WO2017039171A1 - 레이저 가공장치 및 레이저 가공방법 - Google Patents
레이저 가공장치 및 레이저 가공방법 Download PDFInfo
- Publication number
- WO2017039171A1 WO2017039171A1 PCT/KR2016/008840 KR2016008840W WO2017039171A1 WO 2017039171 A1 WO2017039171 A1 WO 2017039171A1 KR 2016008840 W KR2016008840 W KR 2016008840W WO 2017039171 A1 WO2017039171 A1 WO 2017039171A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- change
- unit
- processed
- reflected
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title abstract description 12
- 230000008859 change Effects 0.000 claims abstract description 183
- 238000004364 calculation method Methods 0.000 claims abstract description 40
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 239000000523 sample Substances 0.000 claims abstract description 7
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 238000001514 detection method Methods 0.000 claims description 88
- 238000000034 method Methods 0.000 claims description 29
- 230000003287 optical effect Effects 0.000 description 39
- 238000003754 machining Methods 0.000 description 8
- 240000006829 Ficus sundaica Species 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 240000001973 Ficus microcarpa Species 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
- B23K26/046—Automatically focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
- B23K26/046—Automatically focusing the laser beam
- B23K26/048—Automatically focusing the laser beam by controlling the distance between laser head and workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0608—Height gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/14—Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0875—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/141—Beam splitting or combining systems operating by reflection only using dichroic mirrors
Definitions
- the present invention relates to a laser processing apparatus and a laser processing method, and more particularly, to a laser processing apparatus and a laser processing method capable of automatically adjusting a focus on a processing target point during a laser processing operation.
- a shack-hartmann sensor is a device that measures the distortion or aberration of the light wavefront reflected in a specific area in the field of astronomical telescopes and optometry, and uses the measured distortion or aberration of the light wavefront. It is generally used to measure the shape of the surface in a specific area.
- Shark-Hartmann sensors have limitations that cannot measure the overall thickness or height change of an object. For example, when trying to measure thickness differences between wafers of different thicknesses loaded on a reference plane, such as the surface of a stage, the Shark-Heartmann sensor cannot measure the thickness difference or there is a big limitation in measuring it. There may be. This means that the probe light irradiated to the object must be large enough to cover both the wafers and the reference plane, and the difference in height between the reference plane and the measurement plane is the measurement limit of the Shark-Hartman sensor as the reference plane becomes the reflection plane of the detection light. (For example, about 30 times the wavelength of the detection light).
- a laser processing apparatus and a laser processing method capable of automatically adjusting a focus on a processing target point during a laser processing operation are provided.
- the first light source for emitting a probe light for the measurement, a first light focusing unit for focusing the detection light to irradiate the object, the detection light is processed Detecting the change of the reflected light reflected from the reflecting surface of the object, using the light sensing unit including a shack-hartmann sensor, and the change of the reflected light detected by the light sensing unit;
- a measuring device including a calculating unit for calculating a change in height of the object;
- a second light source emitting laser light for processing on the object to be processed
- a laser processing apparatus comprising a; focusing device for adjusting the focus of the laser light irradiated to the processing object by using the height change of the processing object measured by the measuring device.
- the laser light emitted from the second light source may be irradiated onto the object to be processed via the first light focusing unit.
- the focusing apparatus may include a driving unit for moving the first light concentrator up and down with respect to the object to be processed or moving the measuring device up and down with respect to the object to be processed.
- the focus adjusting apparatus may further include a controller connected to the calculator to control vertical movement of the driving unit.
- a dichroic mirror may be provided between the first and second light sources and the first light converging unit to transmit one of the detection light and the laser light and reflect the other.
- a beam splitter may be provided between the first light source and the dichroic mirror to transmit one of the detection light and the reflected light and reflect the other.
- a wave plate and a bandpass filter may be further provided between the dichroic mirror and the beam splitter.
- a second light focusing unit configured to focus the laser light emitted from the second light source and irradiate the object to be processed.
- the focus adjusting apparatus may include a driving unit which moves the second light focusing unit up and down with respect to the processing object or moves the second light focusing unit and the measuring device up and down with respect to the processing object.
- the focus adjusting apparatus may further include a controller connected to the operation unit to control vertical movement of the driving unit.
- a beam splitter may be provided between the first light source and the first light focusing unit to transmit one of the detection light and the reflected light and reflect the other. .
- the Shark-Hartman sensor can detect a change in light wavefront of the reflected light.
- the calculation unit may calculate a change in height of the object by using Zernike polynomials expressing a change in the reflected light detected by the light sensing unit as a formula.
- the height change of the object may correspond to the defocus term coefficient value of the Zernike polynomial.
- a first light source emitting a detection light, a first light focusing unit focusing the detection light and irradiating the object to be processed, and detecting a change in the reflected light reflected by the detection light, and including a Shark-Hartman sensor
- a measurement unit including a calculation unit for calculating a height change of the object to be processed using the change in the reflected light
- a second light source emitting laser light;
- the optical detection unit including the Shark-Hartman sensor detects the change of the optical wavefront of the reflected light reflected from the object to be processed, and the calculation unit uses the optical wavefront change of the reflected light to count the defocus term
- the change in height of the object can be measured by calculating. Therefore, when the height of the object changes during the laser processing, the measuring device measures the height change of the object in real time, and automatically adjusts the focus by using the measured height change of the object, thereby real-time laser processing. Can be done with
- FIG. 1 schematically shows a measuring device according to an exemplary embodiment of the present invention.
- FIG. 2A to 2C are diagrams for explaining a principle of measuring a thickness or height change of an object using the measuring apparatus shown in FIG. 1.
- FIG. 3 exemplarily shows a defocus term coefficient value calculated from the change in reflected light detected according to the height of the reflecting surface in FIGS. 2A to 2C.
- Fig. 4 is a flow chart illustrating a measuring method according to another exemplary embodiment of the present invention.
- 5a and 5b show a specific embodiment of the measuring method shown in FIG.
- 6A and 6B show another embodiment of the measuring method shown in FIG. 4.
- FIG. 7A to 7C illustrate a laser processing apparatus and a laser processing method according to an exemplary embodiment of the present invention.
- FIG. 8 illustrates a laser processing apparatus according to another exemplary embodiment of the present invention.
- FIGS. 9A to 9C illustrate a laser processing apparatus and a laser processing method according to another exemplary embodiment of the present invention.
- FIG. 10 shows a laser processing apparatus according to another exemplary embodiment of the present invention.
- FIG. 1 schematically shows a measuring device according to an exemplary embodiment of the present invention.
- the measuring device 100 shown in FIG. 1 may measure a thickness or height change of an object or measure a shape of an object.
- the measuring device 100 may be provided on an upper portion of the target object 55 mounted on the stage 50.
- the measuring apparatus 100 may include a light source 110, a light focusing unit 130, a light sensing unit 10, and a calculation unit 150.
- a beam splitter 120 may be further provided between the light source 110 and the light focusing unit 130.
- the light source 110 emits a probe light L1 that irradiates the object 55 to measure the height of the object 55.
- the detection light L1 emitted from the light source 110 may pass through the beam splitter 120.
- the beam splitter 120 may transmit one of the detection light L1 and the reflected light L2 to be described later, and reflect the other light. 1 illustrates a case in which the beam splitter 120 transmits the detection light L1 and reflects the reflected light L2.
- the present embodiment is not limited thereto, and the beam splitter 120 may be configured to halve the detection light L1 and transmit the reflected light L2.
- the detection light L1 passing through the beam splitter 120 is focused by the light focusing unit 130 and then irradiated onto the target object 55 loaded on the stage 50.
- the detection light L1 focused by the light focusing unit 130 and irradiated to the target object 55 is reflected from the reflecting surface of the target object 55.
- the reflected light L2 reflected from the target object 55 may be reflected by the beam splitter 120 via the light converging unit 130 and then detected by the light sensing unit 140.
- the light sensing unit 140 may include a shack-hartmann sensor capable of detecting a change in a light wavefron of the reflected light L2.
- the Chart-Heartman sensor can detect a change in the light wavefront of the reflected light L2 with respect to the detection light L1 by measuring the distortion or aberration of the light wavefront of the reflected light L2.
- the calculating unit 150 may measure the change in the height of the reflecting surface of the target object 55 using the change in the reflected light L2 detected by the light sensing unit 140.
- the light sensing unit 140 detects a change in the light wave surface of the reflected light L2
- the light sensing unit 140 transmits an electric signal corresponding to the change in the light wave surface to the calculation unit 150.
- the calculation unit 150 configures the optical wavefront change of the reflected light L2 detected by the light sensing unit 140 as Zernike polynomials, which is a mathematical model, thereby raising the height of the reflective surface of the target object 55. The change can be measured.
- the Zernike polynomial may consist of a number of terms, where each term constituting the Zernike polynomial represents optical aberrations and is orthogonal to each other.
- the coefficient value of the defocus term may determine a change in thickness or height of the target object 55. Detailed description thereof will be described later.
- the measuring device 100 may be provided to be able to move up and down relatively to the target object 55.
- the measuring apparatus 100 may move up and down along the z direction, or the stage 50 on which the target object 55 is loaded may move up and down along the z direction.
- both the measuring apparatus 100 and the stage 50 may all move along a z direction.
- FIG. 2A to 2C are diagrams for explaining a principle of measuring a thickness or height change of an object using the measuring apparatus shown in FIG. 1.
- the detection light L1 emitted from the light source 110 is focused by the light focusing unit 130, is incident on the reflection surface S, and then reflected from the reflection surface S.
- the detection light L1 emitted from the light source 110 and transmitted through the beam splitter 120 is focused by the light focusing unit 130 and then incident on the reflective surface S.
- the detection light L1 may be focused on the reflection surface S to form a condensing point.
- the detection light L1 may be reflected on the reflective surface S, and the reflected light L2 may be incident on the light sensing unit 140 after being reflected by the beam splitter 120.
- the light sensing unit 140 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2 reflected from the reflecting surface S.
- the optical wavefront W of the reflected light L2 reflected from the reflective surface S is all plane wavefront like the detection light L1, there is no change in the optical wavefront of the reflected light L2.
- the reflection surface S without the change in the light wave surface of the reflected light L2 can be set as a reference surface serving as a reference for height measurement.
- the height of the reference plane may be set to, for example, "0".
- the coefficient value of the defocus term in the Zernike polynomial stored in the calculation unit 150 may be “0”.
- the height of the reflective surface S may be set to "0" which is the same as the height of the reference surface.
- the detection light L1 emitted from the light source 110 is focused by the light focusing unit 130 and incident on the reflecting surface S, and then reflected.
- the reflective surface S is provided at a position higher than the reference surface, and in this case, the height of the reflective surface S may have a value of "positive".
- the detection light L1 emitted from the light source 110 and transmitted through the beam splitter 120 is focused by the light focusing unit 130 and then incident on the reflecting surface S.
- the detection light L1 via the light focusing unit 130 may be defocused on the reflective surface S.
- the detection light L1 may be reflected by the reflective surface S, and the reflected light L2 may be incident on the light sensing unit 140 after being reflected by the beam splitter 120.
- the reflected light L2 reflected by the beam splitter 120 may be incident on the light sensing unit 140 while diverging.
- the light sensing unit 140 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2 emitted from the reflecting surface S. As illustrated in FIG. 2B, the reflected light L2 reflected from the reflective surface S at a position higher than the reference plane may be changed into the convex shape of the light wave surface W and incident on the light sensing unit 140. . As such, when the light wave surface W of the reflected light L2 detected by the light sensing unit 140 is changed into a convex form, the coefficient of the defocus term in the Zernike polynomial stored in the calculating unit 150 is “positive (+). It can have a value of ”.
- the detection light L1 emitted from the light source 110 is focused by the light focusing unit 130 and incident on the reflecting surface S, and then reflected.
- the reflection surface S is provided at a position lower than the reference plane, and in this case, the height of the reflection surface S may have a negative value.
- the detection light L1 emitted from the light source 110 and transmitted through the beam splitter 120 is focused by the light focusing unit 130 and then incident on the reflective surface S.
- the reflective surface S is provided at a position lower than the reference surface, the detection light L1 passing through the light focusing unit 130 may be defocused on the reflective surface S.
- the detection light L1 may be reflected by the reflective surface S, and the reflected light L2 may be incident on the light sensing unit 140 after being reflected by the beam splitter 120.
- the reflected light L2 reflected by the beam splitter 120 may be incident on the light sensing unit 140 while converging.
- the light sensing unit 140 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2 reflected from the reflecting surface S. As illustrated in FIG. 2C, the reflected light L2 reflected from the reflective surface S at a position lower than the reference plane is changed into a concave shape of the light wave surface W and is incident on the light sensing unit 140. As described above, when the optical wavefront W of the reflected light L2 detected by the light sensing unit 140 changes into a concave shape, the coefficient of the defocus term in the Zernike polynomial stored in the calculation unit 150 is “negative ( ⁇ )”. It can have a value of ”.
- FIG. 3 exemplarily shows a defocus term coefficient value calculated from the change of the reflected light L2 detected according to the height of the reflecting surface S in FIGS. 2A to 2C.
- the present embodiment is not limited to this, and the reflective surface S whose coefficient value of the defocus term is a "positive” or “negative” value may be set as the reference plane.
- the coefficient value of the defocus term may change according to the change of the height of the reflective surface S with respect to the reference plane, and the calibration data is measured by measuring the height change of the reflective surface by using the calculated coefficient value change of the defocus term. You can make it.
- Fig. 4 is a flow chart illustrating a measuring method according to another exemplary embodiment of the present invention. 4 illustrates a method of measuring a thickness or height change of an object using the measuring apparatus 100 shown in FIG. 1.
- a reference point of the measuring device is set (401).
- the reference point may be set on a reference plane having a height of "0" as described above.
- This reference point may be set on the reflective surface of the reference object or on the reflective surface of the stage, as described below.
- the coefficient value of the defocus term according to the vertical movement of the reference point is measured (402).
- the vertical movement of the reference point may be performed by moving the reflective surface up and down from the reference plane as shown in FIGS. 2A to 2C, and the optical wavefront change of the reflected light L2 occurs according to the vertical movement of the reference point.
- the optical wavefront change of the reflective surface L2 may be detected by the light sensing unit 140, and then the coefficient value of the defocus term of the Zernike polynomial stored in the calculating unit 150 may be measured using the light wavefront.
- calibration data indicating a change in the coefficient value of the defocus term according to the vertical movement of the reference point measured as described above is stored in the calculation unit 150.
- the target object 55 to be measured is loaded on the stage 50.
- the measuring apparatus 100 moves to the above-described reference point position, and then emits the detection light L1 from the light source 110 to irradiate the target object 55.
- the detection light L1 emitted from the light source 110 may pass through the beam splitter 120, and then may be focused by the light concentrator 130 and irradiated onto the target object 55.
- the light sensing unit 140 detects a change in the light wave surface of the reflected light L2 coming from the reflecting surface of the target object 55.
- the detection light L1 passing through the light converging unit 130 is reflected by the reflection surface of the target object 55, and the reflected light L2 reflected by the reflection light L2 is incident on the light sensing unit 140.
- the reflected light L2 from the reflective surface of the target object 55 may be incident on the light sensing unit 140 after being reflected by the beam splitter 120 after passing through the light converging unit 130.
- the light sensing unit 140 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2.
- the change in the reflection surface height of the target object 55 is measured using the change in the reflected light L2 detected by the light sensing unit 140.
- the optical wavefront change of the reflected light L2 detected by the light sensing unit 140 is input to the calculation unit 150, and the calculation unit 150 uses the Zernike polynomial using the optical wavefront change of the reflected light L2.
- the change in the reflection surface height of the target object 55 with respect to the reference point may be measured.
- the thickness of the target object 55 may also be measured by using the height change of the reflection surface thus measured.
- 5a and 5b show a specific embodiment of the measuring method shown in FIG.
- a reference object 51 is loaded onto the stage 50.
- the reference object 51 may have a known thickness t1.
- the reference point P of the measuring apparatus 100 is set.
- the reference point P of the measuring device 100 may be set on the reflective surface S1 of the reference object 51.
- the detection light L1 emitted from the light source 110 of the measuring device 100 and transmitted through the beam splitter 120 is focused by the light focusing unit 130, and then the reflecting surface of the reference object 51. Incident on (S1).
- the detection light L1 may be reflected by the reflection surface S1, and the reflection light L2 may be incident on the light sensing unit 140 after being reflected by the beam splitter 120.
- the light sensing unit 140 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2 reflected from the reflecting surface S1 of the reference object 51.
- the optical wavefront W of the reflected light L2 reflected from the reflective surface S1 of the reference object 51 and incident on the light sensing unit 140 becomes a plane wavefront, thereby reflecting reflected light L2.
- the reflective surface S1 of the reference object 51 having no change in the optical wavefront of the reflected light L2 may correspond to the reference surface that is a reference for height measurement.
- the height of the reference plane may be determined as "0".
- the coefficient value of the defocus term in the Zernike polynomial stored in the calculation unit 150 may be “0”.
- the vertical movement of the reference point P may be performed by moving the reflective surface S1 of the reference object 51 up and down from the reference plane as shown in FIGS. 2B and 2C.
- the vertical movement of the reference point P may be performed by moving at least one of the stage 50 and the measuring apparatus 100 up and down.
- the optical wavefront change of the reflected light L2 of the reference object 51 occurs as the reference point P moves up and down, and the optical wavefront change of the reflective surface S1 is detected by the light sensing unit 140. Using this, the coefficient value of the defocus term of the Zernike polynomial stored in the operation unit 150 may be measured.
- the reference The optical wavefront W of the reflected light L2 reflected from the reflective surface S1 of the object 51 may be changed into a convex shape and detected by the light sensing unit 140.
- Zernike expresses the change of the light wave surface of the reflected light L2 stored in the calculation unit 150 by a formula. In polynomials, the coefficient of the defocus term can have a positive value.
- the height of the reference point P has a value of “negative ( ⁇ )”, in this case the reference
- the optical wavefront W of the reflected light L2 reflected from the reflective surface S1 of the object 51 may be changed into a concave shape and detected by the light sensing unit 140.
- the coefficient of the defocus term in the Zernike polynomial stored in the calculation unit 150 is “negative ( ⁇ )”. It can have a value of ”.
- the present invention is not limited thereto, however, when there is a change in the light wavefront of the reflected light L2, that is, when the coefficient value of the defocus term has a value of "positive” or "negative", the reflecting surface S1. It can also be set as the reference plane on which the height is measured.
- the change in the coefficient value of the defocus term according to the vertical movement of the reference point P is calculated, and the calibration data thus calculated is stored in the operation unit 150.
- the reference object 51 may be unloaded on the stage 50.
- the target object 55 to be measured is loaded on the stage 50.
- the measuring apparatus 100 moves to the position of the reference point P described above, and then emits the detection light L1 from the light source 110 to irradiate the target object 55.
- the detection light L1 emitted from the light source 110 may pass through the beam splitter 120, and then may be focused by the light concentrator 130 and irradiated onto the target object 55.
- the light sensing unit 140 detects a change in the light wave surface of the reflected light L2 coming from the reflecting surface S2 of the target object 55.
- the detection light L1 passing through the light converging unit 130 is reflected by the reflection surface S2 of the target object 55, and the reflection light L2 is incident on the light sensing unit 140.
- the reflected light L2 from the reflective surface S2 of the target object 55 may be incident on the light sensing unit 140 after being reflected by the beam splitter 120 after passing through the light converging unit 130. have.
- the light sensing unit 140 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2.
- the change in the height of the reflective surface S2 of the target object 55 is measured using the change in the reflected light L2 detected by the light sensing unit 140.
- the optical wavefront change of the reflected light L2 detected by the light sensing unit 140 is input to the calculation unit 150, and the calculation unit 150 uses the Zernike polynomial using the optical wavefront change of the reflected light L2.
- the height change ⁇ h of the reflection surface S2 of the target object 55 may be measured by comparing the count value of the defocus term thus calculated with the calibration data stored in the calculator 150.
- the thickness t1 of the reference object 51 is added to the height change ⁇ h of the reflection surface S2 of the target object 55 thus measured, the thickness t2 of the target object 55 may be measured. have.
- FIG. 6A and 6B show another embodiment of the measuring method shown in FIG. 4.
- a reference point P of the measuring apparatus 100 is set.
- the reference point P of the measuring device 100 may be set on the reflective surface S1 of the stage 50.
- the detection light L1 emitted from the light source 110 and transmitted through the beam splitter 120 is focused by the light focusing unit 130 and then incident on the reflecting surface S1 of the stage 50.
- the detection light L1 may be reflected by the reflection surface S1, and the reflection light L2 may be incident on the light sensing unit 140 after being reflected by the beam splitter 120.
- the light sensing unit 140 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2 reflected from the reflecting surface S1 of the stage 50.
- the optical wavefront W of the reflected light L2 reflected from the reflective surface S1 of the stage 50 and incident on the light sensing unit 140 becomes a plane wavefront, thereby reflecting the reflected light L2.
- the reflective surface S1 of the stage 50 having no change in the optical wavefront of the reflected light L2 may correspond to a reference plane that is a reference for height measurement.
- the height of the reference plane may be determined as "0".
- the coefficient value of the defocus term in the Zernike polynomial stored in the calculation unit 150 may be “0”.
- the vertical movement of the reference point P may be performed by moving the reflective surface S1 of the stage 50 up and down from the reference plane as shown in FIGS. 2B and 2C.
- the vertical movement of the reference point P may be performed by moving at least one of the stage 50 and the measuring apparatus 100 up and down.
- the present invention is not limited thereto, however, when there is a change in the light wavefront of the reflected light L2, that is, when the coefficient value of the defocus term has a value of "positive” or "negative", the reflecting surface S1. It can also be set as the reference plane on which the height is measured.
- the target object 55 to be measured is loaded on the stage 50.
- the measuring apparatus 100 moves to the position of the reference point P described above, and then emits the detection light L1 from the light source 110 to irradiate the target object 55.
- the detection light L1 emitted from the light source 110 may pass through the beam splitter 120, and then may be focused by the light concentrator 130 and irradiated onto the target object 55.
- the light sensing unit 140 detects a change in the light wave surface of the reflected light L2 coming from the reflecting surface S2 of the target object 55.
- the detection light L1 passing through the light converging unit 130 is reflected by the reflection surface S2 of the target object 55, and the reflection light L2 is incident on the light sensing unit 140.
- the reflected light L2 from the reflective surface S2 of the target object 55 may be incident on the light sensing unit 140 after being reflected by the beam splitter 120 after passing through the light converging unit 130.
- the light sensing unit 140 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2.
- the change in the height of the reflective surface S2 of the target object 55 is measured using the change in the reflected light L2 detected by the light sensing unit 140.
- the optical wavefront change of the reflected light L2 detected by the light sensing unit 140 is input to the calculation unit 150, and the calculation unit 150 uses the optical wavefront change of the reflected light to defocus the Zernike polynomial. Calculate the coefficient value of the term.
- the height change ⁇ h of the reflection surface S2 of the target object 55 may be measured.
- the height change ⁇ h of the reflective surface S2 of the target object 55 may correspond to the thickness t of the target object.
- the light focusing unit 130 focuses the detection light (L1) to irradiate the target object 55
- the light detection unit 140 including the Shark-Hartman sensor is the target object
- the change in the optical wavefront of the reflected light L2 reflected from 55 is detected, and the calculation unit 150 calculates the coefficient value of the defocus term using the change in the optical wavefront of the reflected light detected by the light detector 140.
- the reflection surface height change of 55 can be measured. Accordingly, it is possible to effectively and accurately measure the thickness or height change of the target object 55 such as, for example, a wafer or a plate-like object.
- the photodetector 140 is set up when the measuring apparatus 100 is set up. It can be easily aligned optically.
- FIG. 7A to 7C illustrate a laser processing apparatus and a laser processing method according to an exemplary embodiment of the present invention.
- the laser processing apparatus 200 includes a measuring device including a first light source 211, a light focusing unit 230, a light sensing unit 240, and a calculation unit 250, and an object to be processed.
- the second light source 212 which emits laser light L in 56 is included, and a focusing device.
- the measuring apparatus may measure the height change of the object to be processed 56 loaded on the stage 50 in real time.
- the first light source 211 emits detection light L1 for measurement.
- the light focusing unit 230 focuses the detection light L1 to irradiate the object to be processed 56, and the light sensing unit 240 reflects the detection light L1 from the reflection surface of the object to be processed 56.
- the change of the reflected light L2 which comes out is detected.
- the light sensing unit 240 includes a Shark-Heartman sensor capable of detecting a change in the light wave surface of the reflected light (L2).
- the calculator 250 may measure the height change of the object to be processed 56 by using the change in the reflected light L2 detected by the light sensing unit 240.
- the calculation unit 250 may measure the height change of the object to be processed 56 by configuring the optical wavefront change of the reflected light L2 as the Zernike polynomial, which is a mathematical model.
- the Zernike polynomial may consist of a number of terms, among which the coefficient value of the defocus term may determine the change in height of the object 56.
- the coefficient value change of the defocus term according to the height change of the object to be processed 56 is stored in advance in the calculator 250 as calibration data.
- the second light source 212 may emit laser light L for processing the object to be processed 56.
- the laser light L emitted from the second light source 212 may be irradiated onto the object to be processed 56 while being focused by the light focusing unit 230. Accordingly, the detection light L1 emitted from the first light source 211 and the laser light L emitted from the second light source 212 are irradiated to the processing object 56 through one light focusing unit 230. Can be.
- a dichroic mirror 225 may be provided between the first and second light sources 211 and 212 and the light focusing unit 230.
- the dichroic mirror 225 transmits and reflects any one of the detection light L1 emitted from the first light source 211 and the laser light L emitted from the second light source 212. can do.
- the dichroic mirror 225 transmits the laser light L and reflects the detection light L1 by way of example.
- the present invention is not limited thereto, and the dichroic mirror 225 may be configured to reflect the laser light L and transmit the detection light L1.
- a beam splitter 222 may be provided between the first light source 211 and the dichroic mirror 225.
- the beam splitter 222 may include any one of the detection light L1 emitted from the first light source 211 and the reflection light L2 from which the detection light L1 is reflected from the reflection surface of the object 56. Transmit and reflect the other.
- the beam splitter 222 exemplarily reflects the detection light L1 and transmits the reflected light L2.
- the present invention is not limited thereto, and the beam splitter 222 may be configured to transmit the detection light L1 and reflect the reflected light L2.
- a reflection mirror 221 may be provided between the first light source 211 and the beam splitter 222 to direct the detection light L1 emitted from the first light source 211 toward the beam splitter 222. .
- a wave plate 223 and a bandpass filter 224 may be further provided between the dichroic mirror 225 and the beam splitter 222.
- the wavelength plate 223 may serve to adjust the intensity of the detection light (L1) to emit.
- the band pass filter 224 may serve to separate only light corresponding to a specific wavelength bandwidth from the reflected light L2 reflected from the reflective surface S of the object 56.
- a first control unit 261 may be provided between the calculator 250 and the first light source 211 to control the first light source 211 that emits the detection light L1.
- the second controller 262 may be provided between the two light sources 212 to control the second light source 212 that emits the laser light L.
- the focus adjusting device may automatically adjust the focus of the laser light L irradiated onto the object to be processed 56 during the laser processing operation.
- the focusing apparatus includes a driver 270 that can move the light focusing unit 230 up and down with respect to the object to be processed 56, and a third controller 263 that can control the driver 270. It may include.
- the third control unit 263 is connected to the operation unit 250 to move the driving unit 270 to move the light converging unit 230 up and down in response to the height change of the processing object 56 calculated by the operation unit 250. Can be controlled.
- the detection light L1 is emitted from the first light source 211 and irradiated onto the object to be processed 56 through the light focusing unit 230, and the second light source 212 is provided.
- the laser light L is emitted from the laser beam L and is irradiated onto the object to be processed 56 through the light focusing unit 230.
- the detection light L1 emitted from the first light source 211 is reflected by the beam splitter 222 and reflected by the dichroic mirror 225, and then irradiated to the workpiece 56 through the light focusing unit 230. do. Subsequently, the detection light L1 is reflected from the reflecting surface S of the object 56, and the reflected light L2 thus reflected is reflected by the dichroic mirror 225 and then transmitted through the beam separator 222. After that, it is incident on the light sensing unit 240.
- the light sensing unit 240 including the Shark-Hartman sensor detects a change in the light wave surface of the reflected light L2, and by using the detected light wave surface change, the calculation unit 250 changes the height of the object to be processed 56.
- the laser light L emitted from the second light source 212 passes through the dichroic mirror 225 and is then irradiated to the object 56 through the light focusing unit 230 to perform a machining operation.
- the height change is calculated by the calculating unit 250 of the measuring apparatus, and the driving unit 270 of the focusing apparatus is focused on light in response to the height change.
- FIGS. 7A to 7C a laser processing method according to an exemplary embodiment of the present invention will be described with reference to FIGS. 7A to 7C.
- FIG. 7A illustrates a case in which the laser light L is accurately focused on the object to be processed 56.
- precise laser processing may be performed.
- the laser light L emitted from the second light source 212 is focused through the light converging unit 230 and irradiated to the object to be processed 56.
- a laser machining operation is performed on the object to be processed 56.
- a condensation point capable of performing this can be formed.
- it can be measured that there is no height change of the object to be processed 56 measured by the measuring device.
- the detection light L1 emitted from the first light source 211 is incident on the object to be processed 56 via the light focusing unit 230. Subsequently, the detection light L1 may be reflected by the reflection surface S of the object 56, and the reflection light L2 may be incident on the light sensing unit 240.
- the light sensing unit 240 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2 reflected from the reflecting surface S of the object 56.
- the coefficient value of the defocus term calculated by the calculator 250 may be “0”.
- the reflective surface S of the object to be processed 56 in which there is no change in the light wave surface of the reflected light L2, may be set as a reference plane that is a reference for height measurement.
- FIG. 7B illustrates a case in which the height of the object to be processed 56 is higher than that of FIG. 7A. That is, FIG. 7B shows a case where the reflective surface S of the object to be processed 56 is located at a position higher than the reference surface.
- the thickness of the object to be processed 56 may be increased or the height of the object to be processed 56 may be higher than the reference plane shown in FIG. 7A due to an external environment.
- the light wave surface W of the reflected light L2 reflected from the reflecting surface S of the object to be processed 56 may be changed into a convex shape and may be incident on the light sensing unit 240. have.
- the coefficient of the defocus term in the Zernike polynomial stored in the calculation unit 250 is “positive (+)”. It can have a value of ”.
- the calculating unit 250 transmits the measured change in height ⁇ h1 of the object to be processed 56 to the third control unit 263 of the focusing apparatus, and the third control unit 263 drives the driving unit 270 to focus light.
- the unit 230 may be raised.
- the driving unit 270 may raise the light focusing unit 230 by a distance corresponding to the height change ⁇ h1 of the object to be processed 56.
- the driving unit 270 raises the light converging unit 230 by a distance corresponding to the height change ⁇ h1 of the processing object 56, so that the laser light L is precisely processed as shown in FIG. 56 can be focused on, and in this state, the laser machining operation can be performed precisely.
- FIG. 7C the height of the object to be processed 56 is lower than that of FIG. 7A. That is, FIG. 7C shows a case where the reflective surface S of the object to be processed 56 is lower than the reference surface.
- the thickness of the object may be reduced or the height of the object may be lower than the reference plane shown in FIG. 7A due to an external environment.
- the optical wavefront W of the reflected light L2 reflected from the reflective surface S of the workpiece 56 is changed into a concave shape and is incident on the light sensing unit 240.
- the coefficient of the defocus term in the Zernike polynomial stored in the calculation unit 250 is “negative ( ⁇ )”. It can have a value of ”.
- the calculation unit 250 transmits the measured height change ⁇ h2 of the object to be processed 56 to the third control unit 263 of the focusing apparatus, and the third control unit 263 drives the driving unit 270 to focus light.
- the unit 230 may be lowered.
- the driving unit 270 may lower the light focusing unit 230 by a distance corresponding to the height change ⁇ h2 of the object to be processed 56.
- the driving unit 270 lowers the light converging unit 230 by a distance corresponding to the height change ⁇ h2 of the processing object 56, so that the laser light L is precisely processed as shown in FIG. 56 can be focused on, and in this state, the laser machining operation can be performed precisely.
- the reflective surface S of the object to be processed 56 is referred to as a reference surface as a reference for height measurement.
- the setting case has been described.
- the present invention is not limited thereto, but the processing object 56 when there is a change in the light wavefront of the reflected light L2, that is, when the coefficient value of the defocus term has a value of "positive” or "negative". It is also possible to set the reflective surface S of the reference plane.
- the measuring device measures the height change of the processing object 56 in real time, and thus measures.
- the focusing device adjusts the position of the light focusing unit 230 so that the laser processing operation can be accurately performed in real time.
- FIG. 8 illustrates a laser processing apparatus according to another exemplary embodiment of the present invention.
- the laser processing apparatus 300 illustrated in FIG. 8 is the same as the laser processing apparatus 200 illustrated in FIGS. 7A to 7C except that the driving unit 370 moves the measuring apparatus 380.
- the driving unit 370 of the focusing device is provided to move the measuring device 380 up and down with respect to the object 56 to adjust the focus of the laser light L.
- FIG. 8 illustrates a case in which the calculating unit 250 is excluded from the measuring device 380 which the driving unit 370 moves, the measuring device 380 may include a calculating unit.
- the driving units 270 and 370 move the light converging unit 230 or the measuring device 380 up and down with respect to the object 56 is described.
- the present invention is not limited thereto, and the driving units 270 and 370 may move the stage 50 up and down to adjust the focus of the laser light L.
- FIGS. 9A to 9C illustrate a laser processing apparatus and a laser processing method according to another exemplary embodiment of the present invention.
- the laser processing apparatus 400 includes a measuring device for measuring the height change of the processing object 56 in real time, a processing device for processing a processing object on the processing object 56, and a focus control device. Include.
- the measuring device includes a first light source 411 that emits detection light L1, a first light focusing unit 431 that focuses the detection light L1, and irradiates the object 56 with the object 56, from the object 56.
- a first light source 411 that emits detection light L1
- a first light focusing unit 431 that focuses the detection light L1, and irradiates the object 56 with the object 56, from the object 56.
- a beam splitter 422 may be provided between the first light source 411 and the first light focusing unit 431.
- the beam splitter 422 includes any one of the detection light L1 emitted from the first light source 411 and the reflection light L2 from which the detection light L1 is reflected from the reflection surface S of the object 56. Can transmit and reflect the other.
- the beam splitter 422 transmits the detection light L1 and reflects the reflected light L2 by way of example.
- the beam splitter 422 reflects the detection light L1 and reflects the reflected light L2. ) May be configured to transmit.
- the processing apparatus focuses the second light source 412 that emits the laser light L for processing the object 56, and the laser light L emitted from the second light source 412 to process the object 56.
- a second light focusing unit 432 for irradiating the light.
- a first control unit 461 may be provided between the operation unit 450 and the first light source 411 to control the first light source 411 that emits the detection light L1, and the operation unit 450 may be provided.
- a second controller 462 may be provided between the second light source 412 and the second light source 412 to control the second light source 412 that emits the laser light L.
- the focus adjusting device may automatically adjust the focus of the laser light L irradiated onto the object to be processed 56 during the laser processing operation.
- the focusing apparatus includes a driver 470 capable of moving the second light concentrator 432 up and down with respect to the object to be processed 56, and a third controller 463 capable of controlling the driver 470. ) May be included.
- the third control unit 463 is connected to the operation unit 450 and the driving unit 470 to move the third light focusing unit 432 up and down in response to the height change of the processing object 56 calculated by the operation unit 450. ) Can be controlled.
- the driving unit 470 may be configured to drive the second light focusing unit 432 and the first light focusing unit 431.
- the detection light L1 is emitted from the first light source 411 and irradiated to the object to be processed 56 through the first light focusing unit 431, and the second light source ( Laser light L is emitted from 412 and irradiated to the object to be processed 56 through the second light focusing unit 432.
- the detection light L1 emitted from the first light source 411 passes through the beam splitter 422 and is then irradiated onto the object 56 through the first light concentrator 431. Subsequently, the detection light L1 is reflected from the reflecting surface S of the object to be processed 56, and the reflected light L2 thus reflected is incident on the light sensing unit 440 after being reflected by the beam splitter 422.
- the light sensing unit 440 including the Shark-Hartman sensor detects a change in the light wave surface of the reflected light L2, and by using the detected light wave surface change, the calculation unit 450 changes the height of the object to be processed 56. Will be measured.
- the laser light L emitted from the second light source 412 is focused by the second light concentrator 432 and irradiated to the object to be processed 56 to perform a machining operation.
- the height measurement device measures the height change, and the focusing device moves the second light focusing unit 432 up and down in response to the height change.
- FIGS. 9A to 9C a laser processing method according to an exemplary embodiment of the present invention will be described with reference to FIGS. 9A to 9C.
- the laser light L emitted from the second light source 412 is focused through the second light converging unit 432 and irradiated to the object to be processed 56, wherein the laser is placed on the object 56. Condensing spots can be formed to perform the machining operation. In this case, it can be measured that there is no change in height of the object to be processed 56 measured by the measuring device.
- the detection light L1 emitted from the first light source 411 is incident on the object to be processed 56 via the first light focusing unit 431. Subsequently, the detection light L1 may be reflected by the reflective surface S of the object to be processed 56, and the reflected light L2 may be incident on the light sensing unit 440.
- the light sensing unit 440 including the Shark-Hartman sensor may detect a change in the light wave surface of the reflected light L2 reflected from the reflecting surface S of the object 56.
- the coefficient value of the defocus term calculated by the calculator 450 may be “0”.
- the reflective surface S of the object to be processed 56 in which there is no change in the light wave surface of the reflected light L2, may be set as a reference plane that is a reference for height measurement.
- FIG. 9B illustrates a case where the height of the object to be processed 56 is higher than that of FIG. 9A. That is, FIG. 9B shows a case where the reflective surface S of the object to be processed 56 is located at a position higher than the reference surface.
- the light wave surface W of the reflected light L2 reflected from the reflective surface S of the object to be processed 56 may be changed into a convex shape and may be incident on the light sensing unit 440. have.
- the coefficient of the defocus term in the Zernike polynomial stored in the calculation unit 450 is “positive (+)”. It can have a value of ”.
- the calculating unit 450 transmits the measured height change ⁇ h1 of the object to be processed 56 to the third control unit 463 of the focusing apparatus, and the third control unit 463 drives the driving unit 470 to drive the second change.
- the light focusing unit 432 may be raised.
- the driving unit 470 may raise the second light focusing unit 432 by a distance corresponding to the height change ⁇ h1 of the object to be processed 56.
- the driving unit 470 raises the second light converging unit 432 by a distance corresponding to the height change ⁇ h1 of the object to be processed, so that the laser light L is accurately processed as shown in FIG. 9A. It can be focused on the object 56, and in this state, the laser processing operation can be carried out precisely.
- FIG. 9C shows a case where the height of the workpiece 56 is lower than that of FIG. 9A. That is, FIG. 9C shows a case where the reflective surface S of the workpiece 56 is lower than the reference plane. .
- the optical wavefront W of the reflected light L2 reflected from the reflective surface S of the workpiece 56 is changed into a concave shape and is incident on the light sensing unit 440.
- the coefficient of the defocus term in the Zernike polynomial stored in the calculation unit 450 is “negative ( ⁇ )”. It can have a value of ”.
- the calculator 450 transmits the measured change in height ⁇ h2 of the object 56 to the third controller 463 of the focusing apparatus, and the third controller 463 drives the driver 470 to drive the second change.
- the light focusing unit 432 may be lowered.
- the driving unit 470 may lower the second light focusing unit 432 by a distance corresponding to the height change ⁇ h2 of the object to be processed 56.
- the driving unit 470 lowers the second light focusing unit 432 by a distance corresponding to the height change ⁇ h2 of the object to be processed, so that the laser light L is accurately processed as shown in FIG. 9A. It can be focused on the object 56, and in this state, the laser processing operation can be performed precisely.
- the reflective surface S of the object to be processed 56 is referred to as a reference surface as a reference for height measurement.
- the setting case has been described.
- the present invention is not limited thereto, but the processing object 56 when there is a change in the light wavefront of the reflected light L2, that is, when the coefficient value of the defocus term has a value of "positive” or "negative". It is also possible to set the reflective surface S of the reference plane.
- the measuring device measures the height change of the processing object 56 in real time, and thus measures.
- the focusing apparatus adjusts the position of the second light concentrator 432 so that the laser processing operation can be accurately performed in real time.
- FIG. 10 shows a laser processing apparatus according to another exemplary embodiment of the present invention.
- the laser processing apparatus 500 illustrated in FIG. 10 is the laser processing apparatus illustrated in FIGS. 9A to 9C except that the driving unit 570 moves the second light focusing unit 432 and the measuring apparatus 580. same.
- the driving unit 570 of the focusing apparatus moves the second light focusing unit 432 and the measuring device 580 up and down with respect to the object 56 to adjust the focus of the laser light L.
- FIG. It is prepared to be moved.
- FIG. 10 a case where the calculation unit 450 is excluded from the measuring device 580 to which the driving unit 570 moves is illustrated, but the measuring device 580 may include the calculation unit 450.
- the driving units 470 and 570 move the second light focusing unit 432 up and down with respect to the processing object 56 or the second light focusing unit 432 and the measuring device 580 are processed. 56, the case of moving up and down has been described. However, the present invention is not limited thereto, and the driving units 470 and 570 may adjust the focus of the laser beam L by moving the stage 50 up and down.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
레이저 가공장치 및 레이저 가공방법이 개시된다. 개시된 레이저 가공장치는, 가공대상물의 높이 변화를 측정하는 것으로, 측정을 위한 탐지광을 방출하는 제1 광원, 상기 탐지광을 집속하여 상기 가공대상물에 조사하는 제1 광집속부, 상기 탐지광이 상기 가공대상물의 반사면으로부터 반사되어 나오는 반사광의 변화를 검출하는 것으로, 샤크-하트만 센서를 포함하는 광센싱부, 및 상기 광센싱부에 의해 검출된 상기 반사광의 변화를 이용하여 상기 가공대상물의 높이 변화를 계산하는 연산부를 포함하는 측정 장치; 상기 가공대상물에 가공을 위한 레이저광을 방출하는 제2 광원; 및 상기 측정 장치에 의해 측정된 가공대상물의 높이 변화를 이용하여 상기 가공대상물에 조사되는 상기 레이저광의 초점을 조절하는 초점 조절 장치;를 포함한다.
Description
레이저 가공장치 및 레이저 가공방법에 관한 것으로, 상세하게는 레이저 가공 작업 중에 가공목표 지점에 대한 초점을 자동으로 조절할 수 있는 레이저 가공장치 및 레이저 가공방법에 관한 것이다.
샤크-하트만(shack-hartmann) 센서는 천체 망원경이나 검안기 등의 분야에서 특정 영역에서 반사되는 광파면(light wavefront)의 왜곡 또는 수차를 측정하는 장치로서, 이렇게 측정된 광파면의 왜곡 또는 수차를 이용하여 특정 영역에서 면의 형상을 측정하는데 일반적으로 이용되고 있다.
하지만, 샤크-하트만 센서는 물체의 전체적인 두께나 또는 높이 변화는 측정할 수 없는 한계가 있다. 예를 들어, 스테이지의 표면과 같은 기준면 위에 적재된 서로 다른 두께를 가지는 웨이퍼들 사이에 두께 차이를 측정하고자 할 때, 샤크-하트만 센서로는 그 두께 차이를 측정할 수 없거나 또는 측정하는데 커다란 제약이 있을 수 있다. 이는 물체에 조사되는 탐지광(probe light)의 크기가 웨이퍼들과 기준면을 모두 포함할 정도고 커야 하고, 기준면이 탐지광의 반사면이 되면서 기준면과 측정면의 높이 차이가 샤크-하트만 센서의 측정 한계(예를 들면, 탐지광 파장의 약 30배 정도)를 넘지 않아야 하기 때문이다.
본 발명의 일 실시예에 따르면 레이저 가공 작업 중에 가공목표 지점에 대한 초점을 자동으로 조절할 수 있는 레이저 가공장치 및 레이저 가공방법을 제공한다.
본 발명의 일 측면에 있어서,
가공대상물의 높이 변화를 측정하는 것으로, 측정을 위한 탐지광(probe light)을 방출하는 제1 광원, 상기 탐지광을 집속하여 상기 가공대상물에 조사하는 제1 광집속부, 상기 탐지광이 상기 가공대상물의 반사면으로부터 반사되어 나오는 반사광의 변화를 검출하는 것으로, 샤크-하트만(shack-hartmann) 센서를 포함하는 광센싱부, 및 상기 광센싱부에 의해 검출된 상기 반사광의 변화를 이용하여 상기 가공대상물의 높이 변화를 계산하는 연산부를 포함하는 측정 장치;
상기 가공대상물에 가공을 위한 레이저광을 방출하는 제2 광원; 및
상기 측정 장치에 의해 측정된 가공대상물의 높이 변화를 이용하여 상기 가공대상물에 조사되는 상기 레이저광의 초점을 조절하는 초점 조절 장치;를 포함하는 레이저 가공장치가 제공된다.
상기 제2 광원으로부터 방출된 상기 레이저 광은 상기 제1 광집속부를 경유하여 상기 가공대상물에 조사될 수 있다.
상기 초점 조절 장치는 상기 제1 광집속부을 상기 가공대상물에 대해 상하로 이동시키거나 또는 상기 측정장치를 상기 가공대상물에 대해 상하로 이동시키는 구동부를 포함할 수 있다. 그리고, 상기 초점 조절 장치는 상기 연산부와 연결되어 상기 구동부의 상하 이동을 제어하는 제어부를 더 포함할 수 있다.
상기 제1 및 제2 광원과 상기 제1 광집속부 사이에는 상기 탐지광 및 상기 레이저광 중 어느 하나는 투과시키고 다른 하나는 반사시키는 다이크로익 미러(dichroic mirror)가 마련될 수 있다.
상기 제1 광원과 상기 다이크로익 미러 사이에는 상기 탐지광 및 상기 반사광 중 어느 하나는 투과시키고, 다른 하나는 반사시키는 빔 분리기(beam splitter)가 마련될 수 있다. 그리고, 상기 다이크로익 미러와 상기 빔 분리기 사이에는 파장판(wave plate) 및 대역통과 필터(bandpass filter)가 더 마련될 수 있다.
상기 제2 광원으로부터 방출된 상기 레이저광을 집속하여 상기 가공대상물에 조사하는 제2 광집속부를 포함할 수 있다.
상기 초점 조절 장치는 상기 제2 광집속부를 상기 가공대상물에 대해 상하로 이동시키거나 또는 상기 제2 광집속부 및 상기 측정장치를 상기 가공대상물에 대해 상하로 이동시키는 구동부를 포함할 수 있다. 그리고, 상기 초점 조절 장치는 상기 연산부와 연결되어 상기 구동부의 상하 이동을 제어하는 제어부를 더 포함할 수 있다
상기 제1 광원과 상기 제1 광집속부 사이에는 상기 탐지광 및 상기 반사광 중 어느 하나는 투과시키고, 다른 하나는 반사시키는 빔 분리기가 마련될 수 있다. .
상기 샤크-하트만 센서는 상기 반사광의 광파면(light wavefront) 변화를 검출할 수 있다. 상기 연산부는 상기 광센싱부에 의해 검출된 상기 반사광의 변화를 수식으로 표현한 제르니케 다항식(Zernike polynomials)을 이용하여 상기 가공대상물의 높이 변화를 계산할 수 있다. 여기서, 상기 가공대상물의 높이 변화는 상기 제르니케 다항식의 디포커스(defocus)항 계수값 변화에 대응할 수 있다.
본 발명의 다른 측면에 있어서,
탐지광을 방출하는 제1 광원, 상기 탐지광을 집속하여 가공대상물에 조사하는 제1 광집속부, 상기 탐지광이 반사되어 나오는 반사광의 변화를 검출하는 것으로, 샤크-하트만 센서를 포함하는 광센싱부, 및 상기 반사광의 변화를 이용하여 상기 가공대상물의 높이 변화를 계산하는 연산부를 포함하는 측정 장치; 레이저광을 방출하는 제2 광원; 및 상기 레이저광의 초점을 조절하는 초점 조절 장치;를 포함하는 레이저 가공장치를 이용하여 가공대상물을 가공하는 방법에 있어서,
상기 가공대상물의 높이 변화를 상기 측정 장치가 측정하는 단계; 및
상기 초점 조절 장치가 상기 측정장치에 의해 측정된 상기 가공대상물의 높이 변화에 대응하도록 상기 가공대상물에 조사되는 상기 레이저광의 초점을 조절하는 단계;를 포함하는 레이저 가공방법이 제공된다.
본 발명의 실시예에 의하면, 측정장치에서 샤크-하트만 센서를 포함하는 광검출부가 가공대상물로부터 반사되는 반사광의 광파면 변화를 검출하고, 연산부가 반사광의 광파면 변화를 이용하여 디포커스항의 계수값을 계산함으로써 가공대상물의 높이 변화를 측정할 수 있다. 따라서, 레이저 가공작업 중에 가공대상물의 높이가 변화하는 경우 측정장치가 실시간으로 가공대상물의 높이 변화를 측정하고, 이렇게 측정된 가공대상물의 높이 변화를 이용하여 초점을 자동적으로 조절함으로써 레이저 가공작업을 실시간으로 정확하게 수행할 수 있다.
도 1은 본 발명의 예시적인 실시예에 따른 측정장치를 개략적으로 도시한 것이다.
도 2a 내지 도 2c는 도 1에 도시된 측정장치를 이용하여 물체의 두께나 높이 변화를 측정하는 원리를 설명하기 위한 도면들이다.
도 3은 도 2a 내지 도 2c에서 반사면의 높이에 따라 검출된 반사광의 변화로부터 계산된 디포커스항 계수값을 예시적으로 도시한 것이다.
도 4는 본 발명의 다른 예시적인 실시예에 따른 측정방법을 설명하는 흐름도(flow chart)이다.
도 5a 및 도 5b는 도 4에 도시된 측정방법의 구체적인 구현예를 도시한 것이다.
도 6a 및 도 6b는 도 4에 도시된 측정방법의 다른 구현예를 도시한 것이다.
도 7a 내지 도 7c는 본 발명의 예시적인 실시예에 따른 레이저 가공장치 및 레이저 가공 방법을 도시한 것이다.
도 8은 본 발명의 다른 예시적인 실시예에 따른 레이저 가공장치를 도시한 것이다.
도 9a 내지 도 9c는 본 발명의 다른 예시적인 실시예에 따른 레이저 가공장치 및 레이저 가공 방법을 도시한 것이다.
도 10은 본 발명의 다른 예시적인 실시예에 따른 레이저 가공장치를 도시한 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 아래에 예시되는 실시예는 본 발명의 범위를 한정하는 것은 아니며, 본 발명을 이 기술 분야에서 통상의 지식을 가진 자에게 설명하기 위해서 제공되는 것이다. 도면에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 각 구성요소의 크기나 두께는 설명의 명료성을 위하여 과장되어 있을 수 있다. 또한, 소정의 물질층이 기판이나 다른 층에 존재한다고 설명될 때, 그 물질층은 기판이나 다른 층에 직접 접하면서 존재할 수도 있고, 그 사이에 다른 제3의 층이 존재할 수도 있다. 그리고, 아래의 실시예에서 각 층을 이루는 물질은 예시적인 것이므로, 이외에 다른 물질이 사용될 수도 있다.
도 1은 본 발명의 예시적인 실시예에 따른 측정장치를 개략적으로 도시한 것이다. 도 1에 도시된 측정장치(100)는 물체의 두께 또는 높이 변화를 측정하거나 물체의 형상을 측정할 수 있다.
도 1을 참조하면, 측정장치(100)는 스테이지(50)에 적재된 대상 물체(55)의 상부에 마련될 수 있다. 본 실시예에 따른 측정장치(100)는 광원(110), 광집속부(130), 광센싱부(10) 및 연산부(150)를 포함할 수 있다. 여기서, 광원(110)과 광집속부(130) 사이에는 빔 분리기(beam splitter,120)가 더 마련될 수 있다.
광원(110)은 대상 물체(55)의 높이를 측정하기 위해 대상 물체(55)에 조사하는 탐지광(probe light, L1)을 방출한다. 이렇게 광원(110)으로부터 방출되는 탐지광(L1)은 빔 분리기(120)를 투과할 수 있다. 여기서, 빔 분리기(120)는 탐지광(L1)과 후술하는 반사광(L2) 중 어느 하나의 광은 투과시키고, 다른 하나의 광은 반사시킬 수 있다. 도 1에는 빔 분리기(120)가 탐지광(L1)은 투과시키고 반사광(L2)은 반사시키는 경우가 예시적으로 도시되어 있다. 그러나, 본 실시예는 이에 한정되지 않고, 빔 분리기(120)가 탐지광(L1)은 반시시키고 반사광(L2)은 투과시키도록 구성될 수도 있다. 이러한 빔 분리기(120)를 경유한 탐지광(L1)은 광집속부(130)에 의해 집속된 다음, 스테이지(50)에 적재된 대상 물체(55)에 조사된다.
광집속부(130)에 의해 집속되어 대상 물체(55)에 조사된 탐지광(L1)은 대상 물체(55)의 반사면으로부터 반사된다. 이렇게 대상 물체(55)로부터 반사된 반사광(L2)은 광집속부(130)를 경유하여 빔 분리기(120)에서 반사된 다음, 광센싱부(140)에 의해 검출될 수 있다. 본 실시예에서 광센싱부(140)는 반사광(L2)의 광파면(light wavefron) 변화를 검출할 수 있는 샤크-하트만(shack-hartmann) 센서를 포함할 수 있다. 샤트-하트만 센서는 반사광(L2)의 광파면의 왜곡 또는 수차를 측정함으로써 탐지광(L1)에 대한 반사광(L2)의 광파면 변화를 검출할 수 있다.
연산부(150)는 광센싱부(140)에 의해 검출된 반사광(L2)의 변화를 이용하여 대상 물체(55)의 반사면 높이변화를 측정할 수 있다. 구체적으로, 광센싱부(140)가 반사광(L2)의 광파면 변화를 검출하게 되면, 이 광파면 변화에 해당하는 전기 신호를 연산부(150)에 보내게 된다. 그리고, 연산부(150)는 광센싱부(140)에 의해 검출된 반사광(L2)의 광파면 변화를 수학적 모델인 제르니케 다항식(Zernike polynomials)으로 구성함으로써 대상 물체(55)의 반사면에 대한 높이 변화를 측정할 수 있다. 제르니케 다항식은 다수의 항으로 구성될 수 있으며, 여기서 제르니케 다항식을 구성하는 각 항들은 광학적 수차들(aberration)을 의미하는 것으로, 서로 독립적(orthogonal)이다. 이러한 제르니케 다항식을 구성하는 항들 중에서 디포커스(defocus)항의 계수값이 대상 물체(55)의 두께나 높이 변화를 결정할 수 있다. 이에 대한 상세한 설명은 후술한다.
측정장치(100)는 대상 물체(55)에 대해 상대적으로 상하 이동이 가능하도록 마련될 수 있다. 예를 들면, 도 1에서 측정 장치(100)가 z 방향을 따라 상하 이동하거나 또는 대상 물체(55)가 적재된 스테이지(50)가 z 방향을 따라 상하 이동할 수 있다. 또한, 측정장치(100) 및 스테이지(50) 모두가 모두 z 방향을 따라 이동할 수도 있다.
도 2a 내지 도 2c는 도 1에 도시된 측정장치를 이용하여 물체의 두께나 높이 변화를 측정하는 원리를 설명하기 위한 도면들이다.
도 2a에는 광원(110)으로부터 방출된 탐지광(L1)이 광집속부(130)에 의해 집속되어 반사면(S)에 입사된 후 반사면(S)으로부터 반사되는 모습이 도시되어 있다. 도 2a를 참조하면, 광원(110)으로부터 방출되어 빔 분리기(120)를 투과한 탐지광(L1)은 광집속부(130)에 의해 집속된 다음, 반사면(S)에 입사된다. 여기서, 탐지광(L1)은 반사면(S) 상에 포커싱되어 집광점을 형성할 수 있다. 이어서, 탐지광(L1)은 반사면(S)에서 반사되고, 반사광(L2)은 빔 분리기(120)에서 반사된 후 광센싱부(140)에 입사될 수 있다.
샤크-하트만 센서를 포함하는 광센싱부(140)는 반사면(S)으로부터 반사된 반사광(L2)의 광파면 변화를 검출할 수 있다. 도 2a에서, 반사면(S)으로부터 반사된 반사광(L2)의 광파면(W)은 탐지광(L1)과 마찬가지로 모두 평면파면(plane wavefront)이므로, 반사광(L2)의 광파면 변화는 없게 된다. 이와 같이, 반사광(L2)의 광파면 변화가 없는 반사면(S)을 높이 측정의 기준이 되는 기준면(reference surface)으로 설정할 수 있다. 여기서, 기준면의 높이는 예를 들면 “0”으로 정해질 수 있다.
이와 같이, 반사면(S)으로부터 반사된 반사광(L2)의 광파면 변화가 없게 되면 연산부(150)에 저장된 제르니케 다항식에서 디포커스항의 계수값은 “0”이 될 수 있다. 이 경우, 반사면(S)의 높이는 기준면의 높이와 동일한 “0”으로 정해질 수 있다.
도 2b에는 광원(110)으로부터 방출된 탐지광(L1)이 광집속부(130)에 의해 집속되어 반사면(S)에 입사된 후 반사되는 모습이 도시되어 있다. 도 2b에서는 반사면(S)이 기준면 보다 높은 위치에 마련되어 있으며, 이 경우 반사면(S)의 높이는 “양(+)”의 값을 가질 수 있다. 2b를 참조하면, 광원(110)으로부터 방출되어 빔 분리기(120)를 투과한 탐지광(L1)은 광집속부(130)에 의해 집속된 다음, 반사면(S)에 입사된다. 여기서, 반사면(S)은 기준면 보다 높은 위치에 마련되어 있으므로, 광집속부(130)를 경유한 탐지광(L1)은 반사면(S) 상에 디포커싱될 수 있다. 그리고, 이러한 탐지광(L1)은 반사면(S)에서 반사되고, 반사광(L2)은 빔 분리기(120)에서 반사된 후 광센싱부(140)에 입사될 수 있다. 이 경우, 빔 분리기(120)에서 반사되어 나가는 반사광(L2)은 발산하면서 광센싱부(140)에 입사될 수 있다.
샤크-하트만 센서를 포함하는 광센싱부(140)는 반사면(S)으로부터 나오는 반사광(L2)의 광파면 변화를 검출할 수 있다. 도 2b에 도시된 바와 같이, 기준면보다 높은 위치에 있는 반사면(S)으로부터 반사된 반사광(L2)은 그 광파면(W)이 볼록한 형태로 변화되어 광센싱부(140)에 입사될 수 있다. 이와 같이, 광센싱부(140)에 의해 검출된 반사광(L2)의 광파면(W)이 볼록한 형태로 변화하게 되면 연산부(150)에 저장된 제르니케 다항식에서 디포커스항의 계수는 “양(+)”의 값을 가질 수 있다.
도 2c에는 광원(110)으로부터 방출된 탐지광(L1)이 광집속부(130)에 의해 집속되어 반사면(S)에 입사된 후 반사되는 모습이 도시되어 있다. 도 2c에서는 반사면(S)이 기준면 보다 낮은 위치에 마련되어 있으며, 이 경우 반사면(S)의 높이는 “음(-)”의 값을 가질 수 있다. 도 2c를 참조하면, 광원(110)으로부터 방출되어 빔 분리기(120)를 투과한 탐지광(L1)은 광집속부(130)에 의해 집속된 다음, 반사면(S)에 입사된다. 여기서, 반사면(S)은 기준면 보다 낮은 위치에 마련되어 있으므로, 광집속부(130)를 경유한 탐지광(L1)은 반사면(S) 상에 디포커싱될 수 있다. 그리고, 이러한 탐지광(L1)은 반사면(S)에서 반사되고, 반사광(L2)은 빔 분리기(120)에서 반사된 후 광센싱부(140)에 입사될 수 있다. 이 경우, 빔 분리기(120)에서 반사되어 나가는 반사광(L2)은 수렴하면서 광센싱부(140)에 입사될 수 있다.
샤크-하트만 센서를 포함하는 광센싱부(140)는 반사면(S)으로부터 반사된 반사광(L2)의 광파면 변화를 검출할 수 있다. 도 2c에 도시된 바와 같이, 기준면 보다 낮은 위치에 있는 반사면(S)으로부터 반사된 반사광(L2)은 그 광파면(W)이 오목한 형태로 변화되어 광센싱부(140)에 입사하게 된다. 이와 같이, 광센싱부(140)에 의해 검출된 반사광(L2)의 광파면(W)이 오목한 형태로 변화하게 되면 연산부(150)에 저장된 제르니케 다항식에서 디포커스항의 계수는 “음(-)”의 값을 가질 수 있다.
도 3은 도 2a 내지 도 2c에서 반사면(S)의 높이에 따라 검출된 반사광(L2)의 변화로부터 계산된 디포커스항 계수값을 예시적으로 도시한 것이다.
도 3을 참조하면, 반사면(S)의 높이가 기준면의 높이와 동일한 “0”인 경우, 제르니케 다항식의 디포커스항의 계수는 “0”이 됨을 알 수 있다. 그리고, 반사면(S)의 높이가 기준면 보다 높은 “양(+)”의 값을 가지는 경우에는 제르니케 다항식의 디포커스항의 계수는 “양(+)”의 값을 가짐을 알 수 있다. 이 경우, 반사면(S)의 높이가 높아질수록 디포커스항의 계수값도 점점 커지게 된다. 한편, 반사면(S)의 높이가 기준면 보다 낮은 “음(-)”의 값을 가지는 경우에는 제르니케 다항식의 디포커스항의 계수는 “음(-)”의 값을 가짐을 알 수 있다. 이 경우, 반사면(S)의 높이가 낮아질수록 디포커스항의 계수값도 점점 작아지게 된다. 이상과 같은 반사면(S)의 높이 변화에 따른 디포커스항의 계수값 변화는 후술하는 바와 같이 측정장치(100)의 연산부(150)에 캘리브레이션 데이터(calibration data)로서 저장될 수 있다.
한편, 이상에서는 반사광(L2)의 광파면 변화가 없는 경우, 즉 디포커스항의 계수값이 “0”이 되는 반사면(S)을 높이 측정의 기준이 되는 기준면으로 설정한 경우가 예시적으로 설명되었다. 그러나, 본 실시예는 이에 한정되지 않고 디포커스항의 계수값이 “양(+)” 또는 “음(-)”의 값이 되는 반사면(S)을 기준면으로 설정할 수도 있다. 이 경우에도 기준면에 대한 반사면(S)의 높이 변화에 따라 디포커스항의 계수값은 변화될 수 있으며, 이렇게 계산된 디포커스항의 계수값 변화를 이용하여 반사면의 높이 변화를 측정함으로써 캘리브레이션 데이터를 만들수 있게 된다.
도 4는 본 발명의 다른 예시적인 실시예에 따른 측정방법을 설명하는 흐름도(flow chart)이다. 도 4에는 도 1에 도시된 측정장치(100)를 이용하여 물체의 두께나 높이 변화를 측정하는 방법이 도시되어 있다.
도 4를 참조하면, 먼저 측정장치의 기준점을 설정한다(401). 여기서, 기준점은 전술한 바와 같이 높이가 “0”인 기준면 상에 설정될 수 있다. 이러한 기준점은 후술하는 바와 같이, 기준 물체의 반사면 상에 설정되거나 또는 스테이지의 반사면 상에 설정될 수 있다.
이어서, 기준점의 상하 이동에 따른 디포커스항의 계수값을 측정한다(402). 여기서, 기준점의 상하 이동은 도 2a 내지 도 2c에 도시된 바와 같이 반사면을 기준면에서 상하로 이동함으로써 이루어질 수 있으며, 이러한 기준점의 상하 이동에 따라 반사광(L2)의 광파면 변화가 발생하게 되고, 이러한 반사면(L2)의 광파면 변화를 광센싱부(140)에서 검출한 다음, 이를 이용하여 연산부(150)에 저장된 제르니케 다항식의 디포커스항의 계수값을 측정할 수 있다. 그리고, 이렇게 측정된 기준점의 상하 이동에 따른 디포커스항의 계수값 변화를 나타내는 캘리브레이션 데이터를 연산부(150)에 저장한다(403).
다음으로, 스테이지(50) 상에 측정하고자 하는 대상 물체(55)를 로딩한다. 측정장치(100)는 전술한 기준점 위치로 이동한 다음, 광원(110)으로부터 탐지광(L1)을 출사하여 대상 물체(55)에 조사한다. 여기서, 광원(110)으로부터 출사된 탐지광(L1)은 빔 분리기(120)를 투과한 다음, 광집속부(130)에 의해 집속되어 대상 물체(55)에 조사될 수 있다.
이어서, 광센싱부(140)가 대상 물체(55)의 반사면으로부터 나오는 반사광(L2)의 광파면 변화를 검출한다. 구체적으로, 광집속부(130)를 경유한 탐지광(L1)은 대상 물체(55)의 반사면에서 반사되고, 이렇게 반사되어 나오는 반사광(L2)은 광센싱부(140)에 입사된다. 여기서, 대상 물체(55)의 반사면에서 나오는 반사광(L2)은 광집속부(130)를 경유한 다음 빔 분리기(120)에 의해 반사된 후 광센싱부(140)에 입사될 수 있다. 그리고, 샤크-하트만 센서를 포함하는 광센싱부(140)가 반사광(L2)의 광파면 변화를 검출할 수 있다.
다음으로, 광센싱부(140)에 의해 검출된 반사광(L2)의 변화를 이용하여 대상 물체(55)의 반사면 높이 변화를 측정한다. 구체적으로, 광센싱부(140)에 의해 검출된 반사광(L2)의 광파면 변화는 연산부(150)에 입력되고, 연산부(150)에서는 이러한 반사광(L2)의 광파면 변화를 이용하여 제르니케 다항식의 디포커스항의 계수값을 계산한다. 그리고, 계산된 디포커스항의 계수값을 연산부(150)에 저장된 캘리브레이션 데이터와 비교함으로써 기준점에 대한 대상 물체(55)의 반사면 높이 변화를 측정할 수 있다. 이렇게 측정된 반사면의 높이 변화를 이용하여 대상 물체(55)의 두께도 측정할 수 있게 된다.
도 5a 및 도 5b는 도 4에 도시된 측정방법의 구체적인 구현예를 도시한 것이다.
도 5a를 참조하면, 스테이지(50) 상에 기준 물체(reference object, 51)를 로딩한다. 여기서, 기준 물체(51)는 이미 알고 있는 두께(t1)를 가질 수 있다. 이어서, 측정장치(100)의 기준점(P)을 설정한다. 측정장치(100)의 기준점(P)은 기준 물체(51)의 반사면(S1) 상에 설정될 수 있다. 다음으로, 측정장치(100)의 광원(110)으로부터 방출되어 빔 분리기(120)를 투과한 탐지광(L1)은 광집속부(130)에 의해 집속된 다음, 기준 물체(51)의 반사면(S1)에 입사된다. 그리고, 탐지광(L1)은 반사면(S1)에서 반사되고, 반사광(L2)은 빔 분리기(120)에서 반사된 후 광센싱부(140)에 입사될 수 있다.
샤크-하트만 센서를 포함하는 광센싱부(140)는 기준 물체(51)의 반사면(S1)으로부터 반사된 반사광(L2)의 광파면 변화를 검출할 수 있다. 도 5a에는 도 2a에 도시된 바와 같이 기준 물체(51)의 반사면(S1)으로부터 반사되어 광센싱부(140)에 입사된 반사광(L2)의 광파면(W)이 평면파면가 됨으로써 반사광(L2)의 광파면 변화가 없는 경우가 도시되어 있다. 이와 같이, 반사광(L2)의 광파면 변화가 없는 기준 물체(51)의 반사면(S1)은 높이 측정의 기준이 되는 기준면에 해당될 수 있다. 여기서, 기준면의 높이는 “0”으로 정해질 수 있다.
이와 같이, 기준 물체(51)의 반사면(S1)으로부터 반사된 반사광(L2)의 광파면 변화가 없게 되면 연산부(150)에 저장된 제르니케 다항식에서 디포커스항의 계수값은 “0”이 될 수 있다.
다음으로, 기준점(P)의 상하 이동에 따른 디포커스항의 계수값을 측정한다. 여기서, 기준점(P)의 상하 이동은 도 2b 및 도 2c에 도시된 바와 같이 기준 물체(51)의 반사면(S1)을 기준면에서 상하로 이동함으로써 이루어질 수 있다. 이러한 기준점(P)의 상하 이동은 스테이지(50)와 측정장치(100) 중 적어도 하나가 상하 이동함으로써 이루어질 수 있다.
기준점(P)의 상하 이동에 따라 기준 물체(51)의 반사광(L2)의 광파면 변화가 발생하게 되고, 이러한 반사면(S1)의 광파면 변화를 광센싱부(140)에서 검출한 다음, 이를 이용하여 연산부(150)에 저장된 제르니케 다항식의 디포커스항의 계수값을 측정할 수 있다.
구체적으로, 기준 물체(51)의 반사면(S1)이 도 2b에 도시된 바와 같이 기준면에서 위쪽으로 이동하게 되면 기준점(P)의 높이는 “양(+)”의 값을 가지게 되고, 이 경우 기준 물체(51)의 반사면(S1)으로부터 반사된 반사광(L2)의 광파면(W)은 볼록한 형태로 변화되어 광센싱부(140)에 검출될 수 있다. 이와 같이, 광센싱부(140)에 의해 검출된 반사광(L2)의 광파면(W)이 볼록한 형태로 변화하게 되면 연산부(150)에 저장된 반사광(L2)의 광파면 변화를 수식으로 표현한 제르니케 다항식에서 디포커스항의 계수는 “양(+)”의 값을 가질 수 있다.
다음으로, 기준 물체(51)의 반사면(S1)이 도 2c에 도시된 바와 같이 기준면에서 아래쪽으로 이동하게 되면 기준점(P)의 높이는 “음(-)”의 값을 가지게 되고, 이 경우 기준 물체(51)의 반사면(S1)으로부터 반사된 반사광(L2)의 광파면(W)은 오목한 형태로 변화되어 광센싱부(140)에 검출될 수 있다. 이와 같이, 광센싱부(140)에 의해 검출된 반사광(L2)의 광파면(W)이 오목한 형태로 변화하게 되면 연산부(150)에 저장된 제르니케 다항식에서 디포커스항의 계수는 “음(-)”의 값을 가질 수 있다.
한편, 이상에서는 반사광(L2)의 광파면 변화가 없는 경우, 즉 디포커스항의 계수값이 “0”인 경우에서의 반사면(S1)을 높이 측정의 기준이 되는 기준면으로 설정한 경우가 설명되었다. 그러나, 이에 한정되지 않고 반사광(L2)의 광파면 변화가 있는 경우, 즉 디포커스항의 계수값이 “양(+)” 또는 “음(-)”의 값을 가지는 경우에서의 반사면(S1)을 높이 측정의 기준이 되는 기준면으로 설정할 수도 있다.
이상과 같이, 기준점(P)의 상하 이동에 따른 디포커스항의 계수값 변화를 계산하고 이렇게 계산된 캘리브레이션 데이터를 연산부(150)에 저장한다. 그리고, 기준 물체(51)는 스테이지(50) 상에서 언로딩(unloading)될 수 있다.
도 5b를 참조하면, 스테이지(50) 상에 측정하고자 하는 대상 물체(55)를 로딩한다. 측정장치(100)는 전술한 기준점(P)의 위치로 이동한 다음, 광원(110)으로부터 탐지광(L1)을 출사하여 대상 물체(55)에 조사한다. 여기서, 광원(110)으로부터 출사된 탐지광(L1)은 빔 분리기(120)를 투과한 다음, 광집속부(130)에 의해 집속되어 대상 물체(55)에 조사될 수 있다.
광센싱부(140)는 대상 물체(55)의 반사면(S2)으로부터 나오는 반사광(L2)의 광파면 변화를 검출한다. 구체적으로, 광집속부(130)를 경유한 탐지광(L1)은 대상 물체(55)의 반사면(S2)에서 반사되고, 반사광(L2)은 광센싱부(140)에 입사된다. 여기서, 대상 물체(55)의 반사면(S2)에서 나오는 반사광(L2)은 광집속부(130)를 경유한 다음 빔 분리기(120)에 의해 반사된 후 광센싱부(140)에 입사될 수 있다. 샤크-하트만 센서를 포함하는 광센싱부(140)는 반사광(L2)의 광파면 변화를 검출할 수 있다.
광센싱부(140)에 의해 검출된 반사광(L2)의 변화를 이용하여 대상 물체(55)의 반사면(S2) 높이 변화를 측정한다. 구체적으로, 광센싱부(140)에 의해 검출된 반사광(L2)의 광파면 변화는 연산부(150)에 입력되고, 연산부(150)에서는 이러한 반사광(L2)의 광파면 변화를 이용하여 제르니케 다항식의 디포커스항의 계수값을 계산한다. 그리고, 이렇게 계산된 디포커스항의 계수값을 연산부(150)에 저장된 캘리브레이션 데이터와 비교함으로써 대상 물체(55)의 반사면(S2) 높이 변화(Δh)를 측정할 수 있다. 그리고, 이렇게 측정된 대상 물체(55)의 반사면(S2) 높이 변화(Δh)에 기준 물체(51)의 두께(t1)를 더하게 되면 대상 물체(55)의 두께(t2)를 측정할 수 있다.
도 6a 및 도 6b는 도 4에 도시된 측정방법의 다른 구현예를 도시한 것이다. 도 6a를 참조하면, 측정장치(100)의 기준점(P)을 설정한다. 여기서, 측정장치(100)의 기준점(P)은 스테이지(50)의 반사면(S1) 상에 설정될 수 있다. 다음으로, 광원(110)으로부터 방출되어 빔 분리기(120)를 투과한 탐지광(L1)은 광집속부(130)에 의해 집속된 다음, 스테이지(50)의 반사면(S1)에 입사된다. 그리고, 탐지광(L1)은 반사면(S1)에서 반사되고, 반사광(L2)은 빔 분리기(120)에서 반사된 후 광센싱부(140)에 입사될 수 있다.
샤크-하트만 센서를 포함하는 광센싱부(140)는 스테이지(50)의 반사면(S1)으로부터 반사된 반사광(L2)의 광파면 변화를 검출할 수 있다. 도 6a에는 도 2a에 도시된 바와 같이 스테이지(50)의 반사면(S1)으로부터 반사되어 광센싱부(140)에 입사된 반사광(L2)의 광파면(W)이 평면파면가 됨으로써 반사광(L2)의 광파면 변화가 없는 경우가 도시되어 있다. 이와 같이, 반사광(L2)의 광파면 변화가 없는 스테이지(50)의 반사면(S1)은 높이 측정의 기준이 되는 기준면에 해당될 수 있다. 여기서, 기준면의 높이는 “0”으로 정해질 수 있다. 이와 같이, 스테이지(50)의 반사면(S1)으로부터 반사된 반사광(L2)의 광파면 변화가 없게 되면 연산부(150)에 저장된 제르니케 다항식에서 디포커스항의 계수값은 “0”이 될 수 있다.
다음으로, 기준점(P)의 상하 이동에 따른 디포커스항의 계수값을 측정한다. 여기서, 기준점(P)의 상하 이동은 도 2b 및 도 2c에 도시된 바와 같이 스테이지(50)의 반사면(S1)을 기준면에서 상하로 이동함으로써 이루어질 수 있다. 이러한 기준점(P)의 상하 이동은 스테이지(50)와 측정장치(100) 중 적어도 하나가 상하 이동함으로써 이루어질 수 있다.
기준점(P)의 상하 이동에 따라 스테이지(50)의 반사면(S1)에서 반사되는 반사광(L2)의 광파면 변화가 발생하게 되고, 이러한 반사광(L2)의 광파면 변화를 광센싱부(140)에서 검출한 다음, 이를 이용하여 연산부(150)에 저장된 제르니케 다항식의 디포커스항의 계수값을 측정할 수 있다. 여기서, 기준점(P)의 상하 이동에 따른 디포커스항의 계수값 측정은 전술한 실시예에서 상세하게 설명되었으므로 이에 대한 설명은 생략한다. 이와 같이, 기준점(P)의 상하 이동에 따른 디포커스항의 계수값 변화를 계산하고 이렇게 캘리브레이션 데이터를 연산부에 저장한다.
한편, 이상에서는 반사광(L2)의 광파면 변화가 없는 경우, 즉 디포커스항의 계수값이 “0”인 경우에서의 반사면(S1)을 높이 측정의 기준이 되는 기준면으로 설정한 경우가 설명되었다. 그러나, 이에 한정되지 않고 반사광(L2)의 광파면 변화가 있는 경우, 즉 디포커스항의 계수값이 “양(+)” 또는 “음(-)”의 값을 가지는 경우에서의 반사면(S1)을 높이 측정의 기준이 되는 기준면으로 설정할 수도 있다.
도 6b를 참조하면, 스테이지(50) 상에 측정하고자 하는 대상 물체(55)를 로딩한다. 측정장치(100)는 전술한 기준점(P)의 위치로 이동한 다음, 광원(110)으로부터 탐지광(L1)을 출사하여 대상 물체(55)에 조사한다. 여기서, 광원(110)으로부터 출사된 탐지광(L1)은 빔 분리기(120)를 투과한 다음, 광집속부(130)에 의해 집속되어 대상 물체(55)에 조사될 수 있다.
광센싱부(140)는 대상 물체(55)의 반사면(S2)으로부터 나오는 반사광(L2)의 광파면 변화를 검출한다. 구체적으로, 광집속부(130)를 경유한 탐지광(L1)은 대상 물체(55)의 반사면(S2)에서 반사되고, 반사광(L2)은 광센싱부(140)에 입사된다. 여기서, 대상 물체(55)의 반사면(S2)에서 나오는 반사광(L2)은 광집속부(130)를 경유한 다음 빔 분리기(120)에 의해 반사된 후 광센싱부(140)에 입사될 수 있다. 그리고, 샤크-하트만 센서를 포함하는 광센싱부(140)가 반사광(L2)의 광파면 변화를 검출할 수 있다.
광센싱부(140)에 의해 검출된 반사광(L2)의 변화를 이용하여 대상 물체(55)의 반사면(S2) 높이 변화를 측정한다. 구체적으로, 광센싱부(140)에 의해 검출된 반사광(L2)의 광파면 변화는 연산부(150)에 입력되고, 연산부(150)에서는 이러한 반사광의 광파면 변화를 이용하여 제르니케 다항식의 디포커스항의 계수값을 계산한다. 그리고, 계산된 디포커스항의 계수값을 연산부(150)에 저장된 캘리브레이션 데이터와 비교함으로써 대상 물체(55)의 반사면(S2) 높이 변화(Δh)를 측정할 수 있다. 여기서, 대상 물체(55)의 반사면(S2) 높이 변화(Δh)는 대상 물체의 두께(t)에 해당될 수 있다.
이상과 같은 측정장치(100)에 따르면, 광집속부(130)가 탐지광(L1)을 집속하여 대상 물체(55)에 조사하고, 샤크-하트만 센서를 포함하는 광검출부(140)가 대상 물체(55)로부터 반사되는 반사광(L2)의 광파면 변화를 검출하며, 연산부(150)가 광검출부(140)에 의해 검출된 반사광의 광파면 변화를 이용하여 디포커스항의 계수값을 계산함으로써 대상 물체(55)의 반사면 높이 변화를 측정할 수 있다. 이에 따라, 예를 들면 웨이퍼나 또는 판상 물체 등과 같은 대상 물체(55)의 두께 또는 높이 변화를 효과적으로 정확하게 측정할 수 있다. 또한, 광원(110)으로부터 출사되는 탐지광(L1)을 대상 물체(55)에 스캔하게 되면 스캔 라인이나 스캔 면적에 따른 대상 물체(55)의 형상도 측정할 수 있다. 그리고, 샤크-하트만 센서를 포함하는 광검출부(140)에 의해 측정되는 두께 또는 높이 변화는 광검출부(140)가 기울어진 정도와는 무관하므로 측정장치(100)의 셋업 시 광검출부(140)을 광학적으로 용이하게 정렬할 수 있다.
이하에서는 전술한 측정장치를 이용하여 자동적으로 초점을 조절하여 레이저 가공작업을 수행할 수 있는 레이저 가공장치 및 레이저 가공방법에 대해 설명한다.
도 7a 내지 도 7c는 본 발명의 예시적인 실시예에 따른 레이저 가공장치 및 레이저 가공 방법을 도시한 것이다.
도 7a 내지 도 7c를 참조하면, 레이저 가공장치(200)는 제1 광원(211), 광집속부(230), 광센싱부(240) 및 연산부(250)를 포함하는 측정장치와, 가공대상물(56)에 레이저광(L)을 방출하는 제2 광원(212)과, 초점 조절장치를 포함한다.
측정장치는 스테이지(50)에 적재된 가공대상물(56)의 높이 변화를 실시간으로 측정할 수 있다. 제1 광원(211)은 측정을 위한 탐지광(L1)을 방출한다. 그리고, 광집속부(230)는 탐지광(L1)을 집속하여 가공대상물(56)에 조사하며, 광센싱부(240)는 탐지광(L1)이 가공대상물(56)의 반사면에서 반사되어 나오는 반사광(L2)의 변화를 검출한다. 여기서, 광센싱부(240)는 반사광(L2)의 광파면 변화를 검출할 수 있는 샤크-하트만 센서를 포함한다. 그리고, 연산부(250)는 광센싱부(240)에 의해 검출된 반사광(L2)의 변화를 이용하여 가공대상물(56)의 높이 변화를 측정할 수 있다. 이러한 연산부(250)에서는 반사광(L2)의 광파면 변화를 수학적 모델인 수학적 모델인 제르니케 다항식으로 구성함으로써 가공대상물(56)의 높이 변화를 측정할 수 있다. 제르니케 다항식은 다수의 항으로 구성될 수 있으며, 이러한 항들 중에서 디포커스(defocus)항의 계수값이 가공대상물(56)의 높이 변화를 결정할 수 있다.
측정장치에 대해서는 전술한 실시예에서 상세하게 설명되었으므로, 이에 대한 설명은 생략한다. 한편, 가공대상물(56)의 높이 변화에 따른 디포커스항의 계수값 변화는 캘리브레이션 데이터로서 연산부(250)에 미리 저장되어 있다.
제2 광원(212)은 가공대상물(56)을 가공하기 위한 레이저광(L)을 방출할 수 있다. 이렇게 제2 광원(212)으로부터 방출된 레이저광(L)은 광집속부(230)에 의해 집속되면서 가공대상물(56)에 조사될 수 있다. 이에 따라, 제1 광원(211)으로부터 방출되는 탐지광(L1)과 제2 광원(212)으로부터 방출되는 레이저광(L)은 하나의 광집속부(230)를 통해 가공대상물(56)에 조사될 수 있다.
제1 및 제2 광원(211,212)과 광집속부(230) 사이에는 다이크로익 미러(dichroic mirror, 225)가 마련될 수 있다. 여기서, 다이크로익 미러(225)는 제1 광원(211)으로부터 방출된 탐지광(L1)과 제2 광원(212)으로부터 방출된 레이저광(L) 중 어느 하나는 투과시키고 다른 하는 반사시키는 역할을 할 수 있다. 도면에서는 다이크로익 미러(225)가 레이저광(L)은 투과시키고 탐지광(L1)은 반사시키는 경우가 예시적으로 도시되어 있다. 하지만, 이에 한정되는 것은 아니며, 다이크로익 미러(225)가 레이저광(L)은 반사시키고 탐지광(L1)은 투과시키도록 구성될 수도 있다.
제1 광원(211)과 다이크로익 미러(225) 사이에는 빔 분리기(beam splitter, 222)가 마련될 수 있다. 여기서, 빔 분리기(222)는 제1 광원(211)으로부터 방출된 탐지광(L1)과 이러한 탐지광(L1)이 가공대상물(56)의 반사면으로부터 반사되어 나오는 반사광(L2) 중 어느 하나는 투과시키고 다른 하나는 반사시키는 역할을 할 수 있다. 도면에서는 빔 분리기(222)가 탐지광(L1)은 반사키시고 반사광(L2)은 투과시키는 경우가 예시적으로 도시되어 있다. 하지만, 이에 한정되는 것은 아니며, 빔 분리기(222)가 탐지광(L1)은 투과키시고 반사광(L2)은 반사시키도록 구성될 수도 있다. 한편, 제1 광원(211)과 빔 분리기(222) 사이에는 제1 광원(211)으로부터 방출된 탐지광(L1)이 빔 분리기(222)쪽으로 향하도록 하는 반사 미러(221)가 마련될 수도 있다.
다이크로익 미러(225)와 빔 분리기(222) 사이에는 파장판(wave plate, 223) 및 대역 통과 필터(bandpass filter, 224)가 더 마련될 수 있다. 여기서, 파장판(223)은 탐지광(L1)의 세기를 조절하여 출사시키는 역할을 할 수 있다. 그리고, 대역 통과 필터(224)는 가공대상물(56)의 반사면(S)에서 반사되어 나오는 반사광(L2) 중 특정 파장 대역폭에 해당하는 광만을 분리하는 역할을 할 수 있다.
연산부(250)와 제1 광원(211) 사이에는 탐지광(L1)을 방출하는 제1 광원(211)을 제어할 수 있는 제1 제어부(261)가 마련될 수 있으며, 연산부(250)와 제2 광원(212) 사이에는 레이저광(L)을 방출하는 제2 광원(212)을 제어할 수 있는 제2 제어부(262)가 마련될 수 있다.
초점 조절장치는 레이저 가공작업 중에 가공대상물(56)에 조사되는 레이저광(L)의 초점을 자동으로 조절하는 역할을 할 수 있다. 이를 위해, 초점 조절장치는 광집속부(230)를 가공대상물(56)에 대해 상하로 이동시킬 수 있는 구동부(270)와, 이 구동부(270)를 제어할 수 있는 제3 제어부(263)를 포함할 수 있다. 여기서, 제3 제어부(263)는 연산부(250)에 연결되어 연산부(250)에서 계산된 가공대상물(56)의 높이 변화에 대응하여 광집속부(230)를 상하로 이동하도록 구동부(270)를 제어할 수 있다.
이와 같은 구조의 레이저 가공장치(200)에서, 제1 광원(211)으로부터 탐지광(L1)이 방출되어 광집속부(230)를 통해 가공대상물(56)에 조사되고, 제2 광원(212)으로부터 레이저광(L)이 방출되어 광집속부(230)를 통해 가공대상물(56)에 조사된다.
제1 광원(211)으로부터 방출된 탐지광(L1)은 빔 분리기(222)에 의해 반사되고 다이크로익 미러(225)에서 반사된 후 광집속부(230)를 통해 가공대상물(56)에 조사된다. 이어서, 탐지광(L1)은 가공대상물(56)의 반사면(S)으로부터 반사되고, 이렇게 반사된 반사광(L2)은 다이크로믹 미러(225)에서 반사된 다음 빔 분리기(222)를 투과한 후 광센싱부(240)에 입사된다. 여기서, 샤크-하트만 센서를 포함하는 광센싱부(240)는 반사광(L2)의 광파면 변화를 검출하고, 이렇게 검출된 광파면 변화를 이용하여 연산부(250)는 가공대상물(56)의 높이 변화를 측정하게 된다. 그리고, 제2 광원(212)으로부터 방출된 레이저광(L)은 다이크로익 미러(225)를 투과한 다음 광집속부(230)를 경유하여 가공대상물(56)에 조사됨으로써 가공작업을 수행한다. 여기서, 레이저 가공작업 중에 가공대상물(56)의 높이가 변화하게 되면 이러한 높이 변화를 측정 장치의 연산부(250)가 측정하게 되고, 이러한 높이 변화에 대응하여 초점 조절장치의 구동부(270)가 광집속부(230)를 상하로 이동시킴으로써 가공대상물(56)에 조사되는 레이저광(L)의 초점을 실시간 자동적으로 조절하면서 레이저 가공작업을 수행할 수 있다.
이하에서는 도 7a 내지 도 7c를 참조하여 본 발명의 예시적인 실시예에 따른 레이저 가공방법을 설명한다.
도 7a에는 가공대상물(56) 상에 레이저광(L)이 정확하게 포커싱된 경우가 도시되어 있으며, 이 상태에서 정밀한 레이저 가공작업이 수행될 수 있다. 도 7a를 참조하면, 제2 광원(212)으로부터 방출된 레이저광(L)은 광집속부(230)를 통해 집속되어 가공대상물(56)에 조사되고, 이때 가공대상물(56) 상에는 레이저 가공작업을 수행할 수 있는 집광점이 형성될 수 있다. 이 경우에는 측정장치에 의해 측정되는 가공대상물(56)의 높이 변화는 없는 것으로 측정될 수 있다. 구체적으로, 제1 광원(211)으로부터 방출된 탐지광(L1)은 광집속부(230)를 경유하여 가공대상물(56)에 입사된다. 이어서, 탐지광(L1)은 가공대상물(56)의 반사면(S)에서 반사되고, 이 반사광(L2)은 광센싱부(240)에 입사될 수 있다.
샤크-하트만 센서를 포함하는 광센싱부(240)는 가공대상물(56)의 반사면(S)으로부터 반사된 반사광(L2)의 광파면 변화를 검출할 수 있다. 도 7a에서는 가공대상물의 반사면(S)으로부터 반사된 반사광(L2)의 광파면(W)이 탐지광(L1)과 마찬가지로 평면파면이 되므로, 반사광(L2)의 광파면 변화는 없게 된다. 이에 따라, 연산부(250)에 의해 계산되는 디포커스항의 계수값은 “0”이 될 수 있다. 이와 같이, 반사광(L2)의 광파면 변화가 없는 가공대상물(56)의 반사면(S)은 높이 측정의 기준이 되는 기준면으로 설정될 수 있다.
도 7b에는 가공대상물(56)의 높이가 도 7a에 비해 높아진 경우가 도시되어 있다. 즉, 도 7b에는 가공대상물(56)의 반사면(S)이 기준면 보다 높은 위치에 있는 경우가 도시되어 있다. 레이저 가공작업 중에는 가공대상물(56)의 두께가 두꺼워지거나 또는 외부 환경에 의해 가공대상물(56)의 높이가 도 7a에 도시된 기준면 보다 높아질 수 있다.
가공대상물(56)의 높이가 높아지게 되면 가공대상물(56)의 반사면(S)으로부터 반사된 반사광(L2)의 광파면(W)이 볼록한 형태로 변화되어 광센싱부(240)에 입사될 수 있다. 이와 같이, 광센싱부(240)에 의해 검출된 반사광(L2)의 광파면(W)이 볼록한 형태로 변화하게 되면 연산부(250)에 저장된 제르니케 다항식에서 디포커스항의 계수는 “양(+)”의 값을 가질 수 있다. 그리고, 이렇게 계산된 디포커스향의 계수값과 연산부(250)에 미리 저장된 캘리브레이션 데이터를 비교하게 되면, 가공대상물(56)의 높이 변화(Δh1)를 측정할 수 있다.
연산부(250)에서는 측정된 가공대상물(56)의 높이 변화(Δh1)를 초점 조절장치의 제3 제어부(263)로 전달하게 되고, 제3 제어부(263)는 구동부(270)를 구동하여 광집속부(230)를 상승시킬 수 있다. 구체적으로, 구동부(270)는 가공대상물(56)의 높이 변화(Δh1)에 해당하는 거리만큼 광집속부(230)를 상승시킬 수 있다. 이와 같이, 구동부(270)가 가공대상물(56)의 높이 변화(Δh1)에 해당하는 거리만큼 광집속부(230)를 상승시킴으로써 레이저광(L)은 도 7a에 도시된 바와 같이 정확하게 가공대상물(56) 상에 집속될 수 있으며, 이 상태에서 레이저 가공작업을 정밀하게 진행할 수 있다.
도 7c에는 가공대상물(56)의 높이가 도 7a에 비해 낮아진 경우가 도시되어 있다. 즉, 도 7c에는 가공대상물(56)의 반사면(S)이 기준면 보다 낮은 위치에 있는 경우가 도시되어 있다. 레이저 가공작업 중에는 가공대상물의 두께가 얇아지거나 또는 외부 환경에 의해 가공대상물의 높이가 도 7a에 도시된 기준면 보다 낮아질 수 있다.
가공대상물(56)의 높이가 낮아지게 되면 가공대상물(56)의 반사면(S)으로부터 반사된 반사광(L2)의 광파면(W)이 오목한 형태로 변화되어 광센싱부(240)에 입사될 수 있다. 이와 같이, 광센싱부(240)에 의해 검출된 반사광(L2)의 광파면(W)이 오목한 형태로 변화하게 되면 연산부(250)에 저장된 제르니케 다항식에서 디포커스항의 계수는 “음(-)”의 값을 가질 수 있다. 그리고, 이렇게 계산된 디포커스향의 계수값과 연산부(250)에 미리 저장된 캘리브레이션 데이터를 비교하게 되면, 가공대상물(56)의 높이 변화(Δh2)를 측정할 수 있다.
연산부(250)에서는 측정된 가공대상물(56)의 높이 변화(Δh2)를 초점 조절장치의 제3 제어부(263)로 전달하게 되고, 제3 제어부(263)는 구동부(270)를 구동하여 광집속부(230)를 하강시킬 수 있다. 구체적으로, 구동부(270)는 가공대상물(56)의 높이 변화(Δh2)에 해당하는 거리만큼 광집속부(230)를 하강시킬 수 있다. 이와 같이, 구동부(270)가 가공대상물(56)의 높이 변화(Δh2)에 해당하는 거리만큼 광집속부(230)를 하강시킴으로써 레이저광(L)은 도 7a에 도시된 바와 같이 정확하게 가공대상물(56) 상에 집속될 수 있으며, 이 상태에서 레이저 가공작업을 정밀하게 진행할 수 있다.
한편, 이상에서는 반사광(L2)의 광파면 변화가 없는 경우, 즉 디포커스항의 계수값이 “0”인 경우에서의 가공대상물(56)의 반사면(S)을 높이 측정의 기준이 되는 기준면으로 설정한 경우가 설명되었다. 그러나, 이에 한정되지 않고 반사광(L2)의 광파면 변화가 있는 경우, 즉 디포커스항의 계수값이 “양(+)” 또는 “음(-)”의 값을 가지는 경우에서의 가공대상물(56)의 반사면(S)을 기준면으로 설정할 수도 있다.
이상과 같이, 본 실시예에 따른 레이저 가공장치(200)에서는 레이저 가공작업 중에 가공대상물(56)의 높이가 변화하는 경우 측정장치가 실시간으로 가공대상물(56)의 높이 변화를 측정하고, 이렇게 측정된 가공대상물(56)의 높이 변화를 이용하여 초점 조절장치가 광집속부(230)의 위치를 조절함으로써 레이저 가공작업을 실시간으로 정확하게 수행할 수 있다.
도 8은 본 발명의 다른 예시적인 실시예에 따른 레이저 가공장치를 도시한 것이다. 도 8에 도시된 레이저 가공장치(300)는 구동부(370)가 측정장치(380)를 이동시킨다는 점을 제외하면 도 7a 내지 도 7c에 도시된 레이저 가공장치(200)와 동일하다. 도 8을 참조하면, 초점 조절 장치의 구동부(370)는 레이저광(L)의 초점을 조절하기 위해 측정장치(380)를 가공대상물(56)에 대해 상하로 이동시킬 수 있도록 마련되어 있다. 한편, 도 8에는 구동부(370)가 이동시키는 측정장치(380)에 연산부(250)가 제외된 경우가 도시되어 있으나, 이 측정장치(380)에는 연산부가 포함될 수도 있다.
이상의 실시예들에서는 구동부(270,370)가 광집속부(230) 또는 측정장치(380)를 가공대상물(56)에 대해 상하로 이동시키는 경우가 설명되었다. 그러나, 이에 한정되지 않고 구동부(270,370)가 스테이지(50)를 상하로 이동시킴으로써 레이저광(L)의 초점을 조절할 수도 있다.
도 9a 내지 도 9c는 본 발명의 다른 예시적인 실시예에 따른 레이저 가공장치 및 레이저 가공 방법을 도시한 것이다.
도 9a 내지 도 9c를 참조하면, 레이저 가공장치(400)는 가공대상물(56)의 높이 변화를 실시간으로 측정하는 측정장치와, 가공대상물(56)에 가공작업을 가공장치와, 초점 조절장치를 포함한다.
측정장치는 탐지광(L1)을 방출하는 제1 광원(411과, 탐지광(L1)을 집속하여 가공대상물(56)에 조사하는 제1 광집속부(431)와, 가공대상물(56)로부터 반사된 반사광(L2)의 변화를 검출하는 것으로 샤크-하트만 센서를 포함하는 광센싱부(440)와, 광센싱부(440)에 의해 검출된 반사광(L2)의 변화를 이용하여 가공대상물(56)의 높이 변화를 측정하는 연산부(450)를 포함한다. 측정장치에 대해서는 전술한 실시예에서 상세하게 설명되었으므로, 이에 대한 설명은 생략한다. 한편, 가공대상물(56)의 높이 변화에 따른 디포커스항의 계수값 변화는 캘리브레이션 데이터로서 연산부(450)에 미리 저장되어 있다.
제1 광원(411)과 제1 광집속부(431) 사이에는 빔 분리기(422)가 마련될 수 있다. 빔 분리기(422)는 제1 광원(411)으로부터 방출된 탐지광(L1)과 이러한 탐지광(L1)이 가공대상물(56)의 반사면(S)으로부터 반사되어 나오는 반사광(L2) 중 어느 하나는 투과시키고 다른 하나는 반사시키는 역할을 할 수 있다. 도면에서는 빔 분리기(422)가 탐지광(L1)은 투과시키고 반사광(L2)은 반사시키는 경우가 예시적으로 도시되어 있지만, 빔 분리기(422)는 탐지광(L1)은 반사키시고 반사광(L2)은 투과시키도록 구성될 수도 있다.
가공장치는 가공대상물(56)을 가공하기 위한 레이저광(L)을 방출하는 제2 광원(412)과, 제2 광원(412)으로부터 방출된 레이저광(L)을 집속하여 가공대상물(56)에 조사하는 제2 광집속부(432)를 포함한다. 그리고, 연산부(450)와 제1 광원(411) 사이에는 탐지광(L1)을 방출하는 제1 광원(411)을 제어할 수 있는 제1 제어부(461)가 마련될 수 있으며, 연산부(450)와 제2 광원(412) 사이에는 레이저광(L)을 방출하는 제2 광원(412)을 제어할 수 있는 제2 제어부(462)가 마련될 수 있다.
초점 조절장치는 레이저 가공작업 중에 가공대상물(56)에 조사되는 레이저광(L)의 초점을 자동으로 조절하는 역할을 할 수 있다. 이를 위해, 초점 조절장치는 제2 광집속부(432)를 가공대상물(56)에 대해 상하로 이동시킬 수 있는 구동부(470)와, 이 구동부(470)를 제어할 수 있는 제3 제어부(463)를 포함할 수 있다. 여기서, 제3 제어부(463)는 연산부(450)에 연결되어 연산부(450)에서 계산된 가공대상물(56)의 높이 변화에 대응하여 제3 광집속부(432)를 상하로 이동하도록 구동부(470)를 제어할 수 있다. 한편, 도면에는 도시되어 있지 않으나, 구동부(470)는 제2 광집속부(432)와 제1 광집속부(431)를 구동하도록 구성될 수도 있다.
이와 같은 구조의 레이저 가공장치(400)에서, 제1 광원(411)으로부터 탐지광(L1)이 방출되어 제1 광집속부(431)를 통해 가공대상물(56)에 조사되고, 제2 광원(412)으로부터 레이저광(L)이 방출되어 제2 광집속부(432)를 통해 가공대상물(56)에 조사된다.
제1 광원(411)으로부터 방출된 탐지광(L1)은 빔 분리기(422)를 투과한 다음, 제1 광집속부(431)를 통해 가공대상물(56)에 조사된다. 이어서, 탐지광(L1)은 가공대상물(56)의 반사면(S)으로부터 반사되고, 이렇게 반사된 반사광(L2)은 빔 분리기(422)에서 반사된 후 광센싱부(440)에 입사된다. 여기서, 샤크-하트만 센서를 포함하는 광센싱부(440)는 반사광(L2)의 광파면 변화를 검출하고, 이렇게 검출된 광파면 변화를 이용하여 연산부(450)는 가공대상물(56)의 높이 변화를 측정하게 된다. 그리고, 제2 광원(412)으로부터 방출된 레이저광(L)은 제2 광집속부(432)에 의해 집속되어 가공대상물(56)에 조사됨으로써 가공작업을 수행한다. 여기서, 레이저 가공작업 중에 가공대상물(56)의 높이가 변화하게 되면 이러한 높이 변화를 측정 장치가 측정하게 되고, 이러한 높이 변화에 대응하여 초점 조절장치가 제2 광집속부(432)를 상하로 이동시킴으로써 가공대상물(56)에 조사되는 레이저광(L)의 초점을 실시간 자동적으로 조절하면서 레이저 가공작업을 수행할 수 있다.
이하에서는 도 9a 내지 도 9c를 참조하여 본 발명의 예시적인 실시예에 따른 레이저 가공방법을 설명한다.
도 9a에는 가공대상물(56) 상에 레이저광(L)이 포커싱된 경우가 도시되어 있으며, 이 상태에서 정밀한 레이저 가공작업이 수행될 수 있다. 도 9a를 참조하면, 제2 광원(412)으로부터 방출된 레이저광(L)은 제2 광집속부(432)를 통해 집속되어 가공대상물(56)에 조사되고, 이때 가공대상물(56) 상에는 레이저 가공작업을 수행할 수 있는 집광점이 형성될 수 있다. 이 경우, 측정장치에 의해 측정되는 가공대상물(56)의 높이 변화는 없는 것으로 측정될 수 있다. 구체적으로, 제1 광원(411)으로부터 방출된 탐지광(L1)은 제1 광집속부(431)를 경유하여 가공대상물(56)에 입사된다. 이어서, 탐지광(L1)은 가공대상물(56)의 반사면(S)에서 반사되고, 이 반사광(L2)은 광센싱부(440)에 입사될 수 있다.
샤크-하트만 센서를 포함하는 광센싱부(440)는 가공대상물(56)의 반사면(S)으로부터 반사된 반사광(L2)의 광파면 변화를 검출할 수 있다. 도 9a에서는 가공대상물(56)의 반사면(S)으로부터 반사된 반사광(L2)의 광파면(W)이 탐지광(L1)과 마찬가지로 평면파면이 되므로, 반사광(L2)의 광파면 변화는 없게 된다. 이에 따라, 연산부(450)에 의해 계산되는 디포커스항의 계수값은 “0”이 될 수 있다. 이와 같이, 반사광(L2)의 광파면 변화가 없는 가공대상물(56)의 반사면(S)은 높이 측정의 기준이 되는 기준면으로 설정될 수 있다.
도 9b에는 가공대상물(56)의 높이가 도 9a에 비해 높아진 경우가 도시되어 있다. 즉, 도 9b에는 가공대상물(56)의 반사면(S)이 기준면 보다 높은 위치에 있는 경우가 도시되어 있다.
가공대상물(56)의 높이가 높아지게 되면 가공대상물(56)의 반사면(S)으로부터 반사된 반사광(L2)의 광파면(W)이 볼록한 형태로 변화되어 광센싱부(440)에 입사될 수 있다. 이와 같이, 광센싱부(440)에 의해 검출된 반사광(L2)의 광파면(W)이 볼록한 형태로 변화하게 되면 연산부(450)에 저장된 제르니케 다항식에서 디포커스항의 계수는 “양(+)”의 값을 가질 수 있다. 그리고, 이렇게 계산된 디포커스향의 계수값과 연산부(450)에 미리 저장된 캘리브레이션 데이터를 비교하게 되면, 가공대상물(56)의 높이 변화(Δh1)를 측정할 수 있다.
연산부(450)에서는 측정된 가공대상물(56)의 높이 변화(Δh1)를 초점 조절장치의 제3 제어부(463)로 전달하게 되고, 제3 제어부(463)는 구동부(470)를 구동하여 제2 광집속부(432)를 상승시킬 수 있다. 구체적으로, 구동부(470)는 가공대상물(56)의 높이 변화(Δh1)에 해당하는 거리만큼 제2 광집속부(432)를 상승시킬 수 있다. 이와 같이, 구동부(470)가 가공대상물(56)의 높이 변화(Δh1)에 해당하는 거리만큼 제2 광집속부(432)를 상승시킴으로써 레이저광(L)은 도 9a에 도시된 바와 같이 정확하게 가공대상물(56) 상에 집속될 수 있으며, 이 상태에서 레이저 가공작업이 정밀하게 진행될 수 있다.
도 9c에는 가공대상물(56)의 높이가 도 9a에 비해 낮아진 경우가 도시되어 있다.즉, 도 9c에는 가공대상물(56)의 반사면(S)이 기준면 보다 낮은 위치에 있는 경우가 도시되어 있다.
가공대상물(56)의 높이가 낮아지게 되면 가공대상물(56)의 반사면(S)으로부터 반사된 반사광(L2)의 광파면(W)이 오목한 형태로 변화되어 광센싱부(440)에 입사될 수 있다. 이와 같이, 광센싱부(440)에 의해 검출된 반사광(L2)의 광파면(W)이 오목한 형태로 변화하게 되면 연산부(450)에 저장된 제르니케 다항식에서 디포커스항의 계수는 “음(-)”의 값을 가질 수 있다. 그리고, 이렇게 계산된 디포커스향의 계수값과 연산부(450)에 미리 저장된 캘리브레이션 데이터를 비교하게 되면, 가공대상물(56)의 높이 변화(Δh2)를 측정할 수 있다.
연산부(450)에서는 측정된 가공대상물(56)의 높이 변화(Δh2)를 초점 조절장치의 제3 제어부(463)로 전달하게 되고, 제3 제어부(463)는 구동부(470)를 구동하여 제2 광집속부(432)를 하강시킬 수 있다. 구체적으로, 구동부(470)는 가공대상물(56)의 높이 변화(Δh2)에 해당하는 거리만큼 제2 광집속부(432)를 하강시킬 수 있다. 이와 같이, 구동부(470)가 가공대상물(56)의 높이 변화(Δh2)에 해당하는 거리만큼 제2 광집속부(432)를 하강시킴으로써 레이저광(L)은 도 9a에 도시된 바와 같이 정확하게 가공대상물(56) 상에 집속될 수 있으며, 이 상태에서 레이저 가공작업을 정밀하게 진행할 수 있다.
한편, 이상에서는 반사광(L2)의 광파면 변화가 없는 경우, 즉 디포커스항의 계수값이 “0”인 경우에서의 가공대상물(56)의 반사면(S)을 높이 측정의 기준이 되는 기준면으로 설정한 경우가 설명되었다. 그러나, 이에 한정되지 않고 반사광(L2)의 광파면 변화가 있는 경우, 즉 디포커스항의 계수값이 “양(+)” 또는 “음(-)”의 값을 가지는 경우에서의 가공대상물(56)의 반사면(S)을 기준면으로 설정할 수도 있다.
이상과 같이, 본 실시예에 따른 레이저 가공장치(400)에서는 레이저 가공작업 중에 가공대상물(56)의 높이가 변화하는 경우 측정장치가 실시간으로 가공대상물(56)의 높이 변화를 측정하고, 이렇게 측정된 가공대상물(56)의 높이 변화를 이용하여 초점 조절장치가 제2 광집속부(432)의 위치를 조절함으로써 레이저 가공작업을 실시간으로 정확하게 수행할 수 있다.
도 10은 본 발명의 다른 예시적인 실시예에 따른 레이저 가공장치를 도시한 것이다. 도 10에 도시된 레이저 가공장치(500)는 구동부(570)가 제2 광집속부(432) 및 측정장치(580)를 이동시킨다는 점을 제외하면 도 9a 내지 도 9c에 도시된 레이저 가공장치와 동일하다. 도 10을 참조하면, 초점 조절 장치의 구동부(570)는 레이저광(L)의 초점을 조절하기 위해 제2 광집속부(432) 및 측정장치(580)를 가공대상물(56)에 대해 상하로 이동시킬 수 있도록 마련되어 있다. 한편, 도 10에는 구동부(570)가 이동시키는 측정장치(580)에는 연산부(450)가 제외된 경우가 도시되어 있으나, 이 측정장치(580)에는 연산부(450)가 포함될 수도 있다.
이상의 실시예들에서는 구동부(470,570)가 제2 광집속부(432)를 가공대상물(56)에 대해 상하로 이동시키거나 또는 제2 광집속부(432) 및 측정장치(580)를 가공대상물(56)에 대해 상하로 이동시키는 경우가 설명되었다. 그러나, 이에 한정되지 않고 구동부(470,570)가 스테이지(50)를 상하로 이동시킴으로써 레이저광(L)의 초점을 조절할 수도 있다.
이상에서 본 발명의 실시예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
Claims (21)
- 가공대상물의 높이 변화를 측정하는 것으로, 측정을 위한 탐지광(probe light)을 방출하는 제1 광원, 상기 탐지광을 집속하여 상기 가공대상물에 조사하는 제1 광집속부, 상기 탐지광이 상기 가공대상물의 반사면으로부터 반사되어 나오는 반사광의 변화를 검출하는 것으로, 샤크-하트만(shack-hartmann) 센서를 포함하는 광센싱부, 및 상기 광센싱부에 의해 검출된 상기 반사광의 변화를 이용하여 상기 가공대상물의 높이 변화를 계산하는 연산부를 포함하는 측정 장치;상기 가공대상물에 가공을 위한 레이저광을 방출하는 제2 광원; 및상기 측정 장치에 의해 측정된 가공대상물의 높이 변화를 이용하여 상기 가공대상물에 조사되는 상기 레이저광의 초점을 조절하는 초점 조절 장치;를 포함하는 레이저 가공장치.
- 제 1 항에 있어서,상기 제2 광원으로부터 방출된 상기 레이저 광은 상기 제1 광집속부를 경유하여 상기 가공대상물에 조사되는 레이저 가공장치.
- 제 2 항에 있어서,상기 초점 조절 장치는 상기 제1 광집속부을 상기 가공대상물에 대해 상하로 이동시키거나 또는 상기 측정장치를 상기 가공대상물에 대해 상하로 이동시키는 구동부를 포함하는 레이저 가공장치.
- 제 3 항에 있어서,상기 초점 조절 장치는 상기 연산부와 연결되어 상기 구동부의 상하 이동을 제어하는 제어부를 더 포함하는 레이저 가공장치.
- 제 2 항에 있어서,상기 제1 및 제2 광원과 상기 제1 광집속부 사이에는 상기 탐지광 및 상기 레이저광 중 어느 하나는 투과시키고 다른 하나는 반사시키는 다이크로익 미러(dichroic mirror)가 마련되는 레이저 가공장치.
- 제 5 항에 있어서,상기 제1 광원과 상기 다이크로익 미러 사이에는 상기 탐지광 및 상기 반사광 중 어느 하나는 투과시키고, 다른 하나는 반사시키는 빔 분리기(beam splitter)가 마련되는 레이저 가공장치.
- 제 6 항에 있어서,상기 다이크로익 미러와 상기 빔 분리기 사이에는 파장판(wave plate) 및 대역통과 필터(bandpass filter)가 더 마련되는 레이저 가공장치.
- 제 1 항에 있어서,상기 제2 광원으로부터 방출된 상기 레이저광을 집속하여 상기 가공대상물에 조사하는 제2 광집속부를 포함하는 레이저 가공장치.
- 제 8 항에 있어서,상기 초점 조절 장치는 상기 제2 광집속부를 상기 가공대상물에 대해 상하로 이동시키거나 또는 상기 제2 광집속부 및 상기 측정장치를 상기 가공대상물에 대해 상하로 이동시키는 구동부를 포함하는 레이저 가공장치.
- 제 9 항에 있어서,상기 초점 조절 장치는 상기 연산부와 연결되어 상기 구동부의 상하 이동을 제어하는 제어부를 더 포함하는 레이저 가공장치.
- 제 8 항에 있어서,상기 제1 광원과 상기 제1 광집속부 사이에는 상기 탐지광 및 상기 반사광 중 어느 하나는 투과시키고, 다른 하나는 반사시키는 빔 분리기가 마련되는 레이저 가공장치.
- 제 1 항에 있어서,상기 샤크-하트만 센서는 상기 반사광의 광파면(light wavefront) 변화를 검출하는 레이저 가공장치.
- 제 12 항에 있어서,상기 연산부는 상기 광센싱부에 의해 검출된 상기 반사광의 변화를 수식으로 표현한 제르니케 다항식(Zernike polynomials)을 이용하여 상기 가공대상물의 높이 변화를 계산하는 레이저 가공장치.
- 제 13 항에 있어서,상기 가공대상물의 높이 변화는 상기 제르니케 다항식의 디포커스(defocus)항 계수값 변화에 대응하는 레이저 가공장치.
- 탐지광을 방출하는 제1 광원, 상기 탐지광을 집속하여 가공대상물에 조사하는 제1 광집속부, 상기 탐지광이 반사되어 나오는 반사광의 변화를 검출하는 것으로, 샤크-하트만 센서를 포함하는 광센싱부, 및 상기 반사광의 변화를 이용하여 상기 가공대상물의 높이 변화를 계산하는 연산부를 포함하는 측정 장치; 레이저광을 방출하는 제2 광원; 및 상기 레이저광의 초점을 조절하는 초점 조절 장치;를 포함하는 레이저 가공장치를 이용하여 가공대상물을 가공하는 방법에 있어서,상기 가공대상물의 높이 변화를 상기 측정 장치가 측정하는 단계; 및상기 초점 조절 장치가 상기 측정장치에 의해 측정된 상기 가공대상물의 높이 변화에 대응하도록 상기 가공대상물에 조사되는 상기 레이저광의 초점을 조절하는 단계;를 포함하는 레이저 가공방법.
- 제 15 항에 있어서,상기 연산부는 상기 광센싱부에 의해 검출된 상기 반사광의 변화를 수식으로 표현한 제르니케 다항식을 이용하여 상기 가공대상물의 높이 변화를 계산하는 레이저 가공방법.
- 제 16 항에 있어서,상기 반사면의 높이 변화는 상기 제르니케 다항식의 디포커스항 계수값 변화에 대응하는 레이저 가공방법.
- 제 15 항에 있어서,상기 제2 광원으로부터 방출된 상기 레이저 광은 상기 제1 광집속부를 경유하여 상기 가공대상물에 조사되는 레이저 가공방법.
- 제 18 항에 있어서,상기 초점 조절 장치는 상기 제1 광집속부을 상기 가공대상물에 대해 상하로 이동시키거나 또는 상기 측정장치를 상기 가공대상물에 대해 상하로 이동시키는 구동부; 및 상기 연산부와 연결되어 상기 구동부의 상하 이동을 제어하는 제어부를 더 포함하는 레이저 가공방법.
- 제 15 항에 있어서,상기 제2 광원으로부터 방출된 상기 레이저광은 제2 광집속부에 의해 집속되어 상기 가공대상물에 조사되는 레이저 가공방법.
- 제 20 항에 있어서,상기 초점 조절 장치는 상기 제2 광집속부를 상기 가공대상물에 대해 상하로 이동시키거나 또는 상기 제2 광집속부 및 상기 측정장치를 상기 가공대상물에 대해 상하로 이동시키는 구동부; 및 상기 연산부와 연결되어 상기 구동부의 상하 이동을 제어하는 제어부를 더 포함하는 레이저 가공방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680051147.0A CN108025393B (zh) | 2015-09-03 | 2016-08-11 | 激光加工装置以及激光加工方法 |
US15/757,529 US10286485B2 (en) | 2015-09-03 | 2016-08-11 | Laser processing device and laser processing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150124938A KR101825923B1 (ko) | 2015-09-03 | 2015-09-03 | 레이저 가공장치 및 레이저 가공방법 |
KR10-2015-0124938 | 2015-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017039171A1 true WO2017039171A1 (ko) | 2017-03-09 |
Family
ID=58187971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/008840 WO2017039171A1 (ko) | 2015-09-03 | 2016-08-11 | 레이저 가공장치 및 레이저 가공방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10286485B2 (ko) |
KR (1) | KR101825923B1 (ko) |
CN (1) | CN108025393B (ko) |
TW (1) | TWI644749B (ko) |
WO (1) | WO2017039171A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6831253B2 (ja) * | 2017-01-27 | 2021-02-17 | 株式会社ディスコ | レーザー加工装置 |
CN109991754B (zh) * | 2018-01-02 | 2022-01-11 | 财团法人工业技术研究院 | 出光方法及出光装置 |
US11215814B2 (en) * | 2018-08-24 | 2022-01-04 | Amo Development, Llc | Detection of optical surface of patient interface for ophthalmic laser applications using a non-confocal configuration |
JP2020066038A (ja) * | 2018-10-26 | 2020-04-30 | カンタツ株式会社 | レーザ加工装置、レーザ加工装置の制御方法およびレーザ加工装置の制御プログラム |
CN111174723B (zh) * | 2018-11-13 | 2021-11-12 | 深圳市圭华智能科技有限公司 | 精密加工检测装置及检测方法 |
US11408734B2 (en) * | 2019-01-03 | 2022-08-09 | Lam Research Corporation | Distance measurement between gas distribution device and substrate support at high temperatures |
JP7408332B2 (ja) * | 2019-09-27 | 2024-01-05 | 株式会社ディスコ | レーザー加工装置 |
WO2022079560A1 (en) * | 2020-10-16 | 2022-04-21 | Amo Development, Llc | Laser focal spot size measurement using a built-in camera for an ophthalmic laser system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000009991A (ja) * | 1998-06-19 | 2000-01-14 | Nec Corp | オートフォーカス装置及びオートフォーカス方法 |
KR20120112853A (ko) * | 2010-05-10 | 2012-10-11 | 프레시텍 옵트로닉 게엠베하 | 작업 거리의 현장 측정을 이용한 재료 가공 장치 |
KR20140092411A (ko) * | 2007-08-03 | 2014-07-23 | 하마마츠 포토닉스 가부시키가이샤 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR20140140206A (ko) * | 2013-05-28 | 2014-12-09 | 주식회사 이오테크닉스 | 레이저 가공장치 및 레이저 가공방법 |
KR101514249B1 (ko) * | 2013-11-13 | 2015-04-22 | 한국원자력연구원 | 가시도를 개선한 영상 획득 장치 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0821964A (ja) | 1994-07-05 | 1996-01-23 | Hitachi Ltd | 形状可変鏡の制御法及び補償光学装置 |
JP4761432B2 (ja) | 2004-10-13 | 2011-08-31 | 株式会社リコー | レーザ加工装置 |
WO2007117694A2 (en) * | 2006-04-07 | 2007-10-18 | Advanced Medical Optics, Inc. | Geometric measurement system and method of measuring a geometric characteristic of an object |
US8198564B2 (en) | 2008-09-09 | 2012-06-12 | Electro Scientific Industries, Inc. | Adaptive optic beamshaping in laser processing systems |
JP5641744B2 (ja) * | 2010-02-10 | 2014-12-17 | キヤノン株式会社 | 撮像装置及びその制御方法 |
JP5946612B2 (ja) | 2010-10-08 | 2016-07-06 | ギガフォトン株式会社 | ミラー、ミラー装置、レーザ装置および極端紫外光生成装置 |
JP5818458B2 (ja) * | 2011-02-25 | 2015-11-18 | キヤノン株式会社 | 画像処理装置、撮影システム、画像処理方法及びプログラム |
JP5843542B2 (ja) * | 2011-09-20 | 2016-01-13 | キヤノン株式会社 | 画像処理装置、眼科撮影装置、画像処理方法及びプログラム |
CN104303090B (zh) * | 2012-05-17 | 2017-08-15 | 西铁城时计株式会社 | 像差校正器件及激光显微镜 |
KR101274032B1 (ko) * | 2012-12-03 | 2013-06-12 | 국방과학연구소 | 전자광학 영상장비 자동초점 조절 장치 및 이를 이용한 자동초점 조절방법 |
CN103100797B (zh) * | 2013-01-23 | 2015-09-09 | 刘茂珍 | 基于自适应光学的激光微细加工设备和方法 |
-
2015
- 2015-09-03 KR KR1020150124938A patent/KR101825923B1/ko active IP Right Grant
-
2016
- 2016-08-11 WO PCT/KR2016/008840 patent/WO2017039171A1/ko active Application Filing
- 2016-08-11 CN CN201680051147.0A patent/CN108025393B/zh active Active
- 2016-08-11 US US15/757,529 patent/US10286485B2/en active Active
- 2016-08-18 TW TW105126299A patent/TWI644749B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000009991A (ja) * | 1998-06-19 | 2000-01-14 | Nec Corp | オートフォーカス装置及びオートフォーカス方法 |
KR20140092411A (ko) * | 2007-08-03 | 2014-07-23 | 하마마츠 포토닉스 가부시키가이샤 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR20120112853A (ko) * | 2010-05-10 | 2012-10-11 | 프레시텍 옵트로닉 게엠베하 | 작업 거리의 현장 측정을 이용한 재료 가공 장치 |
KR20140140206A (ko) * | 2013-05-28 | 2014-12-09 | 주식회사 이오테크닉스 | 레이저 가공장치 및 레이저 가공방법 |
KR101514249B1 (ko) * | 2013-11-13 | 2015-04-22 | 한국원자력연구원 | 가시도를 개선한 영상 획득 장치 |
Also Published As
Publication number | Publication date |
---|---|
TWI644749B (zh) | 2018-12-21 |
CN108025393B (zh) | 2020-10-13 |
KR101825923B1 (ko) | 2018-03-22 |
CN108025393A (zh) | 2018-05-11 |
TW201713443A (zh) | 2017-04-16 |
US10286485B2 (en) | 2019-05-14 |
US20180339363A1 (en) | 2018-11-29 |
KR20170030100A (ko) | 2017-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017039171A1 (ko) | 레이저 가공장치 및 레이저 가공방법 | |
KR100832165B1 (ko) | 프로브 방법 및 프로브 장치 | |
JP4938782B2 (ja) | 光学的基準を利用する方法および装置 | |
CN110567970B (zh) | 一种边缘缺陷检测装置及方法 | |
JPH043008A (ja) | 投影露光方法およびその装置 | |
KR101755615B1 (ko) | 광학 장치 및 이를 포함하는 광학 검사 장치 | |
TWI746289B (zh) | 用於至少對半導體裝置之側表面檢測之設備、方法及電腦程式產品 | |
CN1379459A (zh) | 用于评估多晶硅薄膜的装置 | |
KR101917131B1 (ko) | 광학 검사 장치 | |
CN211061152U (zh) | 一种集成视场、调制传递函数和对中测量的镜头检测设备 | |
TWM526177U (zh) | 視覺化系統及具有其之製程腔室 | |
WO2020022786A1 (ko) | 시편 검사 장치 및 시편 검사 방법 | |
WO2020101157A1 (ko) | 복합 현미경 시스템 | |
WO2017039170A1 (ko) | 물체의 두께 또는 높이 변화를 측정하는 장치 및 방법 | |
KR20120020039A (ko) | 검사 장치 및 검사 방법 | |
WO2009119983A2 (ko) | 중복 영상을 이용한 에프피디 기판 및 반도체 웨이퍼 검사시스템 | |
WO2015167104A1 (en) | Apparatus and method of detecting foreign material on upper surface of transparent substrate using polarized light | |
WO2020166929A1 (ko) | 혈류 측정 장치 및 혈류 측정 방법 | |
US20100150430A1 (en) | Visual inspection apparatus and visual inspection method for semiconductor laser chip or semiconductor laser bar | |
TWI585360B (zh) | 用於檢查半導體裝置之光學系統、藉此光學系統擷取半導體基板之影像的方法,及校正此光學系統之位置的方法 | |
WO2017007257A1 (ko) | 레이저 가공장치 | |
WO2020036250A1 (ko) | 레이저 가공 장치 | |
WO2024219872A1 (ko) | 이미지 획득 장치, 이미지 획득 방법 및 이미지 획득 장치 제어 프로그램 | |
WO2024071533A1 (ko) | 3차원 형상 검사 장치 및 3차원 형상 검사 방법 | |
WO2020263055A1 (ko) | 대상체의 3차원 형상을 결정하기 위한 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16842137 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15757529 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16842137 Country of ref document: EP Kind code of ref document: A1 |