WO2017004735A1 - 全视角全像影像记录方法 - Google Patents
全视角全像影像记录方法 Download PDFInfo
- Publication number
- WO2017004735A1 WO2017004735A1 PCT/CN2015/000490 CN2015000490W WO2017004735A1 WO 2017004735 A1 WO2017004735 A1 WO 2017004735A1 CN 2015000490 W CN2015000490 W CN 2015000490W WO 2017004735 A1 WO2017004735 A1 WO 2017004735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror
- full
- image
- film holder
- holographic image
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000003287 optical effect Effects 0.000 claims abstract description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000004973 liquid crystal related substance Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000001427 coherent effect Effects 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001454 recorded image Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/2645—Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
- G03H1/265—Angle multiplexing; Multichannel holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/26—Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
- G03H1/268—Holographic stereogram
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2210/00—Object characteristics
- G03H2210/40—Synthetic representation, i.e. digital or optical object decomposition
- G03H2210/42—Synthetic representation, i.e. digital or optical object decomposition from real object, e.g. using 3D scanner
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2227/00—Mechanical components or mechanical aspects not otherwise provided for
- G03H2227/03—Means for moving one component
Definitions
- the invention relates to a holographic image recording method, in particular to a full-view holographic image recording method.
- the recording of the captured image on the optical hologram by the new optical photography technology has the advantage of providing the viewer with a stereoscopic image and a three-dimensional experience as compared with the conventional optical photography image.
- the basic principle of the existing holographic film image production is as follows (as shown in FIG. 1): First, a rotating platform rotating at a fixed speed is captured by an image capturing device 111, such as a CCD camera. An image of an object 113 on 112 is transmitted to the display panel 125 via the line. At the same time, an illumination unit 121 is used, for example, the same dimming light emitted by the laser light to a first mirror 122.
- the first mirror 122 reflects the same dimming light to a beam splitter 123, and the beam splitter 123 divides the same dimming light into objects.
- Object light and reference light are carried along the object optical path P1
- the beam splitter 123 transmits the object light to the second mirror 124
- the second mirror 124 reflects the object light to a display panel 125
- the display panel 125 images the image
- the image captured by capture device 111 is projected and transmitted onto holographic film 128.
- the reference light is transmitted along a reference optical optical path P2 to a third mirror 126 that reflects the reference light onto the holographic film 128.
- the object light and the reference light cause optical interference on the holographic film to form a plurality of bright and dark interference fringe images.
- the exposed holographic film is washed to form a composite hologram of the image of the object.
- a three-dimensional image of the object can be visualized by projecting the reference light as a reconstructed light source thereon.
- the captured and recorded images are captured at a fixed angle (for example, fixed to the X axis by a certain tilt angle).
- the current recording technology of optical holographic images still has many shortcomings and shortcomings, and there is a need for further improvement.
- the present invention provides a full-view holographic image recording method, so that the captured and recorded image is not only an image 360 degrees around the target object, but also the target object can be recorded. Images were taken at an angle relative to the X-axis, Y-axis, and Z-axis.
- the present invention provides a full-view holographic image recording method, which is implemented by a full-view holographic image capturing and recording apparatus including a holographic image capturing apparatus and a hologram Image recording device.
- the holographic image capturing device comprises an image capturing device and a rotating platform.
- the holographic image recording device comprises a light-emitting unit, a first mirror, a beam splitter, a second mirror, a display panel, a third mirror and a film holder, wherein the film holder is provided with a film holder
- the film holder is rotatable relative to the X-axis, the Y-axis, and the Z-axis, and the method includes the following steps:
- the first mirror receives the same dimming light and reflects it to the beam splitter, and the beam splitter divides the same dimming light into an object light and a reference light;
- the beam splitter transmits reference light along the reference optical path to the third mirror
- the third mirror reflects the reference light onto a holographic film on the film holder
- the beam splitter transmits object light along the objective optical path to the second mirror;
- the second mirror reflects the object light onto the display panel and projects and delivers onto the holographic film on the film holder.
- the film holder includes a chassis, a first rotating device, a second rotating device, a third rotating device, and the negative film holder.
- the first rotating device, the second rotating device and the third rotating device are disposed on the chassis.
- the holographic backsheet is held securely by the film holder so that the holographic film does not fall when rotated.
- the first rotating device has a first motor that can drive the film holder to rotate with the Y axis as a rotation axis, thereby allowing the film holder to be horizontally A tilt angle is present between the two.
- the second rotating device has a second motor that can rotate the film holder to rotate with the X axis as an axis of rotation, thereby allowing the film holder to assume an oblique angle with respect to the vertical direction.
- the third rotating device has a third motor that can drive the film holder to rotate with the Z axis as a rotation axis, thereby allowing an inclination angle between the film holder and the Z-axis direction.
- the film holder is made of metal or plastic, but the invention is not limited thereto.
- the length of the object optical path is equal to the length of the reference optical path.
- the image capture device is a CCD camera.
- the display panel is a liquid crystal display panel.
- the light emitting unit is a gas laser emitter, a carbon dioxide laser emitter, a liquid laser emitter, a solid state laser emitter or a semiconductor laser emitter.
- the holographic film is disposed on a film holder and is firmly held by the film holder provided on the film holder.
- the film holder can be driven by the first motor, the second motor and the third motor, and the film holder can be rotated relative to the Y axis, the X axis and the Z axis to allow the holographic film to be placed on the film holder Not only can the image of the target object rotate 360 degrees, but also the image with the required X-axis tilt angle, Y-axis tilt angle and Z-axis tilt angle with respect to each degree, so that the reference light and the object light will arrive at each other on the holographic film.
- Interference forms a full-view holographic image with X-angle, Y-tilt, and Z-tilt.
- the exposed holographic film is washed to record a composite full image of the image of the target object.
- the reference light can be projected onto the reconstructed light source to reveal a three-dimensional image of the object.
- FIG. 1 is a schematic view of a hologram image capturing and recording apparatus used in a conventional hologram recording method
- FIG. 2 is a schematic diagram of a holographic image capturing and recording apparatus used in the full-view holographic image recording method according to the present invention
- FIG. 3 is a schematic view of a film holder used in the full-view holographic image recording method provided by the present invention.
- FIG. 4 is a flow chart of steps of a full-view holographic image recording method provided by the present invention.
- 5(a), 5(b), and 5(c) are schematic diagrams showing a full-view full-image image recorded on a hologram negative film according to an embodiment of the present invention
- 6(a), 6(b) and 6(c) are schematic diagrams showing the reconstruction of the full-view full-image image on the hologram in the embodiment of the present invention.
- FIG. 2 is a schematic view showing a hologram-capturing and recording apparatus used in the full-view hologram recording method according to the present invention. That is, the present invention provides a method of recording a full-view hologram image by the full-view holographic image capturing and recording apparatus.
- the full-view holographic image capturing and recording apparatus 200 includes a holographic image capturing device 210 and a holographic image recording device 220.
- the holographic image capturing device 210 includes an image capturing device 211 and a rotating platform 212.
- a rotating object 212 can be disposed on the rotating platform 212.
- the holographic image recording device 220 includes a light emitting unit 221, a first mirror 222, a beam splitter 223, a second mirror 224, a display panel 225, a third mirror 226, and a film holder 227.
- a full image negative film 228 can be disposed on the seat 227.
- FIG. 3 is a schematic view showing a film holder used in the full-view hologram recording method provided by the present invention.
- the film holder 300 includes a chassis 340, a first rotating device 310, a second rotating device 320, a third rotating device 330, and a film holder 350.
- the first rotating device 310, the second rotating device 320, and the third rotating device 330 are disposed on the chassis 340.
- the holographic film 228 is held securely by the film holder 350 so that the holographic film 228 does not fall when rotated.
- the first rotating device 310 There is a first motor 315 which can drive the film holder 350 to rotate with the Y axis as a rotation axis, so that the film holder can be inclined at an oblique angle with the horizontal direction.
- the second rotating device 320 has a second motor 325 that can rotate the film holder 350 to rotate with the X axis as an axis of rotation, thereby allowing the film holder to assume an oblique angle with respect to the vertical direction.
- the third rotating device 330 has a third motor 335 which can drive the film holder 350 to rotate with the Z axis as a rotation axis, so that an angle of inclination between the film holder and the Z-axis direction can be exhibited.
- the film holder 300 is made of metal or plastic, but the invention is not limited thereto.
- the hologram 228 is disposed on a film holder 300 and is firmly held by the film holder 350 provided thereon.
- the film holder 350 is driven by the first motor 315, the second motor 325, and the third motor 335 of the first rotating device 310, the second rotating device 320, and the third rotating device 330, thereby being capable of the Y axis and the X axis.
- the Z axis is rotated about the rotation axis, so that the holographic film 228 placed on the film holder can record not only the 360-degree image of the target object 213 but also the required X-axis inclination angle with respect to each degree, the Y-axis. An image of the dip or Z-axis inclination.
- a flow chart of the steps of the full-view holographic image recording method provided by the present invention includes the following steps: using an image capturing device 211 to target a target placed on a rotating platform 212 rotating at a fixed speed.
- the object 213 is photographed, and the captured image is transmitted to a display panel 225 via a line (step 410); the same light is transmitted to a first mirror 222 using a light emitting unit 221 (step 420); the first reflection
- the mirror 222 receives the same dimming light and reflects it to a beam splitter 223, which splits the dimming light into object light and reference light (step 430); the beam splitter 223 will
- the reference light is transmitted along a reference light (fourth) optical path P4 to a third mirror 226 (step 440); the third mirror 226 reflects the reference light onto a holographic film 228 on a film holder 227 ( Step 450);
- the beam splitter 223 transmits the object light along the object light (third) optical path P3 to a second mirror 224 (step 460); the second mirror 224 reflects the object light to the display panel 225, And projecting and transmitting to the holographic film 228 of the film holder 227 (step Step 470);
- the holographic film prepared by the method of the present invention is washed to form a composite hologram of the image of the object.
- the reference light can be projected onto the reconstructed light source to reveal a three-dimensional image of the object.
- the optical path from the beam splitter 223 to the display panel 225 and then to the hologram 228 via the second mirror 224 is the third optical path P3 (also referred to as the object optical path), and the path length is d3.
- the optical path from the beam splitter 223 to the hologram 228 via the third mirror 226 is referred to as a fourth optical path P4 (also referred to as a reference optical path) having a path length of d4.
- the length d3 of this P3 is equal to the length d4 of P4.
- the full-view holographic image capturing and recording apparatus 200 used in the present invention can be applied to various holographic image recording systems, and can be used, for example, to record full-view holographic images in a rainbow hologram, a reflective hologram, A true color full picture or an integrated full picture, etc., but the invention is not limited thereto.
- the light emitting unit 221 can be a gas laser emitter, a carbon dioxide laser emitter, a liquid laser emitter, a solid state laser emitter or a semiconductor laser emitter, but the invention is not limited thereto. this.
- the coherent light can be a visible light or an invisible light.
- the image capture device 211 can be a CCD camera.
- the display panel 225 may be a liquid crystal display panel.
- the full-view holographic image recording method provided by the present invention is described below in the actual situation of recording images.
- FIG. 5(a) through 5(c) there is shown a schematic diagram of recording a full-view full-image image on a holographic film in accordance with an embodiment of the present invention.
- the film holder 350 can be controlled to change the X-axis tilt angle, the Y-axis tilt angle, and the Z-axis tilt angle to record the image capturing device 211 on the hologram film 228.
- the image taken when the angle of the target object 213 is 1° (refer to A1 in the figure).
- FIG. 5(a) the film holder 350 can be controlled to change the X-axis tilt angle, the Y-axis tilt angle, and the Z-axis tilt angle to record the image capturing device 211 on the hologram film 228.
- the image taken when the angle of the target object 213 is 1° (refer to A1 in the figure).
- the film holder 350 when the image is recorded, can be controlled to change the X-axis tilt angle, the Y-axis tilt angle, and the Z-axis tilt angle to record the image capturing device 211 around the target on the hologram film.
- the image taken when the angle of the object 213 is 2° (refer to A2 in the figure).
- an image captured by the image capturing device 211 around the target object 213 at an angle of 1°, 2°, or 3° can be recorded on the hologram film 228 when recording an image (refer to A3, A4, A5) in the figure.
- the X-axis tilt angle, the Y-axis tilt angle, and the Z-axis tilt angle may be changed between each exposure to repeatedly expose the image on the hologram negative film 228, thus repeating this step until the target Object 213 of 360 The ° images are recorded on the hologram 228.
- the reconstruction method of the recorded full-view hologram image provided by the present invention is as follows. Refer to Figures 6(a) to 6(c). As shown in Fig. 6(a), it is shown that the LED lamp is placed under the hologram 22 to display an image taken when the angle of the target object 213 is 1 (refer to A6 in the figure). As shown in Fig. 6(b), it is shown that the LED lamp is placed under the hologram 228 to display an image taken when the angle of the target object 213 is 2 (refer to A7 in the figure).
- the hologram 228 is illuminated from below using the LED lamp as a reconstructed light source to simultaneously rotate the holographic negative film 228 to obtain various images depending on the angle of the negative and the reconstructed light source.
- FIG. 6(c) it is shown that as the film rotates, images captured at an angle of 1°, 2°, 3°, . . . around the target object 213 can be reconstructed (refer to A8 and A9 in the figure). , A10).
- the eye looks like a picture above the holographic film. As the angle of rotation of the film is different, first, for example, you will see the image on the left side of the object.
- the hologram is rotated to the next angle, for example, you will see The image on the right side of the object. Due to the persistence of vision, the left image and the right image of the object exist in the viewer's mind at the same time, and the brain automatically interprets the two two-dimensional images as a three-dimensional holographic image.
- the feature and advantage of the present invention is that when the "full-view holographic image recording method" provided by the present invention is implemented, the holographic film disposed on the film holder can record not only the 360-degree image of the target object. And the image with the required X-axis tilt angle, Y-axis tilt angle and Z-axis tilt angle with respect to each degree can be recorded to achieve the purpose and effect of full-view holographic image recording to record the full-view three-dimensional image. Therefore, the present invention has the effect that the prior art cannot achieve, and is inventive.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
Abstract
一种全视角全像影像记录方法,包括以下步骤:使用一影像捕获设备(211)对一目标物体(213)摄影,并将影像传送至一显示面板(225);使用一发光单元(221)发射同调光至一第一反射镜(222);第一反射镜(222)接收同调光,并将其反射至一分光镜(223);分光镜(223)将参考光沿着一参考光光学路径传送至一第三反射镜(226);第三反射镜(226)将参考光反射至一全像底片(228)上;分光镜(223)将物光传送至一第二反射镜(224);第二反射镜(224)将物光反射至一显示面板(225),透射且传送至一底片座(227)的全像底片(228)上;以及藉由底片握持器(350)相对于X轴、Y轴、或Z轴旋转,参考光与物光在全像底片(228)上彼此干涉,以形成相对物体(213)旋转360度每一度的具X轴倾角、Y轴倾角、或Z轴倾角的全像影像。
Description
本发明涉及一种全像影像记录方法,具体涉及一种全视角全像影像记录方法。
目前,以新式光学摄影技术在光学全像片上记录所拍摄的影像与传统式光学摄影所制影像相比较而言,所具有的优点为可提供给观看者立体影像与三维的感受。现有的全像片(holographic film)影像制作的基本原理如以下说明(如图1所示):首先,使用由一影像捕获设备111,例如CCD摄影机,撷取以固定速度旋转的一旋转平台112上的一物体113的影像,并将所摄得的影像经由联机传送至显示面板125。同时使用一发光单元121,例如激光所发射的同调光至一第一反射镜122,第一反射镜122将该同调光反射至一分光镜123,分光镜123将该同调光分成物光(object light)与参考光(reference light)。其中,此物光沿着物光光学路径P1进行,分光镜123将该物光传送至第二反射镜124,第二反射镜124将此物光反射至一显示面板125,显示面板125将该影像捕获设备111所撷取的影像投射且传送至全像底片128上。此外,参考光沿着参考光光学路径P2传送至一第三反射镜126,第三反射镜126将参考光反射至全像底片128上。然后,物光与参考光在全像底片上产生光学干涉,形成许多明暗的干涉条纹(interference fringe)影像。此经曝光后的全像底片经冲洗后为记录物体影像的复合全像片。对此复合全像片只要以参考光为重建光源投射于其上,即可显现物体的三维立体影像。
但是,以上述方式所拍摄与记录的影像仍有缺点与限制,于以上过程中,所拍摄与记录到的为影像捕获设备以固定角度(例如,以某个倾角对X轴固定)所摄得物体旋转360度的影像。故,于影像重建时,观看者并无法看到对X轴变化倾角的影像,且亦无法看到对Y轴变化倾角的影像以及对Z轴变化倾角的影像。因此,以上述传统方式所拍摄与记录的全像影像对于观看者而言,其立体感不足,并非真正的三维立体影像。
因此,目前光学全像影像的记录技术仍有许多不足与缺点,实有进一步改进的必要。
发明内容
为了解决上述现有技术的不足与缺点,本发明提供一种全视角全像影像记录方法,以使所拍摄与记录的影像不仅为围绕目标物体360度的影像,且可记录该目标物体于每一度相对于X轴、Y轴、Z轴倾角所拍摄影像。
本发明提供一种全视角全像影像记录方法,该方法通过一全视角全像影像摄影与记录装置而实施,该全视角全像影像摄影与记录装置包括一全像影像摄影装置与一全像影像记录装置。其中,全像影像摄影装置包含一影像捕获设备与一旋转平台。全像影像记录装置包含一发光单元、一第一反射镜、一分光镜、一第二反射镜、一显示面板、一第三反射镜以及一底片座,该底片座上设有一底片握持器,该底片握持器能够相对于X轴、Y轴及Z轴旋转,该方法包括以下步骤:
使用该影像捕获设备对以固定速度旋转的该旋转平台上放置的一目标物体摄影,并将所摄得的影像经由联机传送至该显示面板上;
使用该发光单元发射同调光至该第一反射镜;
该第一反射镜接收该同调光,并将其反射至该分光镜,该分光镜将该同调光分成物光(object light)与参考光(reference light);
该分光镜将参考光沿着参考光光学路径传送至该第三反射镜;
该第三反射镜将参考光反射至底片座上的一全像底片上;
该分光镜将物光沿着物光光学路径传送至该第二反射镜;
该第二反射镜将物光反射至该显示面板,并投射且传送至底片座上的该全像底片上。
在本发明的一实施例中,该底片座包括一底盘、一第一旋转装置、一第二旋转装置、一第三旋转装置以及该底片握持器。其中,此第一旋转装置、第二旋转装置以及第三旋转装置设置于该底盘上。该全像底片由该底片握持器牢固地握持,以在旋转时全像底片不会掉落。
在本发明的一实施例中,该第一旋转装置具有一第一马达,其可带动底片握持器以Y轴为旋转轴旋转,从而可使底片握持器与水平方向之
间呈现一倾斜角。该第二旋转装置具有一第二马达,其可带动底片握持器以X轴为旋转轴旋转,从而可使底片握持器与垂直方向之间呈现一倾斜角。该第三旋转装置具有一第三马达,其可带动底片握持器以Z轴为旋转轴旋转,从而可使底片握持器与Z轴方向之间呈现一倾斜角。该底片座由金属或塑料制成,但本发明并不受限于此。
在本发明的一实施例中,该物光光学路径的长度与该参考光光学路径的长度相等。
在本发明的一实施例中,该影像捕获设备为一CCD摄影机。
在本发明的一实施例中,该显示面板为一液晶显示面板。
在本发明的一实施例中,该发光单元为一气体激光发射器、一二氧化碳激光发射器、一液态激光发射器、一固态激光发射器或一半导体激光发射器。
由于在此全像影像记录过程中,全像底片设置于一底片座上,由底片座上所设的底片握持器牢固地握持。底片握持器可以被第一马达、第二马达和第三马达带动,底片握持器能够相对于Y轴、X轴和Z轴旋转,以使该底片握持器上所放置的全像底片不但可记录目标物体旋转360度的影像,而且可记录相对于每一度具有所要求X轴倾角、Y轴倾角和Z轴倾角的影像,故参考光与物光抵达该全像底片上时会彼此干涉,形成具有X倾角、Y倾角以及Z倾角的一全视角全像影像。此经曝光后的全像底片经冲洗后为记录目标物体影像的复合全像片。对此复合全像片可以参考光为重建光源投射于其上,即可显现物体的三维立体影像。
图1为现有的全像影像记录方法所使用的全像影像摄影与记录装置的概要图;
图2为本发明提供的全视角全像影像记录方法所使用的全像影像摄影与记录装置的概要图;
图3为本发明提供的全视角全像影像记录方法所使用的底片座的概要图;
图4为本发明提供的全视角全像影像记录方法的步骤流程图;
图5(a)、图5(b)、图5(c)为本发明实施例的将全视角全像影像记录于全像底片上的概要图;
图6(a)、图6(b)、图6(c)为本发明实施例将全像底片上全视角全像影像重建的概要图。
附图标记说明:100-全像影像摄影与记录装置;110-全像影像摄影装置;111-影像捕获设备;112-旋转平台;113-目标物体;120-全像影像记录装置;121-发光单元;122-第一反射镜;123-分光镜;124-第二反射镜;125-显示面板;126-第三反射镜;128-全像底片;200-全视角全像影像摄影与记录装置;210-全像影像摄影装置;211-影像捕获设备;212-旋转平台;213-目标物体;220-全像影像记录装置;221-发光单元;222-第一反射镜;223-分光镜;224-第二反射镜;225-显示面板;226-第三反射镜;227-底片座;228-全像底片;300-底片座;310-第一旋转装置;315-第一马达;320-第二旋转装置;325-第二马达;330-第三旋转装置;335-第三马达;340-底盘;350-底片握持器。
为使审查员方便了解本发明的内容及所能达成的功效,兹配合图式列举具体实施例,详细说明如下:
首先,如图2所示为本发明提供的全视角全像影像记录方法所使用的全像影像摄影与记录装置的概要图。即,本发明提供一种全视角全像影像的记录方法,其通过该全视角全像影像摄影与记录装置而实施。此全视角全像影像摄影与记录装置200包括一全像影像摄影装置210与一全像影像记录装置220。其中,此全像影像摄影装置210包含一影像捕获设备211以及一旋转平台212,旋转平台212上可设置一目标物体213。此全像影像记录装置220包含一发光单元221、一第一反射镜222、一分光镜223、一第二反射镜224、一显示面板225、一第三反射镜226以及一底片座227,底片座227上可设置一全像底片228。
其次,如图3所示为本发明提供的全视角全像影像记录方法所使用的底片座的概要图。如图3所示,该底片座300包括一底盘340、一第一旋转装置310、一第二旋转装置320、一第三旋转装置330以及一底片握持器350。其中,此第一旋转装置310、第二旋转装置320以及第三旋转装置330设置于该底盘340上。该全像底片228由该底片握持器350牢固地握持,以在旋转时全像底片228不会掉落。该第一旋转装置310
具有一第一马达315,其可带动底片握持器350以Y轴为旋转轴旋转,从而可使底片握持器与水平方向之间呈现一倾斜角。该第二旋转装置320具有一第二马达325,其可带动底片握持器350以X轴为旋转轴旋转,从而可使底片握持器与垂直方向之间呈现一倾斜角。该第三旋转装置330具有一第三马达335,其可带动底片握持器350以Z轴为旋转轴旋转,从而可使底片握持器与Z轴方向之间呈现一倾斜角。该底片座300由金属或塑料制成,但本发明并不受限于此。
该全像底片228设置于一底片座300上,由其上所设的底片握持器350牢固地握持。该底片握持器350通过第一旋转装置310、第二旋转装置320以及第三旋转装置330中的第一马达315、第二马达325和第三马达335带动,从而能够以Y轴、X轴、和Z轴为旋转轴旋转,以使该底片座上所放置的全像底片228不仅可记录目标物体213旋转360度的影像,而且可记录相对于每一度具有所要求X轴倾角、Y轴倾角或Z轴倾角的影像。
然后,如图4所示为本发明提供的全视角全像影像记录方法的步骤流程图,包括以下步骤:使用一影像捕获设备211对以固定速度旋转的一旋转平台212上所放置的一目标物体213摄影,并将所摄得的影像经由联机传送至一显示面板225上(步骤410);使用一发光单元221发射同调光至一第一反射镜222(步骤420);该第一反射镜222接收同调光,并将其反射至一分光镜223,该分光镜223将该同调光分成物光(object light)与参考光(reference light)(步骤430);该分光镜223将参考光沿着参考光(第四)光学路径P4传送至一第三反射镜226(步骤440);该第三反射镜226将参考光反射至一底片座227上的一全像底片228上(步骤450);该分光镜223将物光沿着物光(第三)光学路径P3传送至一第二反射镜224(步骤460);该第二反射镜224将物光反射至该显示面板225,并投射且传送至该底片座227的该全像底片228上(步骤470);以及由于该底片座上的该底片握持器能够相对于X轴、Y轴和Z轴旋转,以使该底片握持器上的该全像底片不但可记录物体旋转360度的影像,而且可记录相对于每一度具有X轴倾角、Y轴倾角和Z轴倾角的影像,故参考光与物光抵达该全像底片上时会彼此干涉,形成具有X倾角、Y倾角以及Z倾角的一全视角全像影像(步骤480)。
由本发明方法所制全像底片经冲洗后为记录物体影像的复合全像片。对此复合全像片可以参考光为重建光源投射于其上,即可显现物体的三维立体影像。
上述由分光镜223经由第二反射镜224至显示面板225、再至全像底片228的光学路径为第三光学路径P3(亦称为物光光学路径),其路径长度为d3。上述由分光镜223经由第三反射镜226至全像底片228的光学路径称第四光学路径P4(亦称为参考光光学路径),其路径长度为d4。此P3的长度d3与P4的长度d4相等。
本发明中所使用的全视角全像影像摄影与记录装置200,可以应用于各种全像影像记录系统,例如可用于将全视角全像影像记录于彩虹全像片、反射式全像片、真彩全像片或是积体式全像片等上,但是本发明并不受限于此。
在本实施例中,此发光单元221可以为一气体激光发射器、一二氧化碳激光发射器、一液态激光发射器、一固态激光发射器或一半导体激光发射器,但本发明并不受限于此。又,在本实施例中,该同调光可以为一可见光或一不可见光。影像捕获设备211可以为一CCD摄影机。另外,该显示面板225可以为液晶显示面板。
根据本发明的一实施例,本发明提供的全视角全像影像记录方法在记录影像的实际情况如以下说明。参考图5(a)至图5(c),其显示本发明实施例的将全视角全像影像记录于全像底片上的概要图。如图5(a)所示,在记录影像时,可控制底片握持器350改变X轴倾斜角度、Y轴倾斜角度以及Z轴倾斜角度,以在全像底片228上记录影像捕获设备211环绕目标物体213的角度为1°时所拍摄影像(参考该图中的A1)。如图5(b)所示,在记录影像时,可控制底片握持器350改变X轴倾斜角度、Y轴倾斜角度以及Z轴倾斜角度,以在全像底片上记录影像捕获设备211环绕目标物体213的角度为2°时所拍摄影像(参考该图中的A2)。综合上述,如图5(c)所示,在记录影像时可以在全像底片228上记录影像捕获设备211环绕目标物体213的角度为1°、2°、3°时所拍摄的影像(参考该图中的A3、A4、A5)。在上述影像记录过程中,在每次曝光之间,可以改变X轴倾斜角度、Y轴倾斜角度以及Z轴倾斜角度,以重复曝光影像于全像底片228上,如此重复此步骤,一直至目标物体213的360
°影像均被记录于全像底片228上为止。
又,本发明提供的所记录全视角全像影像的重建方式如以下说明。参考图6(a)至图6(c)。如图6(a)所示,其显示将LED灯置于全像底片228下,以显示环绕目标物体213的角度为1°时所拍摄的影像(参考该图中的A6)。如图6(b)所示,其显示将LED灯置于全像底片228下,以显示环绕目标物体213的角度为2°时所拍摄的影像(参考该图中的A7)。在上述情形中,使用LED灯作为重建光源从下方照射全像底片228,于同时旋转全像底片228,随着底片与重建光源角度的不同,以获得各种不同影像。如图6(c)所示,其显示随着底片旋转,可以重建环绕目标物体213的角度为1°、2°、3°....时所拍摄影像(参考该图中的A8、A9、A10)。在观看影像时,眼睛如图所示在全像底片上方俯视,随着底片旋转角度不同,首先例如会看到物体的左边影像,然后此全像片旋转至下一角度时,例如会看到物体的右边影像。由于视觉暂留作用,物体的左边影像与右边影像同时存在于观看者的脑海中,其大脑会将此两个二维影像自动理解为一个三维立体全像影像。
综上所述,本发明的特点与优点为,本发明提供的“一种全视角全像影像记录方法”实施时,底片座上所置的全像底片不但可记录目标物体旋转360度的影像,而且可记录相对于每一度具有所要求X轴倾角、Y轴倾角和Z轴倾角的影像,以达成全视角全像影像记录的目的与功效,以记录全视角三维立体影像。因此,本发明具有现有技术无法达成的功效,具有创造性。
以上说明内容仅为本发明一较佳实施例,其并非用来限定本发明实施的范围,故举凡依本发明申请专利范围所述的形状、构造、材质、特征及精神所为的等同变化与修饰,均应包括于本发明的保护范围内。
Claims (7)
- 一种全视角全像影像记录方法,该方法通过一全视角全像影像摄影与记录装置而实施,该全视角全像影像摄影与记录装置包括一全像影像摄影装置和一全像影像记录装置,其中,该全像影像摄影装置包含一影像捕获设备和一旋转平台;该全像影像记录装置包含一发光单元、一第一反射镜、一分光镜、一第二反射镜、一显示面板、一第三反射镜以及一底片座,该底片座上设有一底片握持器,该底片握持器能够相对于X轴、Y轴及Z轴旋转;其特征在于,该方法包括以下步骤:使用该影像捕获设备对以固定速度旋转的该旋转平台上放置的一目标物体摄影,并将所摄得的影像经由联机传送至该显示面板上;使用该发光单元发射同调光至该第一反射镜;该第一反射镜接收该同调光,并将其反射至该分光镜,该分光镜将该同调光分成物光与参考光;该分光镜将参考光沿着参考光光学路径传送至该第三反射镜;该第三反射镜将参考光反射至底片座上的一全像底片上;该分光镜将物光沿着物光光学路径传送至该第二反射镜;该第二反射镜将物光反射至该显示面板,并透射且传送至底片座上的该全像底片上。
- 根据权利要求1所述的全视角全像影像记录方法,其特征在于,该底片座包括一底盘、一第一旋转装置、一第二旋转装置、一第三旋转装置以及该底片握持器;其中,该第一旋转装置、该第二旋转装置以及该第三旋转装置设置于该底盘上。
- 根据权利要求2所述的全视角全像影像记录方法,其特征在于,该第一旋转装置具有一第一马达,该第二旋转装置具有一第二马达,以及该第三旋转装置具有一第三马达,用于带动该底片握持器旋转。
- 根据权利要求1所述的全视角全像影像记录方法,其特征在于,该物光光学路径的长度与该参考光光学路径的长度相等。
- 根据权利要求1所述的全视角全像影像记录方法,其特征在于,该影像捕获设备为一CCD摄影机。
- 根据权利要求1所述的全视角全像影像记录方法,其特征在于,该显示面板为一液晶显示面板。
- 根据权利要求1所述的全视角全像影像记录方法,其特征在于,该发光单元为一气体激光发射器、一二氧化碳激光发射器、一液态激光发射器、一固态激光发射器或一半导体激光发射器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/000490 WO2017004735A1 (zh) | 2015-07-06 | 2015-07-06 | 全视角全像影像记录方法 |
CN201580024189.0A CN107683438A (zh) | 2015-07-06 | 2015-07-06 | 全视角全像影像记录方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/000490 WO2017004735A1 (zh) | 2015-07-06 | 2015-07-06 | 全视角全像影像记录方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017004735A1 true WO2017004735A1 (zh) | 2017-01-12 |
Family
ID=57684682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/000490 WO2017004735A1 (zh) | 2015-07-06 | 2015-07-06 | 全视角全像影像记录方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107683438A (zh) |
WO (1) | WO2017004735A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115236858A (zh) * | 2022-06-21 | 2022-10-25 | 京东方科技集团股份有限公司 | 光学系统、显示系统、显示装置和控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5483365A (en) * | 1994-05-10 | 1996-01-09 | California Institute Of Technology | Method for holographic storage using peristrophic multiplexing |
JP2000338846A (ja) * | 1999-05-25 | 2000-12-08 | Sony Corp | ホログラム記録再生装置 |
US20020191236A1 (en) * | 2001-06-08 | 2002-12-19 | Brian King | Method for improved holographic recording using beam apodization |
TW591351B (en) * | 2002-09-13 | 2004-06-11 | Univ Nat Central | Device and method for manufacturing disc-shaped exhibitive hologram |
CN102081340A (zh) * | 2010-12-08 | 2011-06-01 | 中山大学 | 全视角真三维图像显示系统及其显示方法 |
CN102262301A (zh) * | 2010-11-18 | 2011-11-30 | 宸鸿光电科技股份有限公司 | 全息立体影像投射装置及其在电子产品的应用和使用方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0194772A3 (en) * | 1985-03-13 | 1987-09-30 | Gec Avionics Limited | Holograms |
US5282067A (en) * | 1991-10-07 | 1994-01-25 | California Institute Of Technology | Self-amplified optical pattern recognition system |
US5621549A (en) * | 1993-10-07 | 1997-04-15 | Tamarack Storage Devices, Inc. | Method and apparatus for positioning a light beam on a holographic media |
JP2856664B2 (ja) * | 1993-12-27 | 1999-02-10 | セントラル硝子株式会社 | イメージホログラムの作製方法 |
CN2555526Y (zh) * | 2002-07-31 | 2003-06-11 | 中国科学院西安光学精密机械研究所 | 实时全息干涉的精密复位微调全息干板支架 |
CN100549871C (zh) * | 2007-07-31 | 2009-10-14 | 哈尔滨师范大学 | 将三维数字信息记录在全息底片上的记录方法 |
CN201804207U (zh) * | 2010-04-23 | 2011-04-20 | 张瑞聪 | 多彩全像的影像合成设备的光偏移补偿装置 |
-
2015
- 2015-07-06 CN CN201580024189.0A patent/CN107683438A/zh active Pending
- 2015-07-06 WO PCT/CN2015/000490 patent/WO2017004735A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5483365A (en) * | 1994-05-10 | 1996-01-09 | California Institute Of Technology | Method for holographic storage using peristrophic multiplexing |
JP2000338846A (ja) * | 1999-05-25 | 2000-12-08 | Sony Corp | ホログラム記録再生装置 |
US20020191236A1 (en) * | 2001-06-08 | 2002-12-19 | Brian King | Method for improved holographic recording using beam apodization |
TW591351B (en) * | 2002-09-13 | 2004-06-11 | Univ Nat Central | Device and method for manufacturing disc-shaped exhibitive hologram |
CN102262301A (zh) * | 2010-11-18 | 2011-11-30 | 宸鸿光电科技股份有限公司 | 全息立体影像投射装置及其在电子产品的应用和使用方法 |
CN102081340A (zh) * | 2010-12-08 | 2011-06-01 | 中山大学 | 全视角真三维图像显示系统及其显示方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115236858A (zh) * | 2022-06-21 | 2022-10-25 | 京东方科技集团股份有限公司 | 光学系统、显示系统、显示装置和控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107683438A (zh) | 2018-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0511101B1 (fr) | Procédé de modélisation d'un système de prise de vues et procédé et système de réalisation de combinaisons d'images réelles et d'images de synthèse | |
JP6489482B2 (ja) | 3次元画像メディアを生成するシステム及び方法 | |
CN103868472B (zh) | 一种用于高反射率零件的面结构光三维测量装置与方法 | |
US8233032B2 (en) | Systems and methods for creating a three-dimensional image | |
US7385600B2 (en) | Three dimensional display method, system and apparatus | |
JP3394149B2 (ja) | 立体像再生装置 | |
CN109901371A (zh) | 一种全息成像系统和方法 | |
TW201019031A (en) | Projecting system capable of forming 3D images and related method | |
WO2017004735A1 (zh) | 全视角全像影像记录方法 | |
TWI452451B (zh) | 全像影像的合成系統 | |
TWI572970B (zh) | Full - view image - like recording method | |
WO2014199085A1 (fr) | Systemes de reperage de la position de la camera de tournage pour le tournage de films video | |
CN208399879U (zh) | 散射投影装置 | |
CN106033183B (zh) | 一种全像影像记录与全像影像重建方法 | |
TWI524335B (zh) | A Universal Image Recording and Universal Image Reconstruction Method | |
WO2016106471A1 (zh) | 一种全像影像记录与全像影像重建方法 | |
JP2009239591A (ja) | 立体投影装置 | |
JP2006270798A (ja) | 合成映像撮影装置 | |
WO2020037693A1 (zh) | 一种基于光泳捕获的可交互体三维显示装置及其控制方法 | |
US2413808A (en) | Method and camera for obtaining stereoscopic effects | |
JP2005010549A (ja) | 立体像撮影装置と表示装置 | |
US20130182081A1 (en) | Real-Time Stereo 3D Digital/Video Imaging in a Light Microscope Using a Single Lens and a Single Camera | |
KR20200023857A (ko) | 프로젝션 맵핑을 이용한 아날로그와 디지털이 결합된 트릭아트 체험 시스템 | |
TWI501053B (zh) | 全像成像裝置及方法 | |
SU717682A1 (ru) | Способ освещени и фотографировани следов зар женных частиц в трековых камерах |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15897391 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15897391 Country of ref document: EP Kind code of ref document: A1 |