WO2020037693A1 - 一种基于光泳捕获的可交互体三维显示装置及其控制方法 - Google Patents

一种基于光泳捕获的可交互体三维显示装置及其控制方法 Download PDF

Info

Publication number
WO2020037693A1
WO2020037693A1 PCT/CN2018/102653 CN2018102653W WO2020037693A1 WO 2020037693 A1 WO2020037693 A1 WO 2020037693A1 CN 2018102653 W CN2018102653 W CN 2018102653W WO 2020037693 A1 WO2020037693 A1 WO 2020037693A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
particles
capture
interactive
scanning
Prior art date
Application number
PCT/CN2018/102653
Other languages
English (en)
French (fr)
Inventor
范超
韩东成
Original Assignee
上海先研光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海先研光电科技有限公司 filed Critical 上海先研光电科技有限公司
Publication of WO2020037693A1 publication Critical patent/WO2020037693A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the invention relates to the fields of true three-dimensional display technology, laser beam modulation technology, optical capture technology, projection technology and automatic control technology, and particularly relates to an interactive three-dimensional display device based on photo swimming capture and a control method thereof.
  • Three-dimensional display technology (Volumetric 3D display).
  • Stereoscopic technology requires wearing special glasses and using binocular parallax to achieve three-dimensional effects. This restricts the observer's field of vision, and the images seen from different angles are the same, without real stereoscopic sense; the principle of the autostereoscopic 3D display technology is the same as that of the stereoscopic technology, but There is no need to wear special glasses.
  • This display technology enables images to be seen only when viewed from a specific spatial window. Therefore, a group of images can be projected into a series of windows. At this time, the observer can observe two glasses. Different images are received, creating a three-dimensional impression.
  • the disadvantage of this display technology is that the scope of observation is limited, and it is inconvenient for multiple people to observe at the same time. In essence, these two methods can only provide psychological depth of field, but not physical depth of field. When the eyes observe these images, they cannot change the focal length of the eyes to observe them when observing real objects, but synthesize three-dimensional effects through the brain.
  • Holographic display technology is based on the information recording, analysis and reproduction of light wavefront reconstruction.
  • computational holography technology is increasingly used in holographic display technology.
  • the display quality and field of view of current computational holographic display technologies are greatly limited.
  • Volume 3D display technology refers to the technology of reproducing image information in a real 3D space.
  • the three-dimensional object displayed by the volume three-dimensional display technology has both a psychological depth of field and a physical depth of field. It can realize that any number of observers can directly observe the three-dimensional object from any angle without using any auxiliary equipment.
  • the existing three-dimensional volume display technology in free space can be divided into the following types: laser-induced plasma display, improved air display, acoustic suspension display, and the like. Laser-induced plasma display currently cannot achieve color display and occlusion effects of three-dimensional objects in free space. The display effect of the improved air display and sound suspension display is too rough.
  • the basic unit in two-dimensional display is a pixel
  • the corresponding basic unit in three-dimensional display technology is a voxel.
  • the pixels of the display are periodically and quickly scanned to activate the pixels, thereby realizing the display of the image.
  • a certain way is also needed to scan the voxels in the 3D space, so as to realize the display of the 3D image.
  • a laser-induced plasma display the laser is focused through a lens to ionize the air so that it can be observed by the human eye.
  • fast scanning is performed in three-dimensional space, thereby realizing the display of three-dimensional graphics.
  • This display technology requires a laser with high energy, and the color of the light emitted by air ionization is related to the type of gas that ionizes in the air, so it is difficult to achieve color display.
  • the particles can be captured.
  • the laser By controlling the position of the focus of the light beam, the laser can carry the captured particles to scan quickly in three-dimensional space. While the particles are being scanned, another visible light beam is used to illuminate the information that needs to be displayed at that point. The light shining on the particles will scatter. At this time, the human eye can observe what is displayed at this position. information. When the scanning process is fast enough, the human eye can observe the displayed three-dimensional graphics.
  • the laser beam that captures the particles can be modulated, so that a large number of particles are captured for parallel scanning in three-dimensional space, which greatly increases the scanning efficiency and significantly increases the resolution of the displayed image.
  • the present invention provides an interactive body three-dimensional display device based on photo-swim capture and a control method thereof, so as to realize three-dimensional display and interaction in free space and improve the three-dimensional display effect.
  • the technical solution of the present invention is:
  • the present invention provides an interactive three-dimensional display device based on photophoretic capture, including a particle control system, a host computer, a projection system, and an interactive system;
  • the particle control system includes a laser, a light modulator 1, and a three-dimensional Scanning system 1 and particle container;
  • the projection system includes RGB laser system, light modulator 2 and three-dimensional scanning system 2;
  • the host computer and the laser the light modulator 1, the three-dimensional scanning system 1, respectively
  • the particle container, the RGB laser system, the light modulator 2 and the three-dimensional scanning system 2 are connected;
  • the interaction system is connected with the host computer;
  • the interaction system is used for the position and action information of the human body Identify, and pass instructions to the host computer according to the recognition result, and the host computer optimizes the viewing angle and interacts by adjusting the particle control system and the projection system.
  • the interactive three-dimensional display device further includes a display quality detection device, the display quality detection device is connected to the host computer; the display quality detection device is used for detecting a display effect, and transmitting an instruction according to the detection result To the host computer, the host computer adjusts the particle control system and the projection system according to the instruction, thereby optimizing the display quality.
  • the wavelength range of the laser is less than 450 nm or greater than 650 nm.
  • the light modulator 1 and the light modulator 2 include a lens and a light modulation device, and the lens is used for expanding, collimating, and modulating the diameter of the light beam, and the light modulation device includes a digital Micromirror array, spatial light modulator, anamorphic mirror or phase plate.
  • the three-dimensional scanning system 1 and the three-dimensional scanning system 2 are composed of a galvanometer and a lens system, the galvanometer is used to control the scanning of the light beam in the XY plane, and the lens system implements scanning in the Z direction by zooming, The combination of the two can achieve large-scale three-dimensional dynamic focused scanning.
  • the particle container is provided with a transmission device, and the particle container is driven in and out of the three-dimensional display area by the transmission device.
  • the particles in the particle container are absorbing particles, and the diameter of the absorbing particles is less than 500 microns.
  • the RGB laser system includes three lasers capable of emitting red light, green light, and blue light, respectively.
  • Three of the lasers can be combined by a dichroic mirror to output three colors of light at the same time.
  • three lasers can be placed side by side to output the beam at the same time. After modulation, the three colors of beams are irradiated onto the particles at the same time.
  • the additive method Enables particles to scatter light of any color.
  • the interactive three-dimensional display device further includes a light-absorbing material and a transparent casing, and the light-absorbing material and the transparent casing are disposed around the three-dimensional display area.
  • the present invention provides a method for controlling an interactive body three-dimensional display device based on photophoresis capture, including the following steps:
  • the user inputs the image to be displayed to the host computer, and selects a method for capturing and scanning particles through the host computer.
  • the method for capturing particles is divided into four methods: single-point capture, one-dimensional capture, two-dimensional capture, and three-dimensional capture.
  • the single-point capture method the beam captures the particles and carries the particles to scan linearly in the display area;
  • the one-dimensional capture method the captured particles are arranged linearly, and the beam carries the captured particles in the display area Scanning;
  • the two-dimensional capture method the captured particles are arranged in a two-dimensional array, and the beam carries the captured particles to scan in the display area;
  • the three-dimensional capture method the captured particles are arranged in a three-dimensional array.
  • the user adjusts the power of the laser through the host computer, and controls the light modulator 1 to generate a corresponding beam.
  • the beam passes through the 3D scanning system 1 and the particle container in turn by controlling the 3D scanning System 1 and particle container to capture particles;
  • the user controls the 3D scanning system 1 through the host computer to control the light beam to carry particles in the display area for fast scanning.
  • the RGB laser system, light modulator 2 and 3D scanning system 2 are controlled by the host computer. Project the image to be displayed into the display area;
  • the user can identify the position and movement of the human body through the interactive system, and pass the instructions to the host computer based on the recognition result.
  • the host computer performs the particle control system and the projection system. Control, achieve the best viewing angle and interact.
  • step S3 the image to be displayed is projected into the display area, and the projection method includes point-by-point projection, layered projection, stereo projection, or holographic projection.
  • the control method further includes step S5: while the image is displayed in the display area, the user can also perform real-time detection through the display quality detection device. To determine whether the display quality meets the requirements; when it is detected that the display quality is reduced or does not meet the requirements, the user adjusts the particle control system and the projection system through the host computer to optimize the display quality.
  • the beneficial effect of the present invention is that the present invention captures particles by photophoresis, so that the particles are continuously scanned in the display area, while the particles are scanned, the display image is projected to the position of the particles, and the light projected on the particles will be A scattering phenomenon occurs so that observation can be performed.
  • the optical modulator 1 of the present invention can modulate a laser beam, so that the captured particles can be arbitrarily arranged; by modulating the laser beam, the captured particles can be one-dimensional, two-dimensional, or three-dimensional Arranged to perform parallel scanning and significantly increase the resolution; 3D scanning system 1 can control the position of the beam focus to achieve fast scanning in 3D space; RGB laser system combined with light modulator 2 and 3D scanning system 2 can achieve in space Projection at any position in the center; the host computer can select the appropriate system working mode according to the image to be displayed, including the arrangement of particles, the scanning method of the particles, the projection method of the image, etc., and the display quality of the system can be combined with the display quality detection device The real-time detection is performed, and the optimal display quality is achieved by adjusting the system parameters and updating particles.
  • the laser power used in the present invention is lower and the cost is also superior to other three-dimensional display technologies.
  • the interactive system of the present invention can recognize human body position, gesture, action and other information, and transmit instructions to the host computer according to the recognition result.
  • the host computer controls the system to achieve the best viewing angle and interact.
  • the present invention can realize true three-dimensional imaging with wide color gamut, high resolution, and low speckle in free space, and the system has more advantages in terms of security and cost.
  • Fig. 1 is a schematic diagram of the main structure and the control principle of the host computer of the present invention, wherein 1-input, 2-host computer, 3-particle control system, 4-projection system, 5-laser, 6-light modulator 1, 7- 3D scanning system 1, 8-particle container, 9-RGB laser system, 10-light modulator 2, 11- 3D scanning system 2, 12-interactive system, 13-display quality inspection device, 14-display area, 15-light absorption Material, 16-transparent shell.
  • an embodiment of the present invention discloses an interactive body three-dimensional display device based on photophoretic capture, including a particle control system (3), a host computer (2), a projection system (4), and an interaction system (12 ) And display quality detection device (13);
  • the particle control system (3) includes a laser (5), a light modulator 1 (6), a three-dimensional scanning system 1 (7), and a particle container (8);
  • the projection system (4) Including RGB laser system (9), light modulator 2 (10) and three-dimensional scanning system 2 (11);
  • the host computer (2) is respectively connected with the laser (5) and the light modulator 1 ( 6), the three-dimensional scanning system 1 (7), the particle container (8), the RGB laser system (9), the light modulator 2 (10), the three-dimensional scanning system 2 (11),
  • the interaction system (12) is connected to the display quality detection device (13).
  • the input (1) is a three-dimensional image or video file that the user controls the computer to input into the upper computer.
  • the wavelength range of the laser (5) is less than 450 nm or greater than 650 nm. Its output power is controlled by a host computer, and the output beam is irradiated onto the optical modulator 1 (6).
  • the light modulator 1 (6) includes a lens and a light modulation device.
  • the lens is used for expanding, collimating, and modulating the diameter of a light beam.
  • the light modulation device is a spatial light modulator (SLM). SLM can modulate the laser beam emitted by the laser (5). After the modulated beam is focused by the lens, it can generate a single or three-dimensional light bottle structure arranged in a one-dimensional array, two-dimensional array, or three-dimensional array. Photophoresis capture.
  • the three-dimensional scanning system 1 (7) is composed of a galvanometer and a lens system.
  • the galvanometer is used to control the scanning of the light beam in the XY plane.
  • the lens system performs scanning in the Z direction by zooming. The combination of the two can realize large-scale three-dimensional dynamic focusing scanning. .
  • the particle container (8) is mounted on a transmission device.
  • the transmission device drives the particle container to move to the display area (14).
  • the three-dimensional scanning system 1 (7) controls the light beam to photo-swim the particles. capture.
  • the transmission device drives the particle container to leave the display area (14).
  • the microparticles in the microparticle container (8) are absorbing particles, the diameter of the absorbing particles is less than 500 micrometers, and the shape of the microparticles has no specific requirements. Scattering occurs when visible light hits the particles.
  • the RGB laser system includes three lasers capable of emitting red light, green light, and blue light, among which three lasers can be combined by a dichroic mirror and output three colors of light at the same time. Color beam, and then irradiate the beam onto the particles; three lasers can be placed side by side to output the beam at the same time, and after modulation, the three color beams are irradiated onto the particles at the same time. Scatter light of any color.
  • the light modulator 2 (10) includes a lens and a light modulation device.
  • the lens is used for expanding, collimating, and modulating the diameter of a light beam.
  • the light modulation device is a digital micromirror array (DMD).
  • DMD digital micromirror array
  • the modulator 2 has two functions. One is to cooperate with the three-dimensional scanning system to irradiate the light beams of any of the above colors onto the particles; the other is that the upper computer splits each frame of the image to be projected according to red, green and blue. It is three frames. When the laser emits the laser of the corresponding color, the three frames of light are respectively modulated by the three DMDs and projected to the corresponding position by the three-dimensional scanning system 2. When the speed is fast enough, color can be achieved at that position. Projection of the image.
  • the three-dimensional scanning system 2 (11) is composed of a galvanometer and a lens system. Like the three-dimensional scanning system 1, it can realize large-scale three-dimensional dynamic focus scanning. It can also project image information after DMD modulation to any position in the display area. .
  • the interaction system (12) is composed of Kinect, which can detect various positions, gestures, and recognize finger motion instructions of the human body, and transmit the instructions to the upper computer (2), and the particle control system is controlled by the upper computer (2) ( 3) and the projection system (4) to control the displayed image, provide the best display effect, and make corresponding feedback on the instructions.
  • the upper computer (2) controls the particle control system (3) and the projection system (4) according to the position information of the human body, and adjusts the displayed graphics to achieve the best viewing angle; and the upper computer (2) ) Control the particle control system (3) and projection system (4) according to the motion information of the human body, and adjust the displayed graphics to achieve interaction.
  • the display quality detection device (13) is composed of an image acquisition device and image analysis software. During the working process of the display system, the display quality detection device detects the display quality in real time. When it is detected that the display quality cannot meet the requirements, it goes up
  • the host computer (2) sends a signal, and the host computer (2) optimizes the system parameters and recaptures the particles. (Specifically: the upper computer (2) adjusts the power of the laser (5), the modulation method of the optical modulator 1 (6), the scanning method and scanning speed of the three-dimensional scanning system 1 (7), and the captured particles according to the instructions. Update and adjust the power of the RGB laser system (9), change the projection method of the projection system, etc. to optimize the display quality.)
  • the display area (14) is free space.
  • the light absorbing material (15) is arranged near the display area (14), and is used to absorb stray light that has an effect on the display effect.
  • the transparent casing (16) is made of transparent material, and is used to protect the display area (14) from being affected by the air flow. When the airflow environment in the display area is too complicated, the display effect will be affected. At this time, the transparent area can be used to protect the display area to ensure the display effect. When the airflow environment in the display area is relatively mild, the transparent casing may not be used.
  • This embodiment provides a method for controlling an interactive body three-dimensional display device based on photo-swim capture, including the following steps: the image to be displayed is a three-dimensional stereo image (such as a relatively simple three-dimensional portrait of a person), and the user selects it through a host computer. Single point capture of particles; then the user adjusts the laser power through the host computer and controls the light modulator 1 to modulate the beam so that it can produce a single light bottle structure at the focal point. The beam passes through the 3D scanning system 1 and the particles in turn. In the process of the container, the three-dimensional scanning system 1 and the particle container are controlled to capture particles.
  • the user controls the 3D scanning system 1 through the host computer to control the light beam to carry particles to scan quickly in the display area.
  • the particle needs to be scanned in three dimensions in the display area; at the same time
  • the RGB laser system, light modulator 2 and three-dimensional scanning system 2 are controlled by the host computer.
  • the RGB laser system outputs three colors of light beams at the same time.
  • the light beam of the color, the projection system irradiates the light beam of the color that the particle needs to display at the position on the particle, and the light beam irradiated on the particle will be scattered, so that the desired color of the display can be observed at this point.
  • the scanning speed is fast enough, a three-dimensional image can be observed in the display area according to the visual residual effect.
  • the user can also recognize the position and movement of the human body through the interactive system, and pass instructions to the host computer based on the recognition results.
  • the host computer controls the particle control system and projection system based on the position information of the human body.
  • the light modulator and the three-dimensional scanning system adjust the scanning position of the particles, thereby changing the angle of the image display to achieve the best viewing effect; and the host computer controls the light in the particle control system and the projection system according to the motion information of the human body.
  • Modulators and 3D scanning systems adjust the displayed graphics for interaction.
  • the user can also perform real-time detection through the display quality detection device to determine whether the display quality meets the requirements.
  • the host computer can control the laser power, scanning speed, and recapture particles to ensure that the beam can stably carry a sufficient number of particles to scan in space, thereby Optimize the display quality.
  • This embodiment provides a method for controlling an interactive three-dimensional display device based on photo-swim capture, which includes the following steps: the image to be displayed is a three-dimensional stereo image (such as a relatively complicated three-dimensional portrait of a person), and the user selects it through a host computer. One-dimensional capture of particles; then the user adjusts the laser power through the host computer and controls the light modulator 1 to modulate the beam so that it can generate a one-dimensional linearly arranged light bottle structure at the focal point, and the beam sequentially passes through the three-dimensional scanning system In the process of 1 and the particle container, the 3D scanning system 1 and the particle container are controlled to realize the capture of particles.
  • the image to be displayed is a three-dimensional stereo image (such as a relatively complicated three-dimensional portrait of a person)
  • the user selects it through a host computer.
  • One-dimensional capture of particles then the user adjusts the laser power through the host computer and controls the light modulator 1 to modulate the beam so that it can generate a one-dimensional linear
  • the user controls the three-dimensional scanning system 1 through the host computer to control the light beam to carry particles to scan quickly in the display area.
  • the host computer controls the RGB laser system, the light modulator 2 and the 3D scanning system 2.
  • the projection system divides the colors to be displayed in the linear area where the particles are located into three frames.
  • the combined RGB laser system projects the three colors onto the particles through the light modulator 2 or the RGB laser system composed of three uncombined green, red, and blue lasers is modulated by the three light modulators and passed.
  • the three-dimensional scanning system projects three colors onto particles simultaneously. The light beam irradiated on the particles is scattered, and the desired color can be observed at this point. When the scanning speed is fast enough, a three-dimensional image can be observed in the display area.
  • the user can also recognize the position and movement of the human body through the interactive system, and pass instructions to the host computer based on the recognition results.
  • the host computer controls the particle control system and projection system based on the position information of the human body.
  • the light modulator and the three-dimensional scanning system adjust the scanning position of the particles, thereby changing the angle of the image display to achieve the best viewing effect; and the host computer controls the light in the particle control system and the projection system according to the motion information of the human body.
  • Modulators and 3D scanning systems adjust the displayed graphics for interaction.
  • the user can also perform real-time detection through the display quality detection device to determine whether the display quality meets the requirements.
  • the host computer can control the laser power, scanning speed, and recapture particles to ensure that the beam can stably carry a sufficient number of particles to scan in space, thereby Optimize the display quality.
  • This embodiment provides a method for controlling an interactive three-dimensional display device based on photo-swim capture, which includes the following steps: the image to be displayed is a three-dimensional stereo image (such as a relatively complicated three-dimensional portrait of a person), and the user selects it through a host computer.
  • the particles are captured in two dimensions; the user then adjusts the power of the laser through the host computer and controls the light modulator 1 to modulate the beam so that it can produce a two-dimensional planar light bottle structure at the focal point.
  • the beam is sequentially scanned in three dimensions.
  • the three-dimensional scanning system 1 and the particle container are controlled to realize capturing of particles.
  • the user controls the 3D scanning system 1 through the host computer to control the light beam to carry particles to scan quickly in the display area.
  • the projection system can be used for projection directly.
  • particles only need to be scanned in one dimension; at the same time, the RGB laser system, light modulator 2 and three-dimensional scanning system 2 are controlled by the host computer.
  • the two-dimensionally arranged particles are scanned to a certain position, projection is performed.
  • the system divides the colors that need to be displayed in the linear area where the particles are located into three frames.
  • a single combined RGB laser system projects the three colors onto the particles through the light modulator 2 or uses uncombined green, red,
  • the RGB laser system consisting of three blue lasers is modulated by three light modulators and then three colors are projected onto the particles at the same time by a three-dimensional scanning system.
  • the light beam irradiated on the particles is scattered, and the desired color can be observed at this point.
  • the scanning speed is fast enough, the displayed image can be observed in the display area.
  • the user can also recognize the position and movement of the human body through the interactive system, and pass instructions to the host computer based on the recognition results.
  • the host computer controls the particle control system and projection system based on the position information of the human body.
  • the light modulator and the three-dimensional scanning system adjust the scanning position of the particles, thereby changing the angle of the image display to achieve the best viewing effect; and the host computer controls the light in the particle control system and the projection system according to the motion information of the human body.
  • Modulators and 3D scanning systems adjust the displayed graphics for interaction.
  • the user can also perform real-time detection through the display quality detection device to determine whether the display quality meets the requirements.
  • the host computer can control the laser power, scanning speed, and recapture particles to ensure that the beam can stably carry a sufficient number of particles to scan in space, thereby Optimize the display quality.
  • This embodiment provides a method for controlling an interactive body three-dimensional display device based on photo-swim capture, including the following steps: the image to be displayed is a three-dimensional stereo image (such as a complex stereo portrait), and the user selects The particles are captured in three dimensions; the user then adjusts the laser power through the host computer and controls the light modulator 1 to modulate the beam so that it can produce a three-dimensional array of light bottle structures at the focal point.
  • the beam passes through the three-dimensional scanning system 1 and the particles in order.
  • the three-dimensional scanning system 1 and the particle container are controlled to capture particles.
  • the user controls the three-dimensional scanning system 1 through the host computer to control the light beam to carry particles to scan quickly in the display area.
  • the particles are directly arranged according to the desired displayed contour. Then use the projection system to project, and if the three-dimensional contour image to be displayed is too large, the image to be displayed can be divided and displayed in turn. When the speed is fast enough, a complete three-dimensional contour can be observed image. While scanning the particles, the RGB laser system, light modulator 2 and 3D scanning system 2 are controlled by the host computer. When the three-dimensionally arranged particles are scanned to a certain position, the projection system will display the colors required in the linear area where the particles are located.
  • a single combined RGB laser system is used by the light modulator 2 to project three colors onto particles using a three-dimensional holographic projection, or an RGB composed of three uncombined green, red, and blue lasers
  • the laser system uses three-dimensional holographic projection to project three colors onto particles simultaneously through a three-dimensional scanning system.
  • the light beam irradiated on the particles is scattered, and the desired color can be observed at this point.
  • the scanning speed is fast enough, the displayed image can be observed in the display area.
  • the user can also recognize the position and movement of the human body through the interactive system, and pass instructions to the host computer based on the recognition results.
  • the host computer controls the particle control system and projection system based on the position information of the human body.
  • the light modulator and the three-dimensional scanning system adjust the scanning position of the particles, thereby changing the angle of the image display to achieve the best viewing effect; and the host computer controls the light in the particle control system and the projection system according to the motion information of the human body.
  • Modulators and 3D scanning systems adjust the displayed graphics for interaction.
  • the user can also perform real-time detection through the display quality detection device to determine whether the display quality meets the requirements.
  • the host computer can control the laser power, scanning speed, and recapture particles to ensure that the beam can stably carry a sufficient number of particles to scan in space, thereby Optimize the display quality.
  • the interactive three-dimensional display device and the control method thereof can not only display and interact with a 360 ° full-view naked-eye three-dimensional image in free space, but also greatly improve the three-dimensional display effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种基于光泳捕获的可交互体三维显示装置及其控制方法,装置包括微粒控制系统(3)、上位机(2)、投影系统(4)和交互系统(12);微粒控制系统(3)包括激光器(5)、光调制器1(6)、三维扫描系统1(7)和微粒容器(8);投影系统(4)包括RGB激光系统(9)、光调制器2(10)和三维扫描系统2(11);上位机(2)分别与激光器(5)、光调制器1(6)、三维扫描系统1(7)、微粒容器(8)、RGB激光系统(9)、光调制器2(10)和三维扫描系统2(11)连接;交互系统(12)与上位机(2)连接;交互系统(12)用于对人体的位置、动作信息进行识别,并根据识别结果将指令传递给上位机(2),上位机(2)通过对微粒控制系统(3)和投影系统(4)进行调整,进而优化观看角度并交互。这种装置能够实现自由空间中的、广色域、高分辨、低散斑的真三维成像,并且系统安全性和成本更具优势。

Description

一种基于光泳捕获的可交互体三维显示装置及其控制方法 技术领域
本发明涉及真三维显示技术、激光光束调制技术、光学捕获技术、投影技术和自动控制技术领域,具体涉及一种基于光泳捕获的可交互体三维显示装置及其控制方法。
背景技术
我们所生活的世界为三维世界,而传统的显示设备只能显示二维平面的图形,二维显示相对于三维显示缺少了景深。随着科学技术的高速发展,人们对显示器的显示效果也提出了更高的要求。近年来,人们发展了多种三维显示技术,一般可分为以下几种:体视感技术(Stereoscopic Display)、自动立体三维显示技术(Autostereoscopic 3D Display)、全息显示技术(Holographic Display)、和体三维显示技术(Volumetric 3D Display)。
体视感技术需要佩戴特制的眼镜,利用双目视差来实现三维效果。这使得观察者的视野受到了限制,并且从不同的角度观看时所看到的图像都是一样的,没有真正的立体感;自动立体三维显示技术的原理与体视感技术的原理相同,但是并不需要佩戴特殊的眼镜。这种显示技术可以使图像仅从一个特定的空间视窗中观察时才能被看到,因此,可以将一组图像投影到一连串的窗口中,此时观察者在进行观察时,两只眼镜可以接收到不同的图像,从而产生立体感。这种显示技术的缺点是观察的范围有限,多人同时进行观察时不方便。这两种方法从本质上而言,只能提供心理景深,并没有物理景深。眼睛在观察这些图像时,无法像观察真实物体时改变眼睛的焦距进行观察,而是通过大脑合成三维立体效果。
全息显示技术是基于光波波前重构的信息记录、分析和再现。随着计算机技术的发展,计算全息技术也越来越多的应用于全息显示技术中。然而由于空间光调制器件的限制,目前计算全息显示技术的显示质量和视场角受到了很大的限制。
体三维显示技术是指在一个真实的三维空间中进行图像信息再现的技术。利用体三维显示技术所显示的三维物体既有心理景深,又有物理景深。可以实现任意多个观察者从任意角度不借助任何辅助设备的条件下直接对三维物体进行观察。现有的自由空间中的体三维显示技术可分为以下几种:激光诱导等离子体显示、改良的空气显示、声悬浮显示等。激光诱导等离子体显示目前无法在自由空间中实现色彩显示和三维物体的遮挡效果。改良的空气显示和声悬浮显示的显示效果过于粗糙。
二维显示中的基本单位为像素,而三维显示技术中与之相对应的基本单位为体素(Voxel)。在显示同一个图像时,所激活的三维空间中的体素越多,则所显示的三维图像的细节也就越丰富,分辨率也就越高,显示的效果越好。在二维显示中,通过对显示器的像素进行周期性的、快速的扫描来激活像素,从而实现图像的显示。同样,在体三维显示技术中, 同样需要某种方式来对三维空间中的体素进行扫描,从而实现三维图像的显示。
在激光诱导等离子体显示中,将激光通过透镜聚焦,使空气发生电离,从而能够被人眼观察到。通过控制激光的焦点,在三维空间中进行快速的扫描,从而实现三维图形的显示。这种显示技术需要激光具有很高的能量,并且空气电离所发出的光的颜色与空气中发生电离的气体种类有关,因此难以实现色彩的显示。
通过使用聚焦的激光光束作用在微粒上的光泳力,可以对微粒进行捕获。通过控制光束的焦点的位置,可以使激光携带被捕获的微粒在三维空间中进行快速的扫描。在微粒进行扫描的同时,使用另外的可见光束将需要在该点显示的信息照射到微粒上,照射到微粒上的光会发生散射现象,此时人眼就能够观察到在该位置所显示的信息。当扫描的过程足够快时,人眼就能够观察到所显示的三维图形。当需要增加显示图像的分辨率时,可以对捕获微粒的激光光束进行调制,从而捕获大量的微粒在三维空间中进行并行扫描,大大增加扫描的效率,显著增加显示图像的分辨率。通过RGB激光器结合光调制器和三维扫描系统,可以显著增加投影的效果、速度和亮度。
发明内容
针对现有技术存在的问题,本发明提供一种基于光泳捕获的可交互体三维显示装置及其控制方法,以实现自由空间中的三维显示与交互,提升三维显示效果。本发明的技术方案为:
第一个方面,本发明提供一种基于光泳捕获的可交互体三维显示装置,包括微粒控制系统、上位机、投影系统和交互系统;所述微粒控制系统包括激光器、光调制器1、三维扫描系统1和微粒容器;所述投影系统包括RGB激光系统、光调制器2和三维扫描系统2;所述上位机分别与所述激光器、所述光调制器1、所述三维扫描系统1、所述微粒容器、所述RGB激光系统、所述光调制器2和所述三维扫描系统2连接;所述交互系统与所述上位机连接;所述交互系统用于对人体的位置、动作信息进行识别,并根据识别结果将指令传递给所述上位机,所述上位机通过对所述微粒控制系统和所述投影系统进行调整,进而优化观看角度并进行交互。
进一步地,所述可交互体三维显示装置还包括显示质量检测装置,所述显示质量检测装置与所述上位机连接;所述显示质量检测装置用于检测显示效果,并根据检测结果将指令传送给所述上位机,所述上位机根据所述指令对所述微粒控制系统和所述投影系统进行调整,进而优化显示质量。
进一步地,所述激光器的波长范围为小于450nm或者大于650nm。
进一步地,所述光调制器1和所述光调制器2包括透镜和光调制器件,所述透镜用于对光束进行扩束、准直以及对光束的直径进行调制,所述光调制器件包括数字微镜阵列、空间 光调制器、变形镜或者相位板。
进一步地,所述三维扫描系统1和所述三维扫描系统2由振镜和透镜系统组成,所述振镜用于控制光束进行XY平面的扫描,所述透镜系统通过变焦实现Z方向的扫描,二者结合能够实现大尺度三维动态聚焦扫描。
进一步地,所述微粒容器设有传动装置,所述微粒容器在所述传动装置的带动下进出三维显示区域。
进一步地,所述微粒容器中的微粒为吸收粒子,所述吸收粒子的直径小于500微米。
进一步地,所述RGB激光系统包括三个能够分别发射红光、绿光、蓝光的激光器,其中三个激光器既可以通过二向色镜合束,同时输出三种颜色的光,通过加色法,得到任意色彩的光束,随后将该光束照射到微粒上;又可以将三个激光器并排放置,同时输出光束,分别进行调制后,将三种颜色的光束同时照射到微粒上,根据加色法使微粒能够散射任意色彩的光。
进一步地,所述可交互体三维显示装置还包括吸光材料和透明壳体,所述吸光材料和所述透明壳体设置在所述三维显示区域周围。
第二个方面,本发明提供一种基于光泳捕获的可交互体三维显示装置的控制方法,包括以下步骤:
S1、用户将所要显示的图像输入至上位机,并通过上位机选择对微粒捕获以及扫描的方式,所述对微粒捕获的方式分为单点捕获、一维捕获、二维捕获、三维捕获四种;当使用单点捕获方式时,光束捕获微粒后携带微粒在显示区域中进行线性扫描;当使用一维捕获方式时,被捕获的微粒呈线性排列,光束携带被捕获的微粒在显示区域中进行扫描;当使用二维捕获方式时,被捕获的微粒呈二维阵列排列,光束携带被捕获的微粒在显示区域中进行扫描;当使用三维捕获方式时,被捕获的微粒呈三维阵列排列,可以直接进行三维投影,也可以控制微粒在显示区域中进行扫描;
S2、对微粒捕获以及扫描的方式确定后,用户通过上位机调节激光器的功率,并控制光调制器1使生成相应的光束,光束依次通过三维扫描系统1和微粒容器的过程中通过控制三维扫描系统1和微粒容器实现对微粒的捕获;
S3、微粒捕获完成后,用户通过上位机控制三维扫描系统1控制光束携带微粒在显示区域中进行快速扫描;于此同时,通过上位机控制RGB激光系统、光调制器2和三维扫描系统2,将所需要显示的图像投影到显示区域中;
S4、在图像显示在显示区域的过程中,用户可以通过交互系统对人体的位置、动作等信息进行识别,并根据识别结果将指令传递给上位机,上位机通过对微粒控制系统和投影系统 进行控制,实现最佳的观看角度并进行交互。
进一步地,所述步骤S3中将所需要显示的图像投影到显示区域中,所述投影的方式包括逐点投影、分层投影、立体投影或者全息投影。
进一步地,当所述可交互体三维显示装置还包括显示质量检测装置时,所述控制方法还包括步骤S5:在图像显示在显示区域的过程中,用户还可以通过显示质量检测装置进行实时检测,判断显示质量是否满足要求;当检测到显示质量降低或者不满足要求时,用户通过上位机对微粒控制系统和投影系统进行调整来优化显示的质量。
本发明的有益效果为:本发明通过光泳捕获微粒,使微粒在显示区域中进行不断的扫描,在微粒进行扫描的同时,将显示图像投影到微粒所在的位置,投影到微粒上的光会发生散射现象从而能够进行观察。其中,本发明的光调制器1可以对激光光束进行调制,从而能够使被捕获的微粒进行任意的排列;通过对激光光束进行调制,可使被捕获的微粒进行一维、二维或三维的排列,从而进行并行的扫描,显著增加分辨率;三维扫描系统1能够控制光束焦点的位置,实现在三维空间中的快速扫描;RGB激光系统结合光调制器2和三维扫描系统2能够实现在空间中任意位置的投影;上位机能够根据所要显示的图像选择合适的系统工作方式,包括微粒的排列方式、微粒的扫描方式、图像的投影方式等,并可以结合显示质量检测装置对系统的显示质量进行实时的检测,通过调整系统的参数、更新微粒等操作实现最佳的显示质量;本发明所采用的激光器功率较低,成本相较于其他体三维显示技术也具有优势。此外,本发明的交互系统能够对人体的位置、手势、动作等信息进行识别,并根据识别结果将指令传递给上位机,上位机通过对系统进行控制,实现最佳的观看角度并进行交互。总之,相对于现有的自由空间体三维显示技术,本发明能够实现自由空间中的、广色域、高分辨、低散斑的真三维成像,并且系统的安全性和成本更具有优势。
附图说明
图1是本发明的主要结构和上位机控制原理的示意图,其中1-输入,2-上位机,3-微粒控制系统,4-投影系统,5-激光器,6-光调制器1,7-三维扫描系统1,8-微粒容器,9-RGB激光系统,10-光调制器2,11-三维扫描系统2,12-交互系统,13-显示质量检测装置,14-显示区域,15-吸光材料,16-透明壳体。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
如图1所示,本发明实施例公开了一种基于光泳捕获的可交互体三维显示装置,包括微粒控制系统(3)、上位机(2)、投影系统(4)、交互系统(12)和显示质量检测装置(13);所述微粒控制系统(3)包括激光器(5)、光调制器1(6)、三维扫描系统1(7)和微粒容器(8);所述投影系统(4)包括RGB激光系统(9)、光调制器2(10)和三维扫描系统2(11);所述上位机(2)分别与所述激光器(5)、所述光调制器1(6)、所述三维扫描系统1(7)、所述微粒容器(8)、所述RGB激光系统(9)、所述光调制器2(10)、所述三维扫描系统2(11)、所述交互系统(12)和所述显示质量检测装置(13)连接。所述输入(1)即用户控制计算机输入到上位机中的三维图像或视频文件。
所述激光器(5)的波长范围为小于450nm或大于650nm,通过上位机对其输出功率进行控制,输出光束照射到光调制器1(6)上。
所述光调制器1(6)包括透镜和光调制器件,所述透镜用于对光束进行扩束、准直以及对光束的直径进行调制,其光调制器件为空间光调制器(SLM),使用SLM可以对激光器(5)发出的激光光束进行调制,调制后的光束经过透镜聚焦后能够产生单个的或排列成一维阵列、二维阵列或三维阵列的三维光瓶结构,可以用于对微粒进行光泳捕获。
所述三维扫描系统1(7)由振镜和透镜系统组成,振镜用于控制光束进行XY平面的扫描,透镜系统通过变焦实现Z方向的扫描,二者结合能够实现大尺度三维动态聚焦扫描。
所述微粒容器(8)安装在传动装置上,当需要向显示区域提供微粒时,传动装置带动微粒容器向显示区域(14)中运动,三维扫描系统1(7)控制光束对微粒进行光泳捕获。当捕获过程结束后,传动装置带动微粒容器离开显示区域(14)。所述微粒容器(8)中的微粒为吸收粒子,所述吸收粒子的直径小于500微米,并且微粒的形状没有特定的要求。当可见光照射到微粒上时会产生散射现象。
所述RGB激光系统包括三个能够分别发射红光、绿光、蓝光的激光器,其中三个激光器既可以通过二向色镜合束,同时输出三种颜色的光,通过加色法,得到任意色彩的光束,随后将该光束照射到微粒上;又可以将三个激光器并排放置,同时输出光束,分别进行调制后,将三种颜色的光束同时照射到微粒上,根据加色法使微粒能够散射任意色彩的光。
所述光调制器2(10)包括透镜和光调制器件,所述透镜用于对光束进行扩束、准直以及对光束的直径进行调制,其光调制器件为数字微镜阵列(DMD);光调制器2的作用有两个,其一是配合三维扫描系统,将上述任意色彩的光束照射到微粒上;其二是上位机将所需要投影的每一帧画面按照红、绿、蓝拆分为三帧,当激光器发出相应颜色的激光时通过3个DMD对三帧光束分别进行相应的调制,通过三维扫描系统2投影到相应的位置,当速度足够快时,在该位置就能够实现彩色图像的投影。
所述三维扫描系统2(11)由振镜和透镜系统组成,同三维扫描系统1一样能够实现大尺度三维动态聚焦扫描,还可以将经过DMD调制后的图像信息投影到显示区域中的任意位置。
所述交互系统(12)由Kinect构成,其能够检测人体的位置、手势、识别手指的各种动作指令,并将指令传达给上位机(2),通过上位机(2)控制微粒控制系统(3)和投影系统(4)来控制显示的图像,提供最佳的显示效果,并对指令做出相应的反馈。(具体为:上位机(2)根据人体的位置信息对微粒控制系统(3)和投影系统(4)进行控制,对所显示的图形进行调整,实现最佳的观看角度;以及上位机(2)根据人体的动作信息控制微粒控制系统(3)和投影系统(4),对所显示的图形进行调整,实现交互。)
所述显示质量检测装置(13)由图像采集装置和图像分析软件组成,在显示系统的工作过程中,显示质量检测装置对显示质量进行实时的检测,当检测到显示质量不能满足要求时,向上位机(2)发送信号,上位机(2)对系统参数进行优化,并重新捕获微粒。(具体为:上位机(2)根据指令通过调整激光器(5)的功率、光调制器1(6)的调制方式、三维扫描系统1(7)的扫描方式和扫描速度以及对被捕获的微粒进行更新,并调整RGB激光系统(9)的功率、改变投影系统的投影方式等操作,对显示质量进行优化。)
所述显示区域(14)为自由空间。
所述吸光材料(15)布置在显示区域(14)附近,用于吸收对显示效果有影响的杂散光。
所述透明壳体(16)为透明材质,用于保护显示区域(14)不会受到气流的影响。当显示区域的气流环境过于复杂时,显示的效果会受到影响,此时可以使用透明壳体对显示区域进行保护,从而保证显示的效果。当显示区域的气流环境比较温和时,可以不使用该透明壳体。
实施例1:单点捕获
本实施例提供一种基于光泳捕获的可交互体三维显示装置的控制方法,包括如下步骤:所要显示的图像为一种三维立体图像(比如比较简单的立体人物肖像),用户通过上位机选择对微粒进行单点捕获;然后用户通过上位机调节激光器的功率,并控制光调制器1对光束进行调制,使其能够在焦点处产生单个的光瓶结构,光束依次通过三维扫描系统1和微粒容器的过程中通过控制三维扫描系统1和微粒容器实现对微粒的捕获。微粒捕获完成后,用户通过上位机控制三维扫描系统1控制光束携带微粒在显示区域中进行快速扫描,此时若需要显示三维图像,微粒在显示区域中需要进行三个维度的扫描;于此同时,通过上位机控制RGB激光系统、光调制器2和三维扫描系统2,当微粒扫描到某一位置的同时,RGB激光系统同时输出三种色彩的光束,通过加色法生成在该位置需要显示的色彩的光束,投影系统将微粒 在该位置所需要显示的色彩的光束照射到微粒上,照射到微粒上的光束会发生散射,从而被在该点能够观察到所需显示的色彩。当扫描的速度足够快时,根据视觉残留效应,在显示区域中能够观察到三维图像。
在图像显示的过程中,用户还可以通过交互系统对人体的位置、动作等信息进行识别,并根据识别结果将指令传递给上位机,上位机根据人体的位置信息通过控制微粒控制系统和投影系统中的光调制器和三维扫描系统,对微粒扫描的位置进行调整,从而改变图像显示的角度,实现最佳的观看效果;以及上位机根据人体的动作信息控制微粒控制系统和投影系统中的光调制器和三维扫描系统,对所显示的图形进行调整,实现交互。
用户还可以通过显示质量检测装置进行实时检测,判断显示质量是否满足要求。当在显示系统的工作过程中检测到显示质量降低或者不满足要求时,通过上位机控制激光器功率、扫描速度、重新捕获微粒等操作确保光束能够稳定携带足够数量的微粒在空间中进行扫描,从而对显示质量进行优化。
实施例2:一维捕获
本实施例提供一种基于光泳捕获的可交互体三维显示装置的控制方法,包括如下步骤:所要显示的图像为一种三维立体图像(比如相对复杂的立体人物肖像),用户通过上位机选择对微粒进行一维捕获;然后用户通过上位机调节激光器的功率,并控制光调制器1对光束进行调制,使其能够在焦点处产生一维线性排列的光瓶结构,光束依次通过三维扫描系统1和微粒容器的过程中通过控制三维扫描系统1和微粒容器实现对微粒的捕获。微粒捕获完成后,用户通过上位机控制三维扫描系统1控制光束携带微粒在显示区域中进行快速扫描,此时,若需要显示三维图像,微粒只需要进行2个维度的扫描;于此同时,通过上位机控制RGB激光系统、光调制器2和三维扫描系统2,当线性排列的微粒扫描到某一位置的同时,投影系统将在微粒所在线性区域所需要显示的色彩分为三帧,由单个合束的RGB激光系统经过光调制器2将三种色彩分别投影到微粒上,或者利用未合束的绿色、红色、蓝色三个激光器组成的RGB激光系统经三个光调制器调制后通过三维扫描系统将三种色彩同时投影到微粒上。照射到微粒上的光束会发生散射,从而被在该点能够观察到所需显示的色彩。当扫描的速度足够快时,在显示区域中能够观察到三维图像。
在图像显示的过程中,用户还可以通过交互系统对人体的位置、动作等信息进行识别,并根据识别结果将指令传递给上位机,上位机根据人体的位置信息通过控制微粒控制系统和投影系统中的光调制器和三维扫描系统,对微粒扫描的位置进行调整,从而改变图像显示的角度,实现最佳的观看效果;以及上位机根据人体的动作信息控制微粒控制系统和投影系统中的光调制器和三维扫描系统,对所显示的图形进行调整,实现交互。
用户还可以通过显示质量检测装置进行实时检测,判断显示质量是否满足要求。当在显示系统的工作过程中检测到显示质量降低或者不满足要求时,通过上位机控制激光器功率、扫描速度、重新捕获微粒等操作确保光束能够稳定携带足够数量的微粒在空间中进行扫描,从而对显示质量进行优化。
实施例3:二维捕获
本实施例提供一种基于光泳捕获的可交互体三维显示装置的控制方法,包括如下步骤:所要显示的图像为一种三维立体图像(比如相对复杂的立体人物肖像),用户通过上位机选择对微粒进行二维捕获;然后用户通过上位机调节激光器的功率,并控制光调制器1对光束进行调制,使其能够在焦点处产生二维平面排列的的光瓶结构,光束依次通过三维扫描系统1和微粒容器的过程中通过控制三维扫描系统1和微粒容器实现对微粒的捕获。微粒捕获完成后,用户通过上位机控制三维扫描系统1控制光束携带微粒在显示区域中进行快速扫描,此时,若只需要显示二维图像,则直接利用投影系统进行投影即可,若需要显示三维图像,微粒只需要进行1个维度的扫描;于此同时,通过上位机控制RGB激光系统、光调制器2和三维扫描系统2,当二维排列的微粒扫描到某一位置的同时,投影系统将在微粒所在线性区域所需要显示的色彩分为三帧,由单个合束的RGB激光系统经过光调制器2将三种色彩分别投影到微粒上,或者利用未合束的绿色、红色、蓝色三个激光器组成的RGB激光系统经三个光调制器调制后通过三维扫描系统将三种色彩同时投影到微粒上。照射到微粒上的光束会发生散射,从而被在该点能够观察到所需显示的色彩。当扫描的速度足够快时,在显示区域中能够观察到所显示的图像。
在图像显示的过程中,用户还可以通过交互系统对人体的位置、动作等信息进行识别,并根据识别结果将指令传递给上位机,上位机根据人体的位置信息通过控制微粒控制系统和投影系统中的光调制器和三维扫描系统,对微粒扫描的位置进行调整,从而改变图像显示的角度,实现最佳的观看效果;以及上位机根据人体的动作信息控制微粒控制系统和投影系统中的光调制器和三维扫描系统,对所显示的图形进行调整,实现交互。
用户还可以通过显示质量检测装置进行实时检测,判断显示质量是否满足要求。当在显示系统的工作过程中检测到显示质量降低或者不满足要求时,通过上位机控制激光器功率、扫描速度、重新捕获微粒等操作确保光束能够稳定携带足够数量的微粒在空间中进行扫描,从而对显示质量进行优化。
实施例4:三维捕获
本实施例提供一种基于光泳捕获的可交互体三维显示装置的控制方法,包括如下步骤:所要显示的图像为一种三维立体图像(比如复杂的立体人物肖像),用户通过上位机选择对微 粒进行三维捕获;然后用户通过上位机调节激光器的功率,并控制光调制器1对光束进行调制,使其能够在焦点处产生三维排列的的光瓶结构,光束依次通过三维扫描系统1和微粒容器的过程中通过控制三维扫描系统1和微粒容器实现对微粒的捕获。微粒捕获完成后,用户通过上位机控制三维扫描系统1控制光束携带微粒在显示区域中进行快速扫描,此时,若需要显示三维的轮廓图像,则直接控制微粒按照所需显示的轮廓进行排列,随后利用投影系统进行投影即可,并且若所需显示的三维的轮廓图像过大,可以将所需显示的图像进行分割,轮流进行显示,当速度足够快时,可以观察到一个完整的三维轮廓图像。在微粒扫描的同时,通过上位机控制RGB激光系统、光调制器2和三维扫描系统2,当三维排列的微粒扫描到某一位置的同时,投影系统将在微粒所在线性区域所需要显示的色彩分为三帧,由单个合束的RGB激光系统经过光调制器2利用三维全息投影将三种色彩分别投影到微粒上,或者利用未合束的绿色、红色、蓝色三个激光器组成的RGB激光系统经三个光调制器调制后利用三维全息投影通过三维扫描系统将三种色彩同时投影到微粒上。照射到微粒上的光束会发生散射,从而被在该点能够观察到所需显示的色彩。当扫描的速度足够快时,在显示区域中能够观察到所显示的图像。
在图像显示的过程中,用户还可以通过交互系统对人体的位置、动作等信息进行识别,并根据识别结果将指令传递给上位机,上位机根据人体的位置信息通过控制微粒控制系统和投影系统中的光调制器和三维扫描系统,对微粒扫描的位置进行调整,从而改变图像显示的角度,实现最佳的观看效果;以及上位机根据人体的动作信息控制微粒控制系统和投影系统中的光调制器和三维扫描系统,对所显示的图形进行调整,实现交互。
用户还可以通过显示质量检测装置进行实时检测,判断显示质量是否满足要求。当在显示系统的工作过程中检测到显示质量降低或者不满足要求时,通过上位机控制激光器功率、扫描速度、重新捕获微粒等操作确保光束能够稳定携带足够数量的微粒在空间中进行扫描,从而对显示质量进行优化。
综上,当所要显示的图像比较简单、所需的分辨率较低,可以选择单点捕获方式,但是如果图像比较复杂、所需的分辨率较高,由于微粒运动速度的限制,所以显示的帧率会大大降低,影响观看的效果,因此需要选择其他的方式,如一维、二维、三维捕获,可以增加显示的帧率。因此,本发明具体实施例给出的可交互体三维显示装置及其控制方法不但可以实现自由空间中的360°全视角裸眼三维图像显示并进行交互,还可以大大提升三维显示效果。
以上所述实施方式仅仅是对本发明的优选实时方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种基于光泳捕获的可交互体三维显示装置,其特征在于,包括微粒控制系统、上位机、投影系统和交互系统;所述微粒控制系统包括激光器、光调制器1、三维扫描系统1和微粒容器;所述投影系统包括RGB激光系统、光调制器2和三维扫描系统2;所述上位机分别与所述激光器、所述光调制器1、所述三维扫描系统1、所述微粒容器、所述RGB激光系统、所述光调制器2和所述三维扫描系统2连接;所述交互系统与所述上位机连接;所述交互系统用于对人体的位置、动作信息进行识别,并根据识别结果将指令传递给所述上位机,所述上位机通过对所述微粒控制系统和所述投影系统进行调整,进而优化观看角度并进行交互。
  2. 根据权利要求1所述的一种基于光泳捕获的可交互体三维显示装置,其特征在于,所述可交互体三维显示装置还包括显示质量检测装置,所述显示质量检测装置与所述上位机连接;所述显示质量检测装置用于检测显示效果,并根据检测结果将指令传送给所述上位机,所述上位机根据所述指令对所述微粒控制系统和所述投影系统进行调整,进而优化显示质量。
  3. 根据权利要求1所述的一种基于光泳捕获的可交互体三维显示装置,其特征在于,所述光调制器1和所述光调制器2包括透镜和光调制器件,所述透镜用于对光束进行扩束、准直以及对光束的直径进行调制,所述光调制器件包括数字微镜阵列、空间光调制器、变形镜或者相位板。
  4. 根据权利要求1所述的一种基于光泳捕获的可交互体三维显示装置,其特征在于,所述三维扫描系统1和所述三维扫描系统2由振镜和透镜系统组成,所述振镜用于控制光束进行XY平面的扫描,所述透镜系统通过变焦实现Z方向的扫描,二者结合能够实现大尺度三维动态聚焦扫描。
  5. 根据权利要求1所述的一种基于光泳捕获的可交互体三维显示装置,其特征在于,所述微粒容器设有传动装置,所述微粒容器在所述传动装置的带动下进出三维显示区域。
  6. 根据权利要求1或5所述的一种基于光泳捕获的可交互体三维显示装置,其特征在于,所述微粒容器中的微粒为吸收粒子,所述吸收粒子的直径小于500微米。
  7. 根据权利要求1所述的一种基于光泳捕获的可交互体三维显示装置,其特征在于,所述可交互体三维显示装置还包括吸光材料和透明壳体,所述吸光材料和所述透明壳体设置在所述三维显示区域周围。
  8. 权利要求1所述的一种基于光泳捕获的可交互体三维显示装置的控制方法,其特征在于,包括以下步骤:
    S1、用户将所要显示的图像输入至上位机,并通过上位机选择对微粒捕获以及扫描的方式,所述对微粒捕获的方式分为单点捕获、一维捕获、二维捕获、三维捕获四种;当使用单 点捕获方式时,光束捕获微粒后携带微粒在显示区域中进行线性扫描;当使用一维捕获方式时,被捕获的微粒呈线性排列,光束携带被捕获的微粒在显示区域中进行扫描;当使用二维捕获方式时,被捕获的微粒呈二维阵列排列,光束携带被捕获的微粒在显示区域中进行扫描;当使用三维捕获方式时,被捕获的微粒呈三维阵列排列,可以直接进行三维投影,也可以控制微粒在显示区域中进行扫描;
    S2、对微粒捕获以及扫描的方式确定后,用户通过上位机调节激光器的功率,并控制光调制器1使生成相应的光束,光束依次通过三维扫描系统1和微粒容器的过程中通过控制三维扫描系统1和微粒容器实现对微粒的捕获;
    S3、微粒捕获完成后,用户通过上位机控制三维扫描系统1控制光束携带微粒在显示区域中进行快速扫描;于此同时,通过上位机控制RGB激光系统、光调制器2和三维扫描系统2,将所需要显示的图像投影到显示区域中;
    S4、在图像显示在显示区域的过程中,用户可以通过交互系统对人体的位置、动作等信息进行识别,并根据识别结果将指令传递给上位机,上位机通过对微粒控制系统和投影系统进行控制,实现最佳的观看角度并进行交互。
  9. 根据权利要求8所述的一种基于光泳捕获的可交互体三维显示装置的控制方法,其特征在于,所述步骤S3中将所需要显示的图像投影到显示区域中,所述投影的方式包括逐点投影、分层投影、立体投影或者全息投影。
  10. 根据权利要求8所述的一种基于光泳捕获的可交互体三维显示装置的控制方法,其特征在于,当所述可交互体三维显示装置还包括显示质量检测装置时,所述控制方法还包括步骤S5:在图像显示在显示区域的过程中,用户还可以通过显示质量检测装置进行实时检测,判断显示质量是否满足要求;当检测到显示质量降低或者不满足要求时,用户通过上位机对微粒控制系统和投影系统进行调整来优化显示的质量。
PCT/CN2018/102653 2018-08-19 2018-08-28 一种基于光泳捕获的可交互体三维显示装置及其控制方法 WO2020037693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810944347.X 2018-08-19
CN201810944347.XA CN110891169B (zh) 2018-08-19 2018-08-19 一种基于光泳捕获的可交互体三维显示装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2020037693A1 true WO2020037693A1 (zh) 2020-02-27

Family

ID=69591844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102653 WO2020037693A1 (zh) 2018-08-19 2018-08-28 一种基于光泳捕获的可交互体三维显示装置及其控制方法

Country Status (2)

Country Link
CN (2) CN113411565B (zh)
WO (1) WO2020037693A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690438A (zh) * 2020-12-31 2022-07-01 上海誉沛光电科技有限公司 用于悬浮显示的装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329451A (zh) * 2008-07-24 2008-12-24 南京大学 一种三维空间激光成像设备
CN103905808A (zh) * 2012-12-27 2014-07-02 北京三星通信技术研究有限公司 用于三维显示和交互的设备和方法
US20160161068A1 (en) * 2014-12-05 2016-06-09 Brigham Young University Full-color freespace volumetric display with occlusion
US20170293259A1 (en) * 2016-04-07 2017-10-12 Pixie Dust Technologies, Inc. System and method for rendering interactive aerial volumetric graphics and generating spatial audio using femtosecond lasers
CN107277494A (zh) * 2017-08-11 2017-10-20 北京铂石空间科技有限公司 立体显示系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611380B2 (en) * 2001-12-21 2003-08-26 Eastman Kodak Company System and method for calibration of display system with linear array modulator
US6977732B2 (en) * 2002-12-26 2005-12-20 National Taiwan University Miniature three-dimensional contour scanner
CN201163802Y (zh) * 2007-12-11 2008-12-10 上海高意激光技术有限公司 新型彩色激光投影显示设备
US8864313B2 (en) * 2009-06-15 2014-10-21 Eastman Kodak Company Dynamic illumination control for laser projection display
CN101609210B (zh) * 2009-07-14 2012-01-25 王一诺 一种激光扫描实现三维空间的图像和文字显示方法
CN102589476B (zh) * 2012-02-13 2014-04-02 天津大学 高速扫描整体成像三维测量方法
CN104427325B (zh) * 2013-09-04 2018-04-27 北京三星通信技术研究有限公司 快速集成图像生成方法及与用户交互的裸眼三维显示系统
CN106500628B (zh) * 2016-10-19 2019-02-19 杭州思看科技有限公司 一种含有多个不同波长激光器的三维扫描方法及扫描仪
US10554961B2 (en) * 2016-11-08 2020-02-04 Kevin Vora Three-dimensional volumetric display using photoluminescent materials
CN106707484B (zh) * 2016-12-16 2019-06-28 上海理工大学 基于微粒散射光近场照明的超分辨光学显微成像方法
CN107479189B (zh) * 2017-08-14 2019-08-06 中国科学院西安光学精密机械研究所 基于角谱调控的非傍轴自加速光束产生方法及产生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329451A (zh) * 2008-07-24 2008-12-24 南京大学 一种三维空间激光成像设备
CN103905808A (zh) * 2012-12-27 2014-07-02 北京三星通信技术研究有限公司 用于三维显示和交互的设备和方法
US20160161068A1 (en) * 2014-12-05 2016-06-09 Brigham Young University Full-color freespace volumetric display with occlusion
US20170293259A1 (en) * 2016-04-07 2017-10-12 Pixie Dust Technologies, Inc. System and method for rendering interactive aerial volumetric graphics and generating spatial audio using femtosecond lasers
CN107277494A (zh) * 2017-08-11 2017-10-20 北京铂石空间科技有限公司 立体显示系统及方法

Also Published As

Publication number Publication date
CN110891169A (zh) 2020-03-17
CN113411565A (zh) 2021-09-17
CN110891169B (zh) 2021-07-09
CN113411565B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US10429660B2 (en) Directive colour filter and naked-eye 3D display apparatus
US6843564B2 (en) Three-dimensional image projection employing retro-reflective screens
US9148658B2 (en) Light-based caustic surface calibration
CN108663883A (zh) 一种投影显示系统
CN103777453B (zh) 真三维图像显示系统及显示方法
JP6921973B2 (ja) 試料の三次元画像を撮影および表示するための顕微鏡装置
JPH04504786A (ja) 三次元ディスプレイ装置
JP2000509591A (ja) 3次元画像生成方法及び装置
JP2008146221A (ja) 画像表示システム
CN107102503A (zh) 消除激光散斑的光源系统以及投影装置
CN106125314A (zh) 一种光源及激光投影设备
CN106773469B (zh) 现场再现全息投影显示系统
US20030137730A1 (en) Autostereoscopic display
CN103713463B (zh) 真三维图像显示系统及显示方法
CN107577113A (zh) 激光投影装置、系统及方法
CN202975583U (zh) 真三维图像显示系统
WO2020037693A1 (zh) 一种基于光泳捕获的可交互体三维显示装置及其控制方法
CN103713462A (zh) 真三维图像显示系统及显示方法
WO2019148988A1 (zh) 散射投影装置
CN106772821B (zh) 一种可交互裸眼3d系统
CN203217233U (zh) 真三维图像显示系统
CN202854481U (zh) 真三维图像显示系统
CN210803998U (zh) 基于空间光调制器的光场三维成像装置
CN103809364A (zh) 真三维图像显示系统及真三维图像显示方法
CN110703560A (zh) 一种直接投影式一屏多眼独立显示技术

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18931140

Country of ref document: EP

Kind code of ref document: A1