらを用いた半導体装置
JP5323037B2 (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
WO2018235811A1 (ja) 硬化性シリコーン樹脂組成物及びその硬化物
JP2017128707A (ja) 硬化性シリコーン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
WO2016013421A1 (ja) 硬化性シリコーン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
JPWO2018062513A1 (ja) Led用封止材組成物
KR101591146B1 (ko) 경화성 조성물
WO2017056913A1 (ja) 硬化性シリコーン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
JP5323038B2 (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2019163425A (ja) 硬化性組成物及び該組成物を封止剤として用いた光半導体装置。
EP2878635B1 (en) Hardening composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824307

Country of ref document: EP

Kind code of ref document: A1