JP5946612B2 - ミラー、ミラー装置、レーザ装置および極端紫外光生成装置 - Google Patents

ミラー、ミラー装置、レーザ装置および極端紫外光生成装置 Download PDF

Info

Publication number
JP5946612B2
JP5946612B2 JP2011166434A JP2011166434A JP5946612B2 JP 5946612 B2 JP5946612 B2 JP 5946612B2 JP 2011166434 A JP2011166434 A JP 2011166434A JP 2011166434 A JP2011166434 A JP 2011166434A JP 5946612 B2 JP5946612 B2 JP 5946612B2
Authority
JP
Japan
Prior art keywords
mirror
flow path
base
heat medium
buffer tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011166434A
Other languages
English (en)
Other versions
JP2012099791A (ja
Inventor
亀田 英信
英信 亀田
若林 理
理 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2011166434A priority Critical patent/JP5946612B2/ja
Priority to EP11815773.4A priority patent/EP2625559A2/en
Priority to US13/638,002 priority patent/US20130020511A1/en
Priority to PCT/IB2011/002365 priority patent/WO2012046133A2/en
Publication of JP2012099791A publication Critical patent/JP2012099791A/ja
Application granted granted Critical
Publication of JP5946612B2 publication Critical patent/JP5946612B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • G02B7/1815Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation with cooling or heating systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/065Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements provided with cooling means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • X-Ray Techniques (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

本開示は、ミラー、ミラー装置、レーザ装置および極端紫外(EUV)光生成装置に関する。
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm〜45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、たとえば32nm以下の微細加工の要求に応えるべく、波長13nm程度のEUV光を生成するための装置と縮小投影反射光学系とを組み合わせた露光装置の開発が期待されている。
EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光を用いたSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。
特開2006−317913号公報
概要
本開示の一態様によるミラーは、バッファタンク部を含む流路が設けられたミラー基部と、前記ミラー基部に設けられた反射膜と、を備え、前記ミラー基部は、基部ヘッドおよび支持部を含み、前記反射膜は、前記基部ヘッド側に設けられ、前記流路は、第1流路、第2流路、第3流路、第4流路をさらに含み、前記第2流路は、複数設けられ、前記基部ヘッド内に放射状に配置され、前記第4流路は、複数設けられ、前記第2流路は、前記第4流路を介してそれぞれ前記バッファタンク部と連通し、前記第2流路それぞれの断面積を合わせた面積は、前記バッファタンク部の流路断面積より小さくてもよい。
また、本開示の他の態様によるミラーは、バッファタンク部を含む流路が設けられたミラー基部と、前記ミラー基部に設けられた反射膜と、を備え、前記ミラー基部は、基部ヘッドおよび支持部を含み、前記反射膜は、前記基部ヘッド側に設けられ、前記流路は、第1流路、第2流路、第3流路、第4流路をさらに含み、前記第2流路は、扇型に形成され、前記第2流路の断面積は、一端から他端にかけて略均一であってもよい。
本開示の他の態様によるミラー装置は、上記態様のミラーと、当該ミラーの第1流路に一端が接続される供給管路と、前記ミラーの第3流路に一端が接続される排出管路と、前記供給管路に設けられて熱媒体を前記第1流路に向けて圧送する圧送装置と、を備えてもよい。
本開示の更に他の態様によるレーザ装置は、種光としてのレーザ光を出力するマスタオシレータと、光増幅光学系と、を備え、前記光増幅光学系は、上記他の態様のミラー装置を少なくとも1台含み、前記レーザ光を前記ミラー装置によって所定方向に反射させて当該レーザ光の増幅を行ってもよい。
本開示の更に他の態様によるEUV光生成装置は、レーザ光を出力するレーザ装置と、前記レーザ光が透過するウィンドウを有し、内部に極端紫外光の生成空間を形成するチャンバと、伝送光学系と、を備え、前記伝送光学系は、上記他の態様のミラー装置を含み、前記レーザ装置から出力されたレーザ光を前記チャンバのウィンドウに導いてもよい。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、本開示の実施の形態1によるEUV光生成装置の構成を概略的に示す。 図2は、実施の形態1によるミラーのミラー基部内に設けられる流路の一例を模式的に示す。 図3は、実施の形態1による平面ミラーの一例を概略的に示す側面図である。 図4は、図3に示した平面ミラーの反射面と直交する面における構成を概略的に示す断面図である。 図5は、図4に示した平面ミラーのV−V面における構成を概略的に示す断面図である。 図6は、図4に示した平面ミラーのVI−VI面における構成を概略的に示す断面図である。 図7は、本開示のミラー装置の一例と、このミラー装置における各位置で熱媒体に加わる圧力の一例とを概略的に示す。 図8は、本開示の実施の形態2による平面ミラーの一例を概略的に示す側面図である。 図9は、図8に示した平面ミラーの反射面と直交する面における構成を概略的に示す断面図である。 図10は、図8に示した平面ミラーのミラー基部を概略的に示す部分透視斜視図である。 図11は、図9に示した平面ミラーのXI−XI面における構成を概略的に示す断面図である。 図12は、図9に示した平面ミラーのXII−XII面における構成を概略的に示す断面図である。 図13は、図9に示した平面ミラーのXIII−XIII面における構成を概略的に示す断面図である。 図14は、図9に示した平面ミラーのXIV−XIV面における構成を概略的に示す断面図である。 図15は、本開示の実施の形態3による平面ミラーの一例を概略的に示す側面図である。 図16は、図15に示した平面ミラーの反射面と直交する面における構成を概略的に示す断面図である。 図17は、図15に示した平面ミラーのミラー基部を概略的に示す分解斜視図である。 図18は、図15に示した平面ミラーにおいて放射状に配置される流路を概略的に示す平面図である。 図19は、図16に示した平面ミラーのXIX−XIX面における構成を概略的に示す断面図である。 図20は、図15に示した平面ミラーにおいて放射状に配置される流路の1つを概略的に示す断面図である。 図21は、図15に示した平面ミラーにおいて放射状に配置される流路の1つのを概略的に示す他の断面図である。 図22は、図15に示した平面ミラーのミラー基部を概略的に示す部分透視断面斜視図である。 図23は、本開示の実施の形態4による凹面ミラーの一例を概略的に示す平面図である。 図24は、図23に示した凹面ミラーの縦断面における構成を概略的に示す図である。 図25は、本開示の実施の形態5によるミラー装置の一例と、このミラー装置において各位置で熱媒体に加わる圧力の一例とを概略的に示す。 図26は、本開示の実施の形態6によるレーザ装置のレーザ光増幅器の一例を概略的に示す。 図27は、本開示の実施の形態7によるEUV光生成装置の一例を概略的に示す。 図28は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の一例での一動作状態を模式的に示す。 図29は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の一例での他の動作状態を模式的に示す。 図30は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の一例での更に他の動作状態を模式的に示す。 図31は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の他の例での一動作状態を模式的に示す。 図32は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の他の例での他の動作状態を模式的に示す。 図33は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の他の例での更に他の動作状態を模式的に示す。 図34は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の更に他の例を模式的に示す。 図35は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の更に他の例を模式的に示す。 図36は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置における波面計測部の構成例を模式的に示す。 図37は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置における波面計測部の他の構成例を模式的に示す。 図38は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置における波面計測部の更に他の構成例を模式的に示す。 図39は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置における波面計測部の更に他の構成例を模式的に示す。
実施の形態
以下、本開示を実施するためのいくつかの形態を、図面を参照に詳細に説明する。以下の説明において、各図は、ここに開示される内容を理解できる程度に形状、大きさ、および位置関係を概略的に示してあるにすぎず、したがって、本開示は各図で例示された形状、大きさ、および位置関係に限定されるものではない。また、各図では、構成の明瞭化のため、断面におけるハッチングの一部が省略されている。
実施の形態1
実施の形態1によるミラー、ミラー装置、およびミラー装置が適用されるEUV光生成装置について、図面を参照に詳細に説明する。以下の説明では、LPP方式によるEUV光生成装置を例に挙げて説明するが、これに限定されるものではなく、本開示は、DPP方式やSR方式のEUV光生成装置などに適用されてもよい。また、実施の形態1では、1段階のレーザ光照射によってターゲット物質をプラズマ化してEUV光を生成するよう構成される装置を例に挙げる。ただし、これに限定されるものではなく、本開示は、たとえば2段階以上のレーザ光照射によってターゲット物質をプラズマ化してEUV光を生成するよう構成される装置に適用されてもよい。
図1は、実施の形態1によるEUV光生成装置の構成を概略的に示す。図1に示すように、EUV光生成装置100は、ドライバレーザ装置101と、チャンバ102と、伝送光学系OSとを備えてもよい。ドライバレーザ装置101は、ターゲット物質をプラズマ化するためのレーザ光LB2を出力してもよい。チャンバ102は、その内部にEUV光の生成空間を画定してもよい。伝送光学系OSは、ドライバレーザ装置101から出力されたレーザ光LB2をチャンバ102に導いてもよい。
ドライバレーザ装置101は、マスタオシレータMOと、光増幅光学系ASとを備えてもよい。マスタオシレータMOは、レーザ光LB1を出力するよう構成されてもよい。光増幅光学系ASは、マスタオシレータMOから出力されたレーザ光LB1を増幅するよう構成されてもよい。光増幅光学系ASは、リレー光学系R1と、プリアンプPAと、リレー光学系R2と、メインアンプMAと、リレー光学系R3とを備えてもよい。リレー光学系R1は、マスタオシレータMOから出力されたレーザ光LB1のビーム径を拡大するよう構成されてもよい。プリアンプPAは、ビーム径が拡大されたレーザ光LB1を増幅するよう構成されてもよい。リレー光学系R2は、増幅されたレーザ光LB1を平行光に変換するよう構成されてもよい。メインアンプMAは、平行光に変換されたレーザ光LB1をさらに増幅するよう構成されてもよい。リレー光学系R3は、増幅されたレーザ光LB1を平行光化してレーザ光LB2として出力するよう構成されてもよい。
伝送光学系OSは、少なくとも1つの平面ミラー103を含んでもよい。平面ミラー103は、ドライバレーザ装置101から出力されたレーザ光LB2をチャンバ102に設けられるウィンドウ121に導いてもよい。図1中の一点鎖線OA1は、ドライバレーザ装置101から出力され、平面ミラー103で反射されるレーザ光のビーム軸を示している。
チャンバ102は、ウィンドウ121と、軸外放物面ミラー123と、ターゲット供給部124と、ターゲット回収部125と、EUV集光ミラー122とを備えてもよい。ウィンドウ121は、レーザ光LB2をチャンバ102の内部に取り込むための入射口であってもよい。軸外放物面ミラー123は、チャンバ102内に導かれたレーザ光LB2をプラズマ生成領域PSに集光するよう構成されてもよい。ターゲット供給部124は、プラズマ生成領域PSにターゲット物質をドロップレットDの形態で供給するよう構成されてもよい。プラズマ生成領域PSを通過したターゲット物質は、ターゲット回収部125に回収されてもよい。EUV集光ミラー122は、レーザ光LB2のターゲット物質への照射によってプラズマ生成領域PSで生成されたプラズマから放射された光のうち、所望する波長のEUV光Lを選択的に反射するよう構成されてもよい。EUV光Lの中心波長は、たとえば13.5nm程度であってもよい。EUV集光ミラー122によって選択的に反射されたEUV光Lは、露光装置接続部104内の中間集光点IFで集光されてもよい。EUV集光ミラー122には、その背面側からレーザ光LB2がプラズマ生成領域PSに向けて進行するために通過する貫通孔122aが設けられてもよい。図1中の一点鎖線OA2は、軸外放物面ミラー123で反射されるレーザ光のビーム軸およびEUV集光ミラー122で反射されるEUV光Lの軸を示している。
ターゲット物質は、ドロップレットDの形態に限らず、リボンやディスクなどの固体ターゲットの形態でプラズマ生成領域PSに供給されてもよい。また、軸外放物面ミラー123は、チャンバ102の外に配置されてもよい。この場合、たとえば平面ミラー103で反射されたレーザ光LB2は、軸外放物面ミラー123で反射された後、ウィンドウ121およびEUV集光ミラー122に設けられた貫通孔122aを介してプラズマ生成領域PSに集光されてもよい。
チャンバ102と露光装置接続部104とは、ゲートバルブG1によって気密性が保たれつつ連結されてもよい。中間集光点IFに集光されたEUV光Lは、この中間集光点IFまたはその近傍に画定されるアパーチャ141を介して露光装置105へ導かれてもよい。露光装置105へ導かれたEUV光Lは、たとえば半導体露光に使用されてもよい。あるいは、EUV光Lは、露光装置105に代えて、EUV光が利用される加工装置などへ導かれてもよい。
レーザ光LB2のような高出力のレーザ光が入射するミラーは、入射したレーザ光によって加熱され得る。これにより、このミラーの光学特性が変化してしまう場合がある。このような熱負荷による光学特性の変化は、レーザ光の集光性を悪化させる可能性がある。また、EUV光Lのような比較的高出力の光が入射するミラーでも、入射した光によって加熱されて集光性が悪化する可能性がある。
そこで、たとえば、平面ミラー103、EUV集光ミラー122、および軸外放物面ミラー123では、それらのミラー基部に冷却機構が備えられてもよい。リレー光学系R1〜R3内やメインアンプMA内などにミラーが配置される場合には、これらのミラーのミラー基部に冷却機構が備えられてもよい。ここで、実施の形態1によるミラーの一例について、図面を参照に詳細に説明する。ただし、本開示はこれに限定されるものではなく、ミラー基部の冷却機構が種々変形可能であることは言うまでもない。
図2は、実施の形態1によるミラーのミラー基部内部に設けられる流路の一例を模式的に示す。図2に示すように、実施の形態1によるミラー基部12内には、熱媒体C1が流れる流路FPが設けられてもよい。熱媒体C1によって、ミラー基部12およびその上面側に形成される反射膜が冷却されてもよい。熱媒体C1は、水や油や液体金属などであってもよい。流路FPは、第1流路、第2流路、バッファタンク部、第3流路、および第4流路を含んでもよい。第1流路は、熱媒体供給源から供給される熱媒体C1がミラー基部12内へ流入するための流入経路である流入路P1であってよい。第2流路は、流入路P1から放射状に分岐する複数の流路P2であってよい。第4流路は、バッファタンク部PBと各流路P2とを連通する戻り流路P4であってよい。バッファタンク部PBは、流路P2に直接的または間接的に連通してもよい。第3流路は、バッファタンク部PBに流れ込んだ使用後の熱媒体(以下、これを熱媒体C2とする)がミラー基部12外へ流出するための流出経路である流出路P3であってよい。
ミラー基部12を備えたミラーの一例について、図面を参照に詳細に説明する。以下の説明では、平面ミラーを例に挙げる。ただし、本開示はこれに限定されず、たとえば軸外放物面ミラーを含む放物面ミラーや凹面ミラーや凸面ミラーなど、種々のミラーに対して適用可能であることは言うまでもない。図3は、実施の形態1による平面ミラーの一例を概略的に示す側面図である。図4は、図3に示した平面ミラーの反射面と直交する面における構成を概略的に示す断面図である。図5は、図4に示した平面ミラーのV−V面における構成を概略的に示す断面図である。図6は、図4に示した平面ミラーのVI−VI面における構成を概略的に示す断面図である。
図3に示すように、平面ミラー1は、ミラー基部12と、反射膜11とを含んでもよい。反射膜11は、ミラー基部12の上面側に形成されてもよい。反射膜11は、たとえば誘電体多層反射膜でよい。ミラー基部12は、基部ヘッド12aと、支持部12cとを含んでもよい。支持部12cは、基部ヘッド12aよりも細径であってもよい。支持部12cは、基部ヘッド12aの背面側に設けられてもよい。基部ヘッド12aおよび支持部12cには、熱伝導率が高く、かつ耐熱性も高い材料が用いられるのが好ましい。特に、基部ヘッド12aには、熱伝導率が高い材料が用いられるのが好ましい。
図3および図4に示すように、基部ヘッド12aは、たとえば円柱状の部材でよい。基部ヘッド12aは、たとえば炭化ケイ素焼結体で構成されてもよい。基部ヘッド12aは、たとえば炭化ケイ素で構成されるヘッドカバー12bによって覆われてもよい。ヘッドカバー12bは、上面部12b1と、側面部12b2と、下面部12b3とを含んでもよい。上面部12b1は、基部ヘッド12aの上面をカバーしてもよい。側面部12b2は、基部ヘッド12aの側面をカバーしてもよい。下面部12b3は、基部ヘッド12aの背面における支持部12cとの接合部以外の部分をカバーしてもよい。このようなヘッドカバー12bは、たとえばCVC(Chemical Vapor Composite:化学的気相合成)法によって基部ヘッド12a表面に形成されてもよい。支持部12cは、たとえば炭化ケイ素焼結体で構成されてもよく、基部ヘッド12aの背面側に接合材によって接合されてもよい。
図4、図5、および図6に示すように、ミラー基部12内に設けられる流路FPは、流入路P1と、複数の流路P2と、複数の戻り流路P4と、バッファタンク部PBと、流出路P3とを含んでもよい。流入路P1は、熱媒体供給源から供給される熱媒体C1のミラー基部12内への流入経路であってもよい。複数の流路P2は、流入路P1から放射状に分岐してもよい。これにより、ミラー基部12の上面側に熱媒体C1が略均等に流れ得る。複数の戻り流路P4は、複数の流路P2それぞれと連通してもよい。バッファタンク部PBは、複数の戻り流路P4と合流してもよい。流出路P3は、バッファタンク部PBに流れ込んだ使用後の熱媒体C2のミラー基部12外への流出経路であってもよい。
流入路P1の一端は、ミラー基部12の外表面の1箇所に開口してもよい。流入路P1の他端は、ミラー基部12の上面側の1箇所で複数の流路P2に連結されてもよい。図4に示すように、流入路P1は、たとえば支持部12cの下面から基部ヘッド12aの上面の略中央にかけて、これら支持部12cおよび基部ヘッド12aを貫通してもよい。この場合、熱媒体C1の流入口は、支持部12cの下面に設けられる流入路P1の開口であってもよい。
流路P2は、図4および図5に示すように、平面が矩形状であってもよい。流路P2は、基部ヘッド12aの上面の略中央において流入路P1から基部ヘッド12aの側端側へ向けて放射状に分岐してもよい。流路P2は、たとえば隣り合う2つの流路P2間の内角が略均一となるように構成されてもよい。たとえば平面ミラー1の反射表面の形状が円形である場合、平面ミラー1は、流入路P1の中心線の延長線上にその反射表面の中心が位置するように構成されるのが好ましい。このように構成することで、反射表面の中心に対して点対称に熱媒体C1を流すことが可能となる。
このような流路P2は、たとえば、基部ヘッド12aに形成された溝12a1をヘッドカバー12bの上面部12b1でカバーすることによって画定される空間であってもよい。このような流路P2は、たとえば犠牲層を用いた製造技術によって形成されてもよい。具体的には、溝12a1内にアッシングなどによって除去することが可能な材料を犠牲層として詰めておいてもよい。この犠牲層は、CVC法でヘッドカバー12bが形成された後に、アッシングなどで除去されてもよい。この結果、犠牲層が除去された空間が流路P2となり得る。
流路P2は、図4および図5に示すように、基部ヘッド12aの側端側の端部で戻り流路P4に連通してもよい。戻り流路P4は、たとえば、基部ヘッド12a内で、基部ヘッド12aの上面に対して略直交する方向に延在してもよい。複数の戻り流路P4は、基部ヘッド12aの下面側に設けられたバッファタンク部PBで合流してもよい。
複数の戻り流路P4が合流するバッファタンク部PBは、たとえば流路P2および戻り流路P4それぞれにおける熱媒体C1の流量を略均一にするために設けられてもよい。バッファタンク部PBを設けることで、たとえば流路P2および戻り流路P4それぞれに熱媒体C1が流れる際に生じる圧力損失を略均等にし得る。これにより、各流路に流れる熱媒体C1の流量が略均一となり得る。また、バッファタンク部PBは、流路P2および戻り流路P4を流れる熱媒体C1の圧力変動を吸収するために設けられてもよい。バッファタンク部PBの流路の高さh1は、流路P2の流路の高さh2より高くてもよい。バッファタンク部PBの流路の断面積は、流路P2の流路の断面積より大きくてもよい。
図4および図6に示すように、バッファタンク部PBは、基部ヘッド12aの下面に形成された環状の溝12a2を、ヘッドカバー12bの下面部12b3でカバーすることによって画定される空間であってもよい。この場合、バッファタンク部PBの形成方法は、流路P2の形成方法と同様でよい。すなわち、溝12a2内にアッシングなどによって除去することが可能な材料を犠牲層として詰めておいてもよい。この犠牲層は、CVC法でヘッドカバー12bが形成された後に、アッシングなどで除去されてもよい。この結果、犠牲層が除去された空間がバッファタンク部PBとなり得る。バッファタンク部PB内には、ヘッドカバー12bの下面部12b3を支持するための少なくとも1つのピラー12dが設けられてもよい。
流出路P3は、その一端がバッファタンク部PBに連通し、その他端がミラー基部12の外表面に開口してもよい。図4および図6に示すように、流出路P3は、たとえば支持部12cをその厚さ方向に貫通してもよい。この場合、熱媒体C2の流出口は、支持部12cの下面に設けられる流出路P3の開口であってもよい。
上述した流路FPを備える平面ミラー1では、流路FPに熱媒体C1を流すことによってミラー基部12および反射膜11が冷却され得る。これにより、ミラーの反射表面およびその近傍における昇温を抑えて、反射表面の熱変形による歪みを低減することが可能となり得る。たとえば図1に示した平面ミラー103に平面ミラー1を適用して熱変形による反射表面の歪みが低減された場合、所望のビームプロファイルのレーザ光LB2をプラズマ生成領域PSに高精度で集光させ易くなると推測される。その結果として、EUV光生成装置100のエネルギー変換効率を向上できる可能性がある。
また、平面ミラー1では、流路FPにバッファタンク部PBが設けられてもよい。これにより、流路FPへの熱媒体C1の供給開始時や供給停止時における流路FP内の圧力の急激な変動を低減することができると推測される。さらに、流入路P1に供給される熱媒体C1の圧力が脈動する場合でも、流路FP内での熱媒体C1の圧力変動を低減することが可能となると推測される。その結果として、ヘッドカバー12bの厚さをたとえば1mm程度と比較的薄くした場合でも、ヘッドカバー12bの破損を抑制することが可能であると推測される。
平面ミラー1は、放射状に配列される複数の流路P2の配列中心が反射対象光のビーム軸と略一致するように配置されるのが好ましい。通常、レーザ光のビームプロファイルでは、強度のピークがビーム軸上に位置し得る。そこで、反射表面の中心とレーザ光のビーム軸との交点またはその付近に最も冷却能力の高い流路P2の収束部分を位置させてもよい。これにより、反射表面における不均一な昇温を抑えることが容易になる可能性がある。
平面ミラー1は、所定の管路、圧送装置、熱媒体冷却用の冷却装置などと組み合わされて、ミラー装置としてユニット化されてもよい。以下、図7を参照して、このミラー装置の一例を説明する。
図7は、本開示のミラー装置の一例と、このミラー装置において各位置で熱媒体に加わる圧力の一例とを概略的に示す。図7に示すように、ミラー装置200は、たとえば、熱媒体供給源201と、供給管路202と、排出管路203とを備えてもよい。熱媒体供給源201には、上述した平面ミラー1を冷却するための熱媒体Cが収容されてもよい。供給管路202は、熱媒体供給源201と平面ミラー1の流入路P1とを繋いでもよい。排出管路203は、平面ミラー1の流出路P3と熱媒体供給源201とを繋いでもよい。供給管路202には、圧送装置204と、冷却装置205とが設けられてもよい。圧送装置204は、熱媒体供給源201内の熱媒体Cを流入路P1に向けて圧送するよう構成されてもよい。冷却装置205は、供給管路202を流れる熱媒体Cを冷却するよう構成されてもよい。冷却装置205は、圧送装置204の下流側に設けられてもよい。図7では、ミラー装置200内の相対的な圧力変動を示すために、熱媒体供給源201が重複記載されている。
熱媒体供給源201には、たとえば熱媒体Cを貯留するための所望容積のタンクが用いられてもよい。供給管路202および排出管路203には、たとえば金属などの無機材料製の管や合成樹脂などの有機材料製の管が用いられてもよい。圧送装置204には、たとえば電動ポンプが用いられてもよい。冷却装置205には、たとえばヒートポンプなどの熱交換器が用いられてもよい。
圧送装置204を動作させると、熱媒体供給源201内の熱媒体Cが供給管路202を通って平面ミラー1の流路FPに流入し、流路FPを通過して排出管路203に流入し得る。その後、熱媒体Cは、排出管路203を通って熱媒体供給源201に戻されてもよい。熱媒体Cは、繰り返し使用されてもよい。
図7に示すように、熱媒体供給源201内の大気圧に対する相対圧力を0(ゼロ)とすると、ミラー装置200内の相対圧力は、熱媒体供給源201から圧送装置204に近づくに従って負の小さな値となり得る。また、この相対圧力は、圧送装置204で最小となってもよい。その一方で、圧送装置204に達した熱媒体Cは、圧送装置204で昇圧されてもよい。ミラー装置200内の相対圧力は、圧送装置204での昇圧後、最大となってもよい。また、この相対圧力は、圧送装置204から冷却装置205、平面ミラー1の流路FP、および熱媒体供給源201へと向かうに従って徐々に低下してもよい。熱媒体Cが再び熱媒体供給源201に達するとき、相対圧力は0(ゼロ)になってもよい。
圧送装置204と冷却装置205とを動作させると、冷却装置205によって冷却された熱媒体Cが供給管路202から平面ミラー1の流路FPに供給され得る。それにより、冷却装置205を動作させずに圧送装置204のみを動作させた場合に比べ、平面ミラー1が効率よく冷却され易くなる可能性がある。
実施の形態2
基部ヘッドとヘッドカバーと支持部とを備えたミラー基部内に、バッファタンク部が備えられた流路を設ける場合、バッファタンク部は、基部ヘッドの内部、支持部の内部、および基部ヘッドと支持部との境界部のいずれの箇所に配置されてもよい。
図8は、本開示の実施の形態2による平面ミラーの一例を概略的に示す側面図である。図9は、図8に示した平面ミラーの反射面と直交する面における構成を概略的に示す断面図である。図10は、図8に示した平面ミラーのミラー基部を概略的に示す部分透視斜視図である。図11は、図9に示した平面ミラーのXI−XI面における構成を概略的に示す断面図である。図12は、図9に示した平面ミラーのXII−XII面における構成を概略的に示す断面図である。図13は、図9に示した平面ミラーのXIII−XIII面における構成を概略的に示す断面図である。図14は、図9に示した平面ミラーのXIV−XIV面における構成を概略的に示す断面図である。
図8に示すように、平面ミラー20は、ミラー基部22と、反射膜21とを含んでもよい。反射膜21は、ミラー基部22の上面側に形成され、光学反射面を構成してもよい。反射膜21は、たとえば誘電体多層反射膜であってもよい。ミラー基部22は、基部ヘッド22aと、支持部22cとを含んでもよい。基部ヘッド22aは、上面側に反射膜21を備えてもよい。基部ヘッド22aは、下面中央部に円板状の突出部PPを有してもよい。支持部22cは、突出部PPの下面側に設けられてもよい。基部ヘッド22aおよび支持部22cには、熱伝導率が高く、かつ耐熱性が高い材料が用いられてもよい。特に、基部ヘッド22aには、熱伝導率が高い材料が用いられるのが好ましい。
基部ヘッド22aは、たとえば炭化ケイ素焼結体で構成されてもよい。図8および図9に示すように、基部ヘッド部22aは、たとえば炭化ケイ素で構成されるヘッドカバー22bによって覆われてもよい。ヘッドカバー22bは、上面部22b1と、側面部22b2とを含んでもよい。上面部22b1は、基部ヘッド22aの上面をカバーしてもよい。側面部22b2は、基部ヘッド22aの側面をカバーしてもよい。このようなヘッドカバー22bは、たとえばCVC法によって基部ヘッド22a上に形成されてもよい。支持部22cは、たとえば炭化ケイ素焼結体で構成されてもよい。図8および図9に示すように、支持部22cは、突出部PPの下面側に接合材によって接合されてもよい。
図9〜図14に示すように、ミラー基部22内の流路FPは、たとえば、流入路P1と、複数の流路P2と、戻り流路P4と、バッファタンク部PBと、流出路P3とを含んでもよい。流入路P1は、熱媒体供給源から供給される熱媒体のミラー基部22内への流入経路であってもよい。複数の流路P2は、流入路P1から放射状に分岐してもよい。これにより、ミラー基部22の上面側に熱媒体が略均等に流れ得る。戻り流路P4は、流路P2と連通してもよい。バッファタンク部PBは、複数の戻り流路P4と合流してもよい。流出路P3は、バッファタンク部PBから熱媒体のミラー基部22外への流出経路であってもよい。戻り流路P4は、環状流路部P4aと、連絡流路部P4bとを含んでもよい。環状流路部P4aは、流路P2に連通してもよい。連絡流路部P4bは、環状流路部P4aとバッファタンク部PBとを連通させてもよい。
流入路P1の一端は、ミラー基部22の外表面の1箇所に開口してもよい。流入路P1の他端は、ミラー基部22の上面側で複数の流路P2に連結されてもよい。図9に示すように、流入路P1は、たとえば、支持部22cの下面から基部ヘッド22aの上面の略中央にかけて、これら支持部22cおよび基部ヘッド22aを貫通してもよい。この場合、熱媒体の流入口は、支持部22cの下面に設けられた流入路P1の開口であってもよい。流入路P1の反射膜21側の端部は、端部に向かうほど流路の径が拡大された形状であってもよい。
流路P2は、図9、図10、および図11に示すように、基部ヘッド22aの上面の略中央において、流入路P1から基部ヘッド22aの側端側へ向けて放射状に分岐してもよい。流路P2は、たとえば隣り合う2つの流路P2間の内角が略均一となるように構成されてもよい。たとえば平面ミラー20の反射表面の形状が円形である場合、平面ミラー20は、流入路P1の中心線の延長線上に反射表面の中心が位置するように構成されるのが好ましい。このように構成されることで、ミラー基部22の上面側において、反射表面の中心に対して点対称に熱媒体を流すことが可能となり得る。このような流路P2は、たとえば、基部ヘッド22aの上面側に形成される溝22a1をヘッドカバー22bの上面部22b1でカバーすることによって画定される空間であってもよい。
流路P2は、図9、図10、および図11に示すように、基部ヘッド22aの側端側の端部で環状流路部P4aに連通してもよい。環状流路部P4aは、たとえば、基部ヘッド22aの側面側に形成される細径部22a2をヘッドカバー22bの側面部22b2でカバーすることによって画定される空間であってもよい。流路P2および環状流路部P4aは、たとえば犠牲層を用いた製造技術によって形成されてもよい。具体的には、前述した溝22a1内および細径部22a2内それぞれに、アッシングなどによって除去することが可能な材料を犠牲層として詰めておいてもよい。この犠牲層は、CVC法でヘッドカバー22bが形成された後に、アッシングなどで除去されてもよい。この結果、犠牲層が除去された空間が流路P2および環状流路部P4aとなり得る。
環状流路部P4aは、図9、図10、図12、および図13に示すように、それぞれ連絡流路部P4bを介してバッファタンク部PBに連通してもよい。連絡流路部P4bは、たとえば、環状流路部P4aに連通する箇所から環状流路部P4aと略直交する方向に基部ヘッド22aの内部に向けて延在する部分と、この部分の端から反射表面と反対方向に向けて下方に延在する部分とを含んでもよい。下方に延在する部分は、基部ヘッド22aの下面22a3でバッファタンク部PBに合流してもよい。連絡流路部P4bは、流路P2各々に連通してもよい。
連絡流路部P4bが合流するバッファタンク部PBは、たとえば流路P2および戻り流路P4それぞれにおける熱媒体C1の流量を略均一にするために設けられてもよい。バッファタンク部PBを設けることで、たとえば流路P2および戻り流路P4それぞれに熱媒体が流れる際に生じる圧力損失を略均等にし得る。また、バッファタンク部PBは、流路P2および戻り流路P4を流れる熱媒体の圧力変動を吸収してもよい。バッファタンク部PBの流路断面積は、流路P2各々の流路断面積を合計した値より大きくてもよい。このバッファタンク部PBは、図9および図13に示すように、支持部22cの上面側に形成される環状の溝22c1を、基部ヘッド22aの下面部22a3でカバーすることによって画定される空間であってもよい。
一端がバッファタンク部PBに連通した流出路P3の他端は、ミラー基部22の外表面に開口してもよい。図9および図14に示すように、流出路P3は、たとえば支持部22cをその厚さ方向に貫通してもよい。この場合、熱媒体の流出口は、支持部22cの下面に設けられる流出路P3の開口であってもよい。
上述した流路FPが備えられる平面ミラー20は、流路FPに熱媒体を流すことによって冷却され得る。これにより、平面ミラー20の昇温を抑えて、反射表面の熱変形による歪みを低減することができる可能性がある。たとえば図1に示した平面ミラー103に平面ミラー20を適用して反射表面の熱変形による歪みが低減された場合、所望のビームプロファイルのレーザ光LB2がプラズマ生成領域PSに高精度で集光され易くなると推測される。その結果として、EUV光生成装置100のエネルギー変換効率が向上され得る可能性がある。
平面ミラー20では、基部ヘッド22aと支持部22cとの接合部分にバッファタンク部PBが画定されてもよい。そのため、ヘッドカバー22bの一部の領域をバッファタンク部PBの流路壁の一部として利用する場合に比べ、バッファタンク部PBの機械的強度を高くし易い。それにより、流路FPに供給される熱媒体の流量を多くしても、熱媒体の供給開始時や供給停止時における流路FP内の圧力の急激な変動をバッファタンク部PBによって吸収することが可能になると推測される。流路FPに供給される熱媒体の流量を多くすることにより、実施の形態1の平面ミラー1に比べて、反射表面の熱変形による歪みを抑制することがより容易になる可能性がある。また、複数の流路P2の配列中心が反射対象光のビーム軸と略重なるように平面ミラー20を位置させることにより、反射表面における温度分布を略点対称にすることが可能となり得る。この場合、平面ミラー20によって反射されるレーザ光の波面が補償光学系によって容易に補正され得る可能性が高い。
平面ミラー20は、実施の形態1で説明した平面ミラー1と同様に、所定の管路、圧送装置、熱媒体冷却用の冷却装置などと組み合わされて、ミラー装置としてユニット化されてもよい。平面ミラー20を備えたミラー装置は、たとえば、図7に示したミラー装置200での平面ミラー1に代えて平面ミラー20を配置する以外は、ミラー装置200と同様に構成されてよい。
実施の形態3
放射状に配置される流路を含む流路をミラー基部内に設ける場合、放射状に配置される流路の平面形状は、矩形状に限らず、扇状や台形状などであってもよい。
図15は、本開示の実施の形態3による平面ミラーの一例を概略的に示す側面図である。図16は、図15に示した平面ミラーの反射面と直交する面における構成を概略的に示す断面図である。図17は、図15に示した平面ミラーのミラー基部を概略的に示す分解斜視図である。図18は、図15に示した平面ミラーにおいて放射状に配置される流路を概略的に示す平面図である。図19は、図16に示した平面ミラーのXIX−XIX面における構成を概略的に示す断面図である。図20は、図15に示した平面ミラーにおいて放射状に配置される流路の1つを概略的に示す断面図である。図21は、図15に示した平面ミラーにおいて放射状に配置される流路の1つを概略的に示す他の断面図である。図22は、図15に示した平面ミラーのミラー基部を概略的に示す部分透視断面斜視図である。
図15に示すように、平面ミラー30は、たとえば、ミラー基部32と、反射膜31とを含んでもよい。反射膜31は、ミラー基部32の上面側に形成され、光学反射面を構成してもよい。反射膜31は、たとえば誘電体多層反射膜でよい。ミラー基部32は、基部ヘッド32aと、支持部32bとを含んでもよい。基部ヘッド32aは、略平板状であってもよく、その上面に反射膜31が形成されてもよい。支持部32bは、大径部32b1と、小径部32b2とを備えてもよい。支持部32bは、側面視したときに大径部32b1の下面側に小径部32b2が連続したT字形状であってもよい。基部ヘッド32aは、大径部32b1の上面に配置されてもよい。
基部ヘッド32aおよび支持部32bには、熱伝導率が高く、かつ耐熱性が高い材料が用いられてもよい。特に基部ヘッド32aには、熱伝導率が高い材料が用いられるのが好ましい。基部ヘッド32aおよび大径部32b1は、たとえば炭化ケイ素焼結体で構成されてもよい。基部ヘッド32aは、大径部32b1の上面に、ろう、はんだ、または無機系接着剤などの無機系接合材、有機系接合材などの接合材等によって接合されてもよい。
図16〜図22に示すように、ミラー基部32内の流路FPは、たとえば、流入路P1と、複数の流路P2と、複数の戻り流路P4と、バッファタンク部PBと、流出路P3とを含んでもよい。流入路P1は、熱媒体供給源から供給される熱媒体のミラー基部32内への流入経路であってもよい。複数の流路P2は、流入路P1から放射状に分岐してもよい。これにより、ミラー基部32の上面側で熱媒体が略均等に流れ得る。複数の戻り流路P4は、複数の流路P2それぞれと連通してもよい。バッファタンク部PBは、複数の戻り流路P4と合流してもよい。流出路P3は、バッファタンク部PBに流れ込んだ熱媒体がミラー基部32外へ流出するための経路であってもよい。
流入路P1の一端は、ミラー基部32の外表面の1箇所に開口してもよい。流入路P1の他端は、ミラー基部32の上面側において、放射状に配置される複数の流路P2に連結されてもよい。図16に示すように、流入路P1は、たとえば支持部32bをその厚さ方向に貫通してもよい。この場合、熱媒体の流入口は、支持部32bの下面に設けられる流入路P1の開口であってもよい。流入路P1の基部ヘッド32a側の端部は、端部に向かうほど流路の径が拡大された形状であってもよい。
複数の流路P2は、図16〜図19に示すように、支持部32bの上面の略中央において、流入路P1から支持部32bの側端側へ向けて放射状に分岐してもよい。複数の流路P2は、たとえば隣り合う2つの流路P2間の内角が略均一となるように配置されてもよい。流入路P1の中心線の延長線上に反射表面の中心が位置するように平面ミラー30を構成することにより、反射表面の中心に対して点対称に熱媒体を流すことが可能となり得る。このような流路P2は、たとえば、大径部32b1の上面側に形成される溝32b3を基部ヘッド32aでカバーすることによって画定される空間であってもよい。
戻り流路P4は、図16〜図19、および図21に示すように、たとえば支持部32bの側端側の端部で流路P2に連通してもよい。戻り流路P4は、たとえば、流路P2に連通する箇所から流路P2と略直交する方向であって大径部32b1の厚さ方向に延在してもよい。
戻り流路P4が合流するバッファタンク部PBは、たとえば流路P2および戻り流路P4それぞれにおける熱媒体の流量を略均一にするために設けられてもよい。バッファタンク部PBを設けることで、たとえば流路P2および戻り流路P4それぞれに熱媒体が流れる際に生じる圧力損失を略均等にし得る。また、バッファタンク部PBは、流路P2および戻り流路P4を流れる熱媒体の圧力変動を吸収してもよい。バッファタンク部PBの流路断面積は、流路P2各々の流路断面積を合計した値より大きくてもよい。このバッファタンク部PBは、図16に示すように、大径部32b1内に画定される環状の空間であってもよい。
流出路P3の一端は、バッファタンク部PBに連通してもよい。流出路P3の他端は、ミラー基部32の外表面に開口してもよい。図16に示すように、流出路P3は、たとえば支持部32bをその厚さ方向に貫通してもよい。この場合、熱媒体の流出口は、支持部32bの下面に設けられる流出路P3の開口であってもよい。
実施の形態3では、図17および図18に示すように、流路P2の平面形状が扇状であってもよい。流路P2は、平面視したときに、支持部32bの側端側の端部の幅の方が流入路P1側の端部の幅よりも広い扇状であってもよい。隣り合う流路P2を分離するための隔壁部BHは、直方体状に形成されてもよい。隔壁部BHは、たとえば基部ヘッド32aまたは大径部32b1に形成されてもよい。戻り流路P4は、対応する流路P2とバッファタンク部PBとを連通してもよい。戻り流路P4の断面形状は、流入路P1を中心にして円弧状に湾曲した長孔状であってもよい。
流路P2の平面形状を扇状にする場合、図16および図17に示すように、基部ヘッド32aは、円板状のベース部32a1と、平板状の突起部32a2と、円錐状の整流部32a3とを含んでもよい。突起部32a2は、溝32b3にそれぞれ対応するようにベース部32a1の下面側に設けられてもよい。この突起部32a2は、溝32b3の上部に挿入されてもよい。整流部32a3は、尖端側を下にしてベース部32a1の下面中央部に設けられてもよい。突起部32a2の平面形状は、たとえば扇状であってもよい。また、突起部32a2は、実質的に均一な厚みを有してもよい。整流部32a3は、その尖端側が流入路P1に突出してもよい。
図19および図20に示すように、突起部32a2とこれに対応する流路P2の隔壁部BHとの間には、間隙Gが画定されてもよい。間隙Gは、流路P2の一領域として機能してもよい。戻り流路P4の位置は、戻り流路P4が突起部32a2よりも支持部32bの側端側に位置するように選定されてもよい。図19では、隔壁部BHと間隙Gとを区別し易くするために、大径部32b1の最上面にスマッジングが付されている。
流路P2の間隙Gを除いた流路断面積は、流入路P1側から戻り流路P4側にかけて実質的に一定であってもよい。たとえば、図21に示すように、流路P2における流入路P1側の流路の高さH1が戻り流路P4側の流路の高さH2よりも高く、且つ流入路P1側から戻り流路P4側に向かって当該流路の高さが漸次低下するように構成されてもよい。この構成によれば、流路P2での間隙Gを除いた流路断面積を実質的に一定にすることが可能となる。
基部ヘッド32aを接合材によって支持部32b上に接合する場合には、支持部32bの上面を接合面にしてもよい。この場合、図22に示すように、支持部32bでの大径部32b1の最上面全体に接合材層33を設けてもよい。なお、図22では、接合材層33にスマッジングが付されている。また、図22では、ベース部32a1の輪郭が二点鎖線で示されている。
上述した流路FPが備えられる平面ミラー30は、流路FPに熱媒体を流すことによって冷却され得る。これにより、平面ミラー30の昇温を抑えて、反射表面の熱変形による歪みを低減することができる可能性がある。たとえば図1に示した平面ミラー103に平面ミラー30を適用して反射表面の熱変形による歪みが低減された場合、所望のビームプロファイルのレーザ光LB2がプラズマ生成領域PSに高精度で集光され易くなると推測される。その結果として、EUV光生成装置100のエネルギー変換効率を向上できる可能性がある。
平面ミラー30では、支持部32bの内部にバッファタンク部PB全体が配置されてもよい。これにより、ヘッドカバーの一部の領域をバッファタンク部PBの流路壁の一部として利用する場合に比べ、バッファタンク部PBの容積を大きくし易い。このため、流路FPに供給される熱媒体の流量を多くしても、熱媒体の供給開始時や供給停止時における流路FP内の圧力の急激な変動をバッファタンク部PBによって抑えることが可能になると推測される。流路FPに供給される熱媒体の流量を多くすることにより、反射表面の熱変形による歪みをさらに抑制することが容易になる可能性がある。
流路P2の平面形状が扇状であり、隣り合う流路P2間の隔壁部BHが直方体状である場合には、隔壁部BHの平面形状がたとえば扇状である場合に比べ、流路P2を流れる熱媒体によって基部ヘッド32aがより均一に冷却され易くなる可能性がある。その結果として、平面ミラー30がより均一に冷却され易くなる可能性がある。基部ヘッド32aに円錐状の整流部32a3が設けられた場合には、基部ヘッド32aが、反射表面の中心部付近で熱媒体に接する表面積が広くなり得る。その結果として、整流部32a3が設けられない場合に比べ、入射光によって集中的に加熱されるおそれのある反射表面の中心部付近をより効果的に冷却することが可能になる可能性がある。
流路P2の流路断面積が流入路P1側から戻り流路P4側にかけて実質的に均一である場合には、流路P2の流路断面積が不均一である場合に比べ、戻り流路P4側での熱媒体の流速の低下が抑えられ易くなる可能性がある。その結果として、反射表面における温度分布がより均一化され得る可能性がある。また、放射状に配列される複数の流路P2の配列中心が反射対象光のビーム軸と略重なるように平面ミラー30が位置することで、反射表面における温度分布が点対称でかつ略均一になり得る可能性がある。この場合、平面ミラー30によって反射されるレーザ光の波面が補償光学系によって容易に補正され得る可能性が高い。
戻り流路P4における流路P2側の断面形状を前述の長孔状にすることで、流路P2での熱媒体の滞留が抑制され易くなる可能性がある。また、基部ヘッド32aに突起部32a2が設けられた場合には、間隙Gを除いた流路P2の流路の高さに比べて隔壁部BHの高さを高くすることができる。その結果として、基部ヘッド32aと支持部32bとが接合材によって互いに接合されるときに、未硬化の接合材が毛細管現象によって流路P2内に侵入して流路P2の詰まりを引き起こすことが抑制され易くなる可能性がある。
平面ミラー30は、実施の形態1で説明した平面ミラー1と同様に、所定の管路、圧送装置、熱媒体冷却用の冷却装置などと組み合わされて、ミラー装置としてユニット化されてもよい。平面ミラー30を含むミラー装置は、たとえば、図7に示したミラー装置200での平面ミラー1に代えて平面ミラー30が配置される以外は、ミラー装置200と同様に構成されてよい。
実施の形態4
放射状に配置される複数の流路とバッファタンク部とを含む流路は、凹面ミラーや凸面ミラーなど、平面ミラー以外のミラーに設けられてもよい。
図23は、本開示の実施の形態4による円形凹面ミラーの一例を概略的に示す平面図である。図24は、図23に示した凹面ミラーの縦断面における構成を概略的に示す図である。図23および図24に示すように、凹面ミラー40は、ミラー基部42と、反射膜41とを備えてもよい。反射膜41は、ミラー基部42の上面側に形成されてもよい。反射膜41は、たとえば多層反射膜であってもよい。ミラー基部42は、基部ヘッド42aと、円柱状の支持部42bとを含んでもよい。基部ヘッド42aは、反射膜41が上面に形成される凹部42a1を有してもよい。支持部42bは、基部ヘッド42aに接合されてもよい。基部ヘッド42aおよび支持部42bは、たとえばニッケルなどの金属系材料によって構成されてもよい。反射膜41およびミラー基部42には、これら反射膜41およびミラー基部42を貫通する貫通孔43が設けられてもよい。図24では、支持部42bの断面にスマッジングが付されている。
ミラー基部42の内部には、以下に説明するように、たとえば図2に示した流路FPと同様の構成を有する流路が設けられてもよい。以下の説明では、ミラー基部42における厚さ方向の2つの端面のうちで凹部42a1が形成されている側の面を「上面」といい、他方の面を「下面」という。
図23および図24に示すように、ミラー基部42内の流路FPは、たとえば、流入路P1と、複数の流路P2と、複数の戻り流路P4と、バッファタンク部PBと、流出路P3とを含んでもよい。流入路P1は、熱媒体供給源から供給される熱媒体のミラー基部42内への流入経路であってもよい。複数の流路P2は、流入路P1から放射状に分岐してもよい。これにより、ミラー基部42の上面側で熱媒体が略均等に流れ得る。複数の戻り流路P4は、複数の流路P2とそれぞれ連通してもよい。バッファタンク部PBは、複数の戻り流路P4と合流してもよい。流出路P3は、バッファタンク部PBに流れ込んだ使用後の熱媒体のミラー基部42外への流出経路であってもよい。
ミラー基部42に貫通孔43が設けられている場合、流入路P1は、図23および図24に示すように、少なくとも1つの供給源側流入路P1aと、分配流路P1bと、少なくとも1つの反射表面側流入路P1cとを含んでもよい。供給源側流入路P1aは、熱媒体の供給源に一端が連通してもよい。分配流路P1bは、貫通孔43を取り巻くように配置されて供給源側流入路P1aの他端と連通してもよい。反射表面側流入路P1cの一端は分配流路P1bに連通し、他端は流路P2に連通してもよい。
流入路P1の一端は、ミラー基部42の外表面に開口してもよい。流入路P1が複数の供給源側流入路P1aを含む場合には、各供給源側流入路P1aの一端がミラー基部42の外表面に開口してもよい。同様に、流入路P1が複数の反射表面側流入路P1cを含む場合には、各反射表面側流入路P1cの他端がミラー基部42の上面側で流路P2に連通してもよい。
複数の流路P2は、ミラー基部42の中心から放射状に配置されてもよい。流路P2は、流入路P1側からミラー基部42の上面の側端側に向かって斜めに延在してもよい。戻り流路P4の一端は、流路P2のミラー基部42の側端側の端部に連通してもよい。戻り流路P4の他端は、ミラー基部42の下面側に向かって延在し、バッファタンク部PBに合流してもよい。
戻り流路P4が合流するバッファタンク部PBは、たとえば流路P2および戻り流路P4それぞれにおける熱媒体の流量を略均一にするために設けられてもよい。バッファタンク部PBを設けることで、たとえば流路P2および戻り流路P4それぞれに熱媒体が流れる際に生じる圧力損失を略均等にし得る。また、バッファタンク部PBは、流路P2および戻り流路P4を流れる熱媒体の圧力変動を吸収するために設けられてもよい。バッファタンク部PBの流路断面積は、流路P2各々の流路断面積を合計した値より大きくてもよい。このバッファタンク部PBは、図24に示すように、ミラー基部42内に画定される環状の空間であってもよい。
流出路P3の一端は、バッファタンク部PBに連通してもよく、その他端は、ミラー基部42の外表面に開口してもよい。図24に示すように、流出路P3は、たとえば支持部42bの下面に開口してもよい。この場合、熱媒体の流出口は、支持部42bの下面に設けられる流出路P3の開口であってもよい。
上述した流路FPを備える凹面ミラー40は、流路FPに水などの熱媒体を流すことによって冷却され得る。これにより、凹面ミラー40の昇温を抑えて、反射表面の熱変形による歪みを抑制することができる可能性がある。たとえば図1に示したEUV集光ミラー122に凹面ミラー40を適用して反射表面の熱変形による歪みが低減された場合、所望のEUV光Lが中間集光点IFに高精度で集光され易くなると推測される。凹面ミラー40は、実施の形態1で説明した平面ミラー1と同様に、所定の管路、圧送装置、熱媒体冷却用の冷却装置などと組み合わされて、ミラー装置としてユニット化されてもよい。
実施の形態5
内部に流路が設けられたミラーを含むミラー装置では、圧送装置がミラーの上流側に配置されてもよいし、ミラーの下流側に配置されてもよいし、ミラーの上流側と下流側との両方にそれぞれ配置されてもよい。
図25は、本開示の実施の形態5によるミラー装置の一例と、このミラー装置において各位置で熱媒体に加わる圧力の一例とを概略的に示す。図25に示すミラー装置210は、冷却対象のミラーMの下流側にバッファタンク206と排出用圧送装置207とが設けられている以外は、図7に示したミラー装置200と同様に構成されてもよい。ミラーMの内部には、たとえば図2に示した流路FPや図24に示した流路FPが設けられてもよい。図25に示した構成要素のうちで図7に示した構成要素と共通するものについては、図7で用いた参照符号と同じ参照符号を付してその説明を省略する。
ミラー装置210では、圧送装置204および排出用圧送装置207の少なくとも一方を動作させることにより、熱媒体供給源201内の熱媒体Cが供給管路202を通ってミラーM内の流路に流入し、当該流路を通過して排出管路203に流入し得る。その後、熱媒体Cは、バッファタンク206に一旦貯留されてから熱媒体供給源201に戻されてもよい。熱媒体Cは、繰り返し使用されてもよい。
図25に示すように、圧送装置204および排出用圧送装置207の両方を動作させた場合、ミラー装置210内の大気圧に対する相対圧力は、圧送装置204において、圧送装置204を動作させる前に最小となり得る。また、この相対圧力は、圧送装置204を動作させた後に最大となってもよい。熱媒体供給源201内の大気圧に対する相対圧力を0(ゼロ)とすると、ミラー装置210内の相対圧力は、熱媒体供給源201から圧送装置204に近づくに従って負の小さな値となり得る。その後、圧送装置204に達した熱媒体Cは、圧送装置204で昇圧されてもよい。
その後、ミラー装置210内の相対圧力は、圧送装置204から冷却装置205、ミラーM内の流路、バッファタンク206、および排出用圧送装置207へと向かうに従って徐々に低下してもよい。排出用圧送装置207は、熱媒体Cを吸引してもよい。その場合、バッファタンク206から排出用圧送装置207までの区間において相対圧力は負の値となり得る。また、排出用圧送装置207は熱媒体Cを昇圧してもよい。その場合、ミラー装置210内の相対圧力は、排出用圧送装置207で昇圧後再び正の値となり得る。その後、排出用圧送装置207から熱媒体供給源201に近づくに従って相対圧力は徐々に低下してもよい。相対圧力は、熱媒体供給源201で0(ゼロ)になってもよい。
圧送装置204および排出用圧送装置207の少なくとも一方に加えて冷却装置205を動作させると、冷却装置205によって冷却された熱媒体Cが供給管路202を通ってミラーM内の流路に供給され得る。結果として、冷却装置205を動作させずに圧送装置204および排出用圧送装置207の少なくとも一方を動作させた場合に比べ、ミラーMが効率よく冷却され易くなる可能性がある。
ミラー装置210では、圧送装置204および排出用圧送装置207の両方を動作させてミラーM内の流路に熱媒体Cを流してもよい。これにより、圧送装置204および排出用圧送装置207のいすれか一方のみを動作させることでミラーM内の流路に熱媒体Cを流す場合に比べ、ミラーM内の流路における相対圧力がより低減し得る。また、ミラーMと排出用圧送装置207との間にバッファタンク206が設けられているので、ミラーM内の流路と反射膜とを接近させても、熱媒体Cが流路を流れることで反射膜に生じ得る圧力変動による振動が低減し得る。
実施の形態6
本開示のミラーおよびミラー装置は、種々のレーザ装置の構成要素として用いられてもよい。レーザ装置は、たとえば、LPP方式のEUV光生成装置のドライバレーザ装置であってもよいし、レーザ加工機などに使用されるレーザ装置であってもよいし、これらの構成要素であってもよい。本開示のミラーおよびミラー装置は、たとえばレーザ光伝送光路に配置される構成要素であってもよい。
図26は、本開示の実施の形態6によるレーザ装置のレーザ光増幅器の一例を概略的に示す。図26に示すように、レーザ光増幅器300は、第1放電部301と、第2放電部302とを備えてもよい。レーザ光増幅器300をこのような構成にする場合、第1放電部301は、ウィンドウ311と、4つの放電管312a〜312dと、4つのミラー装置313a〜313dとを備えてもよい。第2放電部302は、4つの放電管321a〜321dと、4つのミラー装置322a〜322dと、ウィンドウ323とを備えてもよい。ミラー装置313a〜313dおよび322a〜322dは、本開示のミラー装置であってもよい。
放電管312a〜312dおよび321a〜321d内には、ガスレーザ媒質が充填されてもよい。放電管312a〜312dおよび321a〜321dでは、これらの放電管312a〜312dおよび321a〜321d毎に配置された電極対間に、所定のタイミングで、図示しない電源によって電圧が印加されてもよい。この電圧の印加によって放電が起こることで、ガスレーザ媒質が励起されてもよい。ガスレーザ媒質は、二酸化炭素(CO)、窒素(N)、ヘリウム(He)などを含んでもよい。加えて、ガスレーザ媒質は、必要に応じて水素(H)、一酸化炭素(CO)、キセノン(Xe)などを含んでもよい。
上述のように構成されたレーザ光増幅器300において、ウィンドウ311を透過したレーザ光LB21は、第1放電部301と第2放電部302とで増幅されてもよい。この場合、ウィンドウ311を透過したレーザ光LB21は、放電管312aに入射して増幅されてもよい。つぎに、レーザ光LB21は、ミラー313aによってY軸方向に反射され、放電管312bに入射して増幅されてもよい。放電管312b内で増幅されたレーザ光LB21は、ミラー装置313bによってX軸方向に反射され、放電管312cに入射して増幅されてもよい。放電管312c内で増幅されたレーザ光LB21は、ミラー装置313cによってY軸方向に反射され、放電管312dに入射して増幅されてもよい。
放電管312d内で増幅されたレーザ光LB21は、ミラー装置313dによってZ軸方向に反射されて第2放電部302に伝播されてもよい。つぎに、レーザ光LB21は、ミラー装置322aによってY軸方向に反射され、放電管321aに入射して増幅されてもよい。放電管321a内で増幅されたレーザ光LB21は、ミラー装置322bによってX軸方向に反射され、放電管321bに入射して増幅されてもよい。放電管321b内で増幅されたレーザ光LB21は、ミラー装置322cによってY軸方向に反射され、放電管321cに入射して増幅されてもよい。放電管321c内で増幅されたレーザ光LB21は、ミラー装置322dによってX軸方向に反射され、放電管321dに入射して増幅されてもよい。
第2放電部302で増幅されたレーザ光LB21は、ウィンドウ323を透過してレーザ光増幅器300から出力されてもよい。なお、図26には、X座標軸、Y座標軸、およびZ座標軸が付されている。また、図26では、放電管312a〜312dおよび321a〜321d内でのレーザ光LB21の伝播方向が、それぞれ実線の矢印で示されている。
上述したレーザ光増幅器300では、ミラー装置313a〜313dおよび322a〜322dに本開示のミラー装置が用いられてもよい。これにより、レーザ光LB21の増幅過程でレーザ光LB21のビームプロファイルが所望のプロファイルから変化してしまうことが抑制され易くなる可能性がある。
実施の形態7
本開示のミラーおよびミラー装置は、光学系を備える種々の装置の構成要素にすることができる。図27は、本開示の実施の形態7によるEUV光生成装置の一例を概略的に示す。図27に示すEUV光生成装置100Aは、図1に示したドライバレーザ装置101に代えてドライバレーザ装置101Aを備えてもよい。また、EUV光生成装置100Aは、図1に示したチャンバ102に代えてチャンバ102Aを備えてもよい。さらに、EUV光生成装置100Aは、波面センサS2を備えてもよい。
ドライバレーザ装置101Aは、たとえば、図1に示したメインアンプMAに代えてメインアンプMA2を備えてもよい。また、ドライバレーザ装置101Aでは、メインアンプMA2とリレー光学系R2との間に、可飽和吸収セルSAと波面補正器WC1とがリレー光学系R2側からこの順番で配置されてもよい。さらに、ドライバレーザ装置101Aは、図1に示したリレー光学系R3に代えて、波面センサS1と波面補正器WC2とを備えてもよい。図27に示す構成要素のうちで図1に示した構成要素と共通する構成要素については、図1で用いた参照符号と同じ参照符号を付してその説明を省略する。
可飽和吸収セルSAは、たとえば六フッ化イオウ(SF)ガスを可飽和吸収体として備えてもよい。可飽和吸収体は、所定強度以下のレーザ光LB1を吸収し、所定強度を超えるレーザ光LB1を透過させ得る。このような可飽和吸収セルSAが配置されることにより、メインアンプMA2への所定強度以下のレーザ光LB1の入射が抑制され得る。これにより、メインアンプMA2の自励発振が抑制され得る。可飽和吸収セルSAは、レーザ光LB1の光路上に配置される光学系やターゲット物質であるドロップレットDで反射される戻り光を吸収するために配置されてもよい。また、可飽和吸収セルSAは、光入射ウィンドウWi1と、光出射ウィンドウWo1とを含んでもよい。光入射ウィンドウWi1および光出射ウィンドウWo1は、窓枠内に設けられる流路に熱媒体が流されることによって窓材を冷却することが可能なように構成されてもよい。
メインアンプMA2は、光入射ウィンドウWi2と、光出射ウィンドウWo2とを含んでもよい。光入射ウィンドウWi2および光出射ウィンドウWo2は、窓枠内に設けられる流路に熱媒体が流されることによって窓材を冷却することが可能なように構成されてもよい。波面センサS1は、メインアンプMA2から出力されるレーザ光LB1の波面形状WFを検出してもよい。波面センサS1は、検出結果を波面補正器WC1に入力してもよい。波面補正器WC1は、波面センサS1の検出結果に基づいて、メインアンプMA2に入射するレーザ光LB1の波面を補正してもよい。波面補正器WC1は、メインアンプMA2から出力されるレーザ光LB1の波面形状WFが所定形状になるように、レーザ光LB1の波面を補正してもよい。
チャンバ102Aは、ウィンドウ121Aを備えてもよい。ウィンドウ121Aは、窓枠内に設けられる流路に熱媒体が流されることによって窓材を冷却することが可能なように構成されてもよい。チャンバ102Aにおけるウィンドウ121A以外の構成は、図1に示したチャンバ102と同様であってもよい。
波面センサS2は、チャンバ102Aのウィンドウ121Aと平面ミラー103との間に配置されてもよい。波面センサS2は、平面ミラー103で反射されたレーザ光LB2の波面形状WFを検出してもよい。波面センサS2は、検出結果を波面補正器WC2に入力してもよい。
上述したEUV光生成装置100Aでは、平面ミラー103、EUV集光ミラー122、および軸外放物面ミラー123の少なくともいずれか1つに、上述した実施の形態による流路が設けられてもよい。プリアンプPA、波面補正器WC1、メインアンプMA2、および波面補正器WC2のいずれかの構成要素としてミラーが用いられる場合には、当該ミラーに上述した実施の形態による流路が設けられてもよい。ミラーに上述した実施の形態による流路を設け、この流路に熱媒体を流すことにより、ミラーの反射表面を点対称かつ略均一に冷却することが可能になる。レーザ光LB1、レーザ光LB2、またはEUV光Lが入射するミラーを冷却して反射表面の昇温を抑えることにより、反射表面の熱変形による歪みを低減し得る。これにより、レーザ光LB1、LB2およびEUV光Lが、その波面の歪みが抑制されつつ反射され得る。この場合、所望のビームプロファイルのレーザ光LB2がプラズマ生成領域PSに高精度で集光され易くなり得る。あるいは、所望のプロファイルのEUV光Lが中間集光点IFに高精度で集光され易くなり得る。結果として、EUV光生成装置100Aのエネルギー変換効率が向上され得る。
また、可飽和吸収セルSAが光入射ウィンドウWi1および光出射ウィンドウWo1を備える場合であって、ウィンドウWi1およびWo1への入射光の軸がウィンドウWi1およびWo1の中心と略一致する場合には、ウィンドウWi1およびWo1の窓枠内の流路に熱媒体を流して窓材を冷却してもよい。これにより、ウィンドウWi1およびWo1での熱分布をウィンドウWi1およびWo1の中心に対して略点対称の分布とすることができる可能性がある。同様に、メインアンプMA2が光入射ウィンドウWi2および光出射ウィンドウWo2を備える場合であって、ウィンドウWi2およびWo2への入射光の軸がウィンドウWi2およびWo2の中心と略一致する場合には、ウィンドウWi2およびWo2の窓枠内の流路に熱媒体を流して窓材を冷却してもよい。これにより、ウィンドウWi2およびWo2での熱分布をウィンドウWi2およびWo2の中心に対して略点対称の分布とすることができる可能性がある。さらに、チャンバ102Aがウィンドウ121Aを備える場合であって、ウィンドウ121Aへの入射光の軸がウィンドウ121Aの中心と略一致する場合には、ウィンドウ121Aの窓枠内の流路に熱媒体を流して窓材を冷却してもよい。これにより、ウィンドウ121Aでの熱分布をウィンドウ121Aの中心に対して略点対称の分布とすることができる可能性がある。これらの場合、レーザ光LB1またはレーザ光LB2の波面形状WFが、形状可変ミラーなどの簡易な構造の光学素子を含む波面補正器を備えた波面補正装置を用いて容易に補正され得る。以下、レーザ光LB1の波面を補正する場合を例にとり、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置について、図28〜図39を参照して詳細に説明する。
図28〜図30は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の一例での動作状態を模式的に示す。図28〜図30に示す波面補正装置400は、形状可変ミラー401と、波面センサ402と、ミラーアクチュエータ403とを備えてもよい。形状可変ミラー401は、反射面の曲率を変更することができてもよい。波面センサ402は、形状可変ミラー401で反射されたレーザ光LB1の波面形状WFを検出してもよい。ミラーアクチュエータ403は、波面センサ402で検出されたレーザ光LB1の波面形状WFに基づいて形状可変ミラー401の反射面全体の曲率を変化させてもよい。形状可変ミラー401は、その反射面が平面である場合にレーザ光LB1の入射角が45°となるように配置されてもよい。
波面センサ402によって検出されるレーザ光LB1の波面形状WFが平面である場合には、ミラーアクチュエータ403は、図28に示すように、形状可変ミラー401の反射面が平面に維持されるように形状可変ミラー401の反射面形状を制御してもよい。
波面センサ402によって検出されるレーザ光LB1の波面形状WFが凸面である場合には、ミラーアクチュエータ403は、図29に示すように、波面センサ402で検出されるレーザ光LB1の波面形状WFが平面となるように形状可変ミラー401の反射面形状を凹面形状に制御してもよい。
波面センサ402によって検出されるレーザ光LB1の波面形状WFが凹面である場合には、ミラーアクチュエータ403は、図30に示すように、波面センサ402で検出されるレーザ光LB1の波面形状WFが平面となるように形状可変ミラー401の反射面形状を凸面形状に制御してもよい。
図31〜図33は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の他の例での動作状態を模式的に示す。図31〜図33に示す波面補正装置410は、形状可変ミラー401と、平面ミラー411と、波面センサ402と、ミラーアクチュエータ403とを備えてもよい。形状可変ミラー401は、反射面の曲率を変更することができてもよい。平面ミラー411は、形状可変ミラー401で反射されたレーザ光LB1を反射してもよい。波面センサ402は、平面ミラー411で反射されたレーザ光LB1の波面形状WFを検出してもよい。ミラーアクチュエータ403は、波面センサ402で検出されたレーザ光LB1の波面形状WFに基づいて形状可変ミラー401の反射面の曲率を変化させてもよい。
この波面補正装置410では、形状可変ミラー401と平面ミラー411とがZ型アダプティブミラーとして機能してもよい。この場合、形状可変ミラー401は、レーザ光LB1の入射角が所定の角度、たとえば2.5°となるように配置されてもよい。平面ミラー411は、当該平面ミラー411で反射されるレーザ光LB1のビーム軸が形状可変ミラー401に入射するレーザ光LB1のビーム軸と略平行となるように、かつ、レーザ光LB1の入射角がたとえば2.5°となるように、配置されてもよい。
波面センサ402によって検出されるレーザ光LB1の波面形状WFが平面である場合、ミラーアクチュエータ403は、図31に示すように、形状可変ミラー401の反射面が平面に維持されるように形状可変ミラー401の反射面形状を制御してもよい。
波面センサ402によって検出されるレーザ光LB1の波面形状WFが凸面である場合には、図32に示すように、ミラーアクチュエータ403は、波面センサ402で検出されるレーザ光LB1の波面形状WFが平面となるように形状可変ミラー401の反射面形状を凹面形状に制御してもよい。
波面センサ402によって検出されるレーザ光LB1の波面形状WFが凹面である場合には、図33に示すように、ミラーアクチュエータ403は、波面センサ402で検出されるレーザ光LB1の波面形状WFが平面となるように、形状可変ミラー401の反射面形状を凸面形状に制御してもよい。
図34は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の更に他の例を模式的に示す。図34に示す波面補正装置420は、凸面ミラー421と、凹面ミラー422と、2つの平面ミラー423および424と、波面センサ425とを備えてもよい。凸面ミラー421は、レーザ光LB1のビーム径を拡大してもよい。凹面ミラー422は、ビーム径が拡大されたレーザ光LB1を平行光に変換してもよい。2つの平面ミラー423および424は、平行光に変換されたレーザ光LB1のビーム軸を、凸面ミラー421に入射する前のレーザ光LB1のビーム軸の延長上に戻してもよい。波面センサ425は、平面ミラー424で反射されたレーザ光LB1の波面形状WFを検出してもよい。この構成において、凹面ミラー422と平面ミラー423とは、たとえば1つの可動プレート426に搭載されてもよい。可動プレート426は、たとえば不図示の移動機構を備えてもよい。移動機構は、波面センサ425で検出されたレーザ光LB1の波面形状WFに基づいて可動プレート426を白抜きの矢印で示す方向に移動させてもよい。これにより、凸面ミラー421と凹面ミラー422との距離が変化し得る。その結果、レーザ光LB1の波面形状WFが補正され得る。
図35は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置の更に他の例を模式的に示す。図35に示す波面補正装置430は、波面補正器431と、2つの波面計測部432および433と、波面補正器コントローラ434とを備えてもよい。波面補正器コントローラ434は、波面計測部432および433の計測結果に基づいて波面補正器431の動作を制御してもよい。
波面補正器431は、たとえば図28〜図30に示した形状可変ミラー401を備えてもよい。または、波面補正器431は、図31〜図33に示した形状可変ミラー401と平面ミラー411とを備えてもよい。あるいは、波面補正器431は、図34に示した凸面ミラー421と、凹面ミラー422と、2つの平面ミラー423および424と、可動プレート426とを備えてもよい。
波面計測部432は、ビームサンプラ432aと、ビームプロファイラ432bと、レンズ432cとを備えてもよい。ビームサンプラ432aは、波面補正器431から出力されるレーザ光LB1の一部を反射し、他の一部を透過させてもよい。ビームプロファイラ432bは、レーザ光LB1のビームプロファイルを計測してもよい。レンズ432cは、ビームサンプラ432aを透過したレーザ光LB1の像をビームプロファイラ432bの受光面に転写してもよい。同様に、波面計測部433は、ビームサンプラ433aと、ビームプロファイラ433bと、レンズ433cとを備えてもよい。ビームサンプラ433aは、ビームサンプラ432aで反射されたレーザ光LB1の一部を反射し、他の一部を透過させてもよい。ビームプロファイラ433bは、レーザ光LB1のビームプロファイルを計測してもよい。レンズ433cは、ビームサンプラ433aを透過したレーザ光LB1の像をビームプロファイラ433bの受光面に転写してもよい。
ビームプロファイラ432bおよび433bの計測結果は、それぞれ波面補正器コントローラ434に入力されてもよい。波面補正器コントローラ434は、入力された計測結果の少なくとも一方に基づいて、たとえばレーザ光LB1の波面形状が平面となるように波面補正器431を制御してもよい。
この波面補正装置430には、ビームサンプラ432aへのレーザ光LB1の入射角を制御するためのミラーアクチュエータ432dが設けられてもよい。ミラーアクチュエータ432dは、波面補正器コントローラ434の制御の下にビームサンプラ432aの傾斜角を制御してもよい。波面補正器コントローラ434は、ビームプロファイラ432bおよび433bそれぞれから入力された計測結果の少なくとも一方に基づいて、ミラーアクチュエータ432dを駆動してもよい。波面補正器コントローラ434は、上流の波面計測部432から出力されるレーザ光LB1がより適切な角度で下流の波面計測部433に入射するように、ミラーアクチュエータ432dを駆動してもよい。
ここで、図35に示した波面計測部432および433は、それぞれ、図36〜図39に示すような構成であってもよい。図36は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置における波面計測部の他の構成例を模式的に示す。図37は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置における波面計測部の更に他の構成例を模式的に示す。図38は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置における波面計測部の更に他の構成例を模式的に示す。図39は、本開示のレーザ装置やEUV光生成装置の構成要素とすることができる波面補正装置における波面計測部の更に他の構成例を模式的に示す。
波面計測部432は、ミラーアクチュエータ432dが設けられる以外、波面計測部433と同様に構成されてもよい。以下では、波面計測部432の他の構成例について説明する。以下の説明では、簡略化のため、ミラーアクチュエータ432dを省略する。
図36に示す波面計測部500Aは、ビームサンプラ501と、赤外線カメラ502と、マイクロレンズアレイ503Aとを備えてもよい。ビームサンプラ501は、レーザ光LB1の一部を透過させ、他の一部を反射してもよい。赤外線カメラ502は、ビームプロファイラとして機能してもよい。マイクロレンズアレイ503Aは、ビームサンプラ501を透過したレーザ光LB1を複数の像に収束させてもよい。ビームサンプラ501は、透明基材501aと、ビームサンプラコート501bとを含んでもよい。透明基板501aは、レーザ光LB1を透過させてもよい。ビームサンプラコート501bは、ビームサンプラ501においてレーザ光LB1が入射する面側に設けられてもよい。このビームサンプラコート501bは、レーザ光LB1の一部を反射し、他の一部を透過させてもよい。マイクロレンズアレイ503Aは、複数のマイクロレンズ503aが2次元配列された構成を備えてもよい。赤外線カメラ502は、固体撮像部502aと、画像データ作成部502bとを含んでもよい。固体撮像部502aは、マイクロレンズアレイ503Aによって集光されたレーザ光LB1の2次元像を撮像してもよい。画像データ作成部502bは、固体撮像部502aで撮像された撮像データに所定の処理を施して画像データを作成してもよい。このように、波面計測部432は、いわゆるシャックハルトマン波面センサでもよい。
図37に示す波面計測部500Bでは、図36に示した波面補正器500Aでのマイクロレンズアレイ503Aが凸面レンズ503Bに置き換えられてもよい。赤外線カメラ502は、凸面レンズ503Bの焦点F1よりも凸面レンズ503Bから遠方に配置されてもよい。レーザ光LB1は、凸面レンズ503Bで収束された後に発散して赤外線カメラ502の受光面に入射してもよい。波面計測部500Bは、レーザ光LB1のビームプロファイルを計測してもよい。
図38に示す波面計測部500Cでは、図37に示した波面補正器500Bでの凸面レンズ503Bの焦点F1が赤外線カメラ502の受光面に位置するように、赤外線カメラ502が配置されてもよい。波面計測部500Cは、レーザ光LB1のビームウエストを計測してもよい。この計測結果に基づいて、たとえば図35に示した波面補正器431の動作を制御することにより、レーザ光LB1のビームウエストの形状が調整されてもよい。
図39に示す波面計測部500Dは、図37に示す波面計測部500Bの機能と、図38に示す波面計測部500Cの機能とを備えてもよい。波面計測部500Dでは、波面計測部500Bでのビームサンプラ501と凸面レンズ503Bとの間にビームスプリッタ504が配置されてもよい。波面計測部500Dは、凸面レンズ505と、赤外線カメラ506とをさらに備えてもよい。凸面レンズ505は、ビームスプリッタ504で反射されたレーザ光LB1を集光してもよい。赤外線カメラ506は、凸面レンズ505の焦点F2上に受光面が位置するよう配置されてもよい。
ビームサンプラ501およびビームスプリッタ504を透過したレーザ光LB1は、凸面レンズ503Bで収束された後に発散して赤外線カメラ502の受光面に入射してもよい。ビームサンプラ501を透過し、ビームスプリッタ504で反射されたレーザ光LB1は、凸面レンズ505で収束されて赤外線カメラ506の受光面に入射してもよい。赤外線カメラ502の計測結果に基づいて、たとえば図35に示した波面補正器431の動作を制御してもよい。これにより、レーザ光LB1のビームプロファイルが調整され得る。また、赤外線カメラ506の計測結果に基づいて、たとえば図35に示した波面補正器431の動作を制御することにより、レーザ光LB1のビームウエストを調整することが可能になる。
以上、実施の形態を挙げて、ミラー、ミラー装置、レーザ装置、およびEUV光生成装置について説明した。ただし、上述した実施の形態は本開示を実施するための例にすぎず、本開示はこれらに限定されるものではない。上述した実施の形態に、種々変形を加えることは本開示の範囲内であり、更に本開示の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。
たとえば、内部に流路が設けられるミラーでの反射表面の平面形状は、四角形などの多角形や円形、楕円形など、任意の形状であってもよい。また、ミラーの内部に設けられる流路における流入路の一端は、ミラー基部の下面に開口してもよいし、ミラー基部の側面に開口してもよい。同様に、流出路の一端は、ミラー基部の下面に開口してもよいし、ミラー基部の側面に開口してもよい。ミラーの内部に設けられる流路におけるバッファタンク部の平面形状は、C字状であってもよい。
図16に示した平面ミラー30におけるミラー基部32のように、平板状の基部ヘッドと支持部とを備えたミラー基部では、放射状に配置される流路に対応した平板状の突起部が基部ヘッドの下面側に設けられてもよい。当該突起部を基部ヘッドの下面側に設ける場合、突起部の平面形状は、放射状に配置される流路の平面形状に相似する形状であってもよい。たとえば、放射状に配置される流路の平面形状が長方形である場合には、上記の突起部の平面形状も長方形であってもよい。あるいは、上記の突起部の平面形状は、放射状に配置される流路の平面形状に相似しない形状であってもよい。
また、流入路から放射状に配置される流路への熱媒体の流入箇所に整流部を設けるか否かは、適宜選定可能である。整流部を設ける場合の当該整流部の形状は、図16に示した円錐状に限定されるものではなく、適宜選定可能である。
内部に流路が設けられるミラーを構成要素として含むミラー装置は、ミラーの冷却に使用した熱媒体が繰り返し使用される循環型であってもよいし、ミラーの冷却に使用した熱媒体が再利用されずに廃棄される非循環型であってもよい。非循環型のミラー装置では、熱媒体供給源とミラーとを繋ぐ供給管路に冷却装置が設けられてもよい。冷却装置は、単に熱媒体を冷却するのみならず、熱媒体の温度を一定に保つように、必要に応じて熱媒体を加熱することができるように構成されてもよい。つまり、冷却装置は、温度調節装置であってもよい。循環型および非循環型のいずれのミラー装置も、流通段階で熱媒体供給源と他の構成要素とを一緒に流通させてもよいし、熱媒体供給源と他の構成要素とを別個に流通させてもよい。さらには、ミラー装置の流通段階ではミラー装置に熱媒体供給源や熱媒体が含まれなくてもよい。たとえば、熱媒体供給源や熱媒体は、ミラー装置とは別体であってもよい。
本開示のミラーは、実施の形態での流出路を流入路として、また実施の形態での流入路を流出路として使用することも可能である。また、図25に示したミラー装置210のように、排出管路にバッファタンクが設けられるミラー装置では、ミラー内のバッファタンク部が省略されてもよい。この場合、放射状に配置される流路が1つまたは複数の排出流路に直接的または間接的に連通してもよい。さらには、ミラー装置を構成する供給管路にバッファタンクが設けられてもよい。
内部に流路が設けられるミラーおよび当該ミラーを備えたミラー装置は、実施の形態6で説明したように、種々のレーザ装置の構成要素として用いることができる。このレーザ装置は、たとえば、LPP方式のEUV光生成装置のドライバレーザ装置であってもよいし、レーザ加工機などに使用されるレーザ装置であってもよいし、これらの構成要素であってもよい。また、本開示のミラーおよびミラー装置は、たとえばレーザ光伝送光路上に配置される構成要素であってもよい。
当該レーザ装置を備えたEUV光生成装置は、実施の形態1で説明したように、LPP方式のEUV光生成装置であってもよいし、DPP方式やSR方式のEUV光生成装置などであってもよい。また、このEUV光生成装置は、1段階のレーザ光照射によってターゲット物質をプラズマ化してEUV光を生成するように構成される装置であってもよい。または、EUV光生成装置は、2段階以上のレーザ光照射によってターゲット物質をプラズマ化してEUV光を生成するよう構成される装置であってもよい。
EUV光生成装置に波面センサを設ける場合、当該波面センサは、たとえば図27に示したチャンバ102A内に配置されてもよいし、チャンバ102A外に配置されてもよい。たとえば、波面センサは、ウィンドウ121Aの上流側に配置されてもよいし、下流側に配置されてもよい。また、波面補正器および波面センサは、ドライバレーザ装置を構成するメインアンプの入出力側や伝送光学系の入出力側に限らず、プリアンプや可飽和吸収セルやリレー光学系の入出力側に設けられてもよい。さらに、波面補正器および波面センサは、プリアンプやメインアンプなどの光学要素毎に1組設けられてもよいし、複数の光学要素毎に1組設けられてもよい。
波面補正器は、反射面全体の曲率を変化させる形状可変ミラーを含んでもよいし、反射面の一部の曲率を変化させる形状可変ミラーを含んでもよい。本開示のミラー、ミラー装置、レーザ装置、およびEUV光生成装置については、上述した実施の形態以外にも種々の変形、修飾、組合せなどが可能である。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
1,20,30 平面ミラー
11,21,31 反射膜
12,22,32 ミラー基部
12a,22a,32a 基部ヘッド
12a1,12a2,22a1,22c1,32b3 溝
12b,22b ヘッドカバー
12c,22c,32b 支持部
32a2 突起部
32a3 整流部
40 凹面ミラー
41 反射膜
42 ミラー基部
42a 基部ヘッド
42b 支持部
100,100A EUV光生成装置
101,101A ドライバレーザ装置
102,102A チャンバ
103 平面ミラー
121,121A ウィンドウ
122 EUV集光ミラー
123 軸外放物面ミラー
200,210 ミラー装置
201 熱媒体供給源
202 供給管路
203 排出管路
204 圧送装置
205 冷却装置
206 バッファタンク
207 排出用圧送装置
300 レーザ光増幅器
313a〜313d,322a〜322d ミラー装置
400,410,420,430 波面補正装置
FP 流路
P1 流入路
P2 流路
P3 流出路
P4 戻り流路
PB バッファタンク部
AS 光増幅光学系
OS 伝送光学系
WF 波面形状

Claims (10)

  1. バッファタンク部を含む流路が設けられたミラー基部と、
    前記ミラー基部に設けられた反射膜と、
    を備え、
    前記ミラー基部は、基部ヘッドおよび支持部を含み、
    前記反射膜は、前記基部ヘッド側に設けられ、
    前記流路は、第1流路、第2流路、第3流路、第4流路をさらに含み、
    前記第2流路は、複数設けられ、前記基部ヘッド内に放射状に配置され、
    前記第4流路は、複数設けられ、
    前記第2流路は、前記第4流路を介してそれぞれ前記バッファタンク部と連通し、
    前記第2流路それぞれの断面積を合わせた面積は、前記バッファタンク部の流路断面積より小さい、ミラー。
  2. 前記第2流路は、前記第1流路を介して前記ミラーの外部と連通し、
    前記バッファタンク部は、前記第3流路を介して前記ミラーの外部と連通する、
    請求項1記載のミラー。
  3. 前記バッファタンク部は、前記基部ヘッド内に設けられる、請求項1記載のミラー。
  4. 前記バッファタンク部は、前記基部ヘッドと前記支持部との接合部分に設けられる、請求項1記載のミラー。
  5. 前記バッファタンクは、前記支持部内に設けられる、請求項1記載のミラー。
  6. バッファタンク部を含む流路が設けられたミラー基部と、
    前記ミラー基部に設けられた反射膜と、
    を備え
    前記ミラー基部は、基部ヘッドおよび支持部を含み、
    前記反射膜は、前記基部ヘッド側に設けられ、
    前記流路は、第1流路、第2流路、第3流路、第4流路をさらに含み、
    前記第2流路は、扇型に形成され、
    前記第2流路の断面積は、一端から他端にかけて略均一である、ミラー。
  7. 請求項1または記載のミラーと、
    前記ミラーに設けられる流路に接続される管路と、
    前記管路に設けられる圧送装置と、
    前記管路に設けられる冷却装置と、
    を備えるミラー装置。
  8. マスターオシレータと、
    請求項1または記載のミラーを含む増幅器と、
    を備えるレーザ装置。
  9. 波面補正装置をさらに備える、請求項記載のレーザ装置。
  10. 内部に極端紫外光の生成空間を画定するためのチャンバと、
    前記チャンバに設けられ、前記チャンバ内の所定の領域にターゲット物質を供給するためのターゲット供給部と、
    請求項1または記載のミラーと、
    を備える極端紫外光生成装置。
JP2011166434A 2010-10-08 2011-07-29 ミラー、ミラー装置、レーザ装置および極端紫外光生成装置 Active JP5946612B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011166434A JP5946612B2 (ja) 2010-10-08 2011-07-29 ミラー、ミラー装置、レーザ装置および極端紫外光生成装置
EP11815773.4A EP2625559A2 (en) 2010-10-08 2011-10-07 Mirror, mirror device, laser apparatus, and extreme ultraviolet light generation apparatus
US13/638,002 US20130020511A1 (en) 2010-10-08 2011-10-07 Mirror, mirror device, laser apparatus, and extreme ultraviolet light generation apparatus
PCT/IB2011/002365 WO2012046133A2 (en) 2010-10-08 2011-10-07 Mirror, mirror device, laser apparatus, and extreme ultraviolet light generation apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010228656 2010-10-08
JP2010228656 2010-10-08
JP2011166434A JP5946612B2 (ja) 2010-10-08 2011-07-29 ミラー、ミラー装置、レーザ装置および極端紫外光生成装置

Publications (2)

Publication Number Publication Date
JP2012099791A JP2012099791A (ja) 2012-05-24
JP5946612B2 true JP5946612B2 (ja) 2016-07-06

Family

ID=45563440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166434A Active JP5946612B2 (ja) 2010-10-08 2011-07-29 ミラー、ミラー装置、レーザ装置および極端紫外光生成装置

Country Status (4)

Country Link
US (1) US20130020511A1 (ja)
EP (1) EP2625559A2 (ja)
JP (1) JP5946612B2 (ja)
WO (1) WO2012046133A2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7843632B2 (en) * 2006-08-16 2010-11-30 Cymer, Inc. EUV optics
JPWO2014119200A1 (ja) * 2013-01-31 2017-01-26 ギガフォトン株式会社 ミラー装置
US9000405B2 (en) 2013-03-15 2015-04-07 Asml Netherlands B.V. Beam position control for an extreme ultraviolet light source
KR102214861B1 (ko) * 2013-03-15 2021-02-10 에이에스엠엘 네델란즈 비.브이. 극자외 광원을 위한 빔 위치 제어
US8872144B1 (en) * 2013-09-24 2014-10-28 Asml Netherlands B.V. System and method for laser beam focus control for extreme ultraviolet laser produced plasma source
US9380691B2 (en) * 2014-02-28 2016-06-28 Asml Netherlands B.V. Adaptive laser system for an extreme ultraviolet light source
DE102015100918A1 (de) 2015-01-22 2016-07-28 Carl Zeiss Smt Gmbh Verfahren zum Herstellen eines reflektiven optischen Elements, reflektives optisches Element und Verwendung eines reflektiven optischen Elements
KR101825923B1 (ko) 2015-09-03 2018-03-22 주식회사 이오테크닉스 레이저 가공장치 및 레이저 가공방법
KR101720575B1 (ko) * 2015-10-20 2017-03-29 주식회사 이오테크닉스 레이저 가공장치의 광학계 정렬 장치 및 광학계 정렬 방법
DE102016219357A1 (de) * 2016-10-06 2018-04-12 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage für die Halbleiterlithographie mit reduzierter thermischer Deformation
KR102052252B1 (ko) * 2017-12-15 2019-12-04 한양대학교 산학협력단 광소결 장치 및 광소결 장치의 냉각 방법
CN112020674A (zh) 2018-04-24 2020-12-01 Asml荷兰有限公司 用于辐射束的反射光学元件
DE102021203288A1 (de) * 2021-03-31 2022-10-06 Carl Zeiss Smt Gmbh Optisches Element, optische Anordnung und Einlegebauteil

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923383A (en) * 1974-06-12 1975-12-02 Caterpillar Tractor Co Fluid-cooled laser mirror
US4221469A (en) * 1979-06-25 1980-09-09 United Technologies Corporation Thermally stabilized mirror
US4770521A (en) * 1986-10-03 1988-09-13 United Technologies Corporation Cooled mirror substrate isolator
US4743104A (en) * 1986-10-14 1988-05-10 The United States Of America As Represented By The Secretary Of The Air Force Variable area manifolds for ring mirror heat exchangers
US4844603A (en) * 1987-12-24 1989-07-04 United Technologies Corporation Cooled flexible mirror arrangement
JPH03140901A (ja) * 1989-10-26 1991-06-14 Kawasaki Heavy Ind Ltd 高出力レーザー用不変鏡
US5168924A (en) * 1991-06-28 1992-12-08 Hughes Danbury Optical Systems, Inc. Low surface distortion monochromator
JPH06331812A (ja) * 1993-05-18 1994-12-02 Ekuesutorian:Kk 冷却反射鏡装置
JP3313257B2 (ja) * 1995-02-24 2002-08-12 日本軽金属株式会社 放物面鏡式加工ヘッド及びレーザ加工機
US6238052B1 (en) * 2000-03-02 2001-05-29 Zlatko Zadro Adjustable magnification fogless mirror
JP2004095993A (ja) * 2002-09-03 2004-03-25 Nikon Corp 光学部品冷却方法、光学部品冷却装置及びそれを有するeuv露光装置
JP2004246030A (ja) * 2003-02-13 2004-09-02 Canon Inc 光学素子、光学素子保持装置、温度調節装置、露光装置及びデバイスの製造方法
US7209500B2 (en) * 2003-10-30 2007-04-24 Metal Improvement Company, Llc Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same
US6822251B1 (en) * 2003-11-10 2004-11-23 University Of Central Florida Research Foundation Monolithic silicon EUV collector
DE102005017262B3 (de) * 2005-04-12 2006-10-12 Xtreme Technologies Gmbh Kollektorspiegel für plasmabasierte kurzwellige Strahlungsquellen
JP5833806B2 (ja) * 2008-09-19 2015-12-16 ギガフォトン株式会社 極端紫外光源装置、極端紫外光源装置用レーザ光源装置及び極端紫外光源装置用レーザ光源の調整方法
JP5587578B2 (ja) * 2008-09-26 2014-09-10 ギガフォトン株式会社 極端紫外光源装置およびパルスレーザ装置
JP5607383B2 (ja) * 2009-02-23 2014-10-15 ギガフォトン株式会社 ガスレーザ装置用温度調節装置

Also Published As

Publication number Publication date
EP2625559A2 (en) 2013-08-14
WO2012046133A3 (en) 2012-08-02
US20130020511A1 (en) 2013-01-24
JP2012099791A (ja) 2012-05-24
WO2012046133A2 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5946612B2 (ja) ミラー、ミラー装置、レーザ装置および極端紫外光生成装置
JP5587578B2 (ja) 極端紫外光源装置およびパルスレーザ装置
JP5833806B2 (ja) 極端紫外光源装置、極端紫外光源装置用レーザ光源装置及び極端紫外光源装置用レーザ光源の調整方法
JP5076349B2 (ja) 極端紫外光集光鏡および極端紫外光光源装置
US8525140B2 (en) Chamber apparatus, extreme ultraviolet light generation system, and method for controlling the extreme ultraviolet light generation system
US8742379B2 (en) Window unit, window device, laser apparatus, and extreme ultraviolet light generation system
US20110255068A1 (en) EUV mirror module
JP5864091B2 (ja) 斜入射euvリソグラフィ集光器用の冷却システム及び冷却方法
US10374381B2 (en) Extreme ultraviolet light generating apparatus
JP5975667B2 (ja) Euvリソグラフィ用斜入射集光器の熱管理システム、アセンブリ、方法
KR20120092706A (ko) 극자외선 광원용 빔 트랜스포트 시스템
US10582602B2 (en) Extreme ultraviolet light generation apparatus
US20160204567A1 (en) Alignment system and extreme ultraviolet light generation system
US8698113B2 (en) Chamber apparatus and extreme ultraviolet (EUV) light generation apparatus including the chamber apparatus
JP2011176307A (ja) 冷却ミラーシステム用ストレス分断装置及びストレス分断方法
JP2012142460A (ja) 照明光学系、露光装置およびデバイス製造方法
US8264665B2 (en) Cooled spider and method for grazing-incidence collectors
US8809821B2 (en) Holder device, chamber apparatus, and extreme ultraviolet light generation system
JP5914742B2 (ja) 極端紫外光源装置用レーザ光源装置、及びレーザ光源装置
JP2021039321A (ja) 極端紫外光生成装置、及び電子デバイスの製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R150 Certificate of patent or registration of utility model

Ref document number: 5946612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250