WO2017004957A1 - 一种采用热塑性材料的绝缘套管及其生产方法 - Google Patents

一种采用热塑性材料的绝缘套管及其生产方法 Download PDF

Info

Publication number
WO2017004957A1
WO2017004957A1 PCT/CN2015/099501 CN2015099501W WO2017004957A1 WO 2017004957 A1 WO2017004957 A1 WO 2017004957A1 CN 2015099501 W CN2015099501 W CN 2015099501W WO 2017004957 A1 WO2017004957 A1 WO 2017004957A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
thermoplastic material
center conductor
shielding
insulating sleeve
Prior art date
Application number
PCT/CN2015/099501
Other languages
English (en)
French (fr)
Inventor
张赟
乌博明
张建宏
王振良
蒋凤池
肖阳
Original Assignee
麦克奥迪(厦门)电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麦克奥迪(厦门)电气股份有限公司 filed Critical 麦克奥迪(厦门)电气股份有限公司
Publication of WO2017004957A1 publication Critical patent/WO2017004957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies

Definitions

  • the invention relates to an insulating sleeve, in particular to an insulating sleeve using a thermoplastic material and a method for producing the same.
  • Insulating bushing is a device for separating one or several conductors through walls, such as walls or cabinets, for insulation and support. It is commonly used in equipment with AC voltage higher than 1000V. It has excellent insulation performance, high reliability and environmental adaptability. strong ability.
  • the insulating casing of the insulating sleeve is made of epoxy resin and is formed by vacuum casting or pressure gel process.
  • This molding process requires many materials, heavy products, low processing efficiency, and subsequent heat curing, processing energy consumption. Large, waste materials cannot be recycled and are difficult to degrade, causing damage to the natural environment.
  • the bonding strength of the epoxy resin is not high, and problems such as pores and small cracks are likely to occur during the pouring process, which has a great influence on the insulation performance of the electrical equipment.
  • the technical problem to be solved by the invention is to provide an insulating sleeve using a thermoplastic material and a production method thereof, which have the advantages of high injection molding process efficiency, energy saving and consumption, light weight, small volume, high insulation performance and high mechanical performance, and are environmentally friendly. Etc.
  • an insulating sleeve using a thermoplastic material comprising an insulating shell, a center conductor and a screen mesh, the insulating shell is cast by a thermoplastic material, and the center is axially disposed.
  • the through hole, the outer side surface of the through hole of the insulating outer casing and the inner side surface of the insulating outer casing form an annular inner cavity of the insulating outer casing, the central conductor is embedded in the through hole of the insulating outer casing, and the shielding net is placed in the annular inner cavity of the insulating outer casing, and the shielding net is
  • the insulating casing is completely surrounded or partially enclosed, and the shielding mesh surrounds the center conductor.
  • the shielding net is embedded in the insulating casing and completely wrapped by the insulating casing.
  • the thickness of the insulating casing on the inner side of the shielding net is smaller than the thickness of the insulating casing on the outer side of the shielding net, and the inner cavity of the insulating casing is provided with the central conductor axis. Parallel ribs.
  • the shielding net is surrounded by the insulating outer casing portion, and the outer side surface and the upper and lower end surfaces of the shielding net are adhered to the inner side surface of the insulating outer casing, and the inner side surface of the shielding net has no contact with the inner side surface of the insulating outer casing.
  • the utility model further comprises an end cover cast by a thermoplastic material, wherein the end cover is provided with a vent hole, and the end cover is combined with the end surface of the insulating shell by ultrasonic welding or glue coating, and the end surface of the insulating shell is adhered to the end cover to cover the insulation.
  • the inner cavity of the outer casing increases mechanical strength.
  • the inner cavity of the insulative housing is filled with a flexible material that increases the capacitance value of the insulating sleeve.
  • the mounting surface of the insulating housing is provided with a sealing groove.
  • the insulating shell is made of a thermoplastic material having a thickness of 2-5 mm.
  • the shielding mesh uses a metal conductor, a semiconductor or a carbon fiber-added nylon.
  • the shielding net is provided with a mounting hole whose axis is parallel to the axis of the center conductor or perpendicular to the axis of the center conductor.
  • thermoplastic material for producing the above-described insulating sleeve using a thermoplastic material.
  • thermoplastic material A method for producing an insulating sleeve using a thermoplastic material, the steps of which are:
  • Step 1 Preheat or not preheat the center conductor and the shielding net according to actual needs
  • Step 2 Put the center conductor and the shielding net processed in step 1 into a casting mold
  • Step 3 Pouring the thermoplastic material into the casting mold and cooling the molding to obtain an insulating sleeve.
  • thermoplastic material A method for producing an insulating sleeve using a thermoplastic material, the steps of which are:
  • Step 1 Preheat or not preheat the center conductor according to actual needs
  • Step 2 Put the center conductor processed in step 1 into a casting mold
  • Step 3 pouring a shielding mesh molding material into a portion of the shielding mesh in the casting mold, and directly casting the shielding mesh;
  • Step 4 Casting an insulating shell molding material to the insulating shell portion of the casting mold, casting the insulating shell, and cooling to obtain an insulating sleeve.
  • thermoplastic material A method for producing an insulating sleeve using a thermoplastic material, the steps of which are:
  • Step 1 Preheat or not preheat the center conductor according to actual needs
  • Step 2 Put the center conductor processed in step 1 into a casting mold
  • Step 3 pouring a thermoplastic material into the casting mold, and cooling and molding to obtain an insulating outer casing with a center conductor embedded therein;
  • Step 4 Install the screen into the molded insulation case to obtain the insulation sleeve.
  • the invention has the advantages of compact structure, light weight and convenient installation. Compared with the existing insulating sleeve made of epoxy resin, the technical advantage is that the thermoplastic material is used as the insulating shell, and the thermoplastic material can apply a large injection pressure during injection molding. Holding pressure, easy to solve the problem of pores and small cracks, plastic cooling and solidification speed, eliminating the post-cure time of about eight hours, and the thermoplastic material can be reused after heating again, with good recovery, saving more than 30% of materials The molding efficiency is reduced from one to two minutes to one to two minutes. The processing site is clean and tidy, the finished product has good structural strength, is not easy to break, and has excellent insulation performance.
  • Figure 1 is a schematic view showing the structure of a first embodiment of the present invention
  • Figure 2 is a schematic view showing the structure of a second embodiment of the present invention.
  • Figure 3 is a schematic structural view of a third embodiment of the present invention.
  • Figure 4 is a schematic structural view of a fourth embodiment of the present invention.
  • Figure 5 is a schematic structural view of a fifth embodiment of the present invention.
  • Fig. 6 is a schematic view showing the mounting structure of the insulating case in the second embodiment and the fourth embodiment of the present invention.
  • an insulating sleeve using a thermoplastic material includes an insulating outer casing 10, a center conductor 20, and a shield mesh 30.
  • the insulating outer casing 10 is cast by a thermoplastic material, and the center of the insulating outer casing 10 is formed.
  • the through hole 11 is axially disposed, and the center conductor 20 is embedded in the through hole 11 of the insulating case 10.
  • the center conductor 20 is provided with mounting holes connected to the cable at both ends, and the through hole outer side 12 of the insulating case 10 and the inner side of the insulating case 16 forming an annular inner cavity 13 of the insulative housing 10, the shielding mesh 30 being placed in the annular inner cavity 13 of the insulative housing 10, the shielding mesh 30 being embedded in the insulative housing 10, completely wrapped by the insulative housing 10, at the inner side 31 of the shielding mesh
  • the thickness of the insulative housing is less than the thickness of the insulative housing of the outer side 32 of the screen.
  • the inner chamber 13 of the insulative housing 10 is provided with ribs 14 parallel to the axis of the central conductor 10.
  • the sealing surface of the insulating housing 10 is provided with a sealing groove 15 to ensure no air leakage between the mounting surface and the insulating sleeve, so as to isolate the inner and outer regions of the mounting cabinet, and the shielding net 30 is provided with a parallel to the central axis of the central conductor 20.
  • the second embodiment shown in FIG. 2 differs from the first embodiment in that the mounting hole 33 provided on the screen mesh 30 is perpendicular to the center.
  • the central axis of the conductor 20 is not used for the installation of the insulating sleeve on the cabinet. It is only used to test whether the insulating sleeve is electrically connected.
  • the insulating sleeve is fixed to the mounting cabinet by the clamping plate locking method, as shown in Fig. 6.
  • the sealing groove 15 of the insulating housing 10 is filled with a sealing ring 70, and is attached to the mounting cabinet 60.
  • the flange end surface of the insulating housing 10 is pressed by a pressing plate 80, and the pressing plate 80 and the mounting cabinet 60 are fastened by fasteners. Fixed, such a structure, the outer diameter of the insulative housing 10 can be reduced, the volume and weight are correspondingly reduced, and the mounting method is more stable.
  • the difference between the third embodiment shown in FIG. 3 and the first embodiment is that the shielding net 30 is partially surrounded by the insulating outer casing 10, and the outer side surface 32 and the upper and lower end surfaces of the shielding net are adhered to the inner side surface 16 of the insulating casing, and the inner side of the insulating net is shielded.
  • the side surface 31 has no contact with the inner side surface 16 of the insulating casing, that is, the inner side surface 31 of the screen has no plastic layer.
  • an end cap 40 comprising casting with a thermoplastic material, the end cap being provided with a venting opening 41 for internally communicating the inside of the insulating sleeve with the mounting cabinet, the end cap 40 being ultrasonically welded or glued to the end face of the insulating housing 10.
  • the inner cavity 13 of the insulative housing 10 is covered.
  • the end cap may not be added.
  • the fourth embodiment shown in FIG. 4 is different from the first embodiment in that the shielding net 30 is partially surrounded by the insulating casing 10, and the outer side surface 32 and the upper and lower end faces of the shielding net are adhered to the inner side surface 16 of the insulating casing, and the shielding net
  • the inner side surface 31 has no contact with the inner side surface 16 of the insulating housing, that is, the inner side surface 31 of the shielding net has no plastic layer.
  • an end cap 40 comprising casting with a thermoplastic material, the end cap being provided with a venting opening 41 for internally communicating the inside of the insulating sleeve with the mounting cabinet, the end cap 40 being ultrasonically welded or glued to the end face of the insulating housing 10.
  • the inner cavity 13 of the insulative housing 10 is covered.
  • the end cap may not be added.
  • the mounting hole 33 provided on the shielding net 30 is perpendicular to the central axis of the center conductor 20, and is not used for mounting the insulating sleeve on the cabinet, and is only used for testing whether the insulating sleeve is energized or not.
  • the insulating sleeve passes through the pressing plate.
  • the locking method is fixed to the mounting cabinet.
  • the sealing groove 15 of the insulating housing 10 is filled with a sealing ring 70, and is attached to the mounting cabinet 60.
  • the flange end surface of the insulating housing 10 is pressed by a pressing plate 80 to pass through.
  • the fastener fastens and fixes the pressure plate 80 and the mounting cabinet 60.
  • the outer diameter of the structural insulating housing 10 can be reduced, the volume and weight are correspondingly reduced, and the mounting manner is more stable. With such a structure, the outer diameter of the insulative housing 10 can be reduced, the volume and weight are correspondingly reduced, and the mounting method is more stable.
  • the inner cavity 13 of the insulative housing 10 is filled with a flexible material 50 which increases the capacitance value of the insulating sleeve, thereby minimizing the height of the shield mesh 30 while achieving the capacitance requirement.
  • the thickness of the thermoplastic material selected for the insulative housing 10 is 2-5 mm.
  • the shielding mesh 30 is made of a metal conductor, a semiconductor or a carbon fiber-filled nylon mesh, and the center conductor 20 is made of copper, aluminum or other conductive materials.
  • the end cap 40 can be made of the same material as the insulative housing 10.
  • thermoplastic materials There are three production methods for producing the above-mentioned insulating sleeve using thermoplastic materials:
  • the first step is as follows:
  • Step 1 Preheat or not preheat the center conductor and the shielding net according to actual needs
  • Step 2 Put the center conductor and the shielding net processed in step 1 into a casting mold
  • Step 3 Pouring the thermoplastic material into the casting mold and cooling the molding to obtain an insulating sleeve.
  • the second step is as follows:
  • Step 1 Preheat or not preheat the center conductor according to actual needs
  • Step 2 Put the center conductor processed in step 1 into a casting mold
  • Step 3 pouring a shielding mesh molding material into a portion of the shielding mesh in the casting mold, and directly casting the shielding mesh;
  • Step 4 Casting an insulating shell molding material to the insulating shell portion of the casting mold, casting the insulating shell, and cooling to obtain an insulating sleeve.
  • the third step is as follows:
  • Step 1 Preheat or not preheat the center conductor according to actual needs
  • Step 2 Put the center conductor processed in step 1 into a casting mold
  • Step 3 pouring a thermoplastic material into the casting mold, and cooling and molding to obtain an insulating outer casing with a center conductor embedded therein;
  • Step 4 Install the screen into the molded insulation case to obtain the insulation sleeve.
  • thermoplastic material as the insulating shell, the thermoplastic material can apply a large injection pressure and holding pressure during injection molding, which easily solves the problem of pores and small cracks.
  • the plastic cools and solidifies quickly, eliminating the post-cure time of about eight hours, and
  • the thermoplastic material can be reused after heating again, with good recovery, saving more than 30% of the material, and the molding efficiency is reduced from ten minutes to one or two minutes.
  • the processing site is clean and tidy, the finished product has good structural strength, is not easy to break, and has excellent insulation performance.

Landscapes

  • Insulating Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

一种采用热塑性材料的绝缘套管,包括绝缘外壳(10)、中心导体(20)和屏蔽网(30),该绝缘外壳(10)采用热塑性材料浇注成型,中心沿轴向设有通孔(11),绝缘外壳(10)的通孔(11)外侧面(12)与绝缘外壳(10)的内侧面(16)形成绝缘外壳的环形内腔(13),中心导体(20)嵌入在绝缘外壳(10)的通孔(11)中,屏蔽网(30)置于绝缘外壳(10)的环形内腔(13)中,屏蔽网(30)被绝缘外壳(10)全包围或者部分包围,屏蔽网(30)包围住中心导体(20),该绝缘套管结构紧凑,重量轻,安装方便,使用热塑性材料作为绝缘外壳容易解决气孔和细小裂缝的问题,塑料冷却固化速度快,而且热塑性材料再次加热后能重复使用,具有良好的回收性,免除固化程序,缩短了生产时间,提高了生产效率。

Description

一种采用热塑性材料的绝缘套管及其生产方法 技术领域
本发明涉及一种绝缘套管,尤其是指一种采用热塑性材料的绝缘套管及其生产方法。
背景技术
绝缘套管是供一个或几个导体穿过诸如墙壁或箱体等隔断,起绝缘和支撑作用的器件,普遍用于交流电压高于1000V的设备,其绝缘性能优良,可靠性高,环境适应能力强。
目前绝缘套管的绝缘外壳均采用环氧树脂材料,通过真空浇注或压力凝胶工艺成型,这种成型工艺所需材料多,成品重,加工效率非常低下,后续还需加热固化,加工能耗大,废品材料无法回收且难以降解,会对自然环境造成破坏。而且环氧树脂粘接强度不高,浇注过程中容易出现气孔和细小裂缝等问题,对电气设备绝缘性能影响很大。
发明内容
本发明要解决的技术问题是提供一种采用热塑性材料的绝缘套管及其生产方法,具有注塑成型工艺效率高、节能降耗,具有重量轻、体积小、绝缘性能和机械性能高,有利环保等优点。
为了解决上述技术问题,本发明的技术方案为:一种采用热塑性材料的绝缘套管,包括绝缘外壳、中心导体和屏蔽网,所述的绝缘外壳采用热塑性材料浇注成型,中心沿轴向设有通孔,绝缘外壳的通孔外侧面与绝缘外壳的内侧面形成绝缘外壳的环形内腔,中心导体嵌入在绝缘外壳的通孔中,屏蔽网置于绝缘外壳的环形内腔中,屏蔽网被绝缘外壳全包围或者部分包围,屏蔽网包围住中心导体。
进一步的,所述的屏蔽网嵌入在绝缘外壳中,被绝缘外壳完全包裹,屏蔽网内侧面的绝缘外壳厚度小于屏蔽网外侧面的绝缘外壳厚度,绝缘外壳的内腔设有与中心导体轴线相平行的筋条。
进一步的,所述的屏蔽网被绝缘外壳部分包围,屏蔽网外侧面和上下两端面与绝缘外壳内侧面相贴合,屏蔽网内侧面跟绝缘外壳内侧面无接触。
进一步的,还包括采用热塑性材料浇注成型的端盖,端盖上设有通气孔,端盖通过超声波焊接或者涂胶与绝缘外壳的端面结合,绝缘外壳端面与端盖相贴合,盖住绝缘外壳的内腔,增加机械强度。
进一步的,所述的绝缘外壳的内腔填充有增大绝缘套管的电容值的柔性材料。
进一步的,所述的绝缘外壳的安装面上设有密封槽。
进一步的,所述的绝缘外壳选用的热塑性材料的厚度为2-5mm。
进一步的,所述的屏蔽网采用金属导体、半导体或者加碳纤的尼龙。
进一步的,所述的屏蔽网上设有安装孔,所述安装孔的轴线平行于中心导体的轴线或者垂直于中心导体的轴线。
一种采用热塑性材料的绝缘套管的生产方法,用于生产权利要求上述采用热塑性材料的绝缘套管。
一种采用热塑性材料的绝缘套管的生产方法,其步骤是:
步骤1:根据实际需要对中心导体和屏蔽网预热或者不预热;
步骤2:将步骤1处理完成的中心导体和屏蔽网放入浇注模具中;
步骤3:向浇注模具中浇注热塑性材料,冷却成型,得到绝缘套管。
一种采用热塑性材料的绝缘套管的生产方法,其步骤是:
步骤1:根据实际需要对中心导体预热或者不预热;
步骤2:将步骤1处理完成的中心导体放入浇注模具中;
步骤3:向浇注模具中的屏蔽网部分浇注屏蔽网成型材料,直接浇注成型屏蔽网;
步骤4:向浇注模具中的绝缘外壳部分浇注绝缘外壳成型材料,浇注成型绝缘外壳,冷却后得到绝缘套管。
一种采用热塑性材料的绝缘套管的生产方法,其步骤是:
步骤1:根据实际需要对中心导体预热或者不预热;
步骤2:将步骤1处理完成的中心导体放入浇注模具中;
步骤3:向浇注模具中浇注热塑性材料,冷却成型,得到内嵌中心导体的绝缘外壳;
步骤4:将屏蔽网安装到已成型的绝缘外壳中,得到绝缘套管。
本发明结构紧凑,重量轻,安装方便,与现有用环氧树脂制作的绝缘套管相比,其技术优势在于,使用热塑性材料作为绝缘外壳,热塑性材料在注塑时可以施加很大的注射压力和保压压力,容易解决气孔和细小裂缝的问题,塑料冷却固化速度快,免除八个小时左右的后固化时间,而且热塑性材料再次加热后能重复使用,具有良好的回收性,节省材料30%以上,成型效率由十几分钟缩减为一至两分钟,加工现场整洁干净,成品结构强度好,不易破损,绝缘性能优良。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1是本发明第一实施例结构示意图;
图2是本发明第二实施例结构示意图;
图3是本发明第三实施例结构示意图;
图4是本发明第四实施例结构示意图;
图5是本发明第五实施例结构示意图;
图6是本发明第二实施例和第四实施例中绝缘外壳的安装结构示意图。
具体实施方式
下面结合附图和具体实施方式,对本发明做进一步说明。
如图1所示第一实施例,一种采用热塑性材料的绝缘套管,包括绝缘外壳10、中心导体20和屏蔽网30,所述的绝缘外壳10采用热塑性材料浇注成型,绝缘外壳10中心沿轴向设有通孔11,中心导体20嵌入在绝缘外壳10的通孔11中,中心导体20两端设有与电缆连接的安装孔,绝缘外壳10的通孔外侧面12与绝缘外壳内侧面16形成绝缘外壳10的环形内腔13,屏蔽网30置于绝缘外壳10的环形内腔13中,屏蔽网30嵌入在绝缘外壳10中,被绝缘外壳10完全包裹,屏蔽网内侧面31处的绝缘外壳厚度小于屏蔽网外侧面32的绝缘外壳厚度,绝缘外壳10的内腔13设有与中心导体10轴线相平行的筋条14。绝缘外壳10的安装面上设有密封槽15,保证安装面和绝缘套管之间不漏气,使安装柜体内外区域隔离,屏蔽网30上设有平行于中心导体20的中心轴线的安装孔33,用于将绝缘套管安装在安装柜体上,并使屏蔽网30接地。
图2所示的第二实施例相对于第一实施例的区别在于:屏蔽网30上设有的安装孔33垂直于中心 导体20的中心轴线,不用于绝缘套管在柜体上的安装,只用于测试绝缘套管是否带电的接口,此种绝缘套管通过压板锁紧方式与安装柜体固定,如图6所示,绝缘外壳10的密封槽15内装入密封环70,与安装柜体60贴合,绝缘外壳10的法兰端面添加压板80压紧,通过紧固件将压板80与安装柜体60紧固固定,此种结构,绝缘外壳10的外径尺寸可以减小,体积和重量相应的也减小,安装方式更稳固。
图3所示第三实施例相对于第一实施例的区别在于:屏蔽网30被绝缘外壳10部分包围,屏蔽网外侧面32和上下两端面与绝缘外壳内侧面16相贴合,屏蔽网内侧面31跟绝缘外壳内侧面16无接触,即屏蔽网内侧面31无塑料层。还增加了包括采用热塑性材料浇注成型的端盖40,端盖上设有通气孔41,将绝缘套管内部与安装柜体内气体连通,端盖40通过超声波焊接或者涂胶与绝缘外壳10的端面结合,盖住绝缘外壳10的内腔13,此实施例中,如果壁厚足够厚,机械强度达到测试要求的话,也可以不加端盖。
图4所示第四实施例相对于第一实施例不同之处在于:屏蔽网30被绝缘外壳10部分包围,屏蔽网外侧面32和上下两端面与绝缘外壳内侧面16相贴合,屏蔽网内侧面31跟绝缘外壳内侧面16无接触,即屏蔽网内侧面31无塑料层。还增加了包括采用热塑性材料浇注成型的端盖40,端盖上设有通气孔41,将绝缘套管内部与安装柜体内气体连通,端盖40通过超声波焊接或者涂胶与绝缘外壳10的端面结合,盖住绝缘外壳10的内腔13,此实施例中,如果壁厚足够厚,机械强度达到测试要求的话,也可以不加端盖。屏蔽网30上设有的安装孔33垂直于中心导体20的中心轴线,不用于绝缘套管在柜体上的安装,只用于测试绝缘套管是否带电的接口,此种绝缘套管通过压板锁紧方式与安装柜体固定,如图6所示,绝缘外壳10的密封槽15内装入密封环70,与安装柜体60贴合,绝缘外壳10的法兰端面添加压板80压紧,通过紧固件将压板80与安装柜体60紧固固定,此种结构绝缘外壳10的外径尺寸可以减小,体积和重量相应的也减小,安装方式更稳固。此种结构,绝缘外壳10的外径尺寸可以减小,体积和重量相应的也减小,安装方式更稳固。
图5所示第五实施例,绝缘外壳10的内腔13填充有增大绝缘套管的电容值的柔性材料50,从而在达到电容要求的前提下尽量缩短屏蔽网30的高度。
以上实施例中,绝缘外壳10选用的热塑性材料的厚度为2-5mm,所述的屏蔽网30采用金属导体、半导体或者加碳纤的尼龙网,中心导体20采用铜材、铝材或者其他导电材料,端盖40可以采用与绝缘外壳10相同的材料。
生产上述采用热塑性材料的绝缘套管的生产方法有三种:
第一种的步骤如下:
步骤1:根据实际需要对中心导体和屏蔽网预热或者不预热;
步骤2:将步骤1处理完成的中心导体和屏蔽网放入浇注模具中;
步骤3:向浇注模具中浇注热塑性材料,冷却成型,得到绝缘套管。
第二种的步骤如下:
步骤1:根据实际需要对中心导体预热或者不预热;
步骤2:将步骤1处理完成的中心导体放入浇注模具中;
步骤3:向浇注模具中的屏蔽网部分浇注屏蔽网成型材料,直接浇注成型屏蔽网;
步骤4:向浇注模具中的绝缘外壳部分浇注绝缘外壳成型材料,浇注成型绝缘外壳,冷却后得到绝缘套管。
第三种的步骤如下:
步骤1:根据实际需要对中心导体预热或者不预热;
步骤2:将步骤1处理完成的中心导体放入浇注模具中;
步骤3:向浇注模具中浇注热塑性材料,冷却成型,得到内嵌中心导体的绝缘外壳;
步骤4:将屏蔽网安装到已成型的绝缘外壳中,得到绝缘套管。
使用热塑性材料作为绝缘外壳,热塑性材料在注塑时可以施加很大的注射压力和保压压力,容易解决气孔和细小裂缝的问题,塑料冷却固化速度快,免除八个小时左右的后固化时间,而且热塑性材料再次加热后能重复使用,具有良好的回收性,节省材料30%以上,成型效率由十几分钟缩减为一两分钟,加工现场整洁干净,成品结构强度好,不易破损,绝缘性能优良。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上对本发明做出各种变化,均为本发明的保护范围。

Claims (10)

  1. 一种采用热塑性材料的绝缘套管,其特征在于:包括绝缘外壳、中心导体和屏蔽网,所述的绝缘外壳采用热塑性材料浇注成型,中心沿轴向设有通孔,绝缘外壳的通孔外侧面与绝缘外壳的内侧面形成绝缘外壳的环形内腔,中心导体嵌入在绝缘外壳的通孔中,屏蔽网置于绝缘外壳的环形内腔中,屏蔽网被绝缘外壳全包围或者部分包围,屏蔽网包围住中心导体。
  2. 根据权利要求1所述的一种采用热塑性材料的绝缘套管,其特征在于:所述的屏蔽网嵌入在绝缘外壳中,被绝缘外壳完全包裹,屏蔽网内侧面处的绝缘外壳厚度小于屏蔽网外侧面处的绝缘外壳厚度,绝缘外壳的内腔设有与中心导体轴线相平行的筋条。
  3. 根据权利要求1所述的一种采用热塑性材料的绝缘套管,其特征在于:所述的屏蔽网被绝缘外壳部分包围,屏蔽网外侧面和上下两端面与绝缘外壳内侧面相贴合,屏蔽网内侧面跟绝缘外壳内侧面无接触。
  4. 根据权利要求1至3中任一所述的一种采用热塑性材料的绝缘套管,其特征在于:还包括采用热塑性材料浇注成型的端盖,端盖上设有通气孔,端盖通过超声波焊接或者涂胶与绝缘外壳的端面结合,绝缘外壳端面与端盖相贴合,盖住绝缘外壳的内腔,增加机械强度。
  5. 根据权利要求4所述的一种采用热塑性材料的绝缘套管,其特征在于:所述的绝缘外壳的内腔填充有增大绝缘套管的电容值的柔性材料。
  6. 根据权利要求5中任意所述的一种采用热塑性材料的绝缘套管,其特征在于:所述的绝缘外壳的安装面上设有密封槽,所述的绝缘外壳选用的热塑性材料的厚度为2-5mm,所述的屏蔽网上设有安装孔,所述安装孔的轴线平行于中心导体的轴线或者垂直于中心导体的轴线,所述的屏蔽网采用金属导体、半导体或者加碳纤的尼龙。
  7. 一种采用热塑性材料的绝缘套管的生产方法,其特征在于:用于生产权利要求1-6中任意所述的一种采用热塑性材料的绝缘套管。
  8. 根据权利要求7所述的一种采用热塑性材料的绝缘套管的生产方法,其特征在于:包括以下步骤:
    步骤1:根据实际需要对中心导体和屏蔽网预热或者不预热;
    步骤2:将步骤1处理完成的中心导体和屏蔽网放入浇注模具中;
    步骤3:向浇注模具中浇注热塑性材料,冷却成型,得到绝缘套管。
  9. 根据权利要求7所述的一种采用热塑性材料的绝缘套管的生产方法,其特征在于:包括以下步骤:
    步骤1:根据实际需要对中心导体预热或者不预热;
    步骤2:将步骤1处理完成的中心导体放入浇注模具中;
    步骤3:向浇注模具中的屏蔽网部分浇注屏蔽网成型材料,直接浇注成型屏蔽网;
    步骤4:向浇注模具中的绝缘外壳部分浇注绝缘外壳成型材料,浇注成型绝缘外壳,冷却后得到绝缘套管。
  10. 根据权利要求7所述的一种采用热塑性材料的绝缘套管的生产方法,其特征在于:包括以下步骤:
    步骤1:根据实际需要对中心导体预热或者不预热;
    步骤2:将步骤1处理完成的中心导体放入浇注模具中;
    步骤3:向浇注模具中浇注热塑性材料,冷却成型,得到内嵌中心导体的绝缘外壳;
    步骤4:将屏蔽网安装到已成型的绝缘外壳中,得到绝缘套管。
PCT/CN2015/099501 2015-07-06 2015-12-29 一种采用热塑性材料的绝缘套管及其生产方法 WO2017004957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510389919.9A CN104916377A (zh) 2015-07-06 2015-07-06 一种采用热塑性材料的绝缘套管及其生产方法
CN201510389919.9 2015-07-06

Publications (1)

Publication Number Publication Date
WO2017004957A1 true WO2017004957A1 (zh) 2017-01-12

Family

ID=54085376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099501 WO2017004957A1 (zh) 2015-07-06 2015-12-29 一种采用热塑性材料的绝缘套管及其生产方法

Country Status (2)

Country Link
CN (1) CN104916377A (zh)
WO (1) WO2017004957A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831811A (zh) * 2018-08-22 2018-11-16 深圳市鑫鼎元光电有限公司 熔断器支持件及采用该支持件的熔断器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916377A (zh) * 2015-07-06 2015-09-16 麦克奥迪(厦门)电气股份有限公司 一种采用热塑性材料的绝缘套管及其生产方法
CN105118631B (zh) * 2015-09-25 2017-10-17 苏州翰为电气科技有限公司 一种干式绝缘套管
CN105575560A (zh) * 2016-03-02 2016-05-11 南通东源协力电器有限公司 12kV屏蔽套管
CN106158171A (zh) * 2016-06-16 2016-11-23 天津平高智能电气有限公司 一种复合绝缘套管的制造方法
CN106356159B (zh) * 2016-09-26 2019-03-19 麦克奥迪(厦门)电气股份有限公司 一种用于中高压电连接的绝缘套管及其制造方法
CN112562940B (zh) * 2020-12-07 2022-08-09 鑫缆电缆有限公司 一种电缆绝缘套管制造成型方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD282102A5 (de) * 1989-02-08 1990-08-29 Transform Roentgen Matern Veb Durchfuehrung oder durchfuehrungsstromwandler
EP0645782A1 (fr) * 1993-07-28 1995-03-29 Gec Alsthom T Et D Sa Traversée de courant multifonctionnelle
CN202796408U (zh) * 2012-10-12 2013-03-13 长沙弘瑞电气设备有限公司 一种模组化电压互感器环氧树脂套管
CN202796420U (zh) * 2012-10-12 2013-03-13 长沙弘瑞电气设备有限公司 一种模组化电流互感器环氧树脂套管
CN202930861U (zh) * 2012-11-27 2013-05-08 浙江省开化七一电力器材有限责任公司 高压开关柜用穿墙套管
CN203983831U (zh) * 2014-03-12 2014-12-03 天津平高智能电气有限公司 复合绝缘套管及使用该套管的气体绝缘开关柜
CN104916377A (zh) * 2015-07-06 2015-09-16 麦克奥迪(厦门)电气股份有限公司 一种采用热塑性材料的绝缘套管及其生产方法
CN204760154U (zh) * 2015-07-06 2015-11-11 麦克奥迪(厦门)电气股份有限公司 一种采用热塑性材料的绝缘套管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005007522U1 (de) * 2005-05-12 2006-09-28 Lear Corporation, Southfield Modulare Leitungsdurchführung
EP1845596A1 (en) * 2006-04-13 2007-10-17 ABB Research Ltd An electric connection device and a method of producing such a device
JP5620239B2 (ja) * 2010-11-30 2014-11-05 株式会社東芝 絶縁支持装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD282102A5 (de) * 1989-02-08 1990-08-29 Transform Roentgen Matern Veb Durchfuehrung oder durchfuehrungsstromwandler
EP0645782A1 (fr) * 1993-07-28 1995-03-29 Gec Alsthom T Et D Sa Traversée de courant multifonctionnelle
CN202796408U (zh) * 2012-10-12 2013-03-13 长沙弘瑞电气设备有限公司 一种模组化电压互感器环氧树脂套管
CN202796420U (zh) * 2012-10-12 2013-03-13 长沙弘瑞电气设备有限公司 一种模组化电流互感器环氧树脂套管
CN202930861U (zh) * 2012-11-27 2013-05-08 浙江省开化七一电力器材有限责任公司 高压开关柜用穿墙套管
CN203983831U (zh) * 2014-03-12 2014-12-03 天津平高智能电气有限公司 复合绝缘套管及使用该套管的气体绝缘开关柜
CN104916377A (zh) * 2015-07-06 2015-09-16 麦克奥迪(厦门)电气股份有限公司 一种采用热塑性材料的绝缘套管及其生产方法
CN204760154U (zh) * 2015-07-06 2015-11-11 麦克奥迪(厦门)电气股份有限公司 一种采用热塑性材料的绝缘套管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831811A (zh) * 2018-08-22 2018-11-16 深圳市鑫鼎元光电有限公司 熔断器支持件及采用该支持件的熔断器

Also Published As

Publication number Publication date
CN104916377A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2017004957A1 (zh) 一种采用热塑性材料的绝缘套管及其生产方法
US20110316142A1 (en) Semiconductor module with resin-molded package of heat spreader and power semiconductor chip
US8530281B2 (en) Production method of semiconductor module with resin-molded assembly of heat spreader and semiconductor chip
US10492347B2 (en) Method for producing a housing having shielding against electric and/or magnetic radiation, and housing having the shielding
CN102077311A (zh) 中压或高压开关装置组件的电极部件及其制造方法
CN101512690A (zh) 具有屏蔽的铁心/线圈组件的干式变压器及其制造方法
JP6709264B2 (ja) 防水モーターのステーターの製造方法及び防水モーターのステーター
CN104200981A (zh) 一种电感制造方法
CN201796808U (zh) 真空灭弧室外绝缘密封装置
US20190320539A1 (en) Electrical Assembly
JP5136569B2 (ja) ゲル注入器およびそれを用いたパワーモジュールの製造方法
CN111952019B (zh) 内置电容evt组件的绝缘子及其加工方法
JPS6136710B2 (zh)
TWM630029U (zh) 風扇結構
CN204760154U (zh) 一种采用热塑性材料的绝缘套管
CN204130728U (zh) 线缆连接器
RU2018112141A (ru) Электропроводные emi-экранирующие кожухи для камер транспортного средства
CN101408488B (zh) 一种微电子器件恒定加速度试验方法
CN103511890A (zh) 一种led注塑模组
CN103721885A (zh) 环氧树脂封装的超声雾化器
JP2005260188A (ja) リアクトル
CN103123875A (zh) 一种真空灭弧室固封极柱的绝缘密封装置
CN207150940U (zh) 一种灌胶处理的pcba板
CN201499388U (zh) 户外电器的防水结构
CN209980984U (zh) 无壳电容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897605

Country of ref document: EP

Kind code of ref document: A1