WO2017007257A1 - 레이저 가공장치 - Google Patents

레이저 가공장치 Download PDF

Info

Publication number
WO2017007257A1
WO2017007257A1 PCT/KR2016/007363 KR2016007363W WO2017007257A1 WO 2017007257 A1 WO2017007257 A1 WO 2017007257A1 KR 2016007363 W KR2016007363 W KR 2016007363W WO 2017007257 A1 WO2017007257 A1 WO 2017007257A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens unit
workpiece
optical sensor
reflected
distance
Prior art date
Application number
PCT/KR2016/007363
Other languages
English (en)
French (fr)
Inventor
성진우
Original Assignee
(주)이오테크닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이오테크닉스 filed Critical (주)이오테크닉스
Publication of WO2017007257A1 publication Critical patent/WO2017007257A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present invention relates to a laser processing apparatus, and to a technique for adjusting a position where a laser beam is focused on a workpiece.
  • the laser processing process refers to a process of processing the shape or physical properties of the surface of the object by scanning a laser beam on the surface of the object.
  • the shape may be a 2D planar shape.
  • Examples of laser processing may include laser marking, cutting or grooving processes.
  • a conventional laser processing apparatus measurement means for measuring the surface height of an object to be processed are provided in parallel with a condenser lens for condensing a laser beam in order to find out the condensing point of the laser beam indirectly.
  • the surface height of the object is measured by measuring means while scanning the surface of the object, and based on the measured surface height, the light condenser lens is made to have a constant distance between the surface of the object and the object. To drive. As a result, even when the surface of the object is uneven, the laser processing can be performed while always focusing the laser beam on the surface of the object.
  • the condenser lens and the measuring means are spaced apart from each other by a predetermined interval, the actual height of the object to be measured and the surface height measured by the measuring means are measured according to the vibration of the stage where the object is placed. An error occurs, and thus, the location of the focusing point of the laser light may deviate from the intended position.
  • the location of the focusing point may not be determined by the thickness change of the workpiece, the driving optical system error of the scanner or the lens on the path of the laser beam, or the reliability may be lowered even if it is found.
  • a laser processing apparatus comprising an autofocusing device for automatically adjusting the position of a focusing point of a laser processing beam.
  • an autofocusing unit for adjusting the position of the condensing optical system such that a condensing point of the processed beam is formed inside the workpiece.
  • the auto focusing unit may include: a first beam splitter provided between the condensing optical system and a light source to reflect at least some of the reflected light reflected from the object; A first lens unit focusing the reflected light reflected from the first beam splitter; And a first optical sensor provided in a direction in which the reflected light is focused from the first lens unit and measuring an energy density of the reflected light focused by the first lens unit.
  • a condensing point detecting device capable of accurately and stably detecting the condensing point position of the processing beam is provided.
  • FIG. 1 is a diagram schematically illustrating a light collecting point detecting apparatus according to an exemplary embodiment.
  • FIG. 2 is a diagram illustrating an example in which a distance between the condensing optical system and the workpiece shown in FIG. 1 is changed.
  • FIG. 3 is a diagram illustrating another example in which the distance between the condensing optical system and the workpiece shown in FIG. 1 is changed.
  • FIG. 4 is a view showing a modification of the embodiment shown in FIG.
  • FIG. 5 is a view schematically illustrating a light collecting point detector according to another exemplary embodiment.
  • Fig. 6 is a diagram schematically illustrating a light collecting point detector according to another exemplary embodiment.
  • Fig. 7 is a diagram schematically illustrating a light collecting point detector according to another exemplary embodiment.
  • FIG. 8 is a diagram illustrating an example in which a distance between the light converging optical system and the workpiece shown in FIG. 7 is changed.
  • FIG. 9 is a diagram illustrating another example in which a distance between the light converging optical system and the workpiece shown in FIG. 7 is changed.
  • FIG. 10 is a graph illustrating changes in energy density of the first reflection beam and energy density of the second reflection beam measured by the first optical sensor.
  • FIG. 11 and 12 illustrate modified examples of the condensing optical system shown in FIG. 7.
  • FIG. 13 is a diagram schematically illustrating an apparatus for detecting a focusing point, according to another exemplary embodiment.
  • FIG. 14 is a diagram schematically illustrating an apparatus for detecting a focusing point, according to another exemplary embodiment.
  • FIG. 15 is a diagram illustrating an example in which a laser processing apparatus according to an exemplary embodiment forms a light collecting point of a processing beam L1 inside a workpiece.
  • FIG. 16 is an enlarged view illustrating the formation of a light collecting point of a processing beam within the workpiece illustrated in FIG. 15.
  • FIG. 17 is a view illustrating an example in which a position of a first optical sensor is changed as a location of a light collecting point inside a workpiece is changed in a laser processing apparatus according to another exemplary embodiment.
  • FIG. 18 is a diagram illustrating an example in which positions of first and second optical sensors are changed as a location of a light collecting point inside a workpiece is changed in a laser processing apparatus according to another exemplary embodiment.
  • FIG. 19 is a view illustrating an example in which a position of a first lens unit is changed as a location of a light collection point inside a workpiece is changed in a laser processing apparatus according to another exemplary embodiment.
  • FIG. 20 is a diagram illustrating an example in which positions of first and second lens parts are changed as a location of a light collection point inside a workpiece is changed in a laser processing apparatus according to another exemplary embodiment.
  • FIG. 21 is a diagram illustrating an example in which the first lens unit illustrated in FIG. 19 is modified differently.
  • FIG. 22 is a diagram illustrating an example in which the first and second lens units illustrated in FIG. 20 are modified differently.
  • an autofocusing unit for adjusting the position of the condensing optical system such that a condensing point of the processed beam is formed inside the workpiece.
  • the auto focusing unit may include: a first beam splitter provided between the condensing optical system and a light source to reflect at least some of the reflected light reflected from the object; A first lens unit focusing the reflected light reflected from the first beam splitter; And a first optical sensor provided in a direction in which the reflected light is focused from the first lens unit and measuring an energy density of the reflected light focused by the first lens unit.
  • the position of the condensing optical system may be determined by the energy density of the reflected light measured by the first optical sensor.
  • the distance between the first lens unit and the first optical sensor may vary depending on the depth at which the light collecting point of the processing beam is formed inside the workpiece.
  • the distance between the first lens unit and the first optical sensor may be set larger as the depth of the condensing point of the processing beam is formed inside the workpiece.
  • the distance between the first lens unit and the first optical sensor may vary depending on the refractive index inside the workpiece.
  • the first lens unit may include two convex lenses and a concave lens provided between the two convex lenses.
  • the position of the two convex lenses and the concave lens in the first lens unit may vary depending on the depth of the light collecting point of the processed beam is formed inside the workpiece.
  • Positions of the two convex lenses and the concave lenses in the first lens unit may vary depending on the refractive index inside the workpiece.
  • the autofocusing unit may further include a second beam splitter that splits the reflected light reflected by the first beam splitter into first reflected light and second reflected light.
  • the first reflected light is incident to the first lens unit
  • the autofocusing unit may include a second lens unit to which second reflected light is incident; And a second optical sensor provided in a direction in which the second reflected light is focused from the second lens unit and measuring an energy density of the second reflected light focused by the second lens unit.
  • the position of the condensing optical system may be determined by the energy density of the first reflected light measured by the first optical sensor and the energy density of the second reflected light measured by the second optical sensor.
  • the position of the condensing optical system may be determined by a difference value between an energy density of the first reflected light and an energy density of the second reflected light.
  • the distance between the first lens unit and the first optical sensor and the distance between the second lens unit and the second optical sensor may vary depending on the depth at which the focusing point of the processing beam is formed inside the workpiece.
  • the distance between the first lens unit and the first optical sensor and the distance between the second lens unit and the second optical sensor may be set larger as the depth of the light converging point of the processing beam is formed inside the workpiece. .
  • the distance between the first lens unit and the first optical sensor and the distance between the second lens unit and the second optical sensor may vary according to the refractive index inside the workpiece.
  • the first lens unit and the second lens unit may each include two convex lenses and a concave lens provided between the two convex lenses.
  • Positions of the two convex lenses and the concave lenses in each of the first and second lens units may vary depending on the depth of the light converging point of the processed beam formed inside the workpiece.
  • Positions of the two convex lenses and the concave lenses in each of the first and second lens units may be changed by refractive indices in the workpiece.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
  • unit and “module” described in the specification mean a unit that processes at least one function or operation.
  • FIG. 1 is a diagram schematically illustrating a light collecting point detecting apparatus according to an exemplary embodiment.
  • the processing beam L1 emitted from the light source 10 may be irradiated onto the workpiece 30 through the condensing optical system 20.
  • the condensing optical system 20 may condense the processing beam L1. 1 illustrates that the condensing optical system 20 includes one lens, but is not limited thereto.
  • the condensing optical system 20 is sufficient to condense the processing beam L1 by varying the optical path of the processing beam L1, and may include a plurality of optical elements.
  • FIG. 1 illustrates an example in which a collecting point of the processing beam L1 is formed on the surface of the workpiece 30, the location of the collecting point of the processing beam L1 may vary according to laser processing characteristics.
  • the condensing point detection apparatus can detect how far the condensing point of the processing beam L1 passing through the condensing optical system 20 is from the surface of the workpiece 30.
  • the condensing point detection device provides the user with information on how far the condensing point of the processing beam L1 is from the surface of the workpiece 30, the user can collect the condensing optical system 20 based on the information on the position of the condensing point. You can change the setting of.
  • the setting change of the condensing optical system 20 may be made manually or may be made automatically by the condensing point detecting apparatus according to the embodiment.
  • the condensing point detection apparatus may further include a driving device for adjusting the position of the condensing optical system.
  • the condensing point detection apparatus may include a first beam splitter 110 for reflecting at least a portion of the reflected beam L2.
  • the first beam splitter 110 may reflect all the reflection beams L2 reflected from the workpiece 30 or may reflect only a portion thereof.
  • all of the processing beams L1 incident on the first beam splitter 110 may also pass through the first beam splitter 110, and some of the processing beams L1 may pass through and enter the workpiece 30 and others may be reflected. .
  • the first beam splitter 110 reflects the beam only with respect to the wavelength of the reflection beam L2.
  • the wavelength of the processing beam L1 may be implemented to transmit the beam.
  • the first beam splitter 110 may be coated on the surface to reflect a predetermined wavelength beam and transmit a beam having a different wavelength.
  • the condensing point detection apparatus may include a first lens unit 132 for focusing the reflected beam L2 whose path is changed in the first beam splitter 110.
  • the first lens unit 132 may be an optical device capable of focusing the reflected beam L2.
  • the first lens unit 132 is shown as a semi-convex lens, but the embodiment is not limited thereto.
  • the first lens unit 132 needs to be able to focus the reflected beam L2, and the shape of the lens included in the first lens unit 132 may be changed differently.
  • FIG. 1 illustrates an example in which the first lens unit 132 includes one lens, the embodiment is not limited thereto.
  • the first lens unit 132 may include a plurality of lenses.
  • the lens included in the first lens unit 132 is not limited to the convex lens, and may include a concave lens.
  • the first lens unit 132 may include at least one condenser lens so that the beam passing through the first lens unit 132 is focused.
  • the condensing point detection apparatus may include a first optical sensor 142 measuring the energy density of the reflected beam L2 focused by the first lens unit 132.
  • the first optical sensor 142 may be provided in a direction in which the reflected beam L2 is focused from the first lens unit 132. In FIG. 1, the first optical sensor 142 is distant from the first lens unit 132 by a distance d0 from the focal length f of the first lens unit 132.
  • the position of the first optical sensor 142 shown in FIG. 1 is merely exemplary and is not limited thereto.
  • the first optical sensor 142 may be smaller than the focal length f of the first lens unit 132 from the first lens unit 132.
  • the first optical sensor 142 may measure the energy density of the reflected beam L2 passing through the first lens unit 132.
  • the energy density of the reflection beam L2 means energy per unit area transferred from the incident surface of the reflection beam L2.
  • the energy density of the reflective beam L2 may be relatively high, and in the region where the incident beam L2 has a large incident area, the energy density of the reflective beam L2 may be relatively high.
  • the energy of the reflected beam L2 measured by the first optical sensor 142 is measured.
  • the density may be small.
  • FIG. 2 is a diagram illustrating an example in which the distance between the condensing optical system 20 and the workpiece 30 shown in FIG. 1 is changed.
  • the distance between the workpiece 30 and the condensing optical system 20 is greater than that shown in FIG. 1. Therefore, a light collecting point of the processing beam L1 passing through the light converging optical system 20 may be formed on the surface of the workpiece 30.
  • the angle at which the reflection beam L2 reflected from the surface of the workpiece 30 is incident on the condensing optical system 20 may be changed.
  • the angle at which the reflected beam L2 is incident on the condensing optical system 20 may also be changed. As shown in FIG.
  • the beam size of the reflected beam L2 reflected by the first beam splitter 110 gradually increases. Can be made smaller. Therefore, the distance f 'between the converging point of the reflective beam L2 passing through the first lens unit 132 and the first lens unit 132 is the focal length of the first lens unit 132. can be smaller than f).
  • the distance d1 between the first light sensor 142 and the light collecting point of the reflecting beam L2 becomes smaller. It may be larger than the distance d0 shown in FIG. 1. Therefore, the energy density of the reflected beam L2 measured by the first optical sensor 142 may be reduced. That is, as shown in FIG. 1, when the position of the workpiece 30 is placed further from the condensing optical system 20 as shown in FIG. 2 in the state where the first optical sensor 142 is disposed, the first optical sensor The energy density of the reflected beam L2 measured at 142 may decrease.
  • FIG. 3 is a diagram illustrating another example in which the distance between the light converging optical system 20 and the workpiece 30 shown in FIG. 1 is changed.
  • the distance between the workpiece 30 and the condensing optical system 20 is closer than shown in FIG. 1. Therefore, the processing beam L1 passing through the condensing optical system 20 may be reflected on the surface of the workpiece 30 before forming the condensing point.
  • the angle at which the reflected beam L2 reflected from the surface of the workpiece 30 is incident on the condensing optical system 20 may be changed.
  • the angle at which the reflected beam L2 is incident on the first beam splitter 110 may also be changed. As shown in FIG.
  • the distance f ′′ between the converging point of the reflective beam L2 passing through the first lens unit 132 and the first lens unit 132 is the focal length of the first lens unit 132. can be greater than (f).
  • the distance d2 between the first light sensor 142 and the light collecting point of the reflected beam L2 is increased. It may be smaller than the distance d0 shown in FIG. 1. Therefore, the energy density of the reflected beam L2 measured by the first optical sensor 142 may increase. That is, as shown in FIG. 1, when the distance between the workpiece 30 and the light converging optical system 20 becomes larger in a state where the first optical sensor 142 is disposed, the reflected beam measured by the first optical sensor 142 is increased. The energy density of (L2) may increase.
  • the energy density of the reflected beam L2 measured by the first optical sensor 142 may be changed. have. That is, the position of the condensing optical system 20 may be determined according to the energy density of the reflected beam L2 measured by the first optical sensor 142. Therefore, from the energy density of the reflection beam L2 measured by the first optical sensor 142, the light collecting point of the processing beam L1 is formed exactly on the surface of the workpiece 30 or higher than the surface of the workpiece 30. It may be known whether the formed beam L1 is reflected from the workpiece 30 before forming the light collecting point.
  • the position of the first optical sensor 142 is set farther than the focal length of the first lens unit 132 from the first lens unit 132, but the embodiment is not limited thereto.
  • the distance between the first optical sensor 142 and the first lens unit 132 may be smaller than the focal length of the first lens unit 132. That is, the light collecting point of the reflective beam L2 that has passed through the first lens unit 132 in the state where the light collecting point of the processing beam L1 is formed on the surface of the workpiece 30 is greater than that of the first optical sensor 142. May be remote from the portion 132. In this case, unlike FIG. 1, when the condensing point of the reflective beam L2 approaches the first lens unit 132, the energy density measured by the first optical sensor 142 may increase. In addition, when the condensing point of the reflective beam L2 is far from the first lens unit 132, the energy density measured by the first optical sensor 142 may be reduced.
  • the first optical sensor 142 when the workpiece 30 moves away from the condensing optical system 20, when the energy density measured by the first optical sensor 142 increases and the workpiece 30 approaches the condensing optical system 20, the first optical sensor ( The energy density measured at 142 may be reduced. Therefore, the position of the condensing optical system may be determined from the energy density of the reflected beam L2 measured by the first optical sensor 142.
  • the position of the light collecting point is detected using the reflected light reflected from the upper surface of the workpiece 30, but the embodiment is not limited thereto.
  • 4 is a view showing a modification of the embodiment shown in FIG.
  • the first lens unit 132 may collect the reflected light L2 reflected from the lower surface Sb of the workpiece 30.
  • the intensity of the reflected light Lu reflected by the upper surface Su of the workpiece 30 may be weak and thus may not be easily used for detecting a focusing point.
  • the first lens unit 132 may not easily collect light.
  • the light collecting point detecting apparatus transmits the light into the workpiece 30 as shown in FIG. 4 so that the reflected light L2 reflected from the lower surface Sd of the workpiece 30 is collected through the first lens unit 132.
  • the light collecting point of the light converging optical system 20 can be detected.
  • FIG. 5 is a view schematically illustrating a light collecting point detector according to another exemplary embodiment.
  • the condensing point detection apparatus may further include a second beam splitter 120 dividing the reflection beam L2 into the first reflection beam L21 and the second reflection beam L22.
  • the first reflection beam L21 may be incident on the first lens unit 132 as described with reference to FIGS. 1 to 4.
  • the focusing point detecting apparatus may include a second lens unit 134 through which the second reflection beam L22 is incident, and a second optical sensor 144 that measures the energy density of the second reflected light focused by the second lens unit. Can be.
  • the distance between the workpiece 30 and the condensing optical system 20 changes, and thus the measurement is performed by the first optical sensor 142.
  • the energy density of the first reflected beam to be changed together with the energy density of the second reflected beam measured by the second optical sensor 144 may vary.
  • the first optical sensor 142 may be farther from the focal length of the first lens unit 132 from the first lens unit 132.
  • the second optical sensor 144 may be provided closer than the focal length of the second lens unit 134 from the second lens unit 134.
  • the energy density measured by the first and second optical sensors 144 with respect to the change in distance between the condensing optical system 20 and the workpiece 30 is determined.
  • the sensitivity of change can be increased.
  • the distance between the condensing optical system 20 and the workpiece 30 changes, since the energy density of the beam measured by the first optical sensor 142 and the second optical sensor 144 changes in a different direction, the first light It is easy to observe the change in the difference between the measured value of the sensor 142 and the measured value of the second optical sensor 144.
  • the first optical sensor 142 is farther from the first lens unit 132 than the focal length of the first lens unit 132, and the second optical sensor 144 is removed from the second lens unit 134.
  • the opposite case may be included in the embodiment.
  • Fig. 6 is a diagram schematically illustrating a light collecting point detector according to another exemplary embodiment.
  • the light collecting point detecting apparatus may further include a mirror 122 that changes the path of the second reflection beam L22.
  • the first lens unit 132 and the second lens unit 134 may be configured in the same direction.
  • the setting space of the focusing point detection device can be made smaller.
  • the distance between the condensing optical system 20 and the workpiece 30 is compared by comparing the optical energy densities measured by the optical sensors 142 and 144. In addition to the change, the measurement value change caused by other noise sources can be canceled out.
  • the distance l1 between the first optical sensor 142 and the first lens unit 132 is greater than the focal length f1 of the first lens unit 132 in contrast to FIG. 5, and the second optical sensor
  • the distance l2 between the 144 and the second lens unit 134 is larger than the focal length f2 of the second lens unit 134
  • another example may be included in the embodiment.
  • the distance l1 between the first optical sensor 142 and the first lens unit 132 is smaller than the focal length f1 of the first lens unit 132, and the second optical sensor 144 is provided.
  • the distance l2 between the second lens unit 134 may also be smaller than the focal length f2 of the second lens unit 134.
  • the second optical sensor 144 is provided.
  • the distance l2 between the second lens unit 134 may also be smaller than the focal length f2 of the second lens unit 134.
  • the second optical sensor 144 is The distance l2 between the second lens unit 134 may also be larger than the focal length f2 of the second lens unit 134.
  • Fig. 7 is a diagram schematically illustrating a light collecting point detector according to another exemplary embodiment.
  • the distance l1 between the first optical sensor 142 and the first lens unit 132 is greater than the focal length f1 of the first lens unit 132.
  • the distance l2 between the second optical sensor 144 and the second lens unit 134 may be smaller than the focal length f2 of the second lens unit 134.
  • the first and second lights are changed in accordance with the distance change between the condensing optical system 20 and the workpiece 30.
  • the measured values measured by the sensors 142 and 144 may change in different directions. Through this, it is possible to more clearly check the difference between the measured values measured by the first and second optical sensors 142 and 144.
  • FIG. 8 is a diagram illustrating an example in which the distance between the light converging optical system 20 and the workpiece 30 shown in FIG. 7 is changed.
  • the distance between the workpiece 30 and the condensing optical system 20 is greater than that shown in FIG. 7. Therefore, a light collecting point of the processing beam L1 passing through the light converging optical system 20 may be formed on the surface of the workpiece 30.
  • the angle at which the reflection beam L2 reflected from the surface of the workpiece 30 is incident on the condensing optical system 20 may be changed.
  • the angle at which the reflected beam L2 is incident on the condensing optical system 20 may also be changed.
  • the angle at which the reflected beam L2 is incident on the second beam splitter 120 may also be changed.
  • the first reflection beam L21 and the second reflection beam split by the second beam splitter 110 are different.
  • the beam size of the reflected beam L22 can be made smaller and smaller.
  • the distance f1 ′ between the converging point of the first reflection beam L21 and the first lens unit 132 may be smaller than the focal length f1 of the first lens unit 132.
  • the distance f2 ′ between the converging point of the second reflection beam L22 and the second lens unit 134 may be smaller than the focal length f2 of the second lens unit 134.
  • the distance f1 'between the converging point of the first reflection beam L21 and the first lens unit 132 The distance t1' between the converging point of the first optical sensor 142 and the first reflection beam L21. May be greater than the distance t1 shown in FIG. 7.
  • the distance t2 'between the second optical sensor 144 and the light collecting point of the second reflection beam L22 may be smaller than the distance t2 shown in FIG. 7. Therefore, when the distance between the workpiece 30 and the light converging optical system 20 becomes smaller, the energy density of the first reflection beam L21 measured by the first optical sensor 142 becomes smaller, while the second optical sensor 144 is reduced. The energy density of the second reflected beam L22 measured at) may be increased.
  • FIG. 9 is a diagram illustrating another example in which the distance between the light converging optical system 20 and the workpiece 30 shown in FIG. 7 is changed.
  • the distance between the workpiece 30 and the condensing optical system 20 is smaller than that shown in FIG. 7. Therefore, the processing beam L1 passing through the condensing optical system 20 can be reflected on the surface of the workpiece 30 before forming the condensing point.
  • the angle at which the reflection beam L2 reflected from the surface of the workpiece 30 is incident on the condensing optical system 20 may be changed.
  • the angle at which the reflected beam L2 is incident on the first beam splitter 110 may also be changed.
  • the angle at which the reflected beam L2 is incident on the second beam splitter 120 may also be changed.
  • the reflective surface on the surface of the workpiece 30 before the processing beam L1 forms a condensing point, unlike the case of FIG. 7, the first reflected beam split in the second beam splitter 110.
  • the beam sizes of the L21 and the second reflection beam L22 may become larger and larger.
  • the distance f1 ′ between the converging point of the first reflection beam L21 and the first lens unit 132 may be larger than the focal length f1 of the first lens unit 132.
  • the distance f2 ′ between the converging point of the second reflection beam L22 and the second lens unit 134 may be greater than the focal length f2 of the second lens unit 134.
  • the distance f1 'between the light collecting point of the first reflection beam L21 and the first lens unit 132 The distance t1' 'between the light collecting point of the first light sensor 142 and the first reflection beam L21. ) May be smaller than the distance t1 shown in FIG. 7.
  • the distance t2 ′′ between the second optical sensor 144 and the light collecting point of the second reflection beam L22 may be larger than the distance t2 shown in FIG. 7. Therefore, when the distance between the workpiece 30 and the light converging optical system 20 increases, the energy density of the first reflection beam L21 measured by the first optical sensor 142 increases, while the second optical sensor 144 The energy density of the second reflected beam L22 to be measured may be reduced.
  • FIG. 10 is a graph illustrating changes in energy density of the first reflection beam L21 and energy density of the second reflection beam L22 measured by the first optical sensor 142.
  • the horizontal axis represents a change in distance between the condensing optical system 20 and the workpiece 30. The 0 point on the horizontal axis was shown when the condensing point of the processing beam L1 was formed on the surface of the workpiece 30.
  • a '-' value means that the distance between the condensing optical system 20 and the workpiece 30 is reduced from a zero point position
  • a '+' value means that the distance between the condensing optical system 20 and the workpiece 30 is It means that it is larger than the zero point position.
  • the vertical axis represents the energy density of the beam.
  • the S1 graph shows the energy density of the first reflected beam L21 measured by the first optical sensor 142
  • the S2 graph shows the second reflected beam L22 measured by the second optical sensor 144. Energy density.
  • S1-S2 represents the difference between the measured value of the first optical sensor 142 and the measured value of the second optical sensor.
  • the energy density of the first reflection beam L21 measured by the first optical sensor 142 decreases while the second light
  • the energy density of the second reflected beam L22 measured by the sensor 144 may be increased.
  • the energy density of the first reflection beam L21 measured by the first optical sensor 142 increases, whereas in the second optical sensor 144.
  • the energy density of the second reflected beam L22 to be measured may be reduced. As shown in FIG.
  • the energy densities of the first and second reflected beams L21 and L22 measured by the first and second optical sensors 142 and 144 are between the condensing optical system 20 and the workpiece 30.
  • relative positions of the light converging optical system 20 with respect to the workpiece 30 may be determined according to the energy density measurement values of the first and second reflection beams L21 and L22.
  • a difference between an energy density measurement value of the first reflection beam L21 and an energy density measurement value of the second reflection beam L22 may be viewed.
  • the value of the vertical axis changes very sensitively as the value of the horizontal axis changes at the zero point of the horizontal axis.
  • the graphs S1 and S2 each change in different directions with respect to the horizontal axis. That is, as shown in FIGS. 7 to 9, when the positions of the first optical sensor 142 and the second optical sensor 144 are different from each other, the distance between the workpiece 30 and the condensing optical system 20 changes. Accordingly, since the measured value of the first optical sensor 142 and the measured value of the second optical sensor 144 change in different directions, the measured value of the first optical sensor 142 and the second optical sensor 144 You can easily see the difference between the measurements.
  • FIG. 10 exemplarily shows graphs S1-S2 of the measured values of the first optical sensor 142 and the measured values of the second optical sensor 144
  • the embodiment is not limited thereto.
  • the position of the condensing optical system 20 may be determined from the ratio between the measured value of the first optical sensor 142 and the measured value of the second optical sensor 144.
  • the method of comparing the measured value of the first optical sensor 142 and the measured value of the second optical sensor 144 may be variously changed at a level that is easy for those skilled in the art.
  • the energy density of (L2) can vary. However, as shown in FIGS. 5 to 8, the reflection beam L2 is divided into two or more, and the energy density of the first reflection beam L21 and the second light sensor 144 measured by the first light sensor 142 are different. The difference in the energy density of the second reflection beam L22 measured at) may cancel out the noise factors described above.
  • FIG. 11 and 12 illustrate modified examples of the condensing optical system 20 shown in FIG. 5.
  • the condensing optical system 20 may include a plurality of lenses 22, 24, and 26. 11 illustrates a case where the condensing optical system 20 includes two convex lenses 24 and 26 and one concave lens 22, but the embodiment is not limited thereto. The type and number of lenses that may be included in the condensing optical system 20 may be changed differently.
  • the condensing optical system 20 may include scanners 21 and 23 for changing the path and size of the processing beam L1 and a lens 25 for changing the size of the processing beam L1. It may be.
  • the condensing optical system 20 may increase the size of the processing beam L1 into parallel light without condensing the processing beam L1 toward the workpiece 30.
  • the light collecting point detecting apparatus according to the embodiment may be used to diagnose the size of the processing beam L1 incident on the workpiece 30 and whether the processing beam L1 becomes parallel light.
  • FIG. 13 is a diagram schematically illustrating an apparatus for detecting a focusing point, according to another exemplary embodiment.
  • the light collecting point detecting apparatus emits the measuring beam L3 toward the third beam splitter 123 and the third beam splitter 123, which change the traveling direction of the second reflection beam L22.
  • the measurement light source 150 may further include.
  • the processing beam L1 is reflected from the workpiece 30, but in FIG. 13, the beam for measurement incident on the workpiece 30 together with the processing beam L1 is reinforced.
  • the measurement light source 150 may emit L3). In this case, when the wavelength of the measuring beam L3 and the wavelength of the processing beam L1 are different, the first beam splitter 110 can be configured more efficiently.
  • the first beam splitter 110 transmits all the processing beams L1 and selectively reflects only the measurement beam L3 to increase energy efficiency of the light source 10 that emits the processing beams L1. Can give although the first beam splitter 110 may reflect all of the measuring beams L3, only the part of the measuring beam L3 may be reflected and the others may be transmitted.
  • the focusing point detection apparatus may include only one lens unit.
  • FIG. 14 is a diagram schematically illustrating an apparatus for detecting a focusing point, according to another exemplary embodiment.
  • a first lens unit 132 may be provided between the first beam splitter 110 and the second beam splitter 120.
  • the second beam splitter 120 may split the reflection beam L2 focused by the first lens unit 132 into the first reflection beam L21 and the second reflection beam L22.
  • the light collecting point detecting apparatus may include a mirror 122 to change the direction of the second reflection beam L22.
  • the configuration of the mirror 122 may be omitted.
  • the first lens unit 132 when the first lens unit 132 is placed between the first beam splitter 110 and the second beam splitter 120, the second lens unit is separately used to focus the second reflection beam L22. It is not necessary to include (134) additionally. Therefore, the configuration of the focusing point detection device can be made simpler.
  • the light spot detection apparatus has been described with reference to FIGS. 1 to 14.
  • the position where the focus point of the processed beam (L1) is formed can be detected.
  • the energy density of the focused reflected beam L2 is measured, so that even if there is a distortion of the condensing optical system 20, a positional change of the workpiece 30, or the like.
  • the condensing point position of the processing beam L1 can be detected stably.
  • the reflection beam L2 is divided into the first and second reflection beams L21 and L22 through the second beam splitter 110, noise other than the change of the distance between the workpiece 30 and the condensing optical system 20 may be obtained. You can offset the factors.
  • the measured values measured by the first optical sensor 142 and the measured values measured by the second optical sensor 144 may be adjusted. The difference can be made sensitive to changes in distance between the condensing optical system 20 and the workpiece 30.
  • the laser processing apparatus may be configured to include a light collecting point detector, a light source 10, and a light collecting optical system 20.
  • the position of the condensing optical system 20 may be determined according to the energy density of the reflected beam measured from the optical sensor.
  • the position of the condensing optical system 20 may be manually adjusted or may be automatically adjusted by the condensing point detector.
  • the condensing point detection apparatus shown in Figs. 1 to 14 can operate as an autofocusing unit.
  • the laser processing apparatus may form the light collecting point of the processing beam L1 inside the workpiece 30 by using the light collecting point detection device.
  • FIG. 15 is a diagram illustrating an example in which a laser processing apparatus according to an exemplary embodiment forms a light collecting point of a processing beam L1 inside a workpiece 30.
  • the laser processing apparatus includes a light source 10 that emits a processing beam L1 for laser processing on a workpiece 30, and a condensing optical system 20 that collects the processing beam L1. And an autofocusing unit for adjusting the position of the condensing optical system such that a condensing point of the processing beam L1 is formed inside the workpiece.
  • the autofocusing unit may be implemented like the above-described focusing point detection apparatus.
  • FIG. 15 shows the condensing point detection apparatus shown in FIGS. 7 to 9 as an embodiment of the auto focusing unit, the embodiment is not limited thereto. All the embodiments described with reference to FIGS. 1 to 14 may be applied to an autofocusing unit that may be included in a laser processing apparatus.
  • At least a portion of the processing beam L1 passing through the condensing optical system 20 may proceed into the workpiece 30.
  • another part of the processing beam L1 may be reflected on the surface of the workpiece 30.
  • the distance between the condensing optical system 20 and the workpiece 30 may be closer than that shown in FIG. 5.
  • the first optical sensor 142 and the second optical sensor 144 of the auto focusing unit may measure energy densities of the first reflection beam L21 and the second reflection beam L22, respectively.
  • the autofocusing unit collects the optical system 20 such that the focusing point P of the processing beam L1 is formed inside the workpiece 30 based on the energy density measured by the first and second optical sensors 142 and 144. You can adjust the position of.
  • FIG. 16 is an enlarged view illustrating the formation of a light collecting point P of the processing beam L1 within the workpiece 30 illustrated in FIG. 15.
  • a part of the processing beam L1 incident on the workpiece 30 is reflected to return to the reflection beam L2, and the other part is a transmission beam L1 ′ that propagates into the workpiece 30.
  • the condensing point P may be formed inside the 30. In this case, the following equation may be satisfied between the height d1 at which the light collecting point of the reflection beam L2 is formed and the depth d2 at which the light collecting point P is formed inside the workpiece.
  • n means a refractive index inside the workpiece 30.
  • the refractive index outside the workpiece 30 is 1, which is the refractive index of air. Therefore, Equation 1 above is merely exemplary, and the embodiment is not necessarily limited thereto. Since the refractive indexes of the workpiece 30 and the workpiece 30 are different from each other, the reflection angle of the reflection beam L2 and the transmission angle of the transmission beam L1 ′ may vary according to Snell's law. Therefore, the depth d2 at which the light collecting point P is formed inside the workpiece may be greater than the height d1 at which the light collecting point of the reflective beam L2 is formed.
  • the energy density detected by the optical sensors 142 and 144 of the autofocusing device is due to the reflected beam L2. Therefore, the energy density values detected by the optical sensors 142 and 144 of the autofocusing apparatus may depend on the condensing point height d1 of the reflection beam L2. However, Equation 1 may be satisfied as described above between the height d1 of the reflection beam L2 and the depth d2 at which the concentration point P is formed inside the workpiece. Therefore, the laser processing apparatus according to the embodiment includes not only the energy density measured by the optical sensors 142 and 144 of the autofocusing unit, but also the refractive index, in order to form the light collecting point of the processing beam L1 within the workpiece 30.
  • the position of the condensing optical system 20 may be determined by the energy densities of the first and second reflection beams L21 and L22 measured by the first and second optical sensors 142 and 144 and the refractive index of the workpiece 30. Can be.
  • 17 is a view illustrating an example in which the position of the first optical sensor 142 is changed as the location of the light collection point inside the workpiece 30 is changed in the laser processing apparatus according to another exemplary embodiment.
  • the distance between the first lens unit 132 and the first optical sensor 142 is increased as the depth of the light collecting points P1, P2, and P3 of the processing beam L1 is formed inside the workpiece. Can be larger.
  • the first optical sensor 142 is near the condensing point of the reflected beam passing through the first lens unit 132.
  • the rate of change of the measured value of the first optical sensor 142 may change most greatly.
  • the depth of focusing points P1, P2, and P3 is formed in the processing beam L1
  • the location of the focusing point of the reflection beam passing through the first lens unit 132 may be changed.
  • the position K1 of the first optical sensor 142 may also be set closer to the first lens unit 132.
  • the condensing point P2 of the processing beam L1 is formed inside the workpiece 30, the condensing point of the reflective beam L21b passing through the first lens unit 132 is relatively the first lens unit ( 132). Accordingly, the position K2 of the first optical sensor 142 may also be further from the first lens unit 132 than the above-described position K1.
  • the position K3 of the first optical sensor 142 may also be further from the first lens unit 132 than the above-described positions K1 and K2.
  • FIG. 18 illustrates that the positions of the first and second optical sensors 142 and 144 may be changed as the positions of the light collecting points P1, P2, and P3 inside the workpiece 30 are changed in the laser processing apparatus according to another exemplary embodiment. It is a figure which shows the example which changes.
  • the positions K1, K2, and K3 of the second optical sensor 144 may also have a depth of focus point P3 of the processing beam L1. As it deepens, it may be further from the second lens unit 134.
  • the light collecting point P1 of the processing beam L1 is formed on the surface of the workpiece 30, the light collecting point of the second reflection beam L22a that has passed through the second lens unit 134 is relatively second lens. It may be formed close to the portion 134. Therefore, the position J1 of the second optical sensor 144 may also be set closer to the second lens unit 134.
  • the condensing point P2 of the processing beam L1 is formed inside the workpiece 30, the condensing point of the reflective beam L22b passing through the second lens unit 134 may be relatively second lens portion ( 134). Therefore, the position J2 of the second optical sensor 144 may also be further from the second lens unit 134 than the position J1 described above.
  • the position J3 of the second optical sensor 144 may also be further from the second lens unit 134 than the positions J1 and J2 described above.
  • 19 is a view showing an example in which the position of the first lens unit 142 is changed as the location of the light collecting point inside the workpiece 30 is changed in the laser processing apparatus according to another exemplary embodiment.
  • the first lens unit 132 may be adjusted by adjusting the position of the first lens unit 132 even when the depths at which the light collecting points P1, P2, and P3 of the processing beam L1 are formed are changed.
  • the position where the reflected beams L21a, L21b, and L21c which have passed form the condensing point can be maintained substantially constant.
  • the position A1 of the first lens portion 132 is relatively close to the first beam splitter 110. Can be.
  • the position A2 of the first lens unit 132 may be relatively larger than the position A1 described above. It may be formed far from 110.
  • the position A3 of the first lens unit 132 is greater than the aforementioned positions A1 and A2. It may be formed further from the one beam splitter 110.
  • the position of the first optical sensor 142 may not be changed even if the target position of the condensing point of the processing beam L1 is changed.
  • FIG. 20 illustrates that the positions of the first and second lens units 132 and 134 are changed as the light collecting points P1, P2, and P3 are changed in the workpiece 30 in the laser processing apparatus according to another exemplary embodiment. It is a figure which shows the example which changes.
  • the second lens unit 134 may be adjusted by adjusting the position of the first lens unit 132 even when the depths at which the light collecting points P1, P2, and P3 of the processing beam L1 are formed are changed.
  • the position where the reflected beams L22a, L22b, and L22c which have passed form the condensing point can be maintained substantially constant.
  • the position B1 of the second lens portion 134 may be relatively close to the mirror 122.
  • the position B2 of the second lens unit 134 is relatively greater than the position B1 described above. It can be formed far from.
  • the position B3 of the first lens unit 132 is greater than the aforementioned positions B1 and B2. It may be formed further from the one beam splitter 110.
  • the position of the second optical sensor 144 is changed even if the target positions of the light collecting points P1, P2, and P3 of the processing beam L1 are changed. May not be sour.
  • FIG. 21 is a diagram illustrating an example in which the first lens unit 132 illustrated in FIG. 19 is modified differently.
  • the first lens unit 132 may include a plurality of lenses.
  • the first lens unit 132 adjusts the distance between the lenses 132a, 132b, and 132c included in the first lens unit 132, thereby reflecting beams L21a and L21b passing through the first lens unit 132.
  • the light collecting point position of L21c can be kept constant.
  • the first lens unit 132 may include a concave lens 132b provided between two convex lenses 132a and 132c and two convex lenses 132a and 132c.
  • the first lens unit 132 may adjust the distances h1 and h2 between the lenses.
  • the first lens unit 132 has a distance h1 between the first convex lens 132a and the concave lens 132b as the depth at which the light collecting points P1, P2, and P3 of the processing beam L1 are formed increases. In this case, the distance h2 between the concave lens 132b and the second convex lens 132b can be reduced.
  • the first lens unit 132 includes two convex lenses 132a and 132c and one concave lens 132b is illustrated, but the embodiment is not limited thereto.
  • the type and number of lenses that may be included in the first lens unit 132 may be changed differently at a level easily changed by those skilled in the art.
  • FIG. 22 is a diagram illustrating an example in which the first and second lens units 132 and 134 illustrated in FIG. 20 are modified differently.
  • the first and second lens units 132 and 134 may include a plurality of lenses.
  • the first lens unit 132 adjusts the distance between the lenses 132a, 132b, and 132c included in the first lens unit 132, thereby reflecting beams L21a and L21b passing through the first lens unit 132.
  • the light collecting point position of L21c can be kept constant.
  • the second lens unit 134 adjusts the distance between the lenses 134a, 134b, and 134c included in the second lens unit 134, thereby reflecting the beam L22a passing through the second lens unit 134.
  • L22b, L22c can be kept constant.
  • the first lens unit 132 may include a concave lens 132b provided between two convex lenses 132a and 132c and two convex lenses 132a and 132c.
  • the second lens unit 134 may also include a concave lens 134b provided between the two convex lenses 134a and 134c and the two convex lenses 134a and 134c.
  • the first lens unit 132 may adjust the distances h1 and h2 between the lenses. For example, as the depth at which the light collecting points P1, P2, and P3 of the processing beam L1 are formed increases, the size of the reflection beams L21a, L21b, and L21c incident on the first lens unit 132 increases. Can be. Therefore, the first lens unit 132 has a distance h1 between the first convex lens 132a and the concave lens 132b as the depth at which the light collecting points P1, P2, and P3 of the processing beam L1 are formed increases. Can be increased, and the distance between the concave lens 132b and the second convex lens 132b can be made small.
  • the second lens unit 134 may also adjust the distances h3 and h4 between the lenses. For example, as the depth at which the light collecting points P1, P2, and P3 of the processing beam L1 are formed increases, the size of the reflection beams L22a, L22b, and L22c incident on the second lens unit 134 may increase. Can be. Therefore, the second lens unit 134 has a distance h3 between the third convex lens 132a and the concave lens 132b as the depth at which the light collecting points P1, P2, and P3 of the processing beam L1 are formed increases. In this case, the distance h4 between the concave lens 132b and the fourth convex lens 132b can be reduced.
  • first and second lens units 132 and 134 include two convex lenses 132a, 132c, 134a and 134c and one concave lens 132b and 134b, respectively. It is not limited to this.
  • the type and number of lenses that may be included in the first and second lens units 132 and 134 may be changed differently to those skilled in the art.
  • the laser processing apparatus may use the autofocusing unit to form a light collecting point of the processing beam L1 at a desired point inside the workpiece 30. Moreover, even if the condensing point position of a workpiece

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

레이저 가공장치가 개시된다. 개시된 레이저 가공장치는 가공물에 레이저 가공을 위한 가공빔을 출사하는 광원, 상기 가공빔을 집광하는 집광 광학계 및 상기 가공빔의 집광점이 상기 가공물 내부에 형성되도록 상기 집광 광학계의 위치를 조절하는 오토포커싱 유닛을 포함한다. 상기 오토 포커싱 유닛은, 상기 집광광학계와 광원 사이에 마련되어, 상기 가공대상물로부터 반사된 반사광 중 적어도 일부를 반사시키는 제1 빔 스플리터 상기 제1 빔 스플리터로부터 반사된 상기 반사광을 포커싱하는 제1 렌즈부 및 상기 제1 렌즈부로부터 상기 반사광이 포커싱 되는 방향에 마련되어, 상기 제1 렌즈부에 의해 포커싱된 상기 반사광의 에너지 밀도를 측정하는 제1 광 센서를 포함한다.

Description

레이저 가공장치
레이저 가공장치에 관한 것으로, 가공물에 레이저 빔이 포커싱 되는 위치를 조절하는 기술에 관한 것이다.
일반적으로 레이저 가공 공정이라 함은 가공 대상물의 표면에 레이저 빔을 주사하여 가공 대상물 표면의 형상이나 물리적 성질 등을 가공하는 공정을 말한다. 가공 대상물에는 여러가지 예가 있을 수 있으며 그 형상은 2 D 평면 형상일 수 있다. 레이저 가공의 예로 레이저 마킹, 절단 또는 그루빙(grooving) 공정 등이 포함될 수 있다.
레이저 가공의 정밀도를 높이기 위해서, 광원으로부터 출사된 레이저 빔의 집광점의 위치를 잘 조절하는 것이 중요하다. 그리고, 레이저 빔의 집광점 위치를 조절하기 위해서는 가공물 상에서 어느 지점에 레이저 빔의 집광점이 형성되는 지를 측정해야 한다.
종래 레이저 가공장치에서는, 레이저 빔의 집광점을 간접적으로 알아내기 위해, 레이저광을 집광하는 집광렌즈에 대해 가공 대상물의 표면 높이를 측정하기 위한 측정 수단이 병행하여 설치되어 있다. 이러한 레이저 가공장치에서는 가공대상물의 표면을 스캔하면서 측정 수단에 의하여 가공대상물의 표면 높이를 측정하고, 이렇게 측정된 표면 높이에 근거하여 집광렌즈와 가공 대상물의 표면과의 거리가 일정해 지도록 집광렌즈를 구동하게 된다. 이에 따라 가공대상물의 표면이 울퉁 불퉁하여도 레이저광의 집광점을 항상 가공대상물의 표면에 위치시키면서 레이저 가공작업을 수행할 수 있게된다.
그러나, 이와 같은 종래 레이저 가공장치에서는 집광렌즈와 측정수단이 서로 일정간격으로 이격되어 설치되기 때문에 가공대상물이 재치되는 스테이지의 진동 등에 따라 가공대상물의 실제 표면 높이와 측정 수단에 의해 측정된 표면 높이 사이에 오차가 생기게 되고, 이에 따라 레이저광의 집광점 위치가 의도하는 위치로부터 벗어날 수 있다.
다른 예로, 가공빔이 가공물에서 반사되는 반사빔의 경로를 추적하여 역으로 가공빔의 집광점 위치를 알아내는 방법도 있다. 하지만, 이 경우, 가공물의 두께변화, 레이저 빔의 경로 상에 있는 스캐너나 렌즈 등의 구동 광학계 오차에 의해 집광점 위치를 알아낼 수 없거나 알아내더라도 신뢰도가 떨어질 수 있다.
예시적인 실시예에 따르면, 레이저 가공빔의 집광점 위치를 자동으로 조정해주는 오토포커싱 장치를 포함하는 레이저 가공장치가 제공된다.
일 측면에 있어서,
가공물에 레이저 가공을 위한 가공빔을 출사하는 광원;
상기 가공빔을 집광하는 집광 광학계; 및
상기 가공빔의 집광점이 상기 가공물 내부에 형성되도록 상기 집광 광학계의 위치를 조절하는 오토포커싱 유닛;을 포함하며,
상기 오토 포커싱 유닛은, 상기 집광광학계와 광원 사이에 마련되어, 상기 가공대상물로부터 반사된 반사광 중 적어도 일부를 반사시키는 제1 빔 스플리터; 상기 제1 빔 스플리터로부터 반사된 상기 반사광을 포커싱하는 제1 렌즈부; 및 상기 제1 렌즈부로부터 상기 반사광이 포커싱 되는 방향에 마련되어, 상기 제1 렌즈부에 의해 포커싱된 상기 반사광의 에너지 밀도를 측정하는 제1 광 센서;를 포함하는 레이저 가공 장치가 제공된다.
실시예에 따르면, 집광광학계의 변동, 가공물의 두께 변화가 있더라도 가공빔의 집광점 위치를 정밀하고 안정적으로 검출할 수 있는 집광점 검출장치가 제공된다.
도 1은 예시적인 실시예에 따른 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 2는 도 1에서 나타낸 집광광학계와 가공물 사이의 거리가 변한 예를 나타낸 도면이다.
도 3은 도 1에서 나타낸 집광광학계와 가공물 사이의 거리가 변한 다른 예를 나타낸 도면이다.
도 4는 도 1에서 나타낸 실시예의 변형예를 나타낸 도면이다.
도 5는 다른 예시적인 실시예에 따른 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 6은 다른 예시적인 실시예에 따른, 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 7은 다른 예시적인 실시예에 따른, 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 8은 도 7에서 나타낸 집광광학계와 가공물 사이의 거리가 변한 예를 나타낸 도면이다.
도 9는 도 7에서 나타낸 집광광학계와 가공물 사이의 거리가 변한 다른 예를 나타낸 도면이다.
도 10은 제1 광 센서에서 측정되는 제1 반사빔의 에너지 밀도와 제2 반사빔의 에너지 밀도의 변화를 나타낸 그래프이다.
도 11 및 도 12는 도 7에서 나타낸 집광광학계의 변형예들을 나타낸 도면이다.
도 13는 다른 예시적인 실시예에 따른 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 14는 다른 예시적인 실시예에 따른 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 15는 예시적인 실시예에 따른 레이저 가공장치가 가공물 내부에 가공빔(L1)의 집광점을 형성한 예를 나타낸 도면이다.
도 16은 도 15에서 나타낸 가공물 내부에서 가공빔의 집광점이 형성되는 것을 확대하여 나타낸 도면이다.
도 17은 다른 예시적인 실시예에 따른 레이저 가공장치에서 가공물 내부의 집광점 위치가 바뀜에 따라, 제1 광 센서의 위치가 변경되는 예를 나타낸 도면이다.
도 18는 다른 예시적인 실시예에 따른 레이저 가공장치에서 가공물 내부의 집광점 위치가 바뀜에 따라, 제1 및 제2 광 센서의 위치가 변경되는 예를 나타낸 도면이다.
도 19는 다른 예시적인 실시예에 따른 레이저 가공장치에서 가공물 내부의 집광점 위치가 바뀜에 따라, 제1 렌즈부의 위치가 변경되는 예를 나타낸 도면이다.
도 20은 다른 예시적인 실시예에 따른 레이저 가공장치에서 가공물 내부의 집광점 위치가 바뀜에 따라, 제1 및 제2 렌즈부의 위치가 변경되는 예를 나타낸 도면이다.
도 21은 도 19에서 나타낸 제1 렌즈부를 다르게 변형한 예를 나타낸 도면이다.
도 22는 도 20에서 나타낸 제1 및 제2 렌즈부를 다르게 변형한 예를 나타낸 도면이다.
일 측면에 있어서,
가공물에 레이저 가공을 위한 가공빔을 출사하는 광원;
상기 가공빔을 집광하는 집광 광학계; 및
상기 가공빔의 집광점이 상기 가공물 내부에 형성되도록 상기 집광 광학계의 위치를 조절하는 오토포커싱 유닛;을 포함하며,
상기 오토 포커싱 유닛은, 상기 집광광학계와 광원 사이에 마련되어, 상기 가공대상물로부터 반사된 반사광 중 적어도 일부를 반사시키는 제1 빔 스플리터; 상기 제1 빔 스플리터로부터 반사된 상기 반사광을 포커싱하는 제1 렌즈부; 및 상기 제1 렌즈부로부터 상기 반사광이 포커싱 되는 방향에 마련되어, 상기 제1 렌즈부에 의해 포커싱된 상기 반사광의 에너지 밀도를 측정하는 제1 광 센서;를 포함하는 레이저 가공 장치가 제공된다.
상기 집광광학계의 위치는 상기 제1 광 센서에서 측정되는 상기 반사광의 에너지 밀도에 의해 결정될 수 있다.
상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리는 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이에 따라 달라질 수 있다.
상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리는 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이가 클수록 더 크게 설정될 수 있다.
상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리는 상기 가공물 내부의 굴절률에 따라 달라질 수 있다.
상기 제1 렌즈부는 두 개의 볼록렌즈와 상기 두 개의 볼록렌즈 사이에 마련되는 오목렌즈를 포함할 수 있다.
상기 제1 렌즈부에서 상기 두 개의 볼록렌즈와 상기 오목렌즈의 위치는 상기 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이에 따라 달라질 수 있다.
상기 제1 렌즈부에서 상기 두 개의 볼록렌즈와 상기 오목렌즈의 위치는 상기 가공물 내부의 굴절률에 의해 달라질 수 있다.
상기 오토포커싱 유닛은, 상기 제1 빔 스플리터에서 반사된 반사광을 제1 반사광과 제2 반사광으로 분할하는 제2 빔스플리터를 더 포함할 수 있다.
상기 제1 반사광은 상기 제1 렌즈부로 입사되며,
상기 오토포커싱 유닛은, 제2 반사광이 입사되는 제2 렌즈부; 및 상기 제2 렌즈부로부터 상기 제2반사광이 포커싱 되는 방향에 마련되어, 상기 제2 렌즈부에 의해 포커싱된 상기 제2 반사광의 에너지 밀도를 측정하는 제2 광 센서;를 포함할 수 있다.
상기 집광광학계의 위치는 상기 제1 광 센서에서 측정되는 상기 제1 반사광의 에너지 밀도 및 상기 제2 광 센서에서 측정되는 상기 제2 반사광의 에너지 밀도에 의해 결정될 수 있다.
상기 집광광학계의 위치는, 상기 제1 반사광의 에너지 밀도와 상기 제2 반사광의 에너지 밀도의 차이 값에 의해 결정될 수 있다.
상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리 및 상기 제2 렌즈부와 상기 제2 광 센서 사이의 거리는 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이에 따라 달라질 수 있다.
상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리 및 상기 제2 렌즈부와 상기 제2 광 센서 사이의 거리는 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이가 클수록 더 크게 설정될 수 있다.
상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리 및 상기 제2 렌즈부와 상기 제2 광 센서 사이의 거리는 상기 가공물 내부의 굴절률에 따라 달라질 수 있다.
상기 제1 렌즈부와 상기 제2 렌즈부는 각각 두 개의 볼록렌즈와 상기 두 개의 볼록렌즈 사이에 마련되는 오목렌즈를 포함할 수 있다.
상기 제1 및 제2 렌즈부 각각에서 상기 두 개의 볼록렌즈와 상기 오목렌즈의 위치는 상기 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이에 따라 달라질 수 있다.
상기 제1 및 제2 렌즈부 각각에서 상기 두 개의 볼록렌즈와 상기 오목렌즈의 위치는 상기 가공물 내부의 굴절률에 의해 달라질 수 있다.
이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다. 한편, 이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다.
제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서에 기재된 “...부”, “모듈” 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미한다.
도 1은 예시적인 실시예에 따른 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 1을 참조하면, 광원(10)에서 출사된 가공빔(L1)이 집광광학계(20)를 거쳐 가공물(30)에 조사될 수 있다. 집광광학계(20)는 가공빔(L1)을 집광할 수 있다. 도 1에서는 집광광학계(20)가 하나의 렌즈를 포함하는 것을 예시적으로 나타냈지만, 이에 제한되는 것은 아니다. 집광광학계(20)는 가공빔(L1)의 광 경로를 변동 시켜 가공빔(L1)을 집광하면 족하며, 복수의 광학 요소를 포함할 수도 있다. 또한, 도 1에서는 가공빔(L1)의 집광점이 가공물(30)의 표면에 형성되는 예를 나타냈지만, 레이저 가공 특성에 따라 가공빔(L1)의 집광점 위치는 달라질 수 있다.
실시예에 따른 집광점 검출장치는, 집광광학계(20)를 통과한 가공빔(L1)의 집광점이 가공물(30)의 표면으로부터 얼마나 떨어져 있는 지를 검출할 수 있다. 집광점 검출장치가 가공빔(L1)의 집광점이 가공물(30)의 표면으로부터 얼마나 떨어져 있는 지에 대한 정보를 사용자에게 제공하면, 사용자는 상기 집광점의 위치에 대한 정보에 기초해 집광광학계(20)의 세팅을 변경할 수 있다. 집광광학계(20)의 세팅 변경은 수동으로 이루어질 수도 있고, 실시예에 따른 집광점 검출장치에 의해 자동으로 이루어질 수도 있다. 도면에 도시하지는 않았지만, 집광광학계(20)의 위치를 자동으로 조절하는 경우, 집광점 검출장치는 집광광학계의 위치를 조절하는 구동장치를 더 포함할 수도 있다.
가공빔(L1)의 집광점 위치를 검출하기 위해, 집광점 검출장치는 가공물(30)로부터 반사되는 반사빔(L2)을 측정한다. 집광점 검출장치는 상기 반사빔(L2) 중 적어도 일부를 반사시키는 제1 빔 스플리터(110)를 포함할 수 있다. 제1 빔 스플리터(110)는 가공물(30)로부터 반사되는 반사빔(L2)을 전부 반사시킬 수도 있고, 일부만 반사시킬 수도 있다. 또한, 제1 빔 스플리터(110)에 입사되는 가공빔(L1)도 모두 제1 빔 스플리터(110)를 투과할 수도 있고, 일부는 투과하여 가공물(30)에 입사되고 다른 일부는 반사될 수도 있다. 만약, 광원(10)으로부터 출사되는 가공빔(L1)과 가공물에서 반사되는 반사빔(L2)의 파장이 다르다면, 제1 빔 스플리터(110)는 반사빔(L2) 파장에 대해서만 빔을 반사시키고, 가공빔(L1)의 파장에 대해서는 빔을 투과시키도록 구현될 수도 있다. 이 경우, 제1 빔 스플리터(110)는 소정의 파장 빔은 반사시키고 다른 파장의 빔은 투과시키도록 표면에 코팅처리가 되어 있을 수 있다.
집광점 검출장치는 제1 빔 스플리터(110)에서 경로가 변경된 반사빔(L2)을 포커싱(focusing)하는 제1 렌즈부(132)를 포함할 수 있다. 제1 렌즈부(132)는 반사빔(L2)을 포커싱할 수 있는 광학소자일 수 있다. 도 1에서는 제1 렌즈부(132)를 반볼록 렌즈로 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 제1 렌즈부(132)는 반사빔(L2)을 포커싱할 수 있으면 족하며, 제1 렌즈부(132)에 포함된 렌즈의 모양은 다르게 변경될 수도 있다. 또한, 도 1에서는 제1 렌즈부(132)가 하나의 렌즈를 포함하는 예를 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 예를 들어, 제1 렌즈부(132)는 복수의 렌즈를 포함할 수 있다. 뿐만 아니라 후술하는 바와 같이 제1 렌즈부(132)에 포함되는 렌즈는 볼록렌즈에 한정되지 않으며, 오목렌즈도 포함될 수 있다. 다만, 제1 렌즈부(132)를 통과하는 빔이 포커싱 되도록 제1 렌즈부(132)는 적어도 하나의 집광 렌즈를 포함할 수 있다.
집광점 검출장치는 제1 렌즈부(132)에서 포커싱된 반사빔(L2)의 에너지 밀도를 측정하는 제1 광 센서(142)를 포함할 수 있다. 제1 광 센서(142)는 제1 렌즈부(132)로부터 반사빔(L2)이 포커싱 되는 방향에 마련될 수 있다. 도 1에서는 예시적으로, 제1 광 센서(142)가 제1 렌즈부(132)로부터 제1 렌즈부(132)의 초점거리(f)보다 거리(d0)만큼 더 떨어져 있는 경우를 나타냈다. 다만, 도 1에서 나타낸 제1 광 센서(142)의 위치는 예시적인 것에 불과할 뿐 이에 제한되는 것은 아니다. 예를 들어, 제1 광 센서(142)는 제1 렌즈부(132)로부터 제1 렌즈부(132)의 초점거리(f)보다 더 작게 떨어져 있을 수도 있다.
제1 광 센서(142)는 제1 렌즈부(132)를 통과한 반사빔(L2)의 에너지 밀도를 측정할 수 있다. 여기서, 반사빔(L2)의 에너지 밀도란 반사빔(L2)의 입사면에서 전달되는 단위 면적당 에너지를 의미한다. 반사빔(L2)이 좁은 영역에 집광된 영역에서는 상대적으로 반사빔(L2)의 에너지 밀도가 클 수 있고, 반사빔(L2)의 입사면적이 큰 영역에서는 상대적으로 반사빔(L2)의 에너지 밀도가 작을 수 있다. 즉, 제1 광 센서(142)의 위치가 제1 렌즈부(132)를 통과한 반사빔(L2)의 집광점에 가까우면, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도가 클 수 있다. 반면, 제1 광 센서(142)의 위치가 제1 렌즈부(132)를 통과한 반사빔(L2)의 집광점으로부터 멀면, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도가 작을 수 있다.
도 2는 도 1에서 나타낸 집광광학계(20)와 가공물(30) 사이의 거리가 변한 예를 나타낸 도면이다.
도 2를 참조하면, 가공물(30)과 집광광학계(20) 사이의 거리가 도 1에서 나타낸 것보다 더 커졌다. 따라서, 집광광학계(20)를 통과한 가공빔(L1)의 집광점이 가공물(30)의 표면 위에 형성될 수 있다. 가공빔(L1)의 집광점이 가공물(30) 표면 위에 형성되면서, 가공물(30)의 표면에서 반사되는 반사빔(L2)이 집광광학계(20)에 입사되는 각도가 바뀔 수 있다. 그리고, 집광광학계(20)에 입사되는 반사빔(L2)의 각도가 바뀌면서, 반사빔(L2)이 제1 빔 스플리터(110)에 입사되는 각도도 바뀔 수 있다. 도 2에서 나타낸 바와 같이, 가공빔(L1)의 집광점이 가공물(30) 표면 위에 있으면, 도 1의 경우와 달리, 제1 빔 스플리터(110)에서 반사된 반사빔(L2)의 빔 사이즈가 점점 더 작아질 수 있다. 그리고, 그로 인해, 제1 렌즈부(132)를 통과한 반사빔(L2)의 집광점과 제1 렌즈부(132) 사이의 거리(f')이 제1 렌즈부(132)의 초점거리(f)보다 더 작아질 수 있다.
반사빔(L2)의 집광점과 제1 렌즈부(132) 사이의 거리(f')가 작아지면서, 제1 광 센서(142)와 반사빔(L2)의 집광점 사이의 거리(d1)은 도 1에서 나타낸 거리(d0)보다 더 커질 수 있다. 따라서, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도가 감소할 수 있다. 즉, 도 1에서와 같이, 제1 광 센서(142)를 배치한 상태에서, 가공물(30)의 위치를 도 2에서 나타낸 바와 같이, 집광광학계(20)로부터 더 멀리 배치하면, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도가 감소할 수 있다.
도 3은 도 1에서 나타낸 집광광학계(20)와 가공물(30) 사이의 거리가 변한 다른 예를 나타낸 도면이다.
도 3을 참조하면, 가공물(30)과 집광광학계(20) 사이의 거리가 도 1에서 나타낸 것보다 더 가까워졌다. 따라서, 집광광학계(20)를 통과한 가공빔(L1)이 집광점을 형성하기 전에 가공물(30)의 표면에서 반사될 수 있다. 이로 인해, 가공물(30)의 표면에서 반사되는 반사빔(L2)이 집광광학계(20)에 입사되는 각도가 바뀔 수 있다. 그리고, 집광광학계(20)에 입사되는 반사빔(L2)의 각도가 바뀌면서, 반사빔(L2)이 제1 빔 스플리터(110)에 입사되는 각도도 바뀔 수 있다. 도 3에서 나타낸 바와 같이, 가공빔(L1)의 집광점이 형성되기 전에 가공빔(L1)이 가공물(30) 표면에서 반사되면, 제1 빔 스플리터(110)에서 반사된 반사빔(L2)의 빔 사이즈가 점점 더 커질 수 있다. 그리고, 그로 인해, 제1 렌즈부(132)를 통과한 반사빔(L2)의 집광점과 제1 렌즈부(132) 사이의 거리(f'')가 제1 렌즈부(132)의 초점거리(f)보다 더 커질 수 있다.
반사빔(L2)의 집광점과 제1 렌즈부(132) 사이의 거리(f'')가 커지면서, 제1 광 센서(142)와 반사빔(L2)의 집광점 사이의 거리(d2)은 도 1에서 나타낸 거리(d0)보다 더 작아질 수 있다. 따라서, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도가 증가할 수 있다. 즉, 도 1에서와 같이, 제1 광 센서(142)를 배치한 상태에서, 가공물(30)과 집광광학계(20) 사이의 거리가 더 커지면, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도가 증가할 수 있다.
도 1 내지 도 3을 참조하여 설명한 바와 같이, 집광광학계(20)와 가공물(30) 사이의 거리가 변함에 따라 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도가 변할 수 있다. 즉, 집광광학계(20)의 위치가 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도에 따라 결정될 수 있다. 따라서, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도로부터 가공빔(L1)의 집광점이 가공물(30)의 표면에 정확히 형성되는지, 또는 가공물(30)의 표면보다 높은 곳에 형성되는지, 가공빔(L1)이 집광점을 형성하기 전에 가공물(30)에서 반사되는지 여부를 알 수 있다.
도 1에서는 제1 광 센서(142)의 위치가 제1 렌즈부(132)로부터 제1 렌즈부(132)의 초점거리보다 멀리 설정된 경우를 나타냈지만, 실시예가 이에 제한되는 것은 아니다.
예를 들어, 제1 광 센서(142)와 제1 렌즈부(132) 사이의 거리가 제1 렌즈부(132)의 초점거리보다 작을 수 있다. 즉, 가공빔(L1)의 집광점이 가공물(30)의 표면에 형성되는 상태에서 제1 렌즈부(132)를 통과한 반사빔(L2)의 집광점이 제1 광 센서(142)보다 제1 렌즈부(132)로부터 멀리 떨어져 있을 수 있다. 이 경우, 도 1과 달리, 반사빔(L2)의 집광점이 제1 렌즈부(132)에 가까워지면 제1 광 센서(142)에서 측정되는 에너지 밀도가 커질 수 있다. 또한, 반사빔(L2)의 집광점이 제1 렌즈부(132)에서 멀어지면 제1 광 센서(142)에서 측정되는 에너지 밀도가 작아질 수 있다. 즉, 가공물(30)이 집광광학계(20)로부터 멀어지면, 제1 광 센서(142)에서 측정되는 에너지 밀도가 증가하고 가공물(30)이 집광광학계(20)로부터 가까워지면, 제1 광 센서(142)에서 측정되는 에너지 밀도가 감소할 수 있다. 따라서, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도로부터 집광광학계의 위치가 결정될 수 있다.
도 1 내지 도 3에서는 가공물(30)의 상부표면에서 반사되는 반사광을 이용해 집광점의 위치를 검출하였지만, 실시예가 이에 제한되는 것은 아니다. 도 4는 도 1에서 나타낸 실시예의 변형예를 나타낸 도면이다.
도 4를 참조하면, 제1 렌즈부(132)는 가공물(30)의 하면(Sb)에서 반사된 반사광(L2)을 집광할 수 있다. 가공물(30)의 상면(Su)에서 광의 투과율이 높을 경우, 가공물(30) 상면(Su)에서 반사되는 반사광(Lu)의 세기가 약해 집광점 검출에 이용하기 용이하지 않을 수 있다. 또한, 가공물(30) 상면(Su)에서 반사되는 반사광(Lu)이 제1 빔 스플리터(110)를 통과하면서 발산하면 제1 렌즈부(132)에서 집광이 용이하지 않을 수 있다. 이러한 경우, 집광점 검출장치는 도 4에서와 같이 가공물(30) 내부로 투과하여, 가공물(30) 하면(Sd)에서 반사된 반사광(L2)이 제1 렌즈부(132)를 통해 집광되게 함으로써 집광 광학계(20)의 집광점을 검출할 수 있다.
도 5는 다른 예시적인 실시예에 따른 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 5를 참조하면, 집광점 검출장치는 반사빔(L2)을 제1 반사빔(L21)과 제2 반사빔(L22)으로 분할하는 제2 빔 스플리터(120)를 더 포함할 수 있다. 제2 빔 스플리터(120)에서 분할된 빔들 중 제1 반사빔(L21)은 도 1내지 도 4를 참조하여 설명한 바와 마찬가지로 제1 렌즈부(132)에 입사될 수 있다. 집광점 검출장치는 제2 반사빔(L22)이 입사되는 제2 렌즈부(134) 및 제2 렌즈부에 의해 포커싱된 제2 반사광의 에너지 밀도를 측정하는 제2 광 센서(144)를 포함할 수 있다.
도 5에서와 같이, 제2 빔 스플리터(120)가 반사빔(L2)을 분할하면, 가공물(30)과 집광광학계(20) 사이의 거리가 변함에 따라, 제1 광 센서(142)에서 측정되는 제1 반사빔의 에너지 밀도와 제2 광 센서(144)에서 측정되는 제2 반사빔의 에너지 밀도가 함께 변할 수 있다. 제1 광 센서(142)는 제1 렌즈부(132)로부터 제1 렌즈부(132)의 초점거리보다 멀리 떨어져 있을 수 있다. 반면, 제2 광 센서(144)는 제2 렌즈부(134)로부터 제2 렌즈부(134)의 초점거리보다 더 가깝게 마련될 수 있다. 이와 같이, 제1 및 제2 광 센서(144)의 위치를 결정하면, 집광광학계(20)와 가공물(30) 사이의 거리 변화에 대해 제1 및 제2 광 센서(144)에서 측정되는 에너지 밀도의 변화 감도가 높아질 수 있다. 집광광학계(20)와 가공물(30) 사이의 거리가 변함에 따라, 제1 광 센서(142)와 제2 광 센서(144)에서 측정되는 빔의 에너지 밀도가 다른 방향으로 변하기 때문에, 제1 광 센서(142)의 측정 값과 제2 광 센서(144)의 측정 값 사이의 차이 변화를 쉽게 관찰할 수 있다. 도 5에서는 제1 광 센서(142)가 제1 렌즈부(132)로부터 제1 렌즈부(132)의 초점거리보다 멀리 떨어지고, 제2 광 센서(144)가 제2 렌즈부(134)로부터 제2 렌즈부(134)의 초점거리보다 가깝게 마련되는 경우를 나타냈지만, 반대의 경우도 실시예에 포함될 수 있다.
도 6은 다른 예시적인 실시예에 따른, 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 6을 참조하면, 집광점 검출장치는, 제2 반사빔(L22)의 경로를 변동시켜주는 미러(122)를 더 포함할 수 있다. 도 6에서와 같이 제2 반사빔(L22)의 경로를 변화시켜주면, 제1 렌즈부(132)와 제2 렌즈부(134)를 같은 방향에 구성할 수 있다. 그리고, 제1 반사빔(L21)과 제2 반사빔(L22)이 같은 방향으로 진행되게 함으로써, 집광점 검출장치의 세팅공간을 더 작게 할 수 있다. 도 6에서와 같이, 둘 이상의 광 센서(142, 144)가 마련되면, 광 센서들(142, 144)에서 측정되는 광 에너지 밀도를 비교함으로써, 집광 광학계(20)와 가공물(30) 사이의 거리 변화 외에 다른 노이즈 원인에 의한 측정값 변화를 상쇄시켜버릴 수 있다.
도 6에서는 도 5와는 반대로 제1 광 센서(142)와 제1 렌즈부(132) 사이의 거리(l1)가 제1 렌즈부(132)의 초점거리(f1)보다 더 크고, 제2 광 센서(144)와 제2 렌즈부(134) 사이의 거리(l2) 도 제2 렌즈부(134)의 초점거리(f2)보다 큰 경우를 나타냈지만, 다른 예도 실시예에 포함될 수 있다. 예를 들어, 제1 광 센서(142)와 제1 렌즈부(132) 사이의 거리(l1)가 제1 렌즈부(132)의 초점거리(f1)보다 더 작고, 제2 광 센서(144)와 제2 렌즈부(134) 사이의 거리(l2)도 제2 렌즈부(134)의 초점거리(f2)보다 작아질 수 있다. 그리고, 다른 예로 제1 광 센서(142)와 제1 렌즈부(132) 사이의 거리(l1)가 제1 렌즈부(132)의 초점거리(f1) 보다 큰 반면, 제2 광 센서(144)와 제2 렌즈부(134) 사이의 거리(l2)도 제2 렌즈부(134)의 초점거리(f2)보다 작아질 수도 있다. 다른 예로, 제1 광 센서(142)와 제1 렌즈부(132) 사이의 거리(l1)가 제1 렌즈부(132)의 초점거리(f1) 보다 작은 반면, 제2 광 센서(144)와 제2 렌즈부(134) 사이의 거리(l2)도 제2 렌즈부(134)의 초점거리(f2)보다 커질 수도 있다.
도 7은 다른 예시적인 실시예에 따른, 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 7을 참조하면, 도 5와 마찬가지로 제1 광 센서(142)와 제1 렌즈부(132) 사이의 거리(l1)가 제1 렌즈부(132)의 초점거리(f1)보다 더 크고, 제2 광 센서(144)와 제2 렌즈부(134) 사이의 거리(l2)는 제2 렌즈부(134)의 초점거리(f2)보다 더 작을 수 있다. 이와 같이, 거리 l1과 초점거리 f1 사이의 관계와 거리 l2와 초점거리 f2 사이의 관계가 서로 반대가 되게 하면, 집광 광학계(20)와 가공물(30) 사이 거리 변화에 따라 제1 및 제2 광 센서(142, 144)에서 측정되는 측정값이 다른 방향으로 변할 수 있다. 이를 통해 후술 하는 바와 같이, 제1 및 제2 광 센서(142, 144)에서 측정되는 측정 값의 차이를 더 선명하게 확인할 수 있다.
도 8은 도 7에서 나타낸 집광광학계(20)와 가공물(30) 사이의 거리가 변한 예를 나타낸 도면이다.
도 8을 참조하면, 가공물(30)과 집광광학계(20) 사이의 거리가 도 7에서 나타낸 것보다 더 커졌다. 따라서, 집광광학계(20)를 통과한 가공빔(L1)의 집광점이 가공물(30)의 표면 위에 형성될 수 있다. 가공빔(L1)의 집광점이 가공물(30) 표면 위에 형성되면서, 가공물(30)의 표면에서 반사되는 반사빔(L2)이 집광광학계(20)에 입사되는 각도가 바뀔 수 있다. 그리고, 집광광학계(20)에 입사되는 반사빔(L2)의 각도가 바뀌면서, 반사빔(L2)이 제1 빔 스플리터(110)에 입사되는 각도도 바뀔 수 있다. 또한, 반사빔(L2)이 제2 빔 스플리터(120)에 입사되는 각도도 바뀔 수 있다. 도 7에서 나타낸 바와 같이, 가공빔(L1)의 집광점이 가공물(30) 표면 위에 있으면, 도 7의 경우와 달리, 제2 빔 스플리터(110)에서 분할된 제1 반사빔(L21) 및 제2 반사빔(L22)의 빔 사이즈가 점점 더 작아질 수 있다. 그리고, 그로 인해 제1 반사빔(L21)의 집광점과 제1 렌즈부(132) 사이의 거리(f1')가 제1 렌즈부(132)의 초점거리(f1)보다 더 작아질 수 있다. 또한, 제2 반사빔(L22)의 집광점과 제2 렌즈부(134) 사이의 거리(f2')가 제2 렌즈부(134)의 초점거리(f2)보다 더 작아질 수 있다.
제1 반사빔(L21)의 집광점과 제1 렌즈부(132) 사이의 거리(f1') 제1 광 센서(142)와 제1 반사빔(L21)의 집광점 사이의 거리(t1')는 도 7에서 나타낸 거리(t1)보다 더 커질 수 있다. 반면, 제2 광 센서(144)와 제2 반사빔(L22)의 집광점 사이의 거리(t2')는 도 7에서 나타낸 거리(t2)보다 더 작아질 수 있다. 따라서, 가공물(30)과 집광광학계(20) 사이의 거리가 작아지면, 제1 광 센서(142)에서 측정되는 제1 반사빔(L21)의 에너지 밀도는 작아지는 반면, 제2 광 센서(144)에서 측정되는 제2 반사빔(L22)의 에너지 밀도는 커질 수 있다.
도 9는 도 7에서 나타낸 집광광학계(20)와 가공물(30) 사이의 거리가 변한 다른 예를 나타낸 도면이다.
도 9를 참조하면, 가공물(30)과 집광광학계(20) 사이의 거리가 도 7에서 나타낸 것보다 더 작아졌다. 따라서, 집광광학계(20)를 통과한 가공빔(L1)이 집광점을 형성하기 전에 가공물(30)의 표면 위에서 반사될 수 있다. 가공빔(L1)이 집광점을 형성하기 전에 가공물(30)의 표면 위에서 반사되면서, 가공물(30)의 표면에서 반사되는 반사빔(L2)이 집광광학계(20)에 입사되는 각도가 바뀔 수 있다. 그리고, 집광광학계(20)에 입사되는 반사빔(L2)의 각도가 바뀌면서, 반사빔(L2)이 제1 빔 스플리터(110)에 입사되는 각도도 바뀔 수 있다. 또한, 반사빔(L2)이 제2 빔 스플리터(120)에 입사되는 각도도 바뀔 수 있다. 도 8에서 나타낸 바와 같이, 가공빔(L1)이 집광점을 형성하기 전에 가공물(30)의 표면 위에서 반사면, 도 7의 경우와 달리, 제2 빔 스플리터(110)에서 분할된 제1 반사빔(L21) 및 제2 반사빔(L22)의 빔 사이즈가 점점 더 커질 수 있다. 그리고, 그로 인해 제1 반사빔(L21)의 집광점과 제1 렌즈부(132) 사이의 거리(f1')가 제1 렌즈부(132)의 초점거리(f1)보다 더 커질 수 있다. 또한, 제2 반사빔(L22)의 집광점과 제2 렌즈부(134) 사이의 거리(f2')가 제2 렌즈부(134)의 초점거리(f2)보다 더 커질 수 있다.
제1 반사빔(L21)의 집광점과 제1 렌즈부(132) 사이의 거리(f1') 제1 광 센서(142)와 제1 반사빔(L21)의 집광점 사이의 거리(t1'')는 도 7에서 나타낸 거리(t1)보다 더 작아질 수 있다. 반면, 제2 광 센서(144)와 제2 반사빔(L22)의 집광점 사이의 거리(t2'')는 도 7에서 나타낸 거리(t2)보다 더 커질 수 있다. 따라서, 가공물(30)과 집광광학계(20) 사이의 거리가 커지면, 제1 광 센서(142)에서 측정되는 제1 반사빔(L21)의 에너지 밀도는 커지는 반면, 제2 광 센서(144)에서 측정되는 제2 반사빔(L22)의 에너지 밀도는 작아질 수 있다.
도 10은 제1 광 센서(142)에서 측정되는 제1 반사빔(L21)의 에너지 밀도와 제2 반사빔(L22)의 에너지 밀도의 변화를 나타낸 그래프이다. 도 10에서 가로축은 집광광학계(20)와 가공물(30) 사이의 거리변화를 나타낸다. 가로축에서 0점은 가공빔(L1)의 집광점이 가공물(30) 표면에 형성될 때로 나타냈다. 가로축에서 '-' 값은 집광광학계(20)와 가공물(30) 사이의 거리가 0점 위치보다 줄어들었음을 의미하며, '+' 값은 집광광학계(20)와 가공물(30) 사이의 거리가 0점 위치보다 커졌음을 의미한다. 또한, 세로축은 빔의 에너지 밀도를 나타낸다. 도 9에서 S1 그래프는 제1 광 센서(142)에서 측정되는 제1 반사빔(L21)의 에너지 밀도를 나타내며, S2 그래프는 제2 광 센서(144)에서 측정되는 제2 반사빔(L22)의 에너지 밀도를 나타낸다. 또한, S1-S2는 제1 광 센서(142)의 측정값과 제2 광 센서의 측정값 사이의 차이를 나타낸다.
도 10을 참조하면, 집광광학계(20)와 가공물(30) 사이의 거리가 작아짐에 따라 제1 광 센서(142)에서 측정되는 제1 반사빔(L21)의 에너지 밀도는 작아지는 반면 제2 광 센서(144)에서 측정되는 제2 반사빔(L22)의 에너지 밀도는 커질 수 있다. 또한, 집광광학계(20)와 가공물(30) 사이의 거리가 커짐에 따라 제1 광 센서(142)에서 측정되는 제1 반사빔(L21)의 에너지 밀도는 커지는 반면 제2 광 센서(144)에서 측정되는 제2 반사빔(L22)의 에너지 밀도는 작아질 수 있다. 도 9에서 나타낸 바와 같이, 제1 및 제2 광 센서(142, 144)에서 측정되는 제1 및 제2 반사빔(L21, L22)의 에너지 밀도가 집광광학계(20)와 가공물(30) 사이의 거리에 의존한다. 따라서, 제1 및 제2 반사빔(L21, L22)의 에너지 밀도 측정 값에 따라 가공물(30)에 대한 집광광학계(20)의 상대적 위치가 결정될 수 있다.
예시적으로, 집광광학계(20)의 위치를 결정하기 위해, 제1 반사빔(L21)의 에너지 밀도 측정 값과 제2 반사빔(L22)의 에너지 밀도 측정값 사이의 차이를 볼 수 있다. 그래프 S1-S2를 보면, 가로축의 0점에서 가로축 값이 변함에 따라, 세로축 값이 매우 민감하게 변함을 알 수 있다. 이는 그래프 S1과 S2가 각각 가로축에 대해 서로 다른 방향으로 변하기 때문이다. 즉, 도 7 내지 도 9에서와 같이, 제1 광 센서(142)와 제2 광 센서(144)의 위치를 서로 다르게 배치하면, 가공물(30)과 집광광학계(20) 사이의 거리가 변함에 따라, 제1 광 센서(142)의 측정값과 제2 광 센서(144)의 측정값이 서로 다른 방향으로 변하기 때문에, 제1 광 센서(142)의 측정값과 제2 광 센서(144)의 측정값 사이의 차이 값을 쉽게 확인할 수 있다.
도 10에서는 제1 광 센서(142)의 측정값과 제2 광 센서(144)의 측정값의 그래프 S1-S2를 예시적으로 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 예를 들어, 제1 광 센서(142)의 측정값과 제2 광 센서(144)의 측정값 사이의 비율로부터 집광광학계(20)의 위치가 결정될 수도 있다. 그 외에도 제1 광 센서(142)의 측정값과 제2 광 센서(144)의 측정값을 비교하는 방법은 당업자에게 용이한 수준에서 다양하게 변경될 수 있다.
도 5 내지 도 9에서와 같이 집광점 검출장치가 반사빔을 둘 이상으로 분할하면, 가공빔의 집광점을 검출할 때, 집광광학계(20)와 가공물(30) 사이의 거리 외에 다른 노이즈 요인을 배제시킬 수 있다. 예를 들어, 도 1내지 도 4에서와 같이, 집광점 검출장치가 제1 광 센서(142)만 포함하는 경우, 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도는 집광광학계(20)와 가공물(30) 사이의 거리 외에 다른 노이즈 요인에 의해서도 변할 수 있다. 예를 들어, 광원(10)으로 출사되는 가공빔(L1)의 세기 변화, 레이저 빔의 진행경로에 있는 이물질, 가공물(30)의 반사도 차이 등에 의해 제1 광 센서(142)에서 측정되는 반사빔(L2)의 에너지 밀도가 변할 수 있다. 하지만, 도 5 내지 도 8에서와 같이, 반사빔(L2)을 둘 이상으로 분할하고, 제1 광 센서(142)에서 측정되는 제1 반사빔(L21)의 에너지 밀도와 제2 광 센서(144)에서 측정되는 제2 반사빔(L22)의 에너지 밀도의 차이를 보면, 상술한 노이즈 요인들을 상쇄시켜 버릴 수 있다.
도 11 및 도 12는 도 5에서 나타낸 집광광학계(20)의 변형예들을 나타낸 도면이다.
도 11을 참조하면, 집광광학계(20)가 복수의 렌즈(22, 24, 26)를 포함할 수 있다. 도 11에서는 집광광학계(20)가 두 개의 볼록렌즈(24, 26)와 하나의 오목렌즈(22)를 포함하는 경우를 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 집광광학계(20)에 포함될 수 있는 렌즈의 종류 및 개수는 다르게 변경될 수 있다. 또한, 도 12를 참조하면, 집광광학계(20)는 가공빔(L1)의 경로 및 사이즈를 변경하는 스캐너(21, 23)와 가공빔(L1)의 사이즈를 변화시키는 렌즈(25)를 포함할 수도 있다. 도 12에서 나타낸 바와 같이, 집광광학계(20)는 가공물(30)을 향해 가공빔(L1)을 집광하지 않고, 가공빔(L1)의 사이즈를 더 크게 하여 평행광으로 만들어 보낼 수도 있다. 이 경우, 실시예에 따른 집광점 검출장치는 가공물(30)로 입사되는 가공빔(L1)의 사이즈 및 가공빔(L1)이 평행광이 되었는 지 여부 등을 진단하는데 사용될 수 있다.
도 13은 다른 예시적인 실시예에 따른 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 13을 참조하면, 집광점 검출장치는 제2 반사빔(L22)의 진행방향을 변경해주는 제3 빔 스플리터(123) 및 제3 빔 스플리터(123)를 향해 측정용 빔(L3)을 출사하는 측정용 광원(150)을 더 포함할 수 있다. 도 5에서 나타낸 실시예의 경우, 가공빔(L1)이 가공물(30)에서 반사된 것을 이용했는데, 도 13에서는 이를 보강하여, 가공빔(L1)과 함께 가공물(30)에 입사되는 측정용 빔(L3)을 측정용 광원(150)이 출사시킬 수 있다. 이 경우, 측정용 빔(L3)의 파장과 가공빔(L1)의 파장을 달리하면, 제1 빔 스플리터(110)를 보다 효율적으로 구성할 수 있다. 제1 빔 스플리터(110)가 가공빔(L1)은 모두 투과시키고, 측정용 빔(L3)만 선택적으로 반사시키도록 구성하여, 가공빔(L1)을 출사하는 광원(10)의 에너지 효율을 높여줄 수 있다. 제1 빔 스플리터(110)는 측정용 빔(L3)을 모두 반사시킬 수도 있지만, 측정용 빔(L3)의 일부만 반사시키고 나머지는 투과시킬 수도 있다.
도 5 내지 도 9에서는 제2 빔 스플리터(120)에서 분할된 제1 반사빔(L21)과 제2 반사빔(L22)이 각각 제1 렌즈부(132)와 제2 렌즈부(134)에서 포커싱 된다. 하지만, 반사빔(L2)을 둘로 분할하는 경우에도, 집광점 검출장치가 하나의 렌즈부만을 포함할 수도 있다.
도 14는 다른 예시적인 실시예에 따른 집광점 검출장치를 대략적으로 나타낸 도면이다.
도 14를 참조하면, 제1 렌즈부(132)가 제1 빔 스플리터(110)와 제2 빔 스플리터(120) 사이에 마련될 수 있다. 그리고, 제2 빔 스플리터(120)는 제1 렌즈부(132)에서 포커싱된 반사빔(L2)을 제1 반사빔(L21)과 제2 반사빔(L22)으로 분할할 수 있다. 또한, 집광점 검출장치는 제2 반사빔(L22)의 방향을 전환해주는 미러(122)를 포함할 수 있다. 도면에는 나타내지 않았지만, 미러(122)의 구성은 생략될 수도 있다. 도 14에서 나타낸 바와 같이, 제1 렌즈부(132)를 제1 빔 스플리터(110)와 제2 빔 스플리터(120) 사이에 두면, 제2 반사빔(L22)을 포커싱 하기 위해 별도로 제2 렌즈부(134)를 추가로 포함시지 않아도 된다. 따라서, 집광점 검출장치의 구성이 보다 단순해질 수 있다.
이상에서 도 1 내지 도 14를 참조하여, 예시적인 실시예들에 따른 집광점 검출장치에 관하여 설명하였다. 상술한 실시예들에 따르면, 가공물(30)에서 반사된 반사빔(L2)을 포커싱하고, 포커싱된 반사빔(L2)의 에너지 밀도를 측정함으로써, 가공빔(L1)의 집광점이 형성되는 위치를 검출할 수 있다. 이 경우, 반사빔(L2)의 경로 자체를 측정하는 것이 아니라, 포커싱 된 반사빔(L2)의 에너지 밀도를 측정하기 때문에, 집광광학계(20)의 틀어짐, 가공물(30)의 위치변동 등이 있더라도 안정적으로 가공빔(L1)의 집광점 위치를 검출할 수 있다. 또한, 제2 빔 스플리터(110)를 통해 반사빔(L2)을 제1 및 제2 반사빔(L21, L22)으로 분할하면, 가공물(30)과 집광광학계(20) 사이의 거리 변화 외에 다른 노이즈 요인들을 상쇄 시킬 수 있다. 또한, 제1 광 센서(142)와 제2 광 센서(144)의 위치를 적절히 조절함으로써, 제1 광 센서(142)에서 측정되는 측정값과 제2 광 센서(144)에서 측정되는 측정값의 차이가 집광광학계(20)와 가공물(30) 사이의 거리변화에 대해 민감하게 변하도록 할 수 있다.
이상에서 예시적인 실시예에 따른 집광점 검출장치에 관하여 설명하였다. 이하에서는 집광점 검출장치를 포함하는 레이저 가공장치에 관하여 설명하겠다. 도 1 내지 도 14에서 나타낸 바와 같이 레이저 가공장치는 집광점 검출장치와 광원(10) 및 집광광학계(20)를 포함하도록 구성될 수 있다. 집광광학계(20)의 위치는 광 센서로부터 측정되는 반사빔의 에너지 밀도에 따라 결정될 수 있다. 집광광학계(20)의 위치는 수동으로 조절될 수도 있고, 집광점 검출장치에 의해 자동으로 조절될 수도 있다. 집광광학계(20)의 위치를 자동으로 조절하는 경우, 도 1내지 도 14에서 나타낸 집광점 검출장치는 오토포커싱 유닛으로 작동할 수 있다.
도 1 내지 도 14에서는 가공빔(L1)의 집광점을 가공물(30)의 표면에 형성하는 것을 타겟팅(targeting)하는 것을 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 실시예에 따른 레이저 가공장치는 집광점 검출장치를 이용하여 가공물(30) 내부에 가공빔(L1)의 집광점을 형성할 수도 있다.
도 15은 예시적인 실시예에 따른 레이저 가공장치가 가공물(30) 내부에 가공빔(L1)의 집광점을 형성한 예를 나타낸 도면이다.
도 15을 참조하면, 실시예에 따른 레이저 가공장치는 가공물(30)에 레이저 가공을 위한 가공빔(L1)을 출사하는 광원(10)과, 가공빔(L1)을 집광하는 집광광학계(20) 및 가공빔(L1)의 집광점이 상기 가공물 내부에 형성되도록 상기 집광 광학계의 위치를 조절하는 오토포커싱 유닛을 포함할 수 있다. 상기 오토포커싱 유닛은 전술한 집광점 검출장치와 같이 구현될 수 있다. 도 15에서는 오토포커싱 유닛의 실시예로 도 7 내지 도 9에서 나타낸 집광점 검출장치를 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 레이저 가공장치에 포함될 수 있는 오토포커싱 유닛에는 도 1 내지 도 14를 참조하여 설명한 실시예들이 모두 적용될 수 있다.
집광광학계(20)를 통과한 가공빔(L1) 중 적어도 일부는 가공물(30) 내부로 진행할 수 있다. 그리고, 가공빔(L1) 중 다른 일부는 가공물(30) 표면에서 반사될 수 있다. 가공빔(L1)이 가공물(30) 내부에 집광점(P)을 형성하기 위해, 집광광학계(20)와 가공물(30) 사이의 거리는 도 5에서 나타낸 것보다 가까울 수 있다. 오토포커싱 유닛의 제1 광 센서(142)와 제2 광 센서(144)는 각각 제1 반사빔(L21)과 제2 반사빔(L22)의 에너지 밀도를 측정할 수 있다. 오토포커싱 유닛은 제1 및 제2 광 센서(142, 144)에서 측정된 에너지 밀도에 기초하여, 가공빔(L1)의 집광점(P)이 가공물(30) 내부에 형성되도록 집광광학계(20)의 위치를 조절할 수 있다.
도 16은 도 15에서 나타낸 가공물(30) 내부에서 가공빔(L1)의 집광점(P)이 형성되는 것을 확대하여 나타낸 도면이다.
도 16을 참조하면, 가공물(30)에 입사된 가공빔(L1) 중 일부는 반사되어 반사빔(L2)으로 돌아가고 다른 일부는 가공물(30) 내부로 진행하는 투과빔(L1')이 되어 가공물(30) 내부에서 집광점(P)을 형성할 수 있다. 이 때, 반사빔(L2)의 집광점이 형성되는 높이(d1)와 가공물 내부에 집광점(P)이 형성되는 깊이(d2) 사이에는 다음과 같은 수학식이 만족될 수 있다.
수학식 1
Figure PCTKR2016007363-appb-M000001
여기서, n은 가공물(30) 내부의 굴절률을 의미한다. 또한, 가공물(30) 외부의 굴절률은 공기의 굴절률인 1이라고 가정하였다. 따라서 위 수학식 1은 예시적인 것에 불과할 뿐, 실시예가 반드시 이에 제한되는 것은 아니다. 가공물(30)과 가공물(30) 외부의 굴절률이 다르기 때문에 스넬의 법칙에 따라 반사빔(L2)의 반사각과 투과빔(L1')의 투과각이 달라질 수 있다. 따라서, 반사빔(L2)의 집광점이 형성되는 높이(d1)보다 가공물 내부에 집광점(P)이 형성되는 깊이(d2)가 더 클 수 있다.
실제, 오토포커싱 장치의 광 센서(142, 144)에서 검출되는 에너지 밀도는 반사빔(L2)에 의한 것이다. 따라서, 오토포커싱 장치의 광 센서(142, 144)에서 검출되는 에너지 밀도 값은 반사빔(L2)의 집광점 높이(d1)에 의존할 수 있다. 그런데, 반사빔(L2)의 집광점 높이(d1)와 가공물 내부에 집광점(P)이 형성되는 깊이(d2) 사이에는 위와 같이 수학식 1이 만족할 수 있다. 따라서, 실시예에 따른 레이저 가공장치는 가공물(30) 내부에 가공빔(L1)의 집광점을 형성하기 위해, 오토포커싱 유닛의 광 센서(142, 144)에서 측정되는 에너지 밀도 뿐만 아니라 굴절률도 함께 고려할 수 있다. 즉, 집광광학계(20)의 위치는 제1 및 제2 광 센서(142, 144)에서 측정되는 제1 및 제2 반사빔(L21, L22)의 에너지 밀도와 가공물(30)의 굴절률에 의해서 결정될 수 있다.
도 17은 다른 예시적인 실시예에 따른 레이저 가공장치에서 가공물(30) 내부의 집광점 위치가 바뀜에 따라, 제1 광 센서(142)의 위치가 변경되는 예를 나타낸 도면이다.
도 17을 참조하면, 가공빔(L1)의 집광점(P1, P2, P3)이 상기 가공물 내부에 형성되는 깊이가 클수록 제1 렌즈부(132)와 제1 광 센서(142) 사이의 거리도 더 커질 수 있다. 도 17과 같이, 제1 렌즈부(132)와 제1 광 센서(142)를 구성했을 때, 제1 광 센서(142)가 제1 렌즈부(132)를 통과한 반사빔의 집광점 근처에서 위치가 변할 때, 제1 광 센서(142)의 측정값의 변화율이 가장 크게 변할 수 있다. 그런데, 가공빔(L1)의 집광점(P1, P2, P3) 형성 깊이를 크게하면 제1 렌즈부(132)를 통과한 반사빔의 집광점 위치가 바뀔 수 있다. 따라서, 가공빔(L1)의 집광점(P1, P2, P3) 목표지점이 달라짐에 따라 제1 광 센서(142)의 위치를 변경해주면, 보다 용이하게 가공빔(L1)의 집광점(P1, P2, P3)이 목표지점에 도달했는지 여부를 확인할 수 있다.
예를 들어, 가공빔(L1)의 집광점(P1)이 가공물(30) 표면에 형성될 때는 제1 렌즈부(132)를 통과한 반사빔(L21a)의 집광점이 상대적으로 제1 렌즈부(132)로부터 가깝게 형성될 수 있다. 따라서, 제1 광 센서(142)의 위치(K1) 또한 제1 렌즈부(132)로부터 가깝게 설정될 수 있다. 다른 예로, 가공빔(L1)의 집광점(P2)이 가공물(30)의 내부에 형성될 때는 제1 렌즈부(132)를 통과한 반사빔(L21b)의 집광점이 상대적으로 제1 렌즈부(132)로부터 멀어질 수 있다. 따라서, 제1 광 센서(142)의 위치(K2) 또한 상술한 위치(K1)보다 제1 렌즈부(132)로부터 더 멀어질 수 있다. 다른 예로, 가공빔(L1)의 집광점(P3)이 가공물(30)의 내부에 더 깊은 곳에 형성될 때는 제1 렌즈부(132)를 통과한 반사빔(L21c)의 집광점이 상대적으로 제1 렌즈부(132)로부터 멀어질 수 있다. 따라서, 제1 광 센서(142)의 위치(K3) 또한 상술한 위치(K1, K2)보다 제1 렌즈부(132)로부터 더 멀어질 수 있다.
도 18는 다른 예시적인 실시예에 따른 레이저 가공장치에서 가공물(30) 내부의 집광점(P1, P2, P3) 위치가 바뀜에 따라, 제1 및 제2 광 센서(142, 144)의 위치가 변경되는 예를 나타낸 도면이다.
도 18를 참조하면, 도 17에서 나타낸 제1 렌즈부(132)와 마찬가지로 제2 광 센서(144)의 위치(K1, K2, K3) 또한, 가공빔(L1)의 집광점(P3) 깊이가 깊어짐에 따라 제2 렌즈부(134)로부터 더 멀어질 수 있다.
예를 들어, 가공빔(L1)의 집광점(P1)이 가공물(30) 표면에 형성될 때는 제2 렌즈부(134)를 통과한 제2 반사빔(L22a)의 집광점이 상대적으로 제2 렌즈부(134)로부터 가깝게 형성될 수 있다. 따라서, 제2 광 센서(144)의 위치(J1) 또한 제2 렌즈부(134)로부터 가깝게 설정될 수 있다. 다른 예로, 가공빔(L1)의 집광점(P2)이 가공물(30)의 내부에 형성될 때는 제2 렌즈부(134)를 통과한 반사빔(L22b)의 집광점이 상대적으로 제2 렌즈부(134)로부터 멀어질 수 있다. 따라서, 제2 광 센서(144)의 위치(J2) 또한 상술한 위치(J1)보다 제2 렌즈부(134)로부터 더 멀어질 수 있다. 다른 예로, 가공빔(L1)의 집광점(P3)이 가공물(30)의 내부에 더 깊은 곳에 형성될 때는 제1 렌즈부(132)를 통과한 반사빔(L22c)의 집광점이 상대적으로 제2 렌즈부(134)로부터 멀어질 수 있다. 따라서, 제2 광 센서(144)의 위치(J3) 또한 상술한 위치(J1, J2)보다 제2 렌즈부(134)로부터 더 멀어질 수 있다.
도 19은 다른 예시적인 실시예에 따른 레이저 가공장치에서 가공물(30) 내부의 집광점 위치가 바뀜에 따라, 제1 렌즈부(142)의 위치가 변경되는 예를 나타낸 도면이다.
도 19을 참조하면, 가공빔(L1)의 집광점(P1, P2, P3)이 형성되는 깊이가 달라지더라도 제1 렌즈부(132)의 위치를 조절함으로써, 제1 렌즈부(132)를 통과한 반사빔(L21a, L21b, L21c)이 집광점을 형성하는 위치를 거의 일정하게 유지할 수 있다.
예를 들어, 가공빔(L1)의 집광점(P1)이 가공물(30) 표면에 형성될 때는 제1 렌즈부(132)의 위치(A1)가 상대적으로 제1 빔 스플리터(110)로부터 가깝게 형성될 수 있다. 다른 예로, 가공빔(L1)의 집광점(P2)이 가공물(30) 내부에 형성될 때는 제1 렌즈부(132)의 위치(A2)가 전술한 위치(A1)보다 상대적으로 제1 빔 스플리터(110)로부터 멀게 형성될 수 있다. 다른 예로, 가공빔(L1)의 집광점(P3)이 가공물(30) 내부에 형성되는 깊이가 커지면 제1 렌즈부(132)의 위치(A3)가 전술한 위치들(A1, A2)보다 제1 빔 스플리터(110)로부터 더 멀게 형성될 수 있다.
상술한 바와 같이 제1 렌즈부(132)의 위치를 변경함으로써, 가공빔(L1)의 집광점의 목표위치가 달라지더라도 제1 광 센서(142)의 위치를 변화시지 않을 수 있다.
도 20는 다른 예시적인 실시예에 따른 레이저 가공장치에서 가공물(30) 내부의 집광점(P1, P2, P3) 위치가 바뀜에 따라, 제1 및 제2 렌즈부(132, 134)의 위치가 변경되는 예를 나타낸 도면이다.
도 20을 참조하면, 가공빔(L1)의 집광점(P1, P2, P3)이 형성되는 깊이가 달라지더라도 제1 렌즈부(132)의 위치를 조절함으로써, 제2 렌즈부(134)를 통과한 반사빔(L22a, L22b, L22c)이 집광점을 형성하는 위치를 거의 일정하게 유지할 수 있다.
예를 들어, 가공빔(L1)의 집광점(P1)이 가공물(30) 표면에 형성될 때는 제2 렌즈부(134)의 위치(B1)가 상대적으로 미러(122)로부터 가깝게 형성될 수 있다. 다른 예로, 가공빔(L1)의 집광점(P2)이 가공물(30) 내부에 형성될 때는 제2 렌즈부(134)의 위치(B2)가 전술한 위치(B1)보다 상대적으로 미러(122)로부터 멀게 형성될 수 있다. 다른 예로, 가공빔(L1)의 집광점(P3)이 가공물(30) 내부에 형성되는 깊이가 커지면 제1 렌즈부(132)의 위치(B3)가 전술한 위치들(B1, B2)보다 제1 빔 스플리터(110)로부터 더 멀게 형성될 수 있다.
상술한 바와 같이 제2 렌즈부(134)의 위치를 변경함으로써, 가공빔(L1)의 집광점(P1, P2, P3)의 목표위치가 달라지더라도 제2 광 센서(144)의 위치를 변화시지 않을 수 있다.
도 21는 도 19에서 나타낸 제1 렌즈부(132)를 다르게 변형한 예를 나타낸 도면이다.
도 21를 참조하면, 제1 렌즈부(132)가 복수의 렌즈를 포함할 수 있다. 제1 렌즈부(132)는 제1 렌즈부(132)에 포함된 렌즈들(132a, 132b, 132c) 사이의 거리를 조절함으로써, 제1 렌즈부(132)를 통과한 반사빔(L21a, L21b, L21c)의 집광점 위치를 일정하게 유지할 수 있다. 예를 들어, 제1 렌즈부(132)는 두 개의 볼록렌즈(132a, 132c)와 두 개의 볼록렌즈(132a, 132c) 사이에 마련되는 오목렌즈(132b)를 포함할 수 있다. 제1 렌즈부(132)는 렌즈들 사이의 거리(h1, h2)를 조절할 수 있다. 예를 들어, 가공빔(L1)의 집광점(P1, P2, P3)이 형성되는 깊이가 커짐에 따라 제1 렌즈부(132)에 입사되는 반사빔(L21a, L21b, L21c)의 사이즈가 커질 수 있다. 따라서 제1 렌즈부(132)는 가공빔(L1)의 집광점(P1, P2, P3)이 형성되는 깊이가 커질수록 제1 볼록렌즈(132a)와 오목렌즈(132b) 사이의 거리(h1)를 크게하고, 오목렌즈(132b)와 제2 볼록렌즈(132b) 사이의 거리(h2)는 작게할 수 있다.
도 21에서는 제1 렌즈부(132)가 두 개의 볼록렌즈(132a, 132c)와 하나의 오목렌즈(132b)를 포함하는 예를 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 예를 들어, 제1 렌즈부(132)에 포함될 수 있는 렌즈의 종류 및 개수는 당업자가 용이하게 변경할 수 있는 수준에서 다르게 변경될 수도 있다.
도 22은 도 20에서 나타낸 제1 및 제2 렌즈부(132, 134)를 다르게 변형한 예를 나타낸 도면이다.
도 22을 참조하면, 제1 및 제2 렌즈부(132, 134)가 복수의 렌즈를 포함할 수 있다. 제1 렌즈부(132)는 제1 렌즈부(132)에 포함된 렌즈들(132a, 132b, 132c) 사이의 거리를 조절함으로써, 제1 렌즈부(132)를 통과한 반사빔(L21a, L21b, L21c)의 집광점 위치를 일정하게 유지할 수 있다. 또한, 제2 렌즈부(134)는 제2 렌즈부(134)에 포함된 렌즈들(134a, 134b, 134c) 사이의 거리를 조절함으로써, 제2 렌즈부(134)를 통과한 반사빔(L22a, L22b, L22c)의 집광점 위치를 일정하게 유지할 수 있다.
예를 들어, 제1 렌즈부(132)는 두 개의 볼록렌즈(132a, 132c)와 두 개의 볼록렌즈(132a, 132c) 사이에 마련되는 오목렌즈(132b)를 포함할 수 있다. 마찬가지로 제2 렌즈부(134)도 두 개의 볼록렌즈(134a, 134c)와 두 개의 볼록렌즈(134a, 134c) 사이에 마련되는 오목렌즈(134b)를 포함할 수 있다.
제1 렌즈부(132)는 렌즈들 사이의 거리(h1, h2)를 조절할 수 있다. 예를 들어, 가공빔(L1)의 집광점(P1, P2, P3)이 형성되는 깊이가 커짐에 따라 제1 렌즈부(132)에 입사되는 반사빔(L21a, L21b, L21c)의 사이즈가 커질 수 있다. 따라서 제1 렌즈부(132)는 가공빔(L1)의 집광점(P1, P2, P3)이 형성되는 깊이가 커질수록 제1 볼록렌즈(132a)와 오목렌즈(132b) 사이의 거리(h1)를 크게하고, 오목렌즈(132b)와 제2 볼록렌즈(132b) 사이의 거리는 작게할 수 있다.
제2 렌즈부(134)도 렌즈들 사이의 거리(h3, h4)를 조절할 수 있다. 예를 들어, 가공빔(L1)의 집광점(P1, P2, P3)이 형성되는 깊이가 커짐에 따라 제2 렌즈부(134)에 입사되는 반사빔(L22a, L22b, L22c)의 사이즈가 커질 수 있다. 따라서 제2 렌즈부(134)는 가공빔(L1)의 집광점(P1, P2, P3)이 형성되는 깊이가 커질수록 제3 볼록렌즈(132a)와 오목렌즈(132b) 사이의 거리(h3)를 크게하고, 오목렌즈(132b)와 제4 볼록렌즈(132b) 사이의 거리(h4)는 작게할 수 있다.
도 22에서는 제1 및 제2 렌즈부(132, 134)가 각각 두 개의 볼록렌즈(132a, 132c, 134a, 134c)와 하나의 오목렌즈(132b, 134b)를 포함하는 예를 나타냈지만, 실시예가 이에 제한되는 것은 아니다. 예를 들어, 제1 및 제2 렌즈부(132, 134)에 포함될 수 있는 렌즈의 종류 및 개수는 당업자가 용이하게 변경할 수 있는 수준에서 다르게 변경될 수도 있다.
이상에서 도 15 내지 도 22을 참조하여 예시적인 실시예들에 따른 레이저 가공장치에 대하여 설명하였다. 실시예들에 따르면, 레이저 가공장치가 오토포커싱 유닛을 이용하여 가공물(30) 내부의 원하는 지점에 가공빔(L1)의 집광점이 형성되도록 할 수 있다. 또한, 가공물의 집광점 위치가 바뀌더라도, 렌즈부나 광 센서의 위치를 바꿈으로써 안정적으로 가공빔(L1)의 집광점 위치를 검출할 수 있다.
이상의 설명에서 많은 사항들이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다 바람직한 실시예의 예시로서 해석되어야 한다. 때문에 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.

Claims (16)

  1. 가공물에 레이저 가공을 위한 가공빔을 출사하는 광원;
    상기 가공빔을 집광하는 집광 광학계; 및
    상기 가공빔의 집광점이 상기 가공물 내부에 형성되도록 상기 집광 광학계의 위치를 조절하는 오토포커싱 유닛;을 포함하며,
    상기 오토 포커싱 유닛은, 상기 집광광학계와 광원 사이에 마련되어, 상기 가공대상물로부터 반사된 반사광 중 적어도 일부를 반사시키는 제1 빔 스플리터; 상기 제1 빔 스플리터로부터 반사된 상기 반사광을 포커싱하는 제1 렌즈부; 및 상기 제1 렌즈부로부터 상기 반사광이 포커싱 되는 방향에 마련되어, 상기 제1 렌즈부에 의해 포커싱된 상기 반사광의 에너지 밀도를 측정하는 제1 광 센서;를 포함하는 레이저 가공장치.
  2. 제 1 항에 있어서,
    상기 집광광학계의 위치는 상기 제1 광 센서에서 측정되는 상기 반사광의 에너지 밀도에 의해 결정되는 레이저 가공장치.
  3. 제 1 항에 있어서,
    상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리는 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이에 따라 달라지는 레이저 가공장치.
  4. 제 1 항에 있어서,
    상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리는 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이가 클수록 더 크게 설정되는 레이저 가공장치.
  5. 제 1 항에 있어서,
    상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리는 상기 가공물 내부의 굴절률에 따라 달라지는 레이저 가공장치.
  6. 제 1 항에 있어서,
    상기 제1 렌즈부는 두 개의 볼록렌즈와 상기 두 개의 볼록렌즈 사이에 마련되는 오목렌즈를 포함하는 레이저 가공장치.
  7. 제 6 항에 있어서,
    상기 제1 렌즈부에서 상기 두 개의 볼록렌즈와 상기 오목렌즈의 위치는 상기 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이에 따라 달라지는 레이저 가공장치.
  8. 제 1 항에 있어서,
    상기 오토포커싱 유닛은, 상기 제1 빔 스플리터에서 반사된 반사광을 제1 반사광과 제2 반사광으로 분할하는 제2 빔스플리터를 더 포함하는 레이저 가공장치.
  9. 제 8 항에 있어서,
    상기 제1 반사광은 상기 제1 렌즈부로 입사되며,
    상기 오토포커싱 유닛은, 제2 반사광이 입사되는 제2 렌즈부; 및 상기 제2 렌즈부로부터 상기 제2반사광이 포커싱 되는 방향에 마련되어, 상기 제2 렌즈부에 의해 포커싱된 상기 제2 반사광의 에너지 밀도를 측정하는 제2 광 센서;를 포함하는 레이저 가공장치.
  10. 제 9 항에 있어서,
    상기 집광광학계의 위치는 상기 제1 광 센서에서 측정되는 상기 제1 반사광의 에너지 밀도 및 상기 제2 광 센서에서 측정되는 상기 제2 반사광의 에너지 밀도에 의해 결정되는 레이저 가공장치.
  11. 제 9 항에 있어서,
    상기 집광광학계의 위치는, 상기 제1 반사광의 에너지 밀도와 상기 제2 반사광의 에너지 밀도의 차이 값에 의해 결정되는 레이저 가공장치.
  12. 제 9 항에 있어서,
    상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리 및 상기 제2 렌즈부와 상기 제2 광 센서 사이의 거리는 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이에 따라 달라지는 레이저 가공장치.
  13. 제 10 항에 있어서,
    상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리 및 상기 제2 렌즈부와 상기 제2 광 센서 사이의 거리는 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이가 클수록 더 크게 설정되는 레이저 가공장치.
  14. 제 1 항에 있어서,
    상기 제1 렌즈부와 상기 제1 광 센서 사이의 거리 및 상기 제2 렌즈부와 상기 제2 광 센서 사이의 거리는 상기 가공물 내부의 굴절률에 따라 달라지는 레이저 가공장치.
  15. 제 1 항에 있어서,
    상기 제1 렌즈부와 상기 제2 렌즈부는 각각 두 개의 볼록렌즈와 상기 두 개의 볼록렌즈 사이에 마련되는 오목렌즈를 포함하는 레이저 가공장치.
  16. 제 15 항에 있어서,
    상기 제1 및 제2 렌즈부 각각에서 상기 두 개의 볼록렌즈와 상기 오목렌즈의 위치는 상기 상기 가공빔의 집광점이 상기 가공물 내부에 형성되는 깊이에 따라 달라지는 레이저 가공장치.
PCT/KR2016/007363 2015-07-09 2016-07-07 레이저 가공장치 WO2017007257A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150097861A KR20170015866A (ko) 2015-07-09 2015-07-09 레이저 가공장치
KR10-2015-0097861 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017007257A1 true WO2017007257A1 (ko) 2017-01-12

Family

ID=57685801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007363 WO2017007257A1 (ko) 2015-07-09 2016-07-07 레이저 가공장치

Country Status (3)

Country Link
KR (1) KR20170015866A (ko)
TW (1) TWI610747B (ko)
WO (1) WO2017007257A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020110823A (ja) * 2019-01-11 2020-07-27 株式会社ディスコ レーザー加工装置および集光レンズの確認方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228671A (ja) * 1992-02-20 1993-09-07 Matsushita Electric Ind Co Ltd エキシマレーザ加工機
JPH06218570A (ja) * 1993-01-28 1994-08-09 Hitachi Ltd レーザ加工機
JP2008012566A (ja) * 2006-07-06 2008-01-24 Disco Abrasive Syst Ltd レーザー加工装置
KR20080079828A (ko) * 2007-02-28 2008-09-02 주식회사 이오테크닉스 레이저 가공 장치 및 방법
KR20150015254A (ko) * 2013-07-31 2015-02-10 삼성디스플레이 주식회사 레이저 빔의 모니터링 방법 및 이를 이용한 레이저 조사 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228671A (ja) * 1992-02-20 1993-09-07 Matsushita Electric Ind Co Ltd エキシマレーザ加工機
JPH06218570A (ja) * 1993-01-28 1994-08-09 Hitachi Ltd レーザ加工機
JP2008012566A (ja) * 2006-07-06 2008-01-24 Disco Abrasive Syst Ltd レーザー加工装置
KR20080079828A (ko) * 2007-02-28 2008-09-02 주식회사 이오테크닉스 레이저 가공 장치 및 방법
KR20150015254A (ko) * 2013-07-31 2015-02-10 삼성디스플레이 주식회사 레이저 빔의 모니터링 방법 및 이를 이용한 레이저 조사 장치

Also Published As

Publication number Publication date
TWI610747B (zh) 2018-01-11
TW201711779A (zh) 2017-04-01
KR20170015866A (ko) 2017-02-10

Similar Documents

Publication Publication Date Title
KR100793182B1 (ko) 라인센서 카메라를 이용한 반도체 기판의 결함검출장치 및방법
KR101931967B1 (ko) 광학 현미경의 자동 초점 조절 장치
CN110567970B (zh) 一种边缘缺陷检测装置及方法
US20130044209A1 (en) Apparatus and method for detecting the surface defect of the glass substrate
CA2501618A1 (en) Method and system for determining the position and alignment of a surface of an object in relation to a laser beam
EP3387370B1 (en) Focusing system for a telecentric optical measuring machine
WO2017039171A1 (ko) 레이저 가공장치 및 레이저 가공방법
US10175041B2 (en) Measuring head and eccentricity measuring device including the same
US7545492B2 (en) Sighting device and additional device for measuring, working, and/or operating with or without contact
KR940002356B1 (ko) 비접촉자동초점위치맞춤방법 및 장치
US20160011075A1 (en) Measurement of Focal Points and other Features in Optical Systems
KR101891182B1 (ko) 자동초점 조절장치
KR102177005B1 (ko) 기판 정렬을 위한 머신 비전 시스템 및 정렬 장치
WO2005050184A1 (ja) ガラス板の欠陥を検出する方法及び装置
CN108604880B (zh) 检测太阳能晶片上的豁口的方法和系统
WO2017007257A1 (ko) 레이저 가공장치
US9595094B2 (en) Measuring form changes of a substrate
US7023542B2 (en) Imaging method and apparatus
WO2017007256A1 (ko) 집광점 검출장치
KR20150114199A (ko) 자동초점거리 조절 기능을 갖는 렌즈 검사장치
KR101478572B1 (ko) 줌 대물렌즈를 이용한 자동초점 시스템
JP3162364B2 (ja) 光センサ装置
JPH0943456A (ja) 光モジュール光軸調整装置及び方法
WO2011152605A1 (ko) 평판패널 검사장치
JPH10209502A (ja) 光軸調整装置及び光軸調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821663

Country of ref document: EP

Kind code of ref document: A1