WO2017008610A1 - 一种钛酸锂锡基复合负极材料的制备方法 - Google Patents

一种钛酸锂锡基复合负极材料的制备方法 Download PDF

Info

Publication number
WO2017008610A1
WO2017008610A1 PCT/CN2016/085912 CN2016085912W WO2017008610A1 WO 2017008610 A1 WO2017008610 A1 WO 2017008610A1 CN 2016085912 W CN2016085912 W CN 2016085912W WO 2017008610 A1 WO2017008610 A1 WO 2017008610A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium titanate
tin
based composite
powder
anode material
Prior art date
Application number
PCT/CN2016/085912
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2017008610A1 publication Critical patent/WO2017008610A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of anode materials for lithium ion batteries, and in particular to a method for preparing a lithium titanate-based composite anode material for lithium ion batteries.
  • Lithium-ion batteries have the advantages of high energy density, small self-discharge, no memory effect, wide operating voltage range, long service life and no environmental pollution. They are the main power source for new energy vehicles.
  • the key electrode material of lithium ion battery is the final determinant of battery performance, and the negative electrode material plays an important role in improving the performance of lithium ion battery. Therefore, the development of high-performance, low-cost anode materials is of great significance to promote the development of new energy vehicles and related emerging industries.
  • the current anode material is mainly graphite, and its specific capacity is close to the theoretical value of 372 mAh/g. It is difficult to have room for improvement. Therefore, finding a high specific capacity anode material instead of carbon has become an important development direction.
  • Li4Ti5O12 As a new type of lithium ion secondary battery anode material, Li4Ti5O12 has the advantages of good cycle performance, no reaction with electrolyte, high safety performance, stable charge and discharge platform, etc., compared with other commercial materials.
  • the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. The problem is poor. At the same time, the theoretical specific capacity of lithium titanate material is 175mAh/g, the actual specific capacity is more than 160mAh/g, and it has the disadvantages of low gram capacity. Therefore, it is necessary to modify lithium titanate.
  • the theoretical specific capacity (994 mAh/g) of the tin-based anode material is more than five times that of the lithium titanate anode material (175 mAh/g), and the lithium-embedded potential is moderate, making the tin-based anode material a lithium ion worthy of research and development potential.
  • Battery anode material the large volume expansion effect of tin-based materials results in lower cycle performance and greater irreversible capacity.
  • the composite material obtained by the combination of metal powder with tin powder and lithium titanate can greatly improve the performance of lithium titanate anode material.
  • the metal itself has good ductility, high electrical conductivity, high mechanical strength, etc. Selecting a suitable metal and tin to form tin carbon can effectively overcome the volume effect of tin during charge and discharge, improve the cycle stability of the material, and improve the conductivity.
  • the capacity and the first effect of the existing tin-carbon anode materials are generally low, and the consistency of the prepared materials is poor.
  • one of the objects of the present invention is to provide a method for preparing a lithium titanate tin-based composite anode material, which first coats nano tin with a resin-based carbon precursor, and the carbon precursor passes through After high-temperature carbonization, a porous structure is formed, which can effectively alleviate the volume expansion effect of tin. Then, the carbonized material is pulverized to obtain a submicron powder, and then mixed with lithium titanate and asphalt carbon precursor, and then subjected to high temperature treatment. The mixture was cooled and sieved to obtain a lithium titanate-based composite negative electrode material of the present invention.
  • a preparation method of a lithium titanate tin-based composite anode material the specific preparation steps are as follows:
  • the material A is pulverized to obtain a submicron powder B having a particle diameter D50 of 0.1 to 1 ⁇ m;
  • the powder B is solid-phase mixed with the lithium titanate and the pitch-based carbon precursor, and then carbonized at a high temperature under the protection of an inert gas, and cooled and sieved.
  • the resin-based carbon precursor in the step (1) means one of a furfural resin, an epoxy resin, a phenol resin, a polyethylene glycol, a polyvinyl chloride, a polyvinyl butyral, a polyacrylonitrile, and a polyacrylic acid. Or a combination of at least two.
  • the ratio of the resin-based carbon precursor to the nano-tin in the step (1) is 1: (0.05 to 0.15).
  • the temperature of the high-temperature carbonization in the step (1) is 650 to 850 ° C
  • the heating rate is 1 to 5 ° C / min
  • the holding time is 0.5 to 3 h.
  • step (2) pulverization refers to one or a combination of two or more of ball milling, mechanical pulverization, or air pulverization.
  • the weight ratio of the powder B to the lithium titanate in the step (3) is (0.1 to 0.5): 1, and the pitch-based carbon precursor accounts for 10 to 30% of the total weight of the powder B and the lithium titanate.
  • the asphalt-based carbon precursor in the step (3) refers to a combination of one or at least two of a condensed polycyclic polynuclear hydrocarbon obtained by upgrading coal tar pitch, petroleum pitch, modified pitch, mesophase pitch, and pitch. .
  • the powder particle diameter D50 of the pitch-based carbon precursor in the step (3) is ⁇ 3 ⁇ m.
  • the temperature of the high temperature carbonization in the step (3) is 850 to 1000 ° C
  • the heating rate is 5 to 20 ° C / min
  • the holding time is 0.5 to 4 h.
  • the porous structure carbon formed by carbonization of the resin-based carbon precursor serves as a carrier for fixing the nano-tin, and utilizes the characteristics of many small organic molecules in the resin. At high temperatures, small molecules overflow from the surface to form micropores, and the nano-tin is uniformly embedded in the micropores.
  • the method can improve the dispersibility of the nano tin particles in the tin-based composite anode material, alleviate the volume expansion and contraction of the material during lithium removal/intercalation, enhance the structural stability of the material, and ensure the material has a high electrical conductivity. Improve the electrochemical properties of materials and their cycle stability.
  • the asphalt coating modification treatment solves the disadvantages of excessive surface area of the resin material and low capacity of the lithium titanate, avoiding large irreversible capacity loss and increasing the ratio of the material. Capacity, the resulting material has a low specific surface area, good processing properties and high specific capacity and long cycle.
  • the method of the invention is simple in operation, easy to control, low in production cost, and suitable for industrial production.
  • the powder was raised to 850 ° C at a heating rate of 10 ° C / min under inert gas protection, and kept for 3 hours. After cooling to room temperature, the lithium titanate tin-based composite anode material prepared by the present invention is obtained by sieving.
  • the powder After the components are uniformly mixed, the powder is raised to 1000 ° C at a heating rate of 10 ° C / min under the protection of an inert gas, and the temperature is kept for 0.5 h. After cooling to room temperature, the lithium titanate tin-based composite anode material prepared by the present invention is obtained by sieving.
  • the powder After the components are uniformly mixed, the powder is raised to 900 °C at a heating rate of 15 °C/min under inert gas protection. After heat preservation for 1.5 hours, after cooling to room temperature, the lithium titanate tin-based composite anode material prepared by the invention is obtained by sieving.
  • °C heat preservation for 0.5h
  • the powder was raised to 850 °C at a heating rate of 5 °C/min under an inert gas atmosphere for 2.5 h. After cooling to room temperature, the lithium titanate tin-based composite anode material prepared by the present invention is obtained by sieving.
  • Example 2 According to the preparation procedure in Example 1, the difference was that the anode material finally obtained without adding tin powder.
  • the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
  • the battery performance can be tested. The test results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种钛酸锂锡基复合负极材料的制备方法,该方法先采用树脂类碳前驱体对纳米锡进行包覆,树脂类碳前驱体碳化后所形成的多孔结构碳作为固定纳米锡的载体,能有效缓解锡的体积膨胀效应,再通过与钛酸锂进行复合后,经过沥青包覆改性处理,解决了树脂类材料比表面积过大和钛酸锂容量偏低的缺点,避免了大的不可逆容量损失,提高的材料的克比容量,最终所得的材料具有低的比表面积,良好的加工性能和高克比容量以及长周期循环等优点。同时,本发明的方法操作简单、易于控制,生产成本低、适合工业化生产。

Description

一种钛酸锂锡基复合负极材料的制备方法 技术领域
本发明涉及锂离子电池负极材料领域,具体涉及一种锂离子电池用钛酸锂锡基复合负极材料的制备方法。
背景技术
目前随着全球性石油资源紧缺与气候环境的不断恶化,人类社会发展面临着严峻的挑战。发展清洁节能的新能源汽车受到世界各国的高度重视。新能源汽车的发展,关键在其动力电源。锂离子电池具有能量密度大、自放电小、无记忆效应、工作电压范围宽、使用寿命长、无环境污染等优点,是目前新能源汽车主要的动力电源。而锂离子电池关键电极材料是电池性能的最终决定性因素,其中负极材料对锂离子电池性能的提高起着至关重要的作用。因此,开发高性能、廉价的负极材料对促进新能源汽车及相关新兴产业的发展具有重要的意义。
目前的负极材料主要为石墨,其比容量已经接近372mAh/g的理论值,很难再有提升的空间,因此寻找替代碳的高比容量负极材料成为一个重要的发展方向。Li4Ti5O12作为一种新型的锂离子二次电池负极材料,与其它商业化的材料相比,具有循环性能好、不与电解液反应、安全性能高、充放电平台平稳等优点,是近几年来备受关注的最优异的锂离子电池负极材料之一。与碳负电极材料相比,钛酸锂有很多的优势,其中,锂离子在钛酸锂中的脱嵌是可逆的,而且锂离子在嵌入或脱出钛酸锂的过程中,其晶型不发生变化,体积变化小于1%,因此被称为“零应变材料”,能够避免充放电循环中由于电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少了随循环次数增加而带来比容量大幅度的衰减,具有比碳负极更优良的循环性能;但是,由于钛酸锂是一种绝缘材料,其电导率低,从而导致在锂电中的应用存在倍率性能较差的问题,同时钛酸锂材料理论比容量为175mAh/g,实际比容量大于160mAh/g,具有克容量较低等缺点,因此,对于钛酸锂进行改性是十分必要的。
锡基负极材料的理论比容量(994mAh/g)为钛酸锂负极材料(175mAh/g)的五倍多,同时嵌锂电位适中,使得锡基负极材料成为值得研究并具有发展潜力的锂离子电池负极材料。但锡基材料巨大的体积膨胀效应导致其循环性能较低和不可逆容量较大。
研究表明将金属粉末与锡粉和钛酸锂复合制备所得到负极材料能极大的改善钛酸锂负极材料的性能。金属本身具有良好的延展性,高导电率,机械强度高等优势,故选 择合适的金属与锡形成锡碳,能有效地克服锡在充放电过程中的体积效应,提高材料的循环稳定性,导电性也得到一定改善。然而,目前已有的锡碳负极材料容量及首效普遍偏低,制备的材料一致性较差。
因此,开发一种高导电性、高容量、高首次充放电效率与循环稳定性好的钛酸锂复合负极材料是锂离子电池领域的技术难题。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供一种钛酸锂锡基复合负极材料的制备方法,该方法先采用树脂类碳前驱体对纳米锡进行包覆,碳前驱体经过高温碳化后形成多孔结构,能有效缓解锡的体积膨胀效应,再对包覆碳化后的材料通过粉碎得到亚微米粉体,再与钛酸锂、沥青类碳前驱体进行混合后,通过高温处理,冷却过筛,得到本发明钛酸锂锡基复合负极材料。
一种钛酸锂锡基复合负极材料的制备方法,具体制备步骤如下:
(1)将树脂类碳前驱体分散在溶剂中,加入纳米锡,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,高温碳化,得到材料A;
(2)将材料A通过粉碎,得到粒径D50介于0.1~1μm的亚微米级粉体B;
(3)将粉体B与钛酸锂、沥青类碳前驱体进行固相混合,然后在惰性气体保护下,高温碳化,冷却过筛即可。
进一步,步骤(1)中树脂类碳前驱体是指糠醛树脂、环氧树脂、酚醛树脂、聚乙二醇、聚氯乙烯、聚乙烯醇缩丁醛、聚丙烯腈、聚丙烯酸中的1种或至少2种的组合。
进一步,步骤(1)中树脂类碳前驱体与纳米锡的比例为1:(0.05~0.15)。
进一步,步骤(1)中高温碳化的温度为650~850℃,升温速率为1~5℃/min,保温时间为0.5~3h。
进一步,步骤(2)粉碎是指通过球磨、机械粉碎或者气流粉碎方式中的一种或者两种以上的组合。
进一步,步骤(3)粉体B与钛酸锂的重量比为(0.1~0.5):1,沥青类碳前驱体占粉体B与钛酸锂总重量的10~30%。
进一步,步骤(3)中沥青类碳前驱是指煤沥青、石油沥青、改质沥青、中间相沥青、由沥青改质而得到的缩合多环多核芳香烃中的1种或至少2种的组合。
进一步,步骤(3)中沥青类碳前驱的粉体粒径D50≤3μm。
进一步,步骤(3)中高温碳化的温度为850~1000℃,升温速率为5~20℃/min,保温时间为0.5~4h。
树脂类碳前驱体碳化后所形成的多孔结构碳作为固定纳米锡的载体,利用树脂中有机小分子多的特性,在高温时,小分子从中溢出,形成微孔,纳米锡均匀镶嵌在微孔中,该方法可改善纳米锡颗粒在锡基复合负极材料中的分散性,缓解材料脱/嵌锂时的体积膨胀和收缩,增强了材料的结构稳定性,保证材料具有较高的导电率,提高材料的电化学性能及其循环稳定性。
再通过与钛酸锂进行复合后,经过沥青包覆改性处理,解决了树脂类材料比表面积过大和钛酸锂容量偏低的缺点,避免了大的不可逆容量损失,提高的材料的克比容量,最终所得的材料具有低的比表面积,良好的加工性能和高克比容量以及长周期循环等优点。
同时,本发明的方法操作简单、易于控制,生产成本低、适合工业化生产。
具体实施方式
为了更好地理解本发明,下面通过具体的实施例来具体说明本发明的技术方案。
实施例1
将环氧树脂分散在丙酮溶剂中,按环氧树脂:纳米锡=1:0.1的比例加入锡粉,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,以2℃/min的升温速率升至750℃,保温2h,利用气流粉碎将碳化后所得的粉体粉碎至D50介于0.1~1μm,再将粉体与钛酸锂为0.3:1的重量比,同时加入粉体与钛酸锂总重量的15%的石油沥青(D50=2.15μm)一起混合,在各组分混合均匀后,在惰性气体保护下,将粉体以10℃/min的升温速率升至850℃,保温3h,冷却至室温后,过筛即得本发明所制备的钛酸锂锡基复合负极材料。
实施例2
将酚醛树脂分散在酒精溶剂中,按酚醛树脂:纳米锡=1:0.15的比例加入锡粉,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,以3℃/min的升温速率升至800℃,保温3h,利用球磨粉碎将碳化后所得的粉体粉碎至D50介于0.1~1μm,再将粉体与钛酸锂为0.4:1的重量比,同时加入粉体与钛酸锂总重量的20%的煤沥青(D50=2.15μm)一起混合,在各组分混合均匀后,在惰性气体保护下,将粉体以10℃/min的升温速率升至1000℃,保温0.5h,冷却至室温后,过筛即得本发明所制备的钛酸锂锡基复合负极材料。
实施例3
将聚乙二醇分散在去离子中,按聚乙二醇:纳米锡=1:0.05的比例加入锡粉,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,以5℃/min的升温速率升至850℃,保温1h,利用机械粉碎将碳化后所得的粉体粉碎至D50介于0.1~1μm,再将粉体与钛酸锂为0.5:1的重量比,同时加入粉体与钛酸锂总重量的30%的中间相沥青(D50=2.15μm)一起混合,在各组分混合均匀后,在惰性气体保护下,将粉体以15℃/min的升温速率升至900℃,保温1.5h,冷却至室温后,过筛即得本发明所制备的钛酸锂锡基复合负极材料。
实施例4
将酚醛树脂分散在酒精溶剂中,按树脂:纳米锡=1:0.1的比例加入锡粉,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,以2℃/min的升温速率升至850℃,保温0.5h,利用气流粉碎将碳化后所得的粉体粉碎至D50介于0.1~1μm,再将粉体与钛酸锂为0.25:1的重量比,同时加入粉体与钛酸锂总重量的20%的改质沥青(D50=2.15μm)一起混合,在各组分混合均匀后,在惰性气体保护下,将粉体以5℃/min的升温速率升至850℃,保温2.5h,冷却至室温后,过筛即得本发明所制备的钛酸锂锡基复合负极材料。
对比例1
实施例1中的单组份钛酸锂。
对比例2
按照实施例1中的制备流程,区别在于未添加锡粉最终得到的负极材料。
半电池检测
为检验本发明方法制备的负极材料的电性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为1.0~2.5V,充放电速率为0.5C,对电池性能进行能测试,测试结果见表1。
全电池测试
用上实施例和比较例的负极材料:SP:SBR(固含量50%):CMC=94:2.5:1.5:2(重量比),加适量去离子水混合均匀调成浆状,涂于铜箔上,在90℃下抽真空干燥;将LiCoO2粉末:SP:KS-6:PVDF=94:1.5:2:2.5(重量比),以NMP做溶剂混合均匀进行调浆后,涂于铝箔上,在100℃下抽真空干燥;将干燥后的正、负极极片经过辊压、裁片、卷 绕、注液、封口、化成工序,制成18650圆柱电池,隔膜为Celgard2400,电解液为1M LiPF6/DMC:EC:DEC,使用电池检测装置进行循环性能的检测,测试结果见表1。
表1不同实施例和比较例中负极材料的性能比较
Figure PCTCN2016085912-appb-000001
以上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一种钛酸锂锡基复合负极材料的制备方法,具体制备步骤如下:
    (1)将树脂类碳前驱体分散在溶剂中,加入纳米锡,然后超声分散,蒸发掉有机溶剂,在惰性气体保护下,高温碳化,得到材料A;
    (2)将材料A通过粉碎,得到粒径D50介于0.1~1μm的亚微米级粉体B;
    (3)将粉体B与钛酸锂、沥青类碳前驱体进行固相混合,然后在惰性气体保护下,高温碳化,冷却过筛即可。
  2. 根据权利要求1所述的一种钛酸锂锡基复合负极材料的制备方法,其特征在于步骤(1)中树脂类碳前驱体是指糠醛树脂、环氧树脂、酚醛树脂、聚乙二醇、聚氯乙烯、聚乙烯醇缩丁醛、聚丙烯腈、聚丙烯酸中的1种或至少2种的组合。
  3. 根据权利要求1所述的一种钛酸锂锡基复合负极材料的制备方法,其特征在于步骤(1)中树脂类碳前驱体与纳米锡的比例为1:(0.05~0.15)。
  4. 根据权利要求1所述的一种钛酸锂锡基复合负极材料的制备方法,其特征在于步骤(1)中高温碳化的温度为650~850℃,升温速率为1~5℃/min,保温时间为0.5~3h。
  5. 根据权利要求1所述的一种钛酸锂锡基复合负极材料的制备方法,其特征在于步骤(2)粉碎是指通过球磨、机械粉碎或者气流粉碎方式中的一种或者两种以上的组合。
  6. 根据权利要求1所述的一种钛酸锂锡基复合负极材料的制备方法,其特征在于步骤(3)粉体B与钛酸锂的重量比为(0.1~0.5):1,沥青类碳前驱体占粉体B与钛酸锂总重量的10~30%。
  7. 根据权利要求1所述的一种钛酸锂锡基复合负极材料的制备方法,其特征在于步骤(3)中沥青类碳前驱是指煤沥青、石油沥青、改质沥青、中间相沥青、由沥青改质而得到的缩合多环多核芳香烃中的1种或至少2种的组合,沥青类碳前驱的粉体粒径D50≤3μm。
  8. 根据权利要求1所述的一种钛酸锂锡基复合负极材料的制备方法,其特征在于步骤(3)中高温碳化的温度为850~1000℃,升温速率为5~20℃/min,保温时间为0.5~4h。
PCT/CN2016/085912 2015-07-10 2016-06-15 一种钛酸锂锡基复合负极材料的制备方法 WO2017008610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510404354.7 2015-07-10
CN201510404354.7A CN104934570A (zh) 2015-07-10 2015-07-10 一种钛酸锂锡基复合负极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2017008610A1 true WO2017008610A1 (zh) 2017-01-19

Family

ID=54121634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085912 WO2017008610A1 (zh) 2015-07-10 2016-06-15 一种钛酸锂锡基复合负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN104934570A (zh)
WO (1) WO2017008610A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934570A (zh) * 2015-07-10 2015-09-23 田东 一种钛酸锂锡基复合负极材料的制备方法
CN105140481A (zh) * 2015-08-07 2015-12-09 田东 一种高容量锂离子电池负极材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894939A (zh) * 2010-07-02 2010-11-24 重庆大学 锂离子电池含纳米硅或锡复合负极材料及其制备方法
CN102869612A (zh) * 2010-04-28 2013-01-09 石原产业株式会社 新型钛酸锂、其制备方法、包含钛酸锂的电极活性材料以及使用电极活性材料的蓄电装置
CN104934570A (zh) * 2015-07-10 2015-09-23 田东 一种钛酸锂锡基复合负极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877407B (zh) * 2009-04-30 2013-06-19 比亚迪股份有限公司 一种负极活性物质以及制备方法及电池
CN103296257B (zh) * 2013-06-05 2015-06-24 深圳市斯诺实业发展有限公司 一种改性锂离子电池钛酸锂负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869612A (zh) * 2010-04-28 2013-01-09 石原产业株式会社 新型钛酸锂、其制备方法、包含钛酸锂的电极活性材料以及使用电极活性材料的蓄电装置
CN101894939A (zh) * 2010-07-02 2010-11-24 重庆大学 锂离子电池含纳米硅或锡复合负极材料及其制备方法
CN104934570A (zh) * 2015-07-10 2015-09-23 田东 一种钛酸锂锡基复合负极材料的制备方法

Also Published As

Publication number Publication date
CN104934570A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2017008494A1 (zh) 一种石墨硅基复合负极材料的制备方法
WO2017008606A1 (zh) 一种石墨锡基复合负极材料的制备方法
WO2017121069A1 (zh) 一种锂离子动力电池用硬碳负极材料的制备及其改性方法
WO2016169149A1 (zh) 一种石墨细粉作为锂离子电池负极材料的循环利用方法
WO2016201940A1 (zh) 一种炭/石墨复合负极材料的制备方法
WO2016074479A1 (zh) 一种热解无定型碳材料及其制备方法和用途
KR20140120861A (ko) 리튬이온전지 흑연 음극재료 및 이의 제조방법
US20180062167A1 (en) Negative electrode material for secondary battery, method for preparing the same, and battery containing the same
WO2017008624A1 (zh) 一种钛酸锂硅基复合负极材料的制备方法
WO2016188130A1 (zh) 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法
CN109360962B (zh) 一种锂电池用高稳定性硅碳负极材料及其制备方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
WO2016202162A1 (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
CN106887593B (zh) 一种高容量锂离子电池负极材料的制备方法
WO2017024891A1 (zh) 一种锂离子动力电池负极材料的制备方法
CN105810946A (zh) 一种锂离子电池天然石墨负极材料的制备方法
WO2017024775A1 (zh) 一种改性钛酸锂负极材料的制备方法
WO2017008615A1 (zh) 一种气相沉积制备改性硅基负极材料的方法
WO2023159863A1 (zh) 一种负极材料及其制备方法、负极片和电池
CN112952048A (zh) 硅碳复合负极材料及其制备方法、电极和二次电池
Li et al. Coal tar electrode pitch modified rice husk ash as anode for lithium ion batteries
CN104485457B (zh) 一种新型锂离子电池负极材料的制备方法
CN114300671A (zh) 一种石墨复合负极材料及其制备方法和应用
WO2017008625A1 (zh) 一种气相沉积制备锡基负极材料的方法
WO2017008610A1 (zh) 一种钛酸锂锡基复合负极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16823757

Country of ref document: EP

Kind code of ref document: A1